About the Execution of ITS-Tools for QuasiCertifProtocol-COL-28
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
0.000 | 3600000.00 | 0.00 | 0.00 | FFFFTF?TTFFFFFTF | normal |
Execution Chart
Sorry, for this execution, no execution chart could be reported.
Trace from the execution
Formatting '/data/fkordon/mcc2025-input.r156-tall-174881254600764.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2025-input.qcow2 backing_fmt=qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
=====================================================================
Generated by BenchKit 2-5832
Executing tool itstools
Input is QuasiCertifProtocol-COL-28, examination is LTLFireability
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r156-tall-174881254600764
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 604K
-rw-r--r-- 1 mcc users 7.8K May 29 14:47 CTLCardinality.txt
-rw-r--r-- 1 mcc users 81K May 29 14:47 CTLCardinality.xml
-rw-r--r-- 1 mcc users 5.1K May 29 14:47 CTLFireability.txt
-rw-r--r-- 1 mcc users 41K May 29 14:47 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K May 29 14:32 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.8K May 29 14:32 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 3.9K May 29 14:47 LTLCardinality.txt
-rw-r--r-- 1 mcc users 26K May 29 14:47 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.4K May 29 14:47 LTLFireability.txt
-rw-r--r-- 1 mcc users 17K May 29 14:47 LTLFireability.xml
-rw-r--r-- 1 mcc users 14K May 29 14:47 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 147K May 29 14:47 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 8.9K May 29 14:47 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 71K May 29 14:47 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.8K May 29 14:47 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.8K May 29 14:47 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 May 29 14:32 equiv_pt
-rw-r--r-- 1 mcc users 3 May 29 14:32 instance
-rw-r--r-- 1 mcc users 5 May 29 14:32 iscolored
-rw-r--r-- 1 mcc users 120K May 29 14:32 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
echo here is the order used to build the result vector(from xml file)
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLFireability-00
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLFireability-01
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLFireability-02
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLFireability-03
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLFireability-04
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLFireability-05
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLFireability-06
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLFireability-07
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLFireability-08
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLFireability-09
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLFireability-10
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLFireability-11
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLFireability-12
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLFireability-13
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLFireability-14
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLFireability-15
=== Now, execution of the tool begins
BK_START 1749134392723
Invoking MCC driver with
BK_TOOL=itstools
BK_EXAMINATION=LTLFireability
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=QuasiCertifProtocol-COL-28
BK_MEMORY_CONFINEMENT=16384
Not applying reductions.
Model is COL
LTLFireability COL
Running Version 202505121319
[2025-06-05 14:39:53] [INFO ] Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, LTLFireability, -its, -ltsmin, -greatspnpath, /home/mcc/BenchKit/bin//../itstools/bin//..//greatspn/, -order, META, -manyOrder, -smt, -timeout, 3600]
[2025-06-05 14:39:53] [INFO ] Parsing pnml file : /home/mcc/execution/model.pnml
[2025-06-05 14:39:54] [INFO ] Detected file is not PT type :http://www.pnml.org/version-2009/grammar/symmetricnet
log4j:WARN No appenders could be found for logger (org.apache.axiom.locator.DefaultOMMetaFactoryLocator).
log4j:WARN Please initialize the log4j system properly.
log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.
[2025-06-05 14:39:54] [WARNING] Using fallBack plugin, rng conformance not checked
[2025-06-05 14:39:54] [INFO ] Load time of PNML (colored model parsed with PNMLFW) : 642 ms
[2025-06-05 14:39:54] [INFO ] Imported 30 HL places and 26 HL transitions for a total of 2998 PT places and 446.0 transition bindings in 23 ms.
Parsed 16 properties from file /home/mcc/execution/LTLFireability.xml in 10 ms.
Working with output stream class java.io.PrintStream
[2025-06-05 14:39:54] [INFO ] Built PT skeleton of HLPN with 30 places and 26 transitions 77 arcs in 6 ms.
[2025-06-05 14:39:54] [INFO ] Skeletonized 16 HLPN properties in 2 ms.
Initial state reduction rules removed 1 formulas.
FORMULA QuasiCertifProtocol-COL-28-LTLFireability-00 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
Computed a total of 30 stabilizing places and 26 stable transitions
Complete graph has no SCC; deadlocks are unavoidable. place count 30 transition count 26
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge (and all enablings converge to false).
Remains 11 properties that can be checked using skeleton over-approximation.
Computed a total of 30 stabilizing places and 26 stable transitions
Complete graph has no SCC; deadlocks are unavoidable. place count 30 transition count 26
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge (and all enablings converge to false).
Reduction of identical properties reduced properties to check from 19 to 15
RANDOM walk for 38869 steps (995 resets) in 430 ms. (90 steps per ms) remains 0/15 properties
[2025-06-05 14:39:55] [INFO ] Flatten gal took : 22 ms
[2025-06-05 14:39:55] [INFO ] Flatten gal took : 4 ms
Domain [tsid(29), tsid(29)] of place n9 breaks symmetries in sort tsid
[2025-06-05 14:39:55] [INFO ] Unfolded HLPN to a Petri net with 2998 places and 446 transitions 6489 arcs in 32 ms.
[2025-06-05 14:39:55] [INFO ] Unfolded 15 HLPN properties in 0 ms.
Support contains 1167 out of 2998 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 2998/2998 places, 446/446 transitions.
Reduce places removed 62 places and 0 transitions.
Iterating post reduction 0 with 62 rules applied. Total rules applied 62 place count 2936 transition count 446
Applied a total of 62 rules in 271 ms. Remains 2936 /2998 variables (removed 62) and now considering 446/446 (removed 0) transitions.
// Phase 1: matrix 446 rows 2936 cols
[2025-06-05 14:39:55] [INFO ] Computed 2492 invariants in 164 ms
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-05 14:39:58] [INFO ] Implicit Places using invariants in 2937 ms returned []
[2025-06-05 14:39:58] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-05 14:40:02] [INFO ] Implicit Places using invariants and state equation in 3530 ms returned [2727, 2728, 2729, 2730, 2731, 2732, 2733, 2734, 2735, 2736, 2737, 2738, 2739, 2740, 2741, 2742, 2743, 2744, 2745, 2746, 2747, 2748, 2749, 2750, 2751, 2752, 2753, 2754, 2755]
Discarding 29 places :
Implicit Place search using SMT with State Equation took 6515 ms to find 29 implicit places.
Starting structural reductions in LTL mode, iteration 1 : 2907/2998 places, 446/446 transitions.
Applied a total of 0 rules in 78 ms. Remains 2907 /2907 variables (removed 0) and now considering 446/446 (removed 0) transitions.
Finished structural reductions in LTL mode , in 2 iterations and 6882 ms. Remains : 2907/2998 places, 446/446 transitions.
Support contains 1167 out of 2907 places after structural reductions.
[2025-06-05 14:40:02] [INFO ] Flatten gal took : 173 ms
[2025-06-05 14:40:02] [INFO ] Flatten gal took : 113 ms
[2025-06-05 14:40:02] [INFO ] Input system was already deterministic with 446 transitions.
Reduction of identical properties reduced properties to check from 20 to 19
RANDOM walk for 40000 steps (1211 resets) in 2605 ms. (15 steps per ms) remains 15/19 properties
BEST_FIRST walk for 4004 steps (8 resets) in 150 ms. (26 steps per ms) remains 15/15 properties
BEST_FIRST walk for 4004 steps (8 resets) in 206 ms. (19 steps per ms) remains 15/15 properties
BEST_FIRST walk for 4004 steps (8 resets) in 33 ms. (117 steps per ms) remains 15/15 properties
BEST_FIRST walk for 4004 steps (8 resets) in 24 ms. (160 steps per ms) remains 15/15 properties
BEST_FIRST walk for 4004 steps (8 resets) in 20 ms. (190 steps per ms) remains 15/15 properties
BEST_FIRST walk for 4003 steps (8 resets) in 25 ms. (153 steps per ms) remains 15/15 properties
BEST_FIRST walk for 4004 steps (8 resets) in 12 ms. (308 steps per ms) remains 15/15 properties
BEST_FIRST walk for 4004 steps (8 resets) in 24 ms. (160 steps per ms) remains 15/15 properties
BEST_FIRST walk for 4004 steps (8 resets) in 15 ms. (250 steps per ms) remains 15/15 properties
BEST_FIRST walk for 4004 steps (8 resets) in 64 ms. (61 steps per ms) remains 15/15 properties
BEST_FIRST walk for 4003 steps (8 resets) in 134 ms. (29 steps per ms) remains 15/15 properties
BEST_FIRST walk for 4004 steps (8 resets) in 15 ms. (250 steps per ms) remains 15/15 properties
BEST_FIRST walk for 4004 steps (8 resets) in 16 ms. (235 steps per ms) remains 15/15 properties
BEST_FIRST walk for 4003 steps (8 resets) in 17 ms. (222 steps per ms) remains 15/15 properties
BEST_FIRST walk for 4004 steps (8 resets) in 25 ms. (154 steps per ms) remains 15/15 properties
// Phase 1: matrix 446 rows 2907 cols
[2025-06-05 14:40:04] [INFO ] Computed 2464 invariants in 317 ms
Excessive predecessor constraint size, skipping predecessor.
Excessive predecessor constraint size, skipping predecessor.
Starting Z3 with timeout 5.0 s and query timeout 500.0 ms
At refinement iteration 0 (INCLUDED_ONLY) 0/1109 variables, 812/812 constraints. Problems are: Problem set: 0 solved, 15 unsolved
At refinement iteration 1 (INCLUDED_ONLY) 0/1109 variables, 0/812 constraints. Problems are: Problem set: 0 solved, 15 unsolved
At refinement iteration 2 (OVERLAPS) 870/1979 variables, 840/1652 constraints. Problems are: Problem set: 0 solved, 15 unsolved
At refinement iteration 3 (INCLUDED_ONLY) 0/1979 variables, 0/1652 constraints. Problems are: Problem set: 0 solved, 15 unsolved
Problem AtomicPropp19 is UNSAT
At refinement iteration 4 (OVERLAPS) 446/2425 variables, 1979/3631 constraints. Problems are: Problem set: 1 solved, 14 unsolved
At refinement iteration 5 (INCLUDED_ONLY) 0/2425 variables, 0/3631 constraints. Problems are: Problem set: 1 solved, 14 unsolved
SMT process timed out in 5443ms, After SMT, problems are : Problem set: 1 solved, 14 unsolved
Skipping Parikh replay, no witness traces provided.
Support contains 1108 out of 2907 places. Attempting structural reductions.
Starting structural reductions in REACHABILITY mode, iteration 0 : 2907/2907 places, 446/446 transitions.
Applied a total of 0 rules in 199 ms. Remains 2907 /2907 variables (removed 0) and now considering 446/446 (removed 0) transitions.
Finished structural reductions in REACHABILITY mode , in 1 iterations and 199 ms. Remains : 2907/2907 places, 446/446 transitions.
RANDOM walk for 40000 steps (1207 resets) in 847 ms. (47 steps per ms) remains 14/14 properties
BEST_FIRST walk for 40004 steps (45 resets) in 107 ms. (370 steps per ms) remains 14/14 properties
BEST_FIRST walk for 40004 steps (41 resets) in 769 ms. (51 steps per ms) remains 14/14 properties
BEST_FIRST walk for 40004 steps (55 resets) in 104 ms. (380 steps per ms) remains 14/14 properties
BEST_FIRST walk for 40004 steps (45 resets) in 159 ms. (250 steps per ms) remains 14/14 properties
BEST_FIRST walk for 40004 steps (45 resets) in 161 ms. (246 steps per ms) remains 14/14 properties
BEST_FIRST walk for 40004 steps (53 resets) in 142 ms. (279 steps per ms) remains 14/14 properties
BEST_FIRST walk for 40003 steps (58 resets) in 125 ms. (317 steps per ms) remains 14/14 properties
BEST_FIRST walk for 40004 steps (44 resets) in 173 ms. (229 steps per ms) remains 14/14 properties
BEST_FIRST walk for 40003 steps (57 resets) in 118 ms. (336 steps per ms) remains 14/14 properties
BEST_FIRST walk for 40004 steps (55 resets) in 123 ms. (322 steps per ms) remains 14/14 properties
BEST_FIRST walk for 40004 steps (44 resets) in 126 ms. (314 steps per ms) remains 14/14 properties
BEST_FIRST walk for 40000 steps (20 resets) in 119 ms. (333 steps per ms) remains 13/14 properties
BEST_FIRST walk for 40003 steps (57 resets) in 110 ms. (360 steps per ms) remains 13/13 properties
BEST_FIRST walk for 40004 steps (58 resets) in 58 ms. (678 steps per ms) remains 13/13 properties
Finished probabilistic random walk after 7296 steps, run visited all 13 properties in 196 ms. (steps per millisecond=37 )
Probabilistic random walk after 7296 steps, saw 7147 distinct states, run finished after 201 ms. (steps per millisecond=36 ) properties seen :13
Successfully simplified 1 atomic propositions for a total of 15 simplifications.
FORMULA QuasiCertifProtocol-COL-28-LTLFireability-14 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
Computed a total of 2907 stabilizing places and 446 stable transitions
Complete graph has no SCC; deadlocks are unavoidable. place count 2907 transition count 446
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge (and all enablings converge to false).
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202505121319/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(X(G((X((X(X(p1)) U (p2&&X(X(p1)))))||p0))))'
Support contains 900 out of 2907 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 2907/2907 places, 446/446 transitions.
Applied a total of 0 rules in 102 ms. Remains 2907 /2907 variables (removed 0) and now considering 446/446 (removed 0) transitions.
[2025-06-05 14:40:11] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-05 14:40:14] [INFO ] Implicit Places using invariants in 2747 ms returned []
[2025-06-05 14:40:14] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-05 14:40:18] [INFO ] Implicit Places using invariants and state equation in 4230 ms returned []
Implicit Place search using SMT with State Equation took 6981 ms to find 0 implicit places.
Running 416 sub problems to find dead transitions.
[2025-06-05 14:40:18] [INFO ] Invariant cache hit.
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
At refinement iteration 0 (INCLUDED_ONLY) 0/2906 variables, 2464/2464 constraints. Problems are: Problem set: 0 solved, 416 unsolved
Error getting values : (error "Error writing to Z3 solver: java.io.IOException: Broken pipe")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 2906/3353 variables, and 2464 constraints, problems are : Problem set: 0 solved, 416 unsolved in 30020 ms.
Refiners :[Generalized P Invariants (flows): 2464/2464 constraints, State Equation: 0/2907 constraints, PredecessorRefiner: 416/416 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 416 unsolved
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
At refinement iteration 0 (INCLUDED_ONLY) 0/2906 variables, 2464/2464 constraints. Problems are: Problem set: 0 solved, 416 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 2906/3353 variables, and 2464 constraints, problems are : Problem set: 0 solved, 416 unsolved in 30025 ms.
Refiners :[Generalized P Invariants (flows): 2464/2464 constraints, State Equation: 0/2907 constraints, PredecessorRefiner: 0/416 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 60476ms problems are : Problem set: 0 solved, 416 unsolved
Search for dead transitions found 0 dead transitions in 60482ms
Finished structural reductions in LTL mode , in 1 iterations and 67573 ms. Remains : 2907/2907 places, 446/446 transitions.
Stuttering acceptance computed with spot in 323 ms :[(OR (AND (NOT p0) (NOT p2)) (AND (NOT p0) (NOT p1))), (OR (AND (NOT p0) (NOT p1)) (AND (NOT p0) (NOT p2))), (OR (NOT p1) (NOT p2)), (NOT p1), (NOT p1), true]
Running random walk in product with property : QuasiCertifProtocol-COL-28-LTLFireability-01
Entered a terminal (fully accepting) state of product in 4 steps with 0 reset in 3 ms.
FORMULA QuasiCertifProtocol-COL-28-LTLFireability-01 FALSE TECHNIQUES STUTTER_TEST
Treatment of property QuasiCertifProtocol-COL-28-LTLFireability-01 finished in 67972 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202505121319/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!((X(X((p0&&X(p1)))) U (X(X(G((p0&&X(p1)))))||(!p2&&X(X((p0&&X(p1))))))))'
Support contains 32 out of 2907 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 2907/2907 places, 446/446 transitions.
Applied a total of 0 rules in 251 ms. Remains 2907 /2907 variables (removed 0) and now considering 446/446 (removed 0) transitions.
[2025-06-05 14:41:19] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-05 14:41:23] [INFO ] Implicit Places using invariants in 4240 ms returned []
[2025-06-05 14:41:23] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-05 14:41:32] [INFO ] Implicit Places using invariants and state equation in 8922 ms returned []
Implicit Place search using SMT with State Equation took 13167 ms to find 0 implicit places.
Running 416 sub problems to find dead transitions.
[2025-06-05 14:41:32] [INFO ] Invariant cache hit.
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
At refinement iteration 0 (INCLUDED_ONLY) 0/2906 variables, 2464/2464 constraints. Problems are: Problem set: 0 solved, 416 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 2906/3353 variables, and 2464 constraints, problems are : Problem set: 0 solved, 416 unsolved in 30026 ms.
Refiners :[Generalized P Invariants (flows): 2464/2464 constraints, State Equation: 0/2907 constraints, PredecessorRefiner: 416/416 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 416 unsolved
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
At refinement iteration 0 (INCLUDED_ONLY) 0/2906 variables, 2464/2464 constraints. Problems are: Problem set: 0 solved, 416 unsolved
Error getting values : (error "Error writing to Z3 solver: java.io.IOException: Broken pipe")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 2906/3353 variables, and 2464 constraints, problems are : Problem set: 0 solved, 416 unsolved in 30023 ms.
Refiners :[Generalized P Invariants (flows): 2464/2464 constraints, State Equation: 0/2907 constraints, PredecessorRefiner: 0/416 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 60391ms problems are : Problem set: 0 solved, 416 unsolved
Search for dead transitions found 0 dead transitions in 60394ms
Finished structural reductions in LTL mode , in 1 iterations and 73817 ms. Remains : 2907/2907 places, 446/446 transitions.
Stuttering acceptance computed with spot in 222 ms :[(OR (NOT p0) (NOT p1)), (OR (NOT p0) (NOT p1)), (OR (NOT p1) (NOT p0)), true, (NOT p1), (NOT p1)]
Running random walk in product with property : QuasiCertifProtocol-COL-28-LTLFireability-02
Entered a terminal (fully accepting) state of product in 26 steps with 6 reset in 3 ms.
FORMULA QuasiCertifProtocol-COL-28-LTLFireability-02 FALSE TECHNIQUES STUTTER_TEST
Treatment of property QuasiCertifProtocol-COL-28-LTLFireability-02 finished in 74074 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202505121319/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(F(p0))'
Support contains 30 out of 2907 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 2907/2907 places, 446/446 transitions.
Graph (complete) has 28309 edges and 2907 vertex of which 2877 are kept as prefixes of interest. Removing 30 places using SCC suffix rule.37 ms
Discarding 30 places :
Also discarding 2 output transitions
Drop transitions (Output transitions of discarded places.) removed 2 transitions
Reduce places removed 1 places and 1 transitions.
Performed 2 Post agglomeration using F-continuation condition.Transition count delta: 2
Deduced a syphon composed of 2 places in 1 ms
Reduce places removed 2 places and 0 transitions.
Iterating global reduction 0 with 4 rules applied. Total rules applied 5 place count 2874 transition count 441
Applied a total of 5 rules in 412 ms. Remains 2874 /2907 variables (removed 33) and now considering 441/446 (removed 5) transitions.
// Phase 1: matrix 441 rows 2874 cols
[2025-06-05 14:42:33] [INFO ] Computed 2436 invariants in 316 ms
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-05 14:42:38] [INFO ] Implicit Places using invariants in 4586 ms returned []
[2025-06-05 14:42:38] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-05 14:42:46] [INFO ] Implicit Places using invariants and state equation in 8446 ms returned [2640, 2641, 2642, 2643, 2644, 2645, 2646, 2647, 2648, 2649, 2650, 2651, 2652, 2653, 2654, 2655, 2656, 2657, 2658, 2659, 2660, 2661, 2662, 2663, 2664, 2665, 2666, 2667, 2668]
Discarding 29 places :
Implicit Place search using SMT with State Equation took 13036 ms to find 29 implicit places.
Starting structural reductions in SI_LTL mode, iteration 1 : 2845/2907 places, 441/446 transitions.
Applied a total of 0 rules in 166 ms. Remains 2845 /2845 variables (removed 0) and now considering 441/441 (removed 0) transitions.
Finished structural reductions in SI_LTL mode , in 2 iterations and 13614 ms. Remains : 2845/2907 places, 441/446 transitions.
Stuttering acceptance computed with spot in 45 ms :[(NOT p0)]
Running random walk in product with property : QuasiCertifProtocol-COL-28-LTLFireability-03
Stuttering criterion allowed to conclude after 35 steps with 0 reset in 1 ms.
FORMULA QuasiCertifProtocol-COL-28-LTLFireability-03 FALSE TECHNIQUES STUTTER_TEST
Treatment of property QuasiCertifProtocol-COL-28-LTLFireability-03 finished in 13677 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202505121319/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!((F(p0)&&X(X((F(p1)||(X(p2) U (X(G(p2))||(p2&&X(p2)))))))))'
Support contains 32 out of 2907 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 2907/2907 places, 446/446 transitions.
Applied a total of 0 rules in 129 ms. Remains 2907 /2907 variables (removed 0) and now considering 446/446 (removed 0) transitions.
// Phase 1: matrix 446 rows 2907 cols
[2025-06-05 14:42:47] [INFO ] Computed 2464 invariants in 245 ms
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-05 14:42:51] [INFO ] Implicit Places using invariants in 4534 ms returned []
[2025-06-05 14:42:51] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-05 14:43:15] [INFO ] Implicit Places using invariants and state equation in 23635 ms returned []
Implicit Place search using SMT with State Equation took 28184 ms to find 0 implicit places.
Running 416 sub problems to find dead transitions.
[2025-06-05 14:43:15] [INFO ] Invariant cache hit.
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
At refinement iteration 0 (INCLUDED_ONLY) 0/2906 variables, 2464/2464 constraints. Problems are: Problem set: 0 solved, 416 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 2906/3353 variables, and 2464 constraints, problems are : Problem set: 0 solved, 416 unsolved in 30025 ms.
Refiners :[Generalized P Invariants (flows): 2464/2464 constraints, State Equation: 0/2907 constraints, PredecessorRefiner: 416/416 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 416 unsolved
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
At refinement iteration 0 (INCLUDED_ONLY) 0/2906 variables, 2464/2464 constraints. Problems are: Problem set: 0 solved, 416 unsolved
Error getting values : (error "ParserException while parsing response: ((s0 1)
(s1 1)
(s2 1)
(s3 1)
(s4 1)
(s5 1)
(s6 1)
(s7 1)
(s8 1)
(s9 1)
(s10 1)
(s11 1)
(s12 1)
(s13 1)
(s14 1)
(s15 1)
(s16 1)
(s17 1)
(s18 1)
(s19 1)
(s20 1)
(s21 1)
(s22 1)
(s23 1)
(s24 1)
(s25 1)
(s26 1)
(s27 1)
(s28 1)
(s29 1)
(s30 1)
(s31 1)
(s32 1)
(s33 1)
(s34 1)
(s35 1)
(s36 1)
(s37 1)
(s38 1)
(s39 1)
(s40 1)
(s41 1)
(s42 1)
(s43 1)
(s44 1)
(s45 1)
(s46 1)
(s47 1)
(s48 1)
(s49 1)
(s50 1)
(s51 1)
(s52 1)
(s53 1)
(s54 1)
(s55 1)
(s56 1)
(s57 1)
(s58 1)
(s59 1)
(s60 1)
(s61 1)
(s62 1)
(s63 1)
(s64 1)
(s65 1)
(s66 1)
(s67 1)
(s68 1)
(s69 1)
(s70 1)
(s71 1)
(s72 1)
(s73 1)
(s74 1)
(s75 1)
(s76 1)
(s77 1)
(s78 1)
(s79 1)
(s80 1)
(s81 1)
(s82 1)
(s83 1)
(s84 1)
(s85 1)
(s86 1)
(s87 1)
(s88 1)
(s89 1)
(s90 1)
(s91 1)
(s92 1)
(s93 1)
(s94 1)
(s95 1)
(s96 1)
(s97 1)
(s98 1)
(s99 1)
(s100 1)
(s101 1)
(s102 1)
(s103 1)
(s104 1)
(s105 1)
(s106 1)
(s107 1)
(s108 1)
(s109 1)
(s110 1)
(s111 1)
(s112 1)
(s113 1)
(s114 1)
(s115 1)
(s116 1)
(s117 1)
(s118 1)
(s119 1)
(s120 1)
(s121 1)
(s122 1)
(s123 1)
(s124 1)
(s125 1)
(s126 1)
(s127 1)
(s128 1)
(s129 1)
(s130 1)
(s131 1)
(s132 1)
(s133 1)
(s134 1)
(s135 1)
(s136 1)
(s137 1)
(s138 1)
(s139 1)
(s140 1)
(s141 1)
(s142 1)
(s143 1)
(s144 1)
(s145 1)
(s146 1)
(s147 1)
(s148 1)
(s149 1)
(s150 1)
(s151 1)
(s152 1)
(s153 1)
(s154 1)
(s155 1)
(s156 1)
(s157 1)
(s158 1)
(s159 1)
(s160 1)
(s161 1)
(s162 1)
(s163 1)
(s164 1)
(s165 1)
(s166 1)
(s167 1)
(s168 1)
(s169 1)
(s170 1)
(s171 1)
(s172 1)
(s173 1)
(s174 1)
(s175 1)
(s176 1)
(s177 1)
(s178 1)
(s179 1)
(s180 1)
(s181 1)
(s182 1)
(s183 1)
(s184 1)
(s185 1)
(s186 1)
(s187 1)
(s188 1)
(s189 1)
(s190 1)
(s191 1)
(s192 1)
(s193 1)
(s194 1)
(s195 1)
(s196 1)
(s197 1)
(s198 1)
(s199 1)
(s200 1)
(s201 1)
(s202 1)
(s203 1)
(s204 1)
(s205 1)
(s206 1)
(s207 1)
(s208 1)
(s209 1)
(s210 1)
(s211 1)
(s212 1)
(s213 1)
(s214 1)
(s215 1)
(s216 1)
(s217 1)
(s218 1)
(s219 1)
(s220 1)
(s221 1)
(s222 1)
(s223 1)
(s224 1)
(s225 1)
(s226 1)
(s227 1)
(s228 1)
(s229 1)
(s230 1)
(s231 1)
(s232 1)
(s233 1)
(s234 1)
(s235 1)
(s236 1)
(s237 1)
(s238 1)
(s239 1)
(s240 1)
(s241 1)
(s242 1)
(s243 1)
(s244 1)
(s245 1)
(s246 1)
(s247 1)
(s248 1)
(s249 1)
(s250 1)
(s251 1)
(s252 1)
(s253 1)
(s254 1)
(s255 1)
(s256 1)
(s257 1)
(s258 1)
(s259 1)
(s260 1)
(s261 1)
(s262 1)
(s263 1)
(s264 1)
(s265 1)
(s266 1)
(s267 1)
(s268 1)
(s269 1)
(s270 1)
(s271 1)
(s272 1)
(s273 1)
(s274 1)
(s275 1)
(s276 1)
(s277 1)
(s278 1)
(s279 1)
(s280 1)
(s281 1)
(s282 1)
(s283 1)
(s284 1)
(s285 1)
(s286 1)
(s287 1)
(s288 1)
(s289 1)
(s290 1)
(s291 1)
(s292 1)
(s293 1)
(s294 1)
(s295 1)
(s296 1)
(s297 1)
(s298 1)
(s299 1)
(s300 1)
(s301 1)
(s302 1)
(s303 1)
(s304 1)
(s305 1)
(s306 1)
(s307 1)
(s308 1)
(s309 1)
(s310 1)
(s311 1)
(s312 1)
(s313 1)
(s314 1)
(s315 1)
(s316 1)
(s317 1)
(s318 1)
(s319 1)
(s320 1)
(s321 1)
(s322 1)
(s323 1)
(s324 1)
(s325 1)
(s326 1)
(s327 1)
(s328 1)
(s329 1)
(s330 1)
(s331 1)
(s332 1)
(s333 1)
(s334 1)
(s335 1)
(s336 1)
(s337 1)
(s338 1)
(s339 1)
(s340 1)
(s341 1)
(s342 1)
(s343 1)
(s344 1)
(s345 1)
(s346 1)
(s347 1)
(s348 1)
(s349 1)
(s350 1)
(s351 1)
(s352 1)
(s353 1)
(s354 1)
(s355 1)
(s356 1)
(s357 1)
(s358 1)
(s359 1)
(s360 1)
(s361 1)
(s362 1)
(s363 1)
(s364 1)
(s365 1)
(s366 1)
(s367 1)
(s368 1)
(s369 1)
(s370 1)
(s371 1)
(s372 1)
(s373 1)
(s374 1)
(s375 1)
(s376 1)
(s377 1)
(s378 1)
(s379 1)
(s380 1)
(s381 1)
(s382 1)
(s383 1)
(s384 1)
(s385 1)
(s386 1)
(s387 1)
(s388 1)
(s389 1)
(s390 1)
(s391 1)
(s392 1)
(s393 1)
(s394 1)
(s395 1)
(s396 1)
(s397 1)
(s398 1)
(s399 1)
(s400 1)
(s401 1)
(s402 1)
(s403 1)
(s404 1)
(s405 1)
(s406 1)
(s407 1)
(s408 1)
(s409 1)
(s410 1)
(s411 1)
(s412 1)
(s413 1)
(s414 1)
(s415 1)
(s416 1)
(s417 1)
(s418 1)
(s419 1)
(s420 1)
(s421 1)
(s422 1)
(s423 1)
(s424 1)
(s425 1)
(s426 1)
(s427 1)
(s428 1)
(s429 1)
(s430 1)
(s431 1)
(s432 1)
(s433 1)
(s434 1)
(s435 1)
(s436 1)
(s437 1)
(s438 1)
(s439 1)
(s440 1)
(s441 1)
(s442 1)
(s443 1)
(s444 1)
(s445 1)
(s446 1)
(s447 1)
(s448 1)
(s449 1)
(s450 1)
(s451 1)
(s452 1)
(s453 1)
(s454 1)
(s455 1)
(s456 1)
(s457 1)
(s458 1)
(s459 1)
(s460 1)
(s461 1)
(s462 1)
(s463 1)
(s464 1)
(s465 1)
(s466 1)
(s467 1)
(s468 1)
(s469 1)
(s470 1)
(s471 1)
(s472 1)
(s473 1)
(s474 1)
(s475 1)
(s476 1)
(s477 1)
(s478 1)
(s479 1)
(s480 1)
(s481 1)
(s482 1)
(s483 1)
(s484 1)
(s485 1)
(s486 1)
(s487 1)
(s488 1)
(s489 1)
(s490 1)
(s491 1)
(s492 1)
(s493 1)
(s494 1)
(s495 1)
(s496 1)
(s497 1)
(s498 1)
(s499 1)
(s500 1)
(s501 1)
(s502 1)
(s503 1)
(s504 1)
(s505 1)
(s506 1)
(s507 1)
(s508 1)
(s509 1)
(s510 1)
(s511 1)
(s512 1)
(s513 1)
(s514 1)
(s515 1)
(s516 1)
(s517 1)
(s518 1)
(s519 1)
(s520 1)
(s521 1)
(s522 1)
(s523 1)
(s524 1)
(s525 1)
(s526 1)
(s527 1)
(s528 1)
(s529 1)
(s530 1)
(s531 1)
(s532 1)
(s533 1)
(s534 1)
(s535 1)
(s536 1)
(s537 1)
(s538 1)
(s539 1)
(s540 1)
(s541 1)
(s542 1)
(s543 1)
(s544 1)
(s545 1)
(s546 1)
(s547 1)
(s548 1)
(s549 1)
(s550 1)
(s551 1)
(s552 1)
(s553 1)
(s554 1)
(s555 1)
(s556 1)
(s557 1)
(s558 1)
(s559 1)
(s560 1)
(s561 1)
(s562 1)
(s563 1)
(s564 1)
(s565 1)
(s566 1)
(s567 1)
(s568 1)
(s569 1)
(s570 1)
(s571 1)
(s572 1)
(s573 1)
(s574 1)
(s575 1)
(s576 1)
(s577 1)
(s578 1)
(s579 1)
(s580 1)
(s581 1)
(s582 1)
(s583 1)
(s584 1)
(s585 1)
(s586 1)
(s587 1)
(s588 1)
(s589 1)
(s590 1)
(s591 1)
(s592 1)
(s593 1)
(s594 1)
(s595 1)
(s596 1)
(s597 1)
(s598 1)
(s599 1)
(s600 1)
(s601 1)
(s602 1)
(s603 1)
(s604 1)
(s605 1)
(s606 1)
(s607 1)
(s608 1)
(s609 1)
(s610 1)
(s611 1)
(s612 1)
(s613 1)
(s614 1)
(s615 1)
(s616 1)
(s617 1)
(s618 1)
(s619 1)
(s620 1)
(s621 1)
(s622 1)
(s623 1)
(s624 1)
(s625 1)
(s626 1)
(s627 1)
(s628 1)
(s629 1)
(s630 1)
(s631 1)
(s632 1)
(s633 1)
(s634 1)
(s635 1)
(s636 1)
(s637 1)
(s638 1)
(s639 1)
(s640 1)
(s641 1)
(s642 1)
(s643 1)
(s644 1)
(s645 1)
(s646 1)
(s647 1)
(s648 1)
(s649 1)
(s650 1)
(s651 1)
(s652 1)
(s653 1)
(s654 1)
(s655 1)
(s656 1)
(s657 1)
(s658 1)
(s659 1)
(s660 1)
(s661 1)
(s662 1)
(s663 1)
(s664 1)
(s665 1)
(s666 1)
(s667 1)
(s668 1)
(s669 1)
(s670 1)
(s671 1)
(s672 1)
(s673 1)
(s674 1)
(s675 1)
(s676 1)
(s677 1)
(s678 1)
(s679 1)
(s680 1)
(s681 1)
(s682 1)
(s683 1)
(s684 1)
(s685 1)
(s686 1)
(s687 1)
(s688 1)
(s689 1)
(s690 1)
(s691 1)
(s692 1)
(s693 1)
(s694 1)
(s695 1)
(s696 1)
(s697 1)
(s698 1)
(s699 1)
(s700 1)
(s701 1)
(s702 1)
(s703 1)
(s704 1)
(s705 1)
(s706 1)
(s707 1)
(s708 1)
(s709 1)
(s710 1)
(s711 1)
(s712 1)
(s713 1)
(s714 1)
(s715 1)
(s716 1)
(s717 1)
(s718 1)
(s719 1)
(s720 1)
(s721 1)
(s722 1)
(s723 1)
(s724 1)
(s725 1)
(s726 1)
(s727 1)
(s728 1)
(s729 1)
(s730 1)
(s731 1)
(s732 1)
(s733 1)
(s734 1)
(s735 1)
(s736 1)
(s737 1)
(s738 1)
(s739 1)
(s740 1)
(s741 1)
(s742 1)
(s743 1)
(s744 1)
(s745 1)
(s746 1)
(s747 1)
(s748 1)
(s749 1)
(s750 1)
(s751 1)
(s752 1)
(s753 1)
(s754 1)
(s755 1)
(s756 1)
(s757 1)
(s758 1)
(s759 1)
(s760 1)
(s761 1)
(s762 1)
(s763 1)
(s764 1)
(s765 1)
(s766 1)
(s767 1)
(s768 1)
(s769 1)
(s770 1)
(s771 1)
(s772 1)
(s773 1)
(s774 1)
(s775 1)
(s776 1)
(s777 1)
(s778 1)
(s779 1)
(s780 1)
(s781 1)
(s782 1)
(s783 1)
(s784 1)
(s785 1)
(s786 1)
(s787 1)
(s788 1)
(s789 1)
(s790 1)
(s791 1)
(s792 1)
(s793 1)
(s794 1)
(s795 1)
(s796 1)
(s797 1)
(s798 1)
(s799 1)
(s800 1)
(s801 1)
(s802 1)
(s803 1)
(s804 1)
(s805 1)
(s806 1)
(s807 1)
(s808 1)
(s809 1)
(s810 1)
(s811 1)
(s812 1)
(s813 1)
(s814 1)
(s815 1)
(s816 1)
(s817 1)
(s818 1)
(s819 1)
(s820 1)
(s821 1)
(s822 1)
(s823 1)
(s824 1)
(s825 1)
(s826 1)
(s827 1)
(s828 1)
(s829 1)
(s830 1)
(s831 1)
(s832 1)
(s833 1)
(s834 1)
(s835 1)
(s836 1)
(s837 1)
(s838 1)
(s839 1)
(s840 1)
(s841 1)
(s842 1)
(s843 1)
(s844 1)
(s845 1)
(s846 1)
(s847 1)
(s848 1)
(s849 1)
(s850 1)
(s851 1)
(s852 1)
(s853 1)
(s854 1)
(s855 1)
(s856 1)
(s857 1)
(s858 1)
(s859 1)
(s860 1)
(s861 1)
(s862 1)
(s863 1)
(s864 1)
(s865 1)
(s866 1)
(s867 1)
(s868 1)
(s869 1)
(s870 1)
(s871 1)
(s872 1)
(s873 1)
(s874 1)
(s875 1)
(s876 1)
(s877 1)
(s878 1)
(s879 1)
(s880 1)
(s881 1)
(s882 1)
(s883 1)
(s884 1)
(s885 1)
(s886 1)
(s887 1)
(s888 1)
(s889 1)
(s890 1)
(s891 1)
(s892 1)
(s893 1)
(s894 1)
(s895 1)
(s896 1)
(s897 1)
(s898 1)
(s899 1)
(s900 1)
(s901 1)
(s902 1)
(s903 1)
(s904 1)
(s905 1)
(s906 1)
(s907 1)
(s908 1)
(s909 1)
(s910 1)
(s911 1)
(s912 1)
(s913 1)
(s914 1)
(s915 1)
(s916 1)
(s917 1)
(s918 1)
(s919 1)
(s920 1)
(s921 1)
(s922 1)
(s923 1)
(s924 1)
(s925 1)
(s926 1)
(s927 1)
(s928 1)
(s929 1)
(s930 1)
(s931 1)
(s932 1)
(s933 1)
(s934 1)
(s935 1)
(s936 1)
(s937 1)
(s938 1)
(s939 1)
(s940 1)
(s941 1)
(s942 1)
(s943 1)
(s944 1)
(s945 1)
(s946 1)
(s947 1)
(s948 1)
(s949 1)
(s950 1)
(s951 1)
(s952 1)
(s953 1)
(s954 1)
(s955 1)
(s956 1)
(s957 1)
(s958 1)
(s959 1)
(s960 1)
(s961 1)
(s962 1)
(s963 1)
(s964 1)
(s965 1)
(s966 1)
(s967 1)
(s968 1)
(s969 1)
(s970 1)
(s971 1)
(s972 1)
(s973 1)
(s974 1)
(s975 1)
(s976 1)
(s977 1)
(s978 1)
(s979 1)
(s980 1)
(s981 1)
(s982 1)
(s983 1)
(s984 1)
(s985 1)
(s986 1)
(s987 1)
(s988 1)
(s989 1)
(s990 1)
(s991 1)
(s992 1)
(s993 1)
(s994 1)
(s995 1)
(s996 1)
(s997 1)
(s998 1)
(s999 1)
(s1000 1)
(s1001 1)
(s1002 1)
(s1003 1)
(s1004 1)
(s1005 1)
(s1006 1)
(s1007 1)
(s1008 1)
(s1009 1)
(s1010 1)
(s1011 1)
(s1012 1)
(s1013 1)
(s1014 1)
(s1015 1)
(s1016 1)
(s1017 1)
(s1018 1)
(s1019 1)
(s1020 1)
(s1021 1)
(s1022 1)
(s1023 1)
(s1024 1)
(s1025 1)
(s1026 1)
(s1027 1)
(s1028 1)
(s1029 1)
(s1030 1)
(s1031 1)
(s1032 1)
(s1033 1)
(s1034 1)
(s1035 1)
(s1036 1)
(s1037 1)
(s1038 1)
(s1039 1)
(s1040 1)
(s1041 1)
(s1042 1)
(s1043 1)
(s1044 1)
(s1045 1)
(s1046 1)
(s1047 1)
(s1048 1)
(s1049 1)
(s1050 1)
(s1051 1)
(s1052 1)
(s1053 1)
(s1054 1)
(s1055 1)
(s1056 1)
(s1057 1)
(s1058 1)
(s1059 1)
(s1060 1)
(s1061 1)
(s1062 1)
(s1063 1)
(s1064 1)
(s1065 1)
(s1066 1)
(s1067 1)
(s1068 1)
(s1069 1)
(s1070 1)
(s1071 1)
(s1072 1)
(s1073 1)
(s1074 1)
(s1075 1)
(s1076 1)
(s1077 1)
(s1078 1)
(s1079 1)
(s1080 1)
(s1081 1)
(s1082 1)
(s1083 1)
(s1084 1)
(s1085 1)
(s1086 1)
(s1087 1)
(s1088 1)
(s1089 1)
(s1090 1)
(s1091 1)
(s1092 1)
(s1093 1)
(s1094 1)
(s1095 1)
(s1096 1)
(s1097 1)
(s1098 1)
(s1099 1)
(s1100 1)
(s1101 1)
(s1102 1)
(s1103 1)
(s1104 1)
(s1105 1)
(s1106 1)
(s1107 1)
(s1108 1)
(s1109 1)
(s1110 1)
(s1111 1)
(s1112 1)
(s1113 1)
(s1114 1)
(s1115 1)
(s1116 1)
(s1117 1)
(s1118 1)
(s1119 1)
(s1120 1)
(s1121 1)
(s1122 1)
(s1123 1)
(s1124 1)
(s1125 1)
(s1126 1)
(s1127 1)
(s1128 1)
(s1129 1)
(s1130 1)
(s1131 1)
(s1132 1)
(s1133 1)
(s1134 1)
(s1135 1)
(s1136 1)
(s1137 1)
(s1138 1)
(s1139 1)
(s1140 1)
(s1141 1)
(s1142 1)
(s1143 1)
(s1144 1)
(s1145 1)
(s1146 1)
(s1147 1)
(s1148 1)
(s1149 1)
(s1150 1)
(s1151 1)
(s1152 1)
(s1153 1)
(s1154 1)
(s1155 1)
(s1156 1)
(s1157 1)
(s1158 1)
(s1159 1)
(s1160 1)
(s1161 1)
(s1162 1)
(s1163 1)
(s1164 1)
(s1165 1)
(s1166 1)
(s1167 1)
(s1168 1)
(s1169 1)
(s1170 1)
(s1171 1)
(s1172 1)
(s1173 1)
(s1174 1)
(s1175 1)
(s1176 1)
(s1177 1)
(s1178 1)
(s1179 1)
(s1180 1)
(s1181 1)
(s1182 1)
(s1183 1)
(s1184 1)
(s1185 1)
(s1186 1)
(s1187 1)
(s1188 1)
(s1189 1)
(s1190 1)
(s1191 1)
(s1192 1)
(s1193 1)
(s1194 1)
(s1195 1)
(s1196 1)
(s1197 1)
(s1198 1)
(s1199 1)
(s1200 1)
(s1201 1)
(s1202 1)
(s1203 1)
(s1204 1)
(s1205 1)
(s1206 1)
(s1207 1)
(s1208 1)
(s1209 1)
(s1210 1)
(s1211 1)
(s1212 1)
(s1213 1)
(s1214 1)
(s1215 1)
(s1216 1)
(s1217 1)
(s1218 1)
(s1219 1)
(s1220 1)
(s1221 1)
(s1222 1)
(s1223 1)
(s1224 1)
(s1225 1)
(s1226 1)
(s1227 1)
(s1228 1)
(s1229 1)
(s1230 1)
(s1231 1)
(s1232 1)
(s1233 1)
(s1234 1)
(s1235 1)
(s1236 1)
(s1237 1)
(s1238 1)
(s1239 1)
(s1240 1)
(s1241 1)
(s1242 1)
(s1243 1)
(s1244 1)
(s1245 1)
(s1246 1)
(s1247 1)
(s1248 1)
(s1249 1)
(s1250 1)
(s1251 1)
(s1252 1)
(s1253 1)
(s1254 1)
(s1255 1)
(s1256 1)
(s1257 1)
(s1258 1)
(s1259 1)
(s1260 1)
(s1261 1)
(s1262 1)
(s1263 1)
(s1264 1)
(s1265 1)
(s1266 1)
(s1267 1)
(s1268 1)
(s1269 1)
(s1270 1)
(s1271 1)
(s1272 1)
(s1273 1)
(s1274 1)
(s1275 1)
(s1276 1)
(s1277 1)
(s1278 1)
(s1279 1)
(s1280 1)
(s1281 1)
(s1282 1)
(s1283 1)
(s1284 1)
(s1285 1)
(s1286 1)
(s1287 1)
(s1288 1)
(s1289 1)
(s1290 1)
(s1291 1)
(s1292 1)
(s1293 1)
(s1294 1)
(s1295 1)
(s1296 1)
(s1297 1)
(s1298 1)
(s1299 1)
(s1300 1)
(s1301 1)
(s1302 1)
(s1303 1)
(s1304 1)
(s1305 1)
(s1306 1)
(s1307 1)
(s1308 1)
(s1309 1)
(s1310 1)
(s1311 1)
(s1312 1)
(s1313 1)
(s1314 1)
(s1315 1)
(s1316 1)
(s1317 1)
(s1318 1)
(s1319 1)
(s1320 1)
(s1321 1)
(s1322 1)
(s1323 1)
(s1324 1)
(s1325 1)
(s1326 1)
(s1327 1)
(s1328 1)
(s1329 1)
(s1330 1)
(s1331 1)
(s1332 1)
(s1333 1)
(s1334 1)
(s1335 1)
(s1336 1)
(s1337 1)
(s1338 1)
(s1339 1)
(s1340 1)
(s1341 1)
(s1342 1)
(s1343 1)
(s1344 1)
(s1345 1)
(s1346 1)
(s1347 1)
(s1348 1)
(s1349 1)
(s1350 1)
(s1351 1)
(s1352 1)
(s1353 1)
(s1354 1)
(s1355 1)
(s1356 1)
(s1357 1)
(s1358 1)
(s1359 1)
(s1360 1)
(s1361 1)
(s1362 1)
(s1363 1)
(s1364 1)
(s1365 1)
(s1366 1)
(s1367 1)
(s1368 1)
(s1369 1)
(s1370 1)
(s1371 1)
(s1372 1)
(s1373 1)
(s1374 1)
(s1375 1)
(s1376 1)
(s1377 1)
(s1378 1)
(s1379 1)
(s1380 1)
(s1381 1)
(s1382 1)
(s1383 1)
(s1384 1)
(s1385 1)
(s1386 1)
(s1387 1)
(s1388 1)
(s1389 1)
(s1390 1)
(s1391 1)
(s1392 1)
(s1393 1)
(s1394 1)
(s1395 1)
(s1396 1)
(s1397 1)
(s1398 1)
(s1399 1)
(s1400 1)
(s1401 1)
(s1402 1)
(s1403 1)
(s1404 1)
(s1405 1)
(s1406 1)
(s1407 1)
(s1408 1)
(s1409 1)
(s1410 1)
(s1411 1)
(s1412 1)
(s1413 1)
(s1414 1)
(s1415 1)
(s1416 1)
(s1417 1)
(s1418 1)
(s1419 1)
(s1420 1)
(s1421 1)
(s1422 1)
(s1423 1)
(s1424 1)
(s1425 1)
(s1426 1)
(s1427 1)
(s1428 1)
(s1429 1)
(s1430 1)
(s1431 1)
(s1432 1)
(s1433 1)
(s1434 1)
(s1435 1)
(s1436 1)
(s1437 1)
(s1438 1)
(s1439 1)
(s1440 1)
(s1441 1)
(s1442 1)
(s1443 1)
(s1444 1)
(s1445 1)
(s1446 1)
(s1447 1)
(s1448 1)
(s1449 1)
(s1450 1)
(s1451 1)
(s1452 1)
(s1453 1)
(s1454 1)
(s1455 1)
(s1456 1)
(s1457 1)
(s1458 1)
(s1459 1)
(s1460 1)
(s1461 1)
(s1462 1)
(s1463 1)
(s1464 1)
(s1465 1)
(s1466 1)
(s1467 1)
(s1468 1)
(s1469 1)
(s1470 1)
(s1471 1)
(s1472 1)
(s1473 1)
(s1474 1)
(s1475 1)
(s1476 1)
(s1477 1)
(s1478 1)
(s1479 1)
(s1480 1)
(s1481 1)
(s1482 1)
(s1483 1)
(s1484 1)
(s1485 1)
(s1486 1)
(s1487 1)
(s1488 1)
(s1489 1)
(s1490 1)
(s1491 1)
(s1492 1)
(s1493 1)
(s1494 1)
(s1495 1)
(s1496 1)
(s1497 1)
(s1498 1)
(s1499 1)
(s1500 1)
(s1501 1)
(s1502 1)
(s1503 1)
(s1504 1)
(s1505 1)
(s1506 1)
(s1507 1)
(s1508 1)
(s1509 1)
(s1510 1)
(s1511 1)
(s1512 1)
(s1513 1)
(s1514 1)
(s1515 1)
(s1516 1)
(s1517 1)
(s1518 1)
(s1519 1)
(s1520 1)
(s1521 1)
(s1522 1)
(s1523 1)
(s1524 1)
(s1525 1)
(s1526 1)
(s1527 1)
(s1528 1)
(s1529 1)
(s1530 1)
(s1531 1)
(s1532 1)
(s1533 1)
(s1534 1)
(s1535 1)
(s1536 1)
(s1537 1)
(s1538 1)
(s1539 1)
(s1540 1)
(s1541 1)
(s1542 1)
(s1543 1)
(s1544 1)
(s1545 1)
(s1546 1)
(s1547 1)
(s1548 1)
(s1549 1)
(s1550 1)
(s1551 1)
(s1552 1)
(s1553 1)
(s1554 1)
(s1555 1)
(s1556 1)
(s1557 1)
(s1558 1)
(s1559 1)
(s1560 1)
(s1561 1)
(s1562 1)
(s1563 1)
(s1564 1)
(s1565 1)
(s1566 1)
(s1567 1)
(s1568 1)
(s1569 1)
(s1570 1)
(s1571 1)
(s1572 1)
(s1573 1)
(s1574 1)
(s1575 1)
(s1576 1)
(s1577 1)
(s1578 1)
(s1579 1)
(s1580 1)
(s1581 1)
(s1582 1)
(s1583 1)
(s1584 1)
(s1585 1)
(s1586 1)
(s1587 1)
(s1588 1)
(s1589 1)
(s1590 1)
(s1591 1)
(s1592 1)
(s1593 1)
(s1594 1)
(s1595 1)
(s1596 1)
(s1597 1)
(s1598 1)
(s1599 1)
(s1600 1)
(s1601 1)
(s1602 1)
(s1603 1)
(s1604 1)
(s1605 1)
(s1606 1)
(s1607 1)
(s1608 1)
(s1609 1)
(s1610 1)
(s1611 1)
(s1612 1)
(s1613 1)
(s1614 1)
(s1615 1)
(s1616 1)
(s1617 1)
(s1618 1)
(s1619 1)
(s1620 1)
(s1621 1)
(s1622 1)
(s1623 1)
(s1624 1)
(s1625 1)
(s1626 1)
(s1627 1)
(s1628 1)
(s1629 1)
(s1630 1)
(s1631 1)
(s1632 1)
(s1633 1)
(s1634 1)
(s1635 1)
(s1636 1)
(s1637 1)
(s1638 1)
(s1639 1)
(s1640 1)
(s1641 1)
(s1642 1)
(s1643 1)
(s1644 1)
(s1645 1)
(s1646 1)
(s1647 1)
(s1648 1)
(s1649 1)
(s1650 1)
(s1651 1)
(s1652 1)
(s1653 1)
(s1654 1)
(s1655 1)
(s1656 1)
(s1657 1)
(s1658 1)
(s1659 1)
(s1660 1)
(s1661 1)
(s1662 1)
(s1663 1)
(s1664 1)
(s1665 1)
(s1666 1)
(s1667 1)
(s1668 1)
(s1669 1)
(s1670 1)
(s1671 1)
(s1672 1)
(s1673 1)
(s1674 1)
(s1675 1)
(s1676 1)
(s1677 1)
(s1678 1)
(s1679 1)
(s1680 1)
(s1681 1)
(s1682 1)
(s1683 1)
(s1684 1)
(s1685 1)
(s1686 1)
(s1687 1)
(s1688 1)
(s1689 1)
(s1690 1)
(s1691 1)
(s1692 1)
(s1693 1)
(s1694 1)
(s1695 1)
(s1696 1)
(s1697 1)
(s1698 1)
(s1699 1)
(s1700 1)
(s1701 1)
(s1702 1)
(s1703 1)
(s1704 1)
(s1705 1)
(s1706 1)
(s1707 1)
(s1708 1)
(s1709 1)
(s1710 1)
(s1711 1)
(s1712 1)
(s1713 1)
(s1714 1)
(s1715 1)
(s1716 1)
(s1717 1)
(s1718 1)
(s1719 1)
(s1720 1)
(s1721 1)
(s1722 1)
(s1723 1)
(s1724 1)
(s1725 1)
(s1726 1)
(s1727 1)
(s1728 1)
(s1729 1)
(s1730 1)
(s1731 1)
(s1732 1)
(s1733 1)
(s1734 1)
(s1735 1)
(s1736 1)
(s1737 1)
(s1738 1)
(s1739 1)
(s1740 1)
(s1741 1)
(s1742 1)
(s1743 1)
(s1744 1)
(s1745 1)
(s1746 1)
(s1747 1)
(s1748 1)
(s1749 1)
(s1750 1)
(s1751 1)
(s1752 1)
(s1753 1)
(s1754 1)
(s1755 1)
(s1756 1)
(s1757 1)
(s1758 1)
(s1759 1)
(s1760 1)
(s1761 1)
(s1762 1)
(s1763 1)
(s1764 1)
(s1765 1)
(s1766 1)
(s1767 1)
(s1768 1)
(s1769 1)
(s1770 1)
(s1771 1)
(s1772 1)
(s1773 1)
(s1774 1)
(s1775 1)
(s1776 1)
(s1777 1)
(s1778 1)
(s1779 1)
(s1780 1)
(s1781 1)
(s1782 1)
(s1783 1)
(s1784 1)
(s1785 1)
(s1786 1)
(s1787 1)
(s1788 1)
(s1789 timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 2906/3353 variables, and 2464 constraints, problems are : Problem set: 0 solved, 416 unsolved in 30042 ms.
Refiners :[Generalized P Invariants (flows): 2464/2464 constraints, State Equation: 0/2907 constraints, PredecessorRefiner: 0/416 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 60399ms problems are : Problem set: 0 solved, 416 unsolved
Search for dead transitions found 0 dead transitions in 60401ms
Finished structural reductions in LTL mode , in 1 iterations and 88716 ms. Remains : 2907/2907 places, 446/446 transitions.
Stuttering acceptance computed with spot in 251 ms :[(OR (NOT p0) (AND (NOT p1) (NOT p2))), (NOT p0), (AND (NOT p1) (NOT p2)), (AND (NOT p1) (NOT p2)), (AND (NOT p1) (NOT p2)), (NOT p1)]
Running random walk in product with property : QuasiCertifProtocol-COL-28-LTLFireability-04
Product exploration explored 100000 steps with 33333 reset in 578 ms.
Product exploration explored 100000 steps with 33333 reset in 524 ms.
Computed a total of 2907 stabilizing places and 446 stable transitions
Complete graph has no SCC; deadlocks are unavoidable. place count 2907 transition count 446
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge (and all enablings converge to false).
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge : F ( (Ga|G!a) & (Gb|G!b)...)
Starting Z3 with timeout 6000.0 s and query timeout 600000.0 ms
Knowledge obtained : [(AND p0 p1 p2), (X (X p2)), (X (X (NOT (AND (NOT p1) (NOT p2))))), (X (X p1)), (F (G p0)), (F (G p1)), (F (G p2))]
False Knowledge obtained : [(X (NOT p0)), (X p0), (X (X (NOT p0))), (X (X p0))]
Property proved to be true thanks to knowledge (Minato strategy)
Knowledge based reduction with 7 factoid took 26 ms. Reduced automaton from 6 states, 8 edges and 3 AP (stutter sensitive) to 1 states, 0 edges and 0 AP (stutter insensitive).
FORMULA QuasiCertifProtocol-COL-28-LTLFireability-04 TRUE TECHNIQUES KNOWLEDGE
Treatment of property QuasiCertifProtocol-COL-28-LTLFireability-04 finished in 90598 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202505121319/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!((F(p0)&&F(p1)))'
Support contains 88 out of 2907 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 2907/2907 places, 446/446 transitions.
Graph (complete) has 28309 edges and 2907 vertex of which 2877 are kept as prefixes of interest. Removing 30 places using SCC suffix rule.11 ms
Discarding 30 places :
Also discarding 2 output transitions
Drop transitions (Output transitions of discarded places.) removed 2 transitions
Performed 2 Post agglomeration using F-continuation condition.Transition count delta: 2
Deduced a syphon composed of 2 places in 0 ms
Reduce places removed 2 places and 0 transitions.
Iterating global reduction 0 with 4 rules applied. Total rules applied 5 place count 2875 transition count 442
Applied a total of 5 rules in 287 ms. Remains 2875 /2907 variables (removed 32) and now considering 442/446 (removed 4) transitions.
// Phase 1: matrix 442 rows 2875 cols
[2025-06-05 14:44:18] [INFO ] Computed 2436 invariants in 279 ms
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-05 14:44:22] [INFO ] Implicit Places using invariants in 4466 ms returned []
[2025-06-05 14:44:22] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-05 14:44:32] [INFO ] Implicit Places using invariants and state equation in 10158 ms returned []
Implicit Place search using SMT with State Equation took 14627 ms to find 0 implicit places.
Starting Z3 with timeout 200.0 s and query timeout 20000.0 ms
[2025-06-05 14:44:32] [INFO ] Redundant transitions in 57 ms returned []
Running 412 sub problems to find dead transitions.
[2025-06-05 14:44:32] [INFO ] Invariant cache hit.
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
At refinement iteration 0 (INCLUDED_ONLY) 0/2874 variables, 2436/2436 constraints. Problems are: Problem set: 0 solved, 412 unsolved
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 2874/3317 variables, and 2436 constraints, problems are : Problem set: 0 solved, 412 unsolved in 30021 ms.
Refiners :[Generalized P Invariants (flows): 2436/2436 constraints, State Equation: 0/2875 constraints, PredecessorRefiner: 412/412 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 412 unsolved
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
At refinement iteration 0 (INCLUDED_ONLY) 0/2874 variables, 2436/2436 constraints. Problems are: Problem set: 0 solved, 412 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 2874/3317 variables, and 2436 constraints, problems are : Problem set: 0 solved, 412 unsolved in 30022 ms.
Refiners :[Generalized P Invariants (flows): 2436/2436 constraints, State Equation: 0/2875 constraints, PredecessorRefiner: 0/412 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 60330ms problems are : Problem set: 0 solved, 412 unsolved
Search for dead transitions found 0 dead transitions in 60334ms
Starting structural reductions in SI_LTL mode, iteration 1 : 2875/2907 places, 442/446 transitions.
Finished structural reductions in SI_LTL mode , in 1 iterations and 75313 ms. Remains : 2875/2907 places, 442/446 transitions.
Stuttering acceptance computed with spot in 129 ms :[(NOT p1), (NOT p0), (OR (NOT p0) (NOT p1))]
Running random walk in product with property : QuasiCertifProtocol-COL-28-LTLFireability-05
Stuttering criterion allowed to conclude after 34 steps with 0 reset in 0 ms.
FORMULA QuasiCertifProtocol-COL-28-LTLFireability-05 FALSE TECHNIQUES STUTTER_TEST
Treatment of property QuasiCertifProtocol-COL-28-LTLFireability-05 finished in 75469 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202505121319/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(X((G(p0) U X(X((G(p1)&&X(!p2)))))))'
Support contains 31 out of 2907 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 2907/2907 places, 446/446 transitions.
Applied a total of 0 rules in 134 ms. Remains 2907 /2907 variables (removed 0) and now considering 446/446 (removed 0) transitions.
// Phase 1: matrix 446 rows 2907 cols
[2025-06-05 14:45:33] [INFO ] Computed 2464 invariants in 262 ms
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-05 14:45:37] [INFO ] Implicit Places using invariants in 4615 ms returned []
[2025-06-05 14:45:37] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-05 14:46:01] [INFO ] Implicit Places using invariants and state equation in 24163 ms returned []
Implicit Place search using SMT with State Equation took 28785 ms to find 0 implicit places.
Running 416 sub problems to find dead transitions.
[2025-06-05 14:46:01] [INFO ] Invariant cache hit.
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
At refinement iteration 0 (INCLUDED_ONLY) 0/2906 variables, 2464/2464 constraints. Problems are: Problem set: 0 solved, 416 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 2906/3353 variables, and 2464 constraints, problems are : Problem set: 0 solved, 416 unsolved in 30023 ms.
Refiners :[Generalized P Invariants (flows): 2464/2464 constraints, State Equation: 0/2907 constraints, PredecessorRefiner: 416/416 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 416 unsolved
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
At refinement iteration 0 (INCLUDED_ONLY) 0/2906 variables, 2464/2464 constraints. Problems are: Problem set: 0 solved, 416 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 2906/3353 variables, and 2464 constraints, problems are : Problem set: 0 solved, 416 unsolved in 30025 ms.
Refiners :[Generalized P Invariants (flows): 2464/2464 constraints, State Equation: 0/2907 constraints, PredecessorRefiner: 0/416 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 60344ms problems are : Problem set: 0 solved, 416 unsolved
Search for dead transitions found 0 dead transitions in 60347ms
Finished structural reductions in LTL mode , in 1 iterations and 89267 ms. Remains : 2907/2907 places, 446/446 transitions.
Stuttering acceptance computed with spot in 841 ms :[(OR (NOT p1) p2), (OR (NOT p1) p2), (OR (NOT p1) p2), (OR (NOT p1) p2), (OR (NOT p1) p2), true, (AND p1 p2), (NOT p1), (OR (NOT p1) p2), (OR (NOT p1) p2), (OR (AND (NOT p0) (NOT p1)) (AND (NOT p0) p2)), (AND p1 p2), (NOT p1), (NOT p1), p2, (AND (NOT p0) (NOT p1)), (NOT p0), (AND (NOT p0) p1 p2)]
Running random walk in product with property : QuasiCertifProtocol-COL-28-LTLFireability-06
Product exploration explored 100000 steps with 5311 reset in 389 ms.
Product exploration explored 100000 steps with 5246 reset in 402 ms.
Computed a total of 2907 stabilizing places and 446 stable transitions
Complete graph has no SCC; deadlocks are unavoidable. place count 2907 transition count 446
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge (and all enablings converge to false).
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge : F ( (Ga|G!a) & (Gb|G!b)...)
Starting Z3 with timeout 6000.0 s and query timeout 600000.0 ms
Knowledge obtained : [(AND (NOT p0) p1 (NOT p2)), (X (NOT p0)), (X (X (NOT p0))), (F (G (NOT p0))), (F (G p1)), (F (G (NOT p2)))]
False Knowledge obtained : []
Knowledge based reduction with 6 factoid took 141 ms. Reduced automaton from 18 states, 51 edges and 3 AP (stutter sensitive) to 7 states, 10 edges and 2 AP (stutter sensitive).
Stuttering acceptance computed with spot in 275 ms :[true, (OR (NOT p1) p2), (OR (NOT p1) p2), (NOT p1), (OR (NOT p1) p2), (OR (NOT p1) p2), (OR (NOT p1) p2)]
Reduction of identical properties reduced properties to check from 4 to 3
RANDOM walk for 40000 steps (1213 resets) in 551 ms. (72 steps per ms) remains 3/3 properties
BEST_FIRST walk for 40003 steps (60 resets) in 292 ms. (136 steps per ms) remains 3/3 properties
BEST_FIRST walk for 40004 steps (57 resets) in 72 ms. (548 steps per ms) remains 3/3 properties
BEST_FIRST walk for 40004 steps (57 resets) in 81 ms. (487 steps per ms) remains 3/3 properties
Finished probabilistic random walk after 2857 steps, run visited all 3 properties in 47 ms. (steps per millisecond=60 )
Probabilistic random walk after 2857 steps, saw 2796 distinct states, run finished after 47 ms. (steps per millisecond=60 ) properties seen :3
Knowledge obtained : [(AND (NOT p0) p1 (NOT p2)), (X (NOT p0)), (X (X (NOT p0))), (F (G (NOT p0))), (F (G p1)), (F (G (NOT p2)))]
False Knowledge obtained : [(F (NOT p1)), (F (NOT (AND p1 (NOT p2)))), (F (NOT (AND p1 (NOT p2)))), (F p2)]
Knowledge based reduction with 6 factoid took 305 ms. Reduced automaton from 7 states, 10 edges and 2 AP (stutter sensitive) to 7 states, 10 edges and 2 AP (stutter sensitive).
Stuttering acceptance computed with spot in 286 ms :[true, (OR (NOT p1) p2), (OR (NOT p1) p2), (NOT p1), (OR (NOT p1) p2), (OR (NOT p1) p2), (OR (NOT p1) p2)]
Stuttering acceptance computed with spot in 254 ms :[true, (OR (NOT p1) p2), (OR (NOT p1) p2), (NOT p1), (OR (NOT p1) p2), (OR (NOT p1) p2), (OR (NOT p1) p2)]
Support contains 30 out of 2907 places. Attempting structural reductions.
Property had overlarge support with respect to TGBA, discarding it for now.
Starting structural reductions in LTL mode, iteration 0 : 2907/2907 places, 446/446 transitions.
Applied a total of 0 rules in 121 ms. Remains 2907 /2907 variables (removed 0) and now considering 446/446 (removed 0) transitions.
[2025-06-05 14:47:06] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-05 14:47:10] [INFO ] Implicit Places using invariants in 4538 ms returned []
[2025-06-05 14:47:10] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-05 14:47:34] [INFO ] Implicit Places using invariants and state equation in 24015 ms returned []
Implicit Place search using SMT with State Equation took 28563 ms to find 0 implicit places.
Running 416 sub problems to find dead transitions.
[2025-06-05 14:47:34] [INFO ] Invariant cache hit.
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
At refinement iteration 0 (INCLUDED_ONLY) 0/2906 variables, 2464/2464 constraints. Problems are: Problem set: 0 solved, 416 unsolved
Error getting values : (error "Error writing to Z3 solver: java.io.IOException: Broken pipe")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 2906/3353 variables, and 2464 constraints, problems are : Problem set: 0 solved, 416 unsolved in 30017 ms.
Refiners :[Generalized P Invariants (flows): 2464/2464 constraints, State Equation: 0/2907 constraints, PredecessorRefiner: 416/416 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 416 unsolved
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
At refinement iteration 0 (INCLUDED_ONLY) 0/2906 variables, 2464/2464 constraints. Problems are: Problem set: 0 solved, 416 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 2906/3353 variables, and 2464 constraints, problems are : Problem set: 0 solved, 416 unsolved in 30013 ms.
Refiners :[Generalized P Invariants (flows): 2464/2464 constraints, State Equation: 0/2907 constraints, PredecessorRefiner: 0/416 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 60348ms problems are : Problem set: 0 solved, 416 unsolved
Search for dead transitions found 0 dead transitions in 60354ms
Finished structural reductions in LTL mode , in 1 iterations and 89040 ms. Remains : 2907/2907 places, 446/446 transitions.
Computed a total of 2907 stabilizing places and 446 stable transitions
Complete graph has no SCC; deadlocks are unavoidable. place count 2907 transition count 446
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge (and all enablings converge to false).
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge : F ( (Ga|G!a) & (Gb|G!b)...)
Starting Z3 with timeout 6000.0 s and query timeout 600000.0 ms
Knowledge obtained : [(AND p1 (NOT p2)), (F (G p1)), (F (G (NOT p2)))]
False Knowledge obtained : []
Knowledge based reduction with 3 factoid took 82 ms. Reduced automaton from 7 states, 10 edges and 2 AP (stutter sensitive) to 7 states, 10 edges and 2 AP (stutter sensitive).
Stuttering acceptance computed with spot in 246 ms :[true, (OR (NOT p1) p2), (OR (NOT p1) p2), (NOT p1), (OR (NOT p1) p2), (OR (NOT p1) p2), (OR (NOT p1) p2)]
Reduction of identical properties reduced properties to check from 4 to 3
RANDOM walk for 40000 steps (1209 resets) in 505 ms. (79 steps per ms) remains 3/3 properties
BEST_FIRST walk for 40004 steps (57 resets) in 85 ms. (465 steps per ms) remains 3/3 properties
BEST_FIRST walk for 40004 steps (57 resets) in 65 ms. (606 steps per ms) remains 3/3 properties
BEST_FIRST walk for 40004 steps (55 resets) in 55 ms. (714 steps per ms) remains 3/3 properties
Finished probabilistic random walk after 2857 steps, run visited all 3 properties in 48 ms. (steps per millisecond=59 )
Probabilistic random walk after 2857 steps, saw 2796 distinct states, run finished after 48 ms. (steps per millisecond=59 ) properties seen :3
Knowledge obtained : [(AND p1 (NOT p2)), (F (G p1)), (F (G (NOT p2)))]
False Knowledge obtained : [(F (NOT p1)), (F (NOT (AND p1 (NOT p2)))), (F (NOT (AND p1 (NOT p2)))), (F p2)]
Knowledge based reduction with 3 factoid took 222 ms. Reduced automaton from 7 states, 10 edges and 2 AP (stutter sensitive) to 7 states, 10 edges and 2 AP (stutter sensitive).
Stuttering acceptance computed with spot in 285 ms :[true, (OR (NOT p1) p2), (OR (NOT p1) p2), (NOT p1), (OR (NOT p1) p2), (OR (NOT p1) p2), (OR (NOT p1) p2)]
Stuttering acceptance computed with spot in 273 ms :[true, (OR (NOT p1) p2), (OR (NOT p1) p2), (NOT p1), (OR (NOT p1) p2), (OR (NOT p1) p2), (OR (NOT p1) p2)]
Stuttering acceptance computed with spot in 263 ms :[true, (OR (NOT p1) p2), (OR (NOT p1) p2), (NOT p1), (OR (NOT p1) p2), (OR (NOT p1) p2), (OR (NOT p1) p2)]
Product exploration explored 100000 steps with 3026 reset in 272 ms.
Product exploration explored 100000 steps with 3024 reset in 296 ms.
Applying partial POR strategy [true, true, false, true, false, false, false]
Stuttering acceptance computed with spot in 263 ms :[true, (OR (NOT p1) p2), (OR (NOT p1) p2), (NOT p1), (OR (NOT p1) p2), (OR (NOT p1) p2), (OR (NOT p1) p2)]
Support contains 30 out of 2907 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 2907/2907 places, 446/446 transitions.
Graph (complete) has 28309 edges and 2907 vertex of which 2877 are kept as prefixes of interest. Removing 30 places using SCC suffix rule.13 ms
Discarding 30 places :
Also discarding 2 output transitions
Drop transitions (Output transitions of discarded places.) removed 2 transitions
Performed 1 Post agglomeration using F-continuation condition.Transition count delta: -1
Deduced a syphon composed of 1 places in 0 ms
Iterating global reduction 0 with 1 rules applied. Total rules applied 2 place count 2877 transition count 445
Deduced a syphon composed of 1 places in 1 ms
Applied a total of 2 rules in 625 ms. Remains 2877 /2907 variables (removed 30) and now considering 445/446 (removed 1) transitions.
Starting Z3 with timeout 200.0 s and query timeout 20000.0 ms
[2025-06-05 14:48:38] [INFO ] Redundant transitions in 30 ms returned []
Running 415 sub problems to find dead transitions.
// Phase 1: matrix 445 rows 2877 cols
[2025-06-05 14:48:39] [INFO ] Computed 2436 invariants in 270 ms
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
At refinement iteration 0 (INCLUDED_ONLY) 0/2876 variables, 2436/2436 constraints. Problems are: Problem set: 0 solved, 415 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 2876/3322 variables, and 2436 constraints, problems are : Problem set: 0 solved, 415 unsolved in 30018 ms.
Refiners :[Generalized P Invariants (flows): 2436/2436 constraints, State Equation: 0/2877 constraints, PredecessorRefiner: 415/415 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 415 unsolved
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
At refinement iteration 0 (INCLUDED_ONLY) 0/2876 variables, 2436/2436 constraints. Problems are: Problem set: 0 solved, 415 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 2876/3322 variables, and 2436 constraints, problems are : Problem set: 0 solved, 415 unsolved in 30018 ms.
Refiners :[Generalized P Invariants (flows): 2436/2436 constraints, State Equation: 0/2877 constraints, PredecessorRefiner: 0/415 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 60578ms problems are : Problem set: 0 solved, 415 unsolved
Search for dead transitions found 0 dead transitions in 60580ms
Starting structural reductions in SI_LTL mode, iteration 1 : 2877/2907 places, 445/446 transitions.
Finished structural reductions in SI_LTL mode , in 1 iterations and 61245 ms. Remains : 2877/2907 places, 445/446 transitions.
Built C files in :
/tmp/ltsmin13596241842589814888
[2025-06-05 14:49:39] [INFO ] Built C files in 28ms conformant to PINS (ltsmin variant)in folder :/tmp/ltsmin13596241842589814888
Running compilation step : cd /tmp/ltsmin13596241842589814888;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202505121319/bin/limit_time.pl' '3' 'gcc' '-c' '-I/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202505121319/bin/include/' '-I.' '-std=c99' '-fPIC' '-O0' 'model.c'
Compilation finished in 2006 ms.
Running link step : cd /tmp/ltsmin13596241842589814888;'gcc' '-shared' '-o' 'gal.so' 'model.o'
Link finished in 46 ms.
Running LTSmin : cd /tmp/ltsmin13596241842589814888;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202505121319/bin/pins2lts-mc-linux64' './gal.so' '--threads=8' '--when' '--hoa' '/tmp/stateBased17746820148197327942.hoa' '--buchi-type=spotba'
WARNING : LTS min runner thread was asked to interrupt. Dying gracefully.
Support contains 30 out of 2907 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 2907/2907 places, 446/446 transitions.
Applied a total of 0 rules in 333 ms. Remains 2907 /2907 variables (removed 0) and now considering 446/446 (removed 0) transitions.
// Phase 1: matrix 446 rows 2907 cols
[2025-06-05 14:49:55] [INFO ] Computed 2464 invariants in 268 ms
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-05 14:49:59] [INFO ] Implicit Places using invariants in 4234 ms returned []
[2025-06-05 14:49:59] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-05 14:50:22] [INFO ] Implicit Places using invariants and state equation in 23590 ms returned []
Implicit Place search using SMT with State Equation took 27834 ms to find 0 implicit places.
Running 416 sub problems to find dead transitions.
[2025-06-05 14:50:22] [INFO ] Invariant cache hit.
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
At refinement iteration 0 (INCLUDED_ONLY) 0/2906 variables, 2464/2464 constraints. Problems are: Problem set: 0 solved, 416 unsolved
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 2906/3353 variables, and 2464 constraints, problems are : Problem set: 0 solved, 416 unsolved in 30019 ms.
Refiners :[Generalized P Invariants (flows): 2464/2464 constraints, State Equation: 0/2907 constraints, PredecessorRefiner: 416/416 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 416 unsolved
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
At refinement iteration 0 (INCLUDED_ONLY) 0/2906 variables, 2464/2464 constraints. Problems are: Problem set: 0 solved, 416 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 2906/3353 variables, and 2464 constraints, problems are : Problem set: 0 solved, 416 unsolved in 30018 ms.
Refiners :[Generalized P Invariants (flows): 2464/2464 constraints, State Equation: 0/2907 constraints, PredecessorRefiner: 0/416 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 60371ms problems are : Problem set: 0 solved, 416 unsolved
Search for dead transitions found 0 dead transitions in 60374ms
Finished structural reductions in LTL mode , in 1 iterations and 88549 ms. Remains : 2907/2907 places, 446/446 transitions.
Built C files in :
/tmp/ltsmin13114734030303780132
[2025-06-05 14:51:23] [INFO ] Built C files in 17ms conformant to PINS (ltsmin variant)in folder :/tmp/ltsmin13114734030303780132
Running compilation step : cd /tmp/ltsmin13114734030303780132;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202505121319/bin/limit_time.pl' '3' 'gcc' '-c' '-I/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202505121319/bin/include/' '-I.' '-std=c99' '-fPIC' '-O0' 'model.c'
Compilation finished in 1895 ms.
Running link step : cd /tmp/ltsmin13114734030303780132;'gcc' '-shared' '-o' 'gal.so' 'model.o'
Link finished in 32 ms.
Running LTSmin : cd /tmp/ltsmin13114734030303780132;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202505121319/bin/pins2lts-mc-linux64' './gal.so' '--threads=8' '--when' '--hoa' '/tmp/stateBased17445093527876336110.hoa' '--buchi-type=spotba'
WARNING : LTS min runner thread was asked to interrupt. Dying gracefully.
[2025-06-05 14:51:38] [INFO ] Flatten gal took : 71 ms
[2025-06-05 14:51:38] [INFO ] Flatten gal took : 89 ms
[2025-06-05 14:51:38] [INFO ] Time to serialize gal into /tmp/LTL10170375686682472056.gal : 19 ms
[2025-06-05 14:51:38] [INFO ] Time to serialize properties into /tmp/LTL1984735766384965348.prop : 1 ms
Invoking ITS tools like this :cd /home/mcc/execution;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ltl-linux64' '--gc-threshold' '2000000' '-i' '/tmp/LTL10170375686682472056.gal' '-t' 'CGAL' '-hoa' '/tmp/aut4016872757277826639.hoa' '-atoms' '/tmp/LTL1984735766384965348.prop' '-c' '-stutter-deadlock' '--gen-order' 'FOLLOW'
its-ltl command run as :
/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ltl-linux64 --gc-threshold 2000000 -i /tmp/L...318
Loading property file /tmp/LTL1984735766384965348.prop.
Loaded 2 atomic propositions.
Checking formula 0 provided in automaton : /tmp/aut4016872757277826639.hoa
Detected timeout of ITS tools.
[2025-06-05 14:51:53] [INFO ] Flatten gal took : 70 ms
[2025-06-05 14:51:53] [INFO ] Flatten gal took : 69 ms
[2025-06-05 14:51:53] [INFO ] Time to serialize gal into /tmp/LTL8494437820419012981.gal : 10 ms
[2025-06-05 14:51:53] [INFO ] Time to serialize properties into /tmp/LTL911155220738772025.ltl : 3 ms
Invoking ITS tools like this :cd /home/mcc/execution;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ltl-linux64' '--gc-threshold' '2000000' '-i' '/tmp/LTL8494437820419012981.gal' '-t' 'CGAL' '-LTL' '/tmp/LTL911155220738772025.ltl' '-c' '-stutter-deadlock' '--gen-order' 'FOLLOW'
its-ltl command run as :
/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ltl-linux64 --gc-threshold 2000000 -i /tmp/L...274
Read 1 LTL properties
Checking formula 0 : !((X((G("(a2>=1)"))U(X(X((G("(a4<1)"))&&(X(!("((((((s4_12>=1)||(s4_13>=1))||((s4_10>=1)||(s4_11>=1)))||(((s4_16>=1)||(s4_17>=1))||((s4...469
Formula 0 simplified : X(F!"(a2>=1)" R XX(F!"(a4<1)" | X"((((((s4_12>=1)||(s4_13>=1))||((s4_10>=1)||(s4_11>=1)))||(((s4_16>=1)||(s4_17>=1))||((s4_14>=1)||(...452
Detected timeout of ITS tools.
[2025-06-05 14:52:09] [INFO ] Flatten gal took : 72 ms
[2025-06-05 14:52:09] [INFO ] Applying decomposition
[2025-06-05 14:52:09] [INFO ] Flatten gal took : 111 ms
Converted graph to binary with : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202505121319/bin/convert-linux64' '-i' '/tmp/graph9763539404603223697.txt' '-o' '/tmp/graph9763539404603223697.bin' '-w' '/tmp/graph9763539404603223697.weights'
Built communities with : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202505121319/bin/louvain-linux64' '/tmp/graph9763539404603223697.bin' '-l' '-1' '-v' '-w' '/tmp/graph9763539404603223697.weights' '-q' '0' '-e' '0.001'
[2025-06-05 14:52:09] [INFO ] Decomposing Gal with order
[2025-06-05 14:52:09] [INFO ] Rewriting arrays to variables to allow decomposition.
[2025-06-05 14:52:10] [INFO ] Removed a total of 287 redundant transitions.
[2025-06-05 14:52:10] [INFO ] Flatten gal took : 789 ms
[2025-06-05 14:52:10] [INFO ] Fuse similar labels procedure discarded/fused a total of 170 labels/synchronizations in 221 ms.
[2025-06-05 14:52:11] [INFO ] Time to serialize gal into /tmp/LTL9933633069928476460.gal : 56 ms
[2025-06-05 14:52:11] [INFO ] Time to serialize properties into /tmp/LTL13137577100075272456.ltl : 0 ms
Invoking ITS tools like this :cd /home/mcc/execution;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ltl-linux64' '--gc-threshold' '2000000' '-i' '/tmp/LTL9933633069928476460.gal' '-t' 'CGAL' '-LTL' '/tmp/LTL13137577100075272456.ltl' '-c' '-stutter-deadlock'
its-ltl command run as :
/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ltl-linux64 --gc-threshold 2000000 -i /tmp/L...255
Read 1 LTL properties
Checking formula 0 : !((X((G("(i9.i2.u171.a2>=1)"))U(X(X((G("(i9.i2.u170.a4<1)"))&&(X(!("((((((i17.u5.s4_12>=1)||(i9.i0.u127.s4_13>=1))||((i25.i0.u125.s4_1...803
Formula 0 simplified : X(F!"(i9.i2.u171.a2>=1)" R XX(F!"(i9.i2.u170.a4<1)" | X"((((((i17.u5.s4_12>=1)||(i9.i0.u127.s4_13>=1))||((i25.i0.u125.s4_10>=1)||(i3...786
Detected timeout of ITS tools.
Treatment of property QuasiCertifProtocol-COL-28-LTLFireability-06 finished in 413222 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202505121319/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(G(F(p0)))'
Support contains 30 out of 2907 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 2907/2907 places, 446/446 transitions.
Graph (complete) has 28309 edges and 2907 vertex of which 2877 are kept as prefixes of interest. Removing 30 places using SCC suffix rule.6 ms
Discarding 30 places :
Also discarding 2 output transitions
Drop transitions (Output transitions of discarded places.) removed 2 transitions
Reduce places removed 1 places and 1 transitions.
Performed 2 Post agglomeration using F-continuation condition.Transition count delta: 2
Deduced a syphon composed of 2 places in 0 ms
Reduce places removed 2 places and 0 transitions.
Iterating global reduction 0 with 4 rules applied. Total rules applied 5 place count 2874 transition count 441
Applied a total of 5 rules in 314 ms. Remains 2874 /2907 variables (removed 33) and now considering 441/446 (removed 5) transitions.
// Phase 1: matrix 441 rows 2874 cols
[2025-06-05 14:52:26] [INFO ] Computed 2436 invariants in 281 ms
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-05 14:52:30] [INFO ] Implicit Places using invariants in 4531 ms returned []
[2025-06-05 14:52:31] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-05 14:52:39] [INFO ] Implicit Places using invariants and state equation in 8370 ms returned [2640, 2641, 2642, 2643, 2644, 2645, 2646, 2647, 2648, 2649, 2650, 2651, 2652, 2653, 2654, 2655, 2656, 2657, 2658, 2659, 2660, 2661, 2662, 2663, 2664, 2665, 2666, 2667, 2668]
Discarding 29 places :
Implicit Place search using SMT with State Equation took 12943 ms to find 29 implicit places.
Starting structural reductions in SI_LTL mode, iteration 1 : 2845/2907 places, 441/446 transitions.
Applied a total of 0 rules in 135 ms. Remains 2845 /2845 variables (removed 0) and now considering 441/441 (removed 0) transitions.
Finished structural reductions in SI_LTL mode , in 2 iterations and 13392 ms. Remains : 2845/2907 places, 441/446 transitions.
Stuttering acceptance computed with spot in 94 ms :[(NOT p0), (NOT p0)]
Running random walk in product with property : QuasiCertifProtocol-COL-28-LTLFireability-07
Product exploration explored 100000 steps with 2816 reset in 508 ms.
Product exploration explored 100000 steps with 2817 reset in 499 ms.
Computed a total of 2845 stabilizing places and 441 stable transitions
Complete graph has no SCC; deadlocks are unavoidable. place count 2845 transition count 441
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge (and all enablings converge to false).
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge : F ( (Ga|G!a) & (Gb|G!b)...)
Starting Z3 with timeout 6000.0 s and query timeout 600000.0 ms
Knowledge obtained : [p0, (X p0), (X (X p0)), (F (G p0))]
False Knowledge obtained : []
Property proved to be true thanks to knowledge (Minato strategy)
Knowledge based reduction with 4 factoid took 12 ms. Reduced automaton from 2 states, 3 edges and 1 AP (stutter insensitive) to 1 states, 0 edges and 0 AP (stutter insensitive).
FORMULA QuasiCertifProtocol-COL-28-LTLFireability-07 TRUE TECHNIQUES KNOWLEDGE
Treatment of property QuasiCertifProtocol-COL-28-LTLFireability-07 finished in 15053 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202505121319/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!((X(X(p0))&&F((G(F(p0))||(F(p0)&&p1)))))'
Support contains 88 out of 2907 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 2907/2907 places, 446/446 transitions.
Applied a total of 0 rules in 111 ms. Remains 2907 /2907 variables (removed 0) and now considering 446/446 (removed 0) transitions.
// Phase 1: matrix 446 rows 2907 cols
[2025-06-05 14:52:41] [INFO ] Computed 2464 invariants in 259 ms
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-05 14:52:45] [INFO ] Implicit Places using invariants in 4267 ms returned []
[2025-06-05 14:52:45] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-05 14:53:09] [INFO ] Implicit Places using invariants and state equation in 23848 ms returned []
Implicit Place search using SMT with State Equation took 28134 ms to find 0 implicit places.
Running 416 sub problems to find dead transitions.
[2025-06-05 14:53:09] [INFO ] Invariant cache hit.
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
At refinement iteration 0 (INCLUDED_ONLY) 0/2906 variables, 2464/2464 constraints. Problems are: Problem set: 0 solved, 416 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 2906/3353 variables, and 2464 constraints, problems are : Problem set: 0 solved, 416 unsolved in 30034 ms.
Refiners :[Generalized P Invariants (flows): 2464/2464 constraints, State Equation: 0/2907 constraints, PredecessorRefiner: 416/416 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 416 unsolved
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
At refinement iteration 0 (INCLUDED_ONLY) 0/2906 variables, 2464/2464 constraints. Problems are: Problem set: 0 solved, 416 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 2906/3353 variables, and 2464 constraints, problems are : Problem set: 0 solved, 416 unsolved in 30027 ms.
Refiners :[Generalized P Invariants (flows): 2464/2464 constraints, State Equation: 0/2907 constraints, PredecessorRefiner: 0/416 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 60368ms problems are : Problem set: 0 solved, 416 unsolved
Search for dead transitions found 0 dead transitions in 60370ms
Finished structural reductions in LTL mode , in 1 iterations and 88616 ms. Remains : 2907/2907 places, 446/446 transitions.
Stuttering acceptance computed with spot in 206 ms :[(NOT p0), (NOT p0), (NOT p0), (NOT p0), (NOT p0), true]
Running random walk in product with property : QuasiCertifProtocol-COL-28-LTLFireability-08
Product exploration explored 100000 steps with 33333 reset in 517 ms.
Product exploration explored 100000 steps with 33333 reset in 547 ms.
Computed a total of 2907 stabilizing places and 446 stable transitions
Complete graph has no SCC; deadlocks are unavoidable. place count 2907 transition count 446
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge (and all enablings converge to false).
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge : F ( (Ga|G!a) & (Gb|G!b)...)
Starting Z3 with timeout 6000.0 s and query timeout 600000.0 ms
Knowledge obtained : [(AND p1 p0), (X p1), (X p0), (X (X p1)), (X (X p0)), (F (G p1)), (F (G p0))]
False Knowledge obtained : []
Property proved to be true thanks to knowledge (Minato strategy)
Knowledge based reduction with 7 factoid took 11 ms. Reduced automaton from 6 states, 9 edges and 2 AP (stutter sensitive) to 1 states, 0 edges and 0 AP (stutter insensitive).
FORMULA QuasiCertifProtocol-COL-28-LTLFireability-08 TRUE TECHNIQUES KNOWLEDGE
Treatment of property QuasiCertifProtocol-COL-28-LTLFireability-08 finished in 90374 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202505121319/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(G((p0 U (p1&&X(!p0)))))'
Support contains 88 out of 2907 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 2907/2907 places, 446/446 transitions.
Graph (complete) has 28309 edges and 2907 vertex of which 2877 are kept as prefixes of interest. Removing 30 places using SCC suffix rule.6 ms
Discarding 30 places :
Also discarding 2 output transitions
Drop transitions (Output transitions of discarded places.) removed 2 transitions
Performed 2 Post agglomeration using F-continuation condition.Transition count delta: 2
Deduced a syphon composed of 2 places in 0 ms
Reduce places removed 2 places and 0 transitions.
Iterating global reduction 0 with 4 rules applied. Total rules applied 5 place count 2875 transition count 442
Applied a total of 5 rules in 244 ms. Remains 2875 /2907 variables (removed 32) and now considering 442/446 (removed 4) transitions.
// Phase 1: matrix 442 rows 2875 cols
[2025-06-05 14:54:12] [INFO ] Computed 2436 invariants in 280 ms
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-05 14:54:16] [INFO ] Implicit Places using invariants in 4337 ms returned []
[2025-06-05 14:54:16] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-05 14:54:35] [INFO ] Implicit Places using invariants and state equation in 19046 ms returned []
Implicit Place search using SMT with State Equation took 23401 ms to find 0 implicit places.
Starting Z3 with timeout 200.0 s and query timeout 20000.0 ms
[2025-06-05 14:54:35] [INFO ] Redundant transitions in 53 ms returned []
Running 412 sub problems to find dead transitions.
[2025-06-05 14:54:35] [INFO ] Invariant cache hit.
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
At refinement iteration 0 (INCLUDED_ONLY) 0/2874 variables, 2436/2436 constraints. Problems are: Problem set: 0 solved, 412 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 2874/3317 variables, and 2436 constraints, problems are : Problem set: 0 solved, 412 unsolved in 30039 ms.
Refiners :[Generalized P Invariants (flows): 2436/2436 constraints, State Equation: 0/2875 constraints, PredecessorRefiner: 412/412 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 412 unsolved
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
At refinement iteration 0 (INCLUDED_ONLY) 0/2874 variables, 2436/2436 constraints. Problems are: Problem set: 0 solved, 412 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 2874/3317 variables, and 2436 constraints, problems are : Problem set: 0 solved, 412 unsolved in 30021 ms.
Refiners :[Generalized P Invariants (flows): 2436/2436 constraints, State Equation: 0/2875 constraints, PredecessorRefiner: 0/412 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 60356ms problems are : Problem set: 0 solved, 412 unsolved
Search for dead transitions found 0 dead transitions in 60358ms
Starting structural reductions in SI_LTL mode, iteration 1 : 2875/2907 places, 442/446 transitions.
Finished structural reductions in SI_LTL mode , in 1 iterations and 84063 ms. Remains : 2875/2907 places, 442/446 transitions.
Stuttering acceptance computed with spot in 89 ms :[(OR (NOT p1) p0), true, (OR (NOT p1) p0)]
Running random walk in product with property : QuasiCertifProtocol-COL-28-LTLFireability-09
Stuttering criterion allowed to conclude after 31 steps with 0 reset in 0 ms.
FORMULA QuasiCertifProtocol-COL-28-LTLFireability-09 FALSE TECHNIQUES STUTTER_TEST
Treatment of property QuasiCertifProtocol-COL-28-LTLFireability-09 finished in 84173 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202505121319/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!((X((G(p0)||(G(!p1)&&p2))) U (X(p2) U p3)))'
Support contains 62 out of 2907 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 2907/2907 places, 446/446 transitions.
Applied a total of 0 rules in 107 ms. Remains 2907 /2907 variables (removed 0) and now considering 446/446 (removed 0) transitions.
// Phase 1: matrix 446 rows 2907 cols
[2025-06-05 14:55:36] [INFO ] Computed 2464 invariants in 252 ms
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-05 14:55:40] [INFO ] Implicit Places using invariants in 4196 ms returned []
[2025-06-05 14:55:40] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-05 14:55:48] [INFO ] Implicit Places using invariants and state equation in 8728 ms returned []
Implicit Place search using SMT with State Equation took 12955 ms to find 0 implicit places.
Running 416 sub problems to find dead transitions.
[2025-06-05 14:55:48] [INFO ] Invariant cache hit.
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
At refinement iteration 0 (INCLUDED_ONLY) 0/2906 variables, 2464/2464 constraints. Problems are: Problem set: 0 solved, 416 unsolved
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 2906/3353 variables, and 2464 constraints, problems are : Problem set: 0 solved, 416 unsolved in 30027 ms.
Refiners :[Generalized P Invariants (flows): 2464/2464 constraints, State Equation: 0/2907 constraints, PredecessorRefiner: 416/416 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 416 unsolved
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
At refinement iteration 0 (INCLUDED_ONLY) 0/2906 variables, 2464/2464 constraints. Problems are: Problem set: 0 solved, 416 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 2906/3353 variables, and 2464 constraints, problems are : Problem set: 0 solved, 416 unsolved in 30037 ms.
Refiners :[Generalized P Invariants (flows): 2464/2464 constraints, State Equation: 0/2907 constraints, PredecessorRefiner: 0/416 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 60367ms problems are : Problem set: 0 solved, 416 unsolved
Search for dead transitions found 0 dead transitions in 60369ms
Finished structural reductions in LTL mode , in 1 iterations and 73434 ms. Remains : 2907/2907 places, 446/446 transitions.
Stuttering acceptance computed with spot in 399 ms :[true, (NOT p3), (OR (NOT p3) (AND (NOT p0) (NOT p2))), (OR (NOT p3) (AND (NOT p0) (NOT p2))), (OR (NOT p3) (AND (NOT p0) (NOT p2)) (AND p1 (NOT p2))), (OR (NOT p2) (NOT p3)), (OR (NOT p0) (NOT p3)), (OR (NOT p0) (NOT p3) p1), (NOT p0), (OR (NOT p0) p1)]
Running random walk in product with property : QuasiCertifProtocol-COL-28-LTLFireability-10
Entered a terminal (fully accepting) state of product in 13 steps with 0 reset in 0 ms.
FORMULA QuasiCertifProtocol-COL-28-LTLFireability-10 FALSE TECHNIQUES STUTTER_TEST
Treatment of property QuasiCertifProtocol-COL-28-LTLFireability-10 finished in 73874 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202505121319/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(F(G((p0 U p1))))'
Support contains 31 out of 2907 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 2907/2907 places, 446/446 transitions.
Graph (complete) has 28309 edges and 2907 vertex of which 2877 are kept as prefixes of interest. Removing 30 places using SCC suffix rule.6 ms
Discarding 30 places :
Also discarding 2 output transitions
Drop transitions (Output transitions of discarded places.) removed 2 transitions
Reduce places removed 1 places and 1 transitions.
Performed 1 Post agglomeration using F-continuation condition.Transition count delta: 1
Deduced a syphon composed of 1 places in 1 ms
Reduce places removed 1 places and 0 transitions.
Iterating global reduction 0 with 2 rules applied. Total rules applied 3 place count 2875 transition count 442
Applied a total of 3 rules in 274 ms. Remains 2875 /2907 variables (removed 32) and now considering 442/446 (removed 4) transitions.
// Phase 1: matrix 442 rows 2875 cols
[2025-06-05 14:56:50] [INFO ] Computed 2436 invariants in 267 ms
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-05 14:56:54] [INFO ] Implicit Places using invariants in 4333 ms returned []
[2025-06-05 14:56:54] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-05 14:57:03] [INFO ] Implicit Places using invariants and state equation in 8777 ms returned [2640, 2641, 2642, 2643, 2644, 2645, 2646, 2647, 2648, 2649, 2650, 2651, 2652, 2653, 2654, 2655, 2656, 2657, 2658, 2659, 2660, 2661, 2662, 2663, 2664, 2665, 2666, 2667, 2668]
Discarding 29 places :
Implicit Place search using SMT with State Equation took 13146 ms to find 29 implicit places.
Starting structural reductions in SI_LTL mode, iteration 1 : 2846/2907 places, 442/446 transitions.
Applied a total of 0 rules in 127 ms. Remains 2846 /2846 variables (removed 0) and now considering 442/442 (removed 0) transitions.
Finished structural reductions in SI_LTL mode , in 2 iterations and 13550 ms. Remains : 2846/2907 places, 442/446 transitions.
Stuttering acceptance computed with spot in 101 ms :[(NOT p1), (NOT p1)]
Running random walk in product with property : QuasiCertifProtocol-COL-28-LTLFireability-11
Stuttering criterion allowed to conclude after 34 steps with 0 reset in 0 ms.
FORMULA QuasiCertifProtocol-COL-28-LTLFireability-11 FALSE TECHNIQUES STUTTER_TEST
Treatment of property QuasiCertifProtocol-COL-28-LTLFireability-11 finished in 13669 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202505121319/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(X(X((F(G(p0))||(p0&&G(p1))))))'
Support contains 2 out of 2907 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 2907/2907 places, 446/446 transitions.
Applied a total of 0 rules in 120 ms. Remains 2907 /2907 variables (removed 0) and now considering 446/446 (removed 0) transitions.
// Phase 1: matrix 446 rows 2907 cols
[2025-06-05 14:57:03] [INFO ] Computed 2464 invariants in 242 ms
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-05 14:57:07] [INFO ] Implicit Places using invariants in 4307 ms returned []
[2025-06-05 14:57:07] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-05 14:57:31] [INFO ] Implicit Places using invariants and state equation in 23719 ms returned []
Implicit Place search using SMT with State Equation took 28058 ms to find 0 implicit places.
Running 416 sub problems to find dead transitions.
[2025-06-05 14:57:31] [INFO ] Invariant cache hit.
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
At refinement iteration 0 (INCLUDED_ONLY) 0/2906 variables, 2464/2464 constraints. Problems are: Problem set: 0 solved, 416 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 2906/3353 variables, and 2464 constraints, problems are : Problem set: 0 solved, 416 unsolved in 30019 ms.
Refiners :[Generalized P Invariants (flows): 2464/2464 constraints, State Equation: 0/2907 constraints, PredecessorRefiner: 416/416 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 416 unsolved
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
At refinement iteration 0 (INCLUDED_ONLY) 0/2906 variables, 2464/2464 constraints. Problems are: Problem set: 0 solved, 416 unsolved
Error getting values : (error "ParserException while parsing response: ((s0 1)
(s1 1)
(s2 1)
(s3 1)
(s4 1)
(s5 1)
(s6 1)
(s7 1)
(s8 1)
(s9 1)
(s10 1)
(s11 1)
(s12 1)
(s13 1)
(s14 1)
(s15 1)
(s16 1)
(s17 1)
(s18 1)
(s19 1)
(s20 1)
(s21 1)
(s22 1)
(s23 1)
(s24 1)
(s25 1)
(s26 1)
(s27 1)
(s28 1)
(s29 1)
(s30 1)
(s31 1)
(s32 1)
(s33 1)
(s34 1)
(s35 1)
(s36 1)
(s37 1)
(s38 1)
(s39 1)
(s40 1)
(s41 1)
(s42 1)
(s43 1)
(s44 1)
(s45 1)
(s46 1)
(s47 1)
(s48 1)
(s49 1)
(s50 1)
(s51 1)
(s52 1)
(s53 1)
(s54 1)
(s55 1)
(s56 1)
(s57 1)
(s58 1)
(s59 1)
(s60 1)
(s61 1)
(s62 1)
(s63 1)
(s64 1)
(s65 1)
(s66 1)
(s67 1)
(s68 1)
(s69 1)
(s70 1)
(s71 1)
(s72 1)
(s73 1)
(s74 1)
(s75 1)
(s76 1)
(s77 1)
(s78 1)
(s79 1)
(s80 1)
(s81 1)
(s82 1)
(s83 1)
(s84 1)
(s85 1)
(s86 1)
(s87 1)
(s88 1)
(s89 1)
(s90 1)
(s91 1)
(s92 1)
(s93 1)
(s94 1)
(s95 1)
(s96 1)
(s97 1)
(s98 1)
(s99 1)
(s100 1)
(s101 1)
(s102 1)
(s103 1)
(s104 1)
(s105 1)
(s106 1)
(s107 1)
(s108 1)
(s109 1)
(s110 1)
(s111 1)
(s112 1)
(s113 1)
(s114 1)
(s115 1)
(s116 1)
(s117 1)
(s118 1)
(s119 1)
(s120 1)
(s121 1)
(s122 1)
(s123 1)
(s124 1)
(s125 1)
(s126 1)
(s127 1)
(s128 1)
(s129 1)
(s130 1)
(s131 1)
(s132 1)
(s133 1)
(s134 1)
(s135 1)
(s136 1)
(s137 1)
(s138 1)
(s139 1)
(s140 1)
(s141 1)
(s142 1)
(s143 1)
(s144 1)
(s145 1)
(s146 1)
(s147 1)
(s148 1)
(s149 1)
(s150 1)
(s151 1)
(s152 1)
(s153 1)
(s154 1)
(s155 1)
(s156 1)
(s157 1)
(s158 1)
(s159 1)
(s160 1)
(s161 1)
(s162 1)
(s163 1)
(s164 1)
(s165 1)
(s166 1)
(s167 1)
(s168 1)
(s169 1)
(s170 1)
(s171 1)
(s172 1)
(s173 1)
(s174 1)
(s175 1)
(s176 1)
(s177 1)
(s178 1)
(s179 1)
(s180 1)
(s181 1)
(s182 1)
(s183 1)
(s184 1)
(s185 1)
(s186 1)
(s187 1)
(s188 1)
(s189 1)
(s190 1)
(s191 1)
(s192 1)
(s193 1)
(s194 1)
(s195 1)
(s196 1)
(s197 1)
(s198 1)
(s199 1)
(s200 1)
(s201 1)
(s202 1)
(s203 1)
(s204 1)
(s205 1)
(s206 1)
(s207 1)
(s208 1)
(s209 1)
(s210 1)
(s211 1)
(s212 1)
(s213 1)
(s214 1)
(s215 1)
(s216 1)
(s217 1)
(s218 1)
(s219 1)
(s220 1)
(s221 1)
(s222 1)
(s223 1)
(s224 1)
(s225 1)
(s226 1)
(s227 1)
(s228 1)
(s229 1)
(s230 1)
(s231 1)
(s232 1)
(s233 1)
(s234 1)
(s235 1)
(s236 1)
(s237 1)
(s238 1)
(s239 1)
(s240 1)
(s241 1)
(s242 1)
(s243 1)
(s244 1)
(s245 1)
(s246 1)
(s247 1)
(s248 1)
(s249 1)
(s250 1)
(s251 1)
(s252 1)
(s253 1)
(s254 1)
(s255 1)
(s256 1)
(s257 1)
(s258 1)
(s259 1)
(s260 1)
(s261 1)
(s262 1)
(s263 1)
(s264 1)
(s265 1)
(s266 1)
(s267 1)
(s268 1)
(s269 1)
(s270 1)
(s271 1)
(s272 1)
(s273 1)
(s274 1)
(s275 1)
(s276 1)
(s277 1)
(s278 1)
(s279 1)
(s280 1)
(s281 1)
(s282 1)
(s283 1)
(s284 1)
(s285 1)
(s286 1)
(s287 1)
(s288 1)
(s289 1)
(s290 1)
(s291 1)
(s292 1)
(s293 1)
(s294 1)
(s295 1)
(s296 1)
(s297 1)
(s298 1)
(s299 1)
(s300 1)
(s301 1)
(s302 1)
(s303 1)
(s304 1)
(s305 1)
(s306 1)
(s307 1)
(s308 1)
(s309 1)
(s310 1)
(s311 1)
(s312 1)
(s313 1)
(s314 1)
(s315 1)
(s316 1)
(s317 1)
(s318 1)
(s319 1)
(s320 1)
(s321 1)
(s322 1)
(s323 1)
(s324 1)
(s325 1)
(s326 1)
(s327 1)
(s328 1)
(s329 1)
(s330 1)
(s331 1)
(s332 1)
(s333 1)
(s334 1)
(s335 1)
(s336 1)
(s337 1)
(s338 1)
(s339 1)
(s340 1)
(s341 1)
(s342 1)
(s343 1)
(s344 1)
(s345 1)
(s346 1)
(s347 1)
(s348 1)
(s349 1)
(s350 1)
(s351 1)
(s352 1)
(s353 1)
(s354 1)
(s355 1)
(s356 1)
(s357 1)
(s358 1)
(s359 1)
(s360 1)
(s361 1)
(s362 1)
(s363 1)
(s364 1)
(s365 1)
(s366 1)
(s367 1)
(s368 1)
(s369 1)
(s370 1)
(s371 1)
(s372 1)
(s373 1)
(s374 1)
(s375 1)
(s376 1)
(s377 1)
(s378 1)
(s379 1)
(s380 1)
(s381 1)
(s382 1)
(s383 1)
(s384 1)
(s385 1)
(s386 1)
(s387 1)
(s388 1)
(s389 1)
(s390 1)
(s391 1)
(s392 1)
(s393 1)
(s394 1)
(s395 1)
(s396 1)
(s397 1)
(s398 1)
(s399 1)
(s400 1)
(s401 1)
(s402 1)
(s403 1)
(s404 1)
(s405 1)
(s406 1)
(s407 1)
(s408 1)
(s409 1)
(s410 1)
(s411 1)
(s412 1)
(s413 1)
(s414 1)
(s415 1)
(s416 1)
(s417 1)
(s418 1)
(s419 1)
(s420 1)
(s421 1)
(s422 1)
(s423 1)
(s424 1)
(s425 1)
(s426 1)
(s427 1)
(s428 1)
(s429 1)
(s430 1)
(s431 1)
(s432 1)
(s433 1)
(s434 1)
(s435 1)
(s436 1)
(s437 1)
(s438 1)
(s439 1)
(s440 1)
(s441 1)
(s442 1)
(s443 1)
(s444 1)
(s445 1)
(s446 1)
(s447 1)
(s448 1)
(s449 1)
(s450 1)
(s451 1)
(s452 1)
(s453 1)
(s454 1)
(s455 1)
(s456 1)
(s457 1)
(s458 1)
(s459 1)
(s460 1)
(s461 1)
(s462 1)
(s463 1)
(s464 1)
(s465 1)
(s466 1)
(s467 1)
(s468 1)
(s469 1)
(s470 1)
(s471 1)
(s472 1)
(s473 1)
(s474 1)
(s475 1)
(s476 1)
(s477 1)
(s478 1)
(s479 1)
(s480 1)
(s481 1)
(s482 1)
(s483 1)
(s484 1)
(s485 1)
(s486 1)
(s487 1)
(s488 1)
(s489 1)
(s490 1)
(s491 1)
(s492 1)
(s493 1)
(s494 1)
(s495 1)
(s496 1)
(s497 1)
(s498 1)
(s499 1)
(s500 1)
(s501 1)
(s502 1)
(s503 1)
(s504 1)
(s505 1)
(s506 1)
(s507 1)
(s508 1)
(s509 1)
(s510 1)
(s511 1)
(s512 1)
(s513 1)
(s514 1)
(s515 1)
(s516 1)
(s517 1)
(s518 1)
(s519 1)
(s520 1)
(s521 1)
(s522 1)
(s523 1)
(s524 1)
(s525 1)
(s526 1)
(s527 1)
(s528 1)
(s529 1)
(s530 1)
(s531 1)
(s532 1)
(s533 1)
(s534 1)
(s535 1)
(s536 1)
(s537 1)
(s538 1)
(s539 1)
(s540 1)
(s541 1)
(s542 1)
(s543 1)
(s544 1)
(s545 1)
(s546 1)
(s547 1)
(s548 1)
(s549 1)
(s550 1)
(s551 1)
(s552 1)
(s553 1)
(s554 1)
(s555 1)
(s556 1)
(s557 1)
(s558 1)
(s559 1)
(s560 1)
(s561 1)
(s562 1)
(s563 1)
(s564 1)
(s565 1)
(s566 1)
(s567 1)
(s568 1)
(s569 1)
(s570 1)
(s571 1)
(s572 1)
(s573 1)
(s574 1)
(s575 1)
(s576 1)
(s577 1)
(s578 1)
(s579 1)
(s580 1)
(s581 1)
(s582 1)
(s583 1)
(s584 1)
(s585 1)
(s586 1)
(s587 1)
(s588 1)
(s589 1)
(s590 1)
(s591 1)
(s592 1)
(s593 1)
(s594 1)
(s595 1)
(s596 1)
(s597 1)
(s598 1)
(s599 1)
(s600 1)
(s601 1)
(s602 1)
(s603 1)
(s604 1)
(s605 1)
(s606 1)
(s607 1)
(s608 1)
(s609 1)
(s610 1)
(s611 1)
(s612 1)
(s613 1)
(s614 1)
(s615 1)
(s616 1)
(s617 1)
(s618 1)
(s619 1)
(s620 1)
(s621 1)
(s622 1)
(s623 1)
(s624 1)
(s625 1)
(s626 1)
(s627 1)
(s628 1)
(s629 1)
(s630 1)
(s631 1)
(s632 1)
(s633 1)
(s634 1)
(s635 1)
(s636 1)
(s637 1)
(s638 1)
(s639 1)
(s640 1)
(s641 1)
(s642 1)
(s643 1)
(s644 1)
(s645 1)
(s646 1)
(s647 1)
(s648 1)
(s649 1)
(s650 1)
(s651 1)
(s652 1)
(s653 1)
(s654 1)
(s655 1)
(s656 1)
(s657 1)
(s658 1)
(s659 1)
(s660 1)
(s661 1)
(s662 1)
(s663 1)
(s664 1)
(s665 1)
(s666 1)
(s667 1)
(s668 1)
(s669 1)
(s670 1)
(s671 1)
(s672 1)
(s673 1)
(s674 1)
(s675 1)
(s676 1)
(s677 1)
(s678 1)
(s679 1)
(s680 1)
(s681 1)
(s682 1)
(s683 1)
(s684 1)
(s685 1)
(s686 1)
(s687 1)
(s688 1)
(s689 1)
(s690 1)
(s691 1)
(s692 1)
(s693 1)
(s694 1)
(s695 1)
(s696 1)
(s697 1)
(s698 1)
(s699 1)
(s700 1)
(s701 1)
(s702 1)
(s703 1)
(s704 1)
(s705 1)
(s706 1)
(s707 1)
(s708 1)
(s709 1)
(s710 1)
(s711 1)
(s712 1)
(s713 1)
(s714 1)
(s715 1)
(s716 1)
(s717 1)
(s718 1)
(s719 1)
(s720 1)
(s721 1)
(s722 1)
(s723 1)
(s724 1)
(s725 1)
(s726 1)
(s727 1)
(s728 1)
(s729 1)
(s730 1)
(s731 1)
(s732 1)
(s733 1)
(s734 1)
(s735 1)
(s736 1)
(s737 1)
(s738 1)
(s739 1)
(s740 1)
(s741 1)
(s742 1)
(s743 1)
(s744 1)
(s745 1)
(s746 1)
(s747 1)
(s748 1)
(s749 1)
(s750 1)
(s751 1)
(s752 1)
(s753 1)
(s754 1)
(s755 1)
(s756 1)
(s757 1)
(s758 1)
(s759 1)
(s760 1)
(s761 1)
(s762 1)
(s763 1)
(s764 1)
(s765 1)
(s766 1)
(s767 1)
(s768 1)
(s769 1)
(s770 1)
(s771 1)
(s772 1)
(s773 1)
(s774 1)
(s775 1)
(s776 1)
(s777 1)
(s778 1)
(s779 1)
(s780 1)
(s781 1)
(s782 1)
(s783 1)
(s784 1)
(s785 1)
(s786 1)
(s787 1)
(s788 1)
(s789 1)
(s790 1)
(s791 1)
(s792 1)
(s793 1)
(s794 1)
(s795 1)
(s796 1)
(s797 1)
(s798 1)
(s799 1)
(s800 1)
(s801 1)
(s802 1)
(s803 1)
(s804 1)
(s805 1)
(s806 1)
(s807 1)
(s808 1)
(s809 1)
(s810 1)
(s811 1)
(s812 1)
(s813 1)
(s814 1)
(s815 1)
(s816 1)
(s817 1)
(s818 1)
(s819 1)
(s820 1)
(s821 1)
(s822 1)
(s823 1)
(s824 1)
(s825 1)
(s826 1)
(s827 1)
(s828 1)
(s829 1)
(s830 1)
(s831 1)
(s832 1)
(s833 1)
(s834 1)
(s835 1)
(s836 1)
(s837 1)
(s838 1)
(s839 1)
(s840 1)
(s841 1)
(s842 1)
(s843 1)
(s844 1)
(s845 1)
(s846 1)
(s847 1)
(s848 1)
(s849 1)
(s850 1)
(s851 1)
(s852 1)
(s853 1)
(s854 1)
(s855 1)
(s856 1)
(s857 1)
(s858 1)
(s859 1)
(s860 1)
(s861 1)
(s862 1)
(s863 1)
(s864 1)
(s865 1)
(s866 1)
(s867 1)
(s868 1)
(s869 1)
(s870 1)
(s871 1)
(s872 1)
(s873 1)
(s874 1)
(s875 1)
(s876 1)
(s877 1)
(s878 1)
(s879 1)
(s880 1)
(s881 1)
(s882 1)
(s883 1)
(s884 1)
(s885 1)
(s886 1)
(s887 1)
(s888 1)
(s889 1)
(s890 1)
(s891 1)
(s892 1)
(s893 1)
(s894 1)
(s895 1)
(s896 1)
(s897 1)
(s898 1)
(s899 1)
(s900 1)
(s901 1)
(s902 1)
(s903 1)
(s904 1)
(s905 1)
(s906 1)
(s907 1)
(s908 1)
(s909 1)
(s910 1)
(s911 1)
(s912 1)
(s913 1)
(s914 1)
(s915 1)
(s916 1)
(s917 1)
(s918 1)
(s919 1)
(s920 1)
(s921 1)
(s922 1)
(s923 1)
(s924 1)
(s925 1)
(s926 1)
(s927 1)
(s928 1)
(s929 1)
(s930 1)
(s931 1)
(s932 1)
(s933 1)
(s934 1)
(s935 1)
(s936 1)
(s937 1)
(s938 1)
(s939 1)
(s940 1)
(s941 1)
(s942 1)
(s943 1)
(s944 1)
(s945 1)
(s946 1)
(s947 1)
(s948 1)
(s949 1)
(s950 1)
(s951 1)
(s952 1)
(s953 1)
(s954 1)
(s955 1)
(s956 1)
(s957 1)
(s958 1)
(s959 1)
(s960 1)
(s961 1)
(s962 1)
(s963 1)
(s964 1)
(s965 1)
(s966 1)
(s967 1)
(s968 1)
(s969 1)
(s970 1)
(s971 1)
(s972 1)
(s973 1)
(s974 1)
(s975 1)
(s976 1)
(s977 1)
(s978 1)
(s979 1)
(s980 1)
(s981 1)
(s982 1)
(s983 1)
(s984 1)
(s985 1)
(s986 1)
(s987 1)
(s988 1)
(s989 1)
(s990 1)
(s991 1)
(s992 1)
(s993 1)
(s994 1)
(s995 1)
(s996 1)
(s997 1)
(s998 1)
(s999 1)
(s1000 1)
(s1001 1)
(s1002 1)
(s1003 1)
(s1004 1)
(s1005 1)
(s1006 1)
(s1007 1)
(s1008 1)
(s1009 1)
(s1010 1)
(s1011 1)
(s1012 1)
(s1013 1)
(s1014 1)
(s1015 1)
(s1016 1)
(s1017 1)
(s1018 1)
(s1019 1)
(s1020 1)
(s1021 1)
(s1022 1)
(s1023 1)
(s1024 1)
(s1025 1)
(s1026 1)
(s1027 1)
(s1028 1)
(s1029 1)
(s1030 1)
(s1031 1)
(s1032 1)
(s1033 1)
(s1034 1)
(s1035 1)
(s1036 1)
(s1037 1)
(s1038 1)
(s1039 1)
(s1040 1)
(s1041 1)
(s1042 1)
(s1043 1)
(s1044 1)
(s1045 1)
(s1046 1)
(s1047 1)
(s1048 1)
(s1049 1)
(s1050 1)
(s1051 1)
(s1052 1)
(s1053 1)
(s1054 1)
(s1055 1)
(s1056 1)
(s1057 1)
(s1058 1)
(s1059 1)
(s1060 1)
(s1061 1)
(s1062 1)
(s1063 1)
(s1064 1)
(s1065 1)
(s1066 1)
(s1067 1)
(s1068 1)
(s1069 1)
(s1070 1)
(s1071 1)
(s1072 1)
(s1073 1)
(s1074 1)
(s1075 1)
(s1076 1)
(s1077 1)
(s1078 1)
(s1079 1)
(s1080 1)
(s1081 1)
(s1082 1)
(s1083 1)
(s1084 1)
(s1085 1)
(s1086 1)
(s1087 1)
(s1088 1)
(s1089 1)
(s1090 1)
(s1091 1)
(s1092 1)
(s1093 1)
(s1094 1)
(s1095 1)
(s1096 1)
(s1097 1)
(s1098 1)
(s1099 1)
(s1100 1)
(s1101 1)
(s1102 1)
(s1103 1)
(s1104 1)
(s1105 1)
(s1106 1)
(s1107 1)
(s1108 1)
(s1109 1)
(s1110 1)
(s1111 1)
(s1112 1)
(s1113 1)
(s1114 1)
(s1115 1)
(s1116 1)
(s1117 1)
(s1118 1)
(s1119 1)
(s1120 1)
(s1121 1)
(s1122 1)
(s1123 1)
(s1124 1)
(s1125 1)
(s1126 1)
(s1127 1)
(s1128 1)
(s1129 1)
(s1130 1)
(s1131 1)
(s1132 1)
(s1133 1)
(s1134 1)
(s1135 1)
(s1136 1)
(s1137 1)
(s1138 1)
(s1139 1)
(s1140 1)
(s1141 1)
(s1142 1)
(s1143 1)
(s1144 1)
(s1145 1)
(s1146 1)
(s1147 1)
(s1148 1)
(s1149 1)
(s1150 1)
(s1151 1)
(s1152 1)
(s1153 1)
(s1154 1)
(s1155 1)
(s1156 1)
(s1157 1)
(s1158 1)
(s1159 1)
(s1160 1)
(s1161 1)
(s1162 1)
(s1163 1)
(s1164 1)
(s1165 1)
(s1166 1)
(s1167 1)
(s1168 1)
(s1169 1)
(s1170 1)
(s1171 1)
(s1172 1)
(s1173 1)
(s1174 1)
(s1175 1)
(s1176 1)
(s1177 1)
(s1178 1)
(s1179 1)
(s1180 1)
(s1181 1)
(s1182 1)
(s1183 1)
(s1184 1)
(s1185 1)
(s1186 1)
(s1187 1)
(s1188 1)
(s1189 1)
(s1190 1)
(s1191 1)
(s1192 1)
(s1193 1)
(s1194 1)
(s1195 1)
(s1196 1)
(s1197 1)
(s1198 1)
(s1199 1)
(s1200 1)
(s1201 1)
(s1202 1)
(s1203 1)
(s1204 1)
(s1205 1)
(s1206 1)
(s1207 1)
(s1208 1)
(s1209 1)
(s1210 1)
(s1211 1)
(s1212 1)
(s1213 1)
(s1214 1)
(s1215 1)
(s1216 1)
(s1217 1)
(s1218 1)
(s1219 1)
(s1220 1)
(s1221 1)
(s1222 1)
(s1223 1)
(s1224 1)
(s1225 1)
(s1226 1)
(s1227 1)
(s1228 1)
(s1229 1)
(s1230 1)
(s1231 1)
(s1232 1)
(s1233 1)
(s1234 1)
(s1235 1)
(s1236 1)
(s1237 1)
(s1238 1)
(s1239 1)
(s1240 1)
(s1241 1)
(s1242 1)
(s1243 1)
(s1244 1)
(s1245 1)
(s1246 1)
(s1247 1)
(s1248 1)
(s1249 1)
(s1250 1)
(s1251 1)
(s1252 1)
(s1253 1)
(s1254 1)
(s1255 1)
(s1256 1)
(s1257 1)
(s1258 1)
(s1259 1)
(s1260 1)
(s1261 1)
(s1262 1)
(s1263 1)
(s1264 1)
(s1265 1)
(s1266 1)
(s1267 1)
(s1268 1)
(s1269 1)
(s1270 1)
(s1271 1)
(s1272 1)
(s1273 1)
(s1274 1)
(s1275 1)
(s1276 1)
(s1277 1)
(s1278 1)
(s1279 1)
(s1280 1)
(s1281 1)
(s1282 1)
(s1283 1)
(s1284 1)
(s1285 1)
(s1286 1)
(s1287 1)
(s1288 1)
(s1289 1)
(s1290 1)
(s1291 1)
(s1292 1)
(s1293 1)
(s1294 1)
(s1295 1)
(s1296 1)
(s1297 1)
(s1298 1)
(s1299 1)
(s1300 1)
(s1301 1)
(s1302 1)
(s1303 1)
(s1304 1)
(s1305 1)
(s1306 1)
(s1307 1)
(s1308 1)
(s1309 1)
(s1310 1)
(s1311 1)
(s1312 1)
(s1313 1)
(s1314 1)
(s1315 1)
(s1316 1)
(s1317 1)
(s1318 1)
(s1319 1)
(s1320 1)
(s1321 1)
(s1322 1)
(s1323 1)
(s1324 1)
(s1325 1)
(s1326 1)
(s1327 1)
(s1328 1)
(s1329 1)
(s1330 1)
(s1331 1)
(s1332 1)
(s1333 1)
(s1334 1)
(s1335 1)
(s1336 1)
(s1337 1)
(s1338 1)
(s1339 1)
(s1340 1)
(s1341 1)
(s1342 1)
(s1343 1)
(s1344 1)
(s1345 1)
(s1346 1)
(s1347 1)
(s1348 1)
(s1349 1)
(s1350 1)
(s1351 1)
(s1352 1)
(s1353 1)
(s1354 1)
(s1355 1)
(s1356 1)
(s1357 1)
(s1358 1)
(s1359 1)
(s1360 1)
(s1361 1)
(s1362 1)
(s1363 1)
(s1364 1)
(s1365 1)
(s1366 1)
(s1367 1)
(s1368 1)
(s1369 1)
(s1370 1)
(s1371 1)
(s1372 1)
(s1373 1)
(s1374 1)
(s1375 1)
(s1376 1)
(s1377 1)
(s1378 1)
(s1379 1)
(s1380 1)
(s1381 1)
(s1382 1)
(s1383 1)
(s1384 1)
(s1385 1)
(s1386 1)
(s1387 1)
(s1388 1)
(s1389 1)
(s1390 1)
(s1391 1)
(s1392 1)
(s1393 1)
(s1394 1)
(s1395 1)
(s1396 1)
(s1397 1)
(s1398 1)
(s1399 1)
(s1400 1)
(s1401 1)
(s1402 1)
(s1403 1)
(s1404 1)
(s1405 1)
(s1406 1)
(s1407 1)
(s1408 1)
(s1409 1)
(s1410 1)
(s1411 1)
(s1412 1)
(s1413 1)
(s1414 1)
(s1415 1)
(s1416 1)
(s1417 1)
(s1418 1)
(s1419 1)
(s1420 1)
(s1421 1)
(s1422 1)
(s1423 1)
(s1424 1)
(s1425 1)
(s1426 1)
(s1427 1)
(s1428 1)
(s1429 1)
(s1430 1)
(s1431 1)
(s1432 1)
(s1433 1)
(s1434 1)
(s1435 1)
(s1436 1)
(s1437 1)
(s1438 1)
(s1439 1)
(s1440 1)
(s1441 1)
(s1442 1)
(s1443 1)
(s1444 1)
(s1445 1)
(s1446 1)
(s1447 1)
(s1448 1)
(s1449 1)
(s1450 1)
(s1451 1)
(s1452 1)
(s1453 1)
(s1454 1)
(s1455 1)
(s1456 1)
(s1457 1)
(s1458 1)
(s1459 1)
(s1460 1)
(s1461 1)
(s1462 1)
(s1463 1)
(s1464 1)
(s1465 1)
(s1466 1)
(s1467 1)
(s1468 1)
(s1469 1)
(s1470 1)
(s1471 1)
(s1472 1)
(s1473 1)
(s1474 1)
(s1475 1)
(s1476 1)
(s1477 1)
(s1478 1)
(s1479 1)
(s1480 1)
(s1481 1)
(s1482 1)
(s1483 1)
(s1484 1)
(s1485 1)
(s1486 1)
(s1487 1)
(s1488 1)
(s1489 1)
(s1490 1)
(s1491 1)
(s1492 1)
(s1493 1)
(s1494 1)
(s1495 1)
(s1496 1)
(s1497 1)
(s1498 1)
(s1499 1)
(s1500 1)
(s1501 1)
(s1502 1)
(s1503 1)
(s1504 1)
(s1505 1)
(s1506 1)
(s1507 1)
(s1508 1)
(s1509 1)
(s1510 1)
(s1511 1)
(s1512 1)
(s1513 1)
(s1514 1)
(s1515 1)
(s1516 1)
(s1517 1)
(s1518 1)
(s1519 1)
(s1520 1)
(s1521 1)
(s1522 1)
(s1523 1)
(s1524 1)
(s1525 1)
(s1526 1)
(s1527 1)
(s1528 1)
(s1529 1)
(s1530 1)
(s1531 1)
(s1532 1)
(s1533 1)
(s1534 1)
(s1535 1)
(s1536 1)
(s1537 1)
(s1538 1)
(s1539 1)
(s1540 1)
(s1541 1)
(s1542 1)
(s1543 1)
(s1544 1)
(s1545 1)
(s1546 1)
(s1547 1)
(s1548 1)
(s1549 1)
(s1550 1)
(s1551 1)
(s1552 1)
(s1553 1)
(s1554 1)
(s1555 1)
(s1556 1)
(s1557 1)
(s1558 1)
(s1559 1)
(s1560 1)
(s1561 1)
(s1562 1)
(s1563 1)
(s1564 1)
(s1565 1)
(s1566 1)
(s1567 1)
(s1568 1)
(s1569 1)
(s1570 1)
(s1571 1)
(s1572 1)
(s1573 1)
(s1574 1)
(s1575 1)
(s1576 1)
(s1577 1)
(s1578 1)
(s1579 1)
(s1580 1)
(s1581 1)
(s1582 1)
(s1583 1)
(s1584 1)
(s1585 1)
(s1586 1)
(s1587 1)
(s1588 1)
(s1589 1)
(s1590 1)
(s1591 1)
(s1592 1)
(s1593 1)
(s1594 1)
(s1595 1)
(s1596 1)
(s1597 1)
(s1598 1)
(s1599 1)
(s1600 1)
(s1601 1)
(s1602 1)
(s1603 1)
(s1604 1)
(s1605 1)
(s1606 1)
(s1607 1)
(s1608 1)
(s1609 1)
(s1610 1)
(s1611 1)
(s1612 1)
(s1613 1)
(s1614 1)
(s1615 1)
(s1616 1)
(s1617 1)
(s1618 1)
(s1619 1)
(s1620 1)
(s1621 1)
(s1622 1)
(s1623 1)
(s1624 1)
(s1625 1)
(s1626 1)
(s1627 1)
(s1628 1)
(s1629 1)
(s1630 1)
(s1631 1)
(s1632 1)
(s1633 1)
(s1634 1)
(s1635 1)
(s1636 1)
(s1637 1)
(s1638 1)
(s1639 1)
(s1640 1)
(s1641 1)
(s1642 1)
(s1643 1)
(s1644 1)
(s1645 1)
(s1646 1)
(s1647 1)
(s1648 1)
(s1649 1)
(s1650 1)
(s1651 1)
(s1652 1)
(s1653 1)
(s1654 1)
(s1655 1)
(s1656 1)
(s1657 1)
(s1658 1)
(s1659 1)
(s1660 1)
(s1661 1)
(s1662 1)
(s1663 1)
(s1664 1)
(s1665 1)
(s1666 1)
(s1667 1)
(s1668 1)
(s1669 1)
(s1670 1)
(s1671 1)
(s1672 1)
(s1673 1)
(s1674 1)
(s1675 1)
(s1676 1)
(s1677 1)
(s1678 1)
(s1679 1)
(s1680 1)
(s1681 1)
(s1682 1)
(s1683 1)
(s1684 1)
(s1685 1)
(s1686 1)
(s1687 1)
(s1688 1)
(s1689 1)
(s1690 1)
(s1691 1)
(s1692 1)
(s1693 1)
(s1694 1)
(s1695 1)
(s1696 1)
(s1697 1)
(s1698 1)
(s1699 1)
(s1700 1)
(s1701 1)
(s1702 1)
(s1703 1)
(s1704 1)
(s1705 1)
(s1706 1)
(s1707 1)
(s1708 1)
(s1709 1)
(s1710 1)
(s1711 1)
(s1712 1)
(s1713 1)
(s1714 1)
(s1715 1)
(s1716 1)
(s1717 1)
(s1718 1)
(s1719 1)
(s1720 1)
(s1721 1)
(s1722 1)
(s1723 1)
(s1724 1)
(s1725 1)
(s1726 1)
(s1727 1)
(s1728 1)
(s1729 1)
(s1730 1)
(s1731 1)
(s1732 1)
(s1733 1)
(s1734 1)
(s1735 1)
(s1736 1)
(s1737 1)
(s1738 1)
(s1739 1)
(s1740 1)
(s1741 1)
(s1742 1)
(s1743 1)
(s1744 1)
(s1745 1)
(s1746 1)
(s1747 1)
(s1748 1)
(s1749 1)
(s1750 1)
(s1751 1)
(s1752 1)
(s1753 1)
(s1754 1)
(s1755 1)
(s1756 1)
(s1757 1)
(s1758 1)
(s1759 1)
(s1760 1)
(s1761 1)
(s1762 1)
(s1763 1)
(s1764 1)
(s1765 1)
(s1766 1)
(s1767 1)
(s1768 1)
(s1769 1)
(s1770 1)
(s1771 1)
(s1772 1)
(s1773 1)
(s1774 1)
(s1775 1)
(s1776 1)
(s1777 1)
(s1778 1)
(s1779 1)
(s1780 1)
(s1781 1)
(s1782 1)
(s1783 1)
(s1784 1)
(s1785 1)
(s1786 1)
(s1787 1)
(s1788 1)
(s1789 1)
(s1790 1)
(s1791 1)
(s1792 1)
(s1793 1)
(s1794 1)
(s1795 1)
(s1796 1)
(s1797 1)
(s1798 1)
(s1799 1)
(s1800 1)
(s1801 1)
(s1802 1)
(s1803 1)
(s1804 1)
(s1805 1)
(s1806 1)
(s1807 1)
(s1808 1)
(s1809 1)
(s1810 1)
(s1811 1)
(s1812 1)
(s1813 1)
(s1814 1)
(s1815 1)
(s1816 1)
(s1817 1)
(s1818 1)
(s1819 1)
(s1820 1)
(s1821 1)
(s1822 1)
(s1823 1)
(s1824 1)
(s1825 1)
(s1826 1)
(s1827 1)
(s1828 1)
(s1829 1)
(s1830 1)
(s1831 1)
(s1832 1)
(s1833 1)
(s1834 1)
(s1835 1)
(s1836 1)
(s1837 1)
(s1838 1)
(s1839 1)
(s1840 1)
(s1841 1)
(s1842 1)
(s1843 1)
(s1844 1)
(s1845 1)
(s1846 1)
(s1847 1)
(s1848 1)
(s1849 1)
(s1850 1)
(s1851 1)
(s1852 1)
(s1853 1)
(s1854 1)
(s1855 1)
(s1856 1)
(s1857 1)
(s1858 1)
(s1859 1)
(s1860 1)
(s1861 1)
(s1862 1)
(s1863 1)
(s1864 1)
(s1865 1)
(s1866 1)
(s1867 1)
(s1868 1)
(s1869 1)
(s1870 1)
(s1871 1)
(s1872 1)
(s1873 1)
(s1874 1)
(s1875 1)
(s1876 1)
(s1877 1)
(s1878 1)
(s1879 1)
(s1880 1)
(s1881 1)
(s1882 1)
(s1883 1)
(s1884 1)
(s1885 1)
(s1886 1)
(s1887 1)
(s1888 1)
(s1889 1)
(s1890 1)
(s1891 1)
(s1892 1)
(s1893 1)
(s1894 1)
(s1895 1)
(s1896 1)
(s1897 1)
(s1898 1)
(s1899 1)
(s1900 1)
(s1901 1)
(s1902 1)
(s1903 1)
(s1904 1)
(s1905 1)
(s1906 1)
(s1907 1)
(s1908 1)
(s1909 1)
(s1910 1)
(s1911 1)
(s1912 1)
(s1913 1)
(s1914 1)
(s1915 1)
(s1916 1)
(s1917 1)
(s1918 1)
(s1919 1)
(s1920 1)
(s1921 1)
(s1922 1)
(s1923 1)
(s1924 1)
(s1925 1)
(s1926 1)
(s1927 1)
(s1928 1)
(s1929 1)
(s1930 1)
(s1931 1)
(s1932 1)
(s1933 1)
(s1934 1)
(s1935 1)
(s1936 1)
(s1937 1)
(s1938 1)
(s1939 1)
(s1940 1)
(s1941 1)
(s1942 1)
(s1943 1)
(s1944 1)
(s1945 1)
(s1946 1)
(s1947 1)
(s1948 1)
(s1949 1)
(s1950 1)
(s1951 1)
(s1952 1)
(s1953 1)
(s1954 1)
(s1955 1)
(s1956 1)
(s1957 1)
(s1958 1)
(s1959 1)
(s1960 1)
(s1961 1)
(s1962 1)
(s1963 1)
(s1964 1)
(s1965 1)
(s1966 1)
(s1967 1)
(s1968 1)
(s1969 1)
(s1970 1)
(s1971 1)
(s1972 1)
(s1973 1)
(s1974 1)
(s1975 1)
(s1976 1)
(s1977 1)
(s1978 1)
(s1979 1)
(s1980 1)
(s1981 1)
(s1982 1)
(s1983 1)
(s1984 1)
(s1985 1)
(s1986 1)
(s1987 1)
(s1988 1)
(s1989 1)
(s1990 1)
(s1991 1)
(s1992 1)
(s1993 1)
(s1994 1)
(s1995 1)
(s1996 1)
(s1997 1)
(s1998 1)
(s1999 1)
(s2000 1)
(s2001 1)
(s2002 1)
(s2003 1)
(s2004 1)
(s2005 1)
(s2006 1)
(s2007 1)
(s2008 1)
(s2009 1)
(s2010 1)
(s2011 1)
(s2012 1)
(s2013 1)
(s2014 1)
(s2015 1)
(s2016 1)
(s2017 1)
(s2018 1)
(s2019 1)
(s2020 1)
(s2021 1)
(s2022 1)
(s2023 1)
(s2024 1)
(s2025 1)
(s2026 1)
(s2027 1)
(s2028 1)
(s2029 1)
(s2030 1)
(s2031 1)
(s2032 1)
(s2033 1)
(s2034 1)
(s2035 1)
(s2036 1)
(s2037 1)
(s2038 1)
(s2039 1)
(s2040 1)
(s2041 1)
(s2042 1)
(s2043 1)
(s2044 1)
(s2045 1)
(s2046 1)
(s2047 1)
(s2048 1)
(s2049 1)
(s2050 1)
(s2051 1)
(s2052 1)
(s2053 1)
(s2054 1)
(s2055 1)
(s2056 1)
(s2057 1)
(s2058 1)
(s2059 1)
(s2060 1)
(s2061 1)
(s2062 1)
(s2063 1)
(s2064 1)
(s2065 1)
(s2066 1)
(s2067 1)
(s2068 1)
(s2069 1)
(s2070 1)
(s2071 1)
(s2072 1)
(s2073 1)
(s2074 1)
(s2075 1)
(s2076 1)
(s2077 1)
(s2078 1)
(s2079 1)
(s2080 1)
(s2081 1)
(s2082 1)
(s2083 1)
(s2084 1)
(s2085 1)
(s2086 1)
(s2087 1)
(s2088 1)
(s2089 1)
(s2090 1)
(s2091 1)
(s2092 1)
(s2093 1)
(s2094 1)
(s2095 1)
(s2096 1)
(s2097 1)
(s2098 1)
(s2099 1)
(s2100 1)
(s2101 1)
(s2102 1)
(s2103 1)
(s2104 1)
(s2105 1)
(s2106 1)
(s2107 1)
(s2108 1)
(s2109 1)
(s2110 1)
(s2111 1)
(s2112 1)
(s2113 1)
(s2114 1)
(s2115 1)
(s2116 1)
(s2117 1)
(s2118 1)
(s2119 1)
(s2120 1)
(s2121 1)
(s2122 1)
(s2123 1)
(s2124 1)
(s2125 1)
(s2126 1)
(s2127 1)
(s2128 1)
(s2129 1)
(s2130 1)
(s2131 1)
(s2132 1)
(s2133 1)
(s2134 1)
(s2135 1)
(s2136 1)
(s2137 1)
(s2138 1)
(s2139 1)
(s2140 1)
(s2141 1)
(s2142 1)
(s2143 1)
(s2144 1)
(s2145 1)
(s2146 1)
(s2147 1)
(s2148 1)
(s2149 1)
(s2150 1)
(s2151 1)
(s2152 1)
(s2153 1)
(s2154 1)
(s2155 1)
(s2156 1)
(s2157 1)
(s2158 1)
(s2159 1)
(s2160 1)
(s2161 1)
(s2162 1)
(s2163 1)
(s2164 1)
(s2165 1)
(s2166 1)
(s2167 1)
(s2168 1)
(s2169 1)
(s2170 1)
(s2171 1)
(s2172 1)
(s2173 1)
(s2174 1)
(s2175 1)
(s2176 1)
(s2177 1)
(s2178 1)
(s2179 1)
(s2180 1)
(s2181 1)
(s2182 1)
(s2183 1)
(s2184 1)
(s2185 1)
(s2186 1)
(s2187 1)
(s2188 1)
(s2189 1)
(s2190 1)
(s2191 1)
(s2192 1)
(s2193 1)
(s2194 1)
(s2195 1)
(s2196 1)
(s2197 1)
(s2198 1)
(s2199 1)
(s2200 1)
(s2201 1)
(s2202 1)
(s2203 1)
(s2204 1)
(s2205 1)
(s2206 1)
(s2207 1)
(s2208 1)
(s2209 1)
(s2210 1)
(s2211 1)
(s2212 1)
(s2213 1)
(s2214 1)
(s2215 1)
(s2216 1)
(s2217 1)
(s2218 1)
(s2219 1)
(s2220 1)
(s2221 1)
(s2222 1)
(s2223 1)
(s2224 1)
(s2225 1)
(s2226 1)
(s2227 1)
(s2228 1)
(s2229 1)
(s2230 1)
(s2231 1)
(s2232 1)
(s2233 1)
(s2234 1)
(s2235 1)
(s2236 1)
(s2237 1)
(s2238 1)
(s2239 1)
(s2240 1)
(s2241 1)
(s2242 1)
(s2243 1)
(s2244 1)
(s2245 1)
(s2246 1)
(s2247 1)
(s2248 1)
(s2249 1)
(s2250 1)
(s2251 1)
(s2252 1)
(s2253 1)
(s2254 1)
(s2255 1)
(s2256 1)
(s2257 1)
(s2258 1)
(s2259 1)
(s2260 1)
(s2261 1)
(s2262 1)
(s2263 1)
(s2264 1)
(s2265 1)
(s2266 1)
(s2267 1)
(s2268 1)
(s2269 1)
(s2270 1)
(s2271 1)
(s2272 1)
(s2273 1)
(s2274 1)
(s2275 1)
(s2276 1)
(s2277 1)
(s2278 1)
(s2279 1)
(s2280 1)
(s2281 1)
(s2282 1)
(s2283 1)
(s2284 1)
(s2285 1)
(s2286 1)
(s2287 1)
(s2288 1)
(s2289 1)
(s2290 1)
(s2291 1)
(s2292 1)
(s2293 1)
(s2294 1)
(s2295 1)
(s2296 1)
(s2297 1)
(s2298 1)
(s2299 1)
(s2300 1)
(s2301 1)
(s2302 1)
(s2303 1)
(s2304 1)
(s2305 1)
(s2306 1)
(s2307 1)
(s2308 1)
(s2309 1)
(s2310 1)
(s2311 1)
(s2312 1)
(s2313 1)
(s2314 1)
(s2315 1)
(s2316 1)
(s2317 1)
(s2318 1)
(s2319 1)
(s2320 1)
(s2321 1)
(s2322 1)
(s2323 1)
(s2324 1)
(s2325 1)
(s2326 1)
(s2327 1)
(s2328 1)
(s2329 1)
(s2330 1)
(s2331 1)
(s2332 1)
(s2333 1)
(s2334 1)
(s2335 1)
(s2336 1)
(s2337 1)
(s2338 1)
(s2339 1)
(s2340 1)
(s2341 1)
(s2342 1)
(s2343 1)
(s2344 1)
(s2345 1)
(s2346 1)
(s2347 1)
(s2348 1)
(s2349 1)
(s2350 1)
(s2351 1)
(s2352 1)
(s2353 1)
(s2354 1)
(s2355 1)
(s2356 1)
(s2357 1)
(s2358 1)
(s2359 1)
(s2360 1)
(s2361 1)
(s2362 1)
(s2363 1)
(s2364 1)
(s2365 1)
(s2366 1)
(s2367 1)
(s2368 1)
(s2369 1)
(s2370 1)
(s2371 1)
(s2372 1)
(s2373 1)
(s2374 1)
(s2375 1)
(s2376 1)
(s2377 1)
(s2378 1)
(s2379 1)
(s2380 1)
(s2381 1)
(s2382 1)
(s2383 1)
(s2384 1)
(s2385 1)
(s2386 1)
(s2387 1)
(s2388 1)
(s2389 1)
(s2390 1)
(s2391 1)
(s2392 1)
(s2393 1)
(s2394 1)
(s2395 1)
(s2396 1)
(s2397 1)
(s2398 1)
(s2399 1)
(s2400 1)
(s2401 1)
(s2402 1)
(s2403 1)
(s2404 1)
(s2405 1)
(s2406 1)
(s2407 1)
(s2408 1)
(s2409 1)
(s2410 1)
(s2411 1)
(s2412 1)
(s2413 1)
(s2414 1)
(s2415 1)
(s2416 1)
(s2417 1)
(s2418 1)
(s2419 1)
(s2420 1)
(s2421 1)
(s2422 1)
(s2423 1)
(s2424 1)
(s2425 1)
(s2426 1)
(s2427 1)
(s2428 1)
(s2429 1)
(s2430 1)
(s2431 1)
(s2432 1)
(s2433 1)
(s2434 1)
(s2435 1)
(s2436 1)
(s2437 1)
(s2438 1)
(s2439 1)
(s2440 1)
(s2441 1)
(s2442 1)
(s2443 1)
(s2444 1)
(s2445 1)
(s2446 1)
(s2447 1)
(s2448 1)
(s2449 1)
(s2450 1)
(s2451 1)
(s2452 1)
(s2453 1)
(s2454 1)
(s2455 1)
(s2456 1)
(s2457 1)
(s2458 1)
(s2459 1)
(s2460 1)
(s2461 1)
(s2462 1)
(s2463 1)
(s2464 1)
(s2465 1)
(s2466 1)
(s2467 1)
(s2468 1)
(s2469 1)
(s2470 1)
(s2471 1)
(s2472 1)
(s2473 1)
(s2474 1)
(s2475 1)
(s2476 1)
(s2477 1)
(s2478 1)
(s2479 1)
(s2480 1)
(s2481 1)
(s2482 1)
(s2483 1)
(s2484 1)
(s2485 1)
(s2486 1)
(s2487 1)
(s2488 1)
(s2489 1)
(s2490 1)
(s2491 1)
(s2492 1)
(s2493 1)
(s2494 1)
(s2495 1)
(s2496 1)
(s2497 1)
(s2498 1)
(s2499 1)
(s2500 1)
(s2501 1)timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 2906/3353 variables, and 2464 constraints, problems are : Problem set: 0 solved, 416 unsolved in 30027 ms.
Refiners :[Generalized P Invariants (flows): 2464/2464 constraints, State Equation: 0/2907 constraints, PredecessorRefiner: 0/416 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 60358ms problems are : Problem set: 0 solved, 416 unsolved
Search for dead transitions found 0 dead transitions in 60371ms
Finished structural reductions in LTL mode , in 1 iterations and 88551 ms. Remains : 2907/2907 places, 446/446 transitions.
Stuttering acceptance computed with spot in 169 ms :[(NOT p0), (NOT p0), (AND (NOT p0) (NOT p1)), (NOT p0), (NOT p0)]
Running random walk in product with property : QuasiCertifProtocol-COL-28-LTLFireability-12
Stuttering criterion allowed to conclude after 31 steps with 0 reset in 0 ms.
FORMULA QuasiCertifProtocol-COL-28-LTLFireability-12 FALSE TECHNIQUES STUTTER_TEST
Treatment of property QuasiCertifProtocol-COL-28-LTLFireability-12 finished in 88736 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202505121319/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(X((p0&&G(p1))))'
Support contains 59 out of 2907 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 2907/2907 places, 446/446 transitions.
Applied a total of 0 rules in 112 ms. Remains 2907 /2907 variables (removed 0) and now considering 446/446 (removed 0) transitions.
[2025-06-05 14:58:32] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-05 14:58:36] [INFO ] Implicit Places using invariants in 4310 ms returned []
[2025-06-05 14:58:36] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-05 14:58:44] [INFO ] Implicit Places using invariants and state equation in 8540 ms returned []
Implicit Place search using SMT with State Equation took 12852 ms to find 0 implicit places.
Running 416 sub problems to find dead transitions.
[2025-06-05 14:58:45] [INFO ] Invariant cache hit.
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
At refinement iteration 0 (INCLUDED_ONLY) 0/2906 variables, 2464/2464 constraints. Problems are: Problem set: 0 solved, 416 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 2906/3353 variables, and 2464 constraints, problems are : Problem set: 0 solved, 416 unsolved in 30023 ms.
Refiners :[Generalized P Invariants (flows): 2464/2464 constraints, State Equation: 0/2907 constraints, PredecessorRefiner: 416/416 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 416 unsolved
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
At refinement iteration 0 (INCLUDED_ONLY) 0/2906 variables, 2464/2464 constraints. Problems are: Problem set: 0 solved, 416 unsolved
Error getting values : (error "ParserException while parsing response: ((s0 1)
(s1 1)
(s2 1)
(s3 1)
(s4 1)
(s5 1)
(s6 1)
(s7 1)
(s8 1)
(s9 1)
(s10 1)
(s11 1)
(s12 1)
(s13 1)
(s14 1)
(s15 1)
(s16 1)
(s17 1)
(s18 1)
(s19 1)
(s20 1)
(s21 1)
(s22 1)
(s23 1)
(s24 1)
(s25 1)
(s26 1)
(s27 1)
(s28 1)
(s29 1)
(s30 1)
(s31 1)
(s32 1)
(s33 1)
(s34 1)
(s35 1)
(s36 1)
(s37 1)
(s38 1)
(s39 1)
(s40 1)
(s41 1)
(s42 1)
(s43 1)
(s44 1)
(s45 1)
(s46 1)
(s47 1)
(s48 1)
(s49 1)
(s50 1)
(s51 1)
(s52 1)
(s53 1)
(s54 1)
(s55 1)
(s56 1)
(s57 1)
(s58 1)
(s59 1)
(s60 1)
(s61 1)
(s62 1)
(s63 1)
(s64 1)
(s65 1)
(s66 1)
(s67 1)
(s68 1)
(s69 1)
(s70 1)
(s71 1)
(s72 1)
(s73 1)
(s74 1)
(s75 1)
(s76 1)
(s77 1)
(s78 1)
(s79 1)
(s80 1)
(s81 1)
(s82 1)
(s83 1)
(s84 1)
(s85 1)
(s86 1)
(s87 1)
(s88 1)
(s89 1)
(s90 1)
(s91 1)
(s92 1)
(s93 1)
(s94 1)
(s95 1)
(s96 1)
(s97 1)
(s98 1)
(s99 1)
(s100 1)
(s101 1)
(s102 1)
(s103 1)
(s104 1)
(s105 1)
(s106 1)
(s107 1)
(s108 1)
(s109 1)
(s110 1)
(s111 1)
(s112 1)
(s113 1)
(s114 1)
(s115 1)
(s116 1)
(s117 1)
(s118 1)
(s119 1)
(s120 1)
(s121 1)
(s122 1)
(s123 1)
(s124 1)
(s125 1)
(s126 1)
(s127 1)
(s128 1)
(s129 1)
(s130 1)
(s131 1)
(s132 1)
(s133 1)
(s134 1)
(s135 1)
(s136 1)
(s137 1)
(s138 1)
(s139 1)
(s140 1)
(s141 1)
(s142 1)
(s143 1)
(s144 1)
(s145 1)
(s146 1)
(s147 1)
(s148 1)
(s149 1)
(s150 1)
(s151 1)
(s152 1)
(s153 1)
(s154 1)
(s155 1)
(s156 1)
(s157 1)
(s158 1)
(s159 1)
(s160 1)
(s161 1)
(s162 1)
(s163 1)
(s164 1)
(s165 1)
(s166 1)
(s167 1)
(s168 1)
(s169 1)
(s170 1)
(s171 1)
(s172 1)
(s173 1)
(s174 1)
(s175 1)
(s176 1)
(s177 1)
(s178 1)
(s179 1)
(s180 1)
(s181 1)
(s182 1)
(s183 1)
(s184 1)
(s185 1)
(s186 1)
(s187 1)
(s188 1)
(s189 1)
(s190 1)
(s191 1)
(s192 1)
(s193 1)
(s194 1)
(s195 1)
(s196 1)
(s197 1)
(s198 1)
(s199 1)
(s200 1)
(s201 1)
(s202 1)
(s203 1)
(s204 1)
(s205 1)
(s206 1)
(s207 1)
(s208 1)
(s209 1)
(s210 1)
(s211 1)
(s212 1)
(s213 1)
(s214 1)
(s215 1)
(s216 1)
(s217 1)
(s218 1)
(s219 1)
(s220 1)
(s221 1)
(s222 1)
(s223 1)
(s224 1)
(s225 1)
(s226 1)
(s227 1)
(s228 1)
(s229 1)
(s230 1)
(s231 1)
(s232 1)
(s233 1)
(s234 1)
(s235 1)
(s236 1)
(s237 1)
(s238 1)
(s239 1)
(s240 1)
(s241 1)
(s242 1)
(s243 1)
(s244 1)
(s245 1)
(s246 1)
(s247 1)
(s248 1)
(s249 1)
(s250 1)
(s251 1)
(s252 1)
(s253 1)
(s254 1)
(s255 1)
(s256 1)
(s257 1)
(s258 1)
(s259 1)
(s260 1)
(s261 1)
(s262 1)
(s263 1)
(s264 1)
(s265 1)
(s266 1)
(s267 1)
(s268 1)
(s269 1)
(s270 1)
(s271 1)
(s272 1)
(s273 1)
(s274 1)
(s275 1)
(s276 1)
(s277 1)
(s278 1)
(s279 1)
(s280 1)
(s281 1)
(s282 1)
(s283 1)
(s284 1)
(s285 1)
(s286 1)
(s287 1)
(s288 1)
(s289 1)
(s290 1)
(s291 1)
(s292 1)
(s293 1)
(s294 1)
(s295 1)
(s296 1)
(s297 1)
(s298 1)
(s299 1)
(s300 1)
(s301 1)
(s302 1)
(s303 1)
(s304 1)
(s305 1)
(s306 1)
(s307 1)
(s308 1)
(s309 1)
(s310 1)
(s311 1)
(s312 1)
(s313 1)
(s314 1)
(s315 1)
(s316 1)
(s317 1)
(s318 1)
(s319 1)
(s320 1)
(s321 1)
(s322 1)
(s323 1)
(s324 1)
(s325 1)
(s326 1)
(s327 1)
(s328 1)
(s329 1)
(s330 1)
(s331 1)
(s332 1)
(s333 1)
(s334 1)
(s335 1)
(s336 1)
(s337 1)
(s338 1)
(s339 1)
(s340 1)
(s341 1)
(s342 1)
(s343 1)
(s344 1)
(s345 1)
(s346 1)
(s347 1)
(s348 1)
(s349 1)
(s350 1)
(s351 1)
(s352 1)
(s353 1)
(s354 1)
(s355 1)
(s356 1)
(s357 1)
(s358 1)
(s359 1)
(s360 1)
(s361 1)
(s362 1)
(s363 1)
(s364 1)
(s365 1)
(s366 1)
(s367 1)
(s368 1)
(s369 1)
(s370 1)
(s371 1)
(s372 1)
(s373 1)
(s374 1)
(s375 1)
(s376 1)
(s377 1)
(s378 1)
(s379 1)
(s380 1)
(s381 1)
(s382 1)
(s383 1)
(s384 1)
(s385 1)
(s386 1)
(s387 1)
(s388 1)
(s389 1)
(s390 1)
(s391 1)
(s392 1)
(s393 1)
(s394 1)
(s395 1)
(s396 1)
(s397 1)
(s398 1)
(s399 1)
(s400 1)
(s401 1)
(s402 1)
(s403 1)
(s404 1)
(s405 1)
(s406 1)
(s407 1)
(s408 1)
(s409 1)
(s410 1)
(s411 1)
(s412 1)
(s413 1)
(s414 1)
(s415 1)
(s416 1)
(s417 1)
(s418 1)
(s419 1)
(s420 1)
(s421 1)
(s422 1)
(s423 1)
(s424 1)
(s425 1)
(s426 1)
(s427 1)
(s428 1)
(s429 1)
(s430 1)
(s431 1)
(s432 1)
(s433 1)
(s434 1)
(s435 1)
(s436 1)
(s437 1)
(s438 1)
(s439 1)
(s440 1)
(s441 1)
(s442 1)
(s443 1)
(s444 1)
(s445 1)
(s446 1)
(s447 1)
(s448 1)
(s449 1)
(s450 1)
(s451 1)
(s452 1)
(s453 1)
(s454 1)
(s455 1)
(s456 1)
(s457 1)
(s458 1)
(s459 1)
(s460 1)
(s461 1)
(s462 1)
(s463 1)
(s464 1)
(s465 1)
(s466 1)
(s467 1)
(s468 1)
(s469 1)
(s470 1)
(s471 1)
(s472 1)
(s473 1)
(s474 1)
(s475 1)
(s476 1)
(s477 1)
(s478 1)
(s479 1)
(s480 1)
(s481 1)
(s482 1)
(s483 1)
(s484 1)
(s485 1)
(s486 1)
(s487 1)
(s488 1)
(s489 1)
(s490 1)
(s491 1)
(s492 1)
(s493 1)
(s494 1)
(s495 1)
(s496 1)
(s497 1)
(s498 1)
(s499 1)
(s500 1)
(s501 1)
(s502 1)
(s503 1)
(s504 1)
(s505 1)
(s506 1)
(s507 1)
(s508 1)
(s509 1)
(s510 1)
(s511 1)
(s512 1)
(s513 1)
(s514 1)
(s515 1)
(s516 1)
(s517 1)
(s518 1)
(s519 1)
(s520 1)
(s521 1)
(s522 1)
(s523 1)
(s524 1)
(s525 1)
(s526 1)
(s527 1)
(s528 1)
(s529 1)
(s530 1)
(s531 1)
(s532 1)
(s533 1)
(s534 1)
(s535 1)
(s536 1)
(s537 1)
(s538 1)
(s539 1)
(s540 1)
(s541 1)
(s542 1)
(s543 1)
(s544 1)
(s545 1)
(s546 1)
(s547 1)
(s548 1)
(s549 1)
(s550 1)
(s551 1)
(s552 1)
(s553 1)
(s554 1)
(s555 1)
(s556 1)
(s557 1)
(s558 1)
(s559 1)
(s560 1)
(s561 1)
(s562 1)
(s563 1)
(s564 1)
(s565 1)
(s566 1)
(s567 1)
(s568 1)
(s569 1)
(s570 1)
(s571 1)
(s572 1)
(s573 1)
(s574 1)
(s575 1)
(s576 1)
(s577 1)
(s578 1)
(s579 1)
(s580 1)
(s581 1)
(s582 1)
(s583 1)
(s584 1)
(s585 1)
(s586 1)
(s587 1)
(s588 1)
(s589 1)
(s590 1)
(s591 1)
(s592 1)
(s593 1)
(s594 1)
(s595 1)
(s596 1)
(s597 1)
(s598 1)
(s599 1)
(s600 1)
(s601 1)
(s602 1)
(s603 1)
(s604 1)
(s605 1)
(s606 1)
(s607 1)
(s608 1)
(s609 1)
(s610 1)
(s611 1)
(s612 1)
(s613 1)
(s614 1)
(s615 1)
(s616 1)
(s617 1)
(s618 1)
(s619 1)
(s620 1)
(s621 1)
(s622 1)
(s623 1)
(s624 1)
(s625 1)
(s626 1)
(s627 1)
(s628 1)
(s629 1)
(s630 1)
(s631 1)
(s632 1)
(s633 1)
(s634 1)
(s635 1)
(s636 1)
(s637 1)
(s638 1)
(s639 1)
(s640 1)
(s641 1)
(s642 1)
(s643 1)
(s644 1)
(s645 1)
(s646 1)
(s647 1)
(s648 1)
(s649 1)
(s650 1)
(s651 1)
(s652 1)
(s653 1)
(s654 1)
(s655 1)
(s656 1)
(s657 1)
(s658 1)
(s659 1)
(s660 1)
(s661 1)
(s662 1)
(s663 1)
(s664 1)
(s665 1)
(s666 1)
(s667 1)
(s668 1)
(s669 1)
(s670 1)
(s671 1)
(s672 1)
(s673 1)
(s674 1)
(s675 1)
(s676 1)
(s677 1)
(s678 1)
(s679 1)
(s680 1)
(s681 1)
(s682 1)
(s683 1)
(s684 1)
(s685 1)
(s686 1)
(s687 1)
(s688 1)
(s689 1)
(s690 1)
(s691 1)
(s692 1)
(s693 1)
(s694 1)
(s695 1)
(s696 1)
(s697 1)
(s698 1)
(s699 1)
(s700 1)
(s701 1)
(s702 1)
(s703 1)
(s704 1)
(s705 1)
(s706 1)
(s707 1)
(s708 1)
(s709 1)
(s710 1)
(s711 1)
(s712 1)
(s713 1)
(s714 1)
(s715 1)
(s716 1)
(s717 1)
(s718 1)
(s719 1)
(s720 1)
(s721 1)
(s722 1)
(s723 1)
(s724 1)
(s725 1)
(s726 1)
(s727 1)
(s728 1)
(s729 1)
(s730 1)
(s731 1)
(s732 1)
(s733 1)
(s734 1)
(s735 1)
(s736 1)
(s737 1)
(s738 1)
(s739 1)
(s740 1)
(s741 1)
(s742 1)
(s743 1)
(s744 1)
(s745 1)
(s746 1)
(s747 1)
(s748 1)
(s749 1)
(s750 1)
(s751 1)
(s752 1)
(s753 1)
(s754 1)
(s755 1)
(s756 1)
(s757 1)
(s758 1)
(s759 1)
(s760 1)
(s761 1)
(s762 1)
(s763 1)
(s764 1)
(s765 1)
(s766 1)
(s767 1)
(s768 1)
(s769 1)
(s770 1)
(s771 1)
(s772 1)
(s773 1)
(s774 1)
(s775 1)
(s776 1)
(s777 1)
(s778 1)
(s779 1)
(s780 1)
(s781 1)
(s782 1)
(s783 1)
(s784 1)
(s785 1)
(s786 1)
(s787 1)
(s788 1)
(s789 1)
(s790 1)
(s791 1)
(s792 1)
(s793 1)
(s794 1)
(s795 1)
(s796 1)
(s797 1)
(s798 1)
(s799 1)
(s800 1)
(s801 1)
(s802 1)
(s803 1)
(s804 1)
(s805 1)
(s806 1)
(s807 1)
(s808 1)
(s809 1)
(s810 1)
(s811 1)
(s812 1)
(s813 1)
(s814 1)
(s815 1)
(s816 1)
(s817 1)
(s818 1)
(s819 1)
(s820 1)
(s821 1)
(s822 1)
(s823 1)
(s824 1)
(s825 1)
(s826 1)
(s827 1)
(s828 1)
(s829 1)
(s830 1)
(s831 1)
(s832 1)
(s833 1)
(s834 1)
(s835 1)
(s836 1)
(s837 1)
(s838 1)
(s839 1)
(s840 1)
(s841 1)
(s842 1)
(s843 1)
(s844 1)
(s845 1)
(s846 1)
(s847 1)
(s848 1)
(s849 1)
(s850 1)
(s851 1)
(s852 1)
(s853 1)
(s854 1)
(s855 1)
(s856 1)
(s857 1)
(s858 1)
(s859 1)
(s860 1)
(s861 1)
(s862 1)
(s863 1)
(s864 1)
(s865 1)
(s866 1)
(s867 1)
(s868 1)
(s869 1)
(s870 1)
(s871 1)
(s872 1)
(s873 1)
(s874 1)
(s875 1)
(s876 1)
(s877 1)
(s878 1)
(s879 1)
(s880 1)
(s881 1)
(s882 1)
(s883 1)
(s884 1)
(s885 1)
(s886 1)
(s887 1)
(s888 1)
(s889 1)
(s890 1)
(s891 1)
(s892 1)
(s893 1)
(s894 1)
(s895 1)
(s896 1)
(s897 1)
(s898 1)
(s899 1)
(s900 1)
(s901 1)
(s902 1)
(s903 1)
(s904 1)
(s905 1)
(s906 1)
(s907 1)
(s908 1)
(s909 1)
(s910 1)
(s911 1)
(s912 1)
(s913 1)
(s914 1)
(s915 1)
(s916 1)
(s917 1)
(s918 1)
(s919 1)
(s920 1)
(s921 1)
(s922 1)
(s923 1)
(s924 1)
(s925 1)
(s926 1)
(s927 1)
(s928 1)
(s929 1)
(s930 1)
(s931 1)
(s932 1)
(s933 1)
(s934 1)
(s935 1)
(s936 1)
(s937 1)
(s938 1)
(s939 1)
(s940 1)
(s941 1)
(s942 1)
(s943 1)
(s944 1)
(s945 1)
(s946 1)
(s947 1)
(s948 1)
(s949 1)
(s950 1)
(s951 1)
(s952 1)
(s953 1)
(s954 1)
(s955 1)
(s956 1)
(s957 1)
(s958 1)
(s959 1)
(s960 1)
(s961 1)
(s962 1)
(s963 1)
(s964 1)
(s965 1)
(s966 1)
(s967 1)
(s968 1)
(s969 1)
(s970 1)
(s971 1)
(s972 1)
(s973 1)
(s974 1)
(s975 1)
(s976 1)
(s977 1)
(s978 1)
(s979 1)
(s980 1)
(s981 1)
(s982 1)
(s983 1)
(s984 1)
(s985 1)
(s986 1)
(s987 1)
(s988 1)
(s989 1)
(s990 1)
(s991 1)
(s992 1)
(s993 1)
(s994 1)
(s995 1)
(s996 1)
(s997 1)
(s998 1)
(s999 1)
(s1000 1)
(s1001 1)
(s1002 1)
(s1003 1)
(s1004 1)
(s1005 1)
(s1006 1)
(s1007 1)
(s1008 1)
(s1009 1)
(s1010 1)
(s1011 1)
(s1012 1)
(s1013 1)
(s1014 1)
(s1015 1)
(s1016 1)
(s1017 1)
(s1018 1)
(s1019 1)
(s1020 1)
(s1021 1)
(s1022 1)
(s1023 1)
(s1024 1)
(s1025 1)
(s1026 1)
(s1027 1)
(s1028 1)
(s1029 1)
(s1030 1)
(s1031 1)
(s1032 1)
(s1033 1)
(s1034 1)
(s1035 1)
(s1036 1)
(s1037 1)
(s1038 1)
(s1039 1)
(s1040 1)
(s1041 1)
(s1042 1)
(s1043 1)
(s1044 1)
(s1045 1)
(s1046 1)
(s1047 1)
(s1048 1)
(s1049 1)
(s1050 1)
(s1051 1)
(s1052 1)
(s1053 1)
(s1054 1)
(s1055 1)
(s1056 1)
(s1057 1)
(s1058 1)
(s1059 1)
(s1060 1)
(s1061 1)
(s1062 1)
(s1063 1)
(s1064 1)
(s1065 1)
(s1066 1)
(s1067 1)
(s1068 1)
(s1069 1)
(s1070 1)
(s1071 1)
(s1072 1)
(s1073 1)
(s1074 1)
(s1075 1)
(s1076 1)
(s1077 1)
(s1078 1)
(s1079 1)
(s1080 1)
(s1081 1)
(s1082 1)
(s1083 1)
(s1084 1)
(s1085 1)
(s1086 1)
(s1087 1)
(s1088 1)
(s1089 1)
(s1090 1)
(s1091 1)
(s1092 1)
(s1093 1)
(s1094 1)
(s1095 1)
(s1096 1)
(s1097 1)
(s1098 1)
(s1099 1)
(s1100 1)
(s1101 1)
(s1102 1)
(s1103 1)
(s1104 1)
(s1105 1)
(s1106 1)
(s1107 1)
(s1108 1)
(s1109 1)
(s1110 1)
(s1111 1)
(s1112 1)
(s1113 1)
(s1114 1)
(s1115 1)
(s1116 1)
(s1117 1)
(s1118 1)
(s1119 1)
(s1120 1)
(s1121 1)
(s1122 1)
(s1123 1)
(s1124 1)
(s1125 1)
(s1126 1)
(s1127 1)
(s1128 1)
(s1129 1)
(s1130 1)
(s1131 1)
(s1132 1)
(s1133 1)
(s1134 1)
(s1135 1)
(s1136 1)
(s1137 1)
(s1138 1)
(s1139 1)
(s1140 1)
(s1141 1)
(s1142 1)
(s1143 1)
(s1144 1)
(s1145 1)
(s1146 1)
(s1147 1)
(s1148 1)
(s1149 1)
(s1150 1)
(s1151 1)
(s1152 1)
(s1153 1)
(s1154 1)
(s1155 1)
(s1156 1)
(s1157 1)
(s1158 1)
(s1159 1)
(s1160 1)
(s1161 1)
(s1162 1)
(s1163 1)
(s1164 1)
(s1165 1)
(s1166 1)
(s1167 1)
(s1168 1)
(s1169 1)
(s1170 1)
(s1171 1)
(s1172 1)
(s1173 1)
(s1174 1)
(s1175 1)
(s1176 1)
(s1177 1)
(s1178 1)
(s1179 1)
(s1180 1)
(s1181 1)
(s1182 1)
(s1183 1)
(s1184 1)
(s1185 1)
(s1186 1)
(s1187 1)
(s1188 1)
(s1189 1)
(s1190 1)
(s1191 1)
(s1192 1)
(s1193 1)
(s1194 1)
(s1195 1)
(s1196 1)
(s1197 1)
(s1198 1)
(s1199 1)
(s1200 1)
(s1201 1)
(s1202 1)
(s1203 1)
(s1204 1)
(s1205 1)
(s1206 1)
(s1207 1)
(s1208 1)
(s1209 1)
(s1210 1)
(s1211 1)
(s1212 1)
(s1213 1)
(s1214 1)
(s1215 1)
(s1216 1)
(s1217 1)
(s1218 1)
(s1219 1)
(s1220 1)
(s1221 1)
(s1222 1)
(s1223 1)
(s1224 1)
(s1225 1)
(s1226 1)
(s1227 1)
(s1228 1)
(s1229 1)
(s1230 1)
(s1231 1)
(s1232 1)
(s1233 1)
(s1234 1)
(s1235 1)
(s1236 1)
(s1237 1)
(s1238 1)
(s1239 1)
(s1240 1)
(s1241 1)
(s1242 1)
(s1243 1)
(s1244 1)
(s1245 1)
(s1246 1)
(s1247 1)
(s1248 1)
(s1249 1)
(s1250 1)
(s1251 1)
(s1252 1)
(s1253 1)
(s1254 1)
(s1255 1)
(s1256 1)
(s1257 1)
(s1258 1)
(s1259 1)
(s1260 1)
(s1261 1)
(s1262 1)
(s1263 1)
(s1264 1)
(s1265 1)
(s1266 1)
(s1267 1)
(s1268 1)
(s1269 1)
(s1270 1)
(s1271 1)
(s1272 1)
(s1273 1)
(s1274 1)
(s1275 1)
(s1276 1)
(s1277 1)
(s1278 1)
(s1279 1)
(s1280 1)
(s1281 1)
(s1282 1)
(s1283 1)
(s1284 1)
(s1285 1)
(s1286 1)
(s1287 1)
(s1288 1)
(s1289 1)
(s1290 1)
(s1291 1)
(s1292 1)
(s1293 1)
(s1294 1)
(s1295 1)
(s1296 1)
(s1297 1)
(s1298 1)
(s1299 1)
(s1300 1)
(s1301 1)
(s1302 1)
(s1303 1)
(s1304 1)
(s1305 1)
(s1306 1)
(s1307 1)
(s1308 1)
(s1309 1)
(s1310 1)
(s1311 1)
(s1312 1)
(s1313 1)
(s1314 1)
(s1315 1)
(s1316 1)
(s1317 1)
(s1318 1)
(s1319 1)
(s1320 1)
(s1321 1)
(s1322 1)
(s1323 1)
(s1324 1)
(s1325 1)
(s1326 1)
(s1327 1)
(s1328 1)
(s1329 1)
(s1330 1)
(s1331 1)
(s1332 1)
(s1333 1)
(s1334 1)
(s1335 1)
(s1336 1)
(s1337 1)
(s1338 1)
(s1339 1)
(s1340 1)
(s1341 1)
(s1342 1)
(s1343 1)
(s1344 1)
(s1345 1)
(s1346 1)
(s1347 1)
(s1348 1)
(s1349 1)
(s1350 1)
(s1351 1)
(s1352 1)
(s1353 1)
(s1354 1)
(s1355 1)
(s1356 1)
(s1357 1)
(s1358 1)
(s1359 1)
(s1360 1)
(s1361 1)
(s1362 1)
(s1363 1)
(s1364 1)
(s1365 1)
(s1366 1)
(s1367 1)
(s1368 1)
(s1369 1)
(s1370 1)
(s1371 1)
(s1372 1)
(s1373 1)
(s1374 1)
(s1375 1)
(s1376 1)
(s1377 1)
(s1378 1)
(s1379 1)
(s1380 1)
(s1381 1)
(s1382 1)
(s1383 1)
(s1384 1)
(s1385 1)
(s1386 1)
(s1387 1)
(s1388 1)
(s1389 1)
(s1390 1)
(s1391 1)
(s1392 1)
(s1393 1)
(s1394 1)
(s1395 1)
(s1396 1)
(s1397 1)
(s1398 1)
(s1399 1)
(s1400 1)
(s1401 1)
(s1402 1)
(s1403 1)
(s1404 1)
(s1405 1)
(s1406 1)
(s1407 1)
(s1408 1)
(s1409 1)
(s1410 1)
(s1411 1)
(s1412 1)
(s1413 1)
(s1414 1)
(s1415 1)
(s1416 1)
(s1417 1)
(s1418 1)
(s1419 1)
(s1420 1)
(s1421 1)
(s1422 1)
(s1423 1)
(s1424 1)
(s1425 1)
(s1426 1)
(s1427 1)
(s1428 1)
(s1429 1)
(s1430 1)
(s1431 1)
(s1432 1)
(s1433 1)
(s1434 1)
(s1435 1)
(s1436 1)
(s1437 1)
(s1438 1)
(s1439 1)
(s1440 1)
(s1441 1)
(s1442 1)
(s1443 1)
(s1444 1)
(s1445 1)
(s1446 1)
(s1447 1)
(s1448 1)
(s1449 1)
(s1450 1)
(s1451 1)
(s1452 1)
(s1453 1)
(s1454 1)
(s1455 1)
(s1456 1)
(s1457 1)
(s1458 1)
(s1459 1)
(s1460 1)
(s1461 1)
(s1462 1)
(s1463 1)
(s1464 1)
(s1465 1)
(s1466 1)
(s1467 1)
(s1468 1)
(s1469 1)
(s1470 1)
(s1471 1)
(s1472 1)
(s1473 1)
(s1474 1)
(s1475 1)
(s1476 1)
(s1477 1)
(s1478 1)
(s1479 1)
(s1480 1)
(s1481 1)
(s1482 1)
(s1483 1)
(s1484 1)
(s1485 1)
(s1486 1)
(s1487 1)
(s1488 1)
(s1489 1)
(s1490 1)
(s1491 1)
(s1492 1)
(s1493 1)
(s1494 1)
(s1495 1)
(s1496 1)
(s1497 1)
(s1498 1)
(s1499 1)
(s1500 1)
(s1501 1)
(s1502 1)
(s1503 1)
(s1504 1)
(s1505 1)
(s1506 1)
(s1507 1)
(s1508 1)
(s1509 1)
(s1510 1)
(s1511 1)
(s1512 1)
(s1513 1)
(s1514 1)
(s1515 1)
(s1516 1)
(s1517 1)
(s1518 1)
(s1519 1)
(s1520 1)
(s1521 1)
(s1522 1)
(s1523 1)
(s1524 1)
(s1525 1)
(s1526 1)
(s1527 1)
(s1528 1)
(s1529 1)
(s1530 1)
(s1531 1)
(s1532 1)
(s1533 1)
(s1534 1)
(s1535 1)
(s1536 1)
(s1537 1)
(s1538 1)
(s1539 1)
(s1540 1)
(s1541 1)
(s1542 1)
(s1543 1)
(s1544 1)
(s1545 1)
(s1546 1)
(s1547 1)
(s1548 1)
(s1549 1)
(s1550 1)
(s1551 1)
(s1552 1)
(s1553 1)
(s1554 1)
(s1555 1)
(s1556 1)
(s1557 1)
(s1558 1)
(s1559 1)
(s1560 1)
(s1561 1)
(s1562 1)
(s1563 1)
(s1564 1)
(s1565 1)
(s1566 1)
(s1567 1)
(s1568 1)
(s1569 1)
(s1570 1)
(s1571 1)
(s1572 1)
(s1573 1)
(s1574 1)
(s1575 1)
(s1576 1)
(s1577 1)
(s1578 1)
(s1579 1)
(s1580 1)
(s1581 1)
(s1582 1)
(s1583 1)
(s1584 1)
(s1585 1)
(s1586 1)
(s1587 1)
(s1588 1)
(s1589 1)
(s1590 1)
(s1591 1)
(s1592 1)
(s1593 1)
(s1594 1)
(s1595 1)
(s1596 1)
(s1597 1)
(s1598 1)
(s1599 1)
(s1600 1)
(s1601 1)
(s1602 1)
(s1603 1)
(s1604 1)
(s1605 1)
(s1606 1)
(s1607 1)
(s1608 1)
(s1609 1)
(s1610 1)
(s1611 1)
(s1612 1)
(s1613 1)
(s1614 1)
(s1615 1)
(s1616 1)
(s1617 1)
(s1618 1)
(s1619 1)
(s1620 1)
(s1621 1)
(s1622 1)
(s1623 1)
(s1624 1)
(s1625 1)
(s1626 1)
(s1627 1)
(s1628 1)
(s1629 1)
(s1630 1)
(s1631 1)
(s1632 1)
(s1633 1)
(s1634 1)
(s1635 1)
(s1636 1)
(s1637 1)
(s1638 1)
(s1639 1)
(s1640 1)
(s1641 1)
(s1642 1)
(s1643 1)
(s1644 1)
(s1645 1)
(s1646 1)
(s1647 1)
(s1648 1)
(s1649 1)
(s1650 1)
(s1651 1)
(s1652 1)
(s1653 1)
(s1654 1)
(s1655 1)
(s1656 1)
(s1657 1)
(s1658 1)
(s1659 1)
(s1660 1)
(s1661 1)
(s1662 1)
(s1663 1)
(s1664 1)
(s1665 1)
(s1666 1)
(s1667 1)
(s1668 1)
(s1669 1)
(s1670 1)
(s1671 1)
(s1672 1)
(s1673 1)
(s1674 1)
(s1675 1)
(s1676 1)
(s1677 1)
(s1678 1)
(s1679 1)
(s1680 1)
(s1681 1)
(s1682 1)
(s1683 1)
(s1684 1)
(s1685 1)
(s1686 1)
(s1687 1)
(s1688 1)
(s1689 1)
(s1690 1)
(s1691 1)
(s1692 1)
(s1693 1)
(s1694 1)
(s1695 1)
(s1696 1)
(s1697 1)
(s1698 1)
(s1699 1)
(s1700 1)
(s1701 1)
(s1702 1)
(s1703 1)
(s1704 1)
(s1705 1)
(s1706 1)
(s1707 1)
(s1708 1)
(s1709 1)
(s1710 1)
(s1711 1)
(s1712 1)
(s1713 1)
(s1714 1)
(s1715 1)
(s1716 1)
(s1717 1)
(s1718 1)
(s1719 1)
(s1720 1)
(s1721 1)
(s1722 1)
(s1723 1)
(s1724 1)
(s1725 1)
(s1726 1)
(s1727 1)
(s1728 1)
(s1729 1)
(s1730 1)
(s1731 1)
(s1732 1)
(s1733 1)
(s1734 1)
(s1735 1)
(s1736 1)
(s1737 1)
(s1738 1)
(s1739 1)
(s1740 1)
(s1741 1)
(s1742 1)
(s1743 1)
(s1744 1)
(s1745 1)
(s1746 1)
(s1747 1)
(s1748 1)
(s1749 1)
(s1750 1)
(s1751 1)
(s1752 1)
(s1753 1)
(s1754 1)
(s1755 1)
(s1756 1)
(s1757 1)
(s1758 1)
(s1759 1)
(s1760 1)
(s1761 1)
(s1762 1)
(s1763 1)
(s1764 1)
(s1765 1)
(s1766 1)
(s1767 1)
(s1768 1)
(s1769 1)
(s1770 1)
(s1771 1)
(s1772 1)
(s1773 1)
(s1774 1)
(s1775 1)
(s1776 1)
(s1777 1)
(s1778 1)
(s1779 1)
(s1780 1)
(s1781 1)
(s1782 1)
(s1783 1)
(s1784 1)
(s1785 1)
(s1786 1)
(s1787 1)
(s1788 1)
(s1789 1)
(s1790 1)
(s1791 1)
(s1792 1)
(s1793 1)
(s1794 1)
(s1795 1)
(s1796 1)
(s1797 1)
(s1798 1)
(s1799 1)
(s1800 1)
(s1801 1)
(s1802 1)
(s1803 1)
(s1804 1)
(s1805 1)
(s1806 1)
(s1807 1)
(s1808 1)
(s1809 1)
(s1810 1)
(s1811 1)
(s1812 1)
(s1813 1)
(s1814 1)
(s1815 1)
(s1816 1)
(s1817 1)
(s1818 1)
(s1819 1)
(s1820 1)
(s1821 1)
(s1822 1)
(s1823 1)
(s1824 1)
(s1825 1)
(s1826 1)
(s1827 1)
(s1828 1)
(s1829 1)
(s1830 1)
(s1831 1)
(s1832 1)
(s1833 1)
(s1834 1)
(s1835 1)
(s1836 1)
(s1837 1)
(s1838 1)
(s1839 1)
(s1840 1)
(s1841 1)
(s1842 1)
(s1843 1)
(s1844 1)
(s1845 1)
(s1846 1)
(s1847 1)
(s1848 1)
(s1849 1)
(s1850 1)
(s1851 1)
(s1852 1)
(s1853 1)
(s1854 1)
(s1855 1)
(s1856 1)
(s1857 1)
(s1858 1)
(s1859 1)
(s1860 1)
(s1861 1)
(s1862 1)
(s1863 1)
(s1864 1)
(s1865 1)
(s1866 1)
(s1867 1)
(s1868 1)
(s1869 1)
(s1870 1)
(s1871 1)
(s1872 1)
(s1873 1)
(s1874 1)
(s1875 1)
(s1876 1)
(s1877 1)
(s1878 1)
(s1879 1)
(s1880 1)
(s1881 1)
(s1882 1)
(s1883 1)
(s1884 1)
(s1885 1)
(s1886 1)
(s1887 1)
(s1888 1)
(s1889 1)
(s1890 1)
(s1891 1)
(s1892 1)
(s1893 1)
(s1894 1)
(s1895 1)
(s1896 1)
(s1897 1)
(s1898 1)
(s1899 1)
(s1900 1)
(s1901 1)
(s1902 1)
(s1903 1)
(s1904 1)
(s1905 1)
(s1906 1)
(s1907 1)
(s1908 1)
(s1909 1)
(s1910 1)
(s1911 1)
(s1912 1)
(s1913 1)
(s1914 1)
(s1915 1)
(s1916 1)
(s1917 1)
(s1918 1)
(s1919 1)
(s1920 1)
(s1921 1)
(s1922 1)
(s1923 1)
(s1924 1)
(s1925 1)
(s1926 1)
(s1927 1)
(s1928 1)
(s1929 1)
(s1930 1)
(s1931 1)
(s1932 1)
(s1933 1)
(s1934 1)
(s1935 1)
(s1936 1)
(s1937 1)
(s1938 1)
(s1939 1)
(s1940 1)
(s1941 1)
(s1942 1)
(s1943 1)
(s1944 1)
(s1945 1)
(s1946 1)
(s1947 1)
(s1948 1)
(s1949 1)
(s1950 1)
(s1951 1)
(s1952 1)
(s1953 1)
(s1954 1)
(s1955 1)
(s1956 1)
(s1957 1)
(s1958 1)
(s1959 1)
(s1960 1)
(s1961 1)
(s1962 1)
(s1963 1)
(s1964 1)
(s1965 1)
(s1966 1)
(s1967 1)
(s1968 1)
(s1969 1)
(s1970 1)
(s1971 1)
(s1972 1)
(s1973 1)
(s1974 1)
(s1975 1)
(s1976 1)
(s1977 1)
(s1978 1)
(s1979 1)
(s1980 1)
(s1981 1)
(s1982 1)
(s1983 1)
(s1984 1)
(s1985 1)
(s1986 1)
(s1987 1)
(s1988 1)
(s1989 1)
(s1990 1)
(s1991 1)
(s1992 1)
(s1993 1)
(s1994 1)
(s1995 1)
(s1996 1)
(s1997 1)
(s1998 1)
(s1999 1)
(s2000 1)
(s2001 1)
(s2002 1)
(s2003 1)
(s2004 1)
(s2005 1)
(s2006 1)
(s2007 1)
(s2008 1)
(s2009 1)
(s2010 1)
(s2011 1)
(s2012 1)
(s2013 1)
(s2014 1)
(s2015 1)
(s2016 1)
(s2017 1)
(s2018 1)
(s2019 1)
(s2020 1)
(s2021 1)
(s2022 1)
(s2023 1)
(s2024 1)
(s2025 1)
(s2026 1)
(s2027 1)
(s2028 1)
(s2029 1)
(s2030 1)
(s2031 1)
(s2032 1)
(s2033 1)
(s2034 1)
(s2035 1)
(s2036 1)
(s2037 1)
(s2038 1)
(s2039 1)
(s2040 1)
(s2041 1)
(s2042 1)
(s2043 1)
(s2044 1)
(s2045 1)
(s2046 1)
(s2047 1)
(s2048 1)
(s2049 1)
(s2050 1)
(s2051 1)
(s2052 1)
(s2053 1)
(s2054 1)
(s2055 1)
(s2056 1)
(s2057 1)
(s2058 1)
(s2059 1)
(s2060 1)
(s2061 1)
(s2062 1)
(s2063 1)
(s2064 1)
(s2065 1)
(s2066 1)
(s2067 1)
(s2068 1)
(s2069 1)
(s2070 1)
(s2071 1)
(s2072 1)
(s2073 1)
(s2074 1)
(s2075 1)
(s2076 1)
(s2077 1)
(s2078 1)
(s2079 1)
(s2080 1)
(s2081 1)
(s2082 1)
(s2083 1)
(s2084 1)
(s2085 1)
(s2086 1)
(s2087 1)
(s2088 1)
(s2089 1)
(s2090 1)
(s2091 1)
(s2092 1)
(s2093 1)
(s2094 1)
(s2095 1)
(s2096 1)
(s2097 1)
(s2098 1)
(s2099 1)
(s2100 1)
(s2101 1)
(s2102 1)
(s2103 1)
(s2104 1)
(s2105 1)
(s2106 1)
(s2107 1)
(s2108 1)
(s2109 1)
(s2110 1)
(s2111 1)
(s2112 1)
(s2113 1)
(s2114 1)
(s2115 1)
(s2116 1)
(s2117 1)
(s2118 1)
(s2119 1)
(s2120 1)
(s2121 1)
(s2122 1)
(s2123 1)
(s2124 1)
(s2125 1)
(s2126 1)
(s2127 1)
(s2128 1)
(s2129 1)
(s2130 1)
(s2131 1)
(s2132 1)
(s2133 1)
(s2134 1)
(s2135 1)
(s2136 1)
(s2137 1)
(s2138 1)
(s2139 1)
(s2140 1)
(s2141 1)
(s2142 1)
(s2143 1)
(s2144 1)
(s2145 1)
(s2146 1)
(s2147 1)
(s2148 1)
(s2149 1)
(s2150 1)
(s2151 1)
(s2152 1)
(s2153 1)
(s2154 1)
(s2155 1)
(s2156 1)
(s2157 1)
(s2158 1)
(s2159 1)
(s2160 1)
(s2161 1)
(s2162 1)
(s2163 1)
(s2164 1)
(s2165 1)
(s2166 1)
(s2167 1)
(s2168 1)
(s2169 1)
(s2170 1)
(s2171 1)
(s2172 1)
(s2173 1)
(s2174 1)
(s2175 1)
(s2176 1)
(s2177 1)
(s2178 1)
(s2179 1)
(s2180 1)
(s2181 1)
(s2182 1)
(s2183 1)
(s2184 1)
(s2185 1)
(s2186 1)
(s2187 1)
(s2188 1)
(s2189 1)
(s2190 1)
(s2191 1)
(s2192 1)
(s2193 1)
(s2194 1)
(s2195 1)
(s2196 1)
(s2197 1)
(s2198 1)
(s2199 1)
(s2200 1)
(s2201 1)
(s2202 1)
(s2203 1)
(s2204 1)
(s2205 1)
(s2206 1)
(s2207 1)
(s2208 1)
(s2209 1)
(s2210 1)
(s2211 1)
(s2212 1)
(s2213 1)
(s2214 1)
(s2215 1)
(s2216 1)
(s2217 1)
(s2218 1)
(s2219 1)
(s2220 1)
(s2221 1)
(s2222 1)
(s2223 1)
(s2224 1)
(s2225 1)
(s2226 1)
(s2227 1)
(s2228 1)
(s2229 1)
(s2230 1)
(s2231 1)
(s2232 1)
(s2233 1)
(s2234 1)
(s2235 1)
(s2236 1)
(s2237 1)
(s2238 1)
(s2239 1)
(s2240 1)
(s2241 1)
(s2242 1)
(s2243 1)
(s2244 1)
(s2245 1)
(s2246 1)
(s2247 1)
(s2248 1)
(s2249 1)
(s2250 1)
(s2251 1)
(s2252 1)
(s2253 1)
(s2254 1)
(s2255 1)
(s2256 1)
(s2257 1)
(s2258 1)
(s2259 1)
(s2260 1)
(s2261 1)
(s2262 1)
(s2263 1)
(s2264 1)
(s2265 1)
(s2266 1)
(s2267 1)
(s2268 1)
(s2269 1)
(s2270 1)
(s2271 1)
(s2272 1)
(s2273 1)
(s2274 1)
(s2275 1)
(s2276 1)
(s2277 1)
(s2278 1)
(s2279 1)
(s2280 1)
(s2281 1)
(s2282 1)
(s2283 1)
(s2284 1)
(s2285 1)
(s2286 1)
(s2287 1)
(s2288 1)
(s2289 1)
(s2290 1)
(s2291 1)
(s2292 1)
(s2293 1)
(s2294 1)
(s2295 1)
(s2296 1)
(s2297 1)
(s2298 1)
(s2299 1)
(s2300 1)
(s2301 1)
(s2302 1)
(s2303 1)
(s2304 1)
(s2305 1)
(s2306 1)
(s2307 1)
(s2308 1)
(s2309 1)
(s2310 1)
(s2311 1)
(s2312 1)
(s2313 1)
(s2314 1)
(s2315 1)
(s2316 1)
(s2317 1)
(s2318 1)
(s2319 1)
(s2320 1)
(s2321 1)
(s2322 1)
(s2323 1)
(s2324 1)
(s2325 1)
(s2326 1)
(s2327 1)
(s2328 1)
(s2329 1)
(s2330 1)
(s2331 1)
(s2332 1)
(s2333 1)
(s2334 1)
(s2335 1)
(s2336 1)
(s2337 1)
(s2338 1)
(s2339 1)
(s2340 1)
(s2341 1)
(s2342 1)
(s2343 1)
(s2344 1)
(s2345 1)
(s2346 1)
(s2347 1)
(s2348 1)
(s2349 1)
(s2350 1)
(s2351 1)
(s2352 1)
(s2353 1)
(s2354 1)
(s2355 1)
(s2356 1)
(s2357 1)
(s2358 1)
(s2359 1)
(s2360 1)
(s2361 1)
(s2362 1)
(s2363 1)
(s2364 1)
(s2365 1)
(s2366 1)
(s2367 1)
(s2368 1)
(s2369 1)
(s2370 1)
(s2371 1)
(s2372 1)
(s2373 1)
(s2374 1)
(s2375 1)
(s2376 1)
(s2377 1)
(s2378 1)
(s2379 1)
(s2380 1)
(s2381 1)
(s2382 1)
(s2383 1)
(s2384 1)
(s2385 1)
(s2386 1)
(s2387 1)
(s2388 1)
(s2389 1)
(s2390 1)
(s2391 1)
(s2392 1)
(s2393 1)
(s2394 1)
(s2395 1)
(s2396 1)
(s2397 1)
(s2398 1)
(s2399 1)
(s2400 1)
(s2401 1)
(s2402 1)
(s2403 1)
(s2404 1)
(s2405 1)
(s2406 1)
(s2407 1)
(s2408 timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 2906/3353 variables, and 2464 constraints, problems are : Problem set: 0 solved, 416 unsolved in 30023 ms.
Refiners :[Generalized P Invariants (flows): 2464/2464 constraints, State Equation: 0/2907 constraints, PredecessorRefiner: 0/416 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 60338ms problems are : Problem set: 0 solved, 416 unsolved
Search for dead transitions found 0 dead transitions in 60345ms
Finished structural reductions in LTL mode , in 1 iterations and 73312 ms. Remains : 2907/2907 places, 446/446 transitions.
Stuttering acceptance computed with spot in 114 ms :[true, (OR (NOT p0) (NOT p1)), (NOT p1), (OR (NOT p0) (NOT p1))]
Running random walk in product with property : QuasiCertifProtocol-COL-28-LTLFireability-13
Entered a terminal (fully accepting) state of product in 1 steps with 0 reset in 0 ms.
FORMULA QuasiCertifProtocol-COL-28-LTLFireability-13 FALSE TECHNIQUES STUTTER_TEST
Treatment of property QuasiCertifProtocol-COL-28-LTLFireability-13 finished in 73444 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202505121319/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(F(G(p0)))'
Support contains 30 out of 2907 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 2907/2907 places, 446/446 transitions.
Graph (complete) has 28309 edges and 2907 vertex of which 2877 are kept as prefixes of interest. Removing 30 places using SCC suffix rule.9 ms
Discarding 30 places :
Also discarding 2 output transitions
Drop transitions (Output transitions of discarded places.) removed 2 transitions
Reduce places removed 1 places and 1 transitions.
Performed 2 Post agglomeration using F-continuation condition.Transition count delta: 2
Deduced a syphon composed of 2 places in 0 ms
Reduce places removed 2 places and 0 transitions.
Iterating global reduction 0 with 4 rules applied. Total rules applied 5 place count 2874 transition count 441
Applied a total of 5 rules in 264 ms. Remains 2874 /2907 variables (removed 33) and now considering 441/446 (removed 5) transitions.
// Phase 1: matrix 441 rows 2874 cols
[2025-06-05 14:59:46] [INFO ] Computed 2436 invariants in 312 ms
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-05 14:59:50] [INFO ] Implicit Places using invariants in 4523 ms returned []
[2025-06-05 14:59:50] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-05 14:59:58] [INFO ] Implicit Places using invariants and state equation in 8339 ms returned [2640, 2641, 2642, 2643, 2644, 2645, 2646, 2647, 2648, 2649, 2650, 2651, 2652, 2653, 2654, 2655, 2656, 2657, 2658, 2659, 2660, 2661, 2662, 2663, 2664, 2665, 2666, 2667, 2668]
Discarding 29 places :
Implicit Place search using SMT with State Equation took 12890 ms to find 29 implicit places.
Starting structural reductions in SI_LTL mode, iteration 1 : 2845/2907 places, 441/446 transitions.
Applied a total of 0 rules in 156 ms. Remains 2845 /2845 variables (removed 0) and now considering 441/441 (removed 0) transitions.
Finished structural reductions in SI_LTL mode , in 2 iterations and 13310 ms. Remains : 2845/2907 places, 441/446 transitions.
Stuttering acceptance computed with spot in 40 ms :[(NOT p0)]
Running random walk in product with property : QuasiCertifProtocol-COL-28-LTLFireability-15
Stuttering criterion allowed to conclude after 33 steps with 0 reset in 0 ms.
FORMULA QuasiCertifProtocol-COL-28-LTLFireability-15 FALSE TECHNIQUES STUTTER_TEST
Treatment of property QuasiCertifProtocol-COL-28-LTLFireability-15 finished in 13361 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202505121319/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(X((G(p0) U X(X((G(p1)&&X(!p2)))))))'
[2025-06-05 14:59:59] [INFO ] Flatten gal took : 98 ms
Using solver Z3 to compute partial order matrices.
Built C files in :
/tmp/ltsmin17821109740777338831
[2025-06-05 14:59:59] [INFO ] Computing symmetric may disable matrix : 446 transitions.
[2025-06-05 14:59:59] [INFO ] Computation of Complete disable matrix. took 24 ms. Total solver calls (SAT/UNSAT): 0(0/0)
[2025-06-05 14:59:59] [INFO ] Applying decomposition
[2025-06-05 14:59:59] [INFO ] Computing symmetric may enable matrix : 446 transitions.
[2025-06-05 14:59:59] [INFO ] Computation of Complete enable matrix. took 5 ms. Total solver calls (SAT/UNSAT): 0(0/0)
[2025-06-05 14:59:59] [INFO ] Computing Do-Not-Accords matrix : 446 transitions.
[2025-06-05 14:59:59] [INFO ] Computation of Completed DNA matrix. took 13 ms. Total solver calls (SAT/UNSAT): 0(0/0)
[2025-06-05 14:59:59] [INFO ] Flatten gal took : 131 ms
[2025-06-05 14:59:59] [INFO ] Built C files in 207ms conformant to PINS (ltsmin variant)in folder :/tmp/ltsmin17821109740777338831
Running compilation step : cd /tmp/ltsmin17821109740777338831;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202505121319/bin/limit_time.pl' '720' 'gcc' '-c' '-I/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202505121319/bin/include/' '-I.' '-std=c99' '-fPIC' '-O0' 'model.c'
Converted graph to binary with : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202505121319/bin/convert-linux64' '-i' '/tmp/graph13120041009218104569.txt' '-o' '/tmp/graph13120041009218104569.bin' '-w' '/tmp/graph13120041009218104569.weights'
Built communities with : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202505121319/bin/louvain-linux64' '/tmp/graph13120041009218104569.bin' '-l' '-1' '-v' '-w' '/tmp/graph13120041009218104569.weights' '-q' '0' '-e' '0.001'
[2025-06-05 14:59:59] [INFO ] Decomposing Gal with order
[2025-06-05 14:59:59] [INFO ] Rewriting arrays to variables to allow decomposition.
[2025-06-05 15:00:00] [INFO ] Removed a total of 288 redundant transitions.
[2025-06-05 15:00:00] [INFO ] Flatten gal took : 352 ms
[2025-06-05 15:00:00] [INFO ] Fuse similar labels procedure discarded/fused a total of 166 labels/synchronizations in 94 ms.
[2025-06-05 15:00:00] [INFO ] Time to serialize gal into /tmp/LTLFireability17268932930546184358.gal : 37 ms
[2025-06-05 15:00:00] [INFO ] Time to serialize properties into /tmp/LTLFireability4257360294833973003.ltl : 0 ms
Invoking ITS tools like this :cd /home/mcc/execution;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ltl-linux64' '--gc-threshold' '2000000' '-i' '/tmp/LTLFireability17268932930546184358.gal' '-t' 'CGAL' '-LTL' '/tmp/LTLFireability4257360294833973003.ltl' '-c' '-stutter-deadlock'
its-ltl command run as :
/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ltl-linux64 --gc-threshold 2000000 -i /tmp/L...277
Read 1 LTL properties
Checking formula 0 : !((X((G("(i15.u169.a2>=1)"))U(X(X((G("(i15.u168.a4<1)"))&&(X(!("((((((i9.i0.u124.s4_12>=1)||(i10.u125.s4_13>=1))||((i19.i0.u123.s4_10>...806
Formula 0 simplified : X(F!"(i15.u169.a2>=1)" R XX(F!"(i15.u168.a4<1)" | X"((((((i9.i0.u124.s4_12>=1)||(i10.u125.s4_13>=1))||((i19.i0.u123.s4_10>=1)||(i8.i...789
Compilation finished in 2917 ms.
Running link step : cd /tmp/ltsmin17821109740777338831;'gcc' '-shared' '-o' 'gal.so' 'model.o'
Link finished in 48 ms.
Running LTSmin : cd /tmp/ltsmin17821109740777338831;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202505121319/bin/pins2lts-mc-linux64' './gal.so' '--threads=8' '--when' '--ltl' 'X(([]((LTLAPp0==true)) U X(X(([]((LTLAPp1==true))&&X(!(LTLAPp2==true)))))))' '--buchi-type=spotba'
pins2lts-mc-linux64, 0.000: Registering PINS so language module
pins2lts-mc-linux64( 1/ 8), 0.001: library has no initializer
pins2lts-mc-linux64( 1/ 8), 0.001: loading model GAL
pins2lts-mc-linux64( 5/ 8), 0.000: library has no initializer
pins2lts-mc-linux64( 3/ 8), 0.001: library has no initializer
pins2lts-mc-linux64( 2/ 8), 0.001: library has no initializer
pins2lts-mc-linux64( 2/ 8), 0.001: loading model GAL
pins2lts-mc-linux64( 5/ 8), 0.000: loading model GAL
pins2lts-mc-linux64( 4/ 8), 0.001: library has no initializer
pins2lts-mc-linux64( 6/ 8), 0.001: library has no initializer
pins2lts-mc-linux64( 6/ 8), 0.001: loading model GAL
pins2lts-mc-linux64( 7/ 8), 0.001: library has no initializer
pins2lts-mc-linux64( 7/ 8), 0.001: loading model GAL
pins2lts-mc-linux64( 3/ 8), 0.002: loading model GAL
pins2lts-mc-linux64( 0/ 8), 0.002: Loading model from ./gal.so
pins2lts-mc-linux64( 0/ 8), 0.002: library has no initializer
pins2lts-mc-linux64( 0/ 8), 0.002: loading model GAL
pins2lts-mc-linux64( 4/ 8), 0.002: loading model GAL
pins2lts-mc-linux64( 3/ 8), 0.056: completed loading model GAL
pins2lts-mc-linux64( 3/ 8), 0.056: LTL layer: formula: X(([]((LTLAPp0==true)) U X(X(([]((LTLAPp1==true))&&X(!(LTLAPp2==true)))))))
pins2lts-mc-linux64( 4/ 8), 0.059: completed loading model GAL
pins2lts-mc-linux64( 0/ 8), 0.059: completed loading model GAL
pins2lts-mc-linux64( 6/ 8), 0.059: completed loading model GAL
pins2lts-mc-linux64( 3/ 8), 0.059: "X(([]((LTLAPp0==true)) U X(X(([]((LTLAPp1==true))&&X(!(LTLAPp2==true)))))))" is not a file, parsing as formula...
pins2lts-mc-linux64( 3/ 8), 0.060: Using Spin LTL semantics
pins2lts-mc-linux64( 2/ 8), 0.061: completed loading model GAL
pins2lts-mc-linux64( 7/ 8), 0.061: completed loading model GAL
pins2lts-mc-linux64( 1/ 8), 0.064: completed loading model GAL
pins2lts-mc-linux64( 5/ 8), 0.066: completed loading model GAL
pins2lts-mc-linux64( 0/ 8), 0.391: There are 450 state labels and 1 edge labels
pins2lts-mc-linux64( 0/ 8), 0.391: State length is 2908, there are 497 groups
pins2lts-mc-linux64( 0/ 8), 0.391: Running cndfs using 8 cores
pins2lts-mc-linux64( 0/ 8), 0.391: Using a tree table with 2^27 elements
pins2lts-mc-linux64( 0/ 8), 0.391: Successor permutation: dynamic
pins2lts-mc-linux64( 0/ 8), 0.391: Global bits: 2, count bits: 0, local bits: 0
pins2lts-mc-linux64( 4/ 8), 0.566: [Blue] ~32 levels ~960 states ~6176 transitions
pins2lts-mc-linux64( 0/ 8), 0.633: [Blue] ~32 levels ~1920 states ~10176 transitions
pins2lts-mc-linux64( 7/ 8), 0.759: [Blue] ~32 levels ~3840 states ~19392 transitions
pins2lts-mc-linux64( 0/ 8), 1.026: [Blue] ~32 levels ~7680 states ~39792 transitions
pins2lts-mc-linux64( 1/ 8), 1.641: [Blue] ~34 levels ~15360 states ~67984 transitions
pins2lts-mc-linux64( 6/ 8), 3.738: [Blue] ~34 levels ~30720 states ~143128 transitions
pins2lts-mc-linux64( 1/ 8), 9.155: [Blue] ~34 levels ~61440 states ~322448 transitions
pins2lts-mc-linux64( 1/ 8), 19.446: [Blue] ~34 levels ~122880 states ~686368 transitions
pins2lts-mc-linux64( 6/ 8), 41.315: [Blue] ~35 levels ~245760 states ~1262072 transitions
pins2lts-mc-linux64( 1/ 8), 79.954: [Blue] ~34 levels ~491520 states ~2840584 transitions
pins2lts-mc-linux64( 0/ 8), 147.480: [Blue] ~33 levels ~983040 states ~6724672 transitions
pins2lts-mc-linux64( 6/ 8), 219.924: [Blue] ~35 levels ~1966080 states ~13191176 transitions
pins2lts-mc-linux64( 6/ 8), 330.459: [Blue] ~35 levels ~3932160 states ~26196952 transitions
pins2lts-mc-linux64( 6/ 8), 530.097: [Blue] ~35 levels ~7864320 states ~57971752 transitions
pins2lts-mc-linux64( 2/ 8), 657.822: Error: tree leafs table full! Change -s/--ratio.
pins2lts-mc-linux64( 0/ 8), 657.907:
pins2lts-mc-linux64( 0/ 8), 657.907: Explored 9808755 states 76122712 transitions, fanout: 7.761
pins2lts-mc-linux64( 0/ 8), 657.907: Total exploration time 657.500 sec (657.430 sec minimum, 657.456 sec on average)
pins2lts-mc-linux64( 0/ 8), 657.907: States per second: 14918, Transitions per second: 115776
pins2lts-mc-linux64( 0/ 8), 657.907:
pins2lts-mc-linux64( 0/ 8), 657.907: State space has 9810747 states, 0 are accepting
pins2lts-mc-linux64( 0/ 8), 657.907: cndfs_1 (permutation: dynamic) stats:
pins2lts-mc-linux64( 0/ 8), 657.907: blue states: 9808755 (99.98%), transitions: 0 (per worker)
pins2lts-mc-linux64( 0/ 8), 657.907: red states: 0 (0.00%), bogus: 0 (0.00%), transitions: 0, waits: 0 (0.00 sec)
pins2lts-mc-linux64( 0/ 8), 657.907: all-red states: 0 (0.00%), bogus 0 (0.00%)
pins2lts-mc-linux64( 0/ 8), 657.907:
pins2lts-mc-linux64( 0/ 8), 657.907: Total memory used for local state coloring: 0.0MB
pins2lts-mc-linux64( 0/ 8), 657.907:
pins2lts-mc-linux64( 0/ 8), 657.907: Queue width: 8B, total height: 270, memory: 0.00MB
pins2lts-mc-linux64( 0/ 8), 657.907: Tree memory: 330.8MB, 35.4 B/state, compr.: 0.3%
pins2lts-mc-linux64( 0/ 8), 657.907: Tree fill ratio (roots/leafs): 7.0%/99.0%
pins2lts-mc-linux64( 0/ 8), 657.907: Stored 450 string chucks using 0MB
pins2lts-mc-linux64( 0/ 8), 657.907: Total memory used for chunk indexing: 0MB
pins2lts-mc-linux64( 0/ 8), 657.907: Est. total memory use: 330.9MB (~1024.0MB paged-in)
WARNING : LTS min runner thread failed on error :java.lang.RuntimeException: Unexpected exception when executing ltsmin :cd /tmp/ltsmin17821109740777338831;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202505121319/bin/pins2lts-mc-linux64' './gal.so' '--threads=8' '--when' '--ltl' 'X(([]((LTLAPp0==true)) U X(X(([]((LTLAPp1==true))&&X(!(LTLAPp2==true)))))))' '--buchi-type=spotba'
255
java.lang.RuntimeException: Unexpected exception when executing ltsmin :cd /tmp/ltsmin17821109740777338831;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202505121319/bin/pins2lts-mc-linux64' './gal.so' '--threads=8' '--when' '--ltl' 'X(([]((LTLAPp0==true)) U X(X(([]((LTLAPp1==true))&&X(!(LTLAPp2==true)))))))' '--buchi-type=spotba'
255
at fr.lip6.move.gal.application.runner.ltsmin.LTSminRunner.checkProperty(LTSminRunner.java:241)
at fr.lip6.move.gal.application.runner.ltsmin.LTSminRunner$1.checkProperties(LTSminRunner.java:176)
at fr.lip6.move.gal.application.runner.ltsmin.LTSminRunner$1.run(LTSminRunner.java:114)
at java.base/java.lang.Thread.run(Thread.java:1583)
Detected timeout of ITS tools.
[2025-06-05 15:26:43] [INFO ] Applying decomposition
[2025-06-05 15:26:45] [INFO ] Flatten gal took : 1113 ms
[2025-06-05 15:26:45] [INFO ] Decomposing Gal with order
[2025-06-05 15:26:45] [INFO ] Rewriting arrays to variables to allow decomposition.
[2025-06-05 15:26:46] [WARNING] Could not apply decomposition. Using flat GAL structure.
java.lang.RuntimeException: Could not find partition element corresponding to malicious_reservoir in partition [n6_0, n5_0, n4_0, n3_0, n2_0, n1_0, c1_0, Sstart_0, s2_0, s3_0, s4_0, s5_0, s6_0],[n6_1, n5_1, n4_1, n3_1, n2_1, n1_1, c1_1, Sstart_1, s2_1, s3_1, s4_1, s5_1, s6_1],[n6_2, n5_2, n4_2, n3_2, n2_2, n1_2, c1_2, Sstart_2, s2_2, s3_2, s4_2, s5_2, s6_2],[n6_3, n5_3, n4_3, n3_3, n2_3, n1_3, c1_3, Sstart_3, s2_3, s3_3, s4_3, s5_3, s6_3],[n6_4, n5_4, n4_4, n3_4, n2_4, n1_4, c1_4, Sstart_4, s2_4, s3_4, s4_4, s5_4, s6_4],[n6_5, n5_5, n4_5, n3_5, n2_5, n1_5, c1_5, Sstart_5, s2_5, s3_5, s4_5, s5_5, s6_5],[n6_6, n5_6, n4_6, n3_6, n2_6, n1_6, c1_6, Sstart_6, s2_6, s3_6, s4_6, s5_6, s6_6],[n6_7, n5_7, n4_7, n3_7, n2_7, n1_7, c1_7, Sstart_7, s2_7, s3_7, s4_7, s5_7, s6_7],[n6_8, n5_8, n4_8, n3_8, n2_8, n1_8, c1_8, Sstart_8, s2_8, s3_8, s4_8, s5_8, s6_8],[n6_9, n5_9, n4_9, n3_9, n2_9, n1_9, c1_9, Sstart_9, s2_9, s3_9, s4_9, s5_9, s6_9],[n6_10, n5_10, n4_10, n3_10, n2_10, n1_10, c1_10, Sstart_10, s2_10, s3_10, s4_10, s5_10, s6_10],[n6_11, n5_11, n4_11, n3_11, n2_11, n1_11, c1_11, Sstart_11, s2_11, s3_11, s4_11, s5_11, s6_11],[n6_12, n5_12, n4_12, n3_12, n2_12, n1_12, c1_12, Sstart_12, s2_12, s3_12, s4_12, s5_12, s6_12],[n6_13, n5_13, n4_13, n3_13, n2_13, n1_13, c1_13, Sstart_13, s2_13, s3_13, s4_13, s5_13, s6_13],[n6_14, n5_14, n4_14, n3_14, n2_14, n1_14, c1_14, Sstart_14, s2_14, s3_14, s4_14, s5_14, s6_14],[n6_15, n5_15, n4_15, n3_15, n2_15, n1_15, c1_15, Sstart_15, s2_15, s3_15, s4_15, s5_15, s6_15],[n6_16, n5_16, n4_16, n3_16, n2_16, n1_16, c1_16, Sstart_16, s2_16, s3_16, s4_16, s5_16, s6_16],[n6_17, n5_17, n4_17, n3_17, n2_17, n1_17, c1_17, Sstart_17, s2_17, s3_17, s4_17, s5_17, s6_17],[n6_18, n5_18, n4_18, n3_18, n2_18, n1_18, c1_18, Sstart_18, s2_18, s3_18, s4_18, s5_18, s6_18],[n6_19, n5_19, n4_19, n3_19, n2_19, n1_19, c1_19, Sstart_19, s2_19, s3_19, s4_19, s5_19, s6_19],[n6_20, n5_20, n4_20, n3_20, n2_20, n1_20, c1_20, Sstart_20, s2_20, s3_20, s4_20, s5_20, s6_20],[n6_21, n5_21, n4_21, n3_21, n2_21, n1_21, c1_21, Sstart_21, s2_21, s3_21, s4_21, s5_21, s6_21],[n6_22, n5_22, n4_22, n3_22, n2_22, n1_22, c1_22, Sstart_22, s2_22, s3_22, s4_22, s5_22, s6_22],[n6_23, n5_23, n4_23, n3_23, n2_23, n1_23, c1_23, Sstart_23, s2_23, s3_23, s4_23, s5_23, s6_23],[n6_24, n5_24, n4_24, n3_24, n2_24, n1_24, c1_24, Sstart_24, s2_24, s3_24, s4_24, s5_24, s6_24],[n6_25, n5_25, n4_25, n3_25, n2_25, n1_25, c1_25, Sstart_25, s2_25, s3_25, s4_25, s5_25, s6_25],[n6_26, n5_26, n4_26, n3_26, n2_26, n1_26, c1_26, Sstart_26, s2_26, s3_26, s4_26, s5_26, s6_26],[n6_27, n5_27, n4_27, n3_27, n2_27, n1_27, c1_27, Sstart_27, s2_27, s3_27, s4_27, s5_27, s6_27],[n6_28, n5_28, n4_28, n3_28, n2_28, n1_28, c1_28, Sstart_28, s2_28, s3_28, s4_28, s5_28, s6_28],[n9_0, n8_0, n7_0],[n9_1, n8_1, n7_1],[n9_2, n8_2, n7_2],[n9_3, n8_3, n7_3],[n9_4, n8_4, n7_4],[n9_5, n8_5, n7_5],[n9_6, n8_6, n7_6],[n9_7, n8_7, n7_7],[n9_8, n8_8, n7_8],[n9_9, n8_9, n7_9],[n9_10, n8_10, n7_10],[n9_11, n8_11, n7_11],[n9_12, n8_12, n7_12],[n9_13, n8_13, n7_13],[n9_14, n8_14, n7_14],[n9_15, n8_15, n7_15],[n9_16, n8_16, n7_16],[n9_17, n8_17, n7_17],[n9_18, n8_18, n7_18],[n9_19, n8_19, n7_19],[n9_20, n8_20, n7_20],[n9_21, n8_21, n7_21],[n9_22, n8_22, n7_22],[n9_23, n8_23, n7_23],[n9_24, n8_24, n7_24],[n9_25, n8_25, n7_25],[n9_26, n8_26, n7_26],[n9_27, n8_27, n7_27],[n9_28, n8_28, n7_28],[n9_29, n8_29, n7_29],[n9_30, n8_30, n7_30],[n9_31, n8_31, n7_31],[n9_32, n8_32, n7_32],[n9_33, n8_33, n7_33],[n9_34, n8_34, n7_34],[n9_35, n8_35, n7_35],[n9_36, n8_36, n7_36],[n9_37, n8_37, n7_37],[n9_38, n8_38, n7_38],[n9_39, n8_39, n7_39],[n9_40, n8_40, n7_40],[n9_41, n8_41, n7_41],[n9_42, n8_42, n7_42],[n9_43, n8_43, n7_43],[n9_44, n8_44, n7_44],[n9_45, n8_45, n7_45],[n9_46, n8_46, n7_46],[n9_47, n8_47, n7_47],[n9_48, n8_48, n7_48],[n9_49, n8_49, n7_49],[n9_50, n8_50, n7_50],[n9_51, n8_51, n7_51],[n9_52, n8_52, n7_52],[n9_53, n8_53, n7_53],[n9_54, n8_54, n7_54],[n9_55, n8_55, n7_55],[n9_56, n8_56, n7_56],[n9_57, n8_57, n7_57],[n9_58, n8_58, n7_58],[n9_59, n8_59, n7_59],[n9_60, n8_60, n7_60],[n9_61, n8_61, n7_61],[n9_62, n8_62, n7_62],[n9_63, n8_63, n7_63],[n9_64, n8_64, n7_64],[n9_65, n8_65, n7_65],[n9_66, n8_66, n7_66],[n9_67, n8_67, n7_67],[n9_68, n8_68, n7_68],[n9_69, n8_69, n7_69],[n9_70, n8_70, n7_70],[n9_71, n8_71, n7_71],[n9_72, n8_72, n7_72],[n9_73, n8_73, n7_73],[n9_74, n8_74, n7_74],[n9_75, n8_75, n7_75],[n9_76, n8_76, n7_76],[n9_77, n8_77, n7_77],[n9_78, n8_78, n7_78],[n9_79, n8_79, n7_79],[n9_80, n8_80, n7_80],[n9_81, n8_81, n7_81],[n9_82, n8_82, n7_82],[n9_83, n8_83, n7_83],[n9_84, n8_84, n7_84],[n9_85, n8_85, n7_85],[n9_86, n8_86, n7_86],[n9_87, n8_87, n7_87],[n9_88, n8_88, n7_88],[n9_89, n8_89, n7_89],[n9_90, n8_90, n7_90],[n9_91, n8_91, n7_91],[n9_92, n8_92, n7_92],[n9_93, n8_93, n7_93],[n9_94, n8_94, n7_94],[n9_95, n8_95, n7_95],[n9_96, n8_96, n7_96],[n9_97, n8_97, n7_97],[n9_98, n8_98, n7_98],[n9_99, n8_99, n7_99],[n9_100, n8_100, n7_100],[n9_101, n8_101, n7_101],[n9_102, n8_102, n7_102],[n9_103, n8_103, n7_103],[n9_104, n8_104, n7_104],[n9_105, n8_105, n7_105],[n9_106, n8_106, n7_106],[n9_107, n8_107, n7_107],[n9_108, n8_108, n7_108],[n9_109, n8_109, n7_109],[n9_110, n8_110, n7_110],[n9_111, n8_111, n7_111],[n9_112, n8_112, n7_112],[n9_113, n8_113, n7_113],[n9_114, n8_114, n7_114],[n9_115, n8_115, n7_115],[n9_116, n8_116, n7_116],[n9_117, n8_117, n7_117],[n9_118, n8_118, n7_118],[n9_119, n8_119, n7_119],[n9_120, n8_120, n7_120],[n9_121, n8_121, n7_121],[n9_122, n8_122, n7_122],[n9_123, n8_123, n7_123],[n9_124, n8_124, n7_124],[n9_125, n8_125, n7_125],[n9_126, n8_126, n7_126],[n9_127, n8_127, n7_127],[n9_128, n8_128, n7_128],[n9_129, n8_129, n7_129],[n9_130, n8_130, n7_130],[n9_131, n8_131, n7_131],[n9_132, n8_132, n7_132],[n9_133, n8_133, n7_133],[n9_134, n8_134, n7_134],[n9_135, n8_135, n7_135],[n9_136, n8_136, n7_136],[n9_137, n8_137, n7_137],[n9_138, n8_138, n7_138],[n9_139, n8_139, n7_139],[n9_140, n8_140, n7_140],[n9_141, n8_141, n7_141],[n9_142, n8_142, n7_142],[n9_143, n8_143, n7_143],[n9_144, n8_144, n7_144],[n9_145, n8_145, n7_145],[n9_146, n8_146, n7_146],[n9_147, n8_147, n7_147],[n9_148, n8_148, n7_148],[n9_149, n8_149, n7_149],[n9_150, n8_150, n7_150],[n9_151, n8_151, n7_151],[n9_152, n8_152, n7_152],[n9_153, n8_153, n7_153],[n9_154, n8_154, n7_154],[n9_155, n8_155, n7_155],[n9_156, n8_156, n7_156],[n9_157, n8_157, n7_157],[n9_158, n8_158, n7_158],[n9_159, n8_159, n7_159],[n9_160, n8_160, n7_160],[n9_161, n8_161, n7_161],[n9_162, n8_162, n7_162],[n9_163, n8_163, n7_163],[n9_164, n8_164, n7_164],[n9_165, n8_165, n7_165],[n9_166, n8_166, n7_166],[n9_167, n8_167, n7_167],[n9_168, n8_168, n7_168],[n9_169, n8_169, n7_169],[n9_170, n8_170, n7_170],[n9_171, n8_171, n7_171],[n9_172, n8_172, n7_172],[n9_173, n8_173, n7_173],[n9_174, n8_174, n7_174],[n9_175, n8_175, n7_175],[n9_176, n8_176, n7_176],[n9_177, n8_177, n7_177],[n9_178, n8_178, n7_178],[n9_179, n8_179, n7_179],[n9_180, n8_180, n7_180],[n9_181, n8_181, n7_181],[n9_182, n8_182, n7_182],[n9_183, n8_183, n7_183],[n9_184, n8_184, n7_184],[n9_185, n8_185, n7_185],[n9_186, n8_186, n7_186],[n9_187, n8_187, n7_187],[n9_188, n8_188, n7_188],[n9_189, n8_189, n7_189],[n9_190, n8_190, n7_190],[n9_191, n8_191, n7_191],[n9_192, n8_192, n7_192],[n9_193, n8_193, n7_193],[n9_194, n8_194, n7_194],[n9_195, n8_195, n7_195],[n9_196, n8_196, n7_196],[n9_197, n8_197, n7_197],[n9_198, n8_198, n7_198],[n9_199, n8_199, n7_199],[n9_200, n8_200, n7_200],[n9_201, n8_201, n7_201],[n9_202, n8_202, n7_202],[n9_203, n8_203, n7_203],[n9_204, n8_204, n7_204],[n9_205, n8_205, n7_205],[n9_206, n8_206, n7_206],[n9_207, n8_207, n7_207],[n9_208, n8_208, n7_208],[n9_209, n8_209, n7_209],[n9_210, n8_210, n7_210],[n9_211, n8_211, n7_211],[n9_212, n8_212, n7_212],[n9_213, n8_213, n7_213],[n9_214, n8_214, n7_214],[n9_215, n8_215, n7_215],[n9_216, n8_216, n7_216],[n9_217, n8_217, n7_217],[n9_218, n8_218, n7_218],[n9_219, n8_219, n7_219],[n9_220, n8_220, n7_220],[n9_221, n8_221, n7_221],[n9_222, n8_222, n7_222],[n9_223, n8_223, n7_223],[n9_224, n8_224, n7_224],[n9_225, n8_225, n7_225],[n9_226, n8_226, n7_226],[n9_227, n8_227, n7_227],[n9_228, n8_228, n7_228],[n9_229, n8_229, n7_229],[n9_230, n8_230, n7_230],[n9_231, n8_231, n7_231],[n9_232, n8_232, n7_232],[n9_233, n8_233, n7_233],[n9_234, n8_234, n7_234],[n9_235, n8_235, n7_235],[n9_236, n8_236, n7_236],[n9_237, n8_237, n7_237],[n9_238, n8_238, n7_238],[n9_239, n8_239, n7_239],[n9_240, n8_240, n7_240],[n9_241, n8_241, n7_241],[n9_242, n8_242, n7_242],[n9_243, n8_243, n7_243],[n9_244, n8_244, n7_244],[n9_245, n8_245, n7_245],[n9_246, n8_246, n7_246],[n9_247, n8_247, n7_247],[n9_248, n8_248, n7_248],[n9_249, n8_249, n7_249],[n9_250, n8_250, n7_250],[n9_251, n8_251, n7_251],[n9_252, n8_252, n7_252],[n9_253, n8_253, n7_253],[n9_254, n8_254, n7_254],[n9_255, n8_255, n7_255],[n9_256, n8_256, n7_256],[n9_257, n8_257, n7_257],[n9_258, n8_258, n7_258],[n9_259, n8_259, n7_259],[n9_260, n8_260, n7_260],[n9_261, n8_261, n7_261],[n9_262, n8_262, n7_262],[n9_263, n8_263, n7_263],[n9_264, n8_264, n7_264],[n9_265, n8_265, n7_265],[n9_266, n8_266, n7_266],[n9_267, n8_267, n7_267],[n9_268, n8_268, n7_268],[n9_269, n8_269, n7_269],[n9_270, n8_270, n7_270],[n9_271, n8_271, n7_271],[n9_272, n8_272, n7_272],[n9_273, n8_273, n7_273],[n9_274, n8_274, n7_274],[n9_275, n8_275, n7_275],[n9_276, n8_276, n7_276],[n9_277, n8_277, n7_277],[n9_278, n8_278, n7_278],[n9_279, n8_279, n7_279],[n9_280, n8_280, n7_280],[n9_281, n8_281, n7_281],[n9_282, n8_282, n7_282],[n9_283, n8_283, n7_283],[n9_284, n8_284, n7_284],[n9_285, n8_285, n7_285],[n9_286, n8_286, n7_286],[n9_287, n8_287, n7_287],[n9_288, n8_288, n7_288],[n9_289, n8_289, n7_289],[n9_290, n8_290, n7_290],[n9_291, n8_291, n7_291],[n9_292, n8_292, n7_292],[n9_293, n8_293, n7_293],[n9_294, n8_294, n7_294],[n9_295, n8_295, n7_295],[n9_296, n8_296, n7_296],[n9_297, n8_297, n7_297],[n9_298, n8_298, n7_298],[n9_299, n8_299, n7_299],[n9_300, n8_300, n7_300],[n9_301, n8_301, n7_301],[n9_302, n8_302, n7_302],[n9_303, n8_303, n7_303],[n9_304, n8_304, n7_304],[n9_305, n8_305, n7_305],[n9_306, n8_306, n7_306],[n9_307, n8_307, n7_307],[n9_308, n8_308, n7_308],[n9_309, n8_309, n7_309],[n9_310, n8_310, n7_310],[n9_311, n8_311, n7_311],[n9_312, n8_312, n7_312],[n9_313, n8_313, n7_313],[n9_314, n8_314, n7_314],[n9_315, n8_315, n7_315],[n9_316, n8_316, n7_316],[n9_317, n8_317, n7_317],[n9_318, n8_318, n7_318],[n9_319, n8_319, n7_319],[n9_320, n8_320, n7_320],[n9_321, n8_321, n7_321],[n9_322, n8_322, n7_322],[n9_323, n8_323, n7_323],[n9_324, n8_324, n7_324],[n9_325, n8_325, n7_325],[n9_326, n8_326, n7_326],[n9_327, n8_327, n7_327],[n9_328, n8_328, n7_328],[n9_329, n8_329, n7_329],[n9_330, n8_330, n7_330],[n9_331, n8_331, n7_331],[n9_332, n8_332, n7_332],[n9_333, n8_333, n7_333],[n9_334, n8_334, n7_334],[n9_335, n8_335, n7_335],[n9_336, n8_336, n7_336],[n9_337, n8_337, n7_337],[n9_338, n8_338, n7_338],[n9_339, n8_339, n7_339],[n9_340, n8_340, n7_340],[n9_341, n8_341, n7_341],[n9_342, n8_342, n7_342],[n9_343, n8_343, n7_343],[n9_344, n8_344, n7_344],[n9_345, n8_345, n7_345],[n9_346, n8_346, n7_346],[n9_347, n8_347, n7_347],[n9_348, n8_348, n7_348],[n9_349, n8_349, n7_349],[n9_350, n8_350, n7_350],[n9_351, n8_351, n7_351],[n9_352, n8_352, n7_352],[n9_353, n8_353, n7_353],[n9_354, n8_354, n7_354],[n9_355, n8_355, n7_355],[n9_356, n8_356, n7_356],[n9_357, n8_357, n7_357],[n9_358, n8_358, n7_358],[n9_359, n8_359, n7_359],[n9_360, n8_360, n7_360],[n9_361, n8_361, n7_361],[n9_362, n8_362, n7_362],[n9_363, n8_363, n7_363],[n9_364, n8_364, n7_364],[n9_365, n8_365, n7_365],[n9_366, n8_366, n7_366],[n9_367, n8_367, n7_367],[n9_368, n8_368, n7_368],[n9_369, n8_369, n7_369],[n9_370, n8_370, n7_370],[n9_371, n8_371, n7_371],[n9_372, n8_372, n7_372],[n9_373, n8_373, n7_373],[n9_374, n8_374, n7_374],[n9_375, n8_375, n7_375],[n9_376, n8_376, n7_376],[n9_377, n8_377, n7_377],[n9_378, n8_378, n7_378],[n9_379, n8_379, n7_379],[n9_380, n8_380, n7_380],[n9_381, n8_381, n7_381],[n9_382, n8_382, n7_382],[n9_383, n8_383, n7_383],[n9_384, n8_384, n7_384],[n9_385, n8_385, n7_385],[n9_386, n8_386, n7_386],[n9_387, n8_387, n7_387],[n9_388, n8_388, n7_388],[n9_389, n8_389, n7_389],[n9_390, n8_390, n7_390],[n9_391, n8_391, n7_391],[n9_392, n8_392, n7_392],[n9_393, n8_393, n7_393],[n9_394, n8_394, n7_394],[n9_395, n8_395, n7_395],[n9_396, n8_396, n7_396],[n9_397, n8_397, n7_397],[n9_398, n8_398, n7_398],[n9_399, n8_399, n7_399],[n9_400, n8_400, n7_400],[n9_401, n8_401, n7_401],[n9_402, n8_402, n7_402],[n9_403, n8_403, n7_403],[n9_404, n8_404, n7_404],[n9_405, n8_405, n7_405],[n9_406, n8_406, n7_406],[n9_407, n8_407, n7_407],[n9_408, n8_408, n7_408],[n9_409, n8_409, n7_409],[n9_410, n8_410, n7_410],[n9_411, n8_411, n7_411],[n9_412, n8_412, n7_412],[n9_413, n8_413, n7_413],[n9_414, n8_414, n7_414],[n9_415, n8_415, n7_415],[n9_416, n8_416, n7_416],[n9_417, n8_417, n7_417],[n9_418, n8_418, n7_418],[n9_419, n8_419, n7_419],[n9_420, n8_420, n7_420],[n9_421, n8_421, n7_421],[n9_422, n8_422, n7_422],[n9_423, n8_423, n7_423],[n9_424, n8_424, n7_424],[n9_425, n8_425, n7_425],[n9_426, n8_426, n7_426],[n9_427, n8_427, n7_427],[n9_428, n8_428, n7_428],[n9_429, n8_429, n7_429],[n9_430, n8_430, n7_430],[n9_431, n8_431, n7_431],[n9_432, n8_432, n7_432],[n9_433, n8_433, n7_433],[n9_434, n8_434, n7_434],[n9_435, n8_435, n7_435],[n9_436, n8_436, n7_436],[n9_437, n8_437, n7_437],[n9_438, n8_438, n7_438],[n9_439, n8_439, n7_439],[n9_440, n8_440, n7_440],[n9_441, n8_441, n7_441],[n9_442, n8_442, n7_442],[n9_443, n8_443, n7_443],[n9_444, n8_444, n7_444],[n9_445, n8_445, n7_445],[n9_446, n8_446, n7_446],[n9_447, n8_447, n7_447],[n9_448, n8_448, n7_448],[n9_449, n8_449, n7_449],[n9_450, n8_450, n7_450],[n9_451, n8_451, n7_451],[n9_452, n8_452, n7_452],[n9_453, n8_453, n7_453],[n9_454, n8_454, n7_454],[n9_455, n8_455, n7_455],[n9_456, n8_456, n7_456],[n9_457, n8_457, n7_457],[n9_458, n8_458, n7_458],[n9_459, n8_459, n7_459],[n9_460, n8_460, n7_460],[n9_461, n8_461, n7_461],[n9_462, n8_462, n7_462],[n9_463, n8_463, n7_463],[n9_464, n8_464, n7_464],[n9_465, n8_465, n7_465],[n9_466, n8_466, n7_466],[n9_467, n8_467, n7_467],[n9_468, n8_468, n7_468],[n9_469, n8_469, n7_469],[n9_470, n8_470, n7_470],[n9_471, n8_471, n7_471],[n9_472, n8_472, n7_472],[n9_473, n8_473, n7_473],[n9_474, n8_474, n7_474],[n9_475, n8_475, n7_475],[n9_476, n8_476, n7_476],[n9_477, n8_477, n7_477],[n9_478, n8_478, n7_478],[n9_479, n8_479, n7_479],[n9_480, n8_480, n7_480],[n9_481, n8_481, n7_481],[n9_482, n8_482, n7_482],[n9_483, n8_483, n7_483],[n9_484, n8_484, n7_484],[n9_485, n8_485, n7_485],[n9_486, n8_486, n7_486],[n9_487, n8_487, n7_487],[n9_488, n8_488, n7_488],[n9_489, n8_489, n7_489],[n9_490, n8_490, n7_490],[n9_491, n8_491, n7_491],[n9_492, n8_492, n7_492],[n9_493, n8_493, n7_493],[n9_494, n8_494, n7_494],[n9_495, n8_495, n7_495],[n9_496, n8_496, n7_496],[n9_497, n8_497, n7_497],[n9_498, n8_498, n7_498],[n9_499, n8_499, n7_499],[n9_500, n8_500, n7_500],[n9_501, n8_501, n7_501],[n9_502, n8_502, n7_502],[n9_503, n8_503, n7_503],[n9_504, n8_504, n7_504],[n9_505, n8_505, n7_505],[n9_506, n8_506, n7_506],[n9_507, n8_507, n7_507],[n9_508, n8_508, n7_508],[n9_509, n8_509, n7_509],[n9_510, n8_510, n7_510],[n9_511, n8_511, n7_511],[n9_512, n8_512, n7_512],[n9_513, n8_513, n7_513],[n9_514, n8_514, n7_514],[n9_515, n8_515, n7_515],[n9_516, n8_516, n7_516],[n9_517, n8_517, n7_517],[n9_518, n8_518, n7_518],[n9_519, n8_519, n7_519],[n9_520, n8_520, n7_520],[n9_521, n8_521, n7_521],[n9_522, n8_522, n7_522],[n9_523, n8_523, n7_523],[n9_524, n8_524, n7_524],[n9_525, n8_525, n7_525],[n9_526, n8_526, n7_526],[n9_527, n8_527, n7_527],[n9_528, n8_528, n7_528],[n9_529, n8_529, n7_529],[n9_530, n8_530, n7_530],[n9_531, n8_531, n7_531],[n9_532, n8_532, n7_532],[n9_533, n8_533, n7_533],[n9_534, n8_534, n7_534],[n9_535, n8_535, n7_535],[n9_536, n8_536, n7_536],[n9_537, n8_537, n7_537],[n9_538, n8_538, n7_538],[n9_539, n8_539, n7_539],[n9_540, n8_540, n7_540],[n9_541, n8_541, n7_541],[n9_542, n8_542, n7_542],[n9_543, n8_543, n7_543],[n9_544, n8_544, n7_544],[n9_545, n8_545, n7_545],[n9_546, n8_546, n7_546],[n9_547, n8_547, n7_547],[n9_548, n8_548, n7_548],[n9_549, n8_549, n7_549],[n9_550, n8_550, n7_550],[n9_551, n8_551, n7_551],[n9_552, n8_552, n7_552],[n9_553, n8_553, n7_553],[n9_554, n8_554, n7_554],[n9_555, n8_555, n7_555],[n9_556, n8_556, n7_556],[n9_557, n8_557, n7_557],[n9_558, n8_558, n7_558],[n9_559, n8_559, n7_559],[n9_560, n8_560, n7_560],[n9_561, n8_561, n7_561],[n9_562, n8_562, n7_562],[n9_563, n8_563, n7_563],[n9_564, n8_564, n7_564],[n9_565, n8_565, n7_565],[n9_566, n8_566, n7_566],[n9_567, n8_567, n7_567],[n9_568, n8_568, n7_568],[n9_569, n8_569, n7_569],[n9_570, n8_570, n7_570],[n9_571, n8_571, n7_571],[n9_572, n8_572, n7_572],[n9_573, n8_573, n7_573],[n9_574, n8_574, n7_574],[n9_575, n8_575, n7_575],[n9_576, n8_576, n7_576],[n9_577, n8_577, n7_577],[n9_578, n8_578, n7_578],[n9_579, n8_579, n7_579],[n9_580, n8_580, n7_580],[n9_581, n8_581, n7_581],[n9_582, n8_582, n7_582],[n9_583, n8_583, n7_583],[n9_584, n8_584, n7_584],[n9_585, n8_585, n7_585],[n9_586, n8_586, n7_586],[n9_587, n8_587, n7_587],[n9_588, n8_588, n7_588],[n9_589, n8_589, n7_589],[n9_590, n8_590, n7_590],[n9_591, n8_591, n7_591],[n9_592, n8_592, n7_592],[n9_593, n8_593, n7_593],[n9_594, n8_594, n7_594],[n9_595, n8_595, n7_595],[n9_596, n8_596, n7_596],[n9_597, n8_597, n7_597],[n9_598, n8_598, n7_598],[n9_599, n8_599, n7_599],[n9_600, n8_600, n7_600],[n9_601, n8_601, n7_601],[n9_602, n8_602, n7_602],[n9_603, n8_603, n7_603],[n9_604, n8_604, n7_604],[n9_605, n8_605, n7_605],[n9_606, n8_606, n7_606],[n9_607, n8_607, n7_607],[n9_608, n8_608, n7_608],[n9_609, n8_609, n7_609],[n9_610, n8_610, n7_610],[n9_611, n8_611, n7_611],[n9_612, n8_612, n7_612],[n9_613, n8_613, n7_613],[n9_614, n8_614, n7_614],[n9_615, n8_615, n7_615],[n9_616, n8_616, n7_616],[n9_617, n8_617, n7_617],[n9_618, n8_618, n7_618],[n9_619, n8_619, n7_619],[n9_620, n8_620, n7_620],[n9_621, n8_621, n7_621],[n9_622, n8_622, n7_622],[n9_623, n8_623, n7_623],[n9_624, n8_624, n7_624],[n9_625, n8_625, n7_625],[n9_626, n8_626, n7_626],[n9_627, n8_627, n7_627],[n9_628, n8_628, n7_628],[n9_629, n8_629, n7_629],[n9_630, n8_630, n7_630],[n9_631, n8_631, n7_631],[n9_632, n8_632, n7_632],[n9_633, n8_633, n7_633],[n9_634, n8_634, n7_634],[n9_635, n8_635, n7_635],[n9_636, n8_636, n7_636],[n9_637, n8_637, n7_637],[n9_638, n8_638, n7_638],[n9_639, n8_639, n7_639],[n9_640, n8_640, n7_640],[n9_641, n8_641, n7_641],[n9_642, n8_642, n7_642],[n9_643, n8_643, n7_643],[n9_644, n8_644, n7_644],[n9_645, n8_645, n7_645],[n9_646, n8_646, n7_646],[n9_647, n8_647, n7_647],[n9_648, n8_648, n7_648],[n9_649, n8_649, n7_649],[n9_650, n8_650, n7_650],[n9_651, n8_651, n7_651],[n9_652, n8_652, n7_652],[n9_653, n8_653, n7_653],[n9_654, n8_654, n7_654],[n9_655, n8_655, n7_655],[n9_656, n8_656, n7_656],[n9_657, n8_657, n7_657],[n9_658, n8_658, n7_658],[n9_659, n8_659, n7_659],[n9_660, n8_660, n7_660],[n9_661, n8_661, n7_661],[n9_662, n8_662, n7_662],[n9_663, n8_663, n7_663],[n9_664, n8_664, n7_664],[n9_665, n8_665, n7_665],[n9_666, n8_666, n7_666],[n9_667, n8_667, n7_667],[n9_668, n8_668, n7_668],[n9_669, n8_669, n7_669],[n9_670, n8_670, n7_670],[n9_671, n8_671, n7_671],[n9_672, n8_672, n7_672],[n9_673, n8_673, n7_673],[n9_674, n8_674, n7_674],[n9_675, n8_675, n7_675],[n9_676, n8_676, n7_676],[n9_677, n8_677, n7_677],[n9_678, n8_678, n7_678],[n9_679, n8_679, n7_679],[n9_680, n8_680, n7_680],[n9_681, n8_681, n7_681],[n9_682, n8_682, n7_682],[n9_683, n8_683, n7_683],[n9_684, n8_684, n7_684],[n9_685, n8_685, n7_685],[n9_686, n8_686, n7_686],[n9_687, n8_687, n7_687],[n9_688, n8_688, n7_688],[n9_689, n8_689, n7_689],[n9_690, n8_690, n7_690],[n9_691, n8_691, n7_691],[n9_692, n8_692, n7_692],[n9_693, n8_693, n7_693],[n9_694, n8_694, n7_694],[n9_695, n8_695, n7_695],[n9_696, n8_696, n7_696],[n9_697, n8_697, n7_697],[n9_698, n8_698, n7_698],[n9_699, n8_699, n7_699],[n9_700, n8_700, n7_700],[n9_701, n8_701, n7_701],[n9_702, n8_702, n7_702],[n9_703, n8_703, n7_703],[n9_704, n8_704, n7_704],[n9_705, n8_705, n7_705],[n9_706, n8_706, n7_706],[n9_707, n8_707, n7_707],[n9_708, n8_708, n7_708],[n9_709, n8_709, n7_709],[n9_710, n8_710, n7_710],[n9_711, n8_711, n7_711],[n9_712, n8_712, n7_712],[n9_713, n8_713, n7_713],[n9_714, n8_714, n7_714],[n9_715, n8_715, n7_715],[n9_716, n8_716, n7_716],[n9_717, n8_717, n7_717],[n9_718, n8_718, n7_718],[n9_719, n8_719, n7_719],[n9_720, n8_720, n7_720],[n9_721, n8_721, n7_721],[n9_722, n8_722, n7_722],[n9_723, n8_723, n7_723],[n9_724, n8_724, n7_724],[n9_725, n8_725, n7_725],[n9_726, n8_726, n7_726],[n9_727, n8_727, n7_727],[n9_728, n8_728, n7_728],[n9_729, n8_729, n7_729],[n9_730, n8_730, n7_730],[n9_731, n8_731, n7_731],[n9_732, n8_732, n7_732],[n9_733, n8_733, n7_733],[n9_734, n8_734, n7_734],[n9_735, n8_735, n7_735],[n9_736, n8_736, n7_736],[n9_737, n8_737, n7_737],[n9_738, n8_738, n7_738],[n9_739, n8_739, n7_739],[n9_740, n8_740, n7_740],[n9_741, n8_741, n7_741],[n9_742, n8_742, n7_742],[n9_743, n8_743, n7_743],[n9_744, n8_744, n7_744],[n9_745, n8_745, n7_745],[n9_746, n8_746, n7_746],[n9_747, n8_747, n7_747],[n9_748, n8_748, n7_748],[n9_749, n8_749, n7_749],[n9_750, n8_750, n7_750],[n9_751, n8_751, n7_751],[n9_752, n8_752, n7_752],[n9_753, n8_753, n7_753],[n9_754, n8_754, n7_754],[n9_755, n8_755, n7_755],[n9_756, n8_756, n7_756],[n9_757, n8_757, n7_757],[n9_758, n8_758, n7_758],[n9_759, n8_759, n7_759],[n9_760, n8_760, n7_760],[n9_761, n8_761, n7_761],[n9_762, n8_762, n7_762],[n9_763, n8_763, n7_763],[n9_764, n8_764, n7_764],[n9_765, n8_765, n7_765],[n9_766, n8_766, n7_766],[n9_767, n8_767, n7_767],[n9_768, n8_768, n7_768],[n9_769, n8_769, n7_769],[n9_770, n8_770, n7_770],[n9_771, n8_771, n7_771],[n9_772, n8_772, n7_772],[n9_773, n8_773, n7_773],[n9_774, n8_774, n7_774],[n9_775, n8_775, n7_775],[n9_776, n8_776, n7_776],[n9_777, n8_777, n7_777],[n9_778, n8_778, n7_778],[n9_779, n8_779, n7_779],[n9_780, n8_780, n7_780],[n9_781, n8_781, n7_781],[n9_782, n8_782, n7_782],[n9_783, n8_783, n7_783],[n9_784, n8_784, n7_784],[n9_785, n8_785, n7_785],[n9_786, n8_786, n7_786],[n9_787, n8_787, n7_787],[n9_788, n8_788, n7_788],[n9_789, n8_789, n7_789],[n9_790, n8_790, n7_790],[n9_791, n8_791, n7_791],[n9_792, n8_792, n7_792],[n9_793, n8_793, n7_793],[n9_794, n8_794, n7_794],[n9_795, n8_795, n7_795],[n9_796, n8_796, n7_796],[n9_797, n8_797, n7_797],[n9_798, n8_798, n7_798],[n9_799, n8_799, n7_799],[n9_800, n8_800, n7_800],[n9_801, n8_801, n7_801],[n9_802, n8_802, n7_802],[n9_803, n8_803, n7_803],[n9_804, n8_804, n7_804],[n9_805, n8_805, n7_805],[n9_806, n8_806, n7_806],[n9_807, n8_807, n7_807],[n9_808, n8_808, n7_808],[n9_809, n8_809, n7_809],[n9_810, n8_810, n7_810],[n9_811, n8_811, n7_811],[n9_812, n8_812, n7_812],[n9_813, n8_813, n7_813],[n9_814, n8_814, n7_814],[n9_815, n8_815, n7_815],[n9_816, n8_816, n7_816],[n9_817, n8_817, n7_817],[n9_818, n8_818, n7_818],[n9_819, n8_819, n7_819],[n9_820, n8_820, n7_820],[n9_821, n8_821, n7_821],[n9_822, n8_822, n7_822],[n9_823, n8_823, n7_823],[n9_824, n8_824, n7_824],[n9_825, n8_825, n7_825],[n9_826, n8_826, n7_826],[n9_827, n8_827, n7_827],[n9_828, n8_828, n7_828],[n9_829, n8_829, n7_829],[n9_830, n8_830, n7_830],[n9_831, n8_831, n7_831],[n9_832, n8_832, n7_832],[n9_833, n8_833, n7_833],[n9_834, n8_834, n7_834],[n9_835, n8_835, n7_835],[n9_836, n8_836, n7_836],[n9_837, n8_837, n7_837],[n9_838, n8_838, n7_838],[n9_839, n8_839, n7_839],[n9_840, n8_840, n7_840],
at fr.lip6.move.gal.instantiate.CompositeBuilder$Partition.getIndex(CompositeBuilder.java:1421)
at fr.lip6.move.gal.instantiate.CompositeBuilder.galToCompositeWithPartition(CompositeBuilder.java:556)
at fr.lip6.move.gal.instantiate.CompositeBuilder.decomposeWithOrder(CompositeBuilder.java:147)
at fr.lip6.move.gal.application.mcc.MccTranslator.applyOrder(MccTranslator.java:133)
at fr.lip6.move.gal.application.mcc.MccTranslator.flattenSpec(MccTranslator.java:230)
at fr.lip6.move.gal.application.runner.its.MultiOrderRunner.runMultiITS(MultiOrderRunner.java:124)
at fr.lip6.move.gal.application.Application.startNoEx(Application.java:1028)
at fr.lip6.move.gal.application.Application.start(Application.java:193)
at fr.lip6.move.gal.itscl.application.Application.start(Application.java:44)
at org.eclipse.equinox.internal.app.EclipseAppHandle.run(EclipseAppHandle.java:208)
at org.eclipse.core.runtime.internal.adaptor.EclipseAppLauncher.runApplication(EclipseAppLauncher.java:149)
at org.eclipse.core.runtime.internal.adaptor.EclipseAppLauncher.start(EclipseAppLauncher.java:115)
at org.eclipse.core.runtime.adaptor.EclipseStarter.run(EclipseStarter.java:467)
at org.eclipse.core.runtime.adaptor.EclipseStarter.run(EclipseStarter.java:298)
at java.base/jdk.internal.reflect.DirectMethodHandleAccessor.invoke(DirectMethodHandleAccessor.java:103)
at java.base/java.lang.reflect.Method.invoke(Method.java:580)
at org.eclipse.equinox.launcher.Main.invokeFramework(Main.java:670)
at org.eclipse.equinox.launcher.Main.basicRun(Main.java:607)
at org.eclipse.equinox.launcher.Main.run(Main.java:1492)
at org.eclipse.equinox.launcher.Main.main(Main.java:1465)
[2025-06-05 15:26:46] [INFO ] Flatten gal took : 647 ms
[2025-06-05 15:26:46] [INFO ] Time to serialize gal into /tmp/LTLFireability7226113428768714424.gal : 50 ms
[2025-06-05 15:26:46] [INFO ] Time to serialize properties into /tmp/LTLFireability2563400245666544674.ltl : 5 ms
Invoking ITS tools like this :cd /home/mcc/execution;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ltl-linux64' '--gc-threshold' '2000000' '-i' '/tmp/LTLFireability7226113428768714424.gal' '-t' 'CGAL' '-LTL' '/tmp/LTLFireability2563400245666544674.ltl' '-c' '-stutter-deadlock' '--gen-order' 'FOLLOW'
its-ltl command run as :
/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ltl-linux64 --gc-threshold 2000000 -i /tmp/L...297
Read 1 LTL properties
Checking formula 0 : !((X((G("(a2>=1)"))U(X(X((G("(a4<1)"))&&(X(!("((((((s4_12>=1)||(s4_13>=1))||((s4_10>=1)||(s4_11>=1)))||(((s4_16>=1)||(s4_17>=1))||((s4...469
Formula 0 simplified : X(F!"(a2>=1)" R XX(F!"(a4<1)" | X"((((((s4_12>=1)||(s4_13>=1))||((s4_10>=1)||(s4_11>=1)))||(((s4_16>=1)||(s4_17>=1))||((s4_14>=1)||(...452
BK_TIME_CONFINEMENT_REACHED
--------------------
content from stderr:
+ export BINDIR=/home/mcc/BenchKit/bin//../itstools/bin//../
+ BINDIR=/home/mcc/BenchKit/bin//../itstools/bin//../
++ pwd
+ export MODEL=/home/mcc/execution
+ MODEL=/home/mcc/execution
+ [[ LTLFireability = StateSpace ]]
+ /home/mcc/BenchKit/bin//../itstools/bin//..//runeclipse.sh /home/mcc/execution LTLFireability -its -ltsmin -greatspnpath /home/mcc/BenchKit/bin//../itstools/bin//..//greatspn/ -order META -manyOrder -smt -timeout 3600
+ ulimit -s 65536
+ [[ -z '' ]]
+ export LTSMIN_MEM_SIZE=8589934592
+ LTSMIN_MEM_SIZE=8589934592
++ sed s/.jar//
++ ls /home/mcc/BenchKit/bin//../itstools/bin//..//itstools/plugins/fr.lip6.move.gal.application.pnmcc_1.0.0.202505121319.jar
++ perl -pe 's/.*\.//g'
+ VERSION=202505121319
+ echo 'Running Version 202505121319'
+ /home/mcc/BenchKit/bin//../itstools/bin//..//itstools/its-tools -pnfolder /home/mcc/execution -examination LTLFireability -its -ltsmin -greatspnpath /home/mcc/BenchKit/bin//../itstools/bin//..//greatspn/ -order META -manyOrder -smt -timeout 3600
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="QuasiCertifProtocol-COL-28"
export BK_EXAMINATION="LTLFireability"
export BK_TOOL="itstools"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5832"
echo " Executing tool itstools"
echo " Input is QuasiCertifProtocol-COL-28, examination is LTLFireability"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r156-tall-174881254600764"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/QuasiCertifProtocol-COL-28.tgz
mv QuasiCertifProtocol-COL-28 execution
cd execution
if [ "LTLFireability" = "ReachabilityDeadlock" ] || [ "LTLFireability" = "UpperBounds" ] || [ "LTLFireability" = "QuasiLiveness" ] || [ "LTLFireability" = "StableMarking" ] || [ "LTLFireability" = "Liveness" ] || [ "LTLFireability" = "OneSafe" ] || [ "LTLFireability" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "LTLFireability" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "LTLFireability" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "LTLFireability.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "LTLFireability" = "ReachabilityDeadlock" ] || [ "LTLFireability" = "QuasiLiveness" ] || [ "LTLFireability" = "StableMarking" ] || [ "LTLFireability" = "Liveness" ] || [ "LTLFireability" = "OneSafe" ] ; then
echo "FORMULA_NAME LTLFireability"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;