About the Execution of ITS-Tools for JoinFreeModules-PT-2000
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
0.000 | 3600000.00 | 0.00 | 0.00 | ??F???T???F??F?? | normal |
Execution Chart
Sorry, for this execution, no execution chart could be reported.
Trace from the execution
Formatting '/data/fkordon/mcc2025-input.r114-tall-174876422800473.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2025-input.qcow2 backing_fmt=qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
=====================================================================
Generated by BenchKit 2-5832
Executing tool itstools
Input is JoinFreeModules-PT-2000, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r114-tall-174876422800473
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 6.7M
-rw-r--r-- 1 mcc users 8.7K May 29 14:47 CTLCardinality.txt
-rw-r--r-- 1 mcc users 94K May 29 14:47 CTLCardinality.xml
-rw-r--r-- 1 mcc users 5.9K May 29 14:47 CTLFireability.txt
-rw-r--r-- 1 mcc users 53K May 29 14:47 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K May 29 14:32 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.1K May 29 14:32 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 3.9K May 29 14:47 LTLCardinality.txt
-rw-r--r-- 1 mcc users 27K May 29 14:47 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.2K May 29 14:47 LTLFireability.txt
-rw-r--r-- 1 mcc users 16K May 29 14:47 LTLFireability.xml
-rw-r--r-- 1 mcc users 15K May 29 14:47 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 151K May 29 14:47 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 6.9K May 29 14:47 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 51K May 29 14:47 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.7K May 29 14:47 UpperBounds.txt
-rw-r--r-- 1 mcc users 4.1K May 29 14:47 UpperBounds.xml
-rw-r--r-- 1 mcc users 6 May 29 14:32 equiv_col
-rw-r--r-- 1 mcc users 5 May 29 14:32 instance
-rw-r--r-- 1 mcc users 6 May 29 14:32 iscolored
-rw-r--r-- 1 mcc users 6.2M May 29 14:32 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
echo here is the order used to build the result vector(from xml file)
FORMULA_NAME JoinFreeModules-PT-2000-CTLCardinality-2023-12
FORMULA_NAME JoinFreeModules-PT-2000-CTLCardinality-2023-13
FORMULA_NAME JoinFreeModules-PT-2000-CTLCardinality-2023-14
FORMULA_NAME JoinFreeModules-PT-2000-CTLCardinality-2023-15
FORMULA_NAME JoinFreeModules-PT-2000-CTLCardinality-2025-00
FORMULA_NAME JoinFreeModules-PT-2000-CTLCardinality-2025-01
FORMULA_NAME JoinFreeModules-PT-2000-CTLCardinality-2025-02
FORMULA_NAME JoinFreeModules-PT-2000-CTLCardinality-2025-03
FORMULA_NAME JoinFreeModules-PT-2000-CTLCardinality-2025-04
FORMULA_NAME JoinFreeModules-PT-2000-CTLCardinality-2025-05
FORMULA_NAME JoinFreeModules-PT-2000-CTLCardinality-2025-06
FORMULA_NAME JoinFreeModules-PT-2000-CTLCardinality-2025-07
FORMULA_NAME JoinFreeModules-PT-2000-CTLCardinality-2025-08
FORMULA_NAME JoinFreeModules-PT-2000-CTLCardinality-2025-09
FORMULA_NAME JoinFreeModules-PT-2000-CTLCardinality-2025-10
FORMULA_NAME JoinFreeModules-PT-2000-CTLCardinality-2025-11
=== Now, execution of the tool begins
BK_START 1748851128490
Invoking MCC driver with
BK_TOOL=itstools
BK_EXAMINATION=CTLCardinality
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=JoinFreeModules-PT-2000
BK_MEMORY_CONFINEMENT=16384
Not applying reductions.
Model is PT
CTLCardinality PT
Running Version 202505121319
[2025-06-02 07:58:49] [INFO ] Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, CTLCardinality, -its, -ltsmin, -greatspnpath, /home/mcc/BenchKit/bin//../itstools/bin//..//greatspn/, -order, META, -manyOrder, -smt, -timeout, 3600]
[2025-06-02 07:58:49] [INFO ] Parsing pnml file : /home/mcc/execution/model.pnml
[2025-06-02 07:58:50] [INFO ] Load time of PNML (sax parser for PT used): 483 ms
[2025-06-02 07:58:50] [INFO ] Transformed 10001 places.
[2025-06-02 07:58:50] [INFO ] Transformed 16001 transitions.
[2025-06-02 07:58:50] [INFO ] Parsed PT model containing 10001 places and 16001 transitions and 46002 arcs in 657 ms.
Parsed 16 properties from file /home/mcc/execution/CTLCardinality.xml in 21 ms.
Initial state reduction rules removed 3 formulas.
Reduce places removed 1 places and 0 transitions.
FORMULA JoinFreeModules-PT-2000-CTLCardinality-2025-02 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA JoinFreeModules-PT-2000-CTLCardinality-2025-06 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA JoinFreeModules-PT-2000-CTLCardinality-2025-09 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
Support contains 162 out of 10000 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 10000/10000 places, 16001/16001 transitions.
Applied a total of 0 rules in 1439 ms. Remains 10000 /10000 variables (removed 0) and now considering 16001/16001 (removed 0) transitions.
Running 12000 sub problems to find dead transitions.
// Phase 1: matrix 16001 rows 10000 cols
[2025-06-02 07:58:52] [INFO ] Computed 2000 invariants in 94 ms
[2025-06-02 07:58:52] [INFO ] State equation strengthened by 2000 read => feed constraints.
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 20290 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 12000/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 12000 unsolved
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 20145 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 0/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 56652ms problems are : Problem set: 0 solved, 12000 unsolved
Search for dead transitions found 0 dead transitions in 56739ms
[2025-06-02 07:59:49] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 07:59:52] [INFO ] Implicit Places using invariants in 2973 ms returned []
Implicit Place search using SMT only with invariants took 2981 ms to find 0 implicit places.
Running 12000 sub problems to find dead transitions.
[2025-06-02 07:59:52] [INFO ] Invariant cache hit.
[2025-06-02 07:59:52] [INFO ] State equation strengthened by 2000 read => feed constraints.
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 30155 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 12000/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 12000 unsolved
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 30143 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 0/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 77241ms problems are : Problem set: 0 solved, 12000 unsolved
Search for dead transitions found 0 dead transitions in 77269ms
Finished structural reductions in LTL mode , in 1 iterations and 138549 ms. Remains : 10000/10000 places, 16001/16001 transitions.
Support contains 162 out of 10000 places after structural reductions.
[2025-06-02 08:01:10] [INFO ] Flatten gal took : 547 ms
[2025-06-02 08:01:10] [INFO ] Flatten gal took : 427 ms
[2025-06-02 08:01:11] [INFO ] Input system was already deterministic with 16001 transitions.
Support contains 161 out of 10000 places (down from 162) after GAL structural reductions.
RANDOM walk for 42035 steps (8 resets) in 4436 ms. (9 steps per ms) remains 86/89 properties
BEST_FIRST walk for 4004 steps (0 resets) in 396 ms. (10 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 412 ms. (9 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 359 ms. (11 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 391 ms. (10 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 386 ms. (10 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 371 ms. (10 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 369 ms. (10 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 621 ms. (6 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 360 ms. (11 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 356 ms. (11 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 375 ms. (10 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 373 ms. (10 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 351 ms. (11 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 347 ms. (11 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 358 ms. (11 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 394 ms. (10 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 379 ms. (10 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 407 ms. (9 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 575 ms. (6 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 365 ms. (10 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 354 ms. (11 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 352 ms. (11 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 348 ms. (11 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 348 ms. (11 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 348 ms. (11 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 358 ms. (11 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 347 ms. (11 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 349 ms. (11 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 351 ms. (11 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 378 ms. (10 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 350 ms. (11 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 349 ms. (11 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 349 ms. (11 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 353 ms. (11 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 350 ms. (11 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 350 ms. (11 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 361 ms. (11 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 348 ms. (11 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 348 ms. (11 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 353 ms. (11 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 405 ms. (9 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 357 ms. (11 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 359 ms. (11 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 348 ms. (11 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 345 ms. (11 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 353 ms. (11 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 347 ms. (11 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 356 ms. (11 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 351 ms. (11 steps per ms) remains 86/86 properties
BEST_FIRST walk for 4004 steps (0 resets) in 349 ms. (11 steps per ms) remains 86/86 properties
Probabilistic random walk after 110107 steps, saw 110060 distinct states, run finished after 18096 ms. (steps per millisecond=6 ) properties seen :11
[2025-06-02 08:01:35] [INFO ] Invariant cache hit.
[2025-06-02 08:01:35] [INFO ] State equation strengthened by 2000 read => feed constraints.
Starting Z3 with timeout 5.0 s and query timeout 500.0 ms
All remaining problems are real, not stopping.
At refinement iteration 0 (INCLUDED_ONLY) 0/127 variables, 0/0 constraints. Problems are: Problem set: 0 solved, 75 unsolved
At refinement iteration 1 (OVERLAPS) 488/615 variables, 123/123 constraints. Problems are: Problem set: 0 solved, 75 unsolved
At refinement iteration 2 (INCLUDED_ONLY) 0/615 variables, 0/123 constraints. Problems are: Problem set: 0 solved, 75 unsolved
At refinement iteration 3 (OVERLAPS) 984/1599 variables, 615/738 constraints. Problems are: Problem set: 0 solved, 75 unsolved
At refinement iteration 4 (INCLUDED_ONLY) 0/1599 variables, 123/861 constraints. Problems are: Problem set: 0 solved, 75 unsolved
At refinement iteration 5 (INCLUDED_ONLY) 0/1599 variables, 0/861 constraints. Problems are: Problem set: 0 solved, 75 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 1599/26001 variables, and 861 constraints, problems are : Problem set: 0 solved, 75 unsolved in 5017 ms.
Refiners :[Positive P Invariants (semi-flows): 123/2000 constraints, State Equation: 615/10000 constraints, ReadFeed: 123/2000 constraints, PredecessorRefiner: 75/75 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 75 unsolved
Starting Z3 with timeout 5.0 s and query timeout 500.0 ms
At refinement iteration 0 (INCLUDED_ONLY) 0/127 variables, 0/0 constraints. Problems are: Problem set: 0 solved, 75 unsolved
At refinement iteration 1 (OVERLAPS) 488/615 variables, 123/123 constraints. Problems are: Problem set: 0 solved, 75 unsolved
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:01:43] [INFO ] Deduced a trap composed of 3 places in 138 ms of which 12 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:01:43] [INFO ] Deduced a trap composed of 3 places in 111 ms of which 8 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:01:43] [INFO ] Deduced a trap composed of 3 places in 111 ms of which 8 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:01:43] [INFO ] Deduced a trap composed of 3 places in 116 ms of which 8 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:01:43] [INFO ] Deduced a trap composed of 3 places in 118 ms of which 9 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:01:43] [INFO ] Deduced a trap composed of 3 places in 121 ms of which 8 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:01:43] [INFO ] Deduced a trap composed of 3 places in 104 ms of which 8 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:01:44] [INFO ] Deduced a trap composed of 3 places in 100 ms of which 7 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:01:44] [INFO ] Deduced a trap composed of 3 places in 108 ms of which 8 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:01:44] [INFO ] Deduced a trap composed of 3 places in 103 ms of which 7 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:01:44] [INFO ] Deduced a trap composed of 3 places in 105 ms of which 7 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:01:44] [INFO ] Deduced a trap composed of 3 places in 96 ms of which 8 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:01:44] [INFO ] Deduced a trap composed of 3 places in 96 ms of which 7 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:01:44] [INFO ] Deduced a trap composed of 3 places in 99 ms of which 7 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:01:44] [INFO ] Deduced a trap composed of 3 places in 97 ms of which 7 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:01:44] [INFO ] Deduced a trap composed of 3 places in 89 ms of which 7 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:01:45] [INFO ] Deduced a trap composed of 3 places in 87 ms of which 6 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:01:45] [INFO ] Deduced a trap composed of 3 places in 91 ms of which 6 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:01:45] [INFO ] Deduced a trap composed of 3 places in 93 ms of which 7 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:01:45] [INFO ] Deduced a trap composed of 3 places in 89 ms of which 6 ms to minimize.
At refinement iteration 2 (INCLUDED_ONLY) 0/615 variables, 20/143 constraints. Problems are: Problem set: 0 solved, 75 unsolved
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:01:45] [INFO ] Deduced a trap composed of 3 places in 88 ms of which 6 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:01:45] [INFO ] Deduced a trap composed of 3 places in 85 ms of which 6 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:01:45] [INFO ] Deduced a trap composed of 3 places in 81 ms of which 6 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:01:45] [INFO ] Deduced a trap composed of 3 places in 88 ms of which 6 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:01:45] [INFO ] Deduced a trap composed of 3 places in 88 ms of which 6 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:01:45] [INFO ] Deduced a trap composed of 3 places in 85 ms of which 6 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:01:46] [INFO ] Deduced a trap composed of 3 places in 84 ms of which 6 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:01:46] [INFO ] Deduced a trap composed of 3 places in 80 ms of which 6 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:01:46] [INFO ] Deduced a trap composed of 3 places in 85 ms of which 6 ms to minimize.
SMT process timed out in 10365ms, After SMT, problems are : Problem set: 0 solved, 75 unsolved
Fused 75 Parikh solutions to 1 different solutions.
Parikh walk visited 0 properties in 0 ms.
Support contains 127 out of 10000 places. Attempting structural reductions.
Starting structural reductions in REACHABILITY mode, iteration 0 : 10000/10000 places, 16001/16001 transitions.
Graph (complete) has 24000 edges and 10000 vertex of which 615 are kept as prefixes of interest. Removing 9385 places using SCC suffix rule.23 ms
Discarding 9385 places :
Also discarding 15016 output transitions
Drop transitions (Output transitions of discarded places.) removed 15016 transitions
Drop transitions (Empty/Sink Transition effects.) removed 1 transitions
Reduce isomorphic transitions removed 1 transitions.
Iterating post reduction 0 with 1 rules applied. Total rules applied 2 place count 615 transition count 984
Applied a total of 2 rules in 106 ms. Remains 615 /10000 variables (removed 9385) and now considering 984/16001 (removed 15017) transitions.
Running 738 sub problems to find dead transitions.
// Phase 1: matrix 984 rows 615 cols
[2025-06-02 08:01:46] [INFO ] Computed 123 invariants in 3 ms
[2025-06-02 08:01:46] [INFO ] State equation strengthened by 123 read => feed constraints.
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
At refinement iteration 0 (INCLUDED_ONLY) 0/492 variables, 0/0 constraints. Problems are: Problem set: 0 solved, 738 unsolved
At refinement iteration 1 (OVERLAPS) 123/615 variables, 123/123 constraints. Problems are: Problem set: 0 solved, 738 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 615/1599 variables, and 123 constraints, problems are : Problem set: 0 solved, 738 unsolved in 20016 ms.
Refiners :[Positive P Invariants (semi-flows): 123/123 constraints, State Equation: 0/615 constraints, ReadFeed: 0/123 constraints, PredecessorRefiner: 738/738 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 738 unsolved
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
At refinement iteration 0 (INCLUDED_ONLY) 0/492 variables, 0/0 constraints. Problems are: Problem set: 0 solved, 738 unsolved
At refinement iteration 1 (OVERLAPS) 123/615 variables, 123/123 constraints. Problems are: Problem set: 0 solved, 738 unsolved
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 615/1599 variables, and 123 constraints, problems are : Problem set: 0 solved, 738 unsolved in 20019 ms.
Refiners :[Positive P Invariants (semi-flows): 123/123 constraints, State Equation: 0/615 constraints, ReadFeed: 0/123 constraints, PredecessorRefiner: 0/738 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 40123ms problems are : Problem set: 0 solved, 738 unsolved
Search for dead transitions found 0 dead transitions in 40125ms
Finished structural reductions in REACHABILITY mode , in 1 iterations and 40233 ms. Remains : 615/10000 places, 984/16001 transitions.
RANDOM walk for 42035 steps (8 resets) in 317 ms. (132 steps per ms) remains 68/75 properties
BEST_FIRST walk for 4004 steps (8 resets) in 42 ms. (93 steps per ms) remains 67/68 properties
BEST_FIRST walk for 4004 steps (8 resets) in 39 ms. (100 steps per ms) remains 67/67 properties
BEST_FIRST walk for 4004 steps (8 resets) in 46 ms. (85 steps per ms) remains 67/67 properties
BEST_FIRST walk for 4004 steps (8 resets) in 41 ms. (95 steps per ms) remains 67/67 properties
BEST_FIRST walk for 4004 steps (8 resets) in 40 ms. (97 steps per ms) remains 67/67 properties
BEST_FIRST walk for 4004 steps (8 resets) in 36 ms. (108 steps per ms) remains 67/67 properties
BEST_FIRST walk for 4004 steps (8 resets) in 37 ms. (105 steps per ms) remains 67/67 properties
BEST_FIRST walk for 4004 steps (8 resets) in 37 ms. (105 steps per ms) remains 67/67 properties
BEST_FIRST walk for 4004 steps (8 resets) in 43 ms. (91 steps per ms) remains 67/67 properties
BEST_FIRST walk for 4004 steps (8 resets) in 65 ms. (60 steps per ms) remains 67/67 properties
BEST_FIRST walk for 4004 steps (8 resets) in 38 ms. (102 steps per ms) remains 67/67 properties
BEST_FIRST walk for 4004 steps (8 resets) in 36 ms. (108 steps per ms) remains 67/67 properties
BEST_FIRST walk for 4004 steps (8 resets) in 31 ms. (125 steps per ms) remains 67/67 properties
BEST_FIRST walk for 4004 steps (8 resets) in 38 ms. (102 steps per ms) remains 67/67 properties
BEST_FIRST walk for 4004 steps (8 resets) in 35 ms. (111 steps per ms) remains 67/67 properties
BEST_FIRST walk for 4004 steps (8 resets) in 36 ms. (108 steps per ms) remains 67/67 properties
BEST_FIRST walk for 4004 steps (8 resets) in 36 ms. (108 steps per ms) remains 67/67 properties
BEST_FIRST walk for 4004 steps (8 resets) in 36 ms. (108 steps per ms) remains 67/67 properties
BEST_FIRST walk for 4004 steps (8 resets) in 36 ms. (108 steps per ms) remains 67/67 properties
BEST_FIRST walk for 4004 steps (8 resets) in 35 ms. (111 steps per ms) remains 67/67 properties
BEST_FIRST walk for 4004 steps (8 resets) in 39 ms. (100 steps per ms) remains 67/67 properties
BEST_FIRST walk for 4004 steps (8 resets) in 44 ms. (88 steps per ms) remains 67/67 properties
BEST_FIRST walk for 4004 steps (8 resets) in 40 ms. (97 steps per ms) remains 67/67 properties
BEST_FIRST walk for 4004 steps (8 resets) in 40 ms. (97 steps per ms) remains 67/67 properties
BEST_FIRST walk for 4004 steps (8 resets) in 41 ms. (95 steps per ms) remains 67/67 properties
BEST_FIRST walk for 4004 steps (8 resets) in 40 ms. (97 steps per ms) remains 67/67 properties
BEST_FIRST walk for 4004 steps (8 resets) in 36 ms. (108 steps per ms) remains 67/67 properties
BEST_FIRST walk for 4004 steps (8 resets) in 37 ms. (105 steps per ms) remains 67/67 properties
BEST_FIRST walk for 4004 steps (8 resets) in 36 ms. (108 steps per ms) remains 67/67 properties
BEST_FIRST walk for 4004 steps (8 resets) in 36 ms. (108 steps per ms) remains 66/67 properties
BEST_FIRST walk for 4004 steps (8 resets) in 36 ms. (108 steps per ms) remains 66/66 properties
BEST_FIRST walk for 4004 steps (8 resets) in 43 ms. (91 steps per ms) remains 66/66 properties
BEST_FIRST walk for 4004 steps (8 resets) in 45 ms. (87 steps per ms) remains 66/66 properties
BEST_FIRST walk for 4004 steps (8 resets) in 41 ms. (95 steps per ms) remains 66/66 properties
BEST_FIRST walk for 4004 steps (8 resets) in 39 ms. (100 steps per ms) remains 66/66 properties
BEST_FIRST walk for 4004 steps (8 resets) in 39 ms. (100 steps per ms) remains 65/66 properties
BEST_FIRST walk for 4004 steps (8 resets) in 38 ms. (102 steps per ms) remains 65/65 properties
BEST_FIRST walk for 4004 steps (8 resets) in 38 ms. (102 steps per ms) remains 64/65 properties
BEST_FIRST walk for 4004 steps (8 resets) in 37 ms. (105 steps per ms) remains 64/64 properties
BEST_FIRST walk for 4004 steps (8 resets) in 45 ms. (87 steps per ms) remains 64/64 properties
BEST_FIRST walk for 4004 steps (8 resets) in 37 ms. (105 steps per ms) remains 64/64 properties
BEST_FIRST walk for 4004 steps (8 resets) in 35 ms. (111 steps per ms) remains 64/64 properties
BEST_FIRST walk for 4004 steps (8 resets) in 33 ms. (117 steps per ms) remains 64/64 properties
BEST_FIRST walk for 4004 steps (8 resets) in 29 ms. (133 steps per ms) remains 64/64 properties
BEST_FIRST walk for 4004 steps (8 resets) in 27 ms. (143 steps per ms) remains 64/64 properties
BEST_FIRST walk for 4004 steps (8 resets) in 29 ms. (133 steps per ms) remains 63/64 properties
BEST_FIRST walk for 4004 steps (8 resets) in 30 ms. (129 steps per ms) remains 63/63 properties
BEST_FIRST walk for 4004 steps (8 resets) in 30 ms. (129 steps per ms) remains 63/63 properties
BEST_FIRST walk for 4004 steps (8 resets) in 28 ms. (138 steps per ms) remains 63/63 properties
BEST_FIRST walk for 4004 steps (8 resets) in 28 ms. (138 steps per ms) remains 63/63 properties
BEST_FIRST walk for 4004 steps (8 resets) in 30 ms. (129 steps per ms) remains 63/63 properties
BEST_FIRST walk for 4004 steps (8 resets) in 30 ms. (129 steps per ms) remains 63/63 properties
BEST_FIRST walk for 4004 steps (8 resets) in 30 ms. (129 steps per ms) remains 63/63 properties
BEST_FIRST walk for 4004 steps (8 resets) in 30 ms. (129 steps per ms) remains 63/63 properties
BEST_FIRST walk for 4004 steps (8 resets) in 30 ms. (129 steps per ms) remains 63/63 properties
BEST_FIRST walk for 4004 steps (8 resets) in 28 ms. (138 steps per ms) remains 63/63 properties
BEST_FIRST walk for 4004 steps (8 resets) in 30 ms. (129 steps per ms) remains 63/63 properties
BEST_FIRST walk for 4004 steps (8 resets) in 29 ms. (133 steps per ms) remains 63/63 properties
BEST_FIRST walk for 4004 steps (8 resets) in 27 ms. (143 steps per ms) remains 63/63 properties
BEST_FIRST walk for 4004 steps (8 resets) in 28 ms. (138 steps per ms) remains 63/63 properties
BEST_FIRST walk for 4004 steps (8 resets) in 27 ms. (143 steps per ms) remains 63/63 properties
BEST_FIRST walk for 4004 steps (8 resets) in 29 ms. (133 steps per ms) remains 63/63 properties
BEST_FIRST walk for 4004 steps (8 resets) in 29 ms. (133 steps per ms) remains 63/63 properties
BEST_FIRST walk for 4004 steps (8 resets) in 28 ms. (138 steps per ms) remains 63/63 properties
BEST_FIRST walk for 4004 steps (8 resets) in 30 ms. (129 steps per ms) remains 63/63 properties
BEST_FIRST walk for 4004 steps (8 resets) in 30 ms. (129 steps per ms) remains 62/63 properties
BEST_FIRST walk for 4004 steps (8 resets) in 28 ms. (138 steps per ms) remains 62/62 properties
[2025-06-02 08:02:27] [INFO ] Invariant cache hit.
[2025-06-02 08:02:27] [INFO ] State equation strengthened by 123 read => feed constraints.
Starting Z3 with timeout 45.0 s and query timeout 4500.0 ms
All remaining problems are real, not stopping.
At refinement iteration 0 (INCLUDED_ONLY) 0/101 variables, 0/0 constraints. Problems are: Problem set: 0 solved, 62 unsolved
At refinement iteration 1 (OVERLAPS) 394/495 variables, 99/99 constraints. Problems are: Problem set: 0 solved, 62 unsolved
At refinement iteration 2 (INCLUDED_ONLY) 0/495 variables, 0/99 constraints. Problems are: Problem set: 0 solved, 62 unsolved
At refinement iteration 3 (OVERLAPS) 792/1287 variables, 495/594 constraints. Problems are: Problem set: 0 solved, 62 unsolved
At refinement iteration 4 (INCLUDED_ONLY) 0/1287 variables, 99/693 constraints. Problems are: Problem set: 0 solved, 62 unsolved
At refinement iteration 5 (INCLUDED_ONLY) 0/1287 variables, 0/693 constraints. Problems are: Problem set: 0 solved, 62 unsolved
At refinement iteration 6 (OVERLAPS) 0/1287 variables, 0/693 constraints. Problems are: Problem set: 0 solved, 62 unsolved
No progress, stopping.
After SMT solving in domain Real declared 1287/1599 variables, and 693 constraints, problems are : Problem set: 0 solved, 62 unsolved in 3963 ms.
Refiners :[Positive P Invariants (semi-flows): 99/123 constraints, State Equation: 495/615 constraints, ReadFeed: 99/123 constraints, PredecessorRefiner: 62/62 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 62 unsolved
Starting Z3 with timeout 45.0 s and query timeout 4500.0 ms
At refinement iteration 0 (INCLUDED_ONLY) 0/101 variables, 0/0 constraints. Problems are: Problem set: 0 solved, 62 unsolved
At refinement iteration 1 (OVERLAPS) 394/495 variables, 99/99 constraints. Problems are: Problem set: 0 solved, 62 unsolved
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:31] [INFO ] Deduced a trap composed of 3 places in 87 ms of which 7 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:31] [INFO ] Deduced a trap composed of 3 places in 71 ms of which 7 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:32] [INFO ] Deduced a trap composed of 3 places in 70 ms of which 6 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:32] [INFO ] Deduced a trap composed of 3 places in 77 ms of which 6 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:32] [INFO ] Deduced a trap composed of 3 places in 75 ms of which 6 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:32] [INFO ] Deduced a trap composed of 3 places in 74 ms of which 6 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:32] [INFO ] Deduced a trap composed of 3 places in 75 ms of which 6 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:32] [INFO ] Deduced a trap composed of 3 places in 68 ms of which 6 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:32] [INFO ] Deduced a trap composed of 3 places in 68 ms of which 6 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:32] [INFO ] Deduced a trap composed of 3 places in 66 ms of which 7 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:32] [INFO ] Deduced a trap composed of 3 places in 70 ms of which 6 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:32] [INFO ] Deduced a trap composed of 3 places in 67 ms of which 5 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:32] [INFO ] Deduced a trap composed of 3 places in 60 ms of which 5 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:32] [INFO ] Deduced a trap composed of 3 places in 65 ms of which 5 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:32] [INFO ] Deduced a trap composed of 3 places in 66 ms of which 5 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:33] [INFO ] Deduced a trap composed of 3 places in 64 ms of which 5 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:33] [INFO ] Deduced a trap composed of 3 places in 61 ms of which 5 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:33] [INFO ] Deduced a trap composed of 3 places in 58 ms of which 5 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:33] [INFO ] Deduced a trap composed of 3 places in 61 ms of which 5 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:33] [INFO ] Deduced a trap composed of 3 places in 58 ms of which 5 ms to minimize.
At refinement iteration 2 (INCLUDED_ONLY) 0/495 variables, 20/119 constraints. Problems are: Problem set: 0 solved, 62 unsolved
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:33] [INFO ] Deduced a trap composed of 3 places in 63 ms of which 5 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:33] [INFO ] Deduced a trap composed of 3 places in 58 ms of which 4 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:33] [INFO ] Deduced a trap composed of 3 places in 60 ms of which 4 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:33] [INFO ] Deduced a trap composed of 3 places in 60 ms of which 4 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:33] [INFO ] Deduced a trap composed of 3 places in 56 ms of which 4 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:33] [INFO ] Deduced a trap composed of 3 places in 51 ms of which 5 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:33] [INFO ] Deduced a trap composed of 3 places in 53 ms of which 5 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:33] [INFO ] Deduced a trap composed of 3 places in 51 ms of which 4 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:33] [INFO ] Deduced a trap composed of 3 places in 49 ms of which 4 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:33] [INFO ] Deduced a trap composed of 3 places in 49 ms of which 4 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:34] [INFO ] Deduced a trap composed of 3 places in 49 ms of which 4 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:34] [INFO ] Deduced a trap composed of 3 places in 48 ms of which 3 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:34] [INFO ] Deduced a trap composed of 3 places in 51 ms of which 4 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:34] [INFO ] Deduced a trap composed of 3 places in 54 ms of which 4 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:34] [INFO ] Deduced a trap composed of 3 places in 47 ms of which 4 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:34] [INFO ] Deduced a trap composed of 3 places in 47 ms of which 4 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:34] [INFO ] Deduced a trap composed of 3 places in 46 ms of which 3 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:34] [INFO ] Deduced a trap composed of 3 places in 47 ms of which 3 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:34] [INFO ] Deduced a trap composed of 3 places in 48 ms of which 3 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:34] [INFO ] Deduced a trap composed of 3 places in 41 ms of which 3 ms to minimize.
At refinement iteration 3 (INCLUDED_ONLY) 0/495 variables, 20/139 constraints. Problems are: Problem set: 0 solved, 62 unsolved
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:34] [INFO ] Deduced a trap composed of 3 places in 39 ms of which 3 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:34] [INFO ] Deduced a trap composed of 3 places in 33 ms of which 3 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:34] [INFO ] Deduced a trap composed of 3 places in 36 ms of which 3 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:34] [INFO ] Deduced a trap composed of 3 places in 39 ms of which 2 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:34] [INFO ] Deduced a trap composed of 3 places in 34 ms of which 3 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:34] [INFO ] Deduced a trap composed of 3 places in 31 ms of which 2 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:34] [INFO ] Deduced a trap composed of 3 places in 30 ms of which 2 ms to minimize.
At refinement iteration 4 (INCLUDED_ONLY) 0/495 variables, 7/146 constraints. Problems are: Problem set: 0 solved, 62 unsolved
At refinement iteration 5 (INCLUDED_ONLY) 0/495 variables, 0/146 constraints. Problems are: Problem set: 0 solved, 62 unsolved
At refinement iteration 6 (OVERLAPS) 792/1287 variables, 495/641 constraints. Problems are: Problem set: 0 solved, 62 unsolved
At refinement iteration 7 (INCLUDED_ONLY) 0/1287 variables, 99/740 constraints. Problems are: Problem set: 0 solved, 62 unsolved
At refinement iteration 8 (INCLUDED_ONLY) 0/1287 variables, 62/802 constraints. Problems are: Problem set: 0 solved, 62 unsolved
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:37] [INFO ] Deduced a trap composed of 3 places in 35 ms of which 3 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:37] [INFO ] Deduced a trap composed of 3 places in 28 ms of which 3 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:38] [INFO ] Deduced a trap composed of 3 places in 30 ms of which 3 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:38] [INFO ] Deduced a trap composed of 3 places in 27 ms of which 2 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:38] [INFO ] Deduced a trap composed of 3 places in 27 ms of which 2 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:38] [INFO ] Deduced a trap composed of 3 places in 27 ms of which 2 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:38] [INFO ] Deduced a trap composed of 3 places in 25 ms of which 2 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:38] [INFO ] Deduced a trap composed of 3 places in 23 ms of which 2 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:40] [INFO ] Deduced a trap composed of 3 places in 25 ms of which 1 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:40] [INFO ] Deduced a trap composed of 3 places in 28 ms of which 2 ms to minimize.
At refinement iteration 9 (INCLUDED_ONLY) 0/1287 variables, 10/812 constraints. Problems are: Problem set: 0 solved, 62 unsolved
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 08:02:44] [INFO ] Deduced a trap composed of 3 places in 25 ms of which 2 ms to minimize.
At refinement iteration 10 (INCLUDED_ONLY) 0/1287 variables, 1/813 constraints. Problems are: Problem set: 0 solved, 62 unsolved
At refinement iteration 11 (INCLUDED_ONLY) 0/1287 variables, 0/813 constraints. Problems are: Problem set: 0 solved, 62 unsolved
At refinement iteration 12 (OVERLAPS) 0/1287 variables, 0/813 constraints. Problems are: Problem set: 0 solved, 62 unsolved
No progress, stopping.
After SMT solving in domain Int declared 1287/1599 variables, and 813 constraints, problems are : Problem set: 0 solved, 62 unsolved in 37821 ms.
Refiners :[Positive P Invariants (semi-flows): 99/123 constraints, State Equation: 495/615 constraints, ReadFeed: 99/123 constraints, PredecessorRefiner: 62/62 constraints, Known Traps: 58/58 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 41803ms problems are : Problem set: 0 solved, 62 unsolved
Fused 62 Parikh solutions to 4 different solutions.
Parikh walk visited 39 properties in 20004 ms.
Support contains 42 out of 615 places. Attempting structural reductions.
Starting structural reductions in REACHABILITY mode, iteration 0 : 615/615 places, 984/984 transitions.
Graph (complete) has 1476 edges and 615 vertex of which 210 are kept as prefixes of interest. Removing 405 places using SCC suffix rule.1 ms
Discarding 405 places :
Also discarding 648 output transitions
Drop transitions (Output transitions of discarded places.) removed 648 transitions
Applied a total of 1 rules in 10 ms. Remains 210 /615 variables (removed 405) and now considering 336/984 (removed 648) transitions.
Finished structural reductions in REACHABILITY mode , in 1 iterations and 10 ms. Remains : 210/615 places, 336/984 transitions.
[2025-06-02 08:03:29] [INFO ] Flatten gal took : 352 ms
[2025-06-02 08:03:29] [INFO ] Flatten gal took : 331 ms
[2025-06-02 08:03:30] [INFO ] Input system was already deterministic with 16001 transitions.
Computed a total of 0 stabilizing places and 0 stable transitions
Starting structural reductions in LTL mode, iteration 0 : 10000/10000 places, 16001/16001 transitions.
Applied a total of 0 rules in 942 ms. Remains 10000 /10000 variables (removed 0) and now considering 16001/16001 (removed 0) transitions.
Running 12000 sub problems to find dead transitions.
// Phase 1: matrix 16001 rows 10000 cols
[2025-06-02 08:03:32] [INFO ] Computed 2000 invariants in 62 ms
[2025-06-02 08:03:32] [INFO ] State equation strengthened by 2000 read => feed constraints.
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 20147 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 12000/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 12000 unsolved
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Error getting values : (error "Error writing to Z3 solver: java.io.IOException: Broken pipe")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 20130 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 0/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 58080ms problems are : Problem set: 0 solved, 12000 unsolved
Search for dead transitions found 0 dead transitions in 58109ms
[2025-06-02 08:04:30] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 08:04:33] [INFO ] Implicit Places using invariants in 3093 ms returned []
Implicit Place search using SMT only with invariants took 3109 ms to find 0 implicit places.
Running 12000 sub problems to find dead transitions.
[2025-06-02 08:04:33] [INFO ] Invariant cache hit.
[2025-06-02 08:04:33] [INFO ] State equation strengthened by 2000 read => feed constraints.
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 30147 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 12000/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 12000 unsolved
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 30133 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 0/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 77687ms problems are : Problem set: 0 solved, 12000 unsolved
Search for dead transitions found 0 dead transitions in 77706ms
Finished structural reductions in LTL mode , in 1 iterations and 139918 ms. Remains : 10000/10000 places, 16001/16001 transitions.
[2025-06-02 08:05:51] [INFO ] Flatten gal took : 294 ms
[2025-06-02 08:05:52] [INFO ] Flatten gal took : 303 ms
[2025-06-02 08:05:52] [INFO ] Input system was already deterministic with 16001 transitions.
[2025-06-02 08:05:52] [INFO ] Flatten gal took : 280 ms
[2025-06-02 08:05:53] [INFO ] Flatten gal took : 285 ms
[2025-06-02 08:05:53] [INFO ] Time to serialize gal into /tmp/CTLCardinality8240120990356792872.gal : 85 ms
[2025-06-02 08:05:53] [INFO ] Time to serialize properties into /tmp/CTLCardinality8458106796139857384.ctl : 2 ms
Invoking ITS tools like this :cd /home/mcc/execution;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64' '--gc-threshold' '2000000' '--quiet' '-i' '/tmp/CTLCardinality8240120990356792872.gal' '-t' 'CGAL' '-ctl' '/tmp/CTLCardinality8458106796139857384.ctl' '--gen-order' 'FOLLOW'
its-ctl command run as :
/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64 --gc-threshold 2000000 --quiet -...283
No direction supplied, using forward translation only.
Parsed 1 CTL formulae.
Detected timeout of ITS tools.
[2025-06-02 08:06:23] [INFO ] Flatten gal took : 270 ms
[2025-06-02 08:06:23] [INFO ] Applying decomposition
[2025-06-02 08:06:23] [INFO ] Flatten gal took : 300 ms
Converted graph to binary with : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202505121319/bin/convert-linux64' '-i' '/tmp/graph3306986404784479548.txt' '-o' '/tmp/graph3306986404784479548.bin' '-w' '/tmp/graph3306986404784479548.weights'
Built communities with : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202505121319/bin/louvain-linux64' '/tmp/graph3306986404784479548.bin' '-l' '-1' '-v' '-w' '/tmp/graph3306986404784479548.weights' '-q' '0' '-e' '0.001'
[2025-06-02 08:06:25] [INFO ] Decomposing Gal with order
[2025-06-02 08:06:26] [INFO ] Rewriting arrays to variables to allow decomposition.
[2025-06-02 08:06:31] [INFO ] Flatten gal took : 399 ms
[2025-06-02 08:06:32] [INFO ] Fuse similar labels procedure discarded/fused a total of 0 labels/synchronizations in 562 ms.
[2025-06-02 08:06:32] [INFO ] Time to serialize gal into /tmp/CTLCardinality12892838230662179476.gal : 89 ms
[2025-06-02 08:06:32] [INFO ] Time to serialize properties into /tmp/CTLCardinality17671038781662205906.ctl : 1 ms
Invoking ITS tools like this :cd /home/mcc/execution;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64' '--gc-threshold' '2000000' '--quiet' '-i' '/tmp/CTLCardinality12892838230662179476.gal' '-t' 'CGAL' '-ctl' '/tmp/CTLCardinality17671038781662205906.ctl' '--gen-order' 'FOLLOW'
its-ctl command run as :
/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64 --gc-threshold 2000000 --quiet -...285
No direction supplied, using forward translation only.
Parsed 1 CTL formulae.
Detected timeout of ITS tools.
Starting structural reductions in LTL mode, iteration 0 : 10000/10000 places, 16001/16001 transitions.
Applied a total of 0 rules in 673 ms. Remains 10000 /10000 variables (removed 0) and now considering 16001/16001 (removed 0) transitions.
Running 12000 sub problems to find dead transitions.
[2025-06-02 08:07:03] [INFO ] Invariant cache hit.
[2025-06-02 08:07:03] [INFO ] State equation strengthened by 2000 read => feed constraints.
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 20141 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 12000/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 12000 unsolved
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 20135 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 0/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 57610ms problems are : Problem set: 0 solved, 12000 unsolved
Search for dead transitions found 0 dead transitions in 57633ms
[2025-06-02 08:08:00] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 08:08:03] [INFO ] Implicit Places using invariants in 2894 ms returned []
Implicit Place search using SMT only with invariants took 2895 ms to find 0 implicit places.
Running 12000 sub problems to find dead transitions.
[2025-06-02 08:08:03] [INFO ] Invariant cache hit.
[2025-06-02 08:08:03] [INFO ] State equation strengthened by 2000 read => feed constraints.
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 30133 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 12000/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 12000 unsolved
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 30139 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 0/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 76815ms problems are : Problem set: 0 solved, 12000 unsolved
Search for dead transitions found 0 dead transitions in 76829ms
Finished structural reductions in LTL mode , in 1 iterations and 138070 ms. Remains : 10000/10000 places, 16001/16001 transitions.
[2025-06-02 08:09:21] [INFO ] Flatten gal took : 462 ms
[2025-06-02 08:09:21] [INFO ] Flatten gal took : 373 ms
[2025-06-02 08:09:22] [INFO ] Input system was already deterministic with 16001 transitions.
[2025-06-02 08:09:22] [INFO ] Flatten gal took : 300 ms
[2025-06-02 08:09:22] [INFO ] Flatten gal took : 317 ms
[2025-06-02 08:09:22] [INFO ] Time to serialize gal into /tmp/CTLCardinality16550029243429689459.gal : 53 ms
[2025-06-02 08:09:22] [INFO ] Time to serialize properties into /tmp/CTLCardinality18027478552983188392.ctl : 0 ms
Invoking ITS tools like this :cd /home/mcc/execution;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64' '--gc-threshold' '2000000' '--quiet' '-i' '/tmp/CTLCardinality16550029243429689459.gal' '-t' 'CGAL' '-ctl' '/tmp/CTLCardinality18027478552983188392.ctl' '--gen-order' 'FOLLOW'
its-ctl command run as :
/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64 --gc-threshold 2000000 --quiet -...285
No direction supplied, using forward translation only.
Parsed 1 CTL formulae.
Detected timeout of ITS tools.
[2025-06-02 08:09:53] [INFO ] Flatten gal took : 296 ms
[2025-06-02 08:09:53] [INFO ] Applying decomposition
[2025-06-02 08:09:53] [INFO ] Flatten gal took : 283 ms
Converted graph to binary with : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202505121319/bin/convert-linux64' '-i' '/tmp/graph16486857346094250490.txt' '-o' '/tmp/graph16486857346094250490.bin' '-w' '/tmp/graph16486857346094250490.weights'
Built communities with : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202505121319/bin/louvain-linux64' '/tmp/graph16486857346094250490.bin' '-l' '-1' '-v' '-w' '/tmp/graph16486857346094250490.weights' '-q' '0' '-e' '0.001'
[2025-06-02 08:09:54] [INFO ] Decomposing Gal with order
[2025-06-02 08:09:55] [INFO ] Rewriting arrays to variables to allow decomposition.
[2025-06-02 08:10:00] [INFO ] Flatten gal took : 335 ms
[2025-06-02 08:10:01] [INFO ] Fuse similar labels procedure discarded/fused a total of 0 labels/synchronizations in 251 ms.
[2025-06-02 08:10:01] [INFO ] Time to serialize gal into /tmp/CTLCardinality4720529553114566770.gal : 55 ms
[2025-06-02 08:10:01] [INFO ] Time to serialize properties into /tmp/CTLCardinality12996438564408538745.ctl : 1 ms
Invoking ITS tools like this :cd /home/mcc/execution;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64' '--gc-threshold' '2000000' '--quiet' '-i' '/tmp/CTLCardinality4720529553114566770.gal' '-t' 'CGAL' '-ctl' '/tmp/CTLCardinality12996438564408538745.ctl' '--gen-order' 'FOLLOW'
its-ctl command run as :
/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64 --gc-threshold 2000000 --quiet -...284
No direction supplied, using forward translation only.
Parsed 1 CTL formulae.
Detected timeout of ITS tools.
Starting structural reductions in LTL mode, iteration 0 : 10000/10000 places, 16001/16001 transitions.
Applied a total of 0 rules in 667 ms. Remains 10000 /10000 variables (removed 0) and now considering 16001/16001 (removed 0) transitions.
Running 12000 sub problems to find dead transitions.
[2025-06-02 08:10:32] [INFO ] Invariant cache hit.
[2025-06-02 08:10:32] [INFO ] State equation strengthened by 2000 read => feed constraints.
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 20144 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 12000/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 12000 unsolved
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 20130 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 0/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 57478ms problems are : Problem set: 0 solved, 12000 unsolved
Search for dead transitions found 0 dead transitions in 57495ms
[2025-06-02 08:11:29] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 08:11:32] [INFO ] Implicit Places using invariants in 2708 ms returned []
Implicit Place search using SMT only with invariants took 2709 ms to find 0 implicit places.
Running 12000 sub problems to find dead transitions.
[2025-06-02 08:11:32] [INFO ] Invariant cache hit.
[2025-06-02 08:11:32] [INFO ] State equation strengthened by 2000 read => feed constraints.
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 30135 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 12000/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 12000 unsolved
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 30145 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 0/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 75629ms problems are : Problem set: 0 solved, 12000 unsolved
Search for dead transitions found 0 dead transitions in 75643ms
Finished structural reductions in LTL mode , in 1 iterations and 136551 ms. Remains : 10000/10000 places, 16001/16001 transitions.
[2025-06-02 08:12:48] [INFO ] Flatten gal took : 281 ms
[2025-06-02 08:12:48] [INFO ] Flatten gal took : 279 ms
[2025-06-02 08:12:49] [INFO ] Input system was already deterministic with 16001 transitions.
[2025-06-02 08:12:49] [INFO ] Flatten gal took : 274 ms
[2025-06-02 08:12:49] [INFO ] Flatten gal took : 280 ms
[2025-06-02 08:12:49] [INFO ] Time to serialize gal into /tmp/CTLCardinality2046618024974297798.gal : 63 ms
[2025-06-02 08:12:49] [INFO ] Time to serialize properties into /tmp/CTLCardinality15168619152256720354.ctl : 0 ms
Invoking ITS tools like this :cd /home/mcc/execution;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64' '--gc-threshold' '2000000' '--quiet' '-i' '/tmp/CTLCardinality2046618024974297798.gal' '-t' 'CGAL' '-ctl' '/tmp/CTLCardinality15168619152256720354.ctl' '--gen-order' 'FOLLOW'
its-ctl command run as :
/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64 --gc-threshold 2000000 --quiet -...284
No direction supplied, using forward translation only.
Parsed 1 CTL formulae.
Detected timeout of ITS tools.
[2025-06-02 08:13:20] [INFO ] Flatten gal took : 323 ms
[2025-06-02 08:13:20] [INFO ] Applying decomposition
[2025-06-02 08:13:20] [INFO ] Flatten gal took : 335 ms
Converted graph to binary with : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202505121319/bin/convert-linux64' '-i' '/tmp/graph12276031025786503873.txt' '-o' '/tmp/graph12276031025786503873.bin' '-w' '/tmp/graph12276031025786503873.weights'
Built communities with : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202505121319/bin/louvain-linux64' '/tmp/graph12276031025786503873.bin' '-l' '-1' '-v' '-w' '/tmp/graph12276031025786503873.weights' '-q' '0' '-e' '0.001'
[2025-06-02 08:13:21] [INFO ] Decomposing Gal with order
[2025-06-02 08:13:22] [INFO ] Rewriting arrays to variables to allow decomposition.
[2025-06-02 08:13:26] [INFO ] Removed a total of 3 redundant transitions.
[2025-06-02 08:13:26] [INFO ] Flatten gal took : 348 ms
[2025-06-02 08:13:27] [INFO ] Fuse similar labels procedure discarded/fused a total of 6 labels/synchronizations in 660 ms.
[2025-06-02 08:13:27] [INFO ] Time to serialize gal into /tmp/CTLCardinality13078196117484203070.gal : 53 ms
[2025-06-02 08:13:27] [INFO ] Time to serialize properties into /tmp/CTLCardinality15828443228768941392.ctl : 1 ms
Invoking ITS tools like this :cd /home/mcc/execution;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64' '--gc-threshold' '2000000' '--quiet' '-i' '/tmp/CTLCardinality13078196117484203070.gal' '-t' 'CGAL' '-ctl' '/tmp/CTLCardinality15828443228768941392.ctl' '--gen-order' 'FOLLOW'
its-ctl command run as :
/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64 --gc-threshold 2000000 --quiet -...285
No direction supplied, using forward translation only.
Parsed 1 CTL formulae.
Detected timeout of ITS tools.
Starting structural reductions in LTL mode, iteration 0 : 10000/10000 places, 16001/16001 transitions.
Applied a total of 0 rules in 689 ms. Remains 10000 /10000 variables (removed 0) and now considering 16001/16001 (removed 0) transitions.
Running 12000 sub problems to find dead transitions.
[2025-06-02 08:13:58] [INFO ] Invariant cache hit.
[2025-06-02 08:13:58] [INFO ] State equation strengthened by 2000 read => feed constraints.
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Error getting values : (error "Error writing to Z3 solver: java.io.IOException: Broken pipe")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 20134 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 12000/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 12000 unsolved
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 20148 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 0/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 55891ms problems are : Problem set: 0 solved, 12000 unsolved
Search for dead transitions found 0 dead transitions in 55905ms
[2025-06-02 08:14:54] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 08:14:57] [INFO ] Implicit Places using invariants in 2923 ms returned []
Implicit Place search using SMT only with invariants took 2925 ms to find 0 implicit places.
Running 12000 sub problems to find dead transitions.
[2025-06-02 08:14:57] [INFO ] Invariant cache hit.
[2025-06-02 08:14:57] [INFO ] State equation strengthened by 2000 read => feed constraints.
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 30137 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 12000/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 12000 unsolved
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 30134 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 0/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 78648ms problems are : Problem set: 0 solved, 12000 unsolved
Search for dead transitions found 0 dead transitions in 78666ms
Finished structural reductions in LTL mode , in 1 iterations and 138216 ms. Remains : 10000/10000 places, 16001/16001 transitions.
[2025-06-02 08:16:16] [INFO ] Flatten gal took : 310 ms
[2025-06-02 08:16:16] [INFO ] Flatten gal took : 324 ms
[2025-06-02 08:16:17] [INFO ] Input system was already deterministic with 16001 transitions.
[2025-06-02 08:16:17] [INFO ] Flatten gal took : 312 ms
[2025-06-02 08:16:17] [INFO ] Flatten gal took : 340 ms
[2025-06-02 08:16:17] [INFO ] Time to serialize gal into /tmp/CTLCardinality13763622264195439148.gal : 55 ms
[2025-06-02 08:16:17] [INFO ] Time to serialize properties into /tmp/CTLCardinality16666256072161333528.ctl : 1 ms
Invoking ITS tools like this :cd /home/mcc/execution;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64' '--gc-threshold' '2000000' '--quiet' '-i' '/tmp/CTLCardinality13763622264195439148.gal' '-t' 'CGAL' '-ctl' '/tmp/CTLCardinality16666256072161333528.ctl' '--gen-order' 'FOLLOW'
its-ctl command run as :
/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64 --gc-threshold 2000000 --quiet -...285
No direction supplied, using forward translation only.
Parsed 1 CTL formulae.
Detected timeout of ITS tools.
[2025-06-02 08:16:48] [INFO ] Flatten gal took : 305 ms
[2025-06-02 08:16:48] [INFO ] Applying decomposition
[2025-06-02 08:16:48] [INFO ] Flatten gal took : 324 ms
Converted graph to binary with : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202505121319/bin/convert-linux64' '-i' '/tmp/graph9651269302156560986.txt' '-o' '/tmp/graph9651269302156560986.bin' '-w' '/tmp/graph9651269302156560986.weights'
Built communities with : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202505121319/bin/louvain-linux64' '/tmp/graph9651269302156560986.bin' '-l' '-1' '-v' '-w' '/tmp/graph9651269302156560986.weights' '-q' '0' '-e' '0.001'
[2025-06-02 08:16:49] [INFO ] Decomposing Gal with order
[2025-06-02 08:16:50] [INFO ] Rewriting arrays to variables to allow decomposition.
[2025-06-02 08:16:54] [INFO ] Removed a total of 1 redundant transitions.
[2025-06-02 08:16:54] [INFO ] Flatten gal took : 388 ms
[2025-06-02 08:16:55] [INFO ] Fuse similar labels procedure discarded/fused a total of 2 labels/synchronizations in 536 ms.
[2025-06-02 08:16:55] [INFO ] Time to serialize gal into /tmp/CTLCardinality16614803637166544346.gal : 60 ms
[2025-06-02 08:16:55] [INFO ] Time to serialize properties into /tmp/CTLCardinality4999087775225794595.ctl : 1 ms
Invoking ITS tools like this :cd /home/mcc/execution;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64' '--gc-threshold' '2000000' '--quiet' '-i' '/tmp/CTLCardinality16614803637166544346.gal' '-t' 'CGAL' '-ctl' '/tmp/CTLCardinality4999087775225794595.ctl' '--gen-order' 'FOLLOW'
its-ctl command run as :
/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64 --gc-threshold 2000000 --quiet -...284
No direction supplied, using forward translation only.
Parsed 1 CTL formulae.
Detected timeout of ITS tools.
Starting structural reductions in SI_CTL mode, iteration 0 : 10000/10000 places, 16001/16001 transitions.
Applied a total of 0 rules in 2658 ms. Remains 10000 /10000 variables (removed 0) and now considering 16001/16001 (removed 0) transitions.
Running 12000 sub problems to find dead transitions.
[2025-06-02 08:17:28] [INFO ] Invariant cache hit.
[2025-06-02 08:17:28] [INFO ] State equation strengthened by 2000 read => feed constraints.
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 20142 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 12000/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 12000 unsolved
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 20143 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 0/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 57918ms problems are : Problem set: 0 solved, 12000 unsolved
Search for dead transitions found 0 dead transitions in 57936ms
[2025-06-02 08:18:26] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 08:18:29] [INFO ] Implicit Places using invariants in 3023 ms returned []
Implicit Place search using SMT only with invariants took 3024 ms to find 0 implicit places.
Running 12000 sub problems to find dead transitions.
[2025-06-02 08:18:29] [INFO ] Invariant cache hit.
[2025-06-02 08:18:29] [INFO ] State equation strengthened by 2000 read => feed constraints.
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Error getting values : (error "Error writing to Z3 solver: java.io.IOException: Broken pipe")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 30141 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 12000/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 12000 unsolved
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Error getting values : (error "Error writing to Z3 solver: java.io.IOException: Broken pipe")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 30131 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 0/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 77347ms problems are : Problem set: 0 solved, 12000 unsolved
Search for dead transitions found 0 dead transitions in 77365ms
Finished structural reductions in SI_CTL mode , in 1 iterations and 141028 ms. Remains : 10000/10000 places, 16001/16001 transitions.
[2025-06-02 08:19:47] [INFO ] Flatten gal took : 307 ms
[2025-06-02 08:19:47] [INFO ] Flatten gal took : 332 ms
[2025-06-02 08:19:48] [INFO ] Input system was already deterministic with 16001 transitions.
[2025-06-02 08:19:48] [INFO ] Flatten gal took : 282 ms
[2025-06-02 08:19:48] [INFO ] Flatten gal took : 314 ms
[2025-06-02 08:19:48] [INFO ] Time to serialize gal into /tmp/CTLCardinality7053086111391395588.gal : 57 ms
[2025-06-02 08:19:48] [INFO ] Time to serialize properties into /tmp/CTLCardinality7088495380428813411.ctl : 0 ms
Invoking ITS tools like this :cd /home/mcc/execution;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64' '--gc-threshold' '2000000' '--quiet' '-i' '/tmp/CTLCardinality7053086111391395588.gal' '-t' 'CGAL' '-ctl' '/tmp/CTLCardinality7088495380428813411.ctl' '--gen-order' 'FOLLOW'
its-ctl command run as :
/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64 --gc-threshold 2000000 --quiet -...283
No direction supplied, using forward translation only.
Parsed 1 CTL formulae.
Detected timeout of ITS tools.
[2025-06-02 08:20:19] [INFO ] Flatten gal took : 311 ms
[2025-06-02 08:20:19] [INFO ] Applying decomposition
[2025-06-02 08:20:19] [INFO ] Flatten gal took : 317 ms
Converted graph to binary with : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202505121319/bin/convert-linux64' '-i' '/tmp/graph11641345659871311365.txt' '-o' '/tmp/graph11641345659871311365.bin' '-w' '/tmp/graph11641345659871311365.weights'
Built communities with : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202505121319/bin/louvain-linux64' '/tmp/graph11641345659871311365.bin' '-l' '-1' '-v' '-w' '/tmp/graph11641345659871311365.weights' '-q' '0' '-e' '0.001'
[2025-06-02 08:20:20] [INFO ] Decomposing Gal with order
[2025-06-02 08:20:20] [INFO ] Rewriting arrays to variables to allow decomposition.
[2025-06-02 08:20:25] [INFO ] Removed a total of 1 redundant transitions.
[2025-06-02 08:20:25] [INFO ] Flatten gal took : 393 ms
[2025-06-02 08:20:26] [INFO ] Fuse similar labels procedure discarded/fused a total of 2 labels/synchronizations in 540 ms.
[2025-06-02 08:20:26] [INFO ] Time to serialize gal into /tmp/CTLCardinality17517106528308103006.gal : 63 ms
[2025-06-02 08:20:26] [INFO ] Time to serialize properties into /tmp/CTLCardinality7860342771381426546.ctl : 0 ms
Invoking ITS tools like this :cd /home/mcc/execution;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64' '--gc-threshold' '2000000' '--quiet' '-i' '/tmp/CTLCardinality17517106528308103006.gal' '-t' 'CGAL' '-ctl' '/tmp/CTLCardinality7860342771381426546.ctl' '--gen-order' 'FOLLOW'
its-ctl command run as :
/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64 --gc-threshold 2000000 --quiet -...284
No direction supplied, using forward translation only.
Parsed 1 CTL formulae.
Detected timeout of ITS tools.
Starting structural reductions in LTL mode, iteration 0 : 10000/10000 places, 16001/16001 transitions.
Applied a total of 0 rules in 693 ms. Remains 10000 /10000 variables (removed 0) and now considering 16001/16001 (removed 0) transitions.
Running 12000 sub problems to find dead transitions.
[2025-06-02 08:20:57] [INFO ] Invariant cache hit.
[2025-06-02 08:20:57] [INFO ] State equation strengthened by 2000 read => feed constraints.
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
(s4111 2.0timeout
^^^^^^^^^^
(error "Invalid token: 2.0timeout")
Error getting values : (error "ParserException while parsing response: ((s0 5.0)
(s1 2.0)
(s3 4.0)
(s4 5.0)
(s5 5.0)
(s6 2.0)
(s8 4.0)
(s9 5.0)
(s10 5.0)
(s11 2.0)
(s13 4.0)
(s14 5.0)
(s15 5.0)
(s16 2.0)
(s18 4.0)
(s19 5.0)
(s20 5.0)
(s21 2.0)
(s23 4.0)
(s24 5.0)
(s25 5.0)
(s26 2.0)
(s28 4.0)
(s29 5.0)
(s30 5.0)
(s31 2.0)
(s33 4.0)
(s34 5.0)
(s35 5.0)
(s36 2.0)
(s38 4.0)
(s39 5.0)
(s40 5.0)
(s41 2.0)
(s43 4.0)
(s44 5.0)
(s45 5.0)
(s46 2.0)
(s48 4.0)
(s49 5.0)
(s50 5.0)
(s51 2.0)
(s53 4.0)
(s54 5.0)
(s55 5.0)
(s56 2.0)
(s58 4.0)
(s59 5.0)
(s60 5.0)
(s61 2.0)
(s63 4.0)
(s64 5.0)
(s65 5.0)
(s66 2.0)
(s68 4.0)
(s69 5.0)
(s70 5.0)
(s71 2.0)
(s73 4.0)
(s74 5.0)
(s75 5.0)
(s76 2.0)
(s78 4.0)
(s79 5.0)
(s80 5.0)
(s81 2.0)
(s83 4.0)
(s84 5.0)
(s85 5.0)
(s86 2.0)
(s88 4.0)
(s89 5.0)
(s90 5.0)
(s91 2.0)
(s93 4.0)
(s94 5.0)
(s95 5.0)
(s96 2.0)
(s98 4.0)
(s99 5.0)
(s100 5.0)
(s101 2.0)
(s103 4.0)
(s104 5.0)
(s105 5.0)
(s106 2.0)
(s108 4.0)
(s109 5.0)
(s110 5.0)
(s111 2.0)
(s113 4.0)
(s114 5.0)
(s115 5.0)
(s116 2.0)
(s118 4.0)
(s119 5.0)
(s120 5.0)
(s121 2.0)
(s123 4.0)
(s124 5.0)
(s125 5.0)
(s126 2.0)
(s128 4.0)
(s129 5.0)
(s130 5.0)
(s131 2.0)
(s133 4.0)
(s134 5.0)
(s135 5.0)
(s136 2.0)
(s138 4.0)
(s139 5.0)
(s140 5.0)
(s141 2.0)
(s143 4.0)
(s144 5.0)
(s145 5.0)
(s146 2.0)
(s148 4.0)
(s149 5.0)
(s150 5.0)
(s151 2.0)
(s153 4.0)
(s154 5.0)
(s155 5.0)
(s156 2.0)
(s158 4.0)
(s159 5.0)
(s160 5.0)
(s161 2.0)
(s163 4.0)
(s164 5.0)
(s165 5.0)
(s166 2.0)
(s168 4.0)
(s169 5.0)
(s170 5.0)
(s171 2.0)
(s173 4.0)
(s174 5.0)
(s175 5.0)
(s176 2.0)
(s178 4.0)
(s179 5.0)
(s180 5.0)
(s181 2.0)
(s183 4.0)
(s184 5.0)
(s185 5.0)
(s186 2.0)
(s188 4.0)
(s189 5.0)
(s190 5.0)
(s191 2.0)
(s193 4.0)
(s194 5.0)
(s195 5.0)
(s196 2.0)
(s198 4.0)
(s199 5.0)
(s200 5.0)
(s201 2.0)
(s203 4.0)
(s204 5.0)
(s205 5.0)
(s206 2.0)
(s208 4.0)
(s209 5.0)
(s210 5.0)
(s211 2.0)
(s213 4.0)
(s214 5.0)
(s215 5.0)
(s216 2.0)
(s218 4.0)
(s219 5.0)
(s220 5.0)
(s221 2.0)
(s223 4.0)
(s224 5.0)
(s225 5.0)
(s226 2.0)
(s228 4.0)
(s229 5.0)
(s230 5.0)
(s231 2.0)
(s233 4.0)
(s234 5.0)
(s235 5.0)
(s236 2.0)
(s238 4.0)
(s239 5.0)
(s240 5.0)
(s241 2.0)
(s243 4.0)
(s244 5.0)
(s245 5.0)
(s246 2.0)
(s248 4.0)
(s249 5.0)
(s250 5.0)
(s251 2.0)
(s253 4.0)
(s254 5.0)
(s255 5.0)
(s256 2.0)
(s258 4.0)
(s259 5.0)
(s260 5.0)
(s261 2.0)
(s263 4.0)
(s264 5.0)
(s265 5.0)
(s266 2.0)
(s268 4.0)
(s269 5.0)
(s270 5.0)
(s271 2.0)
(s273 4.0)
(s274 5.0)
(s275 5.0)
(s276 2.0)
(s278 4.0)
(s279 5.0)
(s280 5.0)
(s281 2.0)
(s283 4.0)
(s284 5.0)
(s285 5.0)
(s286 2.0)
(s288 4.0)
(s289 5.0)
(s290 5.0)
(s291 2.0)
(s293 4.0)
(s294 5.0)
(s295 5.0)
(s296 2.0)
(s298 4.0)
(s299 5.0)
(s300 5.0)
(s301 2.0)
(s303 4.0)
(s304 5.0)
(s305 5.0)
(s306 2.0)
(s308 4.0)
(s309 5.0)
(s310 5.0)
(s311 2.0)
(s313 4.0)
(s314 5.0)
(s315 5.0)
(s316 2.0)
(s318 4.0)
(s319 5.0)
(s320 5.0)
(s321 2.0)
(s323 4.0)
(s324 5.0)
(s325 5.0)
(s326 2.0)
(s328 4.0)
(s329 5.0)
(s330 5.0)
(s331 2.0)
(s333 4.0)
(s334 5.0)
(s335 5.0)
(s336 2.0)
(s338 4.0)
(s339 5.0)
(s340 5.0)
(s341 2.0)
(s343 4.0)
(s344 5.0)
(s345 5.0)
(s346 2.0)
(s348 4.0)
(s349 5.0)
(s350 5.0)
(s351 2.0)
(s353 4.0)
(s354 5.0)
(s355 5.0)
(s356 2.0)
(s358 4.0)
(s359 5.0)
(s360 5.0)
(s361 2.0)
(s363 4.0)
(s364 5.0)
(s365 5.0)
(s366 2.0)
(s368 4.0)
(s369 5.0)
(s370 5.0)
(s371 2.0)
(s373 4.0)
(s374 5.0)
(s375 5.0)
(s376 2.0)
(s378 4.0)
(s379 5.0)
(s380 5.0)
(s381 2.0)
(s383 4.0)
(s384 5.0)
(s385 5.0)
(s386 2.0)
(s388 4.0)
(s389 5.0)
(s390 5.0)
(s391 2.0)
(s393 4.0)
(s394 5.0)
(s395 5.0)
(s396 2.0)
(s398 4.0)
(s399 5.0)
(s400 5.0)
(s401 2.0)
(s403 4.0)
(s404 5.0)
(s405 5.0)
(s406 2.0)
(s408 4.0)
(s409 5.0)
(s410 5.0)
(s411 2.0)
(s413 4.0)
(s414 5.0)
(s415 5.0)
(s416 2.0)
(s418 4.0)
(s419 5.0)
(s420 5.0)
(s421 2.0)
(s423 4.0)
(s424 5.0)
(s425 5.0)
(s426 2.0)
(s428 4.0)
(s429 5.0)
(s430 5.0)
(s431 2.0)
(s433 4.0)
(s434 5.0)
(s435 5.0)
(s436 2.0)
(s438 4.0)
(s439 5.0)
(s440 5.0)
(s441 2.0)
(s443 4.0)
(s444 5.0)
(s445 5.0)
(s446 2.0)
(s448 4.0)
(s449 5.0)
(s450 5.0)
(s451 2.0)
(s453 4.0)
(s454 5.0)
(s455 5.0)
(s456 2.0)
(s458 4.0)
(s459 5.0)
(s460 5.0)
(s461 2.0)
(s463 4.0)
(s464 5.0)
(s465 5.0)
(s466 2.0)
(s468 4.0)
(s469 5.0)
(s470 5.0)
(s471 2.0)
(s473 4.0)
(s474 5.0)
(s475 5.0)
(s476 2.0)
(s478 4.0)
(s479 5.0)
(s480 5.0)
(s481 2.0)
(s483 4.0)
(s484 5.0)
(s485 5.0)
(s486 2.0)
(s488 4.0)
(s489 5.0)
(s490 5.0)
(s491 2.0)
(s493 4.0)
(s494 5.0)
(s495 5.0)
(s496 2.0)
(s498 4.0)
(s499 5.0)
(s500 5.0)
(s501 2.0)
(s503 4.0)
(s504 5.0)
(s505 5.0)
(s506 2.0)
(s508 4.0)
(s509 5.0)
(s510 5.0)
(s511 2.0)
(s513 4.0)
(s514 5.0)
(s515 5.0)
(s516 2.0)
(s518 4.0)
(s519 5.0)
(s520 5.0)
(s521 2.0)
(s523 4.0)
(s524 5.0)
(s525 5.0)
(s526 2.0)
(s528 4.0)
(s529 5.0)
(s530 5.0)
(s531 2.0)
(s533 4.0)
(s534 5.0)
(s535 5.0)
(s536 2.0)
(s538 4.0)
(s539 5.0)
(s540 5.0)
(s541 2.0)
(s543 4.0)
(s544 5.0)
(s545 5.0)
(s546 2.0)
(s548 4.0)
(s549 5.0)
(s550 5.0)
(s551 2.0)
(s553 4.0)
(s554 5.0)
(s555 5.0)
(s556 2.0)
(s558 4.0)
(s559 5.0)
(s560 5.0)
(s561 2.0)
(s563 4.0)
(s564 5.0)
(s565 5.0)
(s566 2.0)
(s568 4.0)
(s569 5.0)
(s570 5.0)
(s571 2.0)
(s573 4.0)
(s574 5.0)
(s575 5.0)
(s576 2.0)
(s578 4.0)
(s579 5.0)
(s580 5.0)
(s581 2.0)
(s583 4.0)
(s584 5.0)
(s585 5.0)
(s586 2.0)
(s588 4.0)
(s589 5.0)
(s590 5.0)
(s591 2.0)
(s593 4.0)
(s594 5.0)
(s595 5.0)
(s596 2.0)
(s598 4.0)
(s599 5.0)
(s600 5.0)
(s601 2.0)
(s603 4.0)
(s604 5.0)
(s605 5.0)
(s606 2.0)
(s608 4.0)
(s609 5.0)
(s610 5.0)
(s611 2.0)
(s613 4.0)
(s614 5.0)
(s615 5.0)
(s616 2.0)
(s618 4.0)
(s619 5.0)
(s620 5.0)
(s621 2.0)
(s623 4.0)
(s624 5.0)
(s625 5.0)
(s626 2.0)
(s628 4.0)
(s629 5.0)
(s630 5.0)
(s631 2.0)
(s633 4.0)
(s634 5.0)
(s635 5.0)
(s636 2.0)
(s638 4.0)
(s639 5.0)
(s640 5.0)
(s641 2.0)
(s643 4.0)
(s644 5.0)
(s645 5.0)
(s646 2.0)
(s648 4.0)
(s649 5.0)
(s650 5.0)
(s651 2.0)
(s653 4.0)
(s654 5.0)
(s655 5.0)
(s656 2.0)
(s658 4.0)
(s659 5.0)
(s660 5.0)
(s661 2.0)
(s663 4.0)
(s664 5.0)
(s665 5.0)
(s666 2.0)
(s668 4.0)
(s669 5.0)
(s670 5.0)
(s671 2.0)
(s673 4.0)
(s674 5.0)
(s675 5.0)
(s676 2.0)
(s678 4.0)
(s679 5.0)
(s680 5.0)
(s681 2.0)
(s683 4.0)
(s684 5.0)
(s685 5.0)
(s686 2.0)
(s688 4.0)
(s689 5.0)
(s690 5.0)
(s691 2.0)
(s693 4.0)
(s694 5.0)
(s695 5.0)
(s696 2.0)
(s698 4.0)
(s699 5.0)
(s700 5.0)
(s701 2.0)
(s703 4.0)
(s704 5.0)
(s705 5.0)
(s706 2.0)
(s708 4.0)
(s709 5.0)
(s710 5.0)
(s711 2.0)
(s713 4.0)
(s714 5.0)
(s715 5.0)
(s716 2.0)
(s718 4.0)
(s719 5.0)
(s720 5.0)
(s721 2.0)
(s723 4.0)
(s724 5.0)
(s725 5.0)
(s726 2.0)
(s728 4.0)
(s729 5.0)
(s730 5.0)
(s731 2.0)
(s733 4.0)
(s734 5.0)
(s735 5.0)
(s736 2.0)
(s738 4.0)
(s739 5.0)
(s740 5.0)
(s741 2.0)
(s743 4.0)
(s744 5.0)
(s745 5.0)
(s746 2.0)
(s748 4.0)
(s749 5.0)
(s750 5.0)
(s751 2.0)
(s753 4.0)
(s754 5.0)
(s755 5.0)
(s756 2.0)
(s758 4.0)
(s759 5.0)
(s760 5.0)
(s761 2.0)
(s763 4.0)
(s764 5.0)
(s765 5.0)
(s766 2.0)
(s768 4.0)
(s769 5.0)
(s770 5.0)
(s771 2.0)
(s773 4.0)
(s774 5.0)
(s775 5.0)
(s776 2.0)
(s778 4.0)
(s779 5.0)
(s780 5.0)
(s781 2.0)
(s783 4.0)
(s784 5.0)
(s785 5.0)
(s786 2.0)
(s788 4.0)
(s789 5.0)
(s790 5.0)
(s791 2.0)
(s793 4.0)
(s794 5.0)
(s795 5.0)
(s796 2.0)
(s798 4.0)
(s799 5.0)
(s800 5.0)
(s801 2.0)
(s803 4.0)
(s804 5.0)
(s805 5.0)
(s806 2.0)
(s808 4.0)
(s809 5.0)
(s810 5.0)
(s811 2.0)
(s813 4.0)
(s814 5.0)
(s815 5.0)
(s816 2.0)
(s818 4.0)
(s819 5.0)
(s820 5.0)
(s821 2.0)
(s823 4.0)
(s824 5.0)
(s825 5.0)
(s826 2.0)
(s828 4.0)
(s829 5.0)
(s830 5.0)
(s831 2.0)
(s833 4.0)
(s834 5.0)
(s835 5.0)
(s836 2.0)
(s838 4.0)
(s839 5.0)
(s840 5.0)
(s841 2.0)
(s843 4.0)
(s844 5.0)
(s845 5.0)
(s846 2.0)
(s848 4.0)
(s849 5.0)
(s850 5.0)
(s851 2.0)
(s853 4.0)
(s854 5.0)
(s855 5.0)
(s856 2.0)
(s858 4.0)
(s859 5.0)
(s860 5.0)
(s861 2.0)
(s863 4.0)
(s864 5.0)
(s865 5.0)
(s866 2.0)
(s868 4.0)
(s869 5.0)
(s870 5.0)
(s871 2.0)
(s873 4.0)
(s874 5.0)
(s875 5.0)
(s876 2.0)
(s878 4.0)
(s879 5.0)
(s880 5.0)
(s881 2.0)
(s883 4.0)
(s884 5.0)
(s885 5.0)
(s886 2.0)
(s888 4.0)
(s889 5.0)
(s890 5.0)
(s891 2.0)
(s893 4.0)
(s894 5.0)
(s895 5.0)
(s896 2.0)
(s898 4.0)
(s899 5.0)
(s900 5.0)
(s901 2.0)
(s903 4.0)
(s904 5.0)
(s905 5.0)
(s906 2.0)
(s908 4.0)
(s909 5.0)
(s910 5.0)
(s911 2.0)
(s913 4.0)
(s914 5.0)
(s915 5.0)
(s916 2.0)
(s918 4.0)
(s919 5.0)
(s920 5.0)
(s921 2.0)
(s923 4.0)
(s924 5.0)
(s925 5.0)
(s926 2.0)
(s928 4.0)
(s929 5.0)
(s930 5.0)
(s931 2.0)
(s933 4.0)
(s934 5.0)
(s935 5.0)
(s936 2.0)
(s938 4.0)
(s939 5.0)
(s940 5.0)
(s941 2.0)
(s943 4.0)
(s944 5.0)
(s945 5.0)
(s946 2.0)
(s948 4.0)
(s949 5.0)
(s950 5.0)
(s951 2.0)
(s953 4.0)
(s954 5.0)
(s955 5.0)
(s956 2.0)
(s958 4.0)
(s959 5.0)
(s960 5.0)
(s961 2.0)
(s963 4.0)
(s964 5.0)
(s965 5.0)
(s966 2.0)
(s968 4.0)
(s969 5.0)
(s970 5.0)
(s971 2.0)
(s973 4.0)
(s974 5.0)
(s975 5.0)
(s976 2.0)
(s978 4.0)
(s979 5.0)
(s980 5.0)
(s981 2.0)
(s983 4.0)
(s984 5.0)
(s985 5.0)
(s986 2.0)
(s988 4.0)
(s989 5.0)
(s990 5.0)
(s991 2.0)
(s993 4.0)
(s994 5.0)
(s995 5.0)
(s996 2.0)
(s998 4.0)
(s999 5.0)
(s1000 5.0)
(s1001 2.0)
(s1003 4.0)
(s1004 5.0)
(s1005 5.0)
(s1006 2.0)
(s1008 4.0)
(s1009 5.0)
(s1010 5.0)
(s1011 2.0)
(s1013 4.0)
(s1014 5.0)
(s1015 5.0)
(s1016 2.0)
(s1018 4.0)
(s1019 5.0)
(s1020 5.0)
(s1021 2.0)
(s1023 4.0)
(s1024 5.0)
(s1025 5.0)
(s1026 2.0)
(s1028 4.0)
(s1029 5.0)
(s1030 5.0)
(s1031 2.0)
(s1033 4.0)
(s1034 5.0)
(s1035 5.0)
(s1036 2.0)
(s1038 4.0)
(s1039 5.0)
(s1040 5.0)
(s1041 2.0)
(s1043 4.0)
(s1044 5.0)
(s1045 5.0)
(s1046 2.0)
(s1048 4.0)
(s1049 5.0)
(s1050 5.0)
(s1051 2.0)
(s1053 4.0)
(s1054 5.0)
(s1055 5.0)
(s1056 2.0)
(s1058 4.0)
(s1059 5.0)
(s1060 5.0)
(s1061 2.0)
(s1063 4.0)
(s1064 5.0)
(s1065 5.0)
(s1066 2.0)
(s1068 4.0)
(s1069 5.0)
(s1070 5.0)
(s1071 2.0)
(s1073 4.0)
(s1074 5.0)
(s1075 5.0)
(s1076 2.0)
(s1078 4.0)
(s1079 5.0)
(s1080 5.0)
(s1081 2.0)
(s1083 4.0)
(s1084 5.0)
(s1085 5.0)
(s1086 2.0)
(s1088 4.0)
(s1089 5.0)
(s1090 5.0)
(s1091 2.0)
(s1093 4.0)
(s1094 5.0)
(s1095 5.0)
(s1096 2.0)
(s1098 4.0)
(s1099 5.0)
(s1100 5.0)
(s1101 2.0)
(s1103 4.0)
(s1104 5.0)
(s1105 5.0)
(s1106 2.0)
(s1108 4.0)
(s1109 5.0)
(s1110 5.0)
(s1111 2.0)
(s1113 4.0)
(s1114 5.0)
(s1115 5.0)
(s1116 2.0)
(s1118 4.0)
(s1119 5.0)
(s1120 5.0)
(s1121 2.0)
(s1123 4.0)
(s1124 5.0)
(s1125 5.0)
(s1126 2.0)
(s1128 4.0)
(s1129 5.0)
(s1130 5.0)
(s1131 2.0)
(s1133 4.0)
(s1134 5.0)
(s1135 5.0)
(s1136 2.0)
(s1138 4.0)
(s1139 5.0)
(s1140 5.0)
(s1141 2.0)
(s1143 4.0)
(s1144 5.0)
(s1145 5.0)
(s1146 2.0)
(s1148 4.0)
(s1149 5.0)
(s1150 5.0)
(s1151 2.0)
(s1153 4.0)
(s1154 5.0)
(s1155 5.0)
(s1156 2.0)
(s1158 4.0)
(s1159 5.0)
(s1160 5.0)
(s1161 2.0)
(s1163 4.0)
(s1164 5.0)
(s1165 5.0)
(s1166 2.0)
(s1168 4.0)
(s1169 5.0)
(s1170 5.0)
(s1171 2.0)
(s1173 4.0)
(s1174 5.0)
(s1175 5.0)
(s1176 2.0)
(s1178 4.0)
(s1179 5.0)
(s1180 5.0)
(s1181 2.0)
(s1183 4.0)
(s1184 5.0)
(s1185 5.0)
(s1186 2.0)
(s1188 4.0)
(s1189 5.0)
(s1190 5.0)
(s1191 2.0)
(s1193 4.0)
(s1194 5.0)
(s1195 5.0)
(s1196 2.0)
(s1198 4.0)
(s1199 5.0)
(s1200 5.0)
(s1201 2.0)
(s1203 4.0)
(s1204 5.0)
(s1205 5.0)
(s1206 2.0)
(s1208 4.0)
(s1209 5.0)
(s1210 5.0)
(s1211 2.0)
(s1213 4.0)
(s1214 5.0)
(s1215 5.0)
(s1216 2.0)
(s1218 4.0)
(s1219 5.0)
(s1220 5.0)
(s1221 2.0)
(s1223 4.0)
(s1224 5.0)
(s1225 5.0)
(s1226 2.0)
(s1228 4.0)
(s1229 5.0)
(s1230 5.0)
(s1231 2.0)
(s1233 4.0)
(s1234 5.0)
(s1235 5.0)
(s1236 2.0)
(s1238 4.0)
(s1239 5.0)
(s1240 5.0)
(s1241 2.0)
(s1243 4.0)
(s1244 5.0)
(s1245 5.0)
(s1246 2.0)
(s1248 4.0)
(s1249 5.0)
(s1250 5.0)
(s1251 2.0)
(s1253 4.0)
(s1254 5.0)
(s1255 5.0)
(s1256 2.0)
(s1258 4.0)
(s1259 5.0)
(s1260 5.0)
(s1261 2.0)
(s1263 4.0)
(s1264 5.0)
(s1265 5.0)
(s1266 2.0)
(s1268 4.0)
(s1269 5.0)
(s1270 5.0)
(s1271 2.0)
(s1273 4.0)
(s1274 5.0)
(s1275 5.0)
(s1276 2.0)
(s1278 4.0)
(s1279 5.0)
(s1280 5.0)
(s1281 2.0)
(s1283 4.0)
(s1284 5.0)
(s1285 5.0)
(s1286 2.0)
(s1288 4.0)
(s1289 5.0)
(s1290 5.0)
(s1291 2.0)
(s1293 4.0)
(s1294 5.0)
(s1295 5.0)
(s1296 2.0)
(s1298 4.0)
(s1299 5.0)
(s1300 5.0)
(s1301 2.0)
(s1303 4.0)
(s1304 5.0)
(s1305 5.0)
(s1306 2.0)
(s1308 4.0)
(s1309 5.0)
(s1310 5.0)
(s1311 2.0)
(s1313 4.0)
(s1314 5.0)
(s1315 5.0)
(s1316 2.0)
(s1318 4.0)
(s1319 5.0)
(s1320 5.0)
(s1321 2.0)
(s1323 4.0)
(s1324 5.0)
(s1325 5.0)
(s1326 2.0)
(s1328 4.0)
(s1329 5.0)
(s1330 5.0)
(s1331 2.0)
(s1333 4.0)
(s1334 5.0)
(s1335 5.0)
(s1336 2.0)
(s1338 4.0)
(s1339 5.0)
(s1340 5.0)
(s1341 2.0)
(s1343 4.0)
(s1344 5.0)
(s1345 5.0)
(s1346 2.0)
(s1348 4.0)
(s1349 5.0)
(s1350 5.0)
(s1351 2.0)
(s1353 4.0)
(s1354 5.0)
(s1355 5.0)
(s1356 2.0)
(s1358 4.0)
(s1359 5.0)
(s1360 5.0)
(s1361 2.0)
(s1363 4.0)
(s1364 5.0)
(s1365 5.0)
(s1366 2.0)
(s1368 4.0)
(s1369 5.0)
(s1370 5.0)
(s1371 2.0)
(s1373 4.0)
(s1374 5.0)
(s1375 5.0)
(s1376 2.0)
(s1378 4.0)
(s1379 5.0)
(s1380 5.0)
(s1381 2.0)
(s1383 4.0)
(s1384 5.0)
(s1385 5.0)
(s1386 2.0)
(s1388 4.0)
(s1389 5.0)
(s1390 5.0)
(s1391 2.0)
(s1393 4.0)
(s1394 5.0)
(s1395 5.0)
(s1396 2.0)
(s1398 4.0)
(s1399 5.0)
(s1400 5.0)
(s1401 2.0)
(s1403 4.0)
(s1404 5.0)
(s1405 5.0)
(s1406 2.0)
(s1408 4.0)
(s1409 5.0)
(s1410 5.0)
(s1411 2.0)
(s1413 4.0)
(s1414 5.0)
(s1415 5.0)
(s1416 2.0)
(s1418 4.0)
(s1419 5.0)
(s1420 5.0)
(s1421 2.0)
(s1423 4.0)
(s1424 5.0)
(s1425 5.0)
(s1426 2.0)
(s1428 4.0)
(s1429 5.0)
(s1430 5.0)
(s1431 2.0)
(s1433 4.0)
(s1434 5.0)
(s1435 5.0)
(s1436 2.0)
(s1438 4.0)
(s1439 5.0)
(s1440 5.0)
(s1441 2.0)
(s1443 4.0)
(s1444 5.0)
(s1445 5.0)
(s1446 2.0)
(s1448 4.0)
(s1449 5.0)
(s1450 5.0)
(s1451 2.0)
(s1453 4.0)
(s1454 5.0)
(s1455 5.0)
(s1456 2.0)
(s1458 4.0)
(s1459 5.0)
(s1460 5.0)
(s1461 2.0)
(s1463 4.0)
(s1464 5.0)
(s1465 5.0)
(s1466 2.0)
(s1468 4.0)
(s1469 5.0)
(s1470 5.0)
(s1471 2.0)
(s1473 4.0)
(s1474 5.0)
(s1475 5.0)
(s1476 2.0)
(s1478 4.0)
(s1479 5.0)
(s1480 5.0)
(s1481 2.0)
(s1483 4.0)
(s1484 5.0)
(s1485 5.0)
(s1486 2.0)
(s1488 4.0)
(s1489 5.0)
(s1490 5.0)
(s1491 2.0)
(s1493 4.0)
(s1494 5.0)
(s1495 5.0)
(s1496 2.0)
(s1498 4.0)
(s1499 5.0)
(s1500 5.0)
(s1501 2.0)
(s1503 4.0)
(s1504 5.0)
(s1505 5.0)
(s1506 2.0)
(s1508 4.0)
(s1509 5.0)
(s1510 5.0)
(s1511 2.0)
(s1513 4.0)
(s1514 5.0)
(s1515 5.0)
(s1516 2.0)
(s1518 4.0)
(s1519 5.0)
(s1520 5.0)
(s1521 2.0)
(s1523 4.0)
(s1524 5.0)
(s1525 5.0)
(s1526 2.0)
(s1528 4.0)
(s1529 5.0)
(s1530 5.0)
(s1531 2.0)
(s1533 4.0)
(s1534 5.0)
(s1535 5.0)
(s1536 2.0)
(s1538 4.0)
(s1539 5.0)
(s1540 5.0)
(s1541 2.0)
(s1543 4.0)
(s1544 5.0)
(s1545 5.0)
(s1546 2.0)
(s1548 4.0)
(s1549 5.0)
(s1550 5.0)
(s1551 2.0)
(s1553 4.0)
(s1554 5.0)
(s1555 5.0)
(s1556 2.0)
(s1558 4.0)
(s1559 5.0)
(s1560 5.0)
(s1561 2.0)
(s1563 4.0)
(s1564 5.0)
(s1565 5.0)
(s1566 2.0)
(s1568 4.0)
(s1569 5.0)
(s1570 5.0)
(s1571 2.0)
(s1573 4.0)
(s1574 5.0)
(s1575 5.0)
(s1576 2.0)
(s1578 4.0)
(s1579 5.0)
(s1580 5.0)
(s1581 2.0)
(s1583 4.0)
(s1584 5.0)
(s1585 5.0)
(s1586 2.0)
(s1588 4.0)
(s1589 5.0)
(s1590 5.0)
(s1591 2.0)
(s1593 4.0)
(s1594 5.0)
(s1595 5.0)
(s1596 2.0)
(s1598 4.0)
(s1599 5.0)
(s1600 5.0)
(s1601 2.0)
(s1603 4.0)
(s1604 5.0)
(s1605 5.0)
(s1606 2.0)
(s1608 4.0)
(s1609 5.0)
(s1610 5.0)
(s1611 2.0)
(s1613 4.0)
(s1614 5.0)
(s1615 5.0)
(s1616 2.0)
(s1618 4.0)
(s1619 5.0)
(s1620 5.0)
(s1621 2.0)
(s1623 4.0)
(s1624 5.0)
(s1625 5.0)
(s1626 2.0)
(s1628 4.0)
(s1629 5.0)
(s1630 5.0)
(s1631 2.0)
(s1633 4.0)
(s1634 5.0)
(s1635 5.0)
(s1636 2.0)
(s1638 4.0)
(s1639 5.0)
(s1640 5.0)
(s1641 2.0)
(s1643 4.0)
(s1644 5.0)
(s1645 5.0)
(s1646 2.0)
(s1648 4.0)
(s1649 5.0)
(s1650 5.0)
(s1651 2.0)
(s1653 4.0)
(s1654 5.0)
(s1655 5.0)
(s1656 2.0)
(s1658 4.0)
(s1659 5.0)
(s1660 5.0)
(s1661 2.0)
(s1663 4.0)
(s1664 5.0)
(s1665 5.0)
(s1666 2.0)
(s1668 4.0)
(s1669 5.0)
(s1670 5.0)
(s1671 2.0)
(s1673 4.0)
(s1674 5.0)
(s1675 5.0)
(s1676 2.0)
(s1678 4.0)
(s1679 5.0)
(s1680 5.0)
(s1681 2.0)
(s1683 4.0)
(s1684 5.0)
(s1685 5.0)
(s1686 2.0)
(s1688 4.0)
(s1689 5.0)
(s1690 5.0)
(s1691 2.0)
(s1693 4.0)
(s1694 5.0)
(s1695 5.0)
(s1696 2.0)
(s1698 4.0)
(s1699 5.0)
(s1700 5.0)
(s1701 2.0)
(s1703 4.0)
(s1704 5.0)
(s1705 5.0)
(s1706 2.0)
(s1708 4.0)
(s1709 5.0)
(s1710 5.0)
(s1711 2.0)
(s1713 4.0)
(s1714 5.0)
(s1715 5.0)
(s1716 2.0)
(s1718 4.0)
(s1719 5.0)
(s1720 5.0)
(s1721 2.0)
(s1723 4.0)
(s1724 5.0)
(s1725 5.0)
(s1726 2.0)
(s1728 4.0)
(s1729 5.0)
(s1730 5.0)
(s1731 2.0)
(s1733 4.0)
(s1734 5.0)
(s1735 5.0)
(s1736 2.0)
(s1738 4.0)
(s1739 5.0)
(s1740 5.0)
(s1741 2.0)
(s1743 4.0)
(s1744 5.0)
(s1745 5.0)
(s1746 2.0)
(s1748 4.0)
(s1749 5.0)
(s1750 5.0)
(s1751 2.0)
(s1753 4.0)
(s1754 5.0)
(s1755 5.0)
(s1756 2.0)
(s1758 4.0)
(s1759 5.0)
(s1760 5.0)
(s1761 2.0)
(s1763 4.0)
(s1764 5.0)
(s1765 5.0)
(s1766 2.0)
(s1768 4.0)
(s1769 5.0)
(s1770 5.0)
(s1771 2.0)
(s1773 4.0)
(s1774 5.0)
(s1775 5.0)
(s1776 2.0)
(s1778 4.0)
(s1779 5.0)
(s1780 5.0)
(s1781 2.0)
(s1783 4.0)
(s1784 5.0)
(s1785 5.0)
(s1786 2.0)
(s1788 4.0)
(s1789 5.0)
(s1790 5.0)
(s1791 2.0)
(s1793 4.0)
(s1794 5.0)
(s1795 5.0)
(s1796 2.0)
(s1798 4.0)
(s1799 5.0)
(s1800 5.0)
(s1801 2.0)
(s1803 4.0)
(s1804 5.0)
(s1805 5.0)
(s1806 2.0)
(s1808 4.0)
(s1809 5.0)
(s1810 5.0)
(s1811 2.0)
(s1813 4.0)
(s1814 5.0)
(s1815 5.0)
(s1816 2.0)
(s1818 4.0)
(s1819 5.0)
(s1820 5.0)
(s1821 2.0)
(s1823 4.0)
(s1824 5.0)
(s1825 5.0)
(s1826 2.0)
(s1828 4.0)
(s1829 5.0)
(s1830 5.0)
(s1831 2.0)
(s1833 4.0)
(s1834 5.0)
(s1835 5.0)
(s1836 2.0)
(s1838 4.0)
(s1839 5.0)
(s1840 5.0)
(s1841 2.0)
(s1843 4.0)
(s1844 5.0)
(s1845 5.0)
(s1846 2.0)
(s1848 4.0)
(s1849 5.0)
(s1850 5.0)
(s1851 2.0)
(s1853 4.0)
(s1854 5.0)
(s1855 5.0)
(s1856 2.0)
(s1858 4.0)
(s1859 5.0)
(s1860 5.0)
(s1861 2.0)
(s1863 4.0)
(s1864 5.0)
(s1865 5.0)
(s1866 2.0)
(s1868 4.0)
(s1869 5.0)
(s1870 5.0)
(s1871 2.0)
(s1873 4.0)
(s1874 5.0)
(s1875 5.0)
(s1876 2.0)
(s1878 4.0)
(s1879 5.0)
(s1880 5.0)
(s1881 2.0)
(s1883 4.0)
(s1884 5.0)
(s1885 5.0)
(s1886 2.0)
(s1888 4.0)
(s1889 5.0)
(s1890 5.0)
(s1891 2.0)
(s1893 4.0)
(s1894 5.0)
(s1895 5.0)
(s1896 2.0)
(s1898 4.0)
(s1899 5.0)
(s1900 5.0)
(s1901 2.0)
(s1903 4.0)
(s1904 5.0)
(s1905 5.0)
(s1906 2.0)
(s1908 4.0)
(s1909 5.0)
(s1910 5.0)
(s1911 2.0)
(s1913 4.0)
(s1914 5.0)
(s1915 5.0)
(s1916 2.0)
(s1918 4.0)
(s1919 5.0)
(s1920 5.0)
(s1921 2.0)
(s1923 4.0)
(s1924 5.0)
(s1925 5.0)
(s1926 2.0)
(s1928 4.0)
(s1929 5.0)
(s1930 5.0)
(s1931 2.0)
(s1933 4.0)
(s1934 5.0)
(s1935 5.0)
(s1936 2.0)
(s1938 4.0)
(s1939 5.0)
(s1940 5.0)
(s1941 2.0)
(s1943 4.0)
(s1944 5.0)
(s1945 5.0)
(s1946 2.0)
(s1948 4.0)
(s1949 5.0)
(s1950 5.0)
(s1951 2.0)
(s1953 4.0)
(s1954 5.0)
(s1955 5.0)
(s1956 2.0)
(s1958 4.0)
(s1959 5.0)
(s1960 5.0)
(s1961 2.0)
(s1963 4.0)
(s1964 5.0)
(s1965 5.0)
(s1966 2.0)
(s1968 4.0)
(s1969 5.0)
(s1970 5.0)
(s1971 2.0)
(s1973 4.0)
(s1974 5.0)
(s1975 5.0)
(s1976 2.0)
(s1978 4.0)
(s1979 5.0)
(s1980 5.0)
(s1981 2.0)
(s1983 4.0)
(s1984 5.0)
(s1985 5.0)
(s1986 2.0)
(s1988 4.0)
(s1989 5.0)
(s1990 5.0)
(s1991 2.0)
(s1993 4.0)
(s1994 5.0)
(s1995 5.0)
(s1996 2.0)
(s1998 4.0)
(s1999 5.0)
(s2000 5.0)
(s2001 2.0)
(s2003 4.0)
(s2004 5.0)
(s2005 5.0)
(s2006 2.0)
(s2008 4.0)
(s2009 5.0)
(s2010 5.0)
(s2011 2.0)
(s2013 4.0)
(s2014 5.0)
(s2015 5.0)
(s2016 2.0)
(s2018 4.0)
(s2019 5.0)
(s2020 5.0)
(s2021 2.0)
(s2023 4.0)
(s2024 5.0)
(s2025 5.0)
(s2026 2.0)
(s2028 4.0)
(s2029 5.0)
(s2030 5.0)
(s2031 2.0)
(s2033 4.0)
(s2034 5.0)
(s2035 5.0)
(s2036 2.0)
(s2038 4.0)
(s2039 5.0)
(s2040 5.0)
(s2041 2.0)
(s2043 4.0)
(s2044 5.0)
(s2045 5.0)
(s2046 2.0)
(s2048 4.0)
(s2049 5.0)
(s2050 5.0)
(s2051 2.0)
(s2053 4.0)
(s2054 5.0)
(s2055 5.0)
(s2056 2.0)
(s2058 4.0)
(s2059 5.0)
(s2060 5.0)
(s2061 2.0)
(s2063 4.0)
(s2064 5.0)
(s2065 5.0)
(s2066 2.0)
(s2068 4.0)
(s2069 5.0)
(s2070 5.0)
(s2071 2.0)
(s2073 4.0)
(s2074 5.0)
(s2075 5.0)
(s2076 2.0)
(s2078 4.0)
(s2079 5.0)
(s2080 5.0)
(s2081 2.0)
(s2083 4.0)
(s2084 5.0)
(s2085 5.0)
(s2086 2.0)
(s2088 4.0)
(s2089 5.0)
(s2090 5.0)
(s2091 2.0)
(s2093 4.0)
(s2094 5.0)
(s2095 5.0)
(s2096 2.0)
(s2098 4.0)
(s2099 5.0)
(s2100 5.0)
(s2101 2.0)
(s2103 4.0)
(s2104 5.0)
(s2105 5.0)
(s2106 2.0)
(s2108 4.0)
(s2109 5.0)
(s2110 5.0)
(s2111 2.0)
(s2113 4.0)
(s2114 5.0)
(s2115 5.0)
(s2116 2.0)
(s2118 4.0)
(s2119 5.0)
(s2120 5.0)
(s2121 2.0)
(s2123 4.0)
(s2124 5.0)
(s2125 5.0)
(s2126 2.0)
(s2128 4.0)
(s2129 5.0)
(s2130 5.0)
(s2131 2.0)
(s2133 4.0)
(s2134 5.0)
(s2135 5.0)
(s2136 2.0)
(s2138 4.0)
(s2139 5.0)
(s2140 5.0)
(s2141 2.0)
(s2143 4.0)
(s2144 5.0)
(s2145 5.0)
(s2146 2.0)
(s2148 4.0)
(s2149 5.0)
(s2150 5.0)
(s2151 2.0)
(s2153 4.0)
(s2154 5.0)
(s2155 5.0)
(s2156 2.0)
(s2158 4.0)
(s2159 5.0)
(s2160 5.0)
(s2161 2.0)
(s2163 4.0)
(s2164 5.0)
(s2165 5.0)
(s2166 2.0)
(s2168 4.0)
(s2169 5.0)
(s2170 5.0)
(s2171 2.0)
(s2173 4.0)
(s2174 5.0)
(s2175 5.0)
(s2176 2.0)
(s2178 4.0)
(s2179 5.0)
(s2180 5.0)
(s2181 2.0)
(s2183 4.0)
(s2184 5.0)
(s2185 5.0)
(s2186 2.0)
(s2188 4.0)
(s2189 5.0)
(s2190 5.0)
(s2191 2.0)
(s2193 4.0)
(s2194 5.0)
(s2195 5.0)
(s2196 2.0)
(s2198 4.0)
(s2199 5.0)
(s2200 5.0)
(s2201 2.0)
(s2203 4.0)
(s2204 5.0)
(s2205 5.0)
(s2206 2.0)
(s2208 4.0)
(s2209 5.0)
(s2210 5.0)
(s2211 2.0)
(s2213 4.0)
(s2214 5.0)
(s2215 5.0)
(s2216 2.0)
(s2218 4.0)
(s2219 5.0)
(s2220 5.0)
(s2221 2.0)
(s2223 4.0)
(s2224 5.0)
(s2225 5.0)
(s2226 2.0)
(s2228 4.0)
(s2229 5.0)
(s2230 5.0)
(s2231 2.0)
(s2233 4.0)
(s2234 5.0)
(s2235 5.0)
(s2236 2.0)
(s2238 4.0)
(s2239 5.0)
(s2240 5.0)
(s2241 2.0)
(s2243 4.0)
(s2244 5.0)
(s2245 5.0)
(s2246 2.0)
(s2248 4.0)
(s2249 5.0)
(s2250 5.0)
(s2251 2.0)
(s2253 4.0)
(s2254 5.0)
(s2255 5.0)
(s2256 2.0)
(s2258 4.0)
(s2259 5.0)
(s2260 5.0)
(s2261 2.0)
(s2263 4.0)
(s2264 5.0)
(s2265 5.0)
(s2266 2.0)
(s2268 4.0)
(s2269 5.0)
(s2270 5.0)
(s2271 2.0)
(s2273 4.0)
(s2274 5.0)
(s2275 5.0)
(s2276 2.0)
(s2278 4.0)
(s2279 5.0)
(s2280 5.0)
(s2281 2.0)
(s2283 4.0)
(s2284 5.0)
(s2285 5.0)
(s2286 2.0)
(s2288 4.0)
(s2289 5.0)
(s2290 5.0)
(s2291 2.0)
(s2293 4.0)
(s2294 5.0)
(s2295 5.0)
(s2296 2.0)
(s2298 4.0)
(s2299 5.0)
(s2300 5.0)
(s2301 2.0)
(s2303 4.0)
(s2304 5.0)
(s2305 5.0)
(s2306 2.0)
(s2308 4.0)
(s2309 5.0)
(s2310 5.0)
(s2311 2.0)
(s2313 4.0)
(s2314 5.0)
(s2315 5.0)
(s2316 2.0)
(s2318 4.0)
(s2319 5.0)
(s2320 5.0)
(s2321 2.0)
(s2323 4.0)
(s2324 5.0)
(s2325 5.0)
(s2326 2.0)
(s2328 4.0)
(s2329 5.0)
(s2330 5.0)
(s2331 2.0)
(s2333 4.0)
(s2334 5.0)
(s2335 5.0)
(s2336 2.0)
(s2338 4.0)
(s2339 5.0)
(s2340 5.0)
(s2341 2.0)
(s2343 4.0)
(s2344 5.0)
(s2345 5.0)
(s2346 2.0)
(s2348 4.0)
(s2349 5.0)
(s2350 5.0)
(s2351 2.0)
(s2353 4.0)
(s2354 5.0)
(s2355 5.0)
(s2356 2.0)
(s2358 4.0)
(s2359 5.0)
(s2360 5.0)
(s2361 2.0)
(s2363 4.0)
(s2364 5.0)
(s2365 5.0)
(s2366 2.0)
(s2368 4.0)
(s2369 5.0)
(s2370 5.0)
(s2371 2.0)
(s2373 4.0)
(s2374 5.0)
(s2375 5.0)
(s2376 2.0)
(s2378 4.0)
(s2379 5.0)
(s2380 5.0)
(s2381 2.0)
(s2383 4.0)
(s2384 5.0)
(s2385 5.0)
(s2386 2.0)
(s2388 4.0)
(s2389 5.0)
(s2390 5.0)
(s2391 2.0)
(s2393 4.0)
(s2394 5.0)
(s2395 5.0)
(s2396 2.0)
(s2398 4.0)
(s2399 5.0)
(s2400 5.0)
(s2401 2.0)
(s2403 4.0)
(s2404 5.0)
(s2405 5.0)
(s2406 2.0)
(s2408 4.0)
(s2409 5.0)
(s2410 5.0)
(s2411 2.0)
(s2413 4.0)
(s2414 5.0)
(s2415 5.0)
(s2416 2.0)
(s2418 4.0)
(s2419 5.0)
(s2420 5.0)
(s2421 2.0)
(s2423 4.0)
(s2424 5.0)
(s2425 5.0)
(s2426 2.0)
(s2428 4.0)
(s2429 5.0)
(s2430 5.0)
(s2431 2.0)
(s2433 4.0)
(s2434 5.0)
(s2435 5.0)
(s2436 2.0)
(s2438 4.0)
(s2439 5.0)
(s2440 5.0)
(s2441 2.0)
(s2443 4.0)
(s2444 5.0)
(s2445 5.0)
(s2446 2.0)
(s2448 4.0)
(s2449 5.0)
(s2450 5.0)
(s2451 2.0)
(s2453 4.0)
(s2454 5.0)
(s2455 5.0)
(s2456 2.0)
(s2458 4.0)
(s2459 5.0)
(s2460 5.0)
(s2461 2.0)
(s2463 4.0)
(s2464 5.0)
(s2465 5.0)
(s2466 2.0)
(s2468 4.0)
(s2469 5.0)
(s2470 5.0)
(s2471 2.0)
(s2473 4.0)
(s2474 5.0)
(s2475 5.0)
(s2476 2.0)
(s2478 4.0)
(s2479 5.0)
(s2480 5.0)
(s2481 2.0)
(s2483 4.0)
(s2484 5.0)
(s2485 5.0)
(s2486 2.0)
(s2488 4.0)
(s2489 5.0)
(s2490 5.0)
(s2491 2.0)
(s2493 4.0)
(s2494 5.0)
(s2495 5.0)
(s2496 2.0)
(s2498 4.0)
(s2499 5.0)
(s2500 5.0)
(s2501 2.0)
(s2503 4.0)
(s2504 5.0)
(s2505 5.0)
(s2506 2.0)
(s2508 4.0)
(s2509 5.0)
(s2510 5.0)
(s2511 2.0)
(s2513 4.0)
(s2514 5.0)
(s2515 5.0)
(s2516 2.0)
(s2518 4.0)
(s2519 5.0)
(s2520 5.0)
(s2521 2.0)
(s2523 4.0)
(s2524 5.0)
(s2525 5.0)
(s2526 2.0)
(s2528 4.0)
(s2529 5.0)
(s2530 5.0)
(s2531 2.0)
(s2533 4.0)
(s2534 5.0)
(s2535 5.0)
(s2536 2.0)
(s2538 4.0)
(s2539 5.0)
(s2540 5.0)
(s2541 2.0)
(s2543 4.0)
(s2544 5.0)
(s2545 5.0)
(s2546 2.0)
(s2548 4.0)
(s2549 5.0)
(s2550 5.0)
(s2551 2.0)
(s2553 4.0)
(s2554 5.0)
(s2555 5.0)
(s2556 2.0)
(s2558 4.0)
(s2559 5.0)
(s2560 5.0)
(s2561 2.0)
(s2563 4.0)
(s2564 5.0)
(s2565 5.0)
(s2566 2.0)
(s2568 4.0)
(s2569 5.0)
(s2570 5.0)
(s2571 2.0)
(s2573 4.0)
(s2574 5.0)
(s2575 5.0)
(s2576 2.0)
(s2578 4.0)
(s2579 5.0)
(s2580 5.0)
(s2581 2.0)
(s2583 4.0)
(s2584 5.0)
(s2585 5.0)
(s2586 2.0)
(s2588 4.0)
(s2589 5.0)
(s2590 5.0)
(s2591 2.0)
(s2593 4.0)
(s2594 5.0)
(s2595 5.0)
(s2596 2.0)
(s2598 4.0)
(s2599 5.0)
(s2600 5.0)
(s2601 2.0)
(s2603 4.0)
(s2604 5.0)
(s2605 5.0)
(s2606 2.0)
(s2608 4.0)
(s2609 5.0)
(s2610 5.0)
(s2611 2.0)
(s2613 4.0)
(s2614 5.0)
(s2615 5.0)
(s2616 2.0)
(s2618 4.0)
(s2619 5.0)
(s2620 5.0)
(s2621 2.0)
(s2623 4.0)
(s2624 5.0)
(s2625 5.0)
(s2626 2.0)
(s2628 4.0)
(s2629 5.0)
(s2630 5.0)
(s2631 2.0)
(s2633 4.0)
(s2634 5.0)
(s2635 5.0)
(s2636 2.0)
(s2638 4.0)
(s2639 5.0)
(s2640 5.0)
(s2641 2.0)
(s2643 4.0)
(s2644 5.0)
(s2645 5.0)
(s2646 2.0)
(s2648 4.0)
(s2649 5.0)
(s2650 5.0)
(s2651 2.0)
(s2653 4.0)
(s2654 5.0)
(s2655 5.0)
(s2656 2.0)
(s2658 4.0)
(s2659 5.0)
(s2660 5.0)
(s2661 2.0)
(s2663 4.0)
(s2664 5.0)
(s2665 5.0)
(s2666 2.0)
(s2668 4.0)
(s2669 5.0)
(s2670 5.0)
(s2671 2.0)
(s2673 4.0)
(s2674 5.0)
(s2675 5.0)
(s2676 2.0)
(s2678 4.0)
(s2679 5.0)
(s2680 5.0)
(s2681 2.0)
(s2683 4.0)
(s2684 5.0)
(s2685 5.0)
(s2686 2.0)
(s2688 4.0)
(s2689 5.0)
(s2690 5.0)
(s2691 2.0)
(s2693 4.0)
(s2694 5.0)
(s2695 5.0)
(s2696 2.0)
(s2698 4.0)
(s2699 5.0)
(s2700 5.0)
(s2701 2.0)
(s2703 4.0)
(s2704 5.0)
(s2705 5.0)
(s2706 2.0)
(s2708 4.0)
(s2709 5.0)
(s2710 5.0)
(s2711 2.0)
(s2713 4.0)
(s2714 5.0)
(s2715 5.0)
(s2716 2.0)
(s2718 4.0)
(s2719 5.0)
(s2720 5.0)
(s2721 2.0)
(s2723 4.0)
(s2724 5.0)
(s2725 5.0)
(s2726 2.0)
(s2728 4.0)
(s2729 5.0)
(s2730 5.0)
(s2731 2.0)
(s2733 4.0)
(s2734 5.0)
(s2735 5.0)
(s2736 2.0)
(s2738 4.0)
(s2739 5.0)
(s2740 5.0)
(s2741 2.0)
(s2743 4.0)
(s2744 5.0)
(s2745 5.0)
(s2746 2.0)
(s2748 4.0)
(s2749 5.0)
(s2750 5.0)
(s2751 2.0)
(s2753 4.0)
(s2754 5.0)
(s2755 5.0)
(s2756 2.0)
(s2758 4.0)
(s2759 5.0)
(s2760 5.0)
(s2761 2.0)
(s2763 4.0)
(s2764 5.0)
(s2765 5.0)
(s2766 2.0)
(s2768 4.0)
(s2769 5.0)
(s2770 5.0)
(s2771 2.0)
(s2773 4.0)
(s2774 5.0)
(s2775 5.0)
(s2776 2.0)
(s2778 4.0)
(s2779 5.0)
(s2780 5.0)
(s2781 2.0)
(s2783 4.0)
(s2784 5.0)
(s2785 5.0)
(s2786 2.0)
(s2788 4.0)
(s2789 5.0)
(s2790 5.0)
(s2791 2.0)
(s2793 4.0)
(s2794 5.0)
(s2795 5.0)
(s2796 2.0)
(s2798 4.0)
(s2799 5.0)
(s2800 5.0)
(s2801 2.0)
(s2803 4.0)
(s2804 5.0)
(s2805 5.0)
(s2806 2.0)
(s2808 4.0)
(s2809 5.0)
(s2810 5.0)
(s2811 2.0)
(s2813 4.0)
(s2814 5.0)
(s2815 5.0)
(s2816 2.0)
(s2818 4.0)
(s2819 5.0)
(s2820 5.0)
(s2821 2.0)
(s2823 4.0)
(s2824 5.0)
(s2825 5.0)
(s2826 2.0)
(s2828 4.0)
(s2829 5.0)
(s2830 5.0)
(s2831 2.0)
(s2833 4.0)
(s2834 5.0)
(s2835 5.0)
(s2836 2.0)
(s2838 4.0)
(s2839 5.0)
(s2840 5.0)
(s2841 2.0)
(s2843 4.0)
(s2844 5.0)
(s2845 5.0)
(s2846 2.0)
(s2848 4.0)
(s2849 5.0)
(s2850 5.0)
(s2851 2.0)
(s2853 4.0)
(s2854 5.0)
(s2855 5.0)
(s2856 2.0)
(s2858 4.0)
(s2859 5.0)
(s2860 5.0)
(s2861 2.0)
(s2863 4.0)
(s2864 5.0)
(s2865 5.0)
(s2866 2.0)
(s2868 4.0)
(s2869 5.0)
(s2870 5.0)
(s2871 2.0)
(s2873 4.0)
(s2874 5.0)
(s2875 5.0)
(s2876 2.0)
(s2878 4.0)
(s2879 5.0)
(s2880 5.0)
(s2881 2.0)
(s2883 4.0)
(s2884 5.0)
(s2885 5.0)
(s2886 2.0)
(s2888 4.0)
(s2889 5.0)
(s2890 5.0)
(s2891 2.0)
(s2893 4.0)
(s2894 5.0)
(s2895 5.0)
(s2896 2.0)
(s2898 4.0)
(s2899 5.0)
(s2900 5.0)
(s2901 2.0)
(s2903 4.0)
(s2904 5.0)
(s2905 5.0)
(s2906 2.0)
(s2908 4.0)
(s2909 5.0)
(s2910 5.0)
(s2911 2.0)
(s2913 4.0)
(s2914 5.0)
(s2915 5.0)
(s2916 2.0)
(s2918 4.0)
(s2919 5.0)
(s2920 5.0)
(s2921 2.0)
(s2923 4.0)
(s2924 5.0)
(s2925 5.0)
(s2926 2.0)
(s2928 4.0)
(s2929 5.0)
(s2930 5.0)
(s2931 2.0)
(s2933 4.0)
(s2934 5.0)
(s2935 5.0)
(s2936 2.0)
(s2938 4.0)
(s2939 5.0)
(s2940 5.0)
(s2941 2.0)
(s2943 4.0)
(s2944 5.0)
(s2945 5.0)
(s2946 2.0)
(s2948 4.0)
(s2949 5.0)
(s2950 5.0)
(s2951 2.0)
(s2953 4.0)
(s2954 5.0)
(s2955 5.0)
(s2956 2.0)
(s2958 4.0)
(s2959 5.0)
(s2960 5.0)
(s2961 2.0)
(s2963 4.0)
(s2964 5.0)
(s2965 5.0)
(s2966 2.0)
(s2968 4.0)
(s2969 5.0)
(s2970 5.0)
(s2971 2.0)
(s2973 4.0)
(s2974 5.0)
(s2975 5.0)
(s2976 2.0)
(s2978 4.0)
(s2979 5.0)
(s2980 5.0)
(s2981 2.0)
(s2983 4.0)
(s2984 5.0)
(s2985 5.0)
(s2986 2.0)
(s2988 4.0)
(s2989 5.0)
(s2990 5.0)
(s2991 2.0)
(s2993 4.0)
(s2994 5.0)
(s2995 5.0)
(s2996 2.0)
(s2998 4.0)
(s2999 5.0)
(s3000 5.0)
(s3001 2.0)
(s3003 4.0)
(s3004 5.0)
(s3005 5.0)
(s3006 2.0)
(s3008 4.0)
(s3009 5.0)
(s3010 5.0)
(s3011 2.0)
(s3013 4.0)
(s3014 5.0)
(s3015 5.0)
(s3016 2.0)
(s3018 4.0)
(s3019 5.0)
(s3020 5.0)
(s3021 2.0)
(s3023 4.0)
(s3024 5.0)
(s3025 5.0)
(s3026 2.0)
(s3028 4.0)
(s3029 5.0)
(s3030 5.0)
(s3031 2.0)
(s3033 4.0)
(s3034 5.0)
(s3035 5.0)
(s3036 2.0)
(s3038 4.0)
(s3039 5.0)
(s3040 5.0)
(s3041 2.0)
(s3043 4.0)
(s3044 5.0)
(s3045 5.0)
(s3046 2.0)
(s3048 4.0)
(s3049 5.0)
(s3050 5.0)
(s3051 2.0)
(s3053 4.0)
(s3054 5.0)
(s3055 5.0)
(s3056 2.0)
(s3058 4.0)
(s3059 5.0)
(s3060 5.0)
(s3061 2.0)
(s3063 4.0)
(s3064 5.0)
(s3065 5.0)
(s3066 2.0)
(s3068 4.0)
(s3069 5.0)
(s3070 5.0)
(s3071 2.0)
(s3073 4.0)
(s3074 5.0)
(s3075 5.0)
(s3076 2.0)
(s3078 4.0)
(s3079 5.0)
(s3080 5.0)
(s3081 2.0)
(s3083 4.0)
(s3084 5.0)
(s3085 5.0)
(s3086 2.0)
(s3088 4.0)
(s3089 5.0)
(s3090 5.0)
(s3091 2.0)
(s3093 4.0)
(s3094 5.0)
(s3095 5.0)
(s3096 2.0)
(s3098 4.0)
(s3099 5.0)
(s3100 5.0)
(s3101 2.0)
(s3103 4.0)
(s3104 5.0)
(s3105 5.0)
(s3106 2.0)
(s3108 4.0)
(s3109 5.0)
(s3110 5.0)
(s3111 2.0)
(s3113 4.0)
(s3114 5.0)
(s3115 5.0)
(s3116 2.0)
(s3118 4.0)
(s3119 5.0)
(s3120 5.0)
(s3121 2.0)
(s3123 4.0)
(s3124 5.0)
(s3125 5.0)
(s3126 2.0)
(s3128 4.0)
(s3129 5.0)
(s3130 5.0)
(s3131 2.0)
(s3133 4.0)
(s3134 5.0)
(s3135 5.0)
(s3136 2.0)
(s3138 4.0)
(s3139 5.0)
(s3140 5.0)
(s3141 2.0)
(s3143 4.0)
(s3144 5.0)
(s3145 5.0)
(s3146 2.0)
(s3148 4.0)
(s3149 5.0)
(s3150 5.0)
(s3151 2.0)
(s3153 4.0)
(s3154 5.0)
(s3155 5.0)
(s3156 2.0)
(s3158 4.0)
(s3159 5.0)
(s3160 5.0)
(s3161 2.0)
(s3163 4.0)
(s3164 5.0)
(s3165 5.0)
(s3166 2.0)
(s3168 4.0)
(s3169 5.0)
(s3170 5.0)
(s3171 2.0)
(s3173 4.0)
(s3174 5.0)
(s3175 5.0)
(s3176 2.0)
(s3178 4.0)
(s3179 5.0)
(s3180 5.0)
(s3181 2.0)
(s3183 4.0)
(s3184 5.0)
(s3185 5.0)
(s3186 2.0)
(s3188 4.0)
(s3189 5.0)
(s3190 5.0)
(s3191 2.0)
(s3193 4.0)
(s3194 5.0)
(s3195 5.0)
(s3196 2.0)
(s3198 4.0)
(s3199 5.0)
(s3200 5.0)
(s3201 2.0)
(s3203 4.0)
(s3204 5.0)
(s3205 5.0)
(s3206 2.0)
(s3208 4.0)
(s3209 5.0)
(s3210 5.0)
(s3211 2.0)
(s3213 4.0)
(s3214 5.0)
(s3215 5.0)
(s3216 2.0)
(s3218 4.0)
(s3219 5.0)
(s3220 5.0)
(s3221 2.0)
(s3223 4.0)
(s3224 5.0)
(s3225 5.0)
(s3226 2.0)
(s3228 4.0)
(s3229 5.0)
(s3230 5.0)
(s3231 2.0)
(s3233 4.0)
(s3234 5.0)
(s3235 5.0)
(s3236 2.0)
(s3238 4.0)
(s3239 5.0)
(s3240 5.0)
(s3241 2.0)
(s3243 4.0)
(s3244 5.0)
(s3245 5.0)
(s3246 2.0)
(s3248 4.0)
(s3249 5.0)
(s3250 5.0)
(s3251 2.0)
(s3253 4.0)
(s3254 5.0)
(s3255 5.0)
(s3256 2.0)
(s3258 4.0)
(s3259 5.0)
(s3260 5.0)
(s3261 2.0)
(s3263 4.0)
(s3264 5.0)
(s3265 5.0)
(s3266 2.0)
(s3268 4.0)
(s3269 5.0)
(s3270 5.0)
(s3271 2.0)
(s3273 4.0)
(s3274 5.0)
(s3275 5.0)
(s3276 2.0)
(s3278 4.0)
(s3279 5.0)
(s3280 5.0)
(s3281 2.0)
(s3283 4.0)
(s3284 5.0)
(s3285 5.0)
(s3286 2.0)
(s3288 4.0)
(s3289 5.0)
(s3290 5.0)
(s3291 2.0)
(s3293 4.0)
(s3294 5.0)
(s3295 5.0)
(s3296 2.0)
(s3298 4.0)
(s3299 5.0)
(s3300 5.0)
(s3301 2.0)
(s3303 4.0)
(s3304 5.0)
(s3305 5.0)
(s3306 2.0)
(s3308 4.0)
(s3309 5.0)
(s3310 5.0)
(s3311 2.0)
(s3313 4.0)
(s3314 5.0)
(s3315 5.0)
(s3316 2.0)
(s3318 4.0)
(s3319 5.0)
(s3320 5.0)
(s3321 2.0)
(s3323 4.0)
(s3324 5.0)
(s3325 5.0)
(s3326 2.0)
(s3328 4.0)
(s3329 5.0)
(s3330 5.0)
(s3331 2.0)
(s3333 4.0)
(s3334 5.0)
(s3335 5.0)
(s3336 2.0)
(s3338 4.0)
(s3339 5.0)
(s3340 5.0)
(s3341 2.0)
(s3343 4.0)
(s3344 5.0)
(s3345 5.0)
(s3346 2.0)
(s3348 4.0)
(s3349 5.0)
(s3350 5.0)
(s3351 2.0)
(s3353 4.0)
(s3354 5.0)
(s3355 5.0)
(s3356 2.0)
(s3358 4.0)
(s3359 5.0)
(s3360 5.0)
(s3361 2.0)
(s3363 4.0)
(s3364 5.0)
(s3365 5.0)
(s3366 2.0)
(s3368 4.0)
(s3369 5.0)
(s3370 5.0)
(s3371 2.0)
(s3373 4.0)
(s3374 5.0)
(s3375 5.0)
(s3376 2.0)
(s3378 4.0)
(s3379 5.0)
(s3380 5.0)
(s3381 2.0)
(s3383 4.0)
(s3384 5.0)
(s3385 5.0)
(s3386 2.0)
(s3388 4.0)
(s3389 5.0)
(s3390 5.0)
(s3391 2.0)
(s3393 4.0)
(s3394 5.0)
(s3395 5.0)
(s3396 2.0)
(s3398 4.0)
(s3399 5.0)
(s3400 5.0)
(s3401 2.0)
(s3403 4.0)
(s3404 5.0)
(s3405 5.0)
(s3406 2.0)
(s3408 4.0)
(s3409 5.0)
(s3410 5.0)
(s3411 2.0)
(s3413 4.0)
(s3414 5.0)
(s3415 5.0)
(s3416 2.0)
(s3418 4.0)
(s3419 5.0)
(s3420 5.0)
(s3421 2.0)
(s3423 4.0)
(s3424 5.0)
(s3425 5.0)
(s3426 2.0)
(s3428 4.0)
(s3429 5.0)
(s3430 5.0)
(s3431 2.0)
(s3433 4.0)
(s3434 5.0)
(s3435 5.0)
(s3436 2.0)
(s3438 4.0)
(s3439 5.0)
(s3440 5.0)
(s3441 2.0)
(s3443 4.0)
(s3444 5.0)
(s3445 5.0)
(s3446 2.0)
(s3448 4.0)
(s3449 5.0)
(s3450 5.0)
(s3451 2.0)
(s3453 4.0)
(s3454 5.0)
(s3455 5.0)
(s3456 2.0)
(s3458 4.0)
(s3459 5.0)
(s3460 5.0)
(s3461 2.0)
(s3463 4.0)
(s3464 5.0)
(s3465 5.0)
(s3466 2.0)
(s3468 4.0)
(s3469 5.0)
(s3470 5.0)
(s3471 2.0)
(s3473 4.0)
(s3474 5.0)
(s3475 5.0)
(s3476 2.0)
(s3478 4.0)
(s3479 5.0)
(s3480 5.0)
(s3481 2.0)
(s3483 4.0)
(s3484 5.0)
(s3485 5.0)
(s3486 2.0)
(s3488 4.0)
(s3489 5.0)
(s3490 5.0)
(s3491 2.0)
(s3493 4.0)
(s3494 5.0)
(s3495 5.0)
(s3496 2.0)
(s3498 4.0)
(s3499 5.0)
(s3500 5.0)
(s3501 2.0)
(s3503 4.0)
(s3504 5.0)
(s3505 5.0)
(s3506 2.0)
(s3508 4.0)
(s3509 5.0)
(s3510 5.0)
(s3511 2.0)
(s3513 4.0)
(s3514 5.0)
(s3515 5.0)
(s3516 2.0)
(s3518 4.0)
(s3519 5.0)
(s3520 5.0)
(s3521 2.0)
(s3523 4.0)
(s3524 5.0)
(s3525 5.0)
(s3526 2.0)
(s3528 4.0)
(s3529 5.0)
(s3530 5.0)
(s3531 2.0)
(s3533 4.0)
(s3534 5.0)
(s3535 5.0)
(s3536 2.0)
(s3538 4.0)
(s3539 5.0)
(s3540 5.0)
(s3541 2.0)
(s3543 4.0)
(s3544 5.0)
(s3545 5.0)
(s3546 2.0)
(s3548 4.0)
(s3549 5.0)
(s3550 5.0)
(s3551 2.0)
(s3553 4.0)
(s3554 5.0)
(s3555 5.0)
(s3556 2.0)
(s3558 4.0)
(s3559 5.0)
(s3560 5.0)
(s3561 2.0)
(s3563 4.0)
(s3564 5.0)
(s3565 5.0)
(s3566 2.0)
(s3568 4.0)
(s3569 5.0)
(s3570 5.0)
(s3571 2.0)
(s3573 4.0)
(s3574 5.0)
(s3575 5.0)
(s3576 2.0)
(s3578 4.0)
(s3579 5.0)
(s3580 5.0)
(s3581 2.0)
(s3583 4.0)
(s3584 5.0)
(s3585 5.0)
(s3586 2.0)
(s3588 4.0)
(s3589 5.0)
(s3590 5.0)
(s3591 2.0)
(s3593 4.0)
(s3594 5.0)
(s3595 5.0)
(s3596 2.0)
(s3598 4.0)
(s3599 5.0)
(s3600 5.0)
(s3601 2.0)
(s3603 4.0)
(s3604 5.0)
(s3605 5.0)
(s3606 2.0)
(s3608 4.0)
(s3609 5.0)
(s3610 5.0)
(s3611 2.0)
(s3613 4.0)
(s3614 5.0)
(s3615 5.0)
(s3616 2.0)
(s3618 4.0)
(s3619 5.0)
(s3620 5.0)
(s3621 2.0)
(s3623 4.0)
(s3624 5.0)
(s3625 5.0)
(s3626 2.0)
(s3628 4.0)
(s3629 5.0)
(s3630 5.0)
(s3631 2.0)
(s3633 4.0)
(s3634 5.0)
(s3635 5.0)
(s3636 2.0)
(s3638 4.0)
(s3639 5.0)
(s3640 5.0)
(s3641 2.0)
(s3643 4.0)
(s3644 5.0)
(s3645 5.0)
(s3646 2.0)
(s3648 4.0)
(s3649 5.0)
(s3650 5.0)
(s3651 2.0)
(s3653 4.0)
(s3654 5.0)
(s3655 5.0)
(s3656 2.0)
(s3658 4.0)
(s3659 5.0)
(s3660 5.0)
(s3661 2.0)
(s3663 4.0)
(s3664 5.0)
(s3665 5.0)
(s3666 2.0)
(s3668 4.0)
(s3669 5.0)
(s3670 5.0)
(s3671 2.0)
(s3673 4.0)
(s3674 5.0)
(s3675 5.0)
(s3676 2.0)
(s3678 4.0)
(s3679 5.0)
(s3680 5.0)
(s3681 2.0)
(s3683 4.0)
(s3684 5.0)
(s3685 5.0)
(s3686 2.0)
(s3688 4.0)
(s3689 5.0)
(s3690 5.0)
(s3691 2.0)
(s3693 4.0)
(s3694 5.0)
(s3695 5.0)
(s3696 2.0)
(s3698 4.0)
(s3699 5.0)
(s3700 5.0)
(s3701 2.0)
(s3703 4.0)
(s3704 5.0)
(s3705 5.0)
(s3706 2.0)
(s3708 4.0)
(s3709 5.0)
(s3710 5.0)
(s3711 2.0)
(s3713 4.0)
(s3714 5.0)
(s3715 5.0)
(s3716 2.0)
(s3718 4.0)
(s3719 5.0)
(s3720 5.0)
(s3721 2.0)
(s3723 4.0)
(s3724 5.0)
(s3725 5.0)
(s3726 2.0)
(s3728 4.0)
(s3729 5.0)
(s3730 5.0)
(s3731 2.0)
(s3733 4.0)
(s3734 5.0)
(s3735 5.0)
(s3736 2.0)
(s3738 4.0)
(s3739 5.0)
(s3740 5.0)
(s3741 2.0)
(s3743 4.0)
(s3744 5.0)
(s3745 5.0)
(s3746 2.0)
(s3748 4.0)
(s3749 5.0)
(s3750 5.0)
(s3751 2.0)
(s3753 4.0)
(s3754 5.0)
(s3755 5.0)
(s3756 2.0)
(s3758 4.0)
(s3759 5.0)
(s3760 5.0)
(s3761 2.0)
(s3763 4.0)
(s3764 5.0)
(s3765 5.0)
(s3766 2.0)
(s3768 4.0)
(s3769 5.0)
(s3770 5.0)
(s3771 2.0)
(s3773 4.0)
(s3774 5.0)
(s3775 5.0)
(s3776 2.0)
(s3778 4.0)
(s3779 5.0)
(s3780 5.0)
(s3781 2.0)
(s3783 4.0)
(s3784 5.0)
(s3785 5.0)
(s3786 2.0)
(s3788 4.0)
(s3789 5.0)
(s3790 5.0)
(s3791 2.0)
(s3793 4.0)
(s3794 5.0)
(s3795 5.0)
(s3796 2.0)
(s3798 4.0)
(s3799 5.0)
(s3800 5.0)
(s3801 2.0)
(s3803 4.0)
(s3804 5.0)
(s3805 5.0)
(s3806 2.0)
(s3808 4.0)
(s3809 5.0)
(s3810 5.0)
(s3811 2.0)
(s3813 4.0)
(s3814 5.0)
(s3815 5.0)
(s3816 2.0)
(s3818 4.0)
(s3819 5.0)
(s3820 5.0)
(s3821 2.0)
(s3823 4.0)
(s3824 5.0)
(s3825 5.0)
(s3826 2.0)
(s3828 4.0)
(s3829 5.0)
(s3830 5.0)
(s3831 2.0)
(s3833 4.0)
(s3834 5.0)
(s3835 5.0)
(s3836 2.0)
(s3838 4.0)
(s3839 5.0)
(s3840 5.0)
(s3841 2.0)
(s3843 4.0)
(s3844 5.0)
(s3845 5.0)
(s3846 2.0)
(s3848 4.0)
(s3849 5.0)
(s3850 5.0)
(s3851 2.0)
(s3853 4.0)
(s3854 5.0)
(s3855 5.0)
(s3856 2.0)
(s3858 4.0)
(s3859 5.0)
(s3860 5.0)
(s3861 2.0)
(s3863 4.0)
(s3864 5.0)
(s3865 5.0)
(s3866 2.0)
(s3868 4.0)
(s3869 5.0)
(s3870 5.0)
(s3871 2.0)
(s3873 4.0)
(s3874 5.0)
(s3875 5.0)
(s3876 2.0)
(s3878 4.0)
(s3879 5.0)
(s3880 5.0)
(s3881 2.0)
(s3883 4.0)
(s3884 5.0)
(s3885 5.0)
(s3886 2.0)
(s3888 4.0)
(s3889 5.0)
(s3890 5.0)
(s3891 2.0)
(s3893 4.0)
(s3894 5.0)
(s3895 5.0)
(s3896 2.0)
(s3898 4.0)
(s3899 5.0)
(s3900 5.0)
(s3901 2.0)
(s3903 4.0)
(s3904 5.0)
(s3905 5.0)
(s3906 2.0)
(s3908 4.0)
(s3909 5.0)
(s3910 5.0)
(s3911 2.0)
(s3913 4.0)
(s3914 5.0)
(s3915 5.0)
(s3916 2.0)
(s3918 4.0)
(s3919 5.0)
(s3920 5.0)
(s3921 2.0)
(s3923 4.0)
(s3924 5.0)
(s3925 5.0)
(s3926 2.0)
(s3928 4.0)
(s3929 5.0)
(s3930 5.0)
(s3931 2.0)
(s3933 4.0)
(s3934 5.0)
(s3935 5.0)
(s3936 2.0)
(s3938 4.0)
(s3939 5.0)
(s3940 5.0)
(s3941 2.0)
(s3943 4.0)
(s3944 5.0)
(s3945 5.0)
(s3946 2.0)
(s3948 4.0)
(s3949 5.0)
(s3950 5.0)
(s3951 2.0)
(s3953 4.0)
(s3954 5.0)
(s3955 5.0)
(s3956 2.0)
(s3958 4.0)
(s3959 5.0)
(s3960 5.0)
(s3961 2.0)
(s3963 4.0)
(s3964 5.0)
(s3965 5.0)
(s3966 2.0)
(s3968 4.0)
(s3969 5.0)
(s3970 5.0)
(s3971 2.0)
(s3973 4.0)
(s3974 5.0)
(s3975 5.0)
(s3976 2.0)
(s3978 4.0)
(s3979 5.0)
(s3980 5.0)
(s3981 2.0)
(s3983 4.0)
(s3984 5.0)
(s3985 5.0)
(s3986 2.0)
(s3988 4.0)
(s3989 5.0)
(s3990 5.0)
(s3991 2.0)
(s3993 4.0)
(s3994 5.0)
(s3995 5.0)
(s3996 2.0)
(s3998 4.0)
(s3999 5.0)
(s4000 5.0)
(s4001 2.0)
(s4003 4.0)
(s4004 5.0)
(s4005 5.0)
(s4006 2.0)
(s4008 4.0)
(s4009 5.0)
(s4010 5.0)
(s4011 2.0)
(s4013 4.0)
(s4014 5.0)
(s4015 5.0)
(s4016 2.0)
(s4018 4.0)
(s4019 5.0)
(s4020 5.0)
(s4021 2.0)
(s4023 4.0)
(s4024 5.0)
(s4025 5.0)
(s4026 2.0)
(s4028 4.0)
(s4029 5.0)
(s4030 5.0)
(s4031 2.0)
(s4033 4.0)
(s4034 5.0)
(s4035 5.0)
(s4036 2.0)
(s4038 4.0)
(s4039 5.0)
(s4040 5.0)
(s4041 2.0)
(s4043 4.0)
(s4044 5.0)
(s4045 5.0)
(s4046 2.0)
(s4048 4.0)
(s4049 5.0)
(s4050 5.0)
(s4051 2.0)
(s4053 4.0)
(s4054 5.0)
(s4055 5.0)
(s4056 2.0)
(s4058 4.0)
(s4059 5.0)
(s4060 5.0)
(s4061 2.0)
(s4063 4.0)
(s4064 5.0)
(s4065 5.0)
(s4066 2.0)
(s4068 4.0)
(s4069 5.0)
(s4070 5.0)
(s4071 2.0)
(s4073 4.0)
(s4074 5.0)
(s4075 5.0)
(s4076 2.0)
(s4078 4.0)
(s4079 5.0)
(s4080 5.0)
(s4081 2.0)
(s4083 4.0)
(s4084 5.0)
(s4085 5.0)
(s4086 2.0)
(s4088 4.0)
(s4089 5.0)
(s4090 5.0)
(s4091 2.0)
(s4093 4.0)
(s4094 5.0)
(s4095 5.0)
(s4096 2.0)
(s4098 4.0)
(s4099 5.0)
(s4100 5.0)
(s4101 2.0)
(s4103 4.0)
(s4104 5.0)
(s4105 5.0)
(s4106 2.0)
(s4108 4.0)
(s4109 5.0)
(s4110 5.0)
(s4111 2.0timeout
)
(s4113 org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 20152 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 12000/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 12000 unsolved
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 20137 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 0/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 56882ms problems are : Problem set: 0 solved, 12000 unsolved
Search for dead transitions found 0 dead transitions in 56899ms
[2025-06-02 08:21:54] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 08:21:57] [INFO ] Implicit Places using invariants in 2947 ms returned []
Implicit Place search using SMT only with invariants took 2948 ms to find 0 implicit places.
Running 12000 sub problems to find dead transitions.
[2025-06-02 08:21:57] [INFO ] Invariant cache hit.
[2025-06-02 08:21:57] [INFO ] State equation strengthened by 2000 read => feed constraints.
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 30131 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 12000/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 12000 unsolved
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 30137 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 0/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 77121ms problems are : Problem set: 0 solved, 12000 unsolved
Search for dead transitions found 0 dead transitions in 77139ms
Finished structural reductions in LTL mode , in 1 iterations and 137714 ms. Remains : 10000/10000 places, 16001/16001 transitions.
[2025-06-02 08:23:14] [INFO ] Flatten gal took : 303 ms
[2025-06-02 08:23:14] [INFO ] Flatten gal took : 329 ms
[2025-06-02 08:23:15] [INFO ] Input system was already deterministic with 16001 transitions.
[2025-06-02 08:23:15] [INFO ] Flatten gal took : 306 ms
[2025-06-02 08:23:16] [INFO ] Flatten gal took : 330 ms
[2025-06-02 08:23:16] [INFO ] Time to serialize gal into /tmp/CTLCardinality12371635900459851269.gal : 55 ms
[2025-06-02 08:23:16] [INFO ] Time to serialize properties into /tmp/CTLCardinality3393452832958389115.ctl : 1 ms
Invoking ITS tools like this :cd /home/mcc/execution;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64' '--gc-threshold' '2000000' '--quiet' '-i' '/tmp/CTLCardinality12371635900459851269.gal' '-t' 'CGAL' '-ctl' '/tmp/CTLCardinality3393452832958389115.ctl' '--gen-order' 'FOLLOW'
its-ctl command run as :
/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64 --gc-threshold 2000000 --quiet -...284
No direction supplied, using forward translation only.
Parsed 1 CTL formulae.
Detected timeout of ITS tools.
[2025-06-02 08:23:46] [INFO ] Flatten gal took : 314 ms
[2025-06-02 08:23:46] [INFO ] Applying decomposition
[2025-06-02 08:23:46] [INFO ] Flatten gal took : 307 ms
Converted graph to binary with : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202505121319/bin/convert-linux64' '-i' '/tmp/graph7293972558561646472.txt' '-o' '/tmp/graph7293972558561646472.bin' '-w' '/tmp/graph7293972558561646472.weights'
Built communities with : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202505121319/bin/louvain-linux64' '/tmp/graph7293972558561646472.bin' '-l' '-1' '-v' '-w' '/tmp/graph7293972558561646472.weights' '-q' '0' '-e' '0.001'
[2025-06-02 08:23:47] [INFO ] Decomposing Gal with order
[2025-06-02 08:23:48] [INFO ] Rewriting arrays to variables to allow decomposition.
[2025-06-02 08:23:53] [INFO ] Removed a total of 4 redundant transitions.
[2025-06-02 08:23:53] [INFO ] Flatten gal took : 385 ms
[2025-06-02 08:23:53] [INFO ] Fuse similar labels procedure discarded/fused a total of 8 labels/synchronizations in 558 ms.
[2025-06-02 08:23:54] [INFO ] Time to serialize gal into /tmp/CTLCardinality11487319289680146849.gal : 56 ms
[2025-06-02 08:23:54] [INFO ] Time to serialize properties into /tmp/CTLCardinality9117021205647722581.ctl : 0 ms
Invoking ITS tools like this :cd /home/mcc/execution;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64' '--gc-threshold' '2000000' '--quiet' '-i' '/tmp/CTLCardinality11487319289680146849.gal' '-t' 'CGAL' '-ctl' '/tmp/CTLCardinality9117021205647722581.ctl' '--gen-order' 'FOLLOW'
its-ctl command run as :
/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64 --gc-threshold 2000000 --quiet -...284
No direction supplied, using forward translation only.
Parsed 1 CTL formulae.
Detected timeout of ITS tools.
Starting structural reductions in LTL mode, iteration 0 : 10000/10000 places, 16001/16001 transitions.
Applied a total of 0 rules in 658 ms. Remains 10000 /10000 variables (removed 0) and now considering 16001/16001 (removed 0) transitions.
Running 12000 sub problems to find dead transitions.
[2025-06-02 08:24:24] [INFO ] Invariant cache hit.
[2025-06-02 08:24:24] [INFO ] State equation strengthened by 2000 read => feed constraints.
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 20124 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 12000/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 12000 unsolved
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 20129 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 0/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 55945ms problems are : Problem set: 0 solved, 12000 unsolved
Search for dead transitions found 0 dead transitions in 55964ms
[2025-06-02 08:25:20] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 08:25:23] [INFO ] Implicit Places using invariants in 2874 ms returned []
Implicit Place search using SMT only with invariants took 2875 ms to find 0 implicit places.
Running 12000 sub problems to find dead transitions.
[2025-06-02 08:25:23] [INFO ] Invariant cache hit.
[2025-06-02 08:25:23] [INFO ] State equation strengthened by 2000 read => feed constraints.
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 30132 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 12000/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 12000 unsolved
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 30133 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 0/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 77225ms problems are : Problem set: 0 solved, 12000 unsolved
Search for dead transitions found 0 dead transitions in 77238ms
Finished structural reductions in LTL mode , in 1 iterations and 136767 ms. Remains : 10000/10000 places, 16001/16001 transitions.
[2025-06-02 08:26:41] [INFO ] Flatten gal took : 297 ms
[2025-06-02 08:26:41] [INFO ] Flatten gal took : 326 ms
[2025-06-02 08:26:42] [INFO ] Input system was already deterministic with 16001 transitions.
[2025-06-02 08:26:42] [INFO ] Flatten gal took : 305 ms
[2025-06-02 08:26:42] [INFO ] Flatten gal took : 326 ms
[2025-06-02 08:26:42] [INFO ] Time to serialize gal into /tmp/CTLCardinality9822812109999351624.gal : 55 ms
[2025-06-02 08:26:42] [INFO ] Time to serialize properties into /tmp/CTLCardinality17217870770985868263.ctl : 0 ms
Invoking ITS tools like this :cd /home/mcc/execution;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64' '--gc-threshold' '2000000' '--quiet' '-i' '/tmp/CTLCardinality9822812109999351624.gal' '-t' 'CGAL' '-ctl' '/tmp/CTLCardinality17217870770985868263.ctl' '--gen-order' 'FOLLOW'
its-ctl command run as :
/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64 --gc-threshold 2000000 --quiet -...284
No direction supplied, using forward translation only.
Parsed 1 CTL formulae.
Detected timeout of ITS tools.
[2025-06-02 08:27:13] [INFO ] Flatten gal took : 305 ms
[2025-06-02 08:27:13] [INFO ] Applying decomposition
[2025-06-02 08:27:13] [INFO ] Flatten gal took : 325 ms
Converted graph to binary with : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202505121319/bin/convert-linux64' '-i' '/tmp/graph14942730046325929114.txt' '-o' '/tmp/graph14942730046325929114.bin' '-w' '/tmp/graph14942730046325929114.weights'
Built communities with : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202505121319/bin/louvain-linux64' '/tmp/graph14942730046325929114.bin' '-l' '-1' '-v' '-w' '/tmp/graph14942730046325929114.weights' '-q' '0' '-e' '0.001'
[2025-06-02 08:27:14] [INFO ] Decomposing Gal with order
[2025-06-02 08:27:15] [INFO ] Rewriting arrays to variables to allow decomposition.
[2025-06-02 08:27:19] [INFO ] Removed a total of 1 redundant transitions.
[2025-06-02 08:27:19] [INFO ] Flatten gal took : 366 ms
[2025-06-02 08:27:20] [INFO ] Fuse similar labels procedure discarded/fused a total of 2 labels/synchronizations in 533 ms.
[2025-06-02 08:27:20] [INFO ] Time to serialize gal into /tmp/CTLCardinality14005251264882935896.gal : 55 ms
[2025-06-02 08:27:20] [INFO ] Time to serialize properties into /tmp/CTLCardinality11328801100926609278.ctl : 0 ms
Invoking ITS tools like this :cd /home/mcc/execution;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64' '--gc-threshold' '2000000' '--quiet' '-i' '/tmp/CTLCardinality14005251264882935896.gal' '-t' 'CGAL' '-ctl' '/tmp/CTLCardinality11328801100926609278.ctl' '--gen-order' 'FOLLOW'
its-ctl command run as :
/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64 --gc-threshold 2000000 --quiet -...285
No direction supplied, using forward translation only.
Parsed 1 CTL formulae.
Detected timeout of ITS tools.
Starting structural reductions in LTL mode, iteration 0 : 10000/10000 places, 16001/16001 transitions.
Applied a total of 0 rules in 657 ms. Remains 10000 /10000 variables (removed 0) and now considering 16001/16001 (removed 0) transitions.
Running 12000 sub problems to find dead transitions.
[2025-06-02 08:27:51] [INFO ] Invariant cache hit.
[2025-06-02 08:27:51] [INFO ] State equation strengthened by 2000 read => feed constraints.
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 20126 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 12000/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 12000 unsolved
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 20127 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 0/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 56481ms problems are : Problem set: 0 solved, 12000 unsolved
Search for dead transitions found 0 dead transitions in 56496ms
[2025-06-02 08:28:47] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 08:28:50] [INFO ] Implicit Places using invariants in 2802 ms returned []
Implicit Place search using SMT only with invariants took 2803 ms to find 0 implicit places.
Running 12000 sub problems to find dead transitions.
[2025-06-02 08:28:50] [INFO ] Invariant cache hit.
[2025-06-02 08:28:50] [INFO ] State equation strengthened by 2000 read => feed constraints.
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 30146 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 12000/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 12000 unsolved
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 30133 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 0/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 77938ms problems are : Problem set: 0 solved, 12000 unsolved
Search for dead transitions found 0 dead transitions in 77958ms
Finished structural reductions in LTL mode , in 1 iterations and 137940 ms. Remains : 10000/10000 places, 16001/16001 transitions.
[2025-06-02 08:30:08] [INFO ] Flatten gal took : 271 ms
[2025-06-02 08:30:09] [INFO ] Flatten gal took : 291 ms
[2025-06-02 08:30:09] [INFO ] Input system was already deterministic with 16001 transitions.
[2025-06-02 08:30:09] [INFO ] Flatten gal took : 276 ms
[2025-06-02 08:30:10] [INFO ] Flatten gal took : 302 ms
[2025-06-02 08:30:10] [INFO ] Time to serialize gal into /tmp/CTLCardinality13114763958139236911.gal : 55 ms
[2025-06-02 08:30:10] [INFO ] Time to serialize properties into /tmp/CTLCardinality2714639678203754986.ctl : 0 ms
Invoking ITS tools like this :cd /home/mcc/execution;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64' '--gc-threshold' '2000000' '--quiet' '-i' '/tmp/CTLCardinality13114763958139236911.gal' '-t' 'CGAL' '-ctl' '/tmp/CTLCardinality2714639678203754986.ctl' '--gen-order' 'FOLLOW'
its-ctl command run as :
/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64 --gc-threshold 2000000 --quiet -...284
No direction supplied, using forward translation only.
Parsed 1 CTL formulae.
Detected timeout of ITS tools.
[2025-06-02 08:30:40] [INFO ] Flatten gal took : 282 ms
[2025-06-02 08:30:40] [INFO ] Applying decomposition
[2025-06-02 08:30:40] [INFO ] Flatten gal took : 310 ms
Converted graph to binary with : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202505121319/bin/convert-linux64' '-i' '/tmp/graph9648701367600708992.txt' '-o' '/tmp/graph9648701367600708992.bin' '-w' '/tmp/graph9648701367600708992.weights'
Built communities with : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202505121319/bin/louvain-linux64' '/tmp/graph9648701367600708992.bin' '-l' '-1' '-v' '-w' '/tmp/graph9648701367600708992.weights' '-q' '0' '-e' '0.001'
[2025-06-02 08:30:41] [INFO ] Decomposing Gal with order
[2025-06-02 08:30:42] [INFO ] Rewriting arrays to variables to allow decomposition.
[2025-06-02 08:30:47] [INFO ] Removed a total of 4 redundant transitions.
[2025-06-02 08:30:47] [INFO ] Flatten gal took : 360 ms
[2025-06-02 08:30:47] [INFO ] Fuse similar labels procedure discarded/fused a total of 8 labels/synchronizations in 512 ms.
[2025-06-02 08:30:47] [INFO ] Time to serialize gal into /tmp/CTLCardinality9180676672137072076.gal : 55 ms
[2025-06-02 08:30:47] [INFO ] Time to serialize properties into /tmp/CTLCardinality9112735555728622592.ctl : 0 ms
Invoking ITS tools like this :cd /home/mcc/execution;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64' '--gc-threshold' '2000000' '--quiet' '-i' '/tmp/CTLCardinality9180676672137072076.gal' '-t' 'CGAL' '-ctl' '/tmp/CTLCardinality9112735555728622592.ctl' '--gen-order' 'FOLLOW'
its-ctl command run as :
/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64 --gc-threshold 2000000 --quiet -...283
No direction supplied, using forward translation only.
Parsed 1 CTL formulae.
Detected timeout of ITS tools.
Starting structural reductions in LTL mode, iteration 0 : 10000/10000 places, 16001/16001 transitions.
Applied a total of 0 rules in 658 ms. Remains 10000 /10000 variables (removed 0) and now considering 16001/16001 (removed 0) transitions.
Running 12000 sub problems to find dead transitions.
[2025-06-02 08:31:18] [INFO ] Invariant cache hit.
[2025-06-02 08:31:18] [INFO ] State equation strengthened by 2000 read => feed constraints.
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 20144 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 12000/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 12000 unsolved
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 20134 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 0/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 56328ms problems are : Problem set: 0 solved, 12000 unsolved
Search for dead transitions found 0 dead transitions in 56342ms
[2025-06-02 08:32:15] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 08:32:17] [INFO ] Implicit Places using invariants in 2821 ms returned []
Implicit Place search using SMT only with invariants took 2824 ms to find 0 implicit places.
Running 12000 sub problems to find dead transitions.
[2025-06-02 08:32:17] [INFO ] Invariant cache hit.
[2025-06-02 08:32:17] [INFO ] State equation strengthened by 2000 read => feed constraints.
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 30142 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 12000/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 12000 unsolved
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 30176 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 0/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 77445ms problems are : Problem set: 0 solved, 12000 unsolved
Search for dead transitions found 0 dead transitions in 77460ms
Finished structural reductions in LTL mode , in 1 iterations and 137313 ms. Remains : 10000/10000 places, 16001/16001 transitions.
[2025-06-02 08:33:35] [INFO ] Flatten gal took : 272 ms
[2025-06-02 08:33:35] [INFO ] Flatten gal took : 294 ms
[2025-06-02 08:33:36] [INFO ] Input system was already deterministic with 16001 transitions.
[2025-06-02 08:33:36] [INFO ] Flatten gal took : 282 ms
[2025-06-02 08:33:36] [INFO ] Flatten gal took : 288 ms
[2025-06-02 08:33:37] [INFO ] Time to serialize gal into /tmp/CTLCardinality13092312149505479035.gal : 51 ms
[2025-06-02 08:33:37] [INFO ] Time to serialize properties into /tmp/CTLCardinality7570699533641942218.ctl : 1 ms
Invoking ITS tools like this :cd /home/mcc/execution;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64' '--gc-threshold' '2000000' '--quiet' '-i' '/tmp/CTLCardinality13092312149505479035.gal' '-t' 'CGAL' '-ctl' '/tmp/CTLCardinality7570699533641942218.ctl' '--gen-order' 'FOLLOW'
its-ctl command run as :
/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64 --gc-threshold 2000000 --quiet -...284
No direction supplied, using forward translation only.
Parsed 1 CTL formulae.
Detected timeout of ITS tools.
[2025-06-02 08:34:07] [INFO ] Flatten gal took : 301 ms
[2025-06-02 08:34:07] [INFO ] Applying decomposition
[2025-06-02 08:34:07] [INFO ] Flatten gal took : 311 ms
Converted graph to binary with : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202505121319/bin/convert-linux64' '-i' '/tmp/graph5614340876403947052.txt' '-o' '/tmp/graph5614340876403947052.bin' '-w' '/tmp/graph5614340876403947052.weights'
Built communities with : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202505121319/bin/louvain-linux64' '/tmp/graph5614340876403947052.bin' '-l' '-1' '-v' '-w' '/tmp/graph5614340876403947052.weights' '-q' '0' '-e' '0.001'
[2025-06-02 08:34:08] [INFO ] Decomposing Gal with order
[2025-06-02 08:34:09] [INFO ] Rewriting arrays to variables to allow decomposition.
[2025-06-02 08:34:13] [INFO ] Removed a total of 2 redundant transitions.
[2025-06-02 08:34:13] [INFO ] Flatten gal took : 395 ms
[2025-06-02 08:34:14] [INFO ] Fuse similar labels procedure discarded/fused a total of 4 labels/synchronizations in 525 ms.
[2025-06-02 08:34:14] [INFO ] Time to serialize gal into /tmp/CTLCardinality7981342837319325941.gal : 58 ms
[2025-06-02 08:34:14] [INFO ] Time to serialize properties into /tmp/CTLCardinality12643426581923455075.ctl : 0 ms
Invoking ITS tools like this :cd /home/mcc/execution;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64' '--gc-threshold' '2000000' '--quiet' '-i' '/tmp/CTLCardinality7981342837319325941.gal' '-t' 'CGAL' '-ctl' '/tmp/CTLCardinality12643426581923455075.ctl' '--gen-order' 'FOLLOW'
its-ctl command run as :
/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64 --gc-threshold 2000000 --quiet -...284
No direction supplied, using forward translation only.
Parsed 1 CTL formulae.
Detected timeout of ITS tools.
Starting structural reductions in LTL mode, iteration 0 : 10000/10000 places, 16001/16001 transitions.
Applied a total of 0 rules in 675 ms. Remains 10000 /10000 variables (removed 0) and now considering 16001/16001 (removed 0) transitions.
Running 12000 sub problems to find dead transitions.
[2025-06-02 08:34:45] [INFO ] Invariant cache hit.
[2025-06-02 08:34:45] [INFO ] State equation strengthened by 2000 read => feed constraints.
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 20131 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 12000/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 12000 unsolved
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 20189 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 0/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 57790ms problems are : Problem set: 0 solved, 12000 unsolved
Search for dead transitions found 0 dead transitions in 57808ms
[2025-06-02 08:35:43] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 08:35:46] [INFO ] Implicit Places using invariants in 2806 ms returned []
Implicit Place search using SMT only with invariants took 2808 ms to find 0 implicit places.
Running 12000 sub problems to find dead transitions.
[2025-06-02 08:35:46] [INFO ] Invariant cache hit.
[2025-06-02 08:35:46] [INFO ] State equation strengthened by 2000 read => feed constraints.
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 30136 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 12000/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 12000 unsolved
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 30182 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 0/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 77104ms problems are : Problem set: 0 solved, 12000 unsolved
Search for dead transitions found 0 dead transitions in 77121ms
Finished structural reductions in LTL mode , in 1 iterations and 138451 ms. Remains : 10000/10000 places, 16001/16001 transitions.
[2025-06-02 08:37:03] [INFO ] Flatten gal took : 280 ms
[2025-06-02 08:37:03] [INFO ] Flatten gal took : 289 ms
[2025-06-02 08:37:04] [INFO ] Input system was already deterministic with 16001 transitions.
[2025-06-02 08:37:04] [INFO ] Flatten gal took : 277 ms
[2025-06-02 08:37:04] [INFO ] Flatten gal took : 291 ms
[2025-06-02 08:37:05] [INFO ] Time to serialize gal into /tmp/CTLCardinality10599530816102942658.gal : 52 ms
[2025-06-02 08:37:05] [INFO ] Time to serialize properties into /tmp/CTLCardinality4705046246541398737.ctl : 0 ms
Invoking ITS tools like this :cd /home/mcc/execution;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64' '--gc-threshold' '2000000' '--quiet' '-i' '/tmp/CTLCardinality10599530816102942658.gal' '-t' 'CGAL' '-ctl' '/tmp/CTLCardinality4705046246541398737.ctl' '--gen-order' 'FOLLOW'
its-ctl command run as :
/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64 --gc-threshold 2000000 --quiet -...284
No direction supplied, using forward translation only.
Parsed 1 CTL formulae.
Detected timeout of ITS tools.
[2025-06-02 08:37:35] [INFO ] Flatten gal took : 295 ms
[2025-06-02 08:37:35] [INFO ] Applying decomposition
[2025-06-02 08:37:35] [INFO ] Flatten gal took : 324 ms
Converted graph to binary with : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202505121319/bin/convert-linux64' '-i' '/tmp/graph1711214260406192780.txt' '-o' '/tmp/graph1711214260406192780.bin' '-w' '/tmp/graph1711214260406192780.weights'
Built communities with : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202505121319/bin/louvain-linux64' '/tmp/graph1711214260406192780.bin' '-l' '-1' '-v' '-w' '/tmp/graph1711214260406192780.weights' '-q' '0' '-e' '0.001'
[2025-06-02 08:37:36] [INFO ] Decomposing Gal with order
[2025-06-02 08:37:37] [INFO ] Rewriting arrays to variables to allow decomposition.
[2025-06-02 08:37:41] [INFO ] Removed a total of 1 redundant transitions.
[2025-06-02 08:37:41] [INFO ] Flatten gal took : 384 ms
[2025-06-02 08:37:42] [INFO ] Fuse similar labels procedure discarded/fused a total of 2 labels/synchronizations in 578 ms.
[2025-06-02 08:37:42] [INFO ] Time to serialize gal into /tmp/CTLCardinality51034216378049435.gal : 52 ms
[2025-06-02 08:37:42] [INFO ] Time to serialize properties into /tmp/CTLCardinality2712645895301359740.ctl : 0 ms
Invoking ITS tools like this :cd /home/mcc/execution;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64' '--gc-threshold' '2000000' '--quiet' '-i' '/tmp/CTLCardinality51034216378049435.gal' '-t' 'CGAL' '-ctl' '/tmp/CTLCardinality2712645895301359740.ctl' '--gen-order' 'FOLLOW'
its-ctl command run as :
/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64 --gc-threshold 2000000 --quiet -...281
No direction supplied, using forward translation only.
Parsed 1 CTL formulae.
Detected timeout of ITS tools.
Starting structural reductions in LTL mode, iteration 0 : 10000/10000 places, 16001/16001 transitions.
Applied a total of 0 rules in 660 ms. Remains 10000 /10000 variables (removed 0) and now considering 16001/16001 (removed 0) transitions.
Running 12000 sub problems to find dead transitions.
[2025-06-02 08:38:13] [INFO ] Invariant cache hit.
[2025-06-02 08:38:13] [INFO ] State equation strengthened by 2000 read => feed constraints.
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Error getting values : (error "Error writing to Z3 solver: java.io.IOException: Broken pipe")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 20135 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 12000/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 12000 unsolved
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 20133 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 0/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 56735ms problems are : Problem set: 0 solved, 12000 unsolved
Search for dead transitions found 0 dead transitions in 56753ms
[2025-06-02 08:39:10] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 08:39:12] [INFO ] Implicit Places using invariants in 2786 ms returned []
Implicit Place search using SMT only with invariants took 2788 ms to find 0 implicit places.
Running 12000 sub problems to find dead transitions.
[2025-06-02 08:39:12] [INFO ] Invariant cache hit.
[2025-06-02 08:39:13] [INFO ] State equation strengthened by 2000 read => feed constraints.
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Error getting values : (error "ParserException while parsing response: ((s0 5.0)
(s1 2.0)
(s3 4.0)
(s4 5.0)
(s5 5.0)
(s6 2.0)
(s8 4.0)
(s9 5.0)
(s10 5.0)
(s11 2.0)
(s13 4.0)
(s14 5.0)
(s15 5.0)
(s16 2.0)
(s18 4.0)
(s19 5.0)
(s20 5.0)
(s21 2.0)
(s23 4.0)
(s24 5.0)
(s25 5.0)
(s26 2.0)
(s28 4.0)
(s29 5.0)
(s30 5.0)
(s31 2.0)
(s33 4.0)
(s34 5.0)
(s35 5.0)
(s36 2.0)
(s38 4.0)
(s39 5.0)
(s40 5.0)
(s41 2.0)
(s43 4.0)
(s44 5.0)
(s45 5.0)
(s46 2.0)
(s48 4.0)
(s49 5.0)
(s50 5.0)
(s51 2.0)
(s53 4.0)
(s54 5.0)
(s55 5.0)
(s56 2.0)
(s58 4.0)
(s59 5.0)
(s60 5.0)
(s61 2.0)
(s63 4.0)
(s64 5.0)
(s65 5.0)
(s66 2.0)
(s68 4.0)
(s69 5.0)
(s70 5.0)
(s71 2.0)
(s73 4.0)
(s74 5.0)
(s75 5.0)
(s76 2.0)
(s78 4.0)
(s79 5.0)
(s80 5.0)
(s81 2.0)
(s83 4.0)
(s84 5.0)
(s85 5.0)
(s86 2.0)
(s88 4.0)
(s89 5.0)
(s90 5.0)
(s91 2.0)
(s93 4.0)
(s94 5.0)
(s95 5.0)
(s96 2.0)
(s98 4.0)
(s99 5.0)
(s100 5.0)
(s101 2.0)
(s103 4.0)
(s104 5.0)
(s105 5.0)
(s106 2.0)
(s108 4.0)
(s109 5.0)
(s110 5.0)
(s111 2.0)
(s113 4.0)
(s114 5.0)
(s115 5.0)
(s116 2.0)
(s118 4.0)
(s119 5.0)
(s120 5.0)
(s121 2.0)
(s123 4.0)
(s124 5.0)
(s125 5.0)
(s126 2.0)
(s128 4.0)
(s129 5.0)
(s130 5.0)
(s131 2.0)
(s133 4.0)
(s134 5.0)
(s135 5.0)
(s136 2.0)
(s138 4.0)
(s139 5.0)
(s140 5.0)
(s141 2.0)
(s143 4.0)
(s144 5.0)
(s145 5.0)
(s146 2.0)
(s148 4.0)
(s149 5.0)
(s150 5.0)
(s151 2.0)
(s153 4.0)
(s154 5.0)
(s155 5.0)
(s156 2.0)
(s158 4.0)
(s159 5.0)
(s160 5.0)
(s161 2.0)
(s163 4.0)
(s164 5.0)
(s165 5.0)
(s166 2.0)
(s168 4.0)
(s169 5.0)
(s170 5.0)
(s171 2.0)
(s173 4.0)
(s174 5.0)
(s175 5.0)
(s176 2.0)
(s178 4.0)
(s179 5.0)
(s180 5.0)
(s181 2.0)
(s183 4.0)
(s184 5.0)
(s185 5.0)
(s186 2.0)
(s188 4.0)
(s189 5.0)
(s190 5.0)
(s191 2.0)
(s193 4.0)
(s194 5.0)
(s195 5.0)
(s196 2.0)
(s198 4.0)
(s199 5.0)
(s200 5.0)
(s201 2.0)
(s203 4.0)
(s204 5.0)
(s205 5.0)
(s206 2.0)
(s208 4.0)
(s209 5.0)
(s210 5.0)
(s211 2.0)
(s213 4.0)
(s214 5.0)
(s215 5.0)
(s216 2.0)
(s218 4.0)
(s219 5.0)
(s220 5.0)
(s221 2.0)
(s223 4.0)
(s224 5.0)
(s225 5.0)
(s226 2.0)
(s228 4.0)
(s229 5.0)
(s230 5.0)
(s231 2.0)
(s233 4.0)
(s234 5.0)
(s235 5.0)
(s236 2.0)
(s238 4.0)
(s239 5.0)
(s240 5.0)
(s241 2.0)
(s243 4.0)
(s244 5.0)
(s245 5.0)
(s246 2.0)
(s248 4.0)
(s249 5.0)
(s250 5.0)
(s251 2.0)
(s253 4.0)
(s254 5.0)
(s255 5.0)
(s256 2.0)
(s258 4.0)
(s259 5.0)
(s260 5.0)
(s261 2.0)
(s263 4.0)
(s264 5.0)
(s265 5.0)
(s266 2.0)
(s268 4.0)
(s269 5.0)
(s270 5.0)
(s271 2.0)
(s273 4.0)
(s274 5.0)
(s275 5.0)
(s276 2.0)
(s278 4.0)
(s279 5.0)
(s280 5.0)
(s281 2.0)
(s283 4.0)
(s284 5.0)
(s285 5.0)
(s286 2.0)
(s288 4.0)
(s289 5.0)
(s290 5.0)
(s291 2.0)
(s293 4.0)
(s294 5.0)
(s295 5.0)
(s296 2.0)
(s298 4.0)
(s299 5.0)
(s300 5.0)
(s301 2.0)
(s303 4.0)
(s304 5.0)
(s305 5.0)
(s306 2.0)
(s308 4.0)
(s309 5.0)
(s310 5.0)
(s311 2.0)
(s313 4.0)
(s314 5.0)
(s315 5.0)
(s316 2.0)
(s318 4.0)
(s319 5.0)
(s320 5.0)
(s321 2.0)
(s323 4.0)
(s324 5.0)
(s325 5.0)
(s326 2.0)
(s328 4.0)
(s329 5.0)
(s330 5.0)
(s331 2.0)
(s333 4.0)
(s334 5.0)
(s335 5.0)
(s336 2.0)
(s338 4.0)
(s339 5.0)
(s340 5.0)
(s341 2.0)
(s343 4.0)
(s344 5.0)
(s345 5.0)
(s346 2.0)
(s348 4.0)
(s349 5.0)
(s350 5.0)
(s351 2.0)
(s353 4.0)
(s354 5.0)
(s355 5.0)
(s356 2.0)
(s358 4.0)
(s359 5.0)
(s360 5.0)
(s361 2.0)
(s363 4.0)
(s364 5.0)
(s365 5.0)
(s366 2.0)
(s368 4.0)
(s369 5.0)
(s370 5.0)
(s371 2.0)
(s373 4.0)
(s374 5.0)
(s375 5.0)
(s376 2.0)
(s378 4.0)
(s379 5.0)
(s380 5.0)
(s381 2.0)
(s383 4.0)
(s384 5.0)
(s385 5.0)
(s386 2.0)
(s388 4.0)
(s389 5.0)
(s390 5.0)
(s391 2.0)
(s393 4.0)
(s394 5.0)
(s395 5.0)
(s396 2.0)
(s398 4.0)
(s399 5.0)
(s400 5.0)
(s401 2.0)
(s403 4.0)
(s404 5.0)
(s405 5.0)
(s406 2.0)
(s408 4.0)
(s409 5.0)
(s410 5.0)
(s411 2.0)
(s413 4.0)
(s414 5.0)
(s415 5.0)
(s416 2.0)
(s418 4.0)
(s419 5.0)
(s420 5.0)
(s421 2.0)
(s423 4.0)
(s424 5.0)
(s425 5.0)
(s426 2.0)
(s428 4.0)
(s429 5.0)
(s430 5.0)
(s431 2.0)
(s433 4.0)
(s434 5.0)
(s435 5.0)
(s436 2.0)
(s438 4.0)
(s439 5.0)
(s440 5.0)
(s441 2.0)
(s443 4.0)
(s444 5.0)
(s445 5.0)
(s446 2.0)
(s448 4.0)
(s449 5.0)
(s450 5.0)
(s451 2.0)
(s453 4.0)
(s454 5.0)
(s455 5.0)
(s456 2.0)
(s458 4.0)
(s459 5.0)
(s460 5.0)
(s461 2.0)
(s463 4.0)
(s464 5.0)
(s465 5.0)
(s466 2.0)
(s468 4.0)
(s469 5.0)
(s470 5.0)
(s471 2.0)
(s473 4.0)
(s474 5.0)
(s475 5.0)
(s476 2.0)
(s478 4.0)
(s479 5.0)
(s480 5.0)
(s481 2.0)
(s483 4.0)
(s484 5.0)
(s485 5.0)
(s486 2.0)
(s488 4.0)
(s489 5.0)
(s490 5.0)
(s491 2.0)
(s493 4.0)
(s494 5.0)
(s495 5.0)
(s496 2.0)
(s498 4.0)
(s499 5.0)
(s500 5.0)
(s501 2.0)
(s503 4.0)
(s504 5.0)
(s505 5.0)
(s506 2.0)
(s508 4.0)
(s509 5.0)
(s510 5.0)
(s511 2.0)
(s513 4.0)
(s514 5.0)
(s515 5.0)
(s516 2.0)
(s518 4.0)
(s519 5.0)
(s520 5.0)
(s521 2.0)
(s523 4.0)
(s524 5.0)
(s525 5.0)
(s526 2.0)
(s528 4.0)
(s529 5.0)
(s530 5.0)
(s531 2.0)
(s533 4.0)
(s534 5.0)
(s535 5.0)
(s536 2.0)
(s538 4.0)
(s539 5.0)
(s540 5.0)
(s541 2.0)
(s543 4.0)
(s544 5.0)
(s545 5.0)
(s546 2.0)
(s548 4.0)
(s549 5.0)
(s550 5.0)
(s551 2.0)
(s553 4.0)
(s554 5.0)
(s555 5.0)
(s556 2.0)
(s558 4.0)
(s559 5.0)
(s560 5.0)
(s561 2.0)
(s563 4.0)
(s564 5.0)
(s565 5.0)
(s566 2.0)
(s568 4.0)
(s569 5.0)
(s570 5.0)
(s571 2.0)
(s573 4.0)
(s574 5.0)
(s575 5.0)
(s576 2.0)
(s578 4.0)
(s579 5.0)
(s580 5.0)
(s581 2.0)
(s583 4.0)
(s584 5.0)
(s585 5.0)
(s586 2.0)
(s588 4.0)
(s589 5.0)
(s590 5.0)
(s591 2.0)
(s593 4.0)
(s594 5.0)
(s595 5.0)
(s596 2.0)
(s598 4.0)
(s599 5.0)
(s600 5.0)
(s601 2.0)
(s603 4.0)
(s604 5.0)
(s605 5.0)
(s606 2.0)
(s608 4.0)
(s609 5.0)
(s610 5.0)
(s611 2.0)
(s613 4.0)
(s614 5.0)
(s615 5.0)
(s616 2.0)
(s618 4.0)
(s619 5.0)
(s620 5.0)
(s621 2.0)
(s623 4.0)
(s624 5.0)
(s625 5.0)
(s626 2.0)
(s628 4.0)
(s629 5.0)
(s630 5.0)
(s631 2.0)
(s633 4.0)
(s634 5.0)
(s635 5.0)
(s636 2.0)
(s638 4.0)
(s639 5.0)
(s640 5.0)
(s641 2.0)
(s643 4.0)
(s644 5.0)
(s645 5.0)
(s646 2.0)
(s648 4.0)
(s649 5.0)
(s650 5.0)
(s651 2.0)
(s653 4.0)
(s654 5.0)
(s655 5.0)
(s656 2.0)
(s658 4.0)
(s659 5.0)
(s660 5.0)
(s661 2.0)
(s663 4.0)
(s664 5.0)
(s665 5.0)
(s666 2.0)
(s668 4.0)
(s669 5.0)
(s670 5.0)
(s671 2.0)
(s673 4.0)
(s674 5.0)
(s675 5.0)
(s676 2.0)
(s678 4.0)
(s679 5.0)
(s680 5.0)
(s681 2.0)
(s683 4.0)
(s684 5.0)
(s685 5.0)
(s686 2.0)
(s688 4.0)
(s689 5.0)
(s690 5.0)
(s691 2.0)
(s693 4.0)
(s694 5.0)
(s695 5.0)
(s696 2.0)
(s698 4.0)
(s699 5.0)
(s700 5.0)
(s701 2.0)
(s703 4.0)
(s704 5.0)
(s705 5.0)
(s706 2.0)
(s708 4.0)
(s709 5.0)
(s710 5.0)
(s711 2.0)
(s713 4.0)
(s714 5.0)
(s715 5.0)
(s716 2.0)
(s718 4.0)
(s719 5.0)
(s720 5.0)
(s721 2.0)
(s723 4.0)
(s724 5.0)
(s725 5.0)
(s726 2.0)
(s728 4.0)
(s729 5.0)
(s730 5.0)
(s731 2.0)
(s733 4.0)
(s734 5.0)
(s735 5.0)
(s736 2.0)
(s738 4.0)
(s739 5.0)
(s740 5.0)
(s741 2.0)
(s743 4.0)
(s744 5.0)
(s745 5.0)
(s746 2.0)
(s748 4.0)
(s749 5.0)
(s750 5.0)
(s751 2.0)
(s753 4.0)
(s754 5.0)
(s755 5.0)
(s756 2.0)
(s758 4.0)
(s759 5.0)
(s760 5.0)
(s761 2.0)
(s763 4.0)
(s764 5.0)
(s765 5.0)
(s766 2.0)
(s768 4.0)
(s769 5.0)
(s770 5.0)
(s771 2.0)
(s773 4.0)
(s774 5.0)
(s775 5.0)
(s776 2.0)
(s778 4.0)
(s779 5.0)
(s780 5.0)
(s781 2.0)
(s783 4.0)
(s784 5.0)
(s785 5.0)
(s786 2.0)
(s788 4.0)
(s789 5.0)
(s790 5.0)
(s791 2.0)
(s793 4.0)
(s794 5.0)
(s795 5.0)
(s796 2.0)
(s798 4.0)
(s799 5.0)
(s800 5.0)
(s801 2.0)
(s803 4.0)
(s804 5.0)
(s805 5.0)
(s806 2.0)
(s808 4.0)
(s809 5.0)
(s810 5.0)
(s811 2.0)
(s813 4.0)
(s814 5.0)
(s815 5.0)
(s816 2.0)
(s818 4.0)
(s819 5.0)
(s820 5.0)
(s821 2.0)
(s823 4.0)
(s824 5.0)
(s825 5.0)
(s826 2.0)
(s828 4.0)
(s829 5.0)
(s830 5.0)
(s831 2.0)
(s833 4.0)
(s834 5.0)
(s835 5.0)
(s836 2.0)
(s838 4.0)
(s839 5.0)
(s840 5.0)
(s841 2.0)
(s843 4.0)
(s844 5.0)
(s845 5.0)
(s846 2.0)
(s848 4.0)
(s849 5.0)
(s850 5.0)
(s851 2.0)
(s853 4.0)
(s854 5.0)
(s855 5.0)
(s856 2.0)
(s858 4.0)
(s859 5.0)
(s860 5.0)
(s861 2.0)
(s863 4.0)
(s864 5.0)
(s865 5.0)
(s866 2.0)
(s868 4.0)
(s869 5.0)
(s870 5.0)
(s871 2.0)
(s873 4.0)
(s874 5.0)
(s875 5.0)
(s876 2.0)
(s878 4.0)
(s879 5.0)
(s880 5.0)
(s881 2.0)
(s883 4.0)
(s884 5.0)
(s885 5.0)
(s886 2.0)
(s888 4.0)
(s889 5.0)
(s890 5.0)
(s891 2.0)
(s893 4.0)
(s894 5.0)
(s895 5.0)
(s896 2.0)
(s898 4.0)
(s899 5.0)
(s900 5.0)
(s901 2.0)
(s903 4.0)
(s904 5.0)
(s905 5.0)
(s906 2.0)
(s908 4.0)
(s909 5.0)
(s910 5.0)
(s911 2.0)
(s913 4.0)
(s914 5.0)
(s915 5.0)
(s916 2.0)
(s918 4.0)
(s919 5.0)
(s920 5.0)
(s921 2.0)
(s923 4.0)
(s924 5.0)
(s925 5.0)
(s926 2.0)
(s928 4.0)
(s929 5.0)
(s930 5.0)
(s931 2.0)
(s933 4.0)
(s934 5.0)
(s935 5.0)
(s936 2.0)
(s938 4.0)
(s939 5.0)
(s940 5.0)
(s941 2.0)
(s943 4.0)
(s944 5.0)
(s945 5.0)
(s946 2.0)
(s948 4.0)
(s949 5.0)
(s950 5.0)
(s951 2.0)
(s953 4.0)
(s954 5.0)
(s955 5.0)
(s956 2.0)
(s958 4.0)
(s959 5.0)
(s960 5.0)
(s961 2.0)
(s963 4.0)
(s964 5.0)
(s965 5.0)
(s966 2.0)
(s968 4.0)
(s969 5.0)
(s970 5.0)
(s971 2.0)
(s973 4.0)
(s974 5.0)
(s975 5.0)
(s976 2.0)
(s978 4.0)
(s979 5.0)
(s980 5.0)
(s981 2.0)
(s983 4.0)
(s984 5.0)
(s985 5.0)
(s986 2.0)
(s988 4.0)
(s989 5.0)
(s990 5.0)
(s991 2.0)
(s993 4.0)
(s994 5.0)
(s995 5.0)
(s996 2.0)
(s998 4.0)
(s999 5.0)
(s1000 5.0)
(s1001 2.0)
(s1003 4.0)
(s1004 5.0)
(s1005 5.0)
(s1006 2.0)
(s1008 4.0)
(s1009 5.0)
(s1010 5.0)
(s1011 2.0)
(s1013 4.0)
(s1014 5.0)
(s1015 5.0)
(s1016 2.0)
(s1018 4.0)
(s1019 5.0)
(s1020 5.0)
(s1021 2.0)
(s1023 4.0)
(s1024 5.0)
(s1025 5.0)
(s1026 2.0)
(s1028 4.0)
(s1029 5.0)
(s1030 5.0)
(s1031 2.0)
(s1033 4.0)
(s1034 5.0)
(s1035 5.0)
(s1036 2.0)
(s1038 4.0)
(s1039 5.0)
(s1040 5.0)
(s1041 2.0)
(s1043 4.0)
(s1044 5.0)
(s1045 5.0)
(s1046 2.0)
(s1048 4.0)
(s1049 5.0)
(s1050 5.0)
(s1051 2.0)
(s1053 4.0)
(s1054 5.0)
(s1055 5.0)
(s1056 2.0)
(s1058 4.0)
(s1059 5.0)
(s1060 5.0)
(s1061 2.0)
(s1063 4.0)
(s1064 5.0)
(s1065 5.0)
(s1066 2.0)
(s1068 4.0)
(s1069 5.0)
(s1070 5.0)
(s1071 2.0)
(s1073 4.0)
(s1074 5.0)
(s1075 5.0)
(s1076 2.0)
(s1078 4.0)
(s1079 5.0)
(s1080 5.0)
(s1081 2.0)
(s1083 4.0)
(s1084 5.0)
(s1085 5.0)
(s1086 2.0)
(s1088 4.0)
(s1089 5.0)
(s1090 5.0)
(s1091 2.0)
(s1093 4.0)
(s1094 5.0)
(s1095 5.0)
(s1096 2.0)
(s1098 4.0)
(s1099 5.0)
(s1100 5.0)
(s1101 2.0)
(s1103 4.0)
(s1104 5.0)
(s1105 5.0)
(s1106 2.0)
(s1108 4.0)
(s1109 5.0)
(s1110 5.0)
(s1111 2.0)
(s1113 4.0)
(s1114 5.0)
(s1115 5.0)
(s1116 2.0)
(s1118 4.0)
(s1119 5.0)
(s1120 5.0)
(s1121 2.0)
(s1123 4.0)
(s1124 5.0)
(s1125 5.0)
(s1126 2.0)
(s1128 4.0)
(s1129 5.0)
(s1130 5.0)
(s1131 2.0)
(s1133 4.0)
(s1134 5.0)
(s1135 5.0)
(s1136 2.0)
(s1138 4.0)
(s1139 5.0)
(s1140 5.0)
(s1141 2.0)
(s1143 4.0)
(s1144 5.0)
(s1145 5.0)
(s1146 2.0)
(s1148 4.0)
(s1149 5.0)
(s1150 5.0)
(s1151 2.0)
(s1153 4.0)
(s1154 5.0)
(s1155 5.0)
(s1156 2.0)
(s1158 4.0)
(s1159 5.0)
(s1160 5.0)
(s1161 2.0)
(s1163 4.0)
(s1164 5.0)
(s1165 5.0)
(s1166 2.0)
(s1168 4.0)
(s1169 5.0)
(s1170 5.0)
(s1171 2.0)
(s1173 4.0)
(s1174 5.0)
(s1175 5.0)
(s1176 2.0)
(s1178 4.0)
(s1179 5.0)
(s1180 5.0)
(s1181 2.0)
(s1183 4.0)
(s1184 5.0)
(s1185 5.0)
(s1186 2.0)
(s1188 4.0)
(s1189 5.0)
(s1190 5.0)
(s1191 2.0)
(s1193 4.0)
(s1194 5.0)
(s1195 5.0)
(s1196 2.0)
(s1198 4.0)
(s1199 5.0)
(s1200 5.0)
(s1201 2.0)
(s1203 4.0)
(s1204 5.0)
(s1205 5.0)
(s1206 2.0)
(s1208 4.0)
(s1209 5.0)
(s1210 5.0)
(s1211 2.0)
(s1213 4.0)
(s1214 5.0)
(s1215 5.0)
(s1216 2.0)
(s1218 4.0)
(s1219 5.0)
(s1220 5.0)
(s1221 2.0)
(s1223 4.0)
(s1224 5.0)
(s1225 5.0)
(s1226 2.0)
(s1228 4.0)
(s1229 5.0)
(s1230 5.0)
(s1231 2.0)
(s1233 4.0)
(s1234 5.0)
(s1235 5.0)
(s1236 2.0)
(s1238 4.0)
(s1239 5.0)
(s1240 5.0)
(s1241 2.0)
(s1243 4.0)
(s1244 5.0)
(s1245 5.0)
(s1246 2.0)
(s1248 4.0)
(s1249 5.0)
(s1250 5.0)
(s1251 2.0)
(s1253 4.0)
(s1254 5.0)
(s1255 5.0)
(s1256 2.0)
(s1258 4.0)
(s1259 5.0)
(s1260 5.0)
(s1261 2.0)
(s1263 4.0)
(s1264 5.0)
(s1265 5.0)
(s1266 2.0)
(s1268 4.0)
(s1269 5.0)
(s1270 5.0)
(s1271 2.0)
(s1273 4.0)
(s1274 5.0)
(s1275 5.0)
(s1276 2.0)
(s1278 4.0)
(s1279 5.0)
(s1280 5.0)
(s1281 2.0)
(s1283 4.0)
(s1284 5.0)
(s1285 5.0)
(s1286 2.0)
(s1288 4.0)
(s1289 5.0)
(s1290 5.0)
(s1291 2.0)
(s1293 4.0)
(s1294 5.0)
(s1295 5.0)
(s1296 2.0)
(s1298 4.0)
(s1299 5.0)
(s1300 5.0)
(s1301 2.0)
(s1303 4.0)
(s1304 5.0)
(s1305 5.0)
(s1306 2.0)
(s1308 4.0)
(s1309 5.0)
(s1310 5.0)
(s1311 2.0)
(s1313 4.0)
(s1314 5.0)
(s1315 5.0)
(s1316 2.0)
(s1318 4.0)
(s1319 5.0)
(s1320 5.0)
(s1321 2.0)
(s1323 4.0)
(s1324 5.0)
(s1325 5.0)
(s1326 2.0)
(s1328 4.0)
(s1329 5.0)
(s1330 5.0)
(s1331 2.0)
(s1333 4.0)
(s1334 5.0)
(s1335 5.0)
(s1336 2.0)
(s1338 4.0)
(s1339 5.0)
(s1340 5.0)
(s1341 2.0)
(s1343 4.0)
(s1344 5.0)
(s1345 5.0)
(s1346 2.0)
(s1348 4.0)
(s1349 5.0)
(s1350 5.0)
(s1351 2.0)
(s1353 4.0)
(s1354 5.0)
(s1355 5.0)
(s1356 2.0)
(s1358 4.0)
(s1359 5.0)
(s1360 5.0)
(s1361 2.0)
(s1363 4.0)
(s1364 5.0)
(s1365 5.0)
(s1366 2.0)
(s1368 4.0)
(s1369 5.0)
(s1370 5.0)
(s1371 2.0)
(s1373 4.0)
(s1374 5.0)
(s1375 5.0)
(s1376 2.0)
(s1378 4.0)
(s1379 5.0)
(s1380 5.0)
(s1381 2.0)
(s1383 4.0)
(s1384 5.0)
(s1385 5.0)
(s1386 2.0)
(s1388 4.0)
(s1389 5.0)
(s1390 5.0)
(s1391 2.0)
(s1393 4.0)
(s1394 5.0)
(s1395 5.0)
(s1396 2.0)
(s1398 4.0)
(s1399 5.0)
(s1400 5.0)
(s1401 2.0)
(s1403 4.0)
(s1404 5.0)
(s1405 5.0)
(s1406 2.0)
(s1408 4.0)
(s1409 5.0)
(s1410 5.0)
(s1411 2.0)
(s1413 4.0)
(s1414 5.0)
(s1415 5.0)
(s1416 2.0)
(s1418 4.0)
(s1419 5.0)
(s1420 5.0)
(s1421 2.0)
(s1423 4.0)
(s1424 5.0)
(s1425 5.0)
(s1426 2.0)
(s1428 4.0)
(s1429 5.0)
(s1430 5.0)
(s1431 2.0)
(s1433 4.0)
(s1434 5.0)
(s1435 5.0)
(s1436 2.0)
(s1438 4.0)
(s1439 5.0)
(s1440 5.0)
(s1441 2.0)
(s1443 4.0)
(s1444 5.0)
(s1445 5.0)
(s1446 2.0)
(s1448 4.0)
(s1449 5.0)
(s1450 5.0)
(s1451 2.0)
(s1453 4.0)
(s1454 5.0)
(s1455 5.0)
(s1456 2.0)
(s1458 4.0)
(s1459 5.0)
(s1460 5.0)
(s1461 2.0)
(s1463 4.0)
(s1464 5.0)
(s1465 5.0)
(s1466 2.0)
(s1468 4.0)
(s1469 5.0)
(s1470 5.0)
(s1471 2.0)
(s1473 4.0)
(s1474 5.0)
(s1475 5.0)
(s1476 2.0)
(s1478 4.0)
(s1479 5.0)
(s1480 5.0)
(s1481 2.0)
(s1483 4.0)
(s1484 5.0)
(s1485 5.0)
(s1486 2.0)
(s1488 4.0)
(s1489 5.0)
(s1490 5.0)
(s1491 2.0)
(s1493 4.0)
(s1494 5.0)
(s1495 5.0)
(s1496 2.0)
(s1498 4.0)
(s1499 5.0)
(s1500 5.0)
(s1501 2.0)
(s1503 4.0)
(s1504 5.0)
(s1505 5.0)
(s1506 2.0)
(s1508 4.0)
(s1509 5.0)
(s1510 5.0)
(s1511 2.0)
(s1513 4.0)
(s1514 5.0)
(s1515 5.0)
(s1516 2.0)
(s1518 4.0)
(s1519 5.0)
(s1520 5.0)
(s1521 2.0)
(s1523 4.0)
(s1524 5.0)
(s1525 5.0)
(s1526 2.0)
(s1528 4.0)
(s1529 5.0)
(s1530 5.0)
(s1531 2.0)
(s1533 4.0)
(s1534 5.0)
(s1535 5.0)
(s1536 2.0)
(s1538 4.0)
(s1539 5.0)
(s1540 5.0)
(s1541 2.0)
(s1543 4.0)
(s1544 5.0)
(s1545 5.0)
(s1546 2.0)
(s1548 4.0)
(s1549 5.0)
(s1550 5.0)
(s1551 2.0)
(s1553 4.0)
(s1554 5.0)
(s1555 5.0)
(s1556 2.0)
(s1558 4.0)
(s1559 5.0)
(s1560 5.0)
(s1561 2.0)
(s1563 4.0)
(s1564 5.0)
(s1565 5.0)
(s1566 2.0)
(s1568 4.0)
(s1569 5.0)
(s1570 5.0)
(s1571 2.0)
(s1573 4.0)
(s1574 5.0)
(s1575 5.0)
(s1576 2.0)
(s1578 4.0)
(s1579 5.0)
(s1580 5.0)
(s1581 2.0)
(s1583 4.0)
(s1584 5.0)
(s1585 5.0)
(s1586 2.0)
(s1588 4.0)
(s1589 5.0)
(s1590 5.0)
(s1591 2.0)
(s1593 4.0)
(s1594 5.0)
(s1595 5.0)
(s1596 2.0)
(s1598 4.0)
(s1599 5.0)
(s1600 5.0)
(s1601 2.0)
(s1603 4.0)
(s1604 5.0)
(s1605 5.0)
(s1606 2.0)
(s1608 4.0)
(s1609 5.0)
(s1610 5.0)
(s1611 2.0)
(s1613 4.0)
(s1614 5.0)
(s1615 5.0)
(s1616 2.0)
(s1618 4.0)
(s1619 5.0)
(s1620 5.0)
(s1621 2.0)
(s1623 4.0)
(s1624 5.0)
(s1625 5.0)
(s1626 2.0)
(s1628 4.0)
(s1629 5.0)
(s1630 5.0)
(s1631 2.0)
(s1633 4.0)
(s1634 5.0)
(s1635 5.0)
(s1636 2.0)
(s1638 4.0)
(s1639 5.0)
(s1640 5.0)
(s1641 2.0)
(s1643 4.0)
(s1644 5.0)
(s1645 5.0)
(s1646 2.0)
(s1648 4.0)
(s1649 5.0)
(s1650 5.0)
(s1651 2.0)
(s1653 4.0)
(s1654 5.0)
(s1655 5.0)
(s1656 2.0)
(s1658 4.0)
(s1659 5.0)
(s1660 5.0)
(s1661 2.0)
(s1663 4.0)
(s1664 5.0)
(s1665 5.0)
(s1666 2.0)
(s1668 4.0)
(s1669 5.0)
(s1670 5.0)
(s1671 2.0)
(s1673 4.0)
(s1674 5.0)
(s1675 5.0)
(s1676 2.0)
(s1678 4.0)
(s1679 5.0)
(s1680 5.0)
(s1681 2.0)
(s1683 4.0)
(s1684 5.0)
(s1685 5.0)
(s1686 2.0)
(s1688 4.0)
(s1689 5.0)
(s1690 5.0)
(s1691 2.0)
(s1693 4.0)
(s1694 5.0)
(s1695 5.0)
(s1696 2.0)
(s1698 4.0)
(s1699 5.0)
(s1700 5.0)
(s1701 2.0)
(s1703 4.0)
(s1704 5.0)
(s1705 5.0)
(s1706 2.0)
(s1708 4.0)
(s1709 5.0)
(s1710 5.0)
(s1711 2.0)
(s1713 4.0)
(s1714 5.0)
(s1715 5.0)
(s1716 2.0)
(s1718 4.0)
(s1719 5.0)
(s1720 5.0)
(s1721 2.0)
(s1723 4.0)
(s1724 5.0)
(s1725 5.0)
(s1726 2.0)
(s1728 4.0)
(s1729 5.0)
(s1730 5.0)
(s1731 2.0)
(s1733 4.0)
(s1734 5.0)
(s1735 5.0)
(s1736 2.0)
(s1738 4.0)
(s1739 5.0)
(s1740 5.0)
(s1741 2.0)
(s1743 4.0)
(s1744 5.0)
(s1745 5.0)
(s1746 2.0)
(s1748 4.0)
(s1749 5.0)
(s1750 5.0)
(s1751 2.0)
(s1753 4.0)
(s1754 5.0)
(s1755 5.0)
(s1756 2.0)
(s1758 4.0)
(s1759 5.0)
(s1760 5.0)
(s1761 2.0)
(s1763 4.0)
(s1764 5.0)
(s1765 5.0)
(s1766 2.0)
(s1768 4.0)
(s1769 5.0)
(s1770 5.0)
(s1771 2.0)
(s1773 4.0)
(s1774 5.0)
(s1775 5.0)
(s1776 2.0)
(s1778 4.0)
(s1779 5.0)
(s1780 5.0)
(s1781 2.0)
(s1783 4.0)
(s1784 5.0)
(s1785 5.0)
(s1786 2.0)
(s1788 4.0)
(s1789 5.0)
(s1790 5.0)
(s1791 2.0)
(s1793 4.0)
(s1794 5.0)
(s1795 5.0)
(s1796 2.0)
(s1798 4.0)
(s1799 5.0)
(s1800 5.0)
(s1801 2.0)
(s1803 4.0)
(s1804 5.0)
(s1805 5.0)
(s1806 2.0)
(s1808 4.0)
(s1809 5.0)
(s1810 5.0)
(s1811 2.0)
(s1813 4.0)
(s1814 5.0)
(s1815 5.0)
(s1816 2.0)
(s1818 4.0)
(s1819 5.0)
(s1820 5.0)
(s1821 2.0)
(s1823 4.0)
(s1824 5.0)
(s1825 5.0)
(s1826 2.0)
(s1828 4.0)
(s1829 5.0)
(s1830 5.0)
(s1831 2.0)
(s1833 4.0)
(s1834 5.0)
(s1835 5.0)
(s1836 2.0)
(s1838 4.0)
(s1839 5.0)
(s1840 5.0)
(s1841 2.0)
(s1843 4.0)
(s1844 5.0)
(s1845 5.0)
(s1846 2.0)
(s1848 4.0)
(s1849 5.0)
(s1850 5.0)
(s1851 2.0)
(s1853 4.0)
(s1854 5.0)
(s1855 5.0)
(s1856 2.0)
(s1858 4.0)
(s1859 5.0)
(s1860 5.0)
(s1861 2.0)
(s1863 4.0)
(s1864 5.0)
(s1865 5.0)
(s1866 2.0)
(s1868 4.0)
(s1869 5.0)
(s1870 5.0)
(s1871 2.0)
(s1873 4.0)
(s1874 5.0)
(s1875 5.0)
(s1876 2.0)
(s1878 4.0)
(s1879 5.0)
(s1880 5.0)
(s1881 2.0)
(s1883 4.0)
(s1884 5.0)
(s1885 5.0)
(s1886 2.0)
(s1888 4.0)
(s1889 5.0)
(s1890 5.0)
(s1891 2.0)
(s1893 4.0)
(s1894 5.0)
(s1895 5.0)
(s1896 2.0)
(s1898 4.0)
(s1899 5.0)
(s1900 5.0)
(s1901 2.0)
(s1903 4.0)
(s1904 5.0)
(s1905 5.0)
(s1906 2.0)
(s1908 4.0)
(s1909 5.0)
(s1910 5.0)
(s1911 2.0)
(s1913 4.0)
(s1914 5.0)
(s1915 5.0)
(s1916 2.0)
(s1918 4.0)
(s1919 5.0)
(s1920 5.0)
(s1921 2.0)
(s1923 4.0)
(s1924 5.0)
(s1925 5.0)
(s1926 2.0)
(s1928 4.0)
(s1929 5.0)
(s1930 5.0)
(s1931 2.0)
(s1933 4.0)
(s1934 5.0)
(s1935 5.0)
(s1936 2.0)
(s1938 4.0)
(s1939 5.0)
(s1940 5.0)
(s1941 2.0)
(s1943 4.0)
(s1944 5.0)
(s1945 5.0)
(s1946 2.0)
(s1948 4.0)
(s1949 5.0)
(s1950 5.0)
(s1951 2.0)
(s1953 4.0)
(s1954 5.0)
(s1955 5.0)
(s1956 2.0)
(s1958 4.0)
(s1959 5.0)
(s1960 5.0)
(s1961 2.0)
(s1963 4.0)
(s1964 5.0)
(s1965 5.0)
(s1966 2.0)
(s1968 4.0)
(s1969 5.0)
(s1970 5.0)
(s1971 2.0)
(s1973 4.0)
(s1974 5.0)
(s1975 5.0)
(s1976 2.0)
(s1978 4.0)
(s1979 5.0)
(s1980 5.0)
(s1981 2.0)
(s1983 4.0)
(s1984 5.0)
(s1985 5.0)
(s1986 2.0)
(s1988 4.0)
(s1989 5.0)
(s1990 5.0)
(s1991 2.0)
(s1993 4.0)
(s1994 5.0)
(s1995 5.0)
(s1996 2.0)
(s1998 4.0)
(s1999 5.0)
(s2000 5.0)
(s2001 2.0)
(s2003 4.0)
(s2004 5.0)
(s2005 5.0)
(s2006 2.0)
(s2008 4.0)
(s2009 5.0)
(s2010 5.0)
(s2011 2.0)
(s2013 4.0)
(s2014 5.0)
(s2015 5.0)
(s2016 2.0)
(s2018 4.0)
(s2019 5.0)
(s2020 5.0)
(s2021 2.0)
(s2023 4.0)
(s2024 5.0)
(s2025 5.0)
(s2026 2.0)
(s2028 4.0)
(s2029 5.0)
(s2030 5.0)
(s2031 2.0)
(s2033 4.0)
(s2034 5.0)
(s2035 5.0)
(s2036 2.0)
(s2038 4.0)
(s2039 5.0)
(s2040 5.0)
(s2041 2.0)
(s2043 4.0)
(s2044 5.0)
(s2045 5.0)
(s2046 2.0)
(s2048 4.0)
(s2049 5.0)
(s2050 5.0)
(s2051 2.0)
(s2053 4.0)
(s2054 5.0)
(s2055 5.0)
(s2056 2.0)
(s2058 4.0)
(s2059 5.0)
(s2060 5.0)
(s2061 2.0)
(s2063 4.0)
(s2064 5.0)
(s2065 5.0)
(s2066 2.0)
(s2068 4.0)
(s2069 5.0)
(s2070 5.0)
(s2071 2.0)
(s2073 4.0)
(s2074 5.0)
(s2075 5.0)
(s2076 2.0)
(s2078 4.0)
(s2079 5.0)
(s2080 5.0)
(s2081 2.0)
(s2083 4.0)
(s2084 5.0)
(s2085 5.0)
(s2086 2.0)
(s2088 4.0)
(s2089 5.0)
(s2090 5.0)
(s2091 2.0)
(s2093 4.0)
(s2094 5.0)
(s2095 5.0)
(s2096 2.0)
(s2098 4.0)
(s2099 5.0)
(s2100 5.0)
(s2101 2.0)
(s2103 4.0)
(s2104 5.0)
(s2105 5.0)
(s2106 2.0)
(s2108 4.0)
(s2109 5.0)
(s2110 5.0)
(s2111 2.0)
(s2113 4.0)
(s2114 5.0)
(s2115 5.0)
(s2116 2.0)
(s2118 4.0)
(s2119 5.0)
(s2120 5.0)
(s2121 2.0)
(s2123 4.0)
(s2124 5.0)
(s2125 5.0)
(s2126 2.0)
(s2128 4.0)
(s2129 5.0)
(s2130 5.0)
(s2131 2.0)
(s2133 4.0)
(s2134 5.0)
(s2135 5.0)
(s2136 2.0)
(s2138 4.0)
(s2139 5.0)
(s2140 5.0)
(s2141 2.0)
(s2143 4.0)
(s2144 5.0)
(s2145 5.0)
(s2146 2.0)
(s2148 4.0)
(s2149 5.0)
(s2150 5.0)
(s2151 2.0)
(s2153 4.0)
(s2154 5.0)
(s2155 5.0)
(s2156 2.0)
(s2158 4.0)
(s2159 5.0)
(s2160 5.0)
(s2161 2.0)
(s2163 4.0)
(s2164 5.0)
(s2165 5.0)
(s2166 2.0)
(s2168 4.0)
(s2169 5.0)
(s2170 5.0)
(s2171 2.0)
(s2173 4.0)
(s2174 5.0)
(s2175 5.0)
(s2176 2.0)
(s2178 4.0)
(s2179 5.0)
(s2180 5.0)
(s2181 2.0)
(s2183 4.0)
(s2184 5.0)
(s2185 5.0)
(s2186 2.0)
(s2188 4.0)
(s2189 5.0)
(s2190 5.0)
(s2191 2.0)
(s2193 4.0)
(s2194 5.0)
(s2195 5.0)
(s2196 2.0)
(s2198 4.0)
(s2199 5.0)
(s2200 5.0)
(s2201 2.0)
(s2203 4.0)
(s2204 5.0)
(s2205 5.0)
(s2206 2.0)
(s2208 4.0)
(s2209 5.0)
(s2210 5.0)
(s2211 2.0)
(s2213 4.0)
(s2214 5.0)
(s2215 5.0)
(s2216 2.0)
(s2218 4.0)
(s2219 5.0)
(s2220 5.0)
(s2221 2.0)
(s2223 4.0)
(s2224 5.0)
(s2225 5.0)
(s2226 2.0)
(s2228 4.0)
(s2229 5.0)
(s2230 5.0)
(s2231 2.0)
(s2233 4.0)
(s2234 5.0)
(s2235 5.0)
(s2236 2.0)
(s2238 4.0)
(s2239 5.0)
(s2240 5.0)
(s2241 2.0)
(s2243 4.0)
(s2244 5.0)
(s2245 5.0)
(s2246 2.0)
(s2248 4.0)
(s2249 5.0)
(s2250 5.0)
(s2251 2.0)
(s2253 4.0)
(s2254 5.0)
(s2255 5.0)
(s2256 2.0)
(s2258 4.0)
(s2259 5.0)
(s2260 5.0)
(s2261 2.0)
(s2263 4.0)
(s2264 5.0)
(s2265 5.0)
(s2266 2.0)
(s2268 4.0)
(s2269 5.0)
(s2270 5.0)
(s2271 2.0)
(s2273 4.0)
(s2274 5.0)
(s2275 5.0)
(s2276 2.0)
(s2278 4.0)
(s2279 5.0)
(s2280 5.0)
(s2281 2.0)
(s2283 4.0)
(s2284 5.0)
(s2285 5.0)
(s2286 2.0)
(s2288 4.0)
(s2289 5.0)
(s2290 5.0)
(s2291 2.0)
(s2293 4.0)
(s2294 5.0)
(s2295 5.0)
(s2296 2.0)
(s2298 4.0)
(s2299 5.0)
(s2300 5.0)
(s2301 2.0)
(s2303 4.0)
(s2304 5.0)
(s2305 5.0)
(s2306 2.0)
(s2308 4.0)
(s2309 5.0)
(s2310 5.0)
(s2311 2.0)
(s2313 4.0)
(s2314 5.0)
(s2315 5.0)
(s2316 2.0)
(s2318 4.0)
(s2319 5.0)
(s2320 5.0)
(s2321 2.0)
(s2323 4.0)
(s2324 5.0)
(s2325 5.0)
(s2326 2.0)
(s2328 4.0)
(s2329 5.0)
(s2330 5.0)
(s2331 2.0)
(s2333 4.0)
(s2334 5.0)
(s2335 5.0)
(s2336 2.0)
(s2338 4.0)
(s2339 5.0)
(s2340 5.0)
(s2341 2.0)
(s2343 4.0)
(s2344 5.0)
(s2345 5.0)
(s2346 2.0)
(s2348 4.0)
(s2349 5.0)
(s2350 5.0)
(s2351 2.0)
(s2353 4.0)
(s2354 5.0)
(s2355 5.0)
(s2356 2.0)
(s2358 4.0)
(s2359 5.0)
(s2360 5.0)
(s2361 2.0)
(s2363 4.0)
(s2364 5.0)
(s2365 5.0)
(s2366 2.0)
(s2368 4.0)
(s2369 5.0)
(s2370 5.0)
(s2371 2.0)
(s2373 4.0)
(s2374 5.0)
(s2375 5.0)
(s2376 2.0)
(s2378 4.0)
(s2379 5.0)
(s2380 5.0)
(s2381 2.0)
(s2383 4.0)
(s2384 5.0)
(s2385 5.0)
(s2386 2.0)
(s2388 4.0)
(s2389 5.0)
(s2390 5.0)
(s2391 2.0)
(s2393 4.0)
(s2394 5.0)
(s2395 5.0)
(s2396 2.0)
(s2398 4.0)
(s2399 5.0)
(s2400 5.0)
(s2401 2.0)
(s2403 4.0)
(s2404 5.0)
(s2405 5.0)
(s2406 2.0)
(s2408 4.0)
(s2409 5.0)
(s2410 5.0)
(s2411 2.0)
(s2413 4.0)
(s2414 5.0)
(s2415 5.0)
(s2416 2.0)
(s2418 4.0)
(s2419 5.0)
(s2420 5.0)
(s2421 2.0)
(s2423 4.0)
(s2424 5.0)
(s2425 5.0)
(s2426 2.0)
(s2428 4.0)
(s2429 5.0)
(s2430 5.0)
(s2431 2.0)
(s2433 4.0)
(s2434 5.0)
(s2435 5.0)
(s2436 2.0)
(s2438 4.0)
(s2439 5.0)
(s2440 5.0)
(s2441 2.0)
(s2443 4.0)
(s2444 5.0)
(s2445 5.0)
(s2446 2.0)
(s2448 4.0)
(s2449 5.0)
(s2450 5.0)
(s2451 2.0)
(s2453 4.0)
(s2454 5.0)
(s2455 5.0)
(s2456 2.0)
(s2458 4.0)
(s2459 5.0)
(s2460 5.0)
(s2461 2.0)
(s2463 4.0)
(s2464 5.0)
(s2465 5.0)
(s2466 2.0)
(s2468 4.0)
(s2469 5.0)
(s2470 5.0)
(s2471 2.0)
(s2473 4.0)
(s2474 5.0)
(s2475 5.0)
(s2476 2.0)
(s2478 4.0)
(s2479 5.0)
(s2480 5.0)
(s2481 2.0)
(s2483 4.0)
(s2484 5.0)
(s2485 5.0)
(s2486 2.0)
(s2488 4.0)
(s2489 5.0)
(s2490 5.0)
(s2491 2.0)
(s2493 4.0)
(s2494 5.0)
(s2495 5.0)
(s2496 2.0)
(s2498 4.0)
(s2499 5.0)
(s2500 5.0)
(s2501 2.0)
(s2503 4.0)
(s2504 5.0)
(s2505 5.0)
(s2506 2.0)
(s2508 4.0)
(s2509 5.0)
(s2510 5.0)
(s2511 2.0)
(s2513 4.0)
(s2514 5.0)
(s2515 5.0)
(s2516 2.0)
(s2518 4.0)
(s2519 5.0)
(s2520 5.0)
(s2521 2.0)
(s2523 4.0)
(s2524 5.0)
(s2525 5.0)
(s2526 2.0)
(s2528 4.0)
(s2529 5.0)
(s2530 5.0)
(s2531 2.0)
(s2533 4.0)
(s2534 5.0)
(s2535 5.0)
(s2536 2.0)
(s2538 4.0)
(s2539 5.0)
(s2540 5.0)
(s2541 2.0)
(s2543 4.0)
(s2544 5.0)
(s2545 5.0)
(s2546 2.0)
(s2548 4.0)
(s2549 5.0)
(s2550 5.0)
(s2551 2.0)
(s2553 4.0)
(s2554 5.0)
(s2555 5.0)
(s2556 2.0)
(s2558 4.0)
(s2559 5.0)
(s2560 5.0)
(s2561 2.0)
(s2563 4.0)
(s2564 5.0)
(s2565 5.0)
(s2566 2.0)
(s2568 4.0)
(s2569 5.0)
(s2570 5.0)
(s2571 2.0)
(s2573 4.0)
(s2574 5.0)
(s2575 5.0)
(s2576 2.0)
(s2578 4.0)
(s2579 5.0)
(s2580 5.0)
(s2581 2.0)
(s2583 4.0)
(s2584 5.0)
(s2585 5.0)
(s2586 2.0)
(s2588 4.0)
(s2589 5.0)
(s2590 5.0)
(s2591 2.0)
(s2593 4.0)
(s2594 5.0)
(s2595 5.0)
(s2596 2.0)
(s2598 4.0)
(s2599 5.0)
(s2600 5.0)
(s2601 2.0)
(s2603 4.0)
(s2604 5.0)
(s2605 5.0)
(s2606 2.0)
(s2608 4.0)
(s2609 5.0)
(s2610 5.0)
(s2611 2.0)
(s2613 4.0)
(s2614 5.0)
(s2615 5.0)
(s2616 2.0)
(s2618 4.0)
(s2619 5.0)
(s2620 5.0)
(s2621 2.0)
(s2623 4.0)
(s2624 5.0)
(s2625 5.0)
(s2626 2.0)
(s2628 4.0)
(s2629 5.0)
(s2630 5.0)
(s2631 2.0)
(s2633 4.0)
(s2634 5.0)
(s2635 5.0)
(s2636 2.0)
(s2638 4.0)
(s2639 5.0)
(s2640 5.0)
(s2641 2.0)
(s2643 4.0)
(s2644 5.0)
(s2645 5.0)
(s2646 2.0)
(s2648 4.0)
(s2649 5.0)
(s2650 5.0)
(s2651 2.0)
(s2653 4.0)
(s2654 5.0)
(s2655 5.0)
(s2656 2.0)
(s2658 4.0)
(s2659 5.0)
(s2660 5.0)
(s2661 2.0)
(s2663 4.0)
(s2664 5.0)
(s2665 5.0)
(s2666 2.0)
(s2668 4.0)
(s2669 5.0)
(s2670 5.0)
(s2671 2.0)
(s2673 4.0)
(s2674 5.0)
(s2675 5.0)
(s2676 2.0)
(s2678 4.0)
(s2679 5.0)
(s2680 5.0)
(s2681 2.0)
(s2683 4.0)
(s2684 5.0)
(s2685 5.0)
(s2686 2.0)
(s2688 4.0)
(s2689 5.0)
(s2690 5.0)
(s2691 2.0)
(s2693 4.0)
(s2694 5.0)
(s2695 5.0)
(s2696 2.0)
(s2698 4.0)
(s2699 5.0)
(s2700 5.0)
(s2701 2.0)
(s2703 4.0)
(s2704 5.0)
(s2705 5.0)
(s2706 2.0)
(s2708 4.0)
(s2709 5.0)
(s2710 5.0)
(s2711 2.0)
(s2713 4.0)
(s2714 5.0)
(s2715 5.0)
(s2716 2.0)
(s2718 4.0)
(s2719 5.0)
(s2720 5.0)
(s2721 2.0)
(s2723 4.0)
(s2724 5.0)
(s2725 5.0)
(s2726 2.0)
(s2728 4.0)
(s2729 5.0)
(s2730 5.0)
(s2731 2.0)
(s2733 4.0)
(s2734 5.0)
(s2735 5.0)
(s2736 2.0)
(s2738 4.0)
(s2739 5.0)
(s2740 5.0)
(s2741 2.0)
(s2743 4.0)
(s2744 5.0)
(s2745 5.0)
(s2746 2.0)
(s2748 4.0)
(s2749 5.0)
(s2750 5.0)
(s2751 2.0)
(s2753 4.0)
(s2754 5.0)
(s2755 5.0)
(s2756 2.0)
(s2758 4.0)
(s2759 5.0)
(s2760 5.0)
(s2761 2.0)
(s2763 4.0)
(s2764 5.0)
(s2765 5.0)
(s2766 2.0)
(s2768 4.0)
(s2769 5.0)
(s2770 5.0)
(s2771 2.0)
(s2773 4.0)
(s2774 5.0)
(s2775 5.0)
(s2776 2.0)
(s2778 4.0)
(s2779 5.0)
(s2780 5.0)
(s2781 2.0)
(s2783 4.0)
(s2784 5.0)
(s2785 5.0)
(s2786 2.0)
(s2788 4.0)
(s2789 5.0)
(s2790 5.0)
(s2791 2.0)
(s2793 4.0)
(s2794 5.0)
(s2795 5.0)
(s2796 2.0)
(s2798 4.0)
(s2799 5.0)
(s2800 5.0)
(s2801 2.0)
(s2803 4.0)
(s2804 5.0)
(s2805 5.0)
(s2806 2.0)
(s2808 4.0)
(s2809 5.0)
(s2810 5.0)
(s2811 2.0)
(s2813 4.0)
(s2814 5.0)
(s2815 5.0)
(s2816 2.0)
(s2818 4.0)
(s2819 5.0)
(s2820 5.0)
(s2821 2.0)
(s2823 4.0)
(s2824 5.0)
(s2825 5.0)
(s2826 2.0)
(s2828 4.0)
(s2829 5.0)
(s2830 5.0)
(s2831 2.0)
(s2833 4.0)
(s2834 5.0)
(s2835 5.0)
(s2836 2.0)
(s2838 4.0)
(s2839 5.0)
(s2840 5.0)
(s2841 2.0)
(s2843 4.0)
(s2844 5.0)
(s2845 5.0)
(s2846 2.0)
(s2848 4.0)
(s2849 5.0)
(s2850 5.0)
(s2851 2.0)
(s2853 4.0)
(s2854 5.0)
(s2855 5.0)
(s2856 2.0)
(s2858 4.0)
(s2859 5.0)
(s2860 5.0)
(s2861 2.0)
(s2863 4.0)
(s2864 5.0)
(s2865 5.0)
(s2866 2.0)
(s2868 4.0)
(s2869 5.0)
(s2870 5.0)
(s2871 2.0)
(s2873 4.0)
(s2874 5.0)
(s2875 5.0)
(s2876 2.0)
(s2878 4.0)
(s2879 5.0)
(s2880 5.0)
(s2881 2.0)
(s2883 4.0)
(s2884 5.0)
(s2885 5.0)
(s2886 2.0)
(s2888 4.0)
(s2889 5.0)
(s2890 5.0)
(s2891 2.0)
(s2893 4.0)
(s2894 5.0)
(s2895 5.0)
(s2896 2.0)
(s2898 4.0)
(s2899 5.0)
(s2900 5.0)
(s2901 2.0)
(s2903 4.0)
(s2904 5.0)
(s2905 5.0)
(s2906 2.0)
(s2908 4.0)
(s2909 5.0)
(s2910 5.0)
(s2911 2.0)
(s2913 4.0)
(s2914 5.0)
(s2915 5.0)
(s2916 2.0)
(s2918 4.0)
(s2919 5.0)
(s2920 5.0)
(s2921 2.0)
(s2923 4.0)
(s2924 5.0)
(s2925 5.0)
(s2926 2.0)
(s2928 4.0)
(s2929 5.0)
(s2930 5.0)
(s2931 2.0)
(s2933 4.0)
(s2934 5.0)
(s2935 5.0)
(s2936 2.0)
(s2938 4.0)
(s2939 5.0)
(s2940 5.0)
(s2941 2.0)
(s2943 4.0)
(s2944 5.0)
(s2945 5.0)
(s2946 2.0)
(s2948 4.0)
(s2949 5.0)
(s2950 5.0)
(s2951 2.0)
(s2953 4.0)
(s2954 5.0)
(s2955 5.0)
(s2956 2.0)
(s2958 4.0)
(s2959 5.0)
(s2960 5.0)
(s2961 2.0)
(s2963 4.0)
(s2964 5.0)
(s2965 5.0)
(s2966 2.0)
(s2968 4.0)
(s2969 5.0)
(s2970 5.0)
(s2971 2.0)
(s2973 4.0)
(s2974 5.0)
(s2975 5.0)
(s2976 2.0)
(s2978 4.0)
(s2979 5.0)
(s2980 5.0)
(s2981 2.0)
(s2983 4.0)
(s2984 5.0)
(s2985 5.0)
(s2986 2.0)
(s2988 4.0)
(s2989 5.0)
(s2990 5.0)
(s2991 2.0)
(s2993 4.0)
(s2994 5.0)
(s2995 5.0)
(s2996 2.0)
(s2998 4.0)
(s2999 5.0)
(s3000 5.0)
(s3001 2.0)
(s3003 4.0)
(s3004 5.0)
(s3005 5.0)
(s3006 2.0)
(s3008 4.0)
(s3009 5.0)
(s3010 5.0)
(s3011 2.0)
(s3013 4.0)
(s3014 5.0)
(s3015 5.0)
(s3016 2.0)
(s3018 4.0)
(s3019 5.0)
(s3020 5.0)
(s3021 2.0)
(s3023 4.0)
(s3024 5.0)
(s3025 5.0)
(s3026 2.0)
(s3028 4.0)
(s3029 5.0)
(s3030 5.0)
(s3031 2.0)
(s3033 4.0)
(s3034 5.0)
(s3035 5.0)
(s3036 2.0)
(s3038 4.0)
(s3039 5.0)
(s3040 5.0)
(s3041 2.0)
(s3043 4.0)
(s3044 5.0)
(s3045 5.0)
(s3046 2.0)
(s3048 4.0)
(s3049 5.0)
(s3050 5.0)
(s3051 2.0)
(s3053 4.0)
(s3054 5.0)
(s3055 5.0)
(s3056 2.0)
(s3058 4.0)
(s3059 5.0)
(s3060 5.0)
(s3061 2.0)
(s3063 4.0)
(s3064 5.0)
(s3065 5.0)
(s3066 2.0)
(s3068 4.0)
(s3069 5.0)
(s3070 5.0)
(s3071 2.0)
(s3073 4.0)
(s3074 5.0)
(s3075 5.0)
(s3076 2.0)
(s3078 4.0)
(s3079 5.0)
(s3080 5.0)
(s3081 2.0)
(s3083 4.0)
(s3084 5.0)
(s3085 5.0)
(s3086 2.0)
(s3088 4.0)
(s3089 5.0)
(s3090 5.0)
(s3091 2.0)
(s3093 4.0)
(s3094 5.0)
(s3095 5.0)
(s3096 2.0)
(s3098 4.0)
(s3099 5.0)
(s3100 5.0)
(s3101 2.0)
(s3103 4.0)
(s3104 5.0)
(s3105 5.0)
(s3106 2.0)
(s3108 4.0)
(s3109 5.0)
(s3110 5.0)
(s3111 2.0)
(s3113 4.0)
(s3114 5.0)
(s3115 5.0)
(s3116 2.0)
(s3118 4.0)
(s3119 5.0)
(s3120 5.0)
(s3121 2.0)
(s3123 4.0)
(s3124 5.0)
(s3125 5.0)
(s3126 2.0)
(s3128 4.0)
(s3129 5.0)
(s3130 5.0)
(s3131 2.0)
(s3133 4.0)
(s3134 5.0)
(s3135 5.0)
(s3136 2.0)
(s3138 4.0)
(s3139 5.0)
(s3140 5.0)
(s3141 2.0)
(s3143 4.0)
(s3144 5.0)
(s3145 5.0)
(s3146 2.0)
(s3148 4.0)
(s3149 5.0)
(s3150 5.0)
(s3151 2.0)
(s3153 4.0)
(s3154 5.0)
(s3155 5.0)
(s3156 2.0)
(s3158 4.0)
(s3159 5.0)
(s3160 5.0)
(s3161 2.0)
(s3163 4.0)
(s3164 5.0)
(s3165 5.0)
(s3166 2.0)
(s3168 4.0)
(s3169 5.0)
(s3170 5.0)
(s3171 2.0)
(s3173 4.0)
(s3174 5.0)
(s3175 5.0)
(s3176 2.0)
(s3178 4.0)
(s3179 5.0)
(s3180 5.0)
(s3181 2.0)
(s3183 4.0)
(s3184 5.0)
(s3185 5.0)
(s3186 2.0)
(s3188 4.0)
(s3189 5.0)
(s3190 5.0)
(s3191 2.0)
(s3193 4.0)
(s3194 5.0)
(s3195 5.0)
(s3196 2.0)
(s3198 4.0)
(s3199 5.0)
(s3200 5.0)
(s3201 2.0)
(s3203 4.0)
(s3204 5.0)
(s3205 5.0)
(s3206 2.0)
(s3208 4.0)
(s3209 5.0)
(s3210 5.0)
(s3211 2.0)
(s3213 4.0)
(s3214 5.0)
(s3215 5.0)
(s3216 2.0)
(s3218 4.0)
(s3219 5.0)
(s3220 5.0)
(s3221 2.0)
(s3223 4.0)
(s3224 5.0)
(s3225 5.0)
(s3226 2.0)
(s3228 4.0)
(s3229 5.0)
(s3230 5.0)
(s3231 2.0)
(s3233 4.0)
(s3234 5.0)
(s3235 5.0)
(s3236 2.0)
(s3238 4.0)
(s3239 5.0)
(s3240 5.0)
(s3241 2.0)
(s3243 4.0)
(s3244 5.0)
(s3245 5.0)
(s3246 2.0)
(s3248 4.0)
(s3249 5.0)
(s3250 5.0)
(s3251 2.0)
(s3253 4.0)
(s3254 5.0)
(s3255 5.0)
(s3256 2.0)
(s3258 4.0)
(s3259 5.0)
(s3260 5.0)
(s3261 2.0)
(s3263 4.0)
(s3264 5.0)
(s3265 5.0)
(s3266 2.0)
(s3268 4.0)
(s3269 5.0)
(s3270 5.0)
(s3271 2.0)
(s3273 4.0)
(s3274 5.0)
(s3275 5.0)
(s3276 2.0)
(s3278 4.0)
(s3279 5.0)
(s3280 5.0)
(s3281 2.0)
(s3283 4.0)
(s3284 5.0)
(s3285 5.0)
(s3286 2.0)
(s3288 4.0)
(s3289 5.0)
(s3290 5.0)
(s3291 2.0)
(s3293 4.0)
(s3294 5.0)
(s3295 5.0)
(s3296 2.0)
(s3298 4.0)
(s3299 5.0)
(s3300 5.0)
(s3301 2.0)
(s3303 4.0)
(s3304 5.0)
(s3305 5.0)
(s3306 2.0)
(s3308 4.0)
(s3309 5.0)
(s3310 5.0)
(s3311 2.0)
(s3313 4.0)
(s3314 5.0)
(s3315 5.0)
(s3316 2.0)
(s3318 4.0)
(s3319 5.0)
(s3320 5.0)
(s3321 2.0)
(s3323 4.0)
(s3324 5.0)
(s3325 5.0)
(s3326 2.0)
(s3328 4.0)
(s3329 5.0)
(s3330 5.0)
(s3331 2.0)
(s3333 4.0)
(s3334 5.0)
(s3335 5.0)
(s3336 2.0)
(s3338 4.0)
(s3339 5.0)
(s3340 5.0)
(s3341 2.0)
(s3343 4.0)
(s3344 5.0)
(s3345 5.0)
(s3346 2.0)
(s3348 4.0)
(s3349 5.0)
(s3350 5.0)
(s3351 2.0)
(s3353 4.0)
(s3354 5.0)
(s3355 5.0)
(s3356 2.0)
(s3358 4.0)
(s3359 5.0)
(s3360 5.0)
(s3361 2.0)
(s3363 4.0)
(s3364 5.0)
(s3365 5.0)
(s3366 2.0)
(s3368 4.0)
(s3369 5.0)
(s3370 5.0)
(s3371 2.0)
(s3373 4.0)
(s3374 5.0)
(s3375 5.0)
(s3376 2.0)
(s3378 4.0)
(s3379 5.0)
(s3380 5.0)
(s3381 2.0)
(s3383 4.0)
(s3384 5.0)
(s3385 5.0)
(s3386 2.0)
(s3388 4.0)
(s3389 5.0)
(s3390 5.0)
(s3391 2.0)
(s3393 4.0)
(s3394 5.0)
(s3395 5.0)
(s3396 2.0)
(s3398 4.0)
(s3399 5.0)
(s3400 5.0)
(s3401 2.0)
(s3403 4.0)
(s3404 5.0)
(s3405 5.0)
(s3406 2.0)
(s3408 4.0)
(s3409 5.0)
(s3410 5.0)
(s3411 2.0)
(s3413 4.0)
(s3414 5.0)
(s3415 5.0)
(s3416 2.0)
(s3418 4.0)
(s3419 5.0)
(s3420 5.0)
(s3421 2.0)
(s3423 4.0)
(s3424 5.0)
(s3425 5.0)
(s3426 2.0)
(s3428 4.0)
(s3429 5.0)
(s3430 5.0)
(s3431 2.0)
(s3433 4.0)
(s3434 5.0)
(s3435 5.0)
(s3436 2.0)
(s3438 4.0)
(s3439 5.0)
(s3440 5.0)
(s3441 2.0)
(s3443 4.0)
(s3444 5.0)
(s3445 5.0)
(s3446 2.0)
(s3448 4.0)
(s3449 5.0)
(s3450 5.0)
(s3451 2.0)
(s3453 4.0)
(s3454 5.0)
(s3455 5.0)
(s3456 2.0)
(s3458 4.0)
(s3459 5.0)
(s3460 5.0)
(s3461 2.0)
(s3463 4.0)
(s3464 5.0)
(s3465 5.0)
(s3466 2.0)
(s3468 4.0)
(s3469 5.0)
(s3470 5.0)
(s3471 2.0)
(s3473 4.0)
(s3474 5.0)
(s3475 5.0)
(s3476 2.0)
(s3478 4.0)
(s3479 5.0)
(s3480 5.0)
(s3481 2.0)
(s3483 4.0)
(s3484 5.0)
(s3485 5.0)
(s3486 2.0)
(s3488 4.0)
(s3489 5.0)
(s3490 5.0)
(s3491 2.0)
(s3493 4.0)
(s3494 5.0)
(s3495 5.0)
(s3496 2.0)
(s3498 4.0)
(s3499 5.0)
(s3500 5.0)
(s3501 2.0)
(s3503 4.0)
(s3504 5.0)
(s3505 5.0)
(s3506 2.0)
(s3508 4.0)
(s3509 5.0)
(s3510 5.0)
(s3511 2.0)
(s3513 4.0)
(s3514 5.0)
(s3515 5.0)
(s3516 2.0)
(s3518 4.0)
(s3519 5.0)
(s3520 5.0)
(s3521 2.0)
(s3523 4.0)
(s3524 5.0)
(s3525 5.0)
(s3526 2.0)
(s3528 4.0)
(s3529 5.0)
(s3530 5.0)
(s3531 2.0)
(s3533 4.0)
(s3534 5.0)
(s3535 5.0)
(s3536 2.0)
(s3538 4.0)
(s3539 5.0)
(s3540 5.0)
(s3541 2.0)
(s3543 4.0)
(s3544 5.0)
(s3545 5.0)
(s3546 2.0)
(s3548 4.0)
(s3549 5.0)
(s3550 5.0)
(s3551 2.0)
(s3553 4.0)
(s3554 5.0)
(s3555 5.0)
(s3556 2.0)
(s3558 4.0)
(s3559 5.0)
(s3560 5.0)
(s3561 2.0)
(s3563 4.0)
(s3564 5.0)
(s3565 5.0)
(s3566 2.0)
(s3568 4.0)
(s3569 5.0)
(s3570 5.0)
(s3571 2.0)
(s3573 4.0)
(s3574 5.0)
(s3575 5.0)
(s3576 2.0)
(s3578 4.0)
(s3579 5.0)
(s3580 5.0)
(s3581 2.0)
(s3583 4.0)
(s3584 5.0)
(s3585 5.0)
(s3586 2.0)
(s3588 4.0)
(s3589 5.0)
(s3590 5.0)
(s3591 2.0)
(s3593 4.0)
(s3594 5.0)
(s3595 5.0)
(s3596 2.0)
(s3598 4.0)
(s3599 5.0)
(s3600 5.0)
(s3601 2.0)
(s3603 4.0)
(s3604 5.0)
(s3605 5.0)
(s3606 2.0)
(s3608 4.0)
(s3609 5.0)
(s3610 5.0)
(s3611 2.0)
(s3613 4.0)
(s3614 5.0)
(s3615 5.0)
(s3616 2.0)
(s3618 4.0)
(s3619 5.0)
(s3620 5.0)
(s3621 2.0)
(s3623 4.0)
(s3624 5.0)
(s3625 5.0)
(s3626 2.0)
(s3628 4.0)
(s3629 5.0)
(s3630 5.0)
(s3631 2.0)
(s3633 4.0)
(s3634 5.0)
(s3635 5.0)
(s3636 2.0)
(s3638 4.0)
(s3639 5.0)
(s3640 5.0)
(s3641 2.0)
(s3643 4.0)
(s3644 5.0)
(s3645 5.0)
(s3646 2.0)
(s3648 4.0)
(s3649 5.0)
(s3650 5.0)
(s3651 2.0)
(s3653 4.0)
(s3654 5.0)
(s3655 5.0)
(s3656 2.0)
(s3658 4.0)
(s3659 5.0)
(s3660 5.0)
(s3661 2.0)
(s3663 4.0)
(s3664 5.0)
(s3665 5.0)
(s3666 2.0)
(s3668 4.0)
(s3669 5.0)
(s3670 5.0)
(s3671 2.0)
(s3673 4.0)
(s3674 5.0)
(s3675 5.0)
(s3676 2.0)
(s3678 4.0)
(s3679 5.0)
(s3680 5.0)
(s3681 2.0)
(s3683 4.0)
(s3684 5.0)
(s3685 5.0)
(s3686 2.0)
(s3688 4.0)
(s3689 5.0)
(s3690 5.0)
(s3691 2.0)
(s3693 4.0)
(s3694 5.0)
(s3695 5.0)
(s3696 2.0)
(s3698 4.0)
(s3699 5.0)
(s3700 5.0)
(s3701 2.0)
(s3703 4.0)
(s3704 5.0)
(s3705 5.0)
(s3706 2.0)
(s3708 4.0)
(s3709 5.0)
(s3710 5.0)
(s3711 2.0)
(s3713 4.0)
(s3714 5.0)
(s3715 5.0)
(s3716 2.0)
(s3718 4.0)
(s3719 5.0)
(s3720 5.0)
(s3721 2.0)
(s3723 4.0)
(s3724 5.0)
(s3725 5.0)
(s3726 2.0)
(s3728 4.0)
(s3729 5.0)
(s3730 5.0)
(s3731 2.0)
(s3733 4.0)
(s3734 5.0)
(s3735 5.0)
(s3736 2.0)
(s3738 4.0)
(s3739 5.0)
(s3740 5.0)
(s3741 2.0)
(s3743 4.0)
(s3744 5.0)
(s3745 5.0)
(s3746 2.0)
(s3748 4.0)
(s3749 5.0)
(s3750 5.0)
(s3751 2.0)
(s3753 4.0)
(s3754 5.0)
(s3755 5.0)
(s3756 2.0)
(s3758 4.0)
(s3759 5.0)
(s3760 5.0)
(s3761 2.0)
(s3763 4.0)
(s3764 5.0)
(s3765 5.0)
(s3766 2.0)
(s3768 4.0)
(s3769 5.0)
(s3770 5.0)
(s3771 2.0)
(s3773 4.0)
(s3774 5.0)
(s3775 5.0)
(s3776 2.0)
(s3778 4.0)
(s3779 5.0)
(s3780 5.0)
(s3781 2.0)
(s3783 4.0)
(s3784 5.0)
(s3785 5.0)
(s3786 2.0)
(s3788 4.0)
(s3789 5.0)
(s3790 5.0)
(s3791 2.0)
(s3793 4.0)
(s3794 5.0)
(s3795 5.0)
(s3796 2.0)
(s3798 4.0)
(s3799 5.0)
(s3800 5.0)
(s3801 2.0)
(s3803 4.0)
(s3804 5.0)
(s3805 5.0)
(s3806 2.0)
(s3808 4.0)
(s3809 5.0)
(s3810 5.0)
(s3811 2.0)
(s3813 4.0)
(s3814 5.0)
(s3815 5.0)
(s3816 2.0)
(s3818 4.0)
(s3819 5.0)
(s3820 5.0)
(s3821 2.0)
(s3823 4.0)
(s3824 5.0)
(s3825 5.0)
(s3826 2.0)
(s3828 4.0)
(s3829 5.0)
(s3830 5.0)
(s3831 2.0)
(s3833 4.0)
(s3834 5.0)
(s3835 5.0)
(s3836 2.0)
(s3838 4.0)
(s3839 5.0)
(s3840 5.0)
(s3841 2.0)
(s3843 4.0)
(s3844 5.0)
(s3845 5.0)
(s3846 2.0)
(s3848 4.0)
(s3849 5.0)
(s3850 5.0)
(s3851 2.0)
(s3853 4.0)
(s3854 5.0)
(s3855 5.0)
(s3856 2.0)
(s3858 4.0)
(s3859 5.0)
(s3860 5.0)
(s3861 2.0)
(s3863 4.0)
(s3864 5.0)
(s3865 5.0)
(s3866 2.0)
(s3868 4.0)
(s3869 5.0)
(s3870 5.0)
(s3871 2.0)
(s3873 4.0)
(s3874 5.0)
(s3875 5.0)
(s3876 2.0)
(s3878 4.0)
(s3879 5.0)
(s3880 5.0)
(s3881 2.0)
(s3883 4.0)
(s3884 5.0)
(s3885 5.0)
(s3886 2.0)
(s3888 4.0)
(s3889 5.0)
(s3890 5.0)
(s3891 2.0)
(s3893 4.0)
(s3894 5.0)
(s3895 5.0)
(s3896 2.0)
(s3898 4.0)
(s3899 5.0)
(s3900 5.0)
(s3901 2.0)
(s3903 4.0)
(s3904 5.0)
(s3905 5.0)
(s3906 2.0)
(s3908 4.0)
(s3909 5.0)
(s3910 5.0)
(s3911 2.0)
(s3913 4.0)
(s3914 5.0)
(s3915 5.0)
(s3916 2.0)
(s3918 4.0)
(s3919 5.0)
(s3920 5.0)
(s3921 2.0)
(s3923 4.0)
(s3924 5.0)
(s3925 5.0)
(s3926 2.0)
(s3928 4.0)
(s3929 5.0)
(s3930 5.0)
(s3931 2.0)
(s3933 4.0)
(s3934 5.0)
(s3935 5.0)
(s3936 2.0)
(s3938 4.0)
(s3939 5.0)
(s3940 5.0)
(s3941 2.0)
(s3943 4.0)
(s3944 5.0)
(s3945 5.0)
(s3946 2.0)
(s3948 4.0)
(s3949 5.0)
(s3950 5.0)
(s3951 2.0)
(s3953 4.0)
(s3954 5.0)
(s3955 5.0)
(s3956 2.0)
(s3958 4.0)
(s3959 5.0)
(s3960 5.0)
(s3961 2.0)
(s3963 4.0)
(s3964 5.0)
(s3965 5.0)
(s3966 2.0)
(s3968 4.0)
(s3969 5.0)
(s3970 5.0)
(s3971 2.0)
(s3973 4.0)
(s3974 5.0)
(s3975 5.0)
(s3976 2.0)
(s3978 4.0)
(s3979 5.0)
(s3980 5.0)
(s3981 2.0)
(s3983 4.0)
(s3984 5.0)
(s3985 5.0)
(s3986 2.0)
(s3988 4.0)
(s3989 5.0)
(s3990 5.0)
(s3991 2.0)
(s3993 4.0)
(s3994 5.0)
(s3995 5.0)
(s3996 2.0)
(s3998 4.0)
(s3999 5.0)
(s4000 5.0)
(s4001 2.0)
(s4003 4.0)
(s4004 5.0)
(s4005 5.0)
(s4006 2.0)
(s4008 4.0)
(s4009 5.0)
(s4010 5.0)
(s4011 2.0)
(s4013 4.0)
(s4014 5.0)
(s4015 5.0)
(s4016 2.0)
(s4018 4.0)
(s4019 5.0)
(s4020 5.0)
(s4021 2.0)
(s4023 4.0)
(s4024 5.0)
(s4025 5.0)
(s4026 2.0)
(s4028 4.0)
(s4029 5.0)
(s4030 5.0)
(s4031 2.0)
(s4033 4.0)
(s4034 5.0)
(s4035 5.0)
(s4036 2.0)
(s4038 4.0)
(s4039 5.0)
(s4040 5.0)
(s4041 2.0)
(s4043 4.0)
(s4044 5.0)
(s4045 5.0)
(s4046 2.0)
(s4048 4.0)
(s4049 5.0)
(s4050 5.0)
(s4051 2.0)
(s4053 4.0)
(s4054 5.0)
(s4055 5.0)
(s4056 2.0)
(s4058 4.0)
(s4059 5.0)
(s4060 5.0)
(s4061 2.0)
(s4063 4.0)
(s4064 5.0)
(s4065 5.0)
(s4066 2.0)
(s4068 4.0)
(s4069 5.0)
(s4070 5.0)
(s4071 2.0)
(s4073 4.0)
(s4074 5.0)
(s4075 5.0)
(s4076 2.0)
(s4078 4.0)
(s4079 5.0)
(s4080 5.0)
(s4081 2.0)
(s4083 4.0)
(s4084 5.0)
(s4085 5.0)
(s4086 2.0)
(s4088 4.0)
(s4089 5.0)
(s4090 5.0)
(s4091 2.0)
(s4093 4.0)
(s4094 5.0)
(s4095 5.0)
(s4096 2.0)
(s4098 4.0)
(s4099 5.0)
(s4100 5.0)
(s4101 2.0)
(s4103 4.0)
(s4104 5.0)
(s4105 5.0)
(s4106 2.0)
(s4108 4.0)
(s4109 5.0)
(s4110 5.0)
(s4111 2.0)
(s4113 4.0)
(s4114 5.0)
(s4115 5.0)
(s4116 2.0)
(s4118 4.0)
(s4119 5.0)
(s4120 5.0)
(s4121 2.0)
(s4123 4.0)
(s4124 5.0)
(s4125 5.0)
(s4126 2.0)
(s4128 4.0)
(s4129 5.0)
(s4130 5.0)
(s4131 2.0)
(s4133 4.0)
(s4134 5.0)
(s4135 5.0)
(s4136 2.0)
(s4138 4.0)
(s4139 5.0)
(s4140 5.0)
(s4141 2.0)
(s4143 4.0)
(s4144 5.0)
(s4145 5.0)
(s4146 2.0)
(s4148 4.0)
(s4149 5.0)
(s4150 5.0)
(s4151 2.0)
(s4153 4.0)
(s4154 5.0)
(s4155 5.0)
(s4156 2.0)
(s4158 4.0)
(s4159 5.0)
(s4160 5.0)
(s4161 2.0)
(s4163 4.0)
(s4164 5.0)
(s4165 5.0)
(s4166 2.0)
(s4168 4.0)
(s4169 5.0)
(s4170 5.0)
(s4171 2.0)
(s4173 4.0)
(s4174 5.0)
(s4175 5.0)
(s4176 2.0)
(s4178 4.0)
(s4179 5.0)
(s4180 5.0)
(s4181 2.0)
(s4183 4.0)
(s4184 5.0)
(s4185 5.0)
(s4186 2.0)
(s4188 4.0)
(s4189 5.0)
(s4190 5.0)
(s4191 2.0)
(s4193 4.0)
(s4194 5.0)
(s4195 5.0)
(s4196 2.0)
(s4198 4.0)
(s4199 5.0)
(s4200 5.0)
(s4201 2.0)
(s4203 4.0)
(s4204 5.0)
(s4205 5.0)
(s4206 2.0)
(s4208 4.0)
(s4209 5.0)
(s4210 5.0)
(s4211 2.0)
(s4213 4.0)
(s4214 5.0)
(s4215 5.0)
(s4216 2.0)
(s4218 4.0)
(s4219 5.0)
(s4220 5.0)
(s4221 2.0)
(s4223 4.0)
(s4224 5.0)
(s4225 5.0)
(s4226 2.0)
(s4228 4.0)
(s4229 5.0)
(s4230 5.0)
(s4231 2.0)
(s4233 4.0)
(s4234 5.0)
(s4235 5.0)
(s4236 2.0)
(s4238 4.0)
(s4239 5.0)
(s4240 5.0)
(s4241 2.0)
(s4243 4.0)
(s4244 5.0)
(s4245 5.0)
(s4246 2.0)
(s4248 4.0)
(s4249 5.0)
(s4250 5.0)
(s4251 2.0)
(s4253 4.0)
(s4254 5.0)
(s4255 5.0)
(s4256 2.0)
(s4258 4.0)
(s4259 5.0)
(s4260 5.0)
(s4261 2.0)
(s4263 4.0)
(s4264 5.0)
(s4265 5.0)
(s4266 2.0)
(s4268 4.0)
(s4269 5.0)
(s4270 5.0)
(s4271 2.0)
(s4273 4.0)
(s4274 5.0)
(s4275 5.0)
(s4276 2.0)
(s4278 4.0)
(s4279 5.0)
(s4280 5.0)
(s4281 2.0)
(s4283 4.0)
(s4284 5.0)
(s4285 5.0)
(s4286 2.0)
(s4288 4.0)
(s4289 5.0)
(s4290 5.0)
(s4291 2.0)
(s4293 4.0)
(s4294 5.0)
(s4295 5.0)
(s4296 2.0)
(s4298 4.0)
(s4299 5.0)
(s4300 5.0)
(s4301 2.0)
(s4303 4.0)
(s4304 5.0)
(s4305 5.0)
(s4306 2.0)
(s4308 4.0)
(s4309 5.0)
(s4310 5.0)
(s4311 2.0)
(s4313 4.0)
(s4314 5.0)
(s4315 5.0)
(s4316 2.0)
(s4318 4.0)
(s4319 5.0)
(s4320 5.0)
(s4321 2.0)
(s4323 4.0)
(s4324 5.0)
(s4325 5.0)
(s4326 2.0)
(s4328 4.0)
(s4329 5.0)
(s4330 5.0)
(s4331 2.0)
(s4333 4.0)
(s4334 5.0)
(s4335 5.0)
(s4336 2.0)
(s4338 4.0)
(s4339 5.0)
(s4340 5.0)
(s4341 2.0)
(s4343 4.0)
(s4344 5.0)
(s4345 5.0)
(s4346 2.0)
(s4348 4.0)
(s4349 5.0)
(s4350 5.0)
(s4351 2.0)
(s4353 4.0)
(s4354 5.0)
(s4355 5.0)
(s4356 2.0)
(s4358 4.0)
(s4359 5.0)
(s4360 5.0)
(s4361 2.0)
(s4363 4.0)
(s4364 5.0)
(s4365 5.0)
(s4366 2.0)
(s4368 4.0)
(s4369 5.0)
(s4370 5.0)
(s4371 2.0)
(s4373 4.0)
(s4374 5.0)
(s4375 5.0)
(s4376 2.0)
(s4378 4.0)
(s4379 5.0)
(s4380 5.0)
(s4381 2.0)
(s4383 4.0)
(s4384 5.0)
(s4385 5.0)
(s4386 2.0)
(s4388 4.0)
(s4389 5.0)
(s4390 5.0)
(s4391 2.0)
(s4393 4.0)
(s4394 5.0)
(s4395 5.0)
(s4396 2.0)
(s4398 4.0)
(s4399 5.0)
(s4400 5.0)
(s4401 2.0)
(s4403 4.0)
(s4404 5.0)
(s4405 5.0)
(s4406 2.0)
(s4408 4.0)
(s4409 5.0)
(s4410 5.0)
(s4411 2.0)
(s4413 4.0)
(s4414 5.0)
(s4415 5.0)
(s4416 2.0)
(s4418 4.0)
(s4419 5.0)
(s4420 5.0)
(s4421 2.0)
(s4423 4.0)
(s4424 5.0)
(s4425 5.0)
(s4426 2.0)
(s4428 4.0)
(s4429 5.0)
(s4430 5.0)
(s4431 2.0)
(s4433 4.0)
(s4434 5.0)
(s4435 5.0)
(s4436 2.0)
(s4438 4.0)
(s4439 5.0)
(s4440 5.0)
(s4441 2.0)
(s4443 4.0)
(s4444 5.0)
(s4445 5.0)
(s4446 2.0)
(s4448 4.0)
(s4449 5.0)
(s4450 5.0)
(s4451 2.0)
(s4453 4.0)
(s4454 5.0)
(s4455 5.0)
(s4456 2.0)
(s4458 4.0)
(s4459 5.0)
(s4460 5.0)
(s4461 2.0)
(s4463 4.0)
(s4464 5.0)
(s4465 5.0)
(s4466 2.0)
(s4468 4.0)
(s4469 5.0)
(s4470 5.0)
(s4471 2.0)
(s4473 4.0)
(s4474 5.0)
(s4475 5.0)
(s4476 2.0)
(s4478 4.0)
(s4479 5.0)
(s4480 5.0)
(s4481 2.0)
(s4483 4.0)
(s4484 5.0)
(s4485 5.0)
(s4486 2.0)
(s4488 4.0)
(s4489 5.0)
(s4490 5.0)
(s4491 2.0)
(s4493 4.0)
(s4494 5.0)
(s4495 5.0)
(s4496 2.0)
(s4498 4.0)
(s4499 5.0)
(s4500 5.0)
(s4501 2.0)
(s4503 4.0)
(s4504 5.0)
(s4505 5.0)
(s4506 2.0)
(s4508 4.0)
(s4509 5.0)
(s4510 5.0)
(s4511 2.0)
(s4513 4.0)
(s4514 5.0)
(s4515 5.0)
(s4516 2.0)
(s4518 4.0)
(s4519 5.0)
(s4520 5.0)
(s4521 2.0)
(s4523 4.0)
(s4524 5.0)
(s4525 5.0)
(s4526 2.0)
(s4528 4.0)
(s4529 5.0)
(s4530 5.0)
(s4531 2.0)
(s4533 4.0)
(s4534 5.0)
(s4535 5.0)
(s4536 2.0)
(s4538 4.0)
(s4539 5.0)
(s4540 5.0)
(s4541 2.0)
(s4543 4.0)
(s4544 5.0)
(s4545 5.0)
(s4546 2.0)
(s4548 4.0)
(s4549 5.0)
(s4550 5.0)
(s4551 2.0)
(s4553 4.0)
(s4554 5.0)
(s4555 5.0)
(s4556 2.0)
(s4558 4.0)
(s4559 5.0)
(s4560 5.0)
(s4561 2.0)
(s4563 4.0)
(s4564 5.0)
(s4565 5.0)
(s4566 2.0)
(s4568 4.0)
(s4569 5.0)
(s4570 5.0)
(s4571 2.0)
(s4573 4.0)
(s4574 5.0)
(s4575 5.0)
(s4576 2.0)
(s4578 4.0)
(s4579 5.0)
(s4580 5.0)
(s4581 2.0)
(s4583 4.0)
(s4584 5.0)
(s4585 5.0)
(s4586 2.0)
(s4588 4.0)
(s4589 5.0)
(s4590 5.0)
(s4591 2.0)
(s4593 4.0)
(s4594 5.0)
(s4595 5.0)
(s4596 2.0)
(s4598 4.0)
(s4599 5.0)
(s4600 5.0)
(s4601 2.0)
(s4603 4.0)
(s4604 5.0)
(s4605 5.0)
(s4606 2.0)
(s4608 4.0)
(s4609 5.0)
(s4610 5.0)
(s4611 2.0)
(s4613 4.0)
(s4614 5.0)
(s4615 5.0)
(s4616 2.0)
(s4618 4.0)
(s4619 5.0)
(s4620 5.0)
(s4621 2.0)
(s4623 4.0)
(s4624 5.0)
(s4625 5.0)
(s4626 2.0)
(s4628 4.0)
(s4629 5.0)
(s4630 5.0)
(s4631 2.0)
(s4633 4.0)
(s4634 5.0)
(s4635 5.0)
(s4636 2.0)
(s4638 4.0)
(s4639 5.0)
(s4640 5.0)
(s4641 2.0)
(s4643 4.0)
(s4644 5.0)
(s4645 5.0)
(s4646 2.0)
(s4648 4.0)
(s4649 5.0)
(s4650 5.0)
(s4651 2.0)
(s4653 4.0)
(s4654 5.0)
(s4655 5.0)
(s4656 2.0)
(s4658 4.0)
(s4659 5.0)
(s4660 5.0)
(s4661 2.0)
(s4663 4.0)
(s4664 5.0)
(s4665 5.0)
(s4666 2.0)
(s4668 4.0)
(s4669 5.0)
(s4670 5.0)
(s4671 2.0)
(s4673 4.0)
(s4674 5.0)
(s4675 5.0)
(s4676 2.0)
(s4678 4.0)
(s4679 5.0)
(s4680 5.0)
(s4681 2.0)
(s4683 4.0)
(s4684 5.0)
(s4685 5.0)
(s4686 2.0)
(s4688 4.0)
(s4689 5.0)
(s4690 5.0)
(s4691 2.0)
(s4693 4.0)
(s4694 5.0)
(s4695 5.0)
(s4696 2.0)
(s4698 4.0)
(s4699 5.0)
(s4700 5.0)
(s4701 2.0)
(s4703 4.0)
(s4704 5.0)
(s4705 5.0)
(s4706 2.0)
(s4708 4.0)
(s4709 5.0)
(s4710 5.0)
(s4711 2.0)
(s4713 4.0)
(s4714 5.0)
(s4715 5.0)
(s4716 2.0)
(s4718 4.0)
(s4719 5.0)
(s4720 5.0)
(s4721 2.0)
(s4723 4.0)
(s4724 5.0)
(s4725 5.0)
(s4726 2.0)
(s4728 4.0)
(s4729 5.0)
(s4730 5.0)
(s4731 2.0)
(s4733 4.0)
(s4734 5.0)
(s4735 5.0)
(s4736 2.0)
(s4738 4.0)
(s4739 5.0)
(s4740 5.0)
(s4741 2.0)
(s4743 4.0)
(s4744 5.0)
(s4745 5.0)
(s4746 2.0)
(s4748 4.0)
(s4749 5.0)
(s4750 5.0)
(s4751 2.0)
(s4753 4.0)
(s4754 5.0)
(s4755 5.0)
(s4756 2.0)
(s4758 4.0)
(s4759 5.0)
(s4760 5.0)
(s4761 2.0)
(s4763 4.0)
(s4764 5.0)
(s4765 5.0)
(s4766 2.0)
(s4768 4.0)
(s4769 5.0)
(s4770 5.0)
(s4771 2.0)
(s4773 4.0)
(s4774 5.0)
(s4775 5.0)
(s4776 2.0)
(s4778 4.0)
(s4779 5.0)
(s4780 5.0)
(s4781 2.0)
(s4783 4.0)
(s4784 5.0)
(s4785 5.0)
(s4786 2.0)
(s4788 4.0)
(s4789 5.0)
(s4790 5.0)
(s4791 2.0)
(s4793 4.0)
(s4794 5.0)
(s4795 5.0)
(s4796 2.0)
(s4798 4.0)
(s4799 5.0)
(s4800 5.0)
(s4801 2.0)
(s4803 4.0)
(s4804 5.0)
(s4805 5.0)
(s4806 2.0)
(s4808 4.0)
(s4809 5.0)
(s4810 5.0)
(s4811 2.0)
(s4813 4.0)
(s4814 5.0)
(s4815 5.0)
(s4816 2.0)
(s4818 4.0)
(s4819 5.0)
(s4820 5.0)
(s4821 2.0)
(s4823 4.0)
(s4824 5.0)
(s4825 5.0)
(s4826 2.0)
(s4828 4.0)
(s4829 5.0)
(s4830 5.0)
(s4831 2.0)
(s4833 4.0)
(s4834 5.0)
(s4835 5.0)
(s4836 2.0)
(s4838 4.0)
(s4839 5.0)
(s4840 5.0)
(s4841 2.0)
(s4843 4.0)
(s4844 5.0)
(s4845 5.0)
(s4846 2.0)
(s4848 4.0)
(s4849 5.0)
(s4850 5.0)
(s4851 2.0)
(s4853 4.0)
(s4854 5.0)
(s4855 5.0)
(s4856 2.0)
(s4858 4.0)
(s4859 5.0)
(s4860 5.0)
(s4861 2.0)
(s4863 4.0)
(s4864 5.0)
(s4865 5.0)
(s4866 2.0)
(s4868 4.0)
(s4869 5.0)
(s4870 5.0)
(s4871 2.0)
(s4873 4.0)
(s4874 5.0)
(s4875 5.0)
(s4876 2.0)
(s4878 4.0)
(s4879 5.0)
(s4880 5.0)
(s4881 2.0)
(s4883 4.0)
(s4884 5.0)
(s4885 5.0)
(s4886 2.0)
(s4888 4.0)
(s4889 5.0)
(s4890 5.0)
(s4891 2.0)
(s4893 4.0)
(s4894 5.0)
(s4895 5.0)
(s4896 2.0)
(s4898 4.0)
(s4899 5.0)
(s4900 5.0)
(s4901 2.0)
(s4903 4.0)
(s4904 5.0)
(s4905 5.0)
(s4906 2.0)
(s4908 4.0)
(s4909 5.0)
(s4910 5.0)
(s4911 2.0)
(s4913 4.0)
(s4914 5.0)
(s4915 5.0)
(s4916 2.0)
(s4918 4.0)
(s4919 5.0)
(s4920 5.0)
(s4921 2.0)
(s4923 4.0)
(s4924 5.0)
(s4925 5.0)
(s4926 2.0)
(s4928 4.0)
(s4929 5.0)
(s4930 5.0)
(s4931 2.0)
(s4933 4.0)
(s4934 5.0)
(s4935 5.0)
(s4936 2.0)
(s4938 4.0)
(s4939 5.0)
(s4940 5.0)
(s4941 2.0)
(s4943 4.0)
(s4944 5.0)
(s4945 5.0)
(s4946 2.0)
(s4948 4.0)
(s4949 5.0)
(s4950 5.0)
(s4951 2.0)
(s4953 4.0)
(s4954 5.0)
(s4955 5.0)
(s4956 2.0)
(s4958 4.0)
(s4959 5.0)
(s4960 5.0)
(s4961 2.0)
(s4963 4.0)
(s4964 5.0)
(s4965 5.0)
(s4966 2.0)
(s4968 4.0)
(s4969 5.0)
(s4970 5.0)
(s4971 2.0)
(s4973 4.0)
(s4974 5.0)
(s4975 5.0)
(s4976 2.0)
(s4978 4.0)
(s4979 5.0)
(s4980 5.0)
(s4981 2.0)
(s4983 4.0)
(s4984 5.0)
(s4985 5.0)
(s4986 2.0)
(s4988 4.0)
(s4989 5.0)
(s4990 5.0)
(s4991 2.0)
(s4993 4.0)
(s4994 5.0)
(s4995 5.0)
(s4996 2.0)
(s4998 4.0)
(s4999 5.0)
(s5000 5.0)
(s5001 2.0)
(s5003 4.0)
(s5004 5.0)
(s5005 5.0)
(s5006 2.0)
(s5008 4.0)
(s5009 5.0)
(s5010 5.0)
(s5011 2.0)
(s5013 4.0)
(s5014 5.0)
(s5015 5.0)
(s5016 2.0)
(s5018 4.0)
(s5019 5.0)
(s5020 5.0)
(s5021 2.0)
(s5023 4.0)
(s5024 5.0)
(s5025 5.0)
(s5026 2.0)
(s5028 4.0)
(s5029 5.0)
(s5030 5.0)
(s5031 2.0)
(s5033 4.0)
(s5034 5.0)
(s5035 5.0)
(s5036 2.0)
(s5038 4.0)
(s5039 5.0)
(s5040 5.0)
(s5041 2.0)
(s5043 4.0)
(s5044 5.0)
(s5045 5.0)
(s5046 2.0)
(s5048 4.0)
(s5049 5.0)
(s5050 5.0)
(s5051 2.0)
(s5053 4.0)
(s5054 5.0)
(s5055 5.0)
(s5056 2.0)
(s5058 4.0)
(s5059 5.0)
(s5060 5.0)
(s5061 2.0)
(s5063 4.0)
(s5064 5.0)
(s5065 5.0)
(s5066 2.0)
(s5068 4.0)
(s5069 5.0)
(s5070 5.0)
(s5071 2.0)
(s5073 4.0)
(s5074 5.0)
(s5075 5.0)
(s5076 2.0)
(s5078 4.0)
(s5079 5.0)
(s5080 5.0)
(s5081 2.0)
(s5083 4.0)
(s5084 5.0)
(s5085 5.0)
(s5086 2.0)
(s5088 4.0)
(s5089 5.0)
(s5090 5.0)
(s5091 2.0)
(s5093 4.0)
(s5094 5.0)
(s5095 5.0)
(s5096 2.0)
(s5098 4.0)
(s5099 5.0)
(s5100 5.0)
(s5101 2.0)
(s5103 4.0)
(s5104 5.0)
(s5105 5.0)
(s5106 2.0)
(s5108 4.0)
(s5109 5.0)
(s5110 5.0)
(s5111 2.0)
(s5113 4.0)
(s5114 5.0)
(s5115 5.0)
(s5116 2.0)
(s5118 4.0)
(s5119 5.0)
(s5120 5.0)
(s5121 2.0)
(s5123 4.0)
(s5124 5.0)
(s5125 5.0)
(s5126 2.0)
(s5128 4.0)
(s5129 5.0)
(s5130 5.0)
(s5131 2.0)
(s5133 4.0)
(s5134 5.0)
(s5135 5.0)
(s5136 2.0)
(s5138 4.0)
(s5139 5.0)
(s5140 5.0)
(s5141 2.0)
(s5143 4.0)
(s5144 5.0)
(s5145 5.0)
(s5146 2.0)
(s5148 4.0)
(s5149 5.0)
(s5150 5.0)
(s5151 2.0)
(s5153 4.0)
(s5154 5.0)
(s5155 5.0)
(s5156 2.0)
(s5158 4.0)
(s5159 5.0)
(s5160 5.0)
(s5161 2.0)
(s5163 4.0)
(s5164 5.0)
(s5165 5.0)
(s5166 2.0)
(s5168 4.0)
(s5169 5.0)
(s5170 5.0)
(s5171 2.0)
(s5173 4.0)
(s5174 5.0)
(s5175 5.0)
(s5176 2.0)
(s5178 4.0)
(s5179 5.0)
(s5180 5.0)
(s5181 2.0)
(s5183 4.0)
(s5184 5.0)
(s5185 5.0)
(s5186 2.0)
(s5188 4.0)
(s5189 5.0)
(s5190 5.0)
(s5191 2.0)
(s5193 4.0)
(s5194 5.0)
(s5195 5.0)
(s5196 2.0)
(s5198 4.0)
(s5199 5.0)
(s5200 5.0)
(s5201 2.0)
(s5203 4.0)
(s5204 5.0)
(s5205 5.0)
(s5206 2.0)
(s5208 4.0)
(s5209 5.0)
(s5210 5.0)
(s5211 2.0)
(s5213 4.0)
(s5214 5.0)
(s5215 5.0)
(s5216 2.0)
(s5218 4.0)
(s5219 5.0)
(s5220 5.0)
(s5221 2.0)
(s5223 4.0)
(s5224 5.0)
(s5225 5.0)
(s5226 2.0)
(s5228 4.0)
(s5229 5.0)
(s5230 5.0)
(s5231 2.0)
(s5233 4.0)
(s5234 5.0)
(s5235 5.0)
(s5236 2.0)
(s5238 4.0)
(s5239 5.0)
(s5240 5.0)
(s5241 2.0)
(s5243 4.0)
(s5244 5.0)
(s5245 5.0)
(s5246 2.0)
(s5248 4.0)
(s5249 5.0)
(s5250 5.0)
(s5251 2.0)
(s5253 4.0)
(s5254 5.0)
(s5255 5.0)
(s5256 2.0)
(s5258 4.0)
(s5259 5.0)
(s5260 5.0)
(s5261 2.0)
(s5263 4.0)
(s5264 5.0)
(s5265 5.0)
(s5266 2.0)
(s5268 4.0)
(s5269 5.0)
(s5270 5.0)
(s5271 2.0)
(s5273 4.0)
(s5274 5.0)
(s5275 5.0)
(s5276 2.0)
(s5278 4.0)
(s5279 5.0)
(s5280 5.0)
(s5281 2.0)
(s5283 4.0)
(s5284 5.0)
(s5285 5.0)
(s5286 2.0)
(s5288 4.0)
(s5289 5.0)
(s5290 5.0)
(s5291 2.0)
(s5293 4.0)
(s5294 5.0)
(s5295 5.0)
(s5296 2.0)
(s5298 4.0)
(s5299 5.0)
(s5300 5.0)
(s5301 2.0)
(s5303 4.0)
(s5304 5.0)
(s5305 5.0)
(s5306 2.0)
(s5308 4.0)
(s5309 5.0)
(s5310 5.0)
(s5311 2.0)
(s5313 4.0)
(s5314 5.0)
(s5315 5.0)
(s5316 2.0)
(s5318 4.0)
(s5319 5.0)
(s5320 5.0)
(s5321 2.0)
(s5323 4.0)
(s5324 5.0)
(s5325 5.0)
(s5326 2.0)
(s5328 4.0)
(s5329 5.0)
(s5330 5.0)
(s5331 2.0)
(s5333 4.0)
(s5334 5.0)
(s5335 5.0)
(s5336 2.0)
(s5338 4.0)
(s5339 5.0)
(s5340 5.0)
(s5341 2.0)
(s5343 4.0)
(s5344 5.0)
(s5345 5.0)
(s5346 2.0)
(s5348 4.0)
(s5349 5.0)
(s5350 5.0)
(s5351 2.0)
(s5353 4.0)
(s5354 5.0)
(s5355 5.0)
(s5356 2.0)
(s5358 4.0)
(s5359 5.0)
(s5360 5.0)
(s5361 2.0)
(s5363 4.0)
(s5364 5.0)
(s5365 5.0)
(s5366 2.0)
(s5368 4.0)
(s5369 5.0)
(s5370 5.0)
(s5371 2.0)
(s5373 4.0)
(s5374 5.0)
(s5375 5.0)
(s5376 2.0)
(s5378 4.0)
(s5379 5.0)
(s5380 5.0)
(s5381 2.0)
(s5383 4.0)
(s5384 5.0)
(s5385 5.0)
(s5386 2.0)
(s5388 4.0)
(s5389 5.0)
(s5390 5.0)
(s5391 2.0)
(s5393 4.0)
(s5394 5.0)
(s5395 5.0)
(s5396 2.0)
(s5398 4.0)
(s5399 5.0)
(s5400 5.0)
(s5401 2.0)
(s5403 4.0)
(s5404 5.0)
(s5405 5.0)
(s5406 2.0)
(s5408 4.0)
(s5409 5.0)
(s5410 5.0)
(s5411 2.0)
(s5413 4.0)
(s5414 5.0)
(s5415 5.0)
(s5416 2.0)
(s5418 4.0)
(s5419 5.0)
(s5420 5.0)
(s5421 2.0)
(s5423 4.0)
(s5424 5.0)
(s5425 5.0)
(s5426 2.0)
(s5428 4.0)
(s5429 5.0)
(s5430 5.0)
(s5431 2.0)
(s5433 4.0)
(s5434 5.0)
(s5435 5.0)
(s5436 2.0)
(s5438 4.0)
(s5439 5.0)
(s5440 5.0)
(s5441 2.0)
(s5443 4.0)
(s5444 5.0)
(s5445 5.0)
(s5446 2.0)
(s5448 4.0)
(s5449 5.0)
(s5450 5.0)
(s5451 2.0)
(s5453 4.0)
(s5454 5.0)
(s5455 5.0)
(s5456 2.0)
(s5458 4.0)
(s5459 5.0)
(s5460 5.0)
(s5461 2.0)
(s5463 4.0)
(s5464 5.0)
(s5465 5.0)
(s5466 2.0)
(s5468 4.0)
(s5469 5.0)
(s5470 5.0)
(s5471 2.0)
(s5473 4.0)
(s5474 5.0)
(s5475 5.0)
(s5476 2.0)
(s5478 4.0)
(s5479 5.0)
(s5480 5.0)
(s5481 2.0)
(s5483 4.0)
(s5484 5.0)
(s5485 5.0)
(s5486 2.0)
(s5488 4.0)
(s5489 5.0)
(s5490 5.0)
(s5491 2.0)
(s5493 4.0)
(s5494 5.0)
(s5495 5.0)
(s5496 2.0)
(s5498 4.0)
(s5499 5.0)
(s5500 5.0)
(s5501 2.0)
(s5503 4.0)
(s5504 5.0)
(s5505 5.0)
(s5506 2.0)
(s5508 4.0)
(s5509 5.0)
(s5510 5.0)
(s5511 2.0)
(s5513 4.0)
(s5514 5.0)
(s5515 5.0)
(s5516 2.0)
(s5518 4.0)
(s5519 5.0)
(s5520 5.0)
(s5521 2.0)
(s5523 4.0)
(s5524 5.0)
(s5525 5.0)
(s5526 2.0)
(s5528 4.0)
(s5529 5.0)
(s5530 5.0)
(s5531 2.0)
(s5533 4.0)
(s5534 5.0)
(s5535 5.0)
(s5536 2.0)
(s5538 4.0)
(s5539 5.0)
(s5540 5.0)
(s5541 2.0)
(s5543 4.0)
(s5544 5.0)
(s5545 5.0)
(s5546 2.0)
(s5548 4.0)
(s5549 5.0)
(s5550 5.0)
(s5551 2.0)
(s5553 4.0)
(s5554 5.0)
(s5555 5.0)
(s5556 2.0)
(s5558 4.0)
(s5559 5.0)
(s5560 5.0)
(s5561 2.0)
(s5563 4.0)
(s5564 5.0)
(s5565 5.0)
(s5566 2.0)
(s5568 4.0)
(s5569 5.0)
(s5570 5.0)
(s5571 2.0)
(s5573 4.0)
(s5574 5.0)
(s5575 5.0)
(s5576 2.0)
(s5578 4.0)
(s5579 5.0)
(s5580 5.0)
(s5581 2.0)
(s5583 4.0)
(s5584 5.0)
(s5585 5.0)
(s5586 2.0)
(s5588 4.0)
(s5589 5.0)
(s5590 5.0)
(s5591 2.0)
(s5593 4.0)
(s5594 5.0)
(s5595 5.0)
(s5596 2.0)
(s5598 4.0)
(s5599 5.0)
(s5600 5.0)
(s5601 2.0)
(s5603 4.0)
(s5604 5.0)
(s5605 5.0)
(s5606 2.0)
(s5608 4.0)
(s5609 5.0)
(s5610 5.0)
(s5611 2.0)
(s5613 4.0)
(s5614 5.0)
(s5615 5.0)
(s5616 2.0)
(s5618 4.0)
(s5619 5.0)
(s5620 5.0)
(s5621 2.0)
(s5623 4.0)
(s5624 5.0)
(s5625 5.0)
(s5626 2.0)
(s5628 4.0)
(s5629 5.0)
(s5630 5.0)
(s5631 2.0)
(s5633 4.0)
(s5634 5.0)
(s5635 5.0)
(s5636 2.0)
(s5638 4.0)
(s5639 5.0)
(s5640 5.0)
(s5641 2.0)
(s5643 4.0)
(s5644 5.0)
(s5645 5.0)
(s5646 2.0)
(s5648 4.0)
(s5649 5.0)
(s5650 5.0)
(s5651 2.0)
(s5653 4.0)
(s5654 5.0)
(s5655 5.0)
(s5656 2.0)
(s5658 4.0)
(s5659 5.0)
(s5660 5.0)
(s5661 2.0)
(s5663 4.0)
(s5664 5.0)
(s5665 5.0)
(s5666 2.0)
(s5668 4.0)
(s5669 5.0)
(s5670 5.0)
(s5671 2.0)
(s5673 4.0)
(s5674 5.0)
(s5675 5.0)
(s5676 2.0)
(s5678 4.0)
(s5679 5.0)
(s5680 5.0)
(s5681 2.0)
(s5683 4.0)
(s5684 5.0)
(s5685 5.0)
(s5686 2.0)
(s5688 4.0)
(s5689 5.0)
(s5690 5.0)
(s5691 2.0)
(s5693 4.0)
(s5694 5.0)
(s5695 5.0)
(s5696 2.0)
(s5698 4.0)
(s5699 5.0)
(s5700 5.0)
(s5701 2.0)
(s5703 4.0)
(s5704 5.0)
(s5705 5.0)
(s5706 2.0)
(s5708 4.0)
(s5709 5.0)
(s5710 5.0)
(s5711 2.0)
(s5713 4.0)
(s5714 5.0)
(s5715 5.0)
(s5716 2.0)
(s5718 4.0)
(s5719 5.0)
(s5720 5.0)
(s5721 2.0)
(s5723 4.0)
(s5724 5.0)
(s5725 5.0)
(s5726 2.0)
(s5728 4.0)
(s5729 5.0)
(s5730 5.0)
(s5731 2.0)
(s5733 4.0)
(s5734 5.0)
(s5735 5.0)
(s5736 2.0)
(s5738 4.0)
(s5739 5.0)
(s5740 5.0)
(s5741 2.0)
(s5743 4.0)
(s5744 5.0)
(s5745 5.0)
(s5746 2.0)
(s5748 4.0)
(s5749 5.0)
(s5750 5.0)
(s5751 2.0)
(s5753 4.0)
(s5754 5.0)
(s5755 5.0)
(s5756 2.0)
(s5758 4.0)
(s5759 5.0)
(s5760 5.0)
(s5761 2.0)
(s5763 4.0)
(s5764 5.0)
(s5765 5.0)
(s5766 2.0)
(s5768 4.0)
(s5769 5.0)
(s5770 5.0)
(s5771 2.0)
(s5773 4.0)
(s5774 5.0)
(s5775 5.0)
(s5776 2.0)
(s5778 4.0)
(s5779 5.0)
(s5780 5.0)
(s5781 2.0)
(s5783 4.0)
(s5784 5.0)
(s5785 5.0)
(s5786 2.0)
(s5788 4.0)
(s5789 5.0)
(s5790 5.0)
(s5791 2.0)
(s5793 4.0)
(s5794 5.0)
(s5795 5.0)
(s5796 2.0)
(s5798 4.0)
(s5799 5.0)
(s5800 5.0)
(s5801 2.0)
(s5803 4.0)
(s5804 5.0)
(s5805 5.0)
(s5806 2.0)
(s5808 4.0)
(s5809 5.0)
(s5810 5.0)
(s5811 2.0)
(s5813 4.0)
(s5814 5.0)
(s5815 5.0)
(s5816 2.0)
(s5818 4.0)
(s5819 5.0)
(s5820 5.0)
(s5821 2.0)
(s5823 4.0)
(s5824 5.0)
(s5825 5.0)
(s5826 2.0)
(s5828 4.0)
(s5829 5.0)
(s5830 5.0)
(s5831 2.0)
(s5833 4.0)
(s5834 5.0)
(s5835 5.0)
(s5836 2.0)
(s5838 4.0)
(s5839 5.0)
(s5840 5.0)
(s5841 2.0)
(s5843 4.0)
(s5844 5.0)
(s5845 5.0)
(s5846 2.0)
(s5848 4.0)
(s5849 5.0)
(s5850 5.0)
(s5851 2.0)
(s5853 4.0)
(s5854 5.0)
(s5855 5.0)
(s5856 2.0)
(s5858 4.0)
(s5859 5.0)
(s5860 5.0)
(s5861 2.0)
(s5863 4.0)
(s5864 5.0)
(s5865 5.0)
(s5866 2.0)
(s5868 4.0)
(s5869 5.0)
(s5870 5.0)
(s5871 2.0)
(s5873 4.0)
(s5874 5.0)
(s5875 5.0)
(s5876 2.0)
(s5878 4.0)
(s5879 5.0)
(s5880 5.0)
(s5881 2.0)
(s5883 4.0)
(s5884 5.0)
(s5885 5.0)
(s5886 2.0)
(s5888 4.0)
(s5889 5.0)
(s5890 5.0)
(s5891 2.0)
(s5893 4.0)
(s5894 5.0)
(s5895 5.0)
(s5896 2.0)
(s5898 4.0)
(s5899 5.0)
(s5900 5.0)
(s5901 2.0)
(s5903 4.0)
(s5904 5.0)
(s5905 5.0)
(s5906 2.0)
(s5908 4.0)
(s5909 5.0)
(s5910 5.0)
(s5911 2.0)
(s5913 4.0)
(s5914 5.0)
(s5915 5.0)
(s5916 2.0)
(s5918 4.0)
(s5919 5.0)
(s5920 5.0)
(s5921 2.0)
(s5923 4.0)
(s5924 5.0)
(s5925 5.0)
(s5926 2.0)
(s5928 4.0)
(s5929 5.0)
(s5930 5.0)
(s5931 2.0)
(s5933 4.0)
(s5934 5.0)
(s5935 5.0)
(s5936 2.0)
(s5938 4.0)
(s5939 5.0)
(s5940 5.0)
(s5941 2.0)
(s5943 4.0)
(s5944 5.0)
(s5945 5.0)
(s5946 2.0)
(s5948 4.0)
(s5949 5.0)
(s5950 5.0)
(s5951 2.0)
(s5953 4.0)
(s5954 5.0)
(s5955 5.0)
(s5956 2.0)
(s5958 4.0)
(s5959 5.0)
(s5960 5.0)
(s5961 2.0)
(s5963 4.0)
(s5964 5.0)
(s5965 5.0)
(s5966 2.0)
(s5968 4.0)
(s5969 5.0)
(s5970 5.0)
(s5971 2.0)
(s5973 4.0)
(s5974 5.0)
(s5975 5.0)
(s5976 2.0)
(s5978 4.0)
(s5979 5.0)
(s5980 5.0)
(s5981 2.0)
(s5983 4.0)
(s5984 5.0)
(s5985 5.0)
(s5986 2.0)
(s5988 4.0)
(s5989 5.0)
(s5990 5.0)
(s5991 2.0)
(s5993 4.0)
(s5994 5.0)
(s5995 5.0)
(s5996 2.0)
(s5998 4.0)
(s5999 5.0)
(s6000 5.0)
(s6001 2.0)
(s6003 4.0)
(s6004 5.0)
(s6005 5.0)
(s6006 2.0)
(s6008 4.0)
(s6009 5.0)
(s6010 5.0)
(s6011 2.0)
(s6013 4.0)
(s6014 5.0)
(s6015 5.0)
(s6016 2.0)
(s6018 4.0)
(s6019 5.0)
(s6020 5.0)
(s6021 2.0)
(s6023 4.0)
(s6024 5.0)
(s6025 5.0)
(s6026 2.0)
(s6028 4.0)
(s6029 5.0)
(s6030 5.0)
(s6031 2.0)
(s6033 4.0)
(s6034 5.0)
(s6035 5.0)
(s6036 2.0)
(s6038 4.0)
(s6039 5.0)
(s6040 5.0)
(s6041 2.0)
(s6043 4.0)
(s6044 5.0)
(s6045 5.0)
(s6046 2.0)
(s6048 4.0)
(s6049 5.0)
(s6050 5.0)
(s6051 2.0)
(s6053 4.0)
(s6054 5.0)
(s6055 5.0)
(s6056 2.0)
(s6058 4.0)
(s6059 5.0)
(s6060 5.0)
(s6061 2.0)
(s6063 4.0)
(s6064 5.0)
(s6065 5.0)
(s6066 2.0)
(s6068 4.0)
(s6069 5.0)
(s6070 5.0)
(s6071 2.0)
(s6073 4.0)
(s6074 5.0)
(s6075 5.0)
(s6076 2.0)
(s6078 4.0)
(s6079 5.0)
(s6080 5.0)
(s6081 2.0)
(s6083 4.0)
(s6084 5.0)
(s6085 5.0)
(s6086 2.0)
(s6088 4.0)
(s6089 5.0)
(s6090 5.0)
(s6091 2.0)
(s6093 4.0)
(s6094 5.0)
(s6095 5.0)
(s6096 2.0)
(s6098 4.0)
(s6099 5.0)
(s6100 5.0)
(s6101 2.0)
(s6103 4.0)
(s6104 5.0)
(s6105 5.0)
(s6106 2.0)
(s6108 4.0)
(s6109 5.0)
(s6110 5.0)
(s6111 2.0)
(s6113 4.0)
(s6114 5.0)
(s6115 5.0)
(s6116 2.0)
(s6118 4.0)
(s6119 5.0)
(s6120 5.0)
(s6121 2.0)
(s6123 4.0)
(s6124 5.0)
(s6125 5.0)
(s6126 2.0)
(s6128 4.0)
(s6129 5.0)
(s6130 5.0)
(s6131 2.0)
(s6133 4.0)
(s6134 5.0)
(s6135 5.0)
(s6136 2.0)
(s6138 4.0)
(s6139 5.0)
(s6140 5.0)
(s6141 2.0)
(s6143 4.0)
(s6144 5.0)
(s6145 5.0)
(s6146 2.0)
(s6148 4.0)
(s6149 5.0)
(s6150 5.0)
(s6151 2.0)
(s6153 4.0)
(s6154 5.0)
(s6155 5.0)
(s6156 2.0)
(s6158 4.0)
(s6159 5.0)
(s6160 5.0)
(s6161 2.0)
(s6163 4.0)
(s6164 5.0)
(s6165 5.0)
(s6166 2.0)
(s6168 4.0)
(s6169 5.0)
(s6170 5.0)
(s6171 2.0)
(s6173 4.0)
(s6174 5.0)
(s6175 5.0)
(s6176 2.0)
(s6178 4.0)
(s6179 5.0)
(s6180 5.0)
(s6181 2.0)
(s6183 4.0)
(s6184 5.0)
(s6185 5.0)
(s6186 2.0)
(s6188 4.0)
(s6189 5.0)
(s6190 5.0)
(s6191 2.0)
(s6193 4.0)
(s6194 5.0)
(s6195 5.0)
(s6196 2.0)
(s6198 4.0)
(s6199 5.0)
(s6200 5.0)
(s6201 2.0)
(s6203 4.0)
(s6204 5.0)
(s6205 5.0)
(s6206 2.0)
(s6208 4.0)
(s6209 5.0)
(s6210 5.0)
(s6211 2.0)
(s6213 4.0)
(s6214 5.0)
(s6215 5.0)
(s6216 2.0)
(s6218 4.0)
(s6219 5.0)
(s6220 5.0)
(s6221 2.0)
(s6223 4.0)
(s6224 5.0)
(s6225 5.0)
(s6226 2.0)
(s6228 4.0)
(s6229 5.0)
(s6230 5.0)
(s6231 2.0)
(s6233 4.0)
(s6234 5.0)
(s6235 5.0)
(s6236 2.0)
(s6238 4.0)
(s6239 5.0)
(s6240 5.0)
(s6241 2.0)
(s6243 4.0)
(s6244 5.0)
(s6245 5.0)
(s6246 2.0)
(s6248 4.0)
(s6249 5.0)
(s6250 5.0)
(s6251 2.0)
(s6253 4.0)
(s6254 5.0)
(s6255 5.0)
(s6256 2.0)
(s6258 4.0)
(s6259 5.0)
(s6260 5.0)
(s6261 2.0)
(s6263 4.0)
(s6264 5.0)
(s6265 5.0)
(s6266 2.0)
(s6268 4.0)
(s6269 5.0)
(s6270 5.0)
(s6271 2.0)
(s6273 4.0)
(s6274 5.0)
(s6275 5.0)
(s6276 2.0)
(s6278 4.0)
(s6279 5.0)
(s6280 5.0)
(s6281 2.0)
(s6283 4.0)
(s6284 5.0)
(s6285 5.0)
(s6286 2.0)
(s6288 4.0)
(s6289 5.0)
(s6290 5.0)
(s6291 2.0)
(s6293 4.0)
(s6294 5.0)
(s6295 5.0)
(s6296 2.0)
(s6298 4.0)
(s6299 5.0)
(s6300 5.0)
(s6301 2.0)
(s6303 4.0)
(s6304 5.0)
(s6305 5.0)
(s6306 2.0)
(s6308 4.0)
(s6309 5.0)
(s6310 5.0)
(s6311 2.0)
(s6313 4.0)
(s6314 5.0)
(s6315 5.0)
(s6316 2.0)
(s6318 4.0)
(s6319 5.0)
(s6320 5.0)
(s6321 2.0)
(s6323 4.0)
(s6324 5.0)
(s6325 5.0)
(s6326 2.0)
(s6328 4.0)
(s6329 5.0)
(s6330 5.0)
(s6331 2.0)
(s6333 4.0)
(s6334 5.0)
(s6335 5.0)
(s6336 2.0)
(s6338 4.0)
(s6339 5.0)
(s6340 5.0)
(s6341 2.0)
(s6343 4.0)
(s6344 5.0)
(s6345 5.0)
(s6346 2.0)
(s6348 4.0)
(s6349 5.0)
(s6350 5.0)
(s6351 2.0)
(s6353 4.0)
(s6354 5.0)
(s6355 5.0)
(s6356 2.0)
(s6358 4.0)
(s6359 5.0)
(s6360 5.0)
(s6361 2.0)
(s6363 4.0)
(s6364 5.0)
(s6365 5.0)
(s6366 2.0)
(s6368 4.0)
(s6369 5.0)
(s6370 5.0)
(s6371 2.0)
(s6373 4.0)
(s6374 5.0)
(s6375 5.0)
(s6376 2.0)
(s6378 4.0)
(s6379 5.0)
(s6380 5.0)
(s6381 2.0)
(s6383 4.0)
(s6384 5.0)
(s6385 5.0)
(s6386 2.0)
(s6388 4.0)
(s6389 5.0)
(s6390 5.0)
(s6391 2.0)
(s6393 4.0)
(s6394 5.0)
(s6395 5.0)
(s6396 2.0)
(s6398 4.0)
(s6399 5.0)
(s6400 5.0)
(s6401 2.0)
(s6403 4.0)
(s6404 5.0)
(s6405 5.0)
(s6406 2.0)
(s6408 4.0)
(s6409 5.0)
(s6410 5.0)
(s6411 2.0)
(s6413 4.0)
(s6414 5.0)
(s6415 5.0)
(s6416 2.0)
(s6418 4.0)
(s6419 5.0)
(s6420 5.0)
(s6421 2.0)
(s6423 4.0)
(s6424 5.0)
(s6425 5.0)
(s6426 2.0)
(s6428 4.0)
(s6429 5.0)
(s6430 5.0)
(s6431 2.0)
(s6433 4.0)
(s6434 5.0)
(s6435 5.0)
(s6436 2.0)
(s6438 4.0)
(s6439 5.0)
(s6440 5.0)
(s6441 2.0)
(s6443 4.0)
(s6444 5.0)
(s6445 5.0)
(s6446 2.0)
(s6448 4.0)
(s6449 5.0)
(s6450 5.0)
(s6451 2.0)
(s6453 4.0)
(s6454 5.0)
(s6455 5.0)
(s6456 2.0)
(s6458 4.0)
(s6459 5.0)
(s6460 5.0)
(s6461 2.0)
(s6463 4.0)
(s6464 5.0)
(s6465 5.0)
(s6466 2.0)
(s6468 4.0)
(s6469 5.0)
(s6470 5.0)
(s6471 2.0)
(s6473 4.0)
(s6474 5.0)
(s6475 5.0)
(s6476 2.0)
(s6478 4.0)
(s6479 5.0)
(s6480 5.0)
(s6481 2.0)
(s6483 4.0)
(s6484 5.0)
(s6485 5.0)
(s6486 2.0)
(s6488 4.0)
(s6489 5.0)
(s6490 5.0)
(s6491 2.0)
(s6493 4.0)
(s6494 5.0)
(s6495 5.0)
(s6496 2.0)
(s6498 4.0)
(s6499 5.0)
(s6500 5.0)
(s6501 2.0)
(s6503 4.0)
(s6504 5.0)
(s6505 5.0)
(s6506 2.0)
(s6508 4.0)
(s6509 5.0)
(s6510 5.0)
(s6511 2.0)
(s6513 4.0)
(s6514 5.0)
(s6515 5.0)
(s6516 2.0)
(s6518 4.0)
(s6519 5.0)
(s6520 5.0)
(s6521 2.0)
(s6523 4.0)
(s6524 5.0)
(s6525 5.0)
(s6526 2.0)
(s6528 4.0)
(s6529 5.0)
(s6530 5.0)
(s6531 2.0)
(s6533 4.0)
(s6534 5.0)
(s6535 5.0)
(s6536 2.0)
(s6538 4.0)
(s6539 5.0)
(s6540 5.0)
(s6541 2.0)
(s6543 4.0)
(s6544 5.0)
(s6545 5.0)
(s6546 2.0)
(s6548 4.0)
(s6549 5.0)
(s6550 5.0)
(s6551 2.0)
(s6553 4.0)
(s6554 5.0)
(s6555 5.0)
(s6556 2.0)
(s6558 4.0)
(s6559 5.0)
(s6560 5.0)
(s6561 2.0)
(s6563 4.0)
(s6564 5.0)
(s6565 5.0)
(s6566 2.0)
(s6568 4.0)
(s6569 5.0)
(s6570 5.0)
(s6571 2.0)
(s6573 4.0)
(s6574 5.0)
(s6575 5.0)
(s6576 2.0)
(s6578 4.0)
(s6579 5.0)
(s6580 5.0)
(s6581 2.0)
(s6583 4.0)
(s6584 5.0)
(s6585 5.0)
(s6586 2.0)
(s6588 4.0)
(s6589 5.0)
(s6590 5.0)
(s6591 2.0)
(s6593 4.0)
(s6594 5.0)
(s6595 5.0)
(s6596 2.0)
(s6598 4.0)
(s6599 5.0)
(s6600 5.0)
(s6601 2.0)
(s6603 4.0)
(s6604 5.0)
(s6605 5.0)
(s6606 2.0)
(s6608 4.0)
(s6609 5.0)
(s6610 5.0)
(s6611 2.0)
(s6613 4.0)
(s6614 5.0)
(s6615 5.0)
(s6616 2.0)
(s6618 4.0)
(s6619 5.0)
(s6620 5.0)
(s6621 2.0)
(s6623 4.0)
(s6624 5.0)
(s6625 5.0)
(s6626 2.0)
(s6628 4.0)
(s6629 5.0)
(s6630 5.0)
(s6631 2.0)
(s6633 4.0)
(s6634 5.0)
(s6635 5.0)
(s6636 2.0)
(s6638 4.0)
(s6639 5.0)
(s6640 5.0)
(s6641 2.0)
(s6643 4.0)
(s6644 5.0)
(s6645 5.0)
(s6646 2.0)
(s6648 4.0)
(s6649 5.0)
(s6650 5.0)
(s6651 2.0)
(s6653 4.0)
(s6654 5.0)
(s6655 5.0)
(s6656 2.0)
(s6658 4.0)
(s6659 5.0)
(s6660 5.0)
(s6661 2.0)
(s6663 4.0)
(s6664 5.0)
(s6665 5.0)
(s6666 2.0)
(s6668 4.0)
(s6669 5.0)
(s6670 5.0)
(s6671 2.0)
(s6673 4.0)
(s6674 5.0)
(s6675 5.0)
(s6676 2.0)
(s6678 4.0)
(s6679 5.0)
(s6680 5.0)
(s6681 2.0)
(s6683 4.0)
(s6684 5.0)
(s6685 5.0)
(s6686 2.0)
(s6688 4.0)
(s6689 5.0)
(s6690 5.0)
(s6691 2.0)
(s6693 4.0)
(s6694 5.0)
(s6695 5.0)
(s6696 2.0)
(s6698 4.0)
(s6699 5.0)
(s6700 5.0)
(s6701 2.0)
(s6703 4.0)
(s6704 5.0)
(s6705 5.0)
(s6706 2.0)
(s6708 4.0)
(s6709 5.0)
(s6710 5.0)
(s6711 2.0)
(s6713 4.0)
(s6714 5.0)
(s6715 5.0)
(s6716 2.0)
(s6718 4.0)
(s6719 5.0)
(s6720 5.0)
(s6721 2.0)
(s6723 4.0)
(s6724 5.0)
(s6725 5.0)
(s6726 2.0)
(s6728 4.0)
(s6729 5.0)
(s6730 5.0)
(s6731 2.0)
(s6733 4.0)
(s6734 5.0)
(s6735 5.0)
(s6736 2.0)
(s6738 4.0)
(s6739 5.0)
(s6740 5.0)
(s6741 2.0)
(s6743 4.0)
(s6744 5.0)
(s6745 5.0)
(s6746 2.0)
(s6748 4.0)
(s6749 5.0)
(s6750 5.0)
(s6751 2.0)
(s6753 4.0)
(s6754 5.0)
(s6755 5.0)
(s6756 2.0)
(s6758 4.0)
(s6759 5.0)
(s6760 5.0)
(s6761 2.0)
(s6763 4.0)
(s6764 5.0)
(s6765 5.0)
(s6766 2.0)
(s6768 4.0)
(s6769 5.0)
(s6770 5.0)
(s6771 2.0)
(s6773 4.0)
(s6774 5.0)
(s6775 5.0)
(s6776 2.0)
(s6778 4.0)
(s6779 5.0)
(s6780 5.0)
(s6781 2.0)
(s6783 4.0)
(s6784 5.0)
(s6785 5.0)
(s6786 2.0)
(s6788 4.0)
(s6789 5.0)
(s6790 5.0)
(s6791 2.0)
(s6793 4.0)
(s6794 5.0)
(s6795 5.0)
(s6796 2.0)
(s6798 4.0)
(s6799 5.0)
(s6800 5.0)
(s6801 2.0)
(s6803 4.0)
(s6804 5.0)
(s6805 5.0)
(s6806 2.0)
(s6808 4.0)
(s6809 5.0)
(s6810 5.0)
(s6811 2.0)
(s6813 4.0)
(s6814 5.0)
(s6815 5.0)
(s6816 2.0)
(s6818 4.0)
(s6819 5.0)
(s6820 5.0)
(s6821 2.0)
(s6823 4.0)
(s6824 5.0)
(s6825 5.0)
(s6826 2.0)
(s6828 4.0)
(s6829 5.0)
(s6830 5.0)
(s6831 2.0)
(s6833 4.0)
(s6834 5.0)
(s6835 5.0)
(s6836 2.0)
(s6838 4.0)
(s6839 5.0)
(s6840 5.0)
(s6841 2.0)
(s6843 4.0)
(s6844 5.0)
(s6845 5.0)
(s6846 2.0)
(s6848 4.0)
(s6849 5.0)
(s6850 5.0)
(s6851 2.0)
(s6853 4.0)
(s6854 5.0)
(s6855 5.0)
(s6856 2.0)
(s6858 4.0)
(s6859 5.0)
(s6860 5.0)
(s6861 2.0)
(s6863 4.0)
(s6864 5.0)
(s6865 5.0)
(s6866 2.0)
(s6868 4.0)
(s6869 5.0)
(s6870 5.0)
(s6871 2.0)
(s6873 4.0)
(s6874 5.0)
(s6875 5.0)
(s6876 2.0)
(s6878 4.0)
(s6879 5.0)
(s6880 5.0)
(s6881 2.0)
(s6883 4.0)
(s6884 5.0)
(s6885 5.0)
(s6886 2.0)
(s6888 4.0)
(s6889 5.0)
(s6890 5.0)
(s6891 2.0)
(s6893 4.0)
(s6894 5.0)
(s6895 5.0)
(s6896 2.0)
(s6898 4.0)
(s6899 5.0)
(s6900 5.0)
(s6901 2.0)
(s6903 4.0)
(s6904 5.0)
(s6905 5.0)
(s6906 2.0)
(s6908 4.0)
(s6909 5.0)
(s6910 5.0)
(s6911 2.0)
(s6913 4.0)
(s6914 5.0)
(s6915 5.0)
(s6916 2.0)
(s6918 4.0)
(s6919 5.0)
(s6920 5.0)
(s6921 2.0)
(s6923 4.0)
(s6924 5.0)
(s6925 5.0)
(s6926 2.0)
(s6928 4.0)
(s6929 5.0)
(s6930 5.0)
(s6931 2.0)
(s6933 4.0)
(s6934 5.0)
(s6935 5.0)
(s6936 2.0)
(s6938 4.0)
(s6939 5.0)
(s6940 5.0)
(s6941 2.0)
(s6943 4.0)
(s6944 5.0)
(s6945 5.0)
(s6946 2.0)
(s6948 4.0)
(s6949 5.0)
(s6950 5.0)
(s6951 2.0)
(s6953 4.0)
(s6954 5.0)
(s6955 5.0)
(s6956 2.0)
(s6958 4.0)
(s6959 5.0)
(s6960 5.0)
(s6961 2.0)
(s6963 4.0)
(s6964 5.0)
(s6965 5.0)
(s6966 2.0)
(s6968 4.0)
(s6969 5.0)
(s6970 5.0)
(s6971 2.0)
(s6973 4.0)
(s6974 5.0)
(s6975 5.0)
(s6976 2.0)
(s6978 4.0)
(s6979 5.0)
(s6980 5.0)
(s6981 2.0)
(s6983 4.0)
(s6984 5.0)
(s6985 5.0)
(s6986 2.0)
(s6988 4.0)
(s6989 5.0)
(s6990 5.0)
(s6991 2.0)
(s6993 4.0)
(s6994 5.0)
(s6995 5.0)
(s6996 2.0)
(s6998 4.0)
(s6999 5.0)
(s7000 5.0)
(s7001 2.0)
(s7003 4.0)
(s7004 5.0)
(s7005 5.0)
(s7006 2.0)
(s7008 4.0)
(s7009 5.0)
(s7010 5.0)
(s7011 2.0)
(s7013 4.0)
(s7014 5.0)
(s7015 5.0)
(s7016 2.0)
(s7018 4.0)
(s7019 5.0)
(s7020 5.0)
(s7021 2.0)
(s7023 4.0)
(s7024 5.0)
(s7025 5.0)
(s7026 2.0)
(s7028 4.0)
(s7029 5.0)
(s7030 5.0)
(s7031 2.0)
(s7033 4.0)
(s7034 5.0)
(s7035 5.0)
(s7036 2.0)
(s7038 4.0)
(s7039 5.0)
(s7040 5.0)
(s7041 2.0)
(s7043 4.0)
(s7044 5.0)
(s7045 5.0)
(s7046 2.0)
(s7048 4.0)
(s7049 5.0)
(s7050 5.0)
(s7051 2.0)
(s7053 4.0)
(s7054 5.0)
(s7055 5.0)
(s7056 2.0)
(s7058 4.0)
(s7059 5.0)
(s7060 5.0)
(s7061 2.0)
(s7063 4.0)
(s7064 5.0)
(s7065 5.0)
(s7066 2.0)
(s7068 4.0)
(s7069 5.0)
(s7070 5.0)
(s7071 2.0)
(s7073 4.0)
(s7074 5.0)
(s7075 5.0)
(s7076 2.0)
(s7078 4.0)
(s7079 5.0)
(s7080 5.0)
(s7081 2.0)
(s7083 4.0)
(s7084 5.0)
(s7085 5.0)
(s7086 2.0)
(s7088 4.0)
(s7089 5.0)
(s7090 5.0)
(s7091 2.0)
(s7093 4.0)
(s7094 5.0)
(s7095 5.0)
(s7096 2.0)
(s7098 4.0)
(s7099 5.0)
(s7100 5.0)
(s7101 2.0)
(s7103 4.0)
(s7104 5.0)
(s7105 5.0)
(s7106 2.0)
(s7108 4.0)
(s7109 5.0)
(s7110 5.0)
(s7111 2.0)
(s7113 4.0)
(s7114 5.0)
(s7115 5.0)
(s7116 2.0)
(s7118 4.0)
(s7119 5.0)
(s7120 5.0)
(s7121 2.0)
(s7123 4.0)
(s7124 5.0)
(s7125 5.0)
(s7126 2.0)
(s7128 4.0)
(s7129 5.0)
(s7130 5.0)
(s7131 2.0)
(s7133 4.0)
(s7134 5.0)
(s7135 5.0)
(s7136 2.0)
(s7138 4.0)
(s7139 5.0)
(s7140 5.0)
(s7141 2.0)
(s7143 4.0)
(s7144 5.0)
(s7145 5.0)
(s7146 2.0)
(s7148 4.0)
(s7149 5.0)
(s7150 5.0)
(s7151 2.0)
(s7153 4.0)
(s7154 5.0)
(s7155 5.0)
(s7156 2.0)
(s7158 4.0)
(s7159 5.0)
(s7160 5.0)
(s7161 2.0)
(s7163 4.0)
(s7164 5.0)
(s7165 5.0)
(s7166 2.0)
(s7168 4.0)
(s7169 5.0)
(s7170 5.0)
(s7171 2.0)
(s7173 4.0)
(s7174 5.0)
(s7175 5.0)
(s7176 2.0)
(s7178 4.0)
(s7179 5.0)
(s7180 5.0)
(s7181 2.0)
(s7183 4.0)
(s7184 5.0)
(s7185 5.0)
(s7186 2.0)
(s7188 4.0)
(s7189 5.0)
(s7190 5.0)
(s7191 2.0)
(s7193 4.0)
(s7194 5.0)
(s7195 5.0)
(s7196 2.0)
(s7198 4.0)
(s7199 5.0)
(s7200 5.0)
(s7201 2.0)
(s7203 4.0)
(s7204 5.0)
(s7205 5.0)
(s7206 2.0)
(s7208 4.0)
(s7209 5.0)
(s7210 5.0)
(s7211 2.0)
(s7213 4.0)
(s7214 5.0)
(s7215 5.0)
(s7216 2.0)
(s7218 4.0)
(s7219 5.0)
(s7220 5.0)
(s7221 2.0)
(s7223 4.0)
(s7224 5.0)
(s7225 5.0)
(s7226 2.0)
(s7228 4.0)
(s7229 5.0)
(s7230 5.0)
(s7231 2.0)
(s7233 4.0)
(s7234 5.0)
(s7235 5.0)
(s7236 2.0)
(s7238 4.0)
(s7239 5.0)
(s7240 5.0)
(s7241 2.0)
(s7243 4.0)
(s7244 5.0)
(s7245 5.0)
(s7246 2.0)
(s7248 4.0)
(s7249 5.0)
(s7250 5.0)
(s7251 2.0)
(s7253 4.0)
(s7254 5.0)
(s7255 5.0)
(s7256 2.0)
(s7258 4.0)
(s7259 5.0)
(s7260 5.0)
(s7261 2.0)
(s7263 4.0)
(s7264 5.0)
(s7265 5.0)
(s7266 2.0)
(s7268 4.0)
(s7269 5.0)
(s7270 5.0)
(s7271 2.0)
(s7273 4.0)
(s7274 5.0)
(s7275 5.0)
(s7276 2.0)
(s7278 4.0)
(s7279 5.0)
(s7280 5.0)
(s7281 2.0)
(s7283 4.0)
(s7284 5.0)
(s7285 5.0)
(s7286 2.0)
(s7288 4.0)
(s7289 5.0)
(s7290 5.0)
(s7291 2.0)
(s7293 4.0)
(s7294 5.0)
(s7295 5.0)
(s7296 2.0)
(s7298 4.0)
(s7299 5.0)
(s7300 5.0)
(s7301 2.0)
(s7303 4.0)
(s7304 5.0)
(s7305 5.0)
(s7306 2.0)
(s7308 4.0)
(s7309 5.0)
(s7310 5.0)
(s7311 2.0)
(s7313 4.0)
(s7314 5.0)
(s7315 5.0)
(s7316 2.0)
(s7318 4.0)
(s7319 5.0)
(s7320 5.0)
(s7321 2.0)
(s7323 4.0)
(s7324 5.0)
(s7325 5.0)
(s7326 2.0)
(s7328 4.0)
(s7329 5.0)
(s7330 5.0)
(s7331 2.0)
(s7333 4.0)
(s7334 5.0)
(s7335 5.0)
(s7336 2.0)
(s7338 4.0)
(s7339 5.0)
(s7340 5.0)
(s7341 2.0)
(s7343 4.0)
(s7344 5.0)
(s7345 5.0)
(s7346 2.0)
(s7348 4.0)
(s7349 5.0)
(s7350 5.0)
(s7351 2.0)
(s7353 4.0)
(s7354 5.0)
(s7355 5.0)
(s7356 2.0)
(s7358 4.0)
(s7359 5.0)
(s7360 5.0)
(s7361 2.0)
(s7363 4.0)
(s7364 5.0)
(s7365 5.0)
(s7366 2.0)
(s7368 4.0)
(s7369 5.0)
(s7370 5.0)
(s7371 2.0)
(s7373 4.0)
(s7374 5.0)
(s7375 5.0)
(s7376 2.0)
(s7378 4.0)
(s7379 5.0)
(s7380 5.0)
(s7381 2.0)
(s7383 4.0)
(s7384 5.0)
(s7385 5.0)
(s7386 2.0)
(s7388 4.0)
(s7389 5.0)
(s7390 5.0)
(s7391 2.0)
(s7393 4.0)
(s7394 5.0)
(s7395 5.0)
(s7396 2.0)
(s7398 4.0)
(s7399 5.0)
(s7400 5.0)
(s7401 2.0)
(s7403 4.0)
(s7404 5.0)
(s7405 5.0)
(s7406 2.0)
(s7408 4.0)
(s7409 5.0)
(s7410 5.0)
(s7411 2.0)
(s7413 4.0)
(s7414 5.0)
(s7415 5.0)
(s7416 2.0)
(s7418 4.0)
(s7419 5.0)
(s7420 5.0)
(s7421 2.0)
(s7423 4.0)
(s7424 5.0)
(s7425 5.0)
(s7426 2.0)
(s7428 4.0)
(s7429 5.0)
(s7430 5.0)
(s7431 2.0)
(s7433 4.0)
(s7434 5.0)
(s7435 5.0)
(s7436 2.0)
(s7438 4.0)
(s7439 5.0)
(s7440 5.0)
(s7441 2.0)
(s7443 4.0)
(s7444 5.0)
(s7445 5.0)
(s7446 2.0)
(s7448 4.0)
(s7449 5.0)
(s7450 5.0)
(s7451 2.0)
(s7453 4.0)
(s7454 5.0)
(s7455 5.0)
(s7456 2.0)
(s7458 4.0)
(s7459 5.0)
(s7460 5.0)
(s7461 2.0)
(s7463 4.0)
(s7464 5.0)
(s7465 5.0)
(s7466 2.0)
(s7468 4.0)
(s7469 5.0)
(s7470 5.0)
(s7471 2.0)
(s7473 4.0)
(s7474 5.0)
(s7475 5.0)
(s7476 2.0)
(s7478 4.0)
(s7479 5.0)
(s7480 5.0)
(s7481 2.0)
(s7483 4.0)
(s7484 5.0)
(s7485 5.0)
(s7486 2.0)
(s7488 4.0)
(s7489 5.0)
(s7490 5.0)
(s7491 2.0)
(s7493 4.0)
(s7494 5.0)
(s7495 5.0)
(s7496 2.0)
(s7498 4.0)
(s7499 5.0)
(s7500 5.0)
(s7501 2.0)
(s7503 4.0)
(s7504 5.0)
(s7505 5.0)
(s7506 2.0)
(s7508 4.0)
(s7509 5.0)
(s7510 5.0)
(s7511 2.0)
(s7513 4.0)
(s7514 5.0)
(s7515 5.0)
(s7516 2.0)
(s7518 4.0)
(s7519 5.0)
(s7520 5.0)
(s7521 2.0)
(s7523 4.0)
(s7524 5.0)
(s7525 5.0)
(s7526 2.0)
(s7528 4.0)
(s7529 5.0)
(s7530 5.0)
(s7531 2.0)
(s7533 4.0)
(s7534 5.0)
(s7535 5.0)
(s7536 2.0)
(s7538 4.0)
(s7539 5.0)
(s7540 5.0)
(s7541 2.0)
(s7543 4.0)
(s7544 5.0)
(s7545 5.0)
(s7546 2.0)
(s7548 4.0)
(s7549 5.0)
(s7550 5.0)
(s7551 2.0)
(s7553 4.0)
(s7554 5.0)
(s7555 5.0)
(s7556 2.0)
(s7558 4.0)
(s7559 5.0)
(s7560 5.0)
(s7561 2.0)
(s7563 4.0)
(s7564 5.0)
(s7565 5.0)
(s7566 2.0)
(s7568 4.0)
(s7569 5.0)
(s7570 5.0)
(s7571 2.0)
(s7573 4.0)
(s7574 5.0)
(s7575 5.0)
(s7576 2.0)
(s7578 4.0)
(s7579 5.0)
(s7580 5.0)
(s7581 2.0)
(s7583 4.0)
(s7584 5.0)
(s7585 5.0)
(s7586 2.0)
(s7588 4.0)
(s7589 5.0)
(s7590 5.0)
(s7591 2.0)
(s7593 4.0)
(s7594 5.0)
(s7595 5.0)
(s7596 2.0)
(s7598 4.0)
(s7599 5.0)
(s7600 5.0)
(s7601 2.0)
(s7603 4.0)
(s7604 5.0)
(s7605 5.0)
(s7606 2.0)
(s7608 4.0)
(s7609 5.0)
(s7610 5.0)
(s7611 2.0)
(s7613 4.0)
(s7614 5.0)
(s7615 5.0)
(s7616 2.0)
(s7618 4.0)
(s7619 5.0)
(s7620 5.0)
(s7621 2.0)
(s7623 4.0)
(s7624 5.0)
(s7625 5.0)
(s7626 2.0)
(s7628 4.0)
(s7629 5.0)
(s7630 5.0)
(s7631 2.0)
(s7633 4.0)
(s7634 5.0)
(s7635 5.0)
(s7636 2.0)
(s7638 4.0)
(s7639 5.0)
(s7640 5.0)
(s7641 2.0)
(s7643 4.0)
(s7644 5.0)
(s7645 5.0)
(s7646 2.0)
(s7648 4.0)
(s7649 5.0)
(s7650 5.0)
(s7651 2.0)
(s7653 4.0)
(s7654 5.0)
(s7655 5.0)
(s7656 2.0)
(s7658 4.0)
(s7659 5.0)
(s7660 5.0)
(s7661 2.0)
(s7663 4.0)
(s7664 5.0)
(s7665 5.0)
(s7666 2.0)
(s7668 4.0)
(s7669 5.0)
(s7670 5.0)
(s7671 2.0)
(s7673 4.0)
(s7674 5.0)
(s7675 5.0)
(s7676 2.0)
(s7678 4.0)
(s7679 5.0)
(s7680 5.0)
(s7681 2.0)
(s7683 4.0)
(s7684 5.0)
(s7685 5.0)
(s7686 2.0)
(s7688 4.0)
(s7689 5.0)
(s7690 5.0)
(s7691 2.0)
(s7693 4.0)
(s7694 5.0)
(s7695 5.0)
(s7696 2.0)
(s7698 4.0)
(s7699 5.0)
(s7700 5.0)
(s7701 2.0)
(s7703 4.0)
(s7704 5.0)
(s7705 5.0)
(s7706 2.0)
(s7708 4.0)
(s7709 5.0)
(s7710 5.0)
(s7711 2.0)
(s7713 4.0)
(s7714 5.0)
(s7715 5.0)
(s7716 2.0)
(s7718 4.0)
(s7719 5.0)
(s7720 5.0)
(s7721 2.0)
(s7723 4.0)
(s7724 5.0)
(s7725 5.0)
(s7726 2.0)
(s7728 4.0)
(s7729 5.0)
(s7730 5.0)
(s7731 2.0)
(s7733 4.0)
(s7734 5.0)
(s7735 5.0)
(s7736 2.0)
(s7738 4.0)
(s7739 5.0)
(s7740 5.0)
(s7741 2.0)
(s7743 4.0)
(s7744 5.0)
(s7745 5.0)
(s7746 2.0)
(s7748 4.0)
(s7749 5.0)
(s7750 5.0)
(s7751 2.0)
(s7753 4.0)
(s7754 5.0)
(s7755 5.0)
(s7756 2.0)
(s7758 4.0)
(s7759 5.0)
(s7760 5.0)
(s7761 2.0)
(s7763 4.0)
(s7764 5.0)
(s7765 5.0)
(s7766 2.0)
(s7768 4.0)
(s7769 5.0)
(s7770 5.0)
(s7771 2.0)
(s7773 4.0)
(s7774 5.0)
(s7775 5.0)
(s7776 2.0)
(s7778 4.0)
(s7779 5.0)
(s7780 5.0)
(s7781 2.0)
(s7783 4.0)
(s7784 5.0)
(s7785 5.0)
(s7786 2.0)
(s7788 4.0)
(s7789 5.0)
(s7790 5.0)
(s7791 2.0)
(s7793 4.0)
(s7794 5.0)
(s7795 5.0)
(s7796 2.0)
(s7798 4.0)
(s7799 5.0)
(s7800 5.0)
(s7801 2.0)
(s7803 4.0)
(s7804 5.0)
(s7805 5.0)
(s7806 2.0)
(s7808 4.0)
(s7809 5.0)
(s7810 5.0)
(s7811 2.0)
(s7813 4.0)
(s7814 5.0)
(s7815 5.0)
(s7816 2.0)
(s7818 4.0)
(s7819 5.0)
(s7820 5.0)
(s7821 2.0)
(s7823 4.0)
(s7824 5.0)
(s7825 5.0)
(s7826 2.0)
(s7828 4.0)
(s7829 5.0)
(s7830 5.0)
(s7831 2.0)
(s7833 4.0)
(s7834 5.0)
(s7835 5.0)
(s7836 2.0)
(s7838 4.0)
(s7839 5.0)
(s7840 5.0)
(s7841 2.0)
(s7843 4.0)
(s7844 5.0)
(s7845 5.0)
(s7846 2.0)
(s7848 4.0)
(s7849 5.0)
(s7850 5.0)
(s7851 2.0)
(s7853 4.0)
(s7854 5.0)
(s7855 5.0)
(s7856 2.0)
(s7858 4.0)
(s7859 5.0)
(s7860 5.0)
(s7861 2.0)
(s7863 4.0)
(s7864 5.0)
(s7865 5.0)
(s7866 2.0)
(s7868 4.0)
(s7869 5.0)
(s7870 5.0)
(s7871 2.0)
(s7873 4.0)
(s7874 5.0)
(s7875 5.0)
(s7876 2.0)
(s7878 4.0)
(s7879 5.0)
(s7880 5.0)
(s7881 2.0)
(s7883 4.0)
(s7884 5.0)
(s7885 5.0)
(s7886 2.0)
(s7888 4.0)
(s7889 5.0)
(s7890 5.0)
(s7891 2.0)
(s7893 4.0)
(s7894 5.0)
(s7895 5.0)
(s7896 2.0)
(s7898 4.0)
(s7899 5.0)
(s7900 5.0)
(s7901 2.0)
(s7903 4.0)
(s7904 5.0)
(s7905 5.0)
(s7906 2.0)
(s7908 4.0)
(s7909 5.0)
(s7910 5.0)
(s7911 2.0)
(s7913 4.0)
(s7914 5.0)
(s7915 5.0)
(s7916 2.0)
(s7918 4.0)
(s7919 5.0)
(s7920 5.0)
(s7921 2.0)
(s7923 4.0)
(s7924 5.0)
(s7925 5.0)
(s7926 2.0)
(s7928 4.0)
(s7929 5.0)
(s7930 5.0)
(s7931 2.0)
(s7933 4.0)
(s7934 5.0)
(s7935 5.0)
(s7936 2.0)
(s7938 4.0)
(s7939 5.0)
(s7940 5.0)
(s7941 2.0)
(s7943 4.0)
(s7944 5.0)
(s7945 5.0)
(s7946 2.0)
(s7948 4.0)
(s7949 5.0)
(s7950 5.0)
(s7951 2.0)
(s7953 4.0)
(s7954 5.0)
(s7955 5.0)
(s7956 2.0)
(s7958 4.0)
(s7959 5.0)
(s7960 5.0)
(s7961 2.0)
(s7963 4.0)
(s7964 5.0)
(s7965 5.0)
(s7966 2.0)
(s7968 4.0)
(s7969 5.0)
(s7970 5.0)
(s7971 2.0)
(s7973 4.0)
(s7974 5.0)
(s7975 5.0)
(s7976 2.0)
(s7978 4.0)
(s7979 5.0)
(s7980 5.0)
(s7981 2.0)
(s7983 4.0)
(s7984 5.0)
(s7985 5.0)
(s7986 2.0)
(s7988 4.0)
(s7989 5.0)
(s7990 5.0)
(s7991 2.0)
(s7993 4.0)
(s7994 5.0)
(s7995 5.0)
(s7996 2.0)
(s7998 4.0)
(s7999 5.0)
(s8000 5.0)
(s8001 2.0)
(s8003 4.0)
(s8004 5.0)
(s8005 5.0)
(s8006 2.0)
(s8008 4.0)
(s8009 5.0)
(s8010 5.0)
(s8011 2.0)
(s8013 4.0)
(s8014 5.0)
(s8015 5.0)
(s8016 2.0)
(s8018 4.0)
(s8019 5.0)
(s8020 5.0)
(s8021 2.0)
(s8023 4.0)
(s8024 5.0)
(s8025 5.0)
(s8026 2.0)
(s8028 4.0)
(s8029 5.0)
(s8030 5.0)
(s8031 2.0)
(s8033 4.0)
(s8034 5.0)
(s8035 5.0)
(s8036 2.0)
(s8038 4.0)
(s8039 5.0)
(s8040 5.0)
(s8041 2.0)
(s8043 4.0)
(s8044 5.0)
(s8045 5.0)
(s8046 2.0)
(s8048 4.0)
(s8049 5.0)
(s8050 5.0)
(s8051 2.0)
(s8053 4.0)
(s8054 5.0)
(s8055 5.0)
(s8056 2.0)
(s8058 4.0)
(s8059 5.0)
(s8060 5.0)
(s8061 2.0)
(s8063 4.0)
(s8064 5.0)
(s8065 5.0)
(s8066 2.0)
(s8068 4.0)
(s8069 5.0)
(s8070 5.0)
(s8071 2.0)
(s8073 4.0)
(s8074 5.0)
(s8075 5.0)
(s8076 2.0)
(s8078 4.0)
(s8079 5.0)
(s8080 5.0)
(s8081 2.0)
(s8083 4.0)
(s8084 5.0)
(s8085 5.0)
(s8086 2.0)
(s8088 4.0)
(s8089 5.0)
(s8090 5.0)
(s8091 2.0)
(s8093 4.0)
(s8094 5.0)
(s8095 5.0)
(s8096 2.0)
(s8098 4.0)
(s8099 5.0)
(s8100 5.0)
(s8101 2.0)
(s8103 4.0)
(s8104 5.0)
(s8105 5.0)
(s8106 2.0)
(s8108 4.0)
(s8109 5.0)
(s8110 5.0)
(s8111 2.0)
(s8113 4.0)
(s8114 5.0)
(s8115 5.0)
(s8116 2.0)
(s8118 4.0)
(s8119 5.0)
(s8120 5.0)
(s8121 2.0)
(s8123 4.0)
(s8124 5.0)
(s8125 5.0)
(s8126 2.0)
(s8128 4.0)
(s8129 5.0)
(s8130 5.0)
(s8131 2.0)
(s8133 4.0)
(s8134 5.0)
(s8135 5.0)
(s8136 2.0)
(s8138 4.0)
(s8139 5.0)
(s8140 5.0)
(s8141 2.0)
(s8143 4.0)
(s8144 5.0)
(s8145 5.0)
(s8146 2.0)
(s8148 4.0)
(s8149 5.0)
(s8150 5.0)
(s8151 2.0)
(s8153 4.0)
(s8154 5.0)
(s8155 5.0)
(s8156 2.0)
(s8158 4.0)
(s8159 5.0)
(s8160 5.0)
(s8161 2.0)
(s8163 4.0)
(s8164 5.0)
(s8165 5.0)
(s8166 2.0)
(s8168 4.0)
(s8169 5.0)
(s8170 5.0)
(s8171 2.0)
(s8173 4.0)
(s8174 5.0)
(s8175 5.0)
(s8176 2.0)
(s8178 4.0)
(s8179 5.0)
(s8180 5.0)
(s8181 2.0)
(s8183 4.0)
(s8184 5.0)
(s8185 5.0)
(s8186 2.0)
(s8188 4.0)
(s8189 5.0)
(s8190 5.0)
(s8191 2.0)
(s8193 4.0)
(s8194 5.0)
(s8195 5.0)
(s8196 2.0)
(s8198 4.0)
(s8199 5.0)
(s8200 5.0)
(s8201 2.0)
(s8203 4.0)
(s8204 5.0)
(s8205 5.0)
(s8206 2.0)
(s8208 4.0)
(s8209 5.0)
(s8210 5.0)
(s8211 2.0)
(s8213 4.0)
(s8214 5.0)
(s8215 5.0)
(s8216 2.0)
(s8218 4.0)
(s8219 5.0)
(s8220 5.0)
(s8221 2.0)
(s8223 4.0)
(s8224 5.0)
(s8225 5.0)
(s8226 2.0)
(s8228 4.0)
(s8229 5.0)
(s8230 5.0)
(s8231 2.0)
(s8233 4.0)
(s8234 5.0)
(s8235 5.0)
(s8236 2.0)
(s8238 4.0)
(s8239 5.0)
(s8240 5.0)
(s8241 2.0)
(s8243 4.0)
(s8244 5.0)
(s8245 5.0)
(s8246 2.0)
(s8248 4.0)
(s8249 5.0)
(s8250 5.0)
(s8251 2.0)
(s8253 4.0)
(s8254 5.0)
(s8255 5.0)
(s8256 2.0)
(s8258 4.0)
(s8259 5.0)
(s8260 5.0)
(s8261 2.0)
(s8263 4.0)
(s8264 5.0)
(s8265 5.0)
(s8266 2.0)
(s8268 4.0)
(s8269 5.0)
(s8270 5.0)
(s8271 2.0)
(s8273 4.0)
(s8274 5.0)
(s8275 5.0)
(s8276 2.0)
(s8278 4.0)
(s8279 5.0)
(s8280 5.0)
(s8281 2.0)
(s8283 4.0)
(s8284 5.0)
(s8285 5.0)
(s8286 2.0)
(s8288 4.0)
(s8289 5.0)
(s8290 5.0)
(s8291 2.0)
(s8293 4.0)
(s8294 5.0)
(s8295 5.0)
(s8296 2.0)
(s8298 4.0)
(s8299 5.0)
(s8300 5.0)
(s8301 2.0)
(s8303 4.0)
(s8304 5.0)
(s8305 5.0)
(s8306 2.0)
(s8308 4.0)
(s8309 5.0)
(s8310 5.0)
(s8311 2.0)
(s8313 4.0)
(s8314 5.0)
(s8315 5.0)
(s8316 2.0)
(s8318 4.0)
(s8319 5.0)
(s8320 5.0)
(s8321 2.0)
(s8323 4.0)
(s8324 5.0)
(s8325 5.0)
(s8326 2.0)
(s8328 4.0)
(s8329 5.0)
(s8330 5.0)
(s8331 2.0)
(s8333 4.0)
(s8334 5.0)
(s8335 5.0)
(s8336 2.0)
(s8338 4.0)
(s8339 5.0)
(s8340 5.0)
(s8341 2.0)
(s8343 4.0)
(s8344 5.0)
(s8345 5.0)
(s8346 2.0)
(s8348 4.0)
(s8349 5.0)
(s8350 5.0)
(s8351 2.0)
(s8353 4.0)
(s8354 5.0)
(s8355 5.0)
(s8356 2.0)
(s8358 4.0)
(s8359 5.0)
(s8360 5.0)
(s8361 2.0)
(s8363 4.0)
(s8364 5.0)
(s8365 5.0)
(s8366 2.0)
(s8368 4.0)
(s8369 5.0)
(s8370 5.0)
(s8371 2.0)
(s8373 4.0)
(s8374 5.0)
(s8375 5.0)
(s8376 2.0)
(s8378 4.0)
(s8379 5.0)
(s8380 5.0)
(s8381 2.0)
(s8383 4.0)
(s8384 5.0)
(s8385 5.0)
(s8386 2.0)
(s8388 4.0)
(s8389 5.0)
(s8390 5.0)
(s8391 2.0)
(s8393 4.0)
(s8394 5.0)
(s8395 5.0)
(s8396 2.0)
(s8398 4.0)
(s8399 5.0)
(s8400 5.0)
(s8401 2.0)
(s8403 4.0)
(s8404 5.0)
(s8405 5.0)
(s8406 2.0)
(s8408 4.0)
(s8409 5.0)
(s8410 5.0)
(s8411 2.0)
(s8413 4.0)
(s8414 5.0)
(s8415 5.0)
(s8416 2.0)
(s8418 4.0)
(s8419 5.0)
(s8420 5.0)
(s8421 2.0)
(s8423 4.0)
(s8424 5.0)
(s8425 5.0)
(s8426 2.0)
(s8428 4.0)
(s8429 5.0)
(s8430 5.0)
(s8431 2.0)
(s8433 4.0)
(s8434 5.0)
(s8435 5.0)
(s8436 2.0)
(s8438 4.0)
(s8439 5.0)
(s8440 5.0)
(s8441 2.0)
(s8443 4.0)
(s8444 5.0)
(s8445 5.0)
(s8446 2.0)
(s8448 4.0)
(s8449 5.0)
(s8450 5.0)
(s8451 2.0)
(s8453 4.0)
(s8454 5.0)
(s8455 5.0)
(s8456 2.0)
(s8458 4.0)
(s8459 5.0)
(s8460 5.0)
(s8461 2.0)
(s8463 4.0)
(s8464 5.0)
(s8465 5.0)
(s8466 2.0)
(s8468 4.0)
(s8469 5.0)
(s8470 5.0)
(s8471 2.0)
(s8473 4.0)
(s8474 5.0)
(s8475 5.0)
(s8476 2.0)
(s8478 4.0)
(s8479 5.0)
(s8480 5.0)
(s8481 2.0)
(s8483 4.0)
(s8484 5.0)
(s8485 5.0)
(s8486 2.0)
(s8488 4.0)
(s8489 5.0)
(s8490 5.0)
(s8491 2.0)
(s8493 4.0)
(s8494 5.0)
(s8495 5.0)
(s8496 2.0)
(s8498 4.0)
(s8499 5.0)
(s8500 5.0)
(s8501 2.0)
(s8503 4.0)
(s8504 5.0)
(s8505 5.0)
(s8506 2.0)
(s8508 4.0)
(s8509 5.0)
(s8510 5.0)
(s8511 2.0)
(s8513 4.0)
(s8514 5.0)
(s8515 5.0)
(s8516 2.0)
(s8518 4.0)
(s8519 5.0)
(s8520 5.0)
(s8521 2.0)
(s8523 4.0)
(s8524 5.0)
(s8525 5.0)
(s8526 2.0)
(s8528 4.0)
(s8529 5.0)
(s8530 5.0)
(s8531 2.0)
(s8533 4.0)
(s8534 5.0)
(s8535 5.0)
(s8536 2.0)
(s8538 4.0)
(s8539 5.0)
(s8540 5.0)
(s8541 2.0)
(s8543 4.0)
(s8544 5.0)
(s8545 5.0)
(s8546 2.0)
(s8548 4.0)
(s8549 5.0)
(s8550 5.0)
(s8551 2.0)
(s8553 4.0)
(s8554 5.0)
(s8555 5.0)
(s8556 2.0)
(s8558 4.0)
(s8559 5.0)
(s8560 5.0)
(s8561 2.0)
(s8563 4.0)
(s8564 5.0)
(s8565 5.0)
(s8566 2.0)
(s8568 4.0)
(s8569 5.0)
(s8570 5.0)
(s8571 2.0)
(s8573 4.0)
(s8574 5.0)
(s8575 5.0)
(s8576 2.0)
(s8578 4.0)
(s8579 5.0)
(s8580 5.0)
(s8581 2.0)
(s8583 4.0)
(s8584 5.0)
(s8585 5.0)
(s8586 2.0)
(s8588 4.0)
(s8589 5.0)
(s8590 5.0)
(s8591 2.0)
(s8593 4.0)
(s8594 5.0)
(s8595 5.0)
(s8596 2.0)
(s8598 4.0)
(s8599 5.0)
(s8600 5.0)
(s8601 2.0)
(s8603 4.0)
(s8604 5.0)
(s8605 5.0)
(s8606 2.0)
(s8608 4.0)
(s8609 5.0)
(s8610 5.0)
(s8611 2.0)
(s8613 4.0)
(s8614 5.0)
(s8615 5.0)
(s8616 2.0)
(s8618 4.0)
(s8619 5.0)
(s8620 5.0)
(s8621 2.0)
(s8623 4.0)
(s8624 5.0)
(s8625 5.0)
(s8626 2.0)
(s8628 4.0)
(s8629 5.0)
(s8630 5.0)
(s8631 2.0)
(s8633 4.0)
(s8634 5.0)
(s8635 5.0)
(s8636 2.0)
(s8638 4.0)
(s8639 5.0)
(s8640 5.0)
(s8641 2.0)
(s8643 4.0)
(s8644 5.0)
(s8645 5.0)
(s8646 2.0)
(s8648 4.0)
(s8649 5.0)
(s8650 5.0)
(s8651 2.0)
(s8653 4.0)
(s8654 5.0)
(s8655 5.0)
(s8656 2.0)
(s8658 4.0)
(s8659 5.0)
(s8660 5.0)
(s8661 2.0)
(s8663 4.0)
(s8664 5.0)
(s8665 5.0)
(s8666 2.0)
(s8668 4.0)
(s8669 5.0)
(s8670 5.0)
(s8671 2.0)
(s8673 4.0)
(s8674 5.0)
(s8675 5.0)
(s8676 2.0)
(s8678 4.0)
(s8679 5.0)
(s8680 5.0)
(s8681 2.0)
(s8683 4.0)
(s8684 5.0)
(s8685 5.0)
(s8686 2.0)
(s8688 4.0)
(s8689 5.0)
(s8690 5.0)
(s8691 2.0)
(s8693 4.0)
(s8694 5.0)
(s8695 5.0)
(s8696 2.0)
(s8698 4.0)
(s8699 5.0)
(s8700 5.0)
(s8701 2.0)
(s8703 4.0)
(s8704 5.0)
(s8705 5.0)
(s8706 2.0)
(s8708 4.0)
(s8709 5.0)
(s8710 5.0)
(s8711 2.0)
(s8713 4.0)
(s8714 5.0)
(s8715 5.0)
(s8716 2.0)
(s8718 4.0)
(s8719 5.0)
(s8720 5.0)
(s8721 2.0)
(s8723 4.0)
(s8724 5.0)
(s8725 5.0)
(s8726 2.0)
(s8728 4.0)
(s8729 5.0)
(s8730 5.0)
(s8731 2.0)
(s8733 4.0)
(s8734 5.0)
(s8735 5.0)
(s8736 2.0)
(s8738 4.0)
(s8739 5.0)
(s8740 5.0)
(s8741 2.0)
(s8743 4.0)
(s8744 5.0)
(s8745 5.0)
(s8746 2.0)
(s8748 4.0)
(s8749 5.0)
(s8750 5.0)
(s8751 2.0)
(s8753 4.0)
(s8754 5.0)
(s8755 5.0)
(s8756 2.0)
(s8758 4.0)
(s8759 5.0)
(s8760 5.0)
(s8761 2.0)
(s8763 4.0)
(s8764 5.0)
(s8765 5.0)
(s8766 2.0)
(s8768 4.0)
(s8769 5.0)
(s8770 5.0)
(s8771 2.0)
(s8773 4.0)
(s8774 5.0)
(s8775 5.0)
(s8776 2.0)
(s8778 4.0)
(s8779 5.0)
(s8780 5.0)
(s8781 2.0)
(s8783 4.0)
(s8784 5.0)
(s8785 5.0)
(s8786 2.0)
(s8788 4.0)
(s8789 5.0)
(s8790 5.0)
(s8791 2.0)
(s8793 4.0)
(s8794 5.0)
(s8795 5.0)
(s8796 2.0)
(s8798 4.0)
(s8799 5.0)
(s8800 5.0)
(s8801 2.0)
(s8803 4.0)
(s8804 5.0)
(s8805 5.0)
(s8806 2.0)
(s8808 4.0)
(s8809 5.0)
(s8810 5.0)
(s8811 2.0)
(s8813 4.0)
(s8814 5.0)
(s8815 5.0)
(s8816 2.0)
(s8818 4.0)
(s8819 5.0)
(s8820 5.0)
(s8821 2.0)
(s8823 4.0)
(s8824 5.0)
(s8825 5.0)
(s8826 2.0)
(s8828 4.0)
(s8829 5.0)
(s8830 5.0)
(s8831 2.0)
(s8833 4.0)
(s8834 5.0)
(s8835 5.0)
(s8836 2.0)
(s8838 4.0)
(s8839 5.0)
(s8840 5.0)
(s8841 2.0)
(s8843 4.0)
(s8844 5.0)
(s8845 5.0)
(s8846 2.0)
(s8848 4.0)
(s8849 5.0)
(s8850 5.0)
(s8851 2.0)
(s8853 4.0)
(s8854 5.0)
(s8855 5.0)
(s8856 2.0)
(s8858 4.0)
(s8859 5.0)
(s8860 5.0)
(s8861 2.0)
(s8863 4.0)
(s8864 5.0)
(s8865 5.0)
(s8866 2.0)
(s8868 4.0)
(s8869 5.0)
(s8870 5.0)
(s8871 2.0)
(s8873 4.0)
(s8874 5.0)
(s8875 5.0)
(s8876 2.0)
(s8878 4.0)
(s8879 5.0)
(s8880 5.0)
(s8881 2.0)
(s8883 4.0)
(s8884 5.0)
(s8885 5.0)
(s8886 2.0)
(s8888 4.0)
(s8889 5.0)
(s8890 5.0)
(s8891 2.0)
(s8893 4.0)
(s8894 5.0)
(s8895 5.0)
(s8896 2.0)
(s8898 4.0)
(s8899 5.0)
(s8900 5.0)
(s8901 2.0)
(s8903 4.0)
(s8904 5.0)
(s8905 5.0)
(s8906 2.0)
(s8908 4.0)
(s8909 5.0)
(s8910 5.0)
(s8911 2.0)
(s8913 4.0)
(s8914 5.0)
(s8915 5.0)
(s8916 2.0)
(s8918 4.0)
(s8919 5.0)
(s8920 5.0)
(s8921 2.0)
(s8923 timeout
4.0 org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 30164 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 12000/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 12000 unsolved
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 30129 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 0/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 76375ms problems are : Problem set: 0 solved, 12000 unsolved
Search for dead transitions found 0 dead transitions in 76392ms
Finished structural reductions in LTL mode , in 1 iterations and 136627 ms. Remains : 10000/10000 places, 16001/16001 transitions.
[2025-06-02 08:40:29] [INFO ] Flatten gal took : 268 ms
[2025-06-02 08:40:29] [INFO ] Flatten gal took : 286 ms
[2025-06-02 08:40:30] [INFO ] Input system was already deterministic with 16001 transitions.
[2025-06-02 08:40:30] [INFO ] Flatten gal took : 301 ms
[2025-06-02 08:40:31] [INFO ] Flatten gal took : 310 ms
[2025-06-02 08:40:31] [INFO ] Time to serialize gal into /tmp/CTLCardinality9476971807426870783.gal : 52 ms
[2025-06-02 08:40:31] [INFO ] Time to serialize properties into /tmp/CTLCardinality11720998548735826736.ctl : 0 ms
Invoking ITS tools like this :cd /home/mcc/execution;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64' '--gc-threshold' '2000000' '--quiet' '-i' '/tmp/CTLCardinality9476971807426870783.gal' '-t' 'CGAL' '-ctl' '/tmp/CTLCardinality11720998548735826736.ctl' '--gen-order' 'FOLLOW'
its-ctl command run as :
/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64 --gc-threshold 2000000 --quiet -...284
No direction supplied, using forward translation only.
Parsed 1 CTL formulae.
Detected timeout of ITS tools.
[2025-06-02 08:41:01] [INFO ] Flatten gal took : 306 ms
[2025-06-02 08:41:01] [INFO ] Applying decomposition
[2025-06-02 08:41:01] [INFO ] Flatten gal took : 319 ms
Converted graph to binary with : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202505121319/bin/convert-linux64' '-i' '/tmp/graph8807400215186692574.txt' '-o' '/tmp/graph8807400215186692574.bin' '-w' '/tmp/graph8807400215186692574.weights'
Built communities with : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202505121319/bin/louvain-linux64' '/tmp/graph8807400215186692574.bin' '-l' '-1' '-v' '-w' '/tmp/graph8807400215186692574.weights' '-q' '0' '-e' '0.001'
[2025-06-02 08:41:02] [INFO ] Decomposing Gal with order
[2025-06-02 08:41:03] [INFO ] Rewriting arrays to variables to allow decomposition.
[2025-06-02 08:41:07] [INFO ] Removed a total of 1 redundant transitions.
[2025-06-02 08:41:07] [INFO ] Flatten gal took : 328 ms
[2025-06-02 08:41:08] [INFO ] Fuse similar labels procedure discarded/fused a total of 2 labels/synchronizations in 522 ms.
[2025-06-02 08:41:08] [INFO ] Time to serialize gal into /tmp/CTLCardinality8230392108064767055.gal : 54 ms
[2025-06-02 08:41:08] [INFO ] Time to serialize properties into /tmp/CTLCardinality2354493523760946229.ctl : 0 ms
Invoking ITS tools like this :cd /home/mcc/execution;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64' '--gc-threshold' '2000000' '--quiet' '-i' '/tmp/CTLCardinality8230392108064767055.gal' '-t' 'CGAL' '-ctl' '/tmp/CTLCardinality2354493523760946229.ctl' '--gen-order' 'FOLLOW'
its-ctl command run as :
/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64 --gc-threshold 2000000 --quiet -...283
No direction supplied, using forward translation only.
Parsed 1 CTL formulae.
Detected timeout of ITS tools.
Starting structural reductions in SI_CTL mode, iteration 0 : 10000/10000 places, 16001/16001 transitions.
Applied a total of 0 rules in 2283 ms. Remains 10000 /10000 variables (removed 0) and now considering 16001/16001 (removed 0) transitions.
Running 12000 sub problems to find dead transitions.
[2025-06-02 08:41:40] [INFO ] Invariant cache hit.
[2025-06-02 08:41:41] [INFO ] State equation strengthened by 2000 read => feed constraints.
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 20136 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 12000/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 12000 unsolved
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Error getting values : (error "ParserException while parsing response: ((s0 5)
(s1 2)
(s3 4)
(s4 5)
(s5 5)
(s6 2)
(s8 4)
(s9 5)
(s10 5)
(s11 2)
(s13 4)
(s14 5)
(s15 5)
(s16 2)
(s18 4)
(s19 5)
(s20 5)
(s21 2)
(s23 4)
(s24 5)
(s25 5)
(s26 2)
(s28 4)
(s29 5)
(s30 5)
(s31 2)
(s33 4)
(s34 5)
(s35 5)
(s36 2)
(s38 4)
(s39 5)
(s40 5)
(s41 2)
(s43 4)
(s44 5)
(s45 5)
(s46 2)
(s48 4)
(s49 5)
(s50 5)
(s51 2)
(s53 4)
(s54 5)
(s55 5)
(s56 2)
(s58 4)
(s59 5)
(s60 5)
(s61 2)
(s63 4)
(s64 5)
(s65 5)
(s66 2)
(s68 4)
(s69 5)
(s70 5)
(s71 2)
(s73 4)
(s74 5)
(s75 5)
(s76 2)
(s78 4)
(s79 5)
(s80 5)
(s81 2)
(s83 4)
(s84 5)
(s85 5)
(s86 2)
(s88 4)
(s89 5)
(s90 5)
(s91 2)
(s93 4)
(s94 5)
(s95 5)
(s96 2)
(s98 4)
(s99 5)
(s100 5)
(s101 2)
(s103 4)
(s104 5)
(s105 5)
(s106 2)
(s108 4)
(s109 5)
(s110 5)
(s111 2)
(s113 4)
(s114 5)
(s115 5)
(s116 2)
(s118 4)
(s119 5)
(s120 5)
(s121 2)
(s123 4)
(s124 5)
(s125 5)
(s126 2)
(s128 4)
(s129 5)
(s130 5)
(s131 2)
(s133 4)
(s134 5)
(s135 5)
(s136 2)
(s138 4)
(s139 5)
(s140 5)
(s141 2)
(s143 4)
(s144 5)
(s145 5)
(s146 2)
(s148 4)
(s149 5)
(s150 5)
(s151 2)
(s153 4)
(s154 5)
(s155 5)
(s156 2)
(s158 4)
(s159 5)
(s160 5)
(s161 2)
(s163 4)
(s164 5)
(s165 5)
(s166 2)
(s168 4)
(s169 5)
(s170 5)
(s171 2)
(s173 4)
(s174 5)
(s175 5)
(s176 2)
(s178 4)
(s179 5)
(s180 5)
(s181 2)
(s183 4)
(s184 5)
(s185 5)
(s186 2)
(s188 4)
(s189 5)
(s190 5)
(s191 2)
(s193 4)
(s194 5)
(s195 5)
(s196 2)
(s198 4)
(s199 5)
(s200 5)
(s201 2)
(s203 4)
(s204 5)
(s205 5)
(s206 2)
(s208 4)
(s209 5)
(s210 5)
(s211 2)
(s213 4)
(s214 5)
(s215 5)
(s216 2)
(s218 4)
(s219 5)
(s220 5)
(s221 2)
(s223 4)
(s224 5)
(s225 5)
(s226 2)
(s228 4)
(s229 5)
(s230 5)
(s231 2)
(s233 4)
(s234 5)
(s235 5)
(s236 2)
(s238 4)
(s239 5)
(s240 5)
(s241 2)
(s243 4)
(s244 5)
(s245 5)
(s246 2)
(s248 4)
(s249 5)
(s250 5)
(s251 2)
(s253 4)
(s254 5)
(s255 5)
(s256 2)
(s258 4)
(s259 5)
(s260 5)
(s261 2)
(s263 4)
(s264 5)
(s265 5)
(s266 2)
(s268 4)
(s269 5)
(s270 5)
(s271 2)
(s273 4)
(s274 5)
(s275 5)
(s276 2)
(s278 4)
(s279 5)
(s280 5)
(s281 2)
(s283 4)
(s284 5)
(s285 5)
(s286 2)
(s288 4)
(s289 5)
(s290 5)
(s291 2)
(s293 4)
(s294 5)
(s295 5)
(s296 2)
(s298 4)
(s299 5)
(s300 5)
(s301 2)
(s303 4)
(s304 5)
(s305 5)
(s306 2)
(s308 4)
(s309 5)
(s310 5)
(s311 2)
(s313 4)
(s314 5)
(s315 5)
(s316 2)
(s318 4)
(s319 5)
(s320 5)
(s321 2)
(s323 4)
(s324 5)
(s325 5)
(s326 2)
(s328 4)
(s329 5)
(s330 5)
(s331 2)
(s333 4)
(s334 5)
(s335 5)
(s336 2)
(s338 4)
(s339 5)
(s340 5)
(s341 2)
(s343 4)
(s344 5)
(s345 5)
(s346 2)
(s348 4)
(s349 5)
(s350 5)
(s351 2)
(s353 4)
(s354 5)
(s355 5)
(s356 2)
(s358 4)
(s359 5)
(s360 5)
(s361 2)
(s363 4)
(s364 5)
(s365 5)
(s366 2)
(s368 4)
(s369 5)
(s370 5)
(s371 2)
(s373 4)
(s374 5)
(s375 5)
(s376 2)
(s378 4)
(s379 5)
(s380 5)
(s381 2)
(s383 4)
(s384 5)
(s385 5)
(s386 2)
(s388 4)
(s389 5)
(s390 5)
(s391 2)
(s393 4)
(s394 5)
(s395 5)
(s396 2)
(s398 4)
(s399 5)
(s400 5)
(s401 2)
(s403 4)
(s404 5)
(s405 5)
(s406 2)
(s408 4)
(s409 5)
(s410 5)
(s411 2)
(s413 4)
(s414 5)
(s415 5)
(s416 2)
(s418 4)
(s419 5)
(s420 5)
(s421 2)
(s423 4)
(s424 5)
(s425 5)
(s426 2)
(s428 4)
(s429 5)
(s430 5)
(s431 2)
(s433 4)
(s434 5)
(s435 5)
(s436 2)
(s438 4)
(s439 5)
(s440 5)
(s441 2)
(s443 4)
(s444 5)
(s445 5)
(s446 2)
(s448 4)
(s449 5)
(s450 5)
(s451 2)
(s453 4)
(s454 5)
(s455 5)
(s456 2)
(s458 4)
(s459 5)
(s460 5)
(s461 2)
(s463 4)
(s464 5)
(s465 5)
(s466 2)
(s468 4)
(s469 5)
(s470 5)
(s471 2)
(s473 4)
(s474 5)
(s475 5)
(s476 2)
(s478 4)
(s479 5)
(s480 5)
(s481 2)
(s483 4)
(s484 5)
(s485 5)
(s486 2)
(s488 4)
(s489 5)
(s490 5)
(s491 2)
(s493 4)
(s494 5)
(s495 5)
(s496 2)
(s498 4)
(s499 5)
(s500 5)
(s501 2)
(s503 4)
(s504 5)
(s505 5)
(s506 2)
(s508 4)
(s509 5)
(s510 5)
(s511 2)
(s513 4)
(s514 5)
(s515 5)
(s516 2)
(s518 4)
(s519 5)
(s520 5)
(s521 2)
(s523 4)
(s524 5)
(s525 5)
(s526 2)
(s528 4)
(s529 5)
(s530 5)
(s531 2)
(s533 4)
(s534 5)
(s535 5)
(s536 2)
(s538 4)
(s539 5)
(s540 5)
(s541 2)
(s543 4)
(s544 5)
(s545 5)
(s546 2)
(s548 4)
(s549 5)
(s550 5)
(s551 2)
(s553 4)
(s554 5)
(s555 5)
(s556 2)
(s558 4)
(s559 5)
(s560 5)
(s561 2)
(s563 4)
(s564 5)
(s565 5)
(s566 2)
(s568 4)
(s569 5)
(s570 5)
(s571 2)
(s573 4)
(s574 5)
(s575 5)
(s576 2)
(s578 4)
(s579 5)
(s580 5)
(s581 2)
(s583 4)
(s584 5)
(s585 5)
(s586 2)
(s588 4)
(s589 5)
(s590 5)
(s591 2)
(s593 4)
(s594 5)
(s595 5)
(s596 2)
(s598 4)
(s599 5)
(s600 5)
(s601 2)
(s603 4)
(s604 5)
(s605 5)
(s606 2)
(s608 4)
(s609 5)
(s610 5)
(s611 2)
(s613 4)
(s614 5)
(s615 5)
(s616 2)
(s618 4)
(s619 5)
(s620 5)
(s621 2)
(s623 4)
(s624 5)
(s625 5)
(s626 2)
(s628 4)
(s629 5)
(s630 5)
(s631 2)
(s633 4)
(s634 5)
(s635 5)
(s636 2)
(s638 4)
(s639 5)
(s640 5)
(s641 2)
(s643 4)
(s644 5)
(s645 5)
(s646 2)
(s648 4)
(s649 5)
(s650 5)
(s651 2)
(s653 4)
(s654 5)
(s655 5)
(s656 2)
(s658 4)
(s659 5)
(s660 5)
(s661 2)
(s663 4)
(s664 5)
(s665 5)
(s666 2)
(s668 4)
(s669 5)
(s670 5)
(s671 2)
(s673 4)
(s674 5)
(s675 5)
(s676 2)
(s678 4)
(s679 5)
(s680 5)
(s681 2)
(s683 4)
(s684 5)
(s685 5)
(s686 2)
(s688 4)
(s689 5)
(s690 5)
(s691 2)
(s693 4)
(s694 5)
(s695 5)
(s696 2)
(s698 4)
(s699 5)
(s700 5)
(s701 2)
(s703 4)
(s704 5)
(s705 5)
(s706 2)
(s708 4)
(s709 5)
(s710 5)
(s711 2)
(s713 4)
(s714 5)
(s715 5)
(s716 2)
(s718 4)
(s719 5)
(s720 5)
(s721 2)
(s723 4)
(s724 5)
(s725 5)
(s726 2)
(s728 4)
(s729 5)
(s730 5)
(s731 2)
(s733 4)
(s734 5)
(s735 5)
(s736 2)
(s738 4)
(s739 5)
(s740 5)
(s741 2)
(s743 4)
(s744 5)
(s745 5)
(s746 2)
(s748 4)
(s749 5)
(s750 5)
(s751 2)
(s753 4)
(s754 5)
(s755 5)
(s756 2)
(s758 4)
(s759 5)
(s760 5)
(s761 2)
(s763 4)
(s764 5)
(s765 5)
(s766 2)
(s768 4)
(s769 5)
(s770 5)
(s771 2)
(s773 4)
(s774 5)
(s775 5)
(s776 2)
(s778 4)
(s779 5)
(s780 5)
(s781 2)
(s783 4)
(s784 5)
(s785 5)
(s786 2)
(s788 4)
(s789 5)
(s790 5)
(s791 2)
(s793 4)
(s794 5)
(s795 5)
(s796 2)
(s798 4)
(s799 5)
(s800 5)
(s801 2)
(s803 4)
(s804 5)
(s805 5)
(s806 2)
(s808 4)
(s809 5)
(s810 5)
(s811 2)
(s813 4)
(s814 5)
(s815 5)
(s816 2)
(s818 4)
(s819 5)
(s820 5)
(s821 2)
(s823 4)
(s824 5)
(s825 5)
(s826 2)
(s828 4)
(s829 5)
(s830 5)
(s831 2)
(s833 4)
(s834 5)
(s835 5)
(s836 2)
(s838 4)
(s839 5)
(s840 5)
(s841 2)
(s843 4)
(s844 5)
(s845 5)
(s846 2)
(s848 4)
(s849 5)
(s850 5)
(s851 2)
(s853 4)
(s854 5)
(s855 5)
(s856 2)
(s858 4)
(s859 5)
(s860 5)
(s861 2)
(s863 4)
(s864 5)
(s865 5)
(s866 2)
(s868 4)
(s869 5)
(s870 5)
(s871 2)
(s873 4)
(s874 5)
(s875 5)
(s876 2)
(s878 4)
(s879 5)
(s880 5)
(s881 2)
(s883 4)
(s884 5)
(s885 5)
(s886 2)
(s888 4)
(s889 5)
(s890 5)
(s891 2)
(s893 4)
(s894 5)
(s895 5)
(s896 2)
(s898 4)
(s899 5)
(s900 5)
(s901 2)
(s903 4)
(s904 5)
(s905 5)
(s906 2)
(s908 4)
(s909 5)
(s910 5)
(s911 2)
(s913 4)
(s914 5)
(s915 5)
(s916 2)
(s918 4)
(s919 5)
(s920 5)
(s921 2)
(s923 4)
(s924 5)
(s925 5)
(s926 2)
(s928 4)
(s929 5)
(s930 5)
(s931 2)
(s933 4)
(s934 5)
(s935 5)
(s936 2)
(s938 4)
(s939 5)
(s940 5)
(s941 2)
(s943 4)
(s944 5)
(s945 5)
(s946 2)
(s948 4)
(s949 5)
(s950 5)
(s951 2)
(s953 4)
(s954 5)
(s955 5)
(s956 2)
(s958 4)
(s959 5)
(s960 5)
(s961 2)
(s963 4)
(s964 5)
(s965 5)
(s966 2)
(s968 4)
(s969 5)
(s970 5)
(s971 2)
(s973 4)
(s974 5)
(s975 5)
(s976 2)
(s978 4)
(s979 5)
(s980 5)
(s981 2)
(s983 4)
(s984 5)
(s985 5)
(s986 2)
(s988 4)
(s989 5)
(s990 5)
(s991 2)
(s993 4)
(s994 5)
(s995 5)
(s996 2)
(s998 4)
(s999 5)
(s1000 5)
(s1001 2)
(s1003 4)
(s1004 5)
(s1005 5)
(s1006 2)
(s1008 4)
(s1009 5)
(s1010 5)
(s1011 2)
(s1013 4)
(s1014 5)
(s1015 5)
(s1016 2)
(s1018 4)
(s1019 5)
(s1020 5)
(s1021 2)
(s1023 4)
(s1024 5)
(s1025 5)
(s1026 2)
(s1028 4)
(s1029 5)
(s1030 5)
(s1031 2)
(s1033 4)
(s1034 5)
(s1035 5)
(s1036 2)
(s1038 4)
(s1039 5)
(s1040 5)
(s1041 2)
(s1043 4)
(s1044 5)
(s1045 5)
(s1046 2)
(s1048 4)
(s1049 5)
(s1050 5)
(s1051 2)
(s1053 4)
(s1054 5)
(s1055 5)
(s1056 2)
(s1058 4)
(s1059 5)
(s1060 5)
(s1061 2)
(s1063 4)
(s1064 5)
(s1065 5)
(s1066 2)
(s1068 4)
(s1069 5)
(s1070 5)
(s1071 2)
(s1073 4)
(s1074 5)
(s1075 5)
(s1076 2)
(s1078 4)
(s1079 5)
(s1080 5)
(s1081 2)
(s1083 4)
(s1084 5)
(s1085 5)
(s1086 2)
(s1088 4)
(s1089 5)
(s1090 5)
(s1091 2)
(s1093 4)
(s1094 5)
(s1095 5)
(s1096 2)
(s1098 4)
(s1099 5)
(s1100 5)
(s1101 2)
(s1103 4)
(s1104 5)
(s1105 5)
(s1106 2)
(s1108 4)
(s1109 5)
(s1110 5)
(s1111 2)
(s1113 4)
(s1114 5)
(s1115 5)
(s1116 2)
(s1118 4)
(s1119 5)
(s1120 5)
(s1121 2)
(s1123 4)
(s1124 5)
(s1125 5)
(s1126 2)
(s1128 4)
(s1129 5)
(s1130 5)
(s1131 2)
(s1133 4)
(s1134 5)
(s1135 5)
(s1136 2)
(s1138 4)
(s1139 5)
(s1140 5)
(s1141 2)
(s1143 4)
(s1144 5)
(s1145 5)
(s1146 2)
(s1148 4)
(s1149 5)
(s1150 5)
(s1151 2)
(s1153 4)
(s1154 5)
(s1155 5)
(s1156 2)
(s1158 4)
(s1159 5)
(s1160 5)
(s1161 2)
(s1163 4)
(s1164 5)
(s1165 5)
(s1166 2)
(s1168 4)
(s1169 5)
(s1170 5)
(s1171 2)
(s1173 4)
(s1174 5)
(s1175 5)
(s1176 2)
(s1178 4)
(s1179 5)
(s1180 5)
(s1181 2)
(s1183 4)
(s1184 5)
(s1185 5)
(s1186 2)
(s1188 4)
(s1189 5)
(s1190 5)
(s1191 2)
(s1193 4)
(s1194 5)
(s1195 5)
(s1196 2)
(s1198 4)
(s1199 5)
(s1200 5)
(s1201 2)
(s1203 4)
(s1204 5)
(s1205 5)
(s1206 2)
(s1208 4)
(s1209 5)
(s1210 5)
(s1211 2)
(s1213 4)
(s1214 5)
(s1215 5)
(s1216 2)
(s1218 4)
(s1219 5)
(s1220 5)
(s1221 2)
(s1223 4)
(s1224 5)
(s1225 5)
(s1226 2)
(s1228 4)
(s1229 5)
(s1230 5)
(s1231 2)
(s1233 4)
(s1234 5)
(s1235 5)
(s1236 2)
(s1238 4)
(s1239 5)
(s1240 5)
(s1241 2)
(s1243 4)
(s1244 5)
(s1245 5)
(s1246 2)
(s1248 4)
(s1249 5)
(s1250 5)
(s1251 2)
(s1253 4)
(s1254 5)
(s1255 5)
(s1256 2)
(s1258 4)
(s1259 5)
(s1260 5)
(s1261 2)
(s1263 4)
(s1264 5)
(s1265 5)
(s1266 2)
(s1268 4)
(s1269 5)
(s1270 5)
(s1271 2)
(s1273 4)
(s1274 5)
(s1275 5)
(s1276 2)
(s1278 4)
(s1279 5)
(s1280 5)
(s1281 2)
(s1283 4)
(s1284 5)
(s1285 5)
(s1286 2)
(s1288 4)
(s1289 5)
(s1290 5)
(s1291 2)
(s1293 4)
(s1294 5)
(s1295 5)
(s1296 2)
(s1298 4)
(s1299 5)
(s1300 5)
(s1301 2)
(s1303 4)
(s1304 5)
(s1305 5)
(s1306 2)
(s1308 4)
(s1309 5)
(s1310 5)
(s1311 2)
(s1313 4)
(s1314 5)
(s1315 5)
(s1316 2)
(s1318 4)
(s1319 5)
(s1320 5)
(s1321 2)
(s1323 4)
(s1324 5)
(s1325 5)
(s1326 2)
(s1328 4)
(s1329 5)
(s1330 5)
(s1331 2)
(s1333 4)
(s1334 5)
(s1335 5)
(s1336 2)
(s1338 4)
(s1339 5)
(s1340 5)
(s1341 2)
(s1343 4)
(s1344 5)
(s1345 5)
(s1346 2)
(s1348 4)
(s1349 5)
(s1350 5)
(s1351 2)
(s1353 4)
(s1354 5)
(s1355 5)
(s1356 2)
(s1358 4)
(s1359 5)
(s1360 5)
(s1361 2)
(s1363 4)
(s1364 5)
(s1365 5)
(s1366 2)
(s1368 4)
(s1369 5)
(s1370 5)
(s1371 2)
(s1373 4)
(s1374 5)
(s1375 5)
(s1376 2)
(s1378 4)
(s1379 5)
(s1380 5)
(s1381 2)
(s1383 4)
(s1384 5)
(s1385 5)
(s1386 2)
(s1388 4)
(s1389 5)
(s1390 5)
(s1391 2)
(s1393 4)
(s1394 5)
(s1395 5)
(s1396 2)
(s1398 4)
(s1399 5)
(s1400 5)
(s1401 2)
(s1403 4)
(s1404 5)
(s1405 5)
(s1406 2)
(s1408 4)
(s1409 5)
(s1410 5)
(s1411 2)
(s1413 4)
(s1414 5)
(s1415 5)
(s1416 2)
(s1418 4)
(s1419 5)
(s1420 5)
(s1421 2)
(s1423 4)
(s1424 5)
(s1425 5)
(s1426 2)
(s1428 4)
(s1429 5)
(s1430 5)
(s1431 2)
(s1433 4)
(s1434 5)
(s1435 5)
(s1436 2)
(s1438 4)
(s1439 5)
(s1440 5)
(s1441 2)
(s1443 4)
(s1444 5)
(s1445 5)
(s1446 2)
(s1448 4)
(s1449 5)
(s1450 5)
(s1451 2)
(s1453 4)
(s1454 5)
(s1455 5)
(s1456 2)
(s1458 4)
(s1459 5)
(s1460 5)
(s1461 2)
(s1463 4)
(s1464 5)
(s1465 5)
(s1466 2)
(s1468 4)
(s1469 5)
(s1470 5)
(s1471 2)
(s1473 4)
(s1474 5)
(s1475 5)
(s1476 2)
(s1478 4)
(s1479 5)
(s1480 5)
(s1481 2)
(s1483 4)
(s1484 5)
(s1485 5)
(s1486 2)
(s1488 4)
(s1489 5)
(s1490 5)
(s1491 2)
(s1493 4)
(s1494 5)
(s1495 5)
(s1496 2)
(s1498 4)
(s1499 5)
(s1500 5)
(s1501 2)
(s1503 4)
(s1504 5)
(s1505 5)
(s1506 2)
(s1508 4)
(s1509 5)
(s1510 5)
(s1511 2)
(s1513 4)
(s1514 5)
(s1515 5)
(s1516 2)
(s1518 4)
(s1519 5)
(s1520 5)
(s1521 2)
(s1523 4)
(s1524 5)
(s1525 5)
(s1526 2)
(s1528 4)
(s1529 5)
(s1530 5)
(s1531 2)
(s1533 4)
(s1534 5)
(s1535 5)
(s1536 2)
(s1538 4)
(s1539 5)
(s1540 5)
(s1541 2)
(s1543 4)
(s1544 5)
(s1545 5)
(s1546 2)
(s1548 4)
(s1549 5)
(s1550 5)
(s1551 2)
(s1553 4)
(s1554 5)
(s1555 5)
(s1556 2)
(s1558 4)
(s1559 5)
(s1560 5)
(s1561 2)
(s1563 4)
(s1564 5)
(s1565 5)
(s1566 2)
(s1568 4)
(s1569 5)
(s1570 5)
(s1571 2)
(s1573 4)
(s1574 5)
(s1575 5)
(s1576 2)
(s1578 4)
(s1579 5)
(s1580 5)
(s1581 2)
(s1583 4)
(s1584 5)
(s1585 5)
(s1586 2)
(s1588 4)
(s1589 5)
(s1590 5)
(s1591 2)
(s1593 4)
(s1594 5)
(s1595 5)
(s1596 2)
(s1598 4)
(s1599 5)
(s1600 5)
(s1601 2)
(s1603 4)
(s1604 5)
(s1605 5)
(s1606 2)
(s1608 4)
(s1609 5)
(s1610 5)
(s1611 2)
(s1613 4)
(s1614 5)
(s1615 5)
(s1616 2)
(s1618 4)
(s1619 5)
(s1620 5)
(s1621 2)
(s1623 4)
(s1624 5)
(s1625 5)
(s1626 2)
(s1628 4)
(s1629 5)
(s1630 5)
(s1631 2)
(s1633 4)
(s1634 5)
(s1635 5)
(s1636 2)
(s1638 4)
(s1639 5)
(s1640 5)
(s1641 2)
(s1643 4)
(s1644 5)
(s1645 5)
(s1646 2)
(s1648 4)
(s1649 5)
(s1650 5)
(s1651 2)
(s1653 4)
(s1654 5)
(s1655 5)
(s1656 2)
(s1658 4)
(s1659 5)
(s1660 5)
(s1661 2)
(s1663 4)
(s1664 5)
(s1665 5)
(s1666 2)
(s1668 4)
(s1669 5)
(s1670 5)
(s1671 2)
(s1673 4)
(s1674 5)
(s1675 5)
(s1676 2)
(s1678 4)
(s1679 5)
(s1680 5)
(s1681 2)
(s1683 4)
(s1684 5)
(s1685 5)
(s1686 2)
(s1688 4)
(s1689 5)
(s1690 5)
(s1691 2)
(s1693 4)
(s1694 5)
(s1695 5)
(s1696 2)
(s1698 4)
(s1699 5)
(s1700 5)
(s1701 2)
(s1703 4)
(s1704 5)
(s1705 5)
(s1706 2)
(s1708 4)
(s1709 5)
(s1710 5)
(s1711 2)
(s1713 4)
(s1714 5)
(s1715 5)
(s1716 2)
(s1718 4)
(s1719 5)
(s1720 5)
(s1721 2)
(s1723 4)
(s1724 5)
(s1725 5)
(s1726 2)
(s1728 4)
(s1729 5)
(s1730 5)
(s1731 2)
(s1733 4)
(s1734 5)
(s1735 5)
(s1736 2)
(s1738 4)
(s1739 5)
(s1740 5)
(s1741 2)
(s1743 4)
(s1744 5)
(s1745 5)
(s1746 2)
(s1748 4)
(s1749 5)
(s1750 5)
(s1751 2)
(s1753 4)
(s1754 5)
(s1755 5)
(s1756 2)
(s1758 4)
(s1759 5)
(s1760 5)
(s1761 2)
(s1763 4)
(s1764 5)
(s1765 5)
(s1766 2)
(s1768 4)
(s1769 5)
(s1770 5)
(s1771 2)
(s1773 4)
(s1774 5)
(s1775 5)
(s1776 2)
(s1778 4)
(s1779 5)
(s1780 5)
(s1781 2)
(s1783 4)
(s1784 5)
(s1785 5)
(s1786 2)
(s1788 4)
(s1789 5)
(s1790 5)
(s1791 2)
(s1793 4)
(s1794 5)
(s1795 5)
(s1796 2)
(s1798 4)
(s1799 5)
(s1800 5)
(s1801 2)
(s1803 4)
(s1804 5)
(s1805 5)
(s1806 2)
(s1808 4)
(s1809 5)
(s1810 5)
(s1811 2)
(s1813 4)
(s1814 5)
(s1815 5)
(s1816 2)
(s1818 4)
(s1819 5)
(s1820 5)
(s1821 2)
(s1823 4)
(s1824 5)
(s1825 5)
(s1826 2)
(s1828 4)
(s1829 5)
(s1830 5)
(s1831 2)
(s1833 4)
(s1834 5)
(s1835 5)
(s1836 2)
(s1838 4)
(s1839 5)
(s1840 5)
(s1841 2)
(s1843 4)
(s1844 5)
(s1845 5)
(s1846 2)
(s1848 4)
(s1849 5)
(s1850 5)
(s1851 2)
(s1853 4)
(s1854 5)
(s1855 5)
(s1856 2)
(s1858 4)
(s1859 5)
(s1860 5)
(s1861 2)
(s1863 4)
(s1864 5)
(s1865 5)
(s1866 2)
(s1868 4)
(s1869 5)
(s1870 5)
(s1871 2)
(s1873 4)
(s1874 5)
(s1875 5)
(s1876 2)
(s1878 4)
(s1879 5)
(s1880 5)
(s1881 2)
(s1883 4)
(s1884 5)
(s1885 5)
(s1886 2)
(s1888 4)
(s1889 5)
(s1890 5)
(s1891 2)
(s1893 4)
(s1894 5)
(s1895 5)
(s1896 2)
(s1898 4)
(s1899 5)
(s1900 5)
(s1901 2)
(s1903 4)
(s1904 5)
(s1905 5)
(s1906 2)
(s1908 4)
(s1909 5)
(s1910 5)
(s1911 2)
(s1913 4)
(s1914 5)
(s1915 5)
(s1916 2)
(s1918 4)
(s1919 5)
(s1920 5)
(s1921 2)
(s1923 4)
(s1924 5)
(s1925 5)
(s1926 2)
(s1928 4)
(s1929 5)
(s1930 5)
(s1931 2)
(s1933 4)
(s1934 5)
(s1935 5)
(s1936 2)
(s1938 4)
(s1939 5)
(s1940 5)
(s1941 2)
(s1943 4)
(s1944 5)
(s1945 5)
(s1946 2)
(s1948 4)
(s1949 5)
(s1950 5)
(s1951 2)
(s1953 4)
(s1954 5)
(s1955 5)
(s1956 2)
(s1958 4)
(s1959 5)
(s1960 5)
(s1961 2)
(s1963 4)
(s1964 5)
(s1965 5)
(s1966 2)
(s1968 4)
(s1969 5)
(s1970 5)
(s1971 2)
(s1973 4)
(s1974 5)
(s1975 5)
(s1976 2)
(s1978 4)
(s1979 5)
(s1980 5)
(s1981 2)
(s1983 4)
(s1984 5)
(s1985 5)
(s1986 2)
(s1988 4)
(s1989 5)
(s1990 5)
(s1991 2)
(s1993 4)
(s1994 5)
(s1995 5)
(s1996 2)
(s1998 4)
(s1999 5)
(s2000 5)
(s2001 2)
(s2003 4)
(s2004 5)
(s2005 5)
(s2006 2)
(s2008 4)
(s2009 5)
(s2010 5)
(s2011 2)
(s2013 4)
(s2014 5)
(s2015 5)
(s2016 2)
(s2018 4)
(s2019 5)
(s2020 5)
(s2021 2)
(s2023 4)
(s2024 5)
(s2025 5)
(s2026 2)
(s2028 4)
(s2029 5)
(s2030 5)
(s2031 2)
(s2033 4)
(s2034 5)
(s2035 5)
(s2036 2)
(s2038 4)
(s2039 5)
(s2040 5)
(s2041 2)
(s2043 4)
(s2044 5)
(s2045 5)
(s2046 2)
(s2048 4)
(s2049 5)
(s2050 5)
(s2051 2)
(s2053 4)
(s2054 5)
(s2055 5)
(s2056 2)
(s2058 4)
(s2059 5)
(s2060 5)
(s2061 2)
(s2063 4)
(s2064 5)
(s2065 5)
(s2066 2)
(s2068 4)
(s2069 5)
(s2070 5)
(s2071 2)
(s2073 4)
(s2074 5)
(s2075 5)
(s2076 2)
(s2078 4)
(s2079 5)
(s2080 5)
(s2081 2)
(s2083 4)
(s2084 5)
(s2085 5)
(s2086 2)
(s2088 4)
(s2089 5)
(s2090 5)
(s2091 2)
(s2093 4)
(s2094 5)
(s2095 5)
(s2096 2)
(s2098 4)
(s2099 5)
(s2100 5)
(s2101 2)
(s2103 4)
(s2104 5)
(s2105 5)
(s2106 2)
(s2108 4)
(s2109 5)
(s2110 5)
(s2111 2)
(s2113 4)
(s2114 5)
(s2115 5)
(s2116 2)
(s2118 4)
(s2119 5)
(s2120 5)
(s2121 2)
(s2123 4)
(s2124 5)
(s2125 5)
(s2126 2)
(s2128 4)
(s2129 5)
(s2130 5)
(s2131 2)
(s2133 4)
(s2134 5)
(s2135 5)
(s2136 2)
(s2138 4)
(s2139 5)
(s2140 5)
(s2141 2)
(s2143 4)
(s2144 5)
(s2145 5)
(s2146 2)
(s2148 4)
(s2149 5)
(s2150 5)
(s2151 2)
(s2153 4)
(s2154 5)
(s2155 5)
(s2156 2)
(s2158 4)
(s2159 5)
(s2160 5)
(s2161 2)
(s2163 4)
(s2164 5)
(s2165 5)
(s2166 2)
(s2168 4)
(s2169 5)
(s2170 5)
(s2171 2)
(s2173 4)
(s2174 5)
(s2175 5)
(s2176 2)
(s2178 4)
(s2179 5)
(s2180 5)
(s2181 2)
(s2183 4)
(s2184 5)
(s2185 5)
(s2186 2)
(s2188 4)
(s2189 5)
(s2190 5)
(s2191 2)
(s2193 4)
(s2194 5)
(s2195 5)
(s2196 2)
(s2198 4)
(s2199 5)
(s2200 5)
(s2201 2)
(s2203 4)
(s2204 5)
(s2205 5)
(s2206 2)
(s2208 4)
(s2209 5)
(s2210 5)
(s2211 2)
(s2213 4)
(s2214 5)
(s2215 5)
(s2216 2)
(s2218 4)
(s2219 5)
(s2220 5)
(s2221 2)
(s2223 4)
(s2224 5)
(s2225 5)
(s2226 2)
(s2228 4)
(s2229 5)
(s2230 5)
(s2231 2)
(s2233 4)
(s2234 5)
(s2235 5)
(s2236 2)
(s2238 4)
(s2239 5)
(s2240 5)
(s2241 2)
(s2243 4)
(s2244 5)
(s2245 5)
(s2246 2)
(s2248 4)
(s2249 5)
(s2250 5)
(s2251 2)
(s2253 4)
(s2254 5)
(s2255 5)
(s2256 2)
(s2258 4)
(s2259 5)
(s2260 5)
(s2261 2)
(s2263 4)
(s2264 5)
(s2265 5)
(s2266 2)
(s2268 4)
(s2269 5)
(s2270 5)
(s2271 2)
(s2273 4)
(s2274 5)
(s2275 5)
(s2276 2)
(s2278 4)
(s2279 5)
(s2280 5)
(s2281 2)
(s2283 4)
(s2284 5)
(s2285 5)
(s2286 2)
(s2288 4)
(s2289 5)
(s2290 5)
(s2291 2)
(s2293 4)
(s2294 5)
(s2295 5)
(s2296 2)
(s2298 4)
(s2299 5)
(s2300 5)
(s2301 2)
(s2303 4)
(s2304 5)
(s2305 5)
(s2306 2)
(s2308 4)
(s2309 5)
(s2310 5)
(s2311 2)
(s2313 4)
(s2314 5)
(s2315 5)
(s2316 2)
(s2318 4)
(s2319 5)
(s2320 5)
(s2321 2)
(s2323 4)
(s2324 5)
(s2325 5)
(s2326 2)
(s2328 4)
(s2329 5)
(s2330 5)
(s2331 2)
(s2333 4)
(s2334 5)
(s2335 5)
(s2336 2)
(s2338 4)
(s2339 5)
(s2340 5)
(s2341 2)
(s2343 4)
(s2344 5)
(s2345 5)
(s2346 2)
(s2348 4)
(s2349 5)
(s2350 5)
(s2351 2)
(s2353 4)
(s2354 5)
(s2355 5)
(s2356 2)
(s2358 4)
(s2359 5)
(s2360 5)
(s2361 2)
(s2363 4)
(s2364 5)
(s2365 5)
(s2366 2)
(s2368 4)
(s2369 5)
(s2370 5)
(s2371 2)
(s2373 4)
(s2374 5)
(s2375 5)
(s2376 2)
(s2378 4)
(s2379 5)
(s2380 5)
(s2381 2)
(s2383 4)
(s2384 5)
(s2385 5)
(s2386 2)
(s2388 4)
(s2389 5)
(s2390 5)
(s2391 2)
(s2393 4)
(s2394 5)
(s2395 5)
(s2396 2)
(s2398 4)
(s2399 5)
(s2400 5)
(s2401 2)
(s2403 4)
(s2404 5)
(s2405 5)
(s2406 2)
(s2408 4)
(s2409 5)
(s2410 5)
(s2411 2)
(s2413 4)
(s2414 5)
(s2415 5)
(s2416 2)
(s2418 4)
(s2419 5)
(s2420 5)
(s2421 2)
(s2423 4)
(s2424 5)
(s2425 5)
(s2426 2)
(s2428 4)
(s2429 5)
(s2430 5)
(s2431 2)
(s2433 4)
(s2434 5)
(s2435 5)
(s2436 2)
(s2438 4)
(s2439 5)
(s2440 5)
(s2441 2)
(s2443 4)
(s2444 5)
(s2445 5)
(s2446 2)
(s2448 4)
(s2449 5)
(s2450 5)
(s2451 2)
(s2453 4)
(s2454 5)
(s2455 5)
(s2456 2)
(s2458 4)
(s2459 5)
(s2460 5)
(s2461 2)
(s2463 4)
(s2464 5)
(s2465 5)
(s2466 2)
(s2468 4)
(s2469 5)
(s2470 5)
(s2471 2)
(s2473 4)
(s2474 5)
(s2475 5)
(s2476 2)
(s2478 4)
(s2479 5)
(s2480 5)
(s2481 2)
(s2483 4)
(s2484 5)
(s2485 5)
(s2486 2)
(s2488 4)
(s2489 5)
(s2490 5)
(s2491 2)
(s2493 4)
(s2494 5)
(s2495 5)
(s2496 2)
(s2498 4)
(s2499 5)
(s2500 5)
(s2501 2)
(s2503 4)
(s2504 5)
(s2505 5)
(s2506 2)
(s2508 4)
(s2509 5)
(s2510 5)
(s2511 2)
(s2513 4)
(s2514 5)
(s2515 5)
(s2516 2)
(s2518 4)
(s2519 5)
(s2520 5)
(s2521 2)
(s2523 4)
(s2524 5)
(s2525 5)
(s2526 2)
(s2528 4)
(s2529 5)
(s2530 5)
(s2531 2)
(s2533 4)
(s2534 5)
(s2535 5)
(s2536 2)
(s2538 4)
(s2539 5)
(s2540 5)
(s2541 2)
(s2543 4)
(s2544 5)
(s2545 5)
(s2546 2)
(s2548 4)
(s2549 5)
(s2550 5)
(s2551 2)
(s2553 4)
(s2554 5)
(s2555 5)
(s2556 2)
(s2558 4)
(s2559 5)
(s2560 5)
(s2561 2)
(s2563 4)
(s2564 5)
(s2565 5)
(s2566 2)
(s2568 4)
(s2569 5)
(s2570 5)
(s2571 2)
(s2573 4)
(s2574 5)
(s2575 5)
(s2576 2)
(s2578 4)
(s2579 5)
(s2580 5)
(s2581 2)
(s2583 4)
(s2584 5)
(s2585 5)
(s2586 2)
(s2588 4)
(s2589 5)
(s2590 5)
(s2591 2)
(s2593 4)
(s2594 5)
(s2595 5)
(s2596 2)
(s2598 4)
(s2599 5)
(s2600 5)
(s2601 2)
(s2603 4)
(s2604 5)
(s2605 5)
(s2606 2)
(s2608 4)
(s2609 5)
(s2610 5)
(s2611 2)
(s2613 4)
(s2614 5)
(s2615 5)
(s2616 2)
(s2618 4)
(s2619 5)
(s2620 5)
(s2621 2)
(s2623 4)
(s2624 5)
(s2625 5)
(s2626 2)
(s2628 4)
(s2629 5)
(s2630 5)
(s2631 2)
(s2633 4)
(s2634 5)
(s2635 5)
(s2636 2)
(s2638 4)
(s2639 5)
(s2640 5)
(s2641 2)
(s2643 4)
(s2644 5)
(s2645 5)
(s2646 2)
(s2648 4)
(s2649 5)
(s2650 5)
(s2651 2)
(s2653 4)
(s2654 5)
(s2655 5)
(s2656 2)
(s2658 4)
(s2659 5)
(s2660 5)
(s2661 2)
(s2663 4)
(s2664 5)
(s2665 5)
(s2666 2)
(s2668 4)
(s2669 5)
(s2670 5)
(s2671 2)
(s2673 4)
(s2674 5)
(s2675 5)
(s2676 2)
(s2678 4)
(s2679 5)
(s2680 5)
(s2681 2)
(s2683 4)
(s2684 5)
(s2685 5)
(s2686 2)
(s2688 4)
(s2689 5)
(s2690 5)
(s2691 2)
(s2693 4)
(s2694 5)
(s2695 5)
(s2696 2)
(s2698 4)
(s2699 5)
(s2700 5)
(s2701 2)
(s2703 4)
(s2704 5)
(s2705 5)
(s2706 2)
(s2708 4)
(s2709 5)
(s2710 5)
(s2711 2)
(s2713 4)
(s2714 5)
(s2715 5)
(s2716 2)
(s2718 4)
(s2719 5)
(s2720 5)
(s2721 2)
(s2723 4)
(s2724 5)
(s2725 5)
(s2726 2)
(s2728 4)
(s2729 5)
(s2730 5)
(s2731 2)
(s2733 4)
(s2734 5)
(s2735 5)
(s2736 2)
(s2738 4)
(s2739 5)
(s2740 5)
(s2741 2)
(s2743 4)
(s2744 5)
(s2745 5)
(s2746 2)
(s2748 4)
(s2749 5)
(s2750 5)
(s2751 2)
(s2753 4)
(s2754 5)
(s2755 5)
(s2756 2)
(s2758 4)
(s2759 5)
(s2760 5)
(s2761 2)
(s2763 4)
(s2764 5)
(s2765 5)
(s2766 2)
(s2768 4)
(s2769 5)
(s2770 5)
(s2771 2)
(s2773 4)
(s2774 5)
(s2775 5)
(s2776 2)
(s2778 4)
(s2779 5)
(s2780 5)
(s2781 2)
(s2783 4)
(s2784 5)
(s2785 5)
(s2786 2)
(s2788 4)
(s2789 5)
(s2790 5)
(s2791 2)
(s2793 4)
(s2794 5)
(s2795 5)
(s2796 2)
(s2798 4)
(s2799 5)
(s2800 5)
(s2801 2)
(s2803 4)
(s2804 5)
(s2805 5)
(s2806 2)
(s2808 4)
(s2809 5)
(s2810 5)
(s2811 2)
(s2813 4)
(s2814 5)
(s2815 5)
(s2816 2)
(s2818 4)
(s2819 5)
(s2820 5)
(s2821 2)
(s2823 4)
(s2824 5)
(s2825 5)
(s2826 2)
(s2828 4)
(s2829 5)
(s2830 5)
(s2831 2)
(s2833 4)
(s2834 5)
(s2835 5)
(s2836 2)
(s2838 4)
(s2839 5)
(s2840 5)
(s2841 2)
(s2843 4)
(s2844 5)
(s2845 5)
(s2846 2)
(s2848 4)
(s2849 5)
(s2850 5)
(s2851 2)
(s2853 4)
(s2854 5)
(s2855 5)
(s2856 2)
(s2858 4)
(s2859 5)
(s2860 5)
(s2861 2)
(s2863 4)
(s2864 5)
(s2865 5)
(s2866 2)
(s2868 4)
(s2869 5)
(s2870 5)
(s2871 2)
(s2873 4)
(s2874 5)
(s2875 5)
(s2876 2)
(s2878 4)
(s2879 5)
(s2880 5)
(s2881 2)
(s2883 4)
(s2884 5)
(s2885 5)
(s2886 2)
(s2888 4)
(s2889 5)
(s2890 5)
(s2891 2)
(s2893 4)
(s2894 5)
(s2895 5)
(s2896 2)
(s2898 4)
(s2899 5)
(s2900 5)
(s2901 2)
(s2903 4)
(s2904 5)
(s2905 5)
(s2906 2)
(s2908 4)
(s2909 5)
(s2910 5)
(s2911 2)
(s2913 4)
(s2914 5)
(s2915 5)
(s2916 2)
(s2918 4)
(s2919 5)
(s2920 5)
(s2921 2)
(s2923 4)
(s2924 5)
(s2925 5)
(s2926 2)
(s2928 4)
(s2929 5)
(s2930 5)
(s2931 2)
(s2933 4)
(s2934 5)
(s2935 5)
(s2936 2)
(s2938 4)
(s2939 5)
(s2940 5)
(s2941 2)
(s2943 4)
(s2944 5)
(s2945 5)
(s2946 2)
(s2948 4)
(s2949 5)
(s2950 5)
(s2951 2)
(s2953 4)
(s2954 5)
(s2955 5)
(s2956 2)
(s2958 4)
(s2959 5)
(s2960 5)
(s2961 2)
(s2963 4)
(s2964 5)
(s2965 5)
(s2966 2)
(s2968 4)
(s2969 5)
(s2970 5)
(s2971 2)
(s2973 4)
(s2974 5)
(s2975 5)
(s2976 2)
(s2978 4)
(s2979 5)
(s2980 5)
(s2981 2)
(s2983 4)
(s2984 5)
(s2985 5)
(s2986 2)
(s2988 4)
(s2989 5)
(s2990 5)
(s2991 2)
(s2993 4)
(s2994 5)
(s2995 5)
(s2996 2)
(s2998 4)
(s2999 5)
(s3000 5)
(s3001 2)
(s3003 4)
(s3004 5)
(s3005 5)
(s3006 2)
(s3008 4)
(s3009 5)
(s3010 5)
(s3011 2)
(s3013 4)
(s3014 5)
(s3015 5)
(s3016 2)
(s3018 4)
(s3019 5)
(s3020 5)
(s3021 2)
(s3023 4)
(s3024 5)
(s3025 5)
(s3026 2)
(s3028 4)
(s3029 5)
(s3030 5)
(s3031 2)
(s3033 4)
(s3034 5)
(s3035 5)
(s3036 2)
(s3038 4)
(s3039 5)
(s3040 5)
(s3041 2)
(s3043 4)
(s3044 5)
(s3045 5)
(s3046 2)
(s3048 4)
(s3049 5)
(s3050 5)
(s3051 2)
(s3053 4)
(s3054 5)
(s3055 5)
(s3056 2)
(s3058 4)
(s3059 5)
(s3060 5)
(s3061 2)
(s3063 4)
(s3064 5)
(s3065 5)
(s3066 2)
(s3068 4)
(s3069 5)
(s3070 5)
(s3071 2)
(s3073 4)
(s3074 5)
(s3075 5)
(s3076 2)
(s3078 4)
(s3079 5)
(s3080 5)
(s3081 2)
(s3083 4)
(s3084 5)
(s3085 5)
(s3086 2)
(s3088 4)
(s3089 5)
(s3090 5)
(s3091 2)
(s3093 4)
(s3094 5)
(s3095 5)
(s3096 2)
(s3098 4)
(s3099 5)
(s3100 5)
(s3101 2)
(s3103 4)
(s3104 5)
(s3105 5)
(s3106 2)
(s3108 4)
(s3109 5)
(s3110 5)
(s3111 2)
(s3113 4)
(s3114 5)
(s3115 5)
(s3116 2)
(s3118 4)
(s3119 5)
(s3120 5)
(s3121 2)
(s3123 4)
(s3124 5)
(s3125 5)
(s3126 2)
(s3128 4)
(s3129 5)
(s3130 5)
(s3131 2)
(s3133 4)
(s3134 5)
(s3135 5)
(s3136 2)
(s3138 4)
(s3139 5)
(s3140 5)
(s3141 2)
(s3143 4)
(s3144 5)
(s3145 5)
(s3146 2)
(s3148 4)
(s3149 5)
(s3150 5)
(s3151 2)
(s3153 4)
(s3154 5)
(s3155 5)
(s3156 2)
(s3158 4)
(s3159 5)
(s3160 5)
(s3161 2)
(s3163 4)
(s3164 5)
(s3165 5)
(s3166 2)
(s3168 4)
(s3169 5)
(s3170 5)
(s3171 2)
(s3173 4)
(s3174 5)
(s3175 5)
(s3176 2)
(s3178 4)
(s3179 5)
(s3180 5)
(s3181 2)
(s3183 4)
(s3184 5)
(s3185 5)
(s3186 2)
(s3188 4)
(s3189 5)
(s3190 5)
(s3191 2)
(s3193 4)
(s3194 5)
(s3195 5)
(s3196 2)
(s3198 4)
(s3199 5)
(s3200 5)
(s3201 2)
(s3203 4)
(s3204 5)
(s3205 5)
(s3206 2)
(s3208 4)
(s3209 5)
(s3210 5)
(s3211 2)
(s3213 4)
(s3214 5)
(s3215 5)
(s3216 2)
(s3218 4)
(s3219 5)
(s3220 5)
(s3221 2)
(s3223 4)
(s3224 5)
(s3225 5)
(s3226 2)
(s3228 4)
(s3229 5)
(s3230 5)
(s3231 2)
(s3233 4)
(s3234 5)
(s3235 5)
(s3236 2)
(s3238 4)
(s3239 5)
(s3240 5)
(s3241 2)
(s3243 4)
(s3244 5)
(s3245 5)
(s3246 2)
(s3248 4)
(s3249 5)
(s3250 5)
(s3251 2)
(s3253 4)
(s3254 5)
(s3255 5)
(s3256 2)
(s3258 4)
(s3259 5)
(s3260 5)
(s3261 2)
(s3263 4)
(s3264 5)
(s3265 5)
(s3266 2)
(s3268 4)
(s3269 5)
(s3270 5)
(s3271 2)
(s3273 4)
(s3274 5)
(s3275 5)
(s3276 2)
(s3278 4)
(s3279 5)
(s3280 5)
(s3281 2)
(s3283 4)
(s3284 5)
(s3285 5)
(s3286 2)
(s3288 4)
(s3289 5)
(s3290 5)
(s3291 2)
(s3293 4)
(s3294 5)
(s3295 5)
(s3296 2)
(s3298 4)
(s3299 5)
(s3300 5)
(s3301 2)
(s3303 4)
(s3304 5)
(s3305 5)
(s3306 2)
(s3308 4)
(s3309 5)
(s3310 5)
(s3311 2)
(s3313 4)
(s3314 5)
(s3315 5)
(s3316 2)
(s3318 4)
(s3319 5)
(s3320 5)
(s3321 2)
(s3323 4)
(s3324 5)
(s3325 5)
(s3326 2)
(s3328 4)
(s3329 5)
(s3330 5)
(s3331 2)
(s3333 4)
(s3334 5)
(s3335 5)
(s3336 2)
(s3338 4)
(s3339 5)
(s3340 5)
(s3341 2)
(s3343 4)
(s3344 5)
(s3345 5)
(s3346 2)
(s3348 4)
(s3349 5)
(s3350 5)
(s3351 2)
(s3353 4)
(s3354 5)
(s3355 5)
(s3356 2)
(s3358 4)
(s3359 5)
(s3360 5)
(s3361 2)
(s3363 4)
(s3364 5)
(s3365 5)
(s3366 2)
(s3368 4)
(s3369 5)
(s3370 5)
(s3371 2)
(s3373 4)
(s3374 5)
(s3375 5)
(s3376 2)
(s3378 4)
(s3379 5)
(s3380 5)
(s3381 2)
(s3383 4)
(s3384 5)
(s3385 5)
(s3386 2)
(s3388 4)
(s3389 5)
(s3390 5)
(s3391 2)
(s3393 4)
(s3394 5)
(s3395 5)
(s3396 2)
(s3398 4)
(s3399 5)
(s3400 5)
(s3401 2)
(s3403 4)
(s3404 5)
(s3405 5)
(s3406 2)
(s3408 4)
(s3409 5)
(s3410 5)
(s3411 2)
(s3413 4)
(s3414 5)
(s3415 5)
(s3416 2)
(s3418 4)
(s3419 5)
(s3420 5)
(s3421 2)
(s3423 4)
(s3424 5)
(s3425 5)
(s3426 2)
(s3428 4)
(s3429 5)
(s3430 5)
(s3431 2)
(s3433 4)
(s3434 5)
(s3435 5)
(s3436 2)
(s3438 4)
(s3439 5)
(s3440 5)
(s3441 2)
(s3443 4)
(s3444 5)
(s3445 5)
(s3446 2)
(s3448 4)
(s3449 5)
(s3450 5)
(s3451 2)
(s3453 4)
(s3454 5)
(s3455 5)
(s3456 2)
(s3458 4)
(s3459 5)
(s3460 5)
(s3461 2)
(s3463 4)
(s3464 5)
(s3465 5)
(s3466 2)
(s3468 4)
(s3469 5)
(s3470 5)
(s3471 2)
(s3473 4)
(s3474 5)
(s3475 5)
(s3476 2)
(s3478 4)
(s3479 5)
(s3480 5)
(s3481 2)
(s3483 4)
(s3484 5)
(s3485 5)
(s3486 2)
(s3488 4)
(s3489 5)
(s3490 5)
(s3491 2)
(s3493 4)
(s3494 5)
(s3495 5)
(s3496 2)
(s3498 4)
(s3499 5)
(s3500 5)
(s3501 2)
(s3503 4)
(s3504 5)
(s3505 5)
(s3506 2)
(s3508 4)
(s3509 5)
(s3510 5)
(s3511 2)
(s3513 4)
(s3514 5)
(s3515 5)
(s3516 2)
(s3518 4)
(s3519 5)
(s3520 5)
(s3521 2)
(s3523 4)
(s3524 5)
(s3525 5)
(s3526 2)
(s3528 4)
(s3529 5)
(s3530 5)
(s3531 2)
(s3533 4)
(s3534 5)
(s3535 5)
(s3536 2)
(s3538 4)
(s3539 5)
(s3540 5)
(s3541 2)
(s3543 4)
(s3544 5)
(s3545 5)
(s3546 2)
(s3548 4)
(s3549 5)
(s3550 5)
(s3551 2)
(s3553 4)
(s3554 5)
(s3555 5)
(s3556 2)
(s3558 4)
(s3559 5)
(s3560 5)
(s3561 2)
(s3563 4)
(s3564 5)
(s3565 5)
(s3566 2)
(s3568 4)
(s3569 5)
(s3570 5)
(s3571 2)
(s3573 4)
(s3574 5)
(s3575 5)
(s3576 2)
(s3578 4)
(s3579 5)
(s3580 5)
(s3581 2)
(s3583 4)
(s3584 5)
(s3585 5)
(s3586 2)
(s3588 4)
(s3589 5)
(s3590 5)
(s3591 2)
(s3593 4)
(s3594 5)
(s3595 5)
(s3596 2)
(s3598 4)
(s3599 5)
(s3600 5)
(s3601 2)
(s3603 4)
(s3604 5)
(s3605 5)
(s3606 2)
(s3608 4)
(s3609 5)
(s3610 5)
(s3611 2)
(s3613 4)
(s3614 5)
(s3615 5)
(s3616 2)
(s3618 4)
(s3619 5)
(s3620 5)
(s3621 2)
(s3623 4)
(s3624 5)
(s3625 5)
(s3626 2)
(s3628 4)
(s3629 5)
(s3630 5)
(s3631 2)
(s3633 4)
(s3634 5)
(s3635 5)
(s3636 2)
(s3638 4)
(s3639 5)
(s3640 5)
(s3641 2)
(s3643 4)
(s3644 5)
(s3645 5)
(s3646 2)
(s3648 4)
(s3649 5)
(s3650 5)
(s3651 2)
(s3653 4)
(s3654 5)
(s3655 5)
(s3656 2)
(s3658 4)
(s3659 5)
(s3660 5)
(s3661 2)
(s3663 4)
(s3664 5)
(s3665 5)
(s3666 2)
(s3668 4)
(s3669 5)
(s3670 5)
(s3671 2)
(s3673 4)
(s3674 5)
(s3675 5)
(s3676 2)
(s3678 4)
(s3679 5)
(s3680 5)
(s3681 2)
(s3683 4)
(s3684 5)
(s3685 5)
(s3686 2)
(s3688 4)
(s3689 5)
(s3690 5)
(s3691 2)
(s3693 4)
(s3694 5)
(s3695 5)
(s3696 2)
(s3698 4)
(s3699 5)
(s3700 5)
(s3701 2)
(s3703 4)
(s3704 5)
(s3705 5)
(s3706 2)
(s3708 4)
(s3709 5)
(s3710 5)
(s3711 2)
(s3713 4)
(s3714 5)
(s3715 5)
(s3716 2)
(s3718 4)
(s3719 5)
(s3720 5)
(s3721 2)
(s3723 4)
(s3724 5)
(s3725 5)
(s3726 2)
(s3728 4)
(s3729 5)
(s3730 5)
(s3731 2)
(s3733 4)
(s3734 5)
(s3735 5)
(s3736 2)
(s3738 4)
(s3739 5)
(s3740 5)
(s3741 2)
(s3743 4)
(s3744 5)
(s3745 5)
(s3746 2)
(s3748 4)
(s3749 5)
(s3750 5)
(s3751 2)
(s3753 4)
(s3754 5)
(s3755 5)
(s3756 2)
(s3758 4)
(s3759 5)
(s3760 5)
(s3761 2)
(s3763 4)
(s3764 5)
(s3765 5)
(s3766 2)
(s3768 4)
(s3769 5)
(s3770 5)
(s3771 2)
(s3773 4)
(s3774 5)
(s3775 5)
(s3776 2)
(s3778 4)
(s3779 5)
(s3780 5)
(s3781 2)
(s3783 4)
(s3784 5)
(s3785 5)
(s3786 2)
(s3788 4)
(s3789 5)
(s3790 5)
(s3791 2)
(s3793 4)
(s3794 5)
(s3795 5)
(s3796 2)
(s3798 4)
(s3799 5)
(s3800 5)
(s3801 2)
(s3803 4)
(s3804 5)
(s3805 5)
(s3806 2)
(s3808 4)
(s3809 5)
(s3810 5)
(s3811 2)
(s3813 4)
(s3814 5)
(s3815 5)
(s3816 2)
(s3818 4)
(s3819 5)
(s3820 5)
(s3821 2)
(s3823 4)
(s3824 5)
(s3825 5)
(s3826 2)
(s3828 4)
(s3829 5)
(s3830 5)
(s3831 2)
(s3833 4)
(s3834 5)
(s3835 5)
(s3836 2)
(s3838 4)
(s3839 5)
(s3840 5)
(s3841 2)
(s3843 4)
(s3844 5)
(s3845 5)
(s3846 2)
(s3848 4)
(s3849 5)
(s3850 5)
(s3851 2)
(s3853 4)
(s3854 5)
(s3855 5)
(s3856 2)
(s3858 4)
(s3859 5)
(s3860 5)
(s3861 2)
(s3863 4)
(s3864 5)
(s3865 5)
(s3866 2)
(s3868 4)
(s3869 5)
(s3870 5)
(s3871 2)
(s3873 4)
(s3874 5)
(s3875 5)
(s3876 2)
(s3878 4)
(s3879 5)
(s3880 5)
(s3881 2)
(s3883 4)
(s3884 5)
(s3885 5)
(s3886 2)
(s3888 4)
(s3889 5)
(s3890 5)
(s3891 2)
(s3893 4)
(s3894 5)
(s3895 5)
(s3896 2)
(s3898 4)
(s3899 5)
(s3900 5)
(s3901 2)
(s3903 4)
(s3904 5)
(s3905 5)
(s3906 2)
(s3908 4)
(s3909 5)
(s3910 5)
(s3911 2)
(s3913 4)
(s3914 5)
(s3915 5)
(s3916 2)
(s3918 4)
(s3919 5)
(s3920 5)
(s3921 2)
(s3923 4)
(s3924 5)
(s3925 5)
(s3926 2)
(s3928 4)
(s3929 5)
(s3930 5)
(s3931 2)
(s3933 4)
(s3934 5)
(s3935 5)
(s3936 2)
(s3938 4)
(s3939 5)
(s3940 5)
(s3941 2)
(s3943 4)
(s3944 5)
(s3945 5)
(s3946 2)
(s3948 4)
(s3949 5)
(s3950 5)
(s3951 2)
(s3953 4)
(s3954 5)
(s3955 5)
(s3956 2)
(s3958 4)
(s3959 5)
(s3960 5)
(s3961 2)
(s3963 4)
(s3964 5)
(s3965 5)
(s3966 2)
(s3968 4)
(s3969 5)
(s3970 5)
(s3971 2)
(s3973 4)
(s3974 5)
(s3975 5)
(s3976 2)
(s3978 4)
(s3979 5)
(s3980 5)
(s3981 2)
(s3983 4)
(s3984 5)
(s3985 5)
(s3986 2)
(s3988 4)
(s3989 5)
(s3990 5)
(s3991 2)
(s3993 4)
(s3994 5)
(s3995 5)
(s3996 2)
(s3998 4)
(s3999 5)
(s4000 5)
(s4001 2)
(s4003 4)
(s4004 5)
(s4005 5)
(s4006 2)
(s4008 4)
(s4009 5)
(s4010 5)
(s4011 2)
(s4013 4)
(s4014 5)
(s4015 5)
(s4016 2)
(s4018 4)
(s4019 5)
(s4020 5)
(s4021 2)
(s4023 4)
(s4024 5)
(s4025 5)
(s4026 2)
(s4028 4)
(s4029 5)
(s4030 5)
(s4031 2)
(s4033 4)
(s4034 5)
(s4035 5)
(s4036 2)
(s4038 4)
(s4039 5)
(s4040 5)
(s4041 2)
(s4043 4)
(s4044 5)
(s4045 5)
(s4046 2)
(s4048 4)
(s4049 5)
(s4050 5)
(s4051 2)
(s4053 4)
(s4054 5)
(s4055 5)
(s4056 2)
(s4058 4)
(s4059 5)
(s4060 5)
(s4061 2)
(s4063 4)
(s4064 5)
(s4065 5)
(s4066 2)
(s4068 4)
(s4069 5)
(s4070 5)
(s4071 2)
(s4073 4)
(s4074 5)
(s4075 5)
(s4076 2)
(s4078 4)
(s4079 5)
(s4080 5)
(s4081 2)
(s4083 4)
(s4084 5)
(s4085 5)
(s4086 2)
(s4088 4)
(s4089 5)
(s4090 5)
(s4091 2)
(s4093 4)
(s4094 5)
(s4095 5)
(s4096 2)
(s4098 4)
(s4099 5)
(s4100 5)
(s4101 2)
(s4103 4)
(s4104 5)
(s4105 5)
(s4106 2)
(s4108 4)
(s4109 5)
(s4110 5)
(s4111 2)
(s4113 4)
(s4114 5)
(s4115 5)
(s4116 2)
(s4118 4)
(s4119 5)
(s4120 5)
(s4121 2)
(s4123 4)
(s4124 5)
(s4125 5)
(s4126 2)
(s4128 4)
(s4129 5)
(s4130 5)
(s4131 2)
(s4133 4)
(s4134 5)
(s4135 5)
(s4136 2)
(s4138 4)
(s4139 5)
(s4140 5)
(s4141 2)
(s4143 4)
(s4144 5)
(s4145 5)
(s4146 2)
(s4148 4)
(s4149 5)
(s4150 5)
(s4151 2)
(s4153 4)
(s4154 5)
(s4155 5)
(s4156 2)
(s4158 4)
(s4159 5)
(s4160 5)
(s4161 2)
(s4163 4)
(s4164 5)
(s4165 5)
(s4166 2)
(s4168 4)
(s4169 5)
(s4170 5)
(s4171 2)
(s4173 4)
(s4174 5)
(s4175 5)
(s4176 2)
(s4178 4)
(s4179 5)
(s4180 5)
(s4181 2)
(s4183 4)
(s4184 5)
(s4185 5)
(s4186 2)
(s4188 4)
(s4189 5)
(s4190 5)
(s4191 2)
(s4193 4)
(s4194 5)
(s4195 5)
(s4196 2)
(s4198 4)
(s4199 5)
(s4200 5)
(s4201 2)
(s4203 4)
(s4204 5)
(s4205 5)
(s4206 2)
(s4208 4)
(s4209 5)
(s4210 5)
(s4211 2)
(s4213 4)
(s4214 5)
(s4215 5)
(s4216 2)
(s4218 4)
(s4219 5)
(s4220 5)
(s4221 2)
(s4223 4)
(s4224 5)
(s4225 5)
(s4226 2)
(s4228 4)
(s4229 5)
(s4230 5)
(s4231 2)
(s4233 4)
(s4234 5)
(s4235 5)
(s4236 2)
(s4238 4)
(s4239 5)
(s4240 5)
(s4241 2)
(s4243 4)
(s4244 5)
(s4245 5)
(s4246 2)
(s4248 4)
(s4249 5)
(s4250 5)
(s4251 2)
(s4253 4)
(s4254 5)
(s4255 5)
(s4256 2)
(s4258 4)
(s4259 5)
(s4260 5)
(s4261 2)
(s4263 4)
(s4264 5)
(s4265 5)
(s4266 2)
(s4268 4)
(s4269 5)
(s4270 5)
(s4271 2)
(s4273 4)
(s4274 5)
(s4275 5)
(s4276 2)
(s4278 4)
(s4279 5)
(s4280 5)
(s4281 2)
(s4283 4)
(s4284 5)
(s4285 5)
(s4286 2)
(s4288 4)
(s4289 5)
(s4290 5)
(s4291 2)
(s4293 4)
(s4294 5)
(s4295 5)
(s4296 2)
(s4298 4)
(s4299 5)
(s4300 5)
(s4301 2)
(s4303 4)
(s4304 5)
(s4305 5)
(s4306 2)
(s4308 4)
(s4309 5)
(s4310 5)
(s4311 2)
(s4313 4)
(s4314 5)
(s4315 5)
(s4316 2)
(s4318 4)
(s4319 5)
(s4320 5)
(s4321 2)
(s4323 4)
(s4324 5)
(s4325 5)
(s4326 2)
(s4328 4)
(s4329 5)
(s4330 5)
(s4331 2)
(s4333 4)
(s4334 5)
(s4335 5)
(s4336 2)
(s4338 4)
(s4339 5)
(s4340 5)
(s4341 2)
(s4343 4)
(s4344 5)
(s4345 5)
(s4346 2)
(s4348 4)
(s4349 5)
(s4350 5)
(s4351 2)
(s4353 4)
(s4354 5)
(s4355 5)
(s4356 2)
(s4358 4)
(s4359 5)
(s4360 5)
(s4361 2)
(s4363 4)
(s4364 5)
(s4365 5)
(s4366 2)
(s4368 4)
(s4369 5)
(s4370 5)
(s4371 2)
(s4373 4)
(s4374 5)
(s4375 5)
(s4376 2)
(s4378 4)
(s4379 5)
(s4380 5)
(s4381 2)
(s4383 4)
(s4384 5)
(s4385 5)
(s4386 2)
(s4388 4)
(s4389 5)
(s4390 5)
(s4391 2)
(s4393 4)
(s4394 5)
(s4395 5)
(s4396 2)
(s4398 4)
(s4399 5)
(s4400 5)
(s4401 2)
(s4403 4)
(s4404 5)
(s4405 5)
(s4406 2)
(s4408 4)
(s4409 5)
(s4410 5)
(s4411 2)
(s4413 4)
(s4414 5)
(s4415 5)
(s4416 2)
(s4418 4)
(s4419 5)
(s4420 5)
(s4421 2)
(s4423 4)
(s4424 5)
(s4425 5)
(s4426 2)
(s4428 4)
(s4429 5)
(s4430 5)
(s4431 2)
(s4433 4)
(s4434 5)
(s4435 5)
(s4436 2)
(s4438 4)
(s4439 5)
(s4440 5)
(s4441 2)
(s4443 4)
(s4444 5)
(s4445 5)
(s4446 2)
(s4448 4)
(s4449 5)
(s4450 5)
(s4451 2)
(s4453 4)
(s4454 5)
(s4455 5)
(s4456 2)
(s4458 4)
(s4459 5)
(s4460 5)
(s4461 2)
(s4463 4)
(s4464 5)
(s4465 5)
(s4466 2)
(s4468 4)
(s4469 5)
(s4470 5)
(s4471 2)
(s4473 4)
(s4474 5)
(s4475 5)
(s4476 2)
(s4478 4)
(s4479 5)
(s4480 5)
(s4481 2)
(s4483 4)
(s4484 5)
(s4485 5)
(s4486 2)
(s4488 4)
(s4489 5)
(s4490 5)
(s4491 2)
(s4493 4)
(s4494 5)
(s4495 5)
(s4496 2)
(s4498 4)
(s4499 5)
(s4500 5)
(s4501 2)
(s4503 4)
(s4504 5)
(s4505 5)
(s4506 2)
(s4508 4)
(s4509 5)
(s4510 5)
(s4511 2)
(s4513 4)
(s4514 5)
(s4515 5)
(s4516 2)
(s4518 4)
(s4519 5)
(s4520 5)
(s4521 2)
(s4523 4)
(s4524 5)
(s4525 5)
(s4526 2)
(s4528 4)
(s4529 5)
(s4530 5)
(s4531 2)
(s4533 4)
(s4534 5)
(s4535 5)
(s4536 2)
(s4538 4)
(s4539 5)
(s4540 5)
(s4541 2)
(s4543 4)
(s4544 5)
(s4545 5)
(s4546 2)
(s4548 4)
(s4549 5)
(s4550 5)
(s4551 2)
(s4553 4)
(s4554 5)
(s4555 5)
(s4556 2)
(s4558 4)
(s4559 5)
(s4560 5)
(s4561 2)
(s4563 4)
(s4564 5)
(s4565 5)
(s4566 2)
(s4568 4)
(s4569 5)
(s4570 5)
(s4571 2)
(s4573 4)
(s4574 5)
(s4575 5)
(s4576 2)
(s4578 4)
(s4579 5)
(s4580 5)
(s4581 2)
(s4583 4)
(s4584 5)
(s4585 5)
(s4586 2)
(s4588 4)
(s4589 5)
(s4590 5)
(s4591 2)
(s4593 4)
(s4594 5)
(s4595 5)
(s4596 2)
(s4598 4)
(s4599 5)
(s4600 5)
(s4601 2)
(s4603 4)
(s4604 5)
(s4605 5)
(s4606 2)
(s4608 4)
(s4609 5)
(s4610 5)
(s4611 2)
(s4613 4)
(s4614 5)
(s4615 5)
(s4616 2)
(s4618 4)
(s4619 5)
(s4620 5)
(s4621 2)
(s4623 4)
(s4624 5)
(s4625 5)
(s4626 2)
(s4628 4)
(s4629 5)
(s4630 5)
(s4631 2)
(s4633 4)
(s4634 5)
(s4635 5)
(s4636 2)
(s4638 4)
(s4639 5)
(s4640 5)
(s4641 2)
(s4643 4)
(s4644 5)
(s4645 5)
(s4646 2)
(s4648 4)
(s4649 5)
(s4650 5)
(s4651 2)
(s4653 4)
(s4654 5)
(s4655 5)
(s4656 2)
(s4658 4)
(s4659 5)
(s4660 5)
(s4661 2)
(s4663 4)
(s4664 5)
(s4665 5)
(s4666 2)
(s4668 4)
(s4669 5)
(s4670 5)
(s4671 2)
(s4673 4)
(s4674 5)
(s4675 5)
(s4676 2)
(s4678 4)
(s4679 5)
(s4680 5)
(s4681 2)
(s4683 4)
(s4684 5)
(s4685 5)
(s4686 2)
(s4688 4)
(s4689 5)
(s4690 5)
(s4691 2)
(s4693 4)
(s4694 5)
(s4695 5)
(s4696 2)
(s4698 4)
(s4699 5)
(s4700 5)
(s4701 2)
(s4703 4)
(s4704 5)
(s4705 5)
(s4706 2)
(s4708 4)
(s4709 5)
(s4710 5)
(s4711 2)
(s4713 4)
(s4714 5)
(s4715 5)
(s4716 2)
(s4718 4)
(s4719 5)
(s4720 5)
(s4721 2)
(s4723 4)
(s4724 5)
(s4725 5)
(s4726 2)
(s4728 4)
(s4729 5)
(s4730 5)
(s4731 2)
(s4733 4)
(s4734 5)
(s4735 5)
(s4736 2)
(s4738 4)
(s4739 5)
(s4740 5)
(s4741 2)
(s4743 4)
(s4744 5)
(s4745 5)
(s4746 2)
(s4748 4)
(s4749 5)
(s4750 5)
(s4751 2)
(s4753 4)
(s4754 5)
(s4755 5)
(s4756 2)
(s4758 4)
(s4759 5)
(s4760 5)
(s4761 2)
(s4763 4)
(s4764 5)
(s4765 5)
(s4766 2)
(s4768 4)
(s4769 5)
(s4770 5)
(s4771 2)
(s4773 4)
(s4774 5)
(s4775 5)
(s4776 2)
(s4778 4)
(s4779 5)
(s4780 5)
(s4781 2)
(s4783 4)
(s4784 5)
(s4785 5)
(s4786 2)
(s4788 4)
(s4789 5)
(s4790 5)
(s4791 2)
(s4793 4)
(s4794 5)
(s4795 5)
(s4796 2)
(s4798 4)
(s4799 5)
(s4800 5)
(s4801 2)
(s4803 4)
(s4804 5)
(s4805 5)
(s4806 2)
(s4808 4)
(s4809 5)
(s4810 5)
(s4811 2)
(s4813 4)
(s4814 5)
(s4815 5)
(s4816 2)
(s4818 4)
(s4819 5)
(s4820 5)
(s4821 2)
(s4823 4)
(s4824 5)
(s4825 5)
(s4826 2)
(s4828 4)
(s4829 5)
(s4830 5)
(s4831 2)
(s4833 4)
(s4834 5)
(s4835 5)
(s4836 2)
(s4838 4)
(s4839 5)
(s4840 5)
(s4841 2)
(s4843 4)
(s4844 5)
(s4845 5)
(s4846 2)
(s4848 4)
(s4849 5)
(s4850 5)
(s4851 2)
(s4853 4)
(s4854 5)
(s4855 5)
(s4856 2)
(s4858 4)
(s4859 5)
(s4860 5)
(s4861 2)
(s4863 4)
(s4864 5)
(s4865 5)
(s4866 2)
(s4868 4)
(s4869 5)
(s4870 5)
(s4871 2)
(s4873 4)
(s4874 5)
(s4875 5)
(s4876 2)
(s4878 4)
(s4879 5)
(s4880 5)
(s4881 2)
(s4883 4)
(s4884 5)
(s4885 5)
(s4886 2)
(s4888 4)
(s4889 5)
(s4890 5)
(s4891 2)
(s4893 4)
(s4894 5)
(s4895 5)
(s4896 2)
(s4898 4)
(s4899 5)
(s4900 5)
(s4901 2)
(s4903 4)
(s4904 5)
(s4905 5)
(s4906 2)
(s4908 4)
(s4909 5)
(s4910 5)
(s4911 2)
(s4913 4)
(s4914 5)
(s4915 5)
(s4916 2)
(s4918 4)
(s4919 5)
(s4920 5)
(s4921 2)
(s4923 4)
(s4924 5)
(s4925 5)
(s4926 2)
(s4928 4)
(s4929 5)
(s4930 5)
(s4931 2)
(s4933 4)
(s4934 5)
(s4935 5)
(s4936 2)
(s4938 4)
(s4939 5)
(s4940 5)
(s4941 2)
(s4943 4)
(s4944 5)
(s4945 5)
(s4946 2)
(s4948 4)
(s4949 5)
(s4950 5)
(s4951 2)
(s4953 4)
(s4954 5)
(s4955 5)
(s4956 2)
(s4958 4)
(s4959 5)
(s4960 5)
(s4961 2)
(s4963 4)
(s4964 5)
(s4965 5)
(s4966 2)
(s4968 4)
(s4969 5)
(s4970 5)
(s4971 2)
(s4973 4)
(s4974 5)
(s4975 5)
(s4976 2)
(s4978 4)
(s4979 5)
(s4980 5)
(s4981 2)
(s4983 4)
(s4984 5)
(s4985 5)
(s4986 2)
(s4988 4)
(s4989 5)
(s4990 5)
(s4991 2)
(s4993 4)
(s4994 5)
(s4995 5)
(s4996 2)
(s4998 4)
(s4999 5)
(s5000 5)
(s5001 2)
(s5003 4)
(s5004 5)
(s5005 5)
(s5006 2)
(s5008 4)
(s5009 5)
(s5010 5)
(s5011 2)
(s5013 4)
(s5014 5)
(s5015 5)
(s5016 2)
(s5018 4)
(s5019 5)
(s5020 5)
(s5021 2)
(s5023 4)
(s5024 5)
(s5025 5)
(s5026 2)
(s5028 4)
(s5029 5)
(s5030 5)
(s5031 2)
(s5033 4)
(s5034 5)
(s5035 5)
(s5036 2)
(s5038 4)
(s5039 5)
(s5040 5)
(s5041 2)
(s5043 4)
(s5044 5)
(s5045 5)
(s5046 2)
(s5048 4)
(s5049 5)
(s5050 5)
(s5051 2)
(s5053 4)
(s5054 5)
(s5055 5)
(s5056 2)
(s5058 4)
(s5059 5)
(s5060 5)
(s5061 2)
(s5063 4)
(s5064 5)
(s5065 5)
(s5066 2)
(s5068 4)
(s5069 5)
(s5070 5)
(s5071 2)
(s5073 4)
(s5074 5)
(s5075 5)
(s5076 2)
(s5078 4)
(s5079 5)
(s5080 5)
(s5081 2)
(s5083 4)
(s5084 5)
(s5085 5)
(s5086 2)
(s5088 4)
(s5089 5)
(s5090 5)
(s5091 2)
(s5093 4)
(s5094 5)
(s5095 5)
(s5096 2)
(s5098 4)
(s5099 5)
(s5100 5)
(s5101 2)
(s5103 4)
(s5104 5)
(s5105 5)
(s5106 2)
(s5108 4)
(s5109 5)
(s5110 5)
(s5111 2)
(s5113 4)
(s5114 5)
(s5115 5)
(s5116 2)
(s5118 4)
(s5119 5)
(s5120 5)
(s5121 2)
(s5123 4)
(s5124 5)
(s5125 5)
(s5126 2)
(s5128 4)
(s5129 5)
(s5130 5)
(s5131 2)
(s5133 4)
(s5134 5)
(s5135 5)
(s5136 2)
(s5138 4)
(s5139 5)
(s5140 5)
(s5141 2)
(s5143 4)
(s5144 5)
(s5145 5)
(s5146 2)
(s5148 4)
(s5149 5)
(s5150 5)
(s5151 2)
(s5153 4)
(s5154 5)
(s5155 5)
(s5156 2)
(s5158 4)
(s5159 5)
(s5160 5)
(s5161 2)
(s5163 4)
(s5164 5)
(s5165 5)
(s5166 2)
(s5168 4)
(s5169 5)
(s5170 5)
(s5171 2)
(s5173 4)
(s5174 5)
(s5175 5)
(s5176 2)
(s5178 4)
(s5179 5)
(s5180 5)
(s5181 2)
(s5183 4)
(s5184 5)
(s5185 5)
(s5186 2)
(s5188 4)
(s5189 5)
(s5190 5)
(s5191 2)
(s5193 4)
(s5194 5)
(s5195 5)
(s5196 2)
(s5198 4)
(s5199 5)
(s5200 5)
(s5201 2)
(s5203 4)
(s5204 5)
(s5205 5)
(s5206 2)
(s5208 4)
(s5209 5)
(s5210 5)
(s5211 2)
(s5213 4)
(s5214 5)
(s5215 5)
(s5216 2)
(s5218 4)
(s5219 5)
(s5220 5)
(s5221 2)
(s5223 4)
(s5224 5)
(s5225 5)
(s5226 2)
(s5228 4)
(s5229 5)
(s5230 5)
(s5231 2)
(s5233 4)
(s5234 5)
(s5235 5)
(s5236 2)
(s5238 4)
(s5239 5)
(s5240 5)
(s5241 2)
(s5243 4)
(s5244 5)
(s5245 5)
(s5246 2)
(s5248 4)
(s5249 5)
(s5250 5)
(s5251 2)
(s5253 4)
(s5254 5)
(s5255 5)
(s5256 2)
(s5258 4)
(s5259 5)
(s5260 5)
(s5261 2)
(s5263 4)
(s5264 5)
(s5265 5)
(s5266 2)
(s5268 4)
(s5269 5)
(s5270 5)
(s5271 2)
(s5273 4)
(s5274 5)
(s5275 5)
(s5276 2)
(s5278 4)
(s5279 5)
(s5280 5)
(s5281 2)
(s5283 4)
(s5284 5)
(s5285 5)
(s5286 2)
(s5288 4)
(s5289 5)
(s5290 5)
(s5291 2)
(s5293 4)
(s5294 5)
(s5295 5)
(s5296 2)
(s5298 4)
(s5299 5)
(s5300 5)
(s5301 2)
(s5303 4)
(s5304 5)
(s5305 5)
(s5306 2)
(s5308 4)
(s5309 5)
(s5310 5)
(s5311 2)
(s5313 4)
(s5314 5)
(s5315 5)
(s5316 2)
(s5318 4)
(s5319 5)
(s5320 5)
(s5321 2)
(s5323 4)
(s5324 5)
(s5325 5)
(s5326 2)
(s5328 4)
(s5329 5)
(s5330 5)
(s5331 2)
(s5333 4)
(s5334 5)
(s5335 5)
(s5336 2)
(s5338 4)
(s5339 5)
(s5340 5)
(s5341 2)
(s5343 4)
(s5344 5)
(s5345 5)
(s5346 2)
(s5348 4)
(s5349 5)
(s5350 5)
(s5351 2)
(s5353 4)
(s5354 5)
(s5355 5)
(s5356 2)
(s5358 4)
(s5359 5)
(s5360 5)
(s5361 2)
(s5363 4)
(s5364 5)
(s5365 5)
(s5366 2)
(s5368 4)
(s5369 5)
(s5370 5)
(s5371 2)
(s5373 4)
(s5374 5)
(s5375 5)
(s5376 2)
(s5378 4)
(s5379 5)
(s5380 5)
(s5381 2)
(s5383 4)
(s5384 5)
(s5385 5)
(s5386 2)
(s5388 4)
(s5389 5)
(s5390 5)
(s5391 2)
(s5393 4)
(s5394 5)
(s5395 5)
(s5396 2)
(s5398 4)
(s5399 5)
(s5400 5)
(s5401 2)
(s5403 4)
(s5404 5)
(s5405 5)
(s5406 2)
(s5408 4)
(s5409 5)
(s5410 5)
(s5411 2)
(s5413 4)
(s5414 5)
(s5415 5)
(s5416 2)
(s5418 4)
(s5419 5)
(s5420 5)
(s5421 2)
(s5423 4)
(s5424 5)
(s5425 5)
(s5426 2)
(s5428 4)
(s5429 5)
(s5430 5)
(s5431 2)
(s5433 4)
(s5434 5)
(s5435 5)
(s5436 2)
(s5438 4)
(s5439 5)
(s5440 5)
(s5441 2)
(s5443 4)
(s5444 5)
(s5445 5)
(s5446 2)
(s5448 4)
(s5449 5)
(s5450 5)
(s5451 2)
(s5453 4)
(s5454 5)
(s5455 5)
(s5456 2)
(s5458 4)
(s5459 5)
(s5460 5)
(s5461 2)
(s5463 4)
(s5464 5)
(s5465 5)
(s5466 2)
(s5468 4)
(s5469 5)
(s5470 5)
(s5471 2)
(s5473 4)
(s5474 5)
(s5475 5)
(s5476 2)
(s5478 4)
(s5479 5)
(s5480 5)
(s5481 2)
(s5483 4)
(s5484 5)
(s5485 5)
(s5486 2)
(s5488 4)
(s5489 5)
(s5490 5)
(s5491 2)
(s5493 4)
(s5494 5)
(s5495 5)
(s5496 2)
(s5498 4)
(s5499 5)
(s5500 5)
(s5501 2)
(s5503 4)
(s5504 5)
(s5505 5)
(s5506 2)
(s5508 4)
(s5509 5)
(s5510 5)
(s5511 2)
(s5513 4)
(s5514 5)
(s5515 5)
(s5516 2)
(s5518 4)
(s5519 5)
(s5520 5)
(s5521 2)
(s5523 4)
(s5524 5)
(s5525 5)
(s5526 2)
(s5528 4)
(s5529 5)
(s5530 5)
(s5531 2)
(s5533 4)
(s5534 5)
(s5535 5)
(s5536 2)
(s5538 4)
(s5539 5)
(s5540 5)
(s5541 2)
(s5543 4)
(s5544 5)
(s5545 5)
(s5546 2)
(s5548 4)
(s5549 5)
(s5550 5)
(s5551 2)
(s5553 4)
(s5554 5)
(s5555 5)
(s5556 2)
(s5558 4)
(s5559 5)
(s5560 5)
(s5561 2)
(s5563 4)
(s5564 5)
(s5565 5)
(s5566 2)
(s5568 4)
(s5569 5)
(s5570 5)
(s5571 2)
(s5573 4)
(s5574 5)
(s5575 5)
(s5576 2)
(s5578 4)
(s5579 5)
(s5580 5)
(s5581 2)
(s5583 4)
(s5584 5)
(s5585 5)
(s5586 2)
(s5588 4)
(s5589 5)
(s5590 5)
(s5591 2)
(s5593 4)
(s5594 5)
(s5595 5)
(s5596 2)
(s5598 4)
(s5599 5)
(s5600 5)
(s5601 2)
(s5603 4)
(s5604 5)
(s5605 5)
(s5606 2)
(s5608 4)
(s5609 5)
(s5610 5)
(s5611 2)
(s5613 4)
(s5614 5)
(s5615 5)
(s5616 2)
(s5618 4)
(s5619 5)
(s5620 5)
(s5621 2)
(s5623 4)
(s5624 5)
(s5625 5)
(s5626 2)
(s5628 4)
(s5629 5)
(s5630 5)
(s5631 2)
(s5633 4)
(s5634 5)
(s5635 5)
(s5636 2)
(s5638 4)
(s5639 5)
(s5640 5)
(s5641 2)
(s5643 4)
(s5644 5)
(s5645 5)
(s5646 2)
(s5648 4)
(s5649 5)
(s5650 5)
(s5651 2)
(s5653 4)
(s5654 5)
(s5655 5)
(s5656 2)
(s5658 4)
(s5659 5)
(s5660 5)
(s5661 2)
(s5663 4)
(s5664 5)
(s5665 5)
(s5666 2)
(s5668 4)
(s5669 5)
(s5670 5)
(s5671 2)
(s5673 4)
(s5674 5)
(s5675 5)
(s5676 2)
(s5678 4)
(s5679 5)
(s5680 5)
(s5681 2)
(s5683 4)
(s5684 5)
(s5685 5)
(s5686 2)
(s5688 4)
(s5689 5)
(s5690 5)
(s5691 2)
(s5693 4)
(s5694 5)
(s5695 5)
(s5696 2)
(s5698 4)
(s5699 5)
(s5700 5)
(s5701 2)
(s5703 4)
(s5704 5)
(s5705 5)
(s5706 2)
(s5708 4)
(s5709 5)
(s5710 5)
(s5711 2)
(s5713 4)
(s5714 5)
(s5715 5)
(s5716 2)
(s5718 4)
(s5719 5)
(s5720 5)
(s5721 2)
(s5723 4)
(s5724 5)
(s5725 5)
(s5726 2)
(s5728 4)
(s5729 5)
(s5730 5)
(s5731 2)
(s5733 4)
(s5734 5)
(s5735 5)
(s5736 2)
(s5738 4)
(s5739 5)
(s5740 5)
(s5741 2)
(s5743 4)
(s5744 5)
(s5745 5)
(s5746 2)
(s5748 4)
(s5749 5)
(s5750 5)
(s5751 2)
(s5753 4)
(s5754 5)
(s5755 5)
(s5756 2)
(s5758 4)
(s5759 5)
(s5760 5)
(s5761 2)
(s5763 4)
(s5764 5)
(s5765 5)
(s5766 2)
(s5768 4)
(s5769 5)
(s5770 5)
(s5771 2)
(s5773 4)
(s5774 5)
(s5775 5)
(s5776 2)
(s5778 4)
(s5779 5)
(s5780 5)
(s5781 2)
(s5783 4)
(s5784 5)
(s5785 5)
(s5786 2)
(s5788 4)
(s5789 5)
(s5790 5)
(s5791 2)
(s5793 4)
(s5794 5)
(s5795 5)
(s5796 2)
(s5798 4)
(s5799 5)
(s5800 5)
(s5801 2)
(s5803 4)
(s5804 5)
(s5805 5)
(s5806 2)
(s5808 4)
(s5809 5)
(s5810 5)
(s5811 2)
(s5813 4)
(s5814 5)
(s5815 5)
(s5816 2)
(s5818 4)
(s5819 5)
(s5820 5)
(s5821 2)
(s5823 4)
(s5824 5)
(s5825 5)
(s5826 2)
(s5828 4)
(s5829 5)
(s5830 5)
(s5831 2)
(s5833 4)
(s5834 5)
(s5835 5)
(s5836 2)
(s5838 4)
(s5839 5)
(s5840 5)
(s5841 2)
(s5843 4)
(s5844 5)
(s5845 5)
(s5846 2)
(s5848 4)
(s5849 5)
(s5850 5)
(s5851 2)
(s5853 4)
(s5854 5)
(s5855 5)
(s5856 2)
(s5858 4)
(s5859 5)
(s5860 5)
(s5861 2)
(s5863 4)
(s5864 5)
(s5865 5)
(s5866 2)
(s5868 4)
(s5869 5)
(s5870 5)
(s5871 2)
(s5873 4)
(s5874 5)
(s5875 5)
(s5876 2)
(s5878 4)
(s5879 5)
(s5880 5)
(s5881 2)
(s5883 4)
(s5884 5)
(s5885 5)
(s5886 2)
(s5888 4)
(s5889 5)
(s5890 5)
(s5891 2)
(s5893 4)
(s5894 5)
(s5895 5)
(s5896 2)
(s5898 4)
(s5899 5)
(s5900 5)
(s5901 2)
(s5903 4)
(s5904 5)
(s5905 5)
(s5906 2)
(s5908 4)
(s5909 5)
(s5910 5)
(s5911 2)
(s5913 4)
(s5914 5)
(s5915 5)
(s5916 2)
(s5918 4)
(s5919 5)
(s5920 5)
(s5921 2)
(s5923 4)
(s5924 5)
(s5925 5)
(s5926 2)
(s5928 4)
(s5929 5)
(s5930 5)
(s5931 2)
(s5933 4)
(s5934 5)
(s5935 5)
(s5936 2)
(s5938 4)
(s5939 5)
(s5940 5)
(s5941 2)
(s5943 4)
(s5944 5)
(s5945 5)
(s5946 2)
(s5948 4)
(s5949 5)
(s5950 5)
(s5951 2)
(s5953 4)
(s5954 5)
(s5955 5)
(s5956 2)
(s5958 4)
(s5959 5)
(s5960 5)
(s5961 2)
(s5963 4)
(s5964 5)
(s5965 5)
(s5966 2)
(s5968 4)
(s5969 5)
(s5970 5)
(s5971 2)
(s5973 4)
(s5974 5)
(s5975 5)
(s5976 2)
(s5978 4)
(s5979 5)
(s5980 5)
(s5981 2)
(s5983 4)
(s5984 5)
(s5985 5)
(s5986 2)
(s5988 4)
(s5989 5)
(s5990 5)
(s5991 2)
(s5993 4)
(s5994 5)
(s5995 5)
(s5996 2)
(s5998 4)
(s5999 5)
(s6000 5)
(s6001 2)
(s6003 4)
(s6004 5)
(s6005 5)
(s6006 2)
(s6008 4)
(s6009 5)
(s6010 5)
(s6011 2)
(s6013 4)
(s6014 5)
(s6015 5)
(s6016 2)
(s6018 4)
(s6019 5)
(s6020 5)
(s6021 2)
(s6023 4)
(s6024 5)
(s6025 5)
(s6026 2)
(s6028 4)
(s6029 5)
(s6030 5)
(s6031 2)
(s6033 4)
(s6034 5)
(s6035 5)
(s6036 2)
(s6038 4)
(s6039 5)
(s6040 5)
(s6041 2)
(s6043 4)
(s6044 5)
(s6045 5)
(s6046 2)
(s6048 4)
(s6049 5)
(s6050 5)
(s6051 2)
(s6053 timeout
4)
(s6054 5)
(s6055 5)
(s6056 2)
(s6058 4)
(s6059 5)
(s6060 5)
(s6061 2)
(s6063 4)
(s6064 5)
(s6065 5)
(s6066 2)
(s6068 4)
(s6069 5)
(s6070 5)
(s6071 2)
(s6073 4)
(s6074 5)
(s6075 5)
(s6076 2)
(s6078 4)
(s6079 5)
(s6080 5)
(s6081 2)
(s6083 4)
(s6084 5)
(s6085 5)
(s6086 2)
(s6088 4)
(s6089 5)
(s6090 5)
(s6091 2)
(s6093 4)
(s6094 5)
(s6095 5)
(s6096 2)
(s6098 4)
(s6099 5)
(s6100 5)
(s6101 2)
(s6103 4)
(s6104 5)
(s6105 5)
(s6106 2)
(s6108 4)
(s6109 5)
(s6110 5)
(s6111 2)
(s6113 4)
(s6114 5)
(s6115 5)
(s6116 2)
(s6118 4)
(s6119 5)
(s6120 5)
(s6121 2)
(s6123 4)
(s6124 5)
(s6125 5)
(s6126 2)
(s6128 4)
(s6129 5)
(s6130 5)
(s6131 2)
(s6133 4)
(s6134 5)
(s6135 5)
(s6136 2)
(s6138 4)
(s6139 5)
(s6140 5)
(s6141 2)
(s6143 4)
(s6144 5)
(s6145 5)
(s6146 2)
(s6148 4)
(s6149 5)
(s6150 5)
(s6151 2)
(s6153 4)
(s6154 5)
(s6155 5)
(s6156 2)
(s6158 4)
(s6159 5)
(s6160 5)
(s6161 2)
(s6163 4)
(s6164 5)
(s6165 5)
(s6166 2)
(s6168 4)
(s6169 5)
(s6170 5)
(s6171 2)
(s6173 4)
(s6174 5)
(s6175 5)
(s6176 2)
(s6178 4)
(s6179 5)
(s6180 5)
(s6181 2)
(s6183 4)
(s6184 5)
(s6185 5)
(s6186 2)
(s6188 4)
(s6189 5)
(s6190 5)
(s6191 2)
(s6193 4)
(s6194 5)
(s6195 5)
(s6196 2)
(s6198 4)
(s6199 5)
(s6200 5)
(s6201 2)
(s6203 4)
(s6204 5)
(s6205 5)
(s6206 2)
(s6208 4)
(s6209 5)
(s6210 5)
(s6211 2)
(s6213 4)
(s6214 5)
(s6215 5)
(s6216 2)
(s6218 4)
(s6219 5)
(s6220 5)
(s6221 2)
(s6223 4)
(s6224 5)
(s6225 5)
(s6226 2)
(s6228 4)
(s6229 5)
(s6230 5)
(s6231 2)
(s6233 4)
(s6234 5)
(s6235 5)
(s6236 2)
(s6238 4)
(s6239 5)
(s6240 5)
(s6241 2)
(s6243 4)
(s6244 5)
(s6245 5)
(s6246 2)
(s6248 4)
(s6249 5)
(s6250 5)
(s6251 2)
(s6253 4)
(s6254 5)
(s6255 5)
(s6256 2)
(s6258 4)
(s6259 5)
(s6260 5)
(s6261 2)
(s6263 4)
(s6264 5)
(s6265 5)
(s6266 2)
(s6268 4)
(s6269 5)
(s6270 5)
(s6271 2)
(s6273 4)
(s6274 5)
(s6275 5)
(s6276 2)
(s6278 4)
(s6279 5)
(s6280 5)
(s6281 2)
(s6283 4)
(s6284 5)
(s6285 5)
(s6286 2)
(s6288 4)
(s6289 5)
(s6290 5)
(s6291 2)
(s6293 4)
(s6294 5)
(s6295 5)
(s6296 2)
(s6298 4)
(s6299 5)
(s6300 5)
(s6301 2)
(s6303 4)
(s6304 5)
(s6305 5)
(s6306 2)
(s6308 4)
(s6309 5)
(s6310 5)
(s6311 2)
(s6313 4)
(s6314 5)
(s6315 5)
(s6316 2)
(s6318 4)
(s6319 5)
(s6320 5)
(s6321 2)
(s6323 4)
(s6324 5)
(s6325 5)
(s6326 2)
(s6328 4)
(s6329 5)
(s6330 5)
(s6331 2)
(s6333 4)
(s6334 5)
(s6335 5)
(s6336 2)
(s6338 4)
(s6339 5)
(s6340 5)
(s6341 2)
(s6343 4)
(s6344 5)
(s6345 5)
(s6346 2)
(s6348 4)
(s6349 5)
(s6350 5)
(s6351 2)
(s6353 4)
(s6354 5)
(s6355 5)
(s6356 2)
(s6358 4)
(s6359 5)
(s6360 5)
(s6361 2)
(s6363 4)
(s6364 5)
(s6365 5)
(s6366 2)
(s6368 4)
(s6369 5)
(s6370 5)
(s6371 2)
(s6373 4)
(s6374 5)
(s6375 5)
(s6376 2)
(s6378 4)
(s6379 5)
(s6380 5)
(s6381 2)
(s6383 4)
(s6384 5)
(s6385 5)
(s6386 2)
(s6388 4)
(s6389 5)
(s6390 5)
(s6391 2)
(s6393 4)
(s6394 5)
(s6395 5)
(s6396 2)
(s6398 4)
(s6399 5)
(s6400 5)
(s6401 2)
(s6403 4)
(s6404 5)
(s6405 5)
(s6406 2)
(s6408 4)
(s6409 5)
(s6410 5)
(s6411 2)
(s6413 4)
(s6414 5)
(s6415 5)
(s6416 2)
(s6418 4)
(s6419 5)
(s6420 5)
(s6421 2)
(s6423 4)
(s6424 5)
(s6425 5)
(s6426 2)
(s6428 4)
(s6429 5)
(s6430 5)
(s6431 2)
(s6433 4)
(s6434 5)
(s6435 5)
(s6436 2)
(s6438 4)
(s6439 5)
(s6440 5)
(s6441 2)
(s6443 4)
(s6444 5)
(s6445 5)
(s6446 2)
(s6448 4)
(s6449 5)
(s6450 5)
(s6451 2)
(s6453 4)
(s6454 5)
(s6455 5)
(s6456 2)
(s6458 4)
(s6459 5)
(s6460 5)
(s6461 2)
(s6463 4)
(s6464 5)
(s6465 5)
(s6466 2)
(s6468 4)
(s6469 5)
(s6470 5)
(s6471 2)
(s6473 4)
(s6474 5)
(s6475 5)
(s6476 2)
(s6478 4)
(s6479 5)
(s6480 5)
(s6481 2)
(s6483 4)
(s6484 5)
(s6485 5)
(s6486 2)
(s6488 4)
(s6489 5)
(s6490 5)
(s6491 2)
(s6493 4)
(s6494 5)
(s6495 5)
(s6496 2)
(s6498 4)
(s6499 5)
(s6500 5)
(s6501 2)
(s6503 4)
(s6504 5)
(s6505 5)
(s6506 2)
(s6508 4)
(s6509 5)
(s6510 5)
(s6511 2)
(s6513 4)
(s6514 5)
(s6515 5)
(s6516 2)
(s6518 4)
(s6519 5)
(s6520 5)
(s6521 2)
(s6523 4)
(s6524 5)
(s6525 5)
(s6526 2)
(s6528 4)
(s6529 5)
(s6530 5)
(s6531 2)
(s6533 4)
(s6534 5)
(s6535 5)
(s6536 2)
(s6538 4)
(s6539 5)
(s6540 5)
(s6541 2)
(s6543 4)
(s6544 5)
(s6545 5)
(s6546 2)
(s6548 4)
(s6549 5)
(s6550 5)
(s6551 2)
(s6553 4)
(s6554 5)
(s6555 5)
(s6556 2)
(s6558 4)
(s6559 5)
(s6560 5)
(s6561 2)
(s6563 4)
(s6564 5)
(s6565 5)
(s6566 2)
(s6568 4)
(s6569 5)
(s6570 5)
(s6571 2)
(s6573 4)
(s6574 5)
(s6575 5)
(s6576 2)
(s6578 4)
(s6579 5)
(s6580 5)
(s6581 2)
(s6583 4)
(s6584 5)
(s6585 5)
(s6586 2)
(s6588 4)
(s6589 5)
(s6590 5)
(s6591 2)
(s6593 4)
(s6594 5)
(s6595 5)
(s6596 2)
(s6598 4)
(s6599 5)
(s6600 5)
(s6601 2)
(s6603 4)
(s6604 5)
(s6605 5)
(s6606 2)
(s6608 4)
(s6609 5)
(s6610 5)
(s6611 2)
(s6613 4)
(s6614 5)
(s6615 5)
(s6616 2)
(s6618 4)
(s6619 5)
(s6620 5)
(s6621 2)
(s6623 4)
(s6624 5)
(s6625 5)
(s6626 2)
(s6628 4)
(s6629 5)
(s6630 5)
(s6631 2)
(s6633 4)
(s6634 5)
(s6635 5)
(s6636 2)
(s6638 4)
(s6639 5)
(s6640 5)
(s6641 2)
(s6643 4)
(s6644 5)
(s6645 5)
(s6646 2)
(s6648 4)
(s6649 5)
(s6650 5)
(s6651 2)
(s6653 4)
(s6654 5)
(s6655 5)
(s6656 2)
(s6658 4)
(s6659 5)
(s6660 5)
(s6661 2)
(s6663 4)
(s6664 5)
(s6665 5)
(s6666 2)
(s6668 4)
(s6669 5)
(s6670 5)
(s6671 2)
(s6673 4)
(s6674 5)
(s6675 5)
(s6676 2)
(s6678 4)
(s6679 5)
(s6680 5)
(s6681 2)
(s6683 4)
(s6684 5)
(s6685 5)
(s6686 2)
(s6688 4)
(s6689 5)
(s6690 5)
(s6691 2)
(s6693 4)
(s6694 5)
(s6695 5)
(s6696 2)
(s6698 4)
(s6699 5)
(s6700 5)
(s6701 2)
(s6703 4)
(s6704 5)
(s6705 5)
(s6706 2)
(s6708 4)
(s6709 5)
(s6710 5)
(s6711 2)
(s6713 4)
(s6714 5)
(s6715 5)
(s6716 2)
(s6718 4)
(s6719 5)
(s6720 5)
(s6721 2)
(s6723 4)
(s6724 5)
(s6725 5)
(s6726 2)
(s6728 4)
(s6729 5)
(s6730 5)
(s6731 2)
(s6733 4)
(s6734 5)
(s6735 5)
(s6736 2)
(s6738 4)
(s6739 5)
(s6740 5)
(s6741 2)
(s6743 4)
(s6744 5)
(s6745 5)
(s6746 2)
(s6748 4)
(s6749 5)
(s6750 5)
(s6751 2)
(s6753 4)
(s6754 5)
(s6755 5)
(s6756 2)
(s6758 4)
(s6759 5)
(s6760 5)
(s6761 2)
(s6763 4)
(s6764 5)
(s6765 5)
(s6766 2)
(s6768 4)
(s6769 5)
(s6770 5)
(s6771 2)
(s6773 4)
(s6774 5)
(s6775 5)
(s6776 2)
(s6778 4)
(s6779 5)
(s6780 5)
(s6781 2)
(s6783 4)
(s6784 5)
(s6785 5)
(s6786 2)
(s6788 4)
(s6789 5)
(s6790 5)
(s6791 2)
(s6793 4)
(s6794 5)
(s6795 5)
(s6796 2)
(s6798 4)
(s6799 5)
(s6800 5)
(s6801 2)
(s6803 4)
(s6804 5)
(s6805 5)
(s6806 2)
(s6808 4)
(s6809 5)
(s6810 5)
(s6811 2)
(s6813 4)
(s6814 5)
(s6815 5)
(s6816 2)
(s6818 4)
(s6819 5)
(s6820 5)
(s6821 2)
(s6823 4)
(s6824 5)
(s6825 5)
(s6826 2)
(s6828 4)
(s6829 5)
(s6830 5)
(s6831 2)
(s6833 4)
(s6834 5)
(s6835 5)
(s6836 2)
(s6838 4)
(s6839 5)
(s6840 5)
(s6841 2)
(s6843 4)
(s6844 5)
(s6845 5)
(s6846 2)
(s6848 4)
(s6849 5)
(s6850 5)
(s6851 2)
(s6853 4)
(s6854 5)
(s6855 5)
(s6856 2)
(s6858 4)
(s6859 5)
(s6860 5)
(s6861 2)
(s6863 4)
(s6864 5)
(s6865 5)
(s6866 2)
(s6868 4)
(s6869 5)
(s6870 5)
(s6871 2)
(s6873 4)
(s6874 5)
(s6875 5)
(s6876 2)
(s6878 4)
(s6879 5)
(s6880 5)
(s6881 2)
(s6883 4)
(s6884 5)
(s6885 5)
(s6886 2)
(s6888 4)
(s6889 5)
(s6890 5)
(s6891 2)
(s6893 4)
(s6894 5)
(s6895 5)
(s6896 2)
(s6898 4)
(s6899 5)
(s6900 5)
(s6901 2)
(s6903 4)
(s6904 5)
(s6905 5)
(s6906 2)
(s6908 4)
(s6909 5)
(s6910 5)
(s6911 2)
(s6913 4)
(s6914 5)
(s6915 5)
(s6916 2)
(s6918 4)
(s6919 5)
(s6920 5)
(s6921 2)
(s6923 4)
(s6924 5)
(s6925 5)
(s6926 2)
(s6928 4)
(s6929 5)
(s6930 5)
(s6931 2)
(s6933 4)
(s6934 5)
(s6935 5)
(s6936 2)
(s6938 4)
(s6939 5)
(s6940 5)
(s6941 2)
(s6943 4)
(s6944 5)
(s6945 5)
(s6946 2)
(s6948 4)
(s6949 5)
(s6950 5)
(s6951 2)
(s6953 4)
(s6954 5)
(s6955 5)
(s6956 2)
(s6958 4)
(s6959 5)
(s6960 5)
(s6961 2)
(s6963 4)
(s6964 5)
(s6965 5)
(s6966 2)
(s6968 4)
(s6969 5)
(s6970 5)
(s6971 2)
(s6973 4)
(s6974 5)
(s6975 5)
(s6976 2)
(s6978 4)
(s6979 5)
(s6980 5)
(s6981 2)
(s6983 4)
(s6984 5)
(s6985 5)
(s6986 2)
(s6988 4)
(s6989 5)
(s6990 5)
(s6991 2)
(s6993 4)
(s6994 5)
(s6995 5)
(s6996 2)
(s6998 4)
(s6999 5)
(s7000 5)
(s7001 2)
(s7003 4)
(s7004 5)
(s7005 5)
(s7006 2)
(s7008 4)
(s7009 5)
(s7010 5)
(s7011 2)
(s7013 4)
(s7014 5)
(s7015 5)
(s7016 2)
(s7018 4)
(s7019 5)
(s7020 5)
(s7021 2)
(s7023 4)
(s7024 5)
(s7025 5)
(s7026 2)
(s7028 4)
(s7029 5)
(s7030 5)
(s7031 2)
(s7033 4)
(s7034 5)
(s7035 5)
(s7036 2)
(s7038 4)
(s7039 5)
(s7040 5)
(s7041 2)
(s7043 4)
(s7044 5)
(s7045 5)
(s7046 2)
(s7048 4)
(s7049 5)
(s7050 5)
(s7051 2)
(s7053 4)
(s7054 5)
(s7055 5)
(s7056 2)
(s7058 4)
(s7059 5)
(s7060 5)
(s7061 2)
(s7063 4)
(s7064 5)
(s7065 5)
(s7066 2)
(s7068 4)
(s7069 5)
(s7070 5)
(s7071 2)
(s7073 4)
(s7074 5)
(s7075 5)
(s7076 2)
(s7078 4)
(s7079 5)
(s7080 5)
(s7081 2)
(s7083 4)
(s7084 5)
(s7085 5)
(s7086 2)
(s7088 4)
(s7089 5)
(s7090 5)
(s7091 2)
(s7093 4)
(s7094 5)
(s7095 5)
(s7096 2)
(s7098 4)
(s7099 5)
(s7100 5)
(s7101 2)
(s7103 4)
(s7104 5)
(s7105 5)
(s7106 2)
(s7108 4)
(s7109 5)
(s7110 5)
(s7111 2)
(s7113 4)
(s7114 5)
(s7115 5)
(s7116 2)
(s7118 4)
(s7119 5)
(s7120 5)
(s7121 2)
(s7123 4)
(s7124 5)
(s7125 5)
(s7126 2)
(s7128 4)
(s7129 5)
(s7130 5)
(s7131 2)
(s7133 4)
(s7134 5)
(s7135 5)
(s7136 2)
(s7138 4)
(s7139 5)
(s7140 5)
(s7141 2)
(s7143 4)
(s7144 5)
(s7145 5)
(s7146 2)
(s7148 4)
(s7149 5)
(s7150 5)
(s7151 2)
(s7153 4)
(s7154 5)
(s7155 5)
(s7156 2)
(s7158 4)
(s7159 5)
(s7160 5)
(s7161 2)
(s7163 4)
(s7164 5)
(s7165 5)
(s7166 2)
(s7168 4)
(s7169 5)
(s7170 5)
(s7171 2)
(s7173 4)
(s7174 5)
(s7175 5)
(s7176 2)
(s7178 4)
(s7179 5)
(s7180 5)
(s7181 2)
(s7183 4)
(s7184 5)
(s7185 5)
(s7186 2)
(s7188 4)
(s7189 5)
(s7190 5)
(s7191 2)
(s7193 4)
(s7194 5)
(s7195 5)
(s7196 2)
(s7198 4)
(s7199 5)
(s7200 5)
(s7201 2)
(s7203 4)
(s7204 5)
(s7205 5)
(s7206 2)
(s7208 4)
(s7209 5)
(s7210 5)
(s7211 2)
(s7213 4)
(s7214 5)
(s7215 5)
(s7216 2)
(s7218 4)
(s7219 5)
(s7220 5)
(s7221 2)
(s7223 4)
(s7224 5)
(s7225 5)
(s7226 2)
(s7228 4)
(s7229 5)
(s7230 5)
(s7231 2)
(s7233 4)
(s7234 5)
(s7235 5)
(s7236 2)
(s7238 4)
(s7239 5)
(s7240 5)
(s7241 2)
(s7243 4)
(s7244 5)
(s7245 5)
(s7246 2)
(s7248 4)
(s7249 5)
(s7250 5)
(s7251 2)
(s7253 4)
(s7254 5)
(s7255 5)
(s7256 2)
(s7258 4)
(s7259 5)
(s7260 5)
(s7261 2)
(s7263 4)
(s7264 5)
(s7265 5)
(s7266 2)
(s7268 4)
(s7269 5)
(s7270 5)
(s7271 2)
(s7273 4)
(s7274 5)
(s7275 5)
(s7276 2)
(s7278 4)
(s7279 5)
(s7280 5)
(s7281 2)
(s7283 4)
(s7284 5)
(s7285 5)
(s7286 2)
(s7288 4)
(s7289 5)
(s7290 5)
(s7291 2)
(s7293 4)
(s7294 5)
(s7295 5)
(s7296 2)
(s7298 4)
(s7299 5)
(s7300 5)
(s7301 2)
(s7303 4)
(s7304 5)
(s7305 5)
(s7306 2)
(s7308 4)
(s7309 5)
(s7310 5)
(s7311 2)
(s7313 4)
(s7314 5)
(s7315 5)
(s7316 2)
(s7318 4)
(s7319 5)
(s7320 5)
(s7321 2)
(s7323 4)
(s7324 5)
(s7325 5)
(s7326 2)
(s7328 4)
(s7329 5)
(s7330 5)
(s7331 2)
(s7333 4)
(s7334 5)
(s7335 5)
(s7336 2)
(s7338 4)
(s7339 5)
(s7340 5)
(s7341 2)
(s7343 4)
(s7344 5)
(s7345 5)
(s7346 2)
(s7348 4)
(s7349 5)
(s7350 5)
(s7351 2)
(s7353 4)
(s7354 5)
(s7355 5)
(s7356 2)
(s7358 4)
(s7359 5)
(s7360 5)
(s7361 2)
(s7363 4)
(s7364 5)
(s7365 5)
(s7366 2)
(s7368 4)
(s7369 5)
(s7370 5)
(s7371 2)
(s7373 4)
(s7374 5)
(s7375 5)
(s7376 2)
(s7378 4)
(s7379 5)
(s7380 5)
(s7381 2)
(s7383 4)
(s7384 5)
(s7385 5)
(s7386 2)
(s7388 4)
(s7389 5)
(s7390 5)
(s7391 2)
(s7393 4)
(s7394 5)
(s7395 5)
(s7396 2)
(s7398 4)
(s7399 5)
(s7400 5)
(s7401 2)
(s7403 4)
(s7404 5)
(s7405 5)
(s7406 2)
(s7408 4)
(s7409 5)
(s7410 5)
(s7411 2)
(s7413 4)
(s7414 5)
(s7415 5)
(s7416 2)
(s7418 4)
(s7419 5)
(s7420 5)
(s7421 2)
(s7423 4)
(s7424 5)
(s7425 5)
(s7426 2)
(s7428 4)
(s7429 5)
(s7430 5)
(s7431 2)
(s7433 4)
(s7434 5)
(s7435 5)
(s7436 2)
(s7438 4)
(s7439 5)
(s7440 5)
(s7441 2)
(s7443 4)
(s7444 5)
(s7445 5)
(s7446 2)
(s7448 4)
(s7449 5)
(s7450 5)
(s7451 2)
(s7453 4)
(s7454 5)
(s7455 5)
(s7456 2)
(s7458 4)
(s7459 5)
(s7460 5)
(s7461 2)
(s7463 4)
(s7464 5)
(s7465 5)
(s7466 2)
(s7468 4)
(s7469 5)
(s7470 5)
(s7471 2)
(s7473 4)
(s7474 5)
(s7475 5)
(s7476 2)
(s7478 4)
(s7479 5)
(s7480 5)
(s7481 2)
(s7483 4)
(s7484 5)
(s7485 5)
(s7486 2)
(s7488 4)
(s7489 5)
(s7490 5)
(s7491 2)
(s7493 4)
(s7494 5)
(s7495 5)
(s7496 2)
(s7498 4)
(s7499 5)
(s7500 5)
(s7501 2)
(s7503 4)
(s7504 5)
(s7505 5)
(s7506 2)
(s7508 4)
(s7509 5)
(s7510 5)
(s7511 2)
(s7513 4)
(s7514 5)
(s7515 5)
(s7516 2)
(s7518 4)
(s7519 5)
(s7520 5)
(s7521 2)
(s7523 4)
(s7524 5)
(s7525 5)
(s7526 2)
(s7528 4)
(s7529 5)
(s7530 5)
(s7531 2)
(s7533 4)
(s7534 5)
(s7535 5)
(s7536 2)
(s7538 4)
(s7539 5)
(s7540 5)
(s7541 2)
(s7543 4)
(s7544 5)
(s7545 5)
(s7546 2)
(s7548 4)
(s7549 5)
(s7550 5)
(s7551 2)
(s7553 4)
(s7554 5)
(s7555 5)
(s7556 2)
(s7558 4)
(s7559 5)
(s7560 5)
(s7561 2)
(s7563 4)
(s7564 5)
(s7565 5)
(s7566 2)
(s7568 4)
(s7569 5)
(s7570 5)
(s7571 2)
(s7573 4)
(s7574 5)
(s7575 5)
(s7576 2)
(s7578 4)
(s7579 5)
(s7580 5)
(s7581 2)
(s7583 4)
(s7584 5)
(s7585 5)
(s7586 2)
(s7588 4)
(s7589 5)
(s7590 5)
(s7591 2)
(s7593 4)
(s7594 5)
(s7595 5)
(s7596 2)
(s7598 4)
(s7599 5)
(s7600 5)
(s7601 2)
(s7603 4)
(s7604 5)
(s7605 5)
(s7606 2)
(s7608 4)
(s7609 5)
(s7610 5)
(s7611 2)
(s7613 4)
(s7614 5)
(s7615 5)
(s7616 2)
(s7618 4)
(s7619 5)
(s7620 5)
(s7621 2)
(s7623 4)
(s7624 5)
(s7625 5)
(s7626 2)
(s7628 4)
(s7629 5)
(s7630 5)
(s7631 2)
(s7633 4)
(s7634 5)
(s7635 5)
(s7636 2)
(s7638 4)
(s7639 5)
(s7640 5)
(s7641 2)
(s7643 4)
(s7644 5)
(s7645 5)
(s7646 2)
(s7648 4)
(s7649 5)
(s7650 5)
(s7651 2)
(s7653 4)
(s7654 5)
(s7655 5)
(s7656 2)
(s7658 4)
(s7659 5)
(s7660 5)
(s7661 2)
(s7663 4)
(s7664 5)
(s7665 5)
(s7666 2)
(s7668 4)
(s7669 5)
(s7670 5)
(s7671 2)
(s7673 4)
(s7674 5)
(s7675 5)
(s7676 2)
(s7678 4)
(s7679 5)
(s7680 5)
(s7681 2)
(s7683 4)
(s7684 5)
(s7685 5)
(s7686 2)
(s7688 4)
(s7689 5)
(s7690 5)
(s7691 2)
(s7693 4)
(s7694 5)
(s7695 5)
(s7696 2)
(s7698 4)
(s7699 5)
(s7700 5)
(s7701 2)
(s7703 4)
(s7704 5)
(s7705 5)
(s7706 2)
(s7708 4)
(s7709 5)
(s7710 5)
(s7711 2)
(s7713 4)
(s7714 5)
(s7715 5)
(s7716 2)
(s7718 4)
(s7719 5)
(s7720 5)
(s7721 2)
(s7723 4)
(s7724 5)
(s7725 5)
(s7726 2)
(s7728 4)
(s7729 5)
(s7730 5)
(s7731 2)
(s7733 4)
(s7734 5)
(s7735 5)
(s7736 2)
(s7738 4)
(s7739 5)
(s7740 5)
(s7741 2)
(s7743 4)
(s7744 5)
(s7745 5)
(s7746 2)
(s7748 4)
(s7749 5)
(s7750 5)
(s7751 2)
(s7753 4)
(s7754 5)
(s7755 5)
(s7756 2)
(s7758 4)
(s7759 5)
(s7760 5)
(s7761 2)
(s7763 4)
(s7764 5)
(s7765 5)
(s7766 2)
(s7768 4)
(s7769 5)
(s7770 5)
(s7771 2)
(s7773 4)
(s7774 5)
(s7775 5)
(s7776 2)
(s7778 4)
(s7779 5)
(s7780 5)
(s7781 2)
(s7783 4)
(s7784 5)
(s7785 5)
(s7786 2)
(s7788 4)
(s7789 5)
(s7790 5)
(s7791 2)
(s7793 4)
(s7794 5)
(s7795 5)
(s7796 2)
(s7798 4)
(s7799 5)
(s7800 5)
(s7801 2)
(s7803 4)
(s7804 5)
(s7805 5)
(s7806 2)
(s7808 4)
(s7809 5)
(s7810 5)
(s7811 2)
(s7813 4)
(s7814 5)
(s7815 5)
(s7816 2)
(s7818 4)
(s7819 5)
(s7820 5)
(s7821 2)
(s7823 4)
(s7824 5)
(s7825 5)
(s7826 2)
(s7828 4)
(s7829 5)
(s7830 5)
(s7831 2)
(s7833 4)
(s7834 5)
(s7835 5)
(s7836 2)
(s7838 4)
(s7839 5)
(s7840 5)
(s7841 2)
(s7843 4)
(s7844 5)
(s7845 5)
(s7846 2)
(s7848 4)
(s7849 5)
(s7850 5)
(s7851 2)
(s7853 4)
(s7854 5)
(s7855 5)
(s7856 2)
(s7858 4)
(s7859 5)
(s7860 5)
(s7861 2)
(s7863 4)
(s7864 5)
(s7865 5)
(s7866 2)
(s7868 4)
(s7869 5)
(s7870 5)
(s7871 2)
(s7873 4)
(s7874 5)
(s7875 5)
(s7876 2)
(s7878 4)
(s7879 5)
(s7880 5)
(s7881 2)
(s7883 4)
(s7884 5)
(s7885 5)
(s7886 2)
(s7888 4)
(s7889 5)
(s7890 5)
(s7891 2)
(s7893 4)
(s7894 5)
(s7895 5)
(s7896 2)
(s7898 4)
(s7899 5)
(s7900 5)
(s7901 2)
(s7903 4)
(s7904 5)
(s7905 5)
(s7906 2)
(s7908 4)
(s7909 5)
(s7910 5)
(s7911 2)
(s7913 4)
(s7914 5)
(s7915 5)
(s7916 2)
(s7918 4)
(s7919 5)
(s7920 5)
(s7921 2)
(s7923 4)
(s7924 5)
(s7925 5)
(s7926 2)
(s7928 4)
(s7929 5)
(s7930 5)
(s7931 2)
(s7933 4)
(s7934 5)
(s7935 5)
(s7936 2)
(s7938 4)
(s7939 5)
(s7940 5)
(s7941 2)
(s7943 4)
(s7944 5)
(s7945 5)
(s7946 2)
(s7948 4)
(s7949 5)
(s7950 5)
(s7951 2)
(s7953 4)
(s7954 5)
(s7955 5)
(s7956 2)
(s7958 4)
(s7959 5)
(s7960 5)
(s7961 2)
(s7963 4)
(s7964 5)
(s7965 5)
(s7966 2)
(s7968 4)
(s7969 5)
(s7970 5)
(s7971 2)
(s7973 4)
(s7974 5)
(s7975 5)
(s7976 2)
(s7978 4)
(s7979 5)
(s7980 5)
(s7981 2)
(s7983 4)
(s7984 5)
(s7985 5)
(s7986 2)
(s7988 4)
(s7989 5)
(s7990 5)
(s7991 2)
(s7993 4)
(s7994 5)
(s7995 5)
(s7996 2)
(s7998 4)
(s7999 5)
(s8000 5)
(s8001 2)
(s8003 4)
(s8004 5)
(s8005 5)
(s8006 2)
(s8008 4)
(s8009 5)
(s8010 5)
(s8011 2)
(s8013 4)
(s8014 5)
(s8015 5)
(s8016 2)
(s8018 4)
(s8019 5)
(s8020 5)
(s8021 2)
(s8023 4)
(s8024 5)
(s8025 5)
(s8026 2)
(s8028 4)
(s8029 5)
(s8030 5)
(s8031 2)
(s8033 4)
(s8034 5)
(s8035 5)
(s8036 2)
(s8038 4)
(s8039 5)
(s8040 5)
(s8041 2)
(s8043 4)
(s8044 5)
(s8045 5)
(s8046 2)
(s8048 4)
(s8049 5)
(s8050 5)
(s8051 2)
(s8053 4)
(s8054 5)
(s8055 5)
(s8056 2)
(s8058 4)
(s8059 5)
(s8060 5)
(s8061 2)
(s8063 4)
(s8064 5)
(s8065 5)
(s8066 2)
(s8068 4)
(s8069 5)
(s8070 5)
(s8071 2)
(s8073 4)
(s8074 5)
(s8075 5)
(s8076 2)
(s8078 4)
(s8079 5)
(s8080 5)
(s8081 2)
(s8083 4)
(s8084 5)
(s8085 5)
(s8086 2)
(s8088 4)
(s8089 5)
(s8090 5)
(s8091 2)
(s8093 4)
(s8094 5)
(s8095 5)
(s8096 2)
(s8098 4)
(s8099 5)
(s8100 5)
(s8101 2)
(s8103 4)
(s8104 5)
(s8105 5)
(s8106 2)
(s8108 4)
(s8109 5)
(s8110 5)
(s8111 2)
(s8113 4)
(s8114 5)
(s8115 5)
(s8116 2)
(s8118 4)
(s8119 5)
(s8120 5)
(s8121 2)
(s8123 4)
(s8124 5)
(s8125 5)
(s8126 2)
(s8128 4)
(s8129 5)
(s8130 5)
(s8131 2)
(s8133 4)
(s8134 5)
(s8135 5)
(s8136 2)
(s8138 4)
(s8139 5)
(s8140 5)
(s8141 2)
(s8143 4)
(s8144 5)
(s8145 5)
(s8146 2)
(s8148 4)
(s8149 5)
(s8150 5)
(s8151 2)
(s8153 4)
(s8154 5)
(s8155 5)
(s8156 2)
(s8158 4)
(s8159 5)
(s8160 5)
(s8161 2)
(s8163 4)
(s8164 5)
(s8165 5)
(s8166 2)
(s8168 4)
(s8169 5)
(s8170 5)
(s8171 2)
(s8173 4)
(s8174 5)
(s8175 5)
(s8176 2)
(s8178 4)
(s8179 5)
(s8180 5)
(s8181 2)
(s8183 4)
(s8184 5)
(s8185 5)
(s8186 2)
(s8188 4)
(s8189 5)
(s8190 5)
(s8191 2)
(s8193 4)
(s8194 5)
(s8195 5)
(s8196 2)
(s8198 4)
(s8199 5)
(s8200 5)
(s8201 2)
(s8203 4)
(s8204 5)
(s8205 5)
(s8206 2)
(s8208 4)
(s8209 5)
(s8210 5)
(s8211 2)
(s8213 4)
(s8214 5)
(s8215 5)
(s8216 2)
(s8218 4)
(s8219 5)
(s8220 5)
(s8221 2)
(s8223 4)
(s8224 5)
(s8225 5)
(s8226 2)
(s8228 4)
(s8229 5)
(s8230 5)
(s8231 2)
(s8233 4)
(s8234 5)
(s8235 5)
(s8236 2)
(s8238 4)
(s8239 5)
(s8240 5)
(s8241 2)
(s8243 4)
(s8244 5)
(s8245 5)
(s8246 2)
(s8248 4)
(s8249 5)
(s8250 5)
(s8251 2)
(s8253 4)
(s8254 5)
(s8255 5)
(s8256 2)
(s8258 4)
(s8259 5)
(s8260 5)
(s8261 2)
(s8263 4)
(s8264 5)
(s8265 5)
(s8266 2)
(s8268 4)
(s8269 5)
(s8270 5)
(s8271 2)
(s8273 4)
(s8274 5)
(s8275 5)
(s8276 2)
(s8278 4)
(s8279 5)
(s8280 5)
(s8281 2)
(s8283 4)
(s8284 5)
(s8285 5)
(s8286 2)
(s8288 4)
(s8289 5)
(s8290 5)
(s8291 2)
(s8293 4)
(s8294 5)
(s8295 5)
(s8296 2)
(s8298 4)
(s8299 5)
(s8300 5)
(s8301 2)
(s8303 4)
(s8304 5)
(s8305 5)
(s8306 2)
(s8308 4)
(s8309 5)
(s8310 5)
(s8311 2)
(s8313 4)
(s8314 5)
(s8315 5)
(s8316 2)
(s8318 4)
(s8319 5)
(s8320 5)
(s8321 2)
(s8323 4)
(s8324 5)
(s8325 5)
(s8326 2)
(s8328 4)
(s8329 5)
(s8330 5)
(s8331 2)
(s8333 4)
(s8334 5)
(s8335 5)
(s8336 2)
(s8338 4)
(s8339 5)
(s8340 5)
(s8341 2)
(s8343 4)
(s8344 5)
(s8345 5)
(s8346 2)
(s8348 4)
(s8349 5)
(s8350 5)
(s8351 2)
(s8353 4)
(s8354 5)
(s8355 5)
(s8356 2)
(s8358 4)
(s8359 5)
(s8360 5)
(s8361 2)
(s8363 4)
(s8364 5)
(s8365 5)
(s8366 2)
(s8368 4)
(s8369 5)
(s8370 5)
(s8371 2)
(s8373 4)
(s8374 5)
(s8375 5)
(s8376 2)
(s8378 4)
(s8379 5)
(s8380 5)
(s8381 2)
(s8383 4)
(s8384 5)
(s8385 5)
(s8386 2)
(s8388 4)
(s8389 5)
(s8390 5)
(s8391 2)
(s8393 4)
(s8394 5)
(s8395 5)
(s8396 2)
(s8398 4)
(s8399 5)
(s8400 5)
(s8401 2)
(s8403 4)
(s8404 5)
(s8405 5)
(s8406 2)
(s8408 4)
(s8409 5)
(s8410 5)
(s8411 2)
(s8413 4)
(s8414 5)
(s8415 5)
(s8416 2)
(s8418 4)
(s8419 5)
(s8420 5)
(s8421 2)
(s8423 4)
(s8424 5)
(s8425 5)
(s8426 2)
(s8428 4)
(s8429 5)
(s8430 5)
(s8431 2)
(s8433 4)
(s8434 5)
(s8435 5)
(s8436 2)
(s8438 4)
(s8439 5)
(s8440 5)
(s8441 2)
(s8443 4)
(s8444 5)
(s8445 5)
(s8446 2)
(s8448 4)
(s8449 5)
(s8450 5)
(s8451 2)
(s8453 4)
(s8454 5)
(s8455 5)
(s8456 2)
(s8458 4)
(s8459 5)
(s8460 5)
(s8461 2)
(s8463 4)
(s8464 5)
(s8465 5)
(s8466 2)
(s8468 4)
(s8469 5)
(s8470 5)
(s8471 2)
(s8473 4)
(s8474 5)
(s8475 5)
(s8476 2)
(s8478 4)
(s8479 5)
(s8480 5)
(s8481 2)
(s8483 4)
(s8484 5)
(s8485 5)
(s8486 2)
(s8488 4)
(s8489 5)
(s8490 5)
(s8491 2)
(s8493 4)
(s8494 5)
(s8495 5)
(s8496 2)
(s8498 4)
(s8499 5)
(s8500 5)
(s8501 2)
(s8503 4)
(s8504 5)
(s8505 5)
(s8506 2)
(s8508 4)
(s8509 5)
(s8510 5)
(s8511 2)
(s8513 4)
(s8514 5)
(s8515 5)
(s8516 2)
(s8518 4)
(s8519 5)
(s8520 5)
(s8521 2)
(s8523 4)
(s8524 5)
(s8525 5)
(s8526 2)
(s8528 4)
(s8529 5)
(s8530 5)
(s8531 2)
(s8533 4)
(s8534 5)
(s8535 5)
(s8536 2)
(s8538 4)
(s8539 5)
(s8540 5)
(s8541 2)
(s8543 4)
(s8544 5)
(s8545 5)
(s8546 2)
(s8548 4)
(s8549 5)
(s8550 5)
(s8551 2)
(s8553 4)
(s8554 5)
(s8555 5)
(s8556 2)
(s8558 4)
(s8559 5)
(s8560 5)
(s8561 2)
(s8563 4)
(s8564 5)
(s8565 5)
(s8566 2)
(s8568 4)
(s8569 5)
(s8570 5)
(s8571 2)
(s8573 4)
(s8574 5)
(s8575 5)
(s8576 2)
(s8578 4)
(s8579 5)
(s8580 5)
(s8581 2)
(s8583 4)
(s8584 5)
(s8585 5)
(s8586 2)
(s8588 4)
(s8589 5)
(s8590 5)
(s8591 2)
(s8593 4)
(s8594 5)
(s8595 5)
(s8596 2)
(s8598 4)
(s8599 5)
(s8600 5)
(s8601 2)
(s8603 4)
(s8604 5)
(s8605 5)
(s8606 2)
(s8608 4)
(s8609 5)
(s8610 5)
(s8611 2)
(s8613 4)
(s8614 5)
(s8615 5)
(s8616 2)
(s8618 4)
(s8619 5)
(s8620 5)
(s8621 2)
(s8623 4)
(s8624 5)
(s8625 5)
(s8626 2)
(s8628 4)
(s8629 5)
(s8630 5)
(s8631 2)
(s8633 4)
(s8634 5)
(s8635 5)
(s8636 2)
(s8638 4)
(s8639 5)
(s8640 5)
(s8641 2)
(s8643 4)
(s8644 5)
(s8645 5)
(s8646 2)
(s8648 4)
(s8649 5)
(s8650 5)
(s8651 2)
(s8653 4)
(s8654 5)
(s8655 5)
(s8656 2)
(s8658 4)
(s8659 5)
(s8660 5)
(s8661 2)
(s8663 4)
(s8664 5)
(s8665 5)
(s8666 2)
(s8668 4)
(s8669 5)
(s8670 5)
(s8671 2)
(s8673 4)
(s8674 5)
(s8675 5)
(s8676 2)
(s8678 4)
(s8679 5)
(s8680 5)
(s8681 2)
(s8683 4)
(s8684 5)
(s8685 5)
(s8686 2)
(s8688 4)
(s8689 5)
(s8690 5)
(s8691 2)
(s8693 4)
(s8694 5)
(s8695 5)
(s8696 2)
(s8698 4)
(s8699 5)
(s8700 5)
(s8701 2)
(s8703 4)
(s8704 5)
(s8705 5)
(s8706 2)
(s8708 4)
(s8709 5)
(s8710 5)
(s8711 2)
(s8713 4)
(s8714 5)
(s8715 5)
(s8716 2)
(s8718 4)
(s8719 5)
(s8720 5)
(s8721 2)
(s8723 4)
(s8724 5)
(s8725 5)
(s8726 2)
(s8728 4)
(s8729 5)
(s8730 5)
(s8731 2)
(s8733 4)
(s8734 5)
(s8735 5)
(s8736 2)
(s8738 4)
(s8739 5)
(s8740 5)
(s8741 2)
(s8743 4)
(s8744 5)
(s8745 5)
(s8746 2)
(s8748 4)
(s8749 5)
(s8750 5)
(s8751 2)
(s8753 4)
(s8754 5)
(s8755 5)
(s8756 2)
(s8758 4)
(s8759 5)
(s8760 5)
(s8761 2)
(s8763 4)
(s8764 5)
(s8765 5)
(s8766 2)
(s8768 4)
(s8769 5)
(s8770 5)
(s8771 2)
(s8773 4)
(s8774 5)
(s8775 5)
(s8776 2)
(s8778 4)
(s8779 5)
(s8780 5)
(s8781 2)
(s8783 4)
(s8784 5)
(s8785 5)
(s8786 2)
(s8788 4)
(s8789 5)
(s8790 5)
(s8791 2)
(s8793 4)
(s8794 5)
(s8795 5)
(s8796 2)
(s8798 4)
(s8799 5)
(s8800 5)
(s8801 2)
(s8803 4)
(s8804 5)
(s8805 5)
(s8806 2)
(s8808 4)
(s8809 5)
(s8810 5)
(s8811 2)
(s8813 4)
(s8814 5)
(s8815 5)
(s8816 2)
(s8818 4)
(s8819 5)
(s8820 5)
(s8821 2)
(s8823 4)
(s8824 5)
(s8825 5)
(s8826 2)
(s8828 4)
(s8829 5)
(s8830 5)
(s8831 2)
(s8833 4)
(s8834 5)
(s8835 5)
(s8836 2)
(s8838 4)
(s8839 5)
(s8840 5)
(s8841 2)
(s8843 4)
(s8844 5)
(s8845 5)
(s8846 2)
(s8848 4)
(s8849 5)
(s8850 5)
(s8851 2)
(s8853 4)
(s8854 5)
(s8855 5)
(s8856 2)
(s8858 4)
(s8859 5)
(s8860 5)
(s8861 2)
(s8863 4)
(s8864 5)
(s8865 5)
(s8866 2)
(s8868 4)
(s8869 5)
(s8870 5)
(s8871 2)
(s8873 4)
(s8874 5)
(s8875 5)
(s8876 2)
(s8878 4)
(s8879 5)
(s8880 5)
(s8881 2)
(s8883 4)
(s8884 5)
(s8885 5)
(s8886 2)
(s8888 4)
(s8889 5)
(s8890 5)
(s8891 2)
(s8893 4)
(s8894 5)
(s8895 5)
(s8896 2)
(s8898 4)
(s8899 5)
(s8900 5)
(s8901 2)
(s8903 4)
(s8904 5)
(s8905 5)
(s8906 2)
(s8908 4)
(s8909 5)
(s8910 5)
(s8911 2)
(s8913 4)
(s8914 5)
(s8915 5)
(s8916 2)
(s8918 4)
(s8919 5)
(s8920 5)
(s8921 2)
(s8923 4)
(s8924 5)
(s8925 5)
(s8926 2)
(s8928 4)
(s8929 5)
(s8930 5)
(s8931 2)
(s8933 4)
(s8934 5)
(s8935 5)
(s8936 2)
(s8938 4)
(s8939 5)
(s8940 5)
(s8941 2)
(s8943 4)
(s8944 5)
(s8945 5)
(s8946 2)
(s8948 4)
(s8949 5)
(s8950 5)
(s8951 2)
(s8953 4)
(s8954 5)
(s8955 5)
(s8956 2)
(s8958 4)
(s8959 5)
(s8960 5)
(s8961 2)
(s8963 4)
(s8964 5)
(s8965 5)
(s8966 2)
(s8968 4)
(s8969 5)
(s8970 5)
(s8971 2)
(s8973 4)
(s8974 5)
(s8975 5)
(s8976 2)
(s8978 4)
(s8979 5)
(s8980 5)
(s8981 2)
(s8983 4)
(s8984 5)
(s8985 5)
(s8986 2)
(s8988 4)
(s8989 5)
(s8990 5)
(s8991 2)
(s8993 4)
(s8994 5)
(s8995 5)
(s8996 2)
(s8998 4)
(s8999 5)
(s9000 5)
(s9001 2)
(s9003 4)
(s9004 5)
(s9005 5)
(s9006 2)
(s9008 4)
(s9009 5)
(s9010 5)
(s9011 2)
(s9013 4)
(s9014 5)
(s9015 5)
(s9016 2)
(s9018 4)
(s9019 5)
(s9020 5)
(s9021 2)
(s9023 4)
(s9024 5)
(s9025 5)
(s9026 2)
(s9028 4)
(s9029 5)
(s9030 5)
(s9031 2)
(s9033 4)
(s9034 5)
(s9035 5)
(s9036 2)
(s9038 4)
(s9039 5)
(s9040 5)
(s9041 2)
(s9043 4)
(s9044 5)
(s9045 5)
(s9046 2)
(s9048 4)
(s9049 5)
(s9050 5)
(s9051 2)
(s9053 4)
(s9054 5)
(s9055 5)
(s9056 2)
(s9058 4)
(s9059 5)
(s9060 5)
(s9061 2)
(s9063 4)
(s9064 5)
(s9065 5)
(s9066 2)
(s9068 4)
(s9069 5)
(s9070 5)
(s9071 2)
(s9073 4)
(s9074 5)
(s9075 5)
(s9076 2)
(s9078 4)
(s9079 5)
(s9080 5)
(s9081 2)
(s9083 4)
(s9084 5)
(s9085 5)
(s9086 2)
(s9088 4)
(s9089 5)
(s9090 5)
(s9091 2)
(s9093 4)
(s9094 5)
(s9095 5)
(s9096 2)
(s9098 4)
(s9099 5)
(s9100 5)
(s9101 2)
(s9103 4)
(s9104 5)
(s9105 5)
(s9106 2)
(s9108 4)
(s9109 5)
(s9110 5)
(s9111 2)
(s9113 4)
(s9114 5)
(s9115 5)
(s9116 2)
(s9118 4)
(s9119 5)
(s9120 5)
(s9121 2)
(s9123 4)
(s9124 5)
(s9125 5)
(s9126 2)
(s9128 4)
(s9129 5)
(s9130 5)
(s9131 2)
(s9133 4)
(s9134 5)
(s9135 5)
(s9136 2)
(s9138 4)
(s9139 5)
(s9140 5)
(s9141 2)
(s9143 4)
(s9144 5)
(s9145 5)
(s9146 2)
(s9148 4)
(s9149 5)
(s9150 5)
(s9151 2)
(s9153 4)
(s9154 5)
(s9155 5)
(s9156 2)
(s9158 4)
(s9159 5)
(s9160 5)
(s9161 2)
(s9163 4)
(s9164 5)
(s9165 5)
(s9166 2)
(s9168 4)
(s9169 5)
(s9170 5)
(s9171 2)
(s9173 4)
(s9174 5)
(s9175 5)
(s9176 2)
(s9178 4)
(s9179 5)
(s9180 5)
(s9181 2)
(s9183 4)
(s9184 5)
(s9185 5)
(s9186 2)
(s9188 4)
(s9189 5)
(s9190 5)
(s9191 2)
(s9193 4)
(s9194 5)
(s9195 5)
(s9196 2)
(s9198 4)
(s9199 5)
(s9200 5)
(s9201 2)
(s9203 4)
(s9204 5)
(s9205 5)
(s9206 2)
(s9208 4)
(s9209 5)
(s9210 5)
(s9211 2)
(s9213 4)
(s9214 5)
(s9215 5)
(s9216 2)
(s9218 4)
(s9219 5)
(s9220 5)
(s9221 2)
(s9223 4)
(s9224 5)
(s9225 5)
(s9226 2)
(s9228 4)
(s9229 5)
(s9230 5)
(s9231 2)
(s9233 4)
(s9234 5)
(s9235 5)
(s9236 2)
(s9238 4)
(s9239 5)
(s9240 5)
(s9241 2)
(s9243 4)
(s9244 5)
(s9245 5)
(s9246 2)
(s9248 4)
(s9249 5)
(s9250 5)
(s9251 2)
(s9253 4)
(s9254 5)
(s9255 5)
(s9256 2)
(s9258 4)
(s9259 5)
(s9260 5)
(s9261 2)
(s9263 4)
(s9264 5)
(s9265 5)
(s9266 2)
(s9268 4)
(s9269 5)
(s9270 5)
(s9271 2)
(s9273 4)
(s9274 5)
(s9275 5)
(s9276 2)
(s9278 4)
(s9279 5)
(s9280 5)
(s9281 2)
(s9283 4)
(s9284 5)
(s9285 5)
(s9286 2)
(s9288 4)
(s9289 5)
(s9290 5)
(s9291 2)
(s9293 4)
(s9294 5)
(s9295 5)
(s9296 2)
(s9298 4)
(s9299 5)
(s9300 5)
(s9301 2)
(s9303 4)
(s9304 5)
(s9305 5)
(s9306 2)
(s9308 4)
(s9309 5)
(s9310 5)
(s9311 2)
(s org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 20150 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 0/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 56445ms problems are : Problem set: 0 solved, 12000 unsolved
Search for dead transitions found 0 dead transitions in 56461ms
[2025-06-02 08:42:37] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 08:42:40] [INFO ] Implicit Places using invariants in 2633 ms returned []
Implicit Place search using SMT only with invariants took 2634 ms to find 0 implicit places.
Running 12000 sub problems to find dead transitions.
[2025-06-02 08:42:40] [INFO ] Invariant cache hit.
[2025-06-02 08:42:40] [INFO ] State equation strengthened by 2000 read => feed constraints.
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 30147 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 12000/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 12000 unsolved
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 30149 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 0/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 76562ms problems are : Problem set: 0 solved, 12000 unsolved
Search for dead transitions found 0 dead transitions in 76576ms
Finished structural reductions in SI_CTL mode , in 1 iterations and 137981 ms. Remains : 10000/10000 places, 16001/16001 transitions.
[2025-06-02 08:43:56] [INFO ] Flatten gal took : 297 ms
[2025-06-02 08:43:57] [INFO ] Flatten gal took : 321 ms
[2025-06-02 08:43:57] [INFO ] Input system was already deterministic with 16001 transitions.
[2025-06-02 08:43:58] [INFO ] Flatten gal took : 285 ms
[2025-06-02 08:43:58] [INFO ] Flatten gal took : 387 ms
[2025-06-02 08:43:58] [INFO ] Time to serialize gal into /tmp/ReachabilityCardinality14022589955332155749.gal : 77 ms
[2025-06-02 08:43:58] [INFO ] Time to serialize properties into /tmp/ReachabilityCardinality6493105176934653581.prop : 1 ms
Invoking ITS tools like this :cd /home/mcc/execution;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-reach-linux64' '--gc-threshold' '2000000' '--quiet' '-i' '/tmp/ReachabilityCardinality14022589955332155749.gal' '-t' 'CGAL' '-reachable-file' '/tmp/ReachabilityCardinality6493105176934653581.prop' '--nowitness' '--gen-order' 'FOLLOW'
its-reach command run as :
/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-reach-linux64 --gc-threshold 2000000 --quiet ...329
RANDOM walk for 41035 steps (8 resets) in 4327 ms. (9 steps per ms) remains 1/1 properties
BEST_FIRST walk for 40004 steps (8 resets) in 4680 ms. (8 steps per ms) remains 1/1 properties
Loading property file /tmp/ReachabilityCardinality6493105176934653581.prop.
Probabilistic random walk after 46034 steps, saw 46017 distinct states, run finished after 6025 ms. (steps per millisecond=7 ) properties seen :0
[2025-06-02 08:44:06] [INFO ] Invariant cache hit.
[2025-06-02 08:44:06] [INFO ] State equation strengthened by 2000 read => feed constraints.
Starting Z3 with timeout 5.0 s and query timeout 500.0 ms
At refinement iteration 0 (INCLUDED_ONLY) 0/1 variables, 0/0 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 1 (OVERLAPS) 4/5 variables, 1/1 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 2 (INCLUDED_ONLY) 0/5 variables, 0/1 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 3 (OVERLAPS) 8/13 variables, 5/6 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 4 (INCLUDED_ONLY) 0/13 variables, 1/7 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 5 (INCLUDED_ONLY) 0/13 variables, 0/7 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 6 (OVERLAPS) 0/13 variables, 0/7 constraints. Problems are: Problem set: 0 solved, 1 unsolved
No progress, stopping.
After SMT solving in domain Real declared 13/26001 variables, and 7 constraints, problems are : Problem set: 0 solved, 1 unsolved in 101 ms.
Refiners :[Positive P Invariants (semi-flows): 1/2000 constraints, State Equation: 5/10000 constraints, ReadFeed: 1/2000 constraints, PredecessorRefiner: 1/1 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 1 unsolved
Starting Z3 with timeout 5.0 s and query timeout 500.0 ms
At refinement iteration 0 (INCLUDED_ONLY) 0/1 variables, 0/0 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 1 (OVERLAPS) 4/5 variables, 1/1 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 2 (INCLUDED_ONLY) 0/5 variables, 0/1 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 3 (OVERLAPS) 8/13 variables, 5/6 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 4 (INCLUDED_ONLY) 0/13 variables, 1/7 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 5 (INCLUDED_ONLY) 0/13 variables, 1/8 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 6 (INCLUDED_ONLY) 0/13 variables, 0/8 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 7 (OVERLAPS) 0/13 variables, 0/8 constraints. Problems are: Problem set: 0 solved, 1 unsolved
No progress, stopping.
After SMT solving in domain Int declared 13/26001 variables, and 8 constraints, problems are : Problem set: 0 solved, 1 unsolved in 90 ms.
Refiners :[Positive P Invariants (semi-flows): 1/2000 constraints, State Equation: 5/10000 constraints, ReadFeed: 1/2000 constraints, PredecessorRefiner: 1/1 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 298ms problems are : Problem set: 0 solved, 1 unsolved
Finished Parikh walk after 178 steps, including 0 resets, run visited all 1 properties in 20 ms. (steps per millisecond=8 )
FORMULA JoinFreeModules-PT-2000-CTLCardinality-2023-14 FALSE TECHNIQUES PARIKH_WALK
Parikh walk visited 1 properties in 25 ms.
ITS runner timed out or was interrupted.
ITS tools runner thread asked to quit. Dying gracefully.
Starting structural reductions in LTL mode, iteration 0 : 10000/10000 places, 16001/16001 transitions.
Applied a total of 0 rules in 653 ms. Remains 10000 /10000 variables (removed 0) and now considering 16001/16001 (removed 0) transitions.
Running 12000 sub problems to find dead transitions.
[2025-06-02 08:44:07] [INFO ] Invariant cache hit.
[2025-06-02 08:44:07] [INFO ] State equation strengthened by 2000 read => feed constraints.
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 20135 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 12000/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 12000 unsolved
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Error getting values : (error "ParserException while parsing response: ((s0 5)
(s1 2)
(s3 4)
(s4 5)
(s5 5)
(s6 2)
(s8 4)
(s9 5)
(s10 5)
(s11 2)
(s13 4)
(s14 5)
(s15 5)
(s16 2)
(s18 4)
(s19 5)
(s20 5)
(s21 2)
(s23 4)
(s24 5)
(s25 5)
(s26 2)
(s28 4)
(s29 5)
(s30 5)
(s31 2)
(s33 4)
(s34 5)
(s35 5)
(s36 2)
(s38 4)
(s39 5)
(s40 5)
(s41 2)
(s43 4)
(s44 5)
(s45 5)
(s46 2)
(s48 4)
(s49 5)
(s50 5)
(s51 2)
(s53 4)
(s54 5)
(s55 5)
(s56 2)
(s58 4)
(s59 5)
(s60 5)
(s61 2)
(s63 4)
(s64 5)
(s65 5)
(s66 2)
(s68 4)
(s69 5)
(s70 5)
(s71 2)
(s73 4)
(s74 5)
(s75 5)
(s76 2)
(s78 4)
(s79 5)
(s80 5)
(s81 2)
(s83 4)
(s84 5)
(s85 5)
(s86 2)
(s88 4)
(s89 5)
(s90 5)
(s91 2)
(s93 4)
(s94 5)
(s95 5)
(s96 2)
(s98 4)
(s99 5)
(s100 5)
(s101 2)
(s103 4)
(s104 5)
(s105 5)
(s106 2)
(s108 4)
(s109 5)
(s110 5)
(s111 2)
(s113 4)
(s114 5)
(s115 5)
(s116 2)
(s118 4)
(s119 5)
(s120 5)
(s121 2)
(s123 4)
(s124 5)
(s125 5)
(s126 2)
(s128 4)
(s129 5)
(s130 5)
(s131 2)
(s133 4)
(s134 5)
(s135 5)
(s136 2)
(s138 4)
(s139 5)
(s140 5)
(s141 2)
(s143 4)
(s144 5)
(s145 5)
(s146 2)
(s148 4)
(s149 5)
(s150 5)
(s151 2)
(s153 4)
(s154 5)
(s155 5)
(s156 2)
(s158 4)
(s159 5)
(s160 5)
(s161 2)
(s163 4)
(s164 5)
(s165 5)
(s166 2)
(s168 4)
(s169 5)
(s170 5)
(s171 2)
(s173 4)
(s174 5)
(s175 5)
(s176 2)
(s178 4)
(s179 5)
(s180 5)
(s181 2)
(s183 4)
(s184 5)
(s185 5)
(s186 2)
(s188 4)
(s189 5)
(s190 5)
(s191 2)
(s193 4)
(s194 5)
(s195 5)
(s196 2)
(s198 4)
(s199 5)
(s200 5)
(s201 2)
(s203 4)
(s204 5)
(s205 5)
(s206 2)
(s208 4)
(s209 5)
(s210 5)
(s211 2)
(s213 4)
(s214 5)
(s215 5)
(s216 2)
(s218 4)
(s219 5)
(s220 5)
(s221 2)
(s223 4)
(s224 5)
(s225 5)
(s226 2)
(s228 4)
(s229 5)
(s230 5)
(s231 2)
(s233 4)
(s234 5)
(s235 5)
(s236 2)
(s238 4)
(s239 5)
(s240 5)
(s241 2)
(s243 4)
(s244 5)
(s245 5)
(s246 2)
(s248 4)
(s249 5)
(s250 5)
(s251 2)
(s253 4)
(s254 5)
(s255 5)
(s256 2)
(s258 4)
(s259 5)
(s260 5)
(s261 2)
(s263 4)
(s264 5)
(s265 5)
(s266 2)
(s268 4)
(s269 5)
(s270 5)
(s271 2)
(s273 4)
(s274 5)
(s275 5)
(s276 2)
(s278 4)
(s279 5)
(s280 5)
(s281 2)
(s283 4)
(s284 5)
(s285 5)
(s286 2)
(s288 4)
(s289 5)
(s290 5)
(s291 2)
(s293 4)
(s294 5)
(s295 5)
(s296 2)
(s298 4)
(s299 5)
(s300 5)
(s301 2)
(s303 4)
(s304 5)
(s305 5)
(s306 2)
(s308 4)
(s309 5)
(s310 5)
(s311 2)
(s313 4)
(s314 5)
(s315 5)
(s316 2)
(s318 4)
(s319 5)
(s320 5)
(s321 2)
(s323 4)
(s324 5)
(s325 5)
(s326 2)
(s328 4)
(s329 5)
(s330 5)
(s331 2)
(s333 4)
(s334 5)
(s335 5)
(s336 2)
(s338 4)
(s339 5)
(s340 5)
(s341 2)
(s343 4)
(s344 5)
(s345 5)
(s346 2)
(s348 4)
(s349 5)
(s350 5)
(s351 2)
(s353 4)
(s354 5)
(s355 5)
(s356 2)
(s358 4)
(s359 5)
(s360 5)
(s361 2)
(s363 4)
(s364 5)
(s365 5)
(s366 2)
(s368 4)
(s369 5)
(s370 5)
(s371 2)
(s373 4)
(s374 5)
(s375 5)
(s376 2)
(s378 4)
(s379 5)
(s380 5)
(s381 2)
(s383 4)
(s384 5)
(s385 5)
(s386 2)
(s388 4)
(s389 5)
(s390 5)
(s391 2)
(s393 4)
(s394 5)
(s395 5)
(s396 2)
(s398 4)
(s399 5)
(s400 5)
(s401 2)
(s403 4)
(s404 5)
(s405 5)
(s406 2)
(s408 4)
(s409 5)
(s410 5)
(s411 2)
(s413 4)
(s414 5)
(s415 5)
(s416 2)
(s418 4)
(s419 5)
(s420 5)
(s421 2)
(s423 4)
(s424 5)
(s425 5)
(s426 2)
(s428 4)
(s429 5)
(s430 5)
(s431 2)
(s433 4)
(s434 5)
(s435 5)
(s436 2)
(s438 4)
(s439 5)
(s440 5)
(s441 2)
(s443 4)
(s444 5)
(s445 5)
(s446 2)
(s448 4)
(s449 5)
(s450 5)
(s451 2)
(s453 4)
(s454 5)
(s455 5)
(s456 2)
(s458 4)
(s459 5)
(s460 5)
(s461 2)
(s463 4)
(s464 5)
(s465 5)
(s466 2)
(s468 4)
(s469 5)
(s470 5)
(s471 2)
(s473 4)
(s474 5)
(s475 5)
(s476 2)
(s478 4)
(s479 5)
(s480 5)
(s481 2)
(s483 4)
(s484 5)
(s485 5)
(s486 2)
(s488 4)
(s489 5)
(s490 5)
(s491 2)
(s493 4)
(s494 5)
(s495 5)
(s496 2)
(s498 4)
(s499 5)
(s500 5)
(s501 2)
(s503 4)
(s504 5)
(s505 5)
(s506 2)
(s508 4)
(s509 5)
(s510 5)
(s511 2)
(s513 4)
(s514 5)
(s515 5)
(s516 2)
(s518 4)
(s519 5)
(s520 5)
(s521 2)
(s523 4)
(s524 5)
(s525 5)
(s526 2)
(s528 4)
(s529 5)
(s530 5)
(s531 2)
(s533 4)
(s534 5)
(s535 5)
(s536 2)
(s538 4)
(s539 5)
(s540 5)
(s541 2)
(s543 4)
(s544 5)
(s545 5)
(s546 2)
(s548 4)
(s549 5)
(s550 5)
(s551 2)
(s553 4)
(s554 5)
(s555 5)
(s556 2)
(s558 4)
(s559 5)
(s560 5)
(s561 2)
(s563 4)
(s564 5)
(s565 5)
(s566 2)
(s568 4)
(s569 5)
(s570 5)
(s571 2)
(s573 4)
(s574 5)
(s575 5)
(s576 2)
(s578 4)
(s579 5)
(s580 5)
(s581 2)
(s583 4)
(s584 5)
(s585 5)
(s586 2)
(s588 4)
(s589 5)
(s590 5)
(s591 2)
(s593 4)
(s594 5)
(s595 5)
(s596 2)
(s598 4)
(s599 5)
(s600 5)
(s601 2)
(s603 4)
(s604 5)
(s605 5)
(s606 2)
(s608 4)
(s609 5)
(s610 5)
(s611 2)
(s613 4)
(s614 5)
(s615 5)
(s616 2)
(s618 4)
(s619 5)
(s620 5)
(s621 2)
(s623 4)
(s624 5)
(s625 5)
(s626 2)
(s628 4)
(s629 5)
(s630 5)
(s631 2)
(s633 4)
(s634 5)
(s635 5)
(s636 2)
(s638 4)
(s639 5)
(s640 5)
(s641 2)
(s643 4)
(s644 5)
(s645 5)
(s646 2)
(s648 4)
(s649 5)
(s650 5)
(s651 2)
(s653 4)
(s654 5)
(s655 5)
(s656 2)
(s658 4)
(s659 5)
(s660 5)
(s661 2)
(s663 4)
(s664 5)
(s665 5)
(s666 2)
(s668 4)
(s669 5)
(s670 5)
(s671 2)
(s673 4)
(s674 5)
(s675 5)
(s676 2)
(s678 4)
(s679 5)
(s680 5)
(s681 2)
(s683 4)
(s684 5)
(s685 5)
(s686 2)
(s688 4)
(s689 5)
(s690 5)
(s691 2)
(s693 4)
(s694 5)
(s695 5)
(s696 2)
(s698 4)
(s699 5)
(s700 5)
(s701 2)
(s703 4)
(s704 5)
(s705 5)
(s706 2)
(s708 4)
(s709 5)
(s710 5)
(s711 2)
(s713 4)
(s714 5)
(s715 5)
(s716 2)
(s718 4)
(s719 5)
(s720 5)
(s721 2)
(s723 4)
(s724 5)
(s725 5)
(s726 2)
(s728 4)
(s729 5)
(s730 5)
(s731 2)
(s733 4)
(s734 5)
(s735 5)
(s736 2)
(s738 4)
(s739 5)
(s740 5)
(s741 2)
(s743 4)
(s744 5)
(s745 5)
(s746 2)
(s748 4)
(s749 5)
(s750 5)
(s751 2)
(s753 4)
(s754 5)
(s755 5)
(s756 2)
(s758 4)
(s759 5)
(s760 5)
(s761 2)
(s763 4)
(s764 5)
(s765 5)
(s766 2)
(s768 4)
(s769 5)
(s770 5)
(s771 2)
(s773 4)
(s774 5)
(s775 5)
(s776 2)
(s778 4)
(s779 5)
(s780 5)
(s781 2)
(s783 4)
(s784 5)
(s785 5)
(s786 2)
(s788 4)
(s789 5)
(s790 5)
(s791 2)
(s793 4)
(s794 5)
(s795 5)
(s796 2)
(s798 4)
(s799 5)
(s800 5)
(s801 2)
(s803 4)
(s804 5)
(s805 5)
(s806 2)
(s808 4)
(s809 5)
(s810 5)
(s811 2)
(s813 4)
(s814 5)
(s815 5)
(s816 2)
(s818 4)
(s819 5)
(s820 5)
(s821 2)
(s823 4)
(s824 5)
(s825 5)
(s826 2)
(s828 4)
(s829 5)
(s830 5)
(s831 2)
(s833 4)
(s834 5)
(s835 5)
(s836 2)
(s838 4)
(s839 5)
(s840 5)
(s841 2)
(s843 4)
(s844 5)
(s845 5)
(s846 2)
(s848 4)
(s849 5)
(s850 5)
(s851 2)
(s853 4)
(s854 5)
(s855 5)
(s856 2)
(s858 4)
(s859 5)
(s860 5)
(s861 2)
(s863 4)
(s864 5)
(s865 5)
(s866 2)
(s868 4)
(s869 5)
(s870 5)
(s871 2)
(s873 4)
(s874 5)
(s875 5)
(s876 2)
(s878 4)
(s879 5)
(s880 5)
(s881 2)
(s883 4)
(s884 5)
(s885 5)
(s886 2)
(s888 4)
(s889 5)
(s890 5)
(s891 2)
(s893 4)
(s894 5)
(s895 5)
(s896 2)
(s898 4)
(s899 5)
(s900 5)
(s901 2)
(s903 4)
(s904 5)
(s905 5)
(s906 2)
(s908 4)
(s909 5)
(s910 5)
(s911 2)
(s913 4)
(s914 5)
(s915 5)
(s916 2)
(s918 4)
(s919 5)
(s920 5)
(s921 2)
(s923 4)
(s924 5)
(s925 5)
(s926 2)
(s928 4)
(s929 5)
(s930 5)
(s931 2)
(s933 4)
(s934 5)
(s935 5)
(s936 2)
(s938 4)
(s939 5)
(s940 5)
(s941 2)
(s943 4)
(s944 5)
(s945 5)
(s946 2)
(s948 4)
(s949 5)
(s950 5)
(s951 2)
(s953 4)
(s954 5)
(s955 5)
(s956 2)
(s958 4)
(s959 5)
(s960 5)
(s961 2)
(s963 4)
(s964 5)
(s965 5)
(s966 2)
(s968 4)
(s969 5)
(s970 5)
(s971 2)
(s973 4)
(s974 5)
(s975 5)
(s976 2)
(s978 4)
(s979 5)
(s980 5)
(s981 2)
(s983 4)
(s984 5)
(s985 5)
(s986 2)
(s988 4)
(s989 5)
(s990 5)
(s991 2)
(s993 4)
(s994 5)
(s995 5)
(s996 2)
(s998 4)
(s999 5)
(s1000 5)
(s1001 2)
(s1003 4)
(s1004 5)
(s1005 5)
(s1006 2)
(s1008 4)
(s1009 5)
(s1010 5)
(s1011 2)
(s1013 4)
(s1014 5)
(s1015 5)
(s1016 2)
(s1018 4)
(s1019 5)
(s1020 5)
(s1021 2)
(s1023 4)
(s1024 5)
(s1025 5)
(s1026 2)
(s1028 4)
(s1029 5)
(s1030 5)
(s1031 2)
(s1033 4)
(s1034 5)
(s1035 5)
(s1036 2)
(s1038 4)
(s1039 5)
(s1040 5)
(s1041 2)
(s1043 4)
(s1044 5)
(s1045 5)
(s1046 2)
(s1048 4)
(s1049 5)
(s1050 5)
(s1051 2)
(s1053 4)
(s1054 5)
(s1055 5)
(s1056 2)
(s1058 4)
(s1059 5)
(s1060 5)
(s1061 2)
(s1063 4)
(s1064 5)
(s1065 5)
(s1066 2)
(s1068 4)
(s1069 5)
(s1070 5)
(s1071 2)
(s1073 4)
(s1074 5)
(s1075 5)
(s1076 2)
(s1078 4)
(s1079 5)
(s1080 5)
(s1081 2)
(s1083 4)
(s1084 5)
(s1085 5)
(s1086 2)
(s1088 4)
(s1089 5)
(s1090 5)
(s1091 2)
(s1093 4)
(s1094 5)
(s1095 5)
(s1096 2)
(s1098 4)
(s1099 5)
(s1100 5)
(s1101 2)
(s1103 4)
(s1104 5)
(s1105 5)
(s1106 2)
(s1108 4)
(s1109 5)
(s1110 5)
(s1111 2)
(s1113 4)
(s1114 5)
(s1115 5)
(s1116 2)
(s1118 4)
(s1119 5)
(s1120 5)
(s1121 2)
(s1123 4)
(s1124 5)
(s1125 5)
(s1126 2)
(s1128 4)
(s1129 5)
(s1130 5)
(s1131 2)
(s1133 4)
(s1134 5)
(s1135 5)
(s1136 2)
(s1138 4)
(s1139 5)
(s1140 5)
(s1141 2)
(s1143 4)
(s1144 5)
(s1145 5)
(s1146 2)
(s1148 4)
(s1149 5)
(s1150 5)
(s1151 2)
(s1153 4)
(s1154 5)
(s1155 5)
(s1156 2)
(s1158 4)
(s1159 5)
(s1160 5)
(s1161 2)
(s1163 4)
(s1164 5)
(s1165 5)
(s1166 2)
(s1168 4)
(s1169 5)
(s1170 5)
(s1171 2)
(s1173 4)
(s1174 5)
(s1175 5)
(s1176 2)
(s1178 4)
(s1179 5)
(s1180 5)
(s1181 2)
(s1183 4)
(s1184 5)
(s1185 5)
(s1186 2)
(s1188 4)
(s1189 5)
(s1190 5)
(s1191 2)
(s1193 4)
(s1194 5)
(s1195 5)
(s1196 2)
(s1198 4)
(s1199 5)
(s1200 5)
(s1201 2)
(s1203 4)
(s1204 5)
(s1205 5)
(s1206 2)
(s1208 4)
(s1209 5)
(s1210 5)
(s1211 2)
(s1213 4)
(s1214 5)
(s1215 5)
(s1216 2)
(s1218 4)
(s1219 5)
(s1220 5)
(s1221 2)
(s1223 4)
(s1224 5)
(s1225 5)
(s1226 2)
(s1228 4)
(s1229 5)
(s1230 5)
(s1231 2)
(s1233 4)
(s1234 5)
(s1235 5)
(s1236 2)
(s1238 4)
(s1239 5)
(s1240 5)
(s1241 2)
(s1243 4)
(s1244 5)
(s1245 5)
(s1246 2)
(s1248 4)
(s1249 5)
(s1250 5)
(s1251 2)
(s1253 4)
(s1254 5)
(s1255 5)
(s1256 2)
(s1258 4)
(s1259 5)
(s1260 5)
(s1261 2)
(s1263 4)
(s1264 5)
(s1265 5)
(s1266 2)
(s1268 4)
(s1269 5)
(s1270 5)
(s1271 2)
(s1273 4)
(s1274 5)
(s1275 5)
(s1276 2)
(s1278 4)
(s1279 5)
(s1280 5)
(s1281 2)
(s1283 4)
(s1284 5)
(s1285 5)
(s1286 2)
(s1288 4)
(s1289 5)
(s1290 5)
(s1291 2)
(s1293 4)
(s1294 5)
(s1295 5)
(s1296 2)
(s1298 4)
(s1299 5)
(s1300 5)
(s1301 2)
(s1303 4)
(s1304 5)
(s1305 5)
(s1306 2)
(s1308 4)
(s1309 5)
(s1310 5)
(s1311 2)
(s1313 4)
(s1314 5)
(s1315 5)
(s1316 2)
(s1318 4)
(s1319 5)
(s1320 5)
(s1321 2)
(s1323 4)
(s1324 5)
(s1325 5)
(s1326 2)
(s1328 4)
(s1329 5)
(s1330 5)
(s1331 2)
(s1333 4)
(s1334 5)
(s1335 5)
(s1336 2)
(s1338 4)
(s1339 5)
(s1340 5)
(s1341 2)
(s1343 4)
(s1344 5)
(s1345 5)
(s1346 2)
(s1348 4)
(s1349 5)
(s1350 5)
(s1351 2)
(s1353 4)
(s1354 5)
(s1355 5)
(s1356 2)
(s1358 4)
(s1359 5)
(s1360 5)
(s1361 2)
(s1363 4)
(s1364 5)
(s1365 5)
(s1366 2)
(s1368 4)
(s1369 5)
(s1370 5)
(s1371 2)
(s1373 4)
(s1374 5)
(s1375 5)
(s1376 2)
(s1378 4)
(s1379 5)
(s1380 5)
(s1381 2)
(s1383 4)
(s1384 5)
(s1385 5)
(s1386 2)
(s1388 4)
(s1389 5)
(s1390 5)
(s1391 2)
(s1393 4)
(s1394 5)
(s1395 5)
(s1396 2)
(s1398 4)
(s1399 5)
(s1400 5)
(s1401 2)
(s1403 4)
(s1404 5)
(s1405 5)
(s1406 2)
(s1408 4)
(s1409 5)
(s1410 5)
(s1411 2)
(s1413 4)
(s1414 5)
(s1415 5)
(s1416 2)
(s1418 4)
(s1419 5)
(s1420 5)
(s1421 2)
(s1423 4)
(s1424 5)
(s1425 5)
(s1426 2)
(s1428 4)
(s1429 5)
(s1430 5)
(s1431 2)
(s1433 4)
(s1434 5)
(s1435 5)
(s1436 2)
(s1438 4)
(s1439 5)
(s1440 5)
(s1441 2)
(s1443 4)
(s1444 5)
(s1445 5)
(s1446 2)
(s1448 4)
(s1449 5)
(s1450 5)
(s1451 2)
(s1453 4)
(s1454 5)
(s1455 5)
(s1456 2)
(s1458 4)
(s1459 5)
(s1460 5)
(s1461 2)
(s1463 4)
(s1464 5)
(s1465 5)
(s1466 2)
(s1468 4)
(s1469 5)
(s1470 5)
(s1471 2)
(s1473 4)
(s1474 5)
(s1475 5)
(s1476 2)
(s1478 4)
(s1479 5)
(s1480 5)
(s1481 2)
(s1483 4)
(s1484 5)
(s1485 5)
(s1486 2)
(s1488 4)
(s1489 5)
(s1490 5)
(s1491 2)
(s1493 4)
(s1494 5)
(s1495 5)
(s1496 2)
(s1498 4)
(s1499 5)
(s1500 5)
(s1501 2)
(s1503 4)
(s1504 5)
(s1505 5)
(s1506 2)
(s1508 4)
(s1509 5)
(s1510 5)
(s1511 2)
(s1513 4)
(s1514 5)
(s1515 5)
(s1516 2)
(s1518 4)
(s1519 5)
(s1520 5)
(s1521 2)
(s1523 4)
(s1524 5)
(s1525 5)
(s1526 2)
(s1528 4)
(s1529 5)
(s1530 5)
(s1531 2)
(s1533 4)
(s1534 5)
(s1535 5)
(s1536 2)
(s1538 4)
(s1539 5)
(s1540 5)
(s1541 2)
(s1543 4)
(s1544 5)
(s1545 5)
(s1546 2)
(s1548 4)
(s1549 5)
(s1550 5)
(s1551 2)
(s1553 4)
(s1554 5)
(s1555 5)
(s1556 2)
(s1558 4)
(s1559 5)
(s1560 5)
(s1561 2)
(s1563 4)
(s1564 5)
(s1565 5)
(s1566 2)
(s1568 4)
(s1569 5)
(s1570 5)
(s1571 2)
(s1573 4)
(s1574 5)
(s1575 5)
(s1576 2)
(s1578 4)
(s1579 5)
(s1580 5)
(s1581 2)
(s1583 4)
(s1584 5)
(s1585 5)
(s1586 2)
(s1588 4)
(s1589 5)
(s1590 5)
(s1591 2)
(s1593 4)
(s1594 5)
(s1595 5)
(s1596 2)
(s1598 4)
(s1599 5)
(s1600 5)
(s1601 2)
(s1603 4)
(s1604 5)
(s1605 5)
(s1606 2)
(s1608 4)
(s1609 5)
(s1610 5)
(s1611 2)
(s1613 4)
(s1614 5)
(s1615 5)
(s1616 2)
(s1618 4)
(s1619 5)
(s1620 5)
(s1621 2)
(s1623 4)
(s1624 5)
(s1625 5)
(s1626 2)
(s1628 4)
(s1629 5)
(s1630 5)
(s1631 2)
(s1633 4)
(s1634 5)
(s1635 5)
(s1636 2)
(s1638 4)
(s1639 5)
(s1640 5)
(s1641 2)
(s1643 4)
(s1644 5)
(s1645 5)
(s1646 2)
(s1648 4)
(s1649 5)
(s1650 5)
(s1651 2)
(s1653 4)
(s1654 5)
(s1655 5)
(s1656 2)
(s1658 4)
(s1659 5)
(s1660 5)
(s1661 2)
(s1663 4)
(s1664 5)
(s1665 5)
(s1666 2)
(s1668 4)
(s1669 5)
(s1670 5)
(s1671 2)
(s1673 4)
(s1674 5)
(s1675 5)
(s1676 2)
(s1678 4)
(s1679 5)
(s1680 5)
(s1681 2)
(s1683 4)
(s1684 5)
(s1685 5)
(s1686 2)
(s1688 4)
(s1689 5)
(s1690 5)
(s1691 2)
(s1693 4)
(s1694 5)
(s1695 5)
(s1696 2)
(s1698 4)
(s1699 5)
(s1700 5)
(s1701 2)
(s1703 4)
(s1704 5)
(s1705 5)
(s1706 2)
(s1708 4)
(s1709 5)
(s1710 5)
(s1711 2)
(s1713 4)
(s1714 5)
(s1715 5)
(s1716 2)
(s1718 4)
(s1719 5)
(s1720 5)
(s1721 2)
(s1723 4)
(s1724 5)
(s1725 5)
(s1726 2)
(s1728 4)
(s1729 5)
(s1730 5)
(s1731 2)
(s1733 4)
(s1734 5)
(s1735 5)
(s1736 2)
(s1738 4)
(s1739 5)
(s1740 5)
(s1741 2)
(s1743 4)
(s1744 5)
(s1745 5)
(s1746 2)
(s1748 4)
(s1749 5)
(s1750 5)
(s1751 2)
(s1753 4)
(s1754 5)
(s1755 5)
(s1756 2)
(s1758 4)
(s1759 5)
(s1760 5)
(s1761 2)
(s1763 4)
(s1764 5)
(s1765 5)
(s1766 2)
(s1768 4)
(s1769 5)
(s1770 5)
(s1771 2)
(s1773 4)
(s1774 5)
(s1775 5)
(s1776 2)
(s1778 4)
(s1779 5)
(s1780 5)
(s1781 2)
(s1783 4)
(s1784 5)
(s1785 5)
(s1786 2)
(s1788 4)
(s1789 5)
(s1790 5)
(s1791 2)
(s1793 4)
(s1794 5)
(s1795 5)
(s1796 2)
(s1798 4)
(s1799 5)
(s1800 5)
(s1801 2)
(s1803 4)
(s1804 5)
(s1805 5)
(s1806 2)
(s1808 4)
(s1809 5)
(s1810 5)
(s1811 2)
(s1813 4)
(s1814 5)
(s1815 5)
(s1816 2)
(s1818 4)
(s1819 5)
(s1820 5)
(s1821 2)
(s1823 4)
(s1824 5)
(s1825 5)
(s1826 2)
(s1828 4)
(s1829 5)
(s1830 5)
(s1831 2)
(s1833 4)
(s1834 5)
(s1835 5)
(s1836 2)
(s1838 4)
(s1839 5)
(s1840 5)
(s1841 2)
(s1843 4)
(s1844 5)
(s1845 5)
(s1846 2)
(s1848 4)
(s1849 5)
(s1850 5)
(s1851 2)
(s1853 4)
(s1854 5)
(s1855 5)
(s1856 2)
(s1858 4)
(s1859 5)
(s1860 5)
(s1861 2)
(s1863 4)
(s1864 5)
(s1865 5)
(s1866 2)
(s1868 4)
(s1869 5)
(s1870 5)
(s1871 2)
(s1873 4)
(s1874 5)
(s1875 5)
(s1876 2)
(s1878 4)
(s1879 5)
(s1880 5)
(s1881 2)
(s1883 4)
(s1884 5)
(s1885 5)
(s1886 2)
(s1888 4)
(s1889 5)
(s1890 5)
(s1891 2)
(s1893 4)
(s1894 5)
(s1895 5)
(s1896 2)
(s1898 4)
(s1899 5)
(s1900 5)
(s1901 2)
(s1903 4)
(s1904 5)
(s1905 5)
(s1906 2)
(s1908 4)
(s1909 5)
(s1910 5)
(s1911 2)
(s1913 4)
(s1914 5)
(s1915 5)
(s1916 2)
(s1918 4)
(s1919 5)
(s1920 5)
(s1921 2)
(s1923 4)
(s1924 5)
(s1925 5)
(s1926 2)
(s1928 4)
(s1929 5)
(s1930 5)
(s1931 2)
(s1933 4)
(s1934 5)
(s1935 5)
(s1936 2)
(s1938 4)
(s1939 5)
(s1940 5)
(s1941 2)
(s1943 4)
(s1944 5)
(s1945 5)
(s1946 2)
(s1948 4)
(s1949 5)
(s1950 5)
(s1951 2)
(s1953 4)
(s1954 5)
(s1955 5)
(s1956 2)
(s1958 4)
(s1959 5)
(s1960 5)
(s1961 2)
(s1963 4)
(s1964 5)
(s1965 5)
(s1966 2)
(s1968 4)
(s1969 5)
(s1970 5)
(s1971 2)
(s1973 4)
(s1974 5)
(s1975 5)
(s1976 2)
(s1978 4)
(s1979 5)
(s1980 5)
(s1981 2)
(s1983 4)
(s1984 5)
(s1985 5)
(s1986 2)
(s1988 4)
(s1989 5)
(s1990 5)
(s1991 2)
(s1993 4)
(s1994 5)
(s1995 5)
(s1996 2)
(s1998 4)
(s1999 5)
(s2000 5)
(s2001 2)
(s2003 4)
(s2004 5)
(s2005 5)
(s2006 2)
(s2008 4)
(s2009 5)
(s2010 5)
(s2011 2)
(s2013 4)
(s2014 5)
(s2015 5)
(s2016 2)
(s2018 4)
(s2019 5)
(s2020 5)
(s2021 2)
(s2023 4)
(s2024 5)
(s2025 5)
(s2026 2)
(s2028 4)
(s2029 5)
(s2030 5)
(s2031 2)
(s2033 4)
(s2034 5)
(s2035 5)
(s2036 2)
(s2038 4)
(s2039 5)
(s2040 5)
(s2041 2)
(s2043 4)
(s2044 5)
(s2045 5)
(s2046 2)
(s2048 4)
(s2049 5)
(s2050 5)
(s2051 2)
(s2053 4)
(s2054 5)
(s2055 5)
(s2056 2)
(s2058 4)
(s2059 5)
(s2060 5)
(s2061 2)
(s2063 4)
(s2064 5)
(s2065 5)
(s2066 2)
(s2068 4)
(s2069 5)
(s2070 5)
(s2071 2)
(s2073 4)
(s2074 5)
(s2075 5)
(s2076 2)
(s2078 4)
(s2079 5)
(s2080 5)
(s2081 2)
(s2083 4)
(s2084 5)
(s2085 5)
(s2086 2)
(s2088 4)
(s2089 5)
(s2090 5)
(s2091 2)
(s2093 4)
(s2094 5)
(s2095 5)
(s2096 2)
(s2098 4)
(s2099 5)
(s2100 5)
(s2101 2)
(s2103 4)
(s2104 5)
(s2105 5)
(s2106 2)
(s2108 4)
(s2109 5)
(s2110 5)
(s2111 2)
(s2113 4)
(s2114 5)
(s2115 5)
(s2116 2)
(s2118 4)
(s2119 5)
(s2120 5)
(s2121 2)
(s2123 4)
(s2124 5)
(s2125 5)
(s2126 2)
(s2128 4)
(s2129 5)
(s2130 5)
(s2131 2)
(s2133 4)
(s2134 5)
(s2135 5)
(s2136 2)
(s2138 4)
(s2139 5)
(s2140 5)
(s2141 2)
(s2143 4)
(s2144 5)
(s2145 5)
(s2146 2)
(s2148 4)
(s2149 5)
(s2150 5)
(s2151 2)
(s2153 4)
(s2154 5)
(s2155 5)
(s2156 2)
(s2158 4)
(s2159 5)
(s2160 5)
(s2161 2)
(s2163 4)
(s2164 5)
(s2165 5)
(s2166 2)
(s2168 4)
(s2169 5)
(s2170 5)
(s2171 2)
(s2173 4)
(s2174 5)
(s2175 5)
(s2176 2)
(s2178 4)
(s2179 5)
(s2180 5)
(s2181 2)
(s2183 4)
(s2184 5)
(s2185 5)
(s2186 2)
(s2188 4)
(s2189 5)
(s2190 5)
(s2191 2)
(s2193 4)
(s2194 5)
(s2195 5)
(s2196 2)
(s2198 4)
(s2199 5)
(s2200 5)
(s2201 2)
(s2203 4)
(s2204 5)
(s2205 5)
(s2206 2)
(s2208 4)
(s2209 5)
(s2210 5)
(s2211 2)
(s2213 4)
(s2214 5)
(s2215 5)
(s2216 2)
(s2218 4)
(s2219 5)
(s2220 5)
(s2221 2)
(s2223 4)
(s2224 5)
(s2225 5)
(s2226 2)
(s2228 4)
(s2229 5)
(s2230 5)
(s2231 2)
(s2233 4)
(s2234 5)
(s2235 5)
(s2236 2)
(s2238 4)
(s2239 5)
(s2240 5)
(s2241 2)
(s2243 4)
(s2244 5)
(s2245 5)
(s2246 2)
(s2248 4)
(s2249 5)
(s2250 5)
(s2251 2)
(s2253 4)
(s2254 5)
(s2255 5)
(s2256 2)
(s2258 4)
(s2259 5)
(s2260 5)
(s2261 2)
(s2263 4)
(s2264 5)
(s2265 5)
(s2266 2)
(s2268 4)
(s2269 5)
(s2270 5)
(s2271 2)
(s2273 4)
(s2274 5)
(s2275 5)
(s2276 2)
(s2278 4)
(s2279 5)
(s2280 5)
(s2281 2)
(s2283 4)
(s2284 5)
(s2285 5)
(s2286 2)
(s2288 4)
(s2289 5)
(s2290 5)
(s2291 2)
(s2293 4)
(s2294 5)
(s2295 5)
(s2296 2)
(s2298 4)
(s2299 5)
(s2300 5)
(s2301 2)
(s2303 4)
(s2304 5)
(s2305 5)
(s2306 2)
(s2308 4)
(s2309 5)
(s2310 5)
(s2311 2)
(s2313 4)
(s2314 5)
(s2315 5)
(s2316 2)
(s2318 4)
(s2319 5)
(s2320 5)
(s2321 2)
(s2323 4)
(s2324 5)
(s2325 5)
(s2326 2)
(s2328 4)
(s2329 5)
(s2330 5)
(s2331 2)
(s2333 4)
(s2334 5)
(s2335 5)
(s2336 2)
(s2338 4)
(s2339 5)
(s2340 5)
(s2341 2)
(s2343 4)
(s2344 5)
(s2345 5)
(s2346 2)
(s2348 4)
(s2349 5)
(s2350 5)
(s2351 2)
(s2353 4)
(s2354 5)
(s2355 5)
(s2356 2)
(s2358 4)
(s2359 5)
(s2360 5)
(s2361 2)
(s2363 4)
(s2364 5)
(s2365 5)
(s2366 2)
(s2368 4)
(s2369 5)
(s2370 5)
(s2371 2)
(s2373 4)
(s2374 5)
(s2375 5)
(s2376 2)
(s2378 4)
(s2379 5)
(s2380 5)
(s2381 2)
(s2383 4)
(s2384 5)
(s2385 5)
(s2386 2)
(s2388 4)
(s2389 5)
(s2390 5)
(s2391 2)
(s2393 4)
(s2394 5)
(s2395 5)
(s2396 2)
(s2398 4)
(s2399 5)
(s2400 5)
(s2401 2)
(s2403 4)
(s2404 5)
(s2405 5)
(s2406 2)
(s2408 4)
(s2409 5)
(s2410 5)
(s2411 2)
(s2413 4)
(s2414 5)
(s2415 5)
(s2416 2)
(s2418 4)
(s2419 5)
(s2420 5)
(s2421 2)
(s2423 4)
(s2424 5)
(s2425 5)
(s2426 2)
(s2428 4)
(s2429 5)
(s2430 5)
(s2431 2)
(s2433 4)
(s2434 5)
(s2435 5)
(s2436 2)
(s2438 4)
(s2439 5)
(s2440 5)
(s2441 2)
(s2443 4)
(s2444 5)
(s2445 5)
(s2446 2)
(s2448 4)
(s2449 5)
(s2450 5)
(s2451 2)
(s2453 4)
(s2454 5)
(s2455 5)
(s2456 2)
(s2458 4)
(s2459 5)
(s2460 5)
(s2461 2)
(s2463 4)
(s2464 5)
(s2465 5)
(s2466 2)
(s2468 4)
(s2469 5)
(s2470 5)
(s2471 2)
(s2473 4)
(s2474 5)
(s2475 5)
(s2476 2)
(s2478 4)
(s2479 5)
(s2480 5)
(s2481 2)
(s2483 4)
(s2484 5)
(s2485 5)
(s2486 2)
(s2488 4)
(s2489 5)
(s2490 5)
(s2491 2)
(s2493 4)
(s2494 5)
(s2495 5)
(s2496 2)
(s2498 4)
(s2499 5)
(s2500 5)
(s2501 2)
(s2503 4)
(s2504 5)
(s2505 5)
(s2506 2)
(s2508 4)
(s2509 5)
(s2510 5)
(s2511 2)
(s2513 4)
(s2514 5)
(s2515 5)
(s2516 2)
(s2518 4)
(s2519 5)
(s2520 5)
(s2521 2)
(s2523 4)
(s2524 5)
(s2525 5)
(s2526 2)
(s2528 4)
(s2529 5)
(s2530 5)
(s2531 2)
(s2533 4)
(s2534 5)
(s2535 5)
(s2536 2)
(s2538 4)
(s2539 5)
(s2540 5)
(s2541 2)
(s2543 4)
(s2544 5)
(s2545 5)
(s2546 2)
(s2548 4)
(s2549 5)
(s2550 5)
(s2551 2)
(s2553 4)
(s2554 5)
(s2555 5)
(s2556 2)
(s2558 4)
(s2559 5)
(s2560 5)
(s2561 2)
(s2563 4)
(s2564 5)
(s2565 5)
(s2566 2)
(s2568 4)
(s2569 5)
(s2570 5)
(s2571 2)
(s2573 4)
(s2574 5)
(s2575 5)
(s2576 2)
(s2578 4)
(s2579 5)
(s2580 5)
(s2581 2)
(s2583 4)
(s2584 5)
(s2585 5)
(s2586 2)
(s2588 4)
(s2589 5)
(s2590 5)
(s2591 2)
(s2593 4)
(s2594 5)
(s2595 5)
(s2596 2)
(s2598 4)
(s2599 5)
(s2600 5)
(s2601 2)
(s2603 4)
(s2604 5)
(s2605 5)
(s2606 2)
(s2608 4)
(s2609 5)
(s2610 5)
(s2611 2)
(s2613 4)
(s2614 5)
(s2615 5)
(s2616 2)
(s2618 4)
(s2619 5)
(s2620 5)
(s2621 2)
(s2623 4)
(s2624 5)
(s2625 5)
(s2626 2)
(s2628 4)
(s2629 5)
(s2630 5)
(s2631 2)
(s2633 4)
(s2634 5)
(s2635 5)
(s2636 2)
(s2638 4)
(s2639 5)
(s2640 5)
(s2641 2)
(s2643 4)
(s2644 5)
(s2645 5)
(s2646 2)
(s2648 4)
(s2649 5)
(s2650 5)
(s2651 2)
(s2653 4)
(s2654 5)
(s2655 5)
(s2656 2)
(s2658 4)
(s2659 5)
(s2660 5)
(s2661 2)
(s2663 4)
(s2664 5)
(s2665 5)
(s2666 2)
(s2668 4)
(s2669 5)
(s2670 5)
(s2671 2)
(s2673 4)
(s2674 5)
(s2675 5)
(s2676 2)
(s2678 4)
(s2679 5)
(s2680 5)
(s2681 2)
(s2683 4)
(s2684 5)
(s2685 5)
(s2686 2)
(s2688 4)
(s2689 5)
(s2690 5)
(s2691 2)
(s2693 4)
(s2694 5)
(s2695 5)
(s2696 2)
(s2698 4)
(s2699 5)
(s2700 5)
(s2701 2)
(s2703 4)
(s2704 5)
(s2705 5)
(s2706 2)
(s2708 4)
(s2709 5)
(s2710 5)
(s2711 2)
(s2713 4)
(s2714 5)
(s2715 5)
(s2716 2)
(s2718 4)
(s2719 5)
(s2720 5)
(s2721 2)
(s2723 4)
(s2724 5)
(s2725 5)
(s2726 2)
(s2728 4)
(s2729 5)
(s2730 5)
(s2731 2)
(s2733 4)
(s2734 5)
(s2735 5)
(s2736 2)
(s2738 4)
(s2739 5)
(s2740 5)
(s2741 2)
(s2743 4)
(s2744 5)
(s2745 5)
(s2746 2)
(s2748 4)
(s2749 5)
(s2750 5)
(s2751 2)
(s2753 4)
(s2754 5)
(s2755 5)
(s2756 2)
(s2758 4)
(s2759 5)
(s2760 5)
(s2761 2)
(s2763 4)
(s2764 5)
(s2765 5)
(s2766 2)
(s2768 4)
(s2769 5)
(s2770 5)
(s2771 2)
(s2773 4)
(s2774 5)
(s2775 5)
(s2776 2)
(s2778 4)
(s2779 5)
(s2780 5)
(s2781 2)
(s2783 4)
(s2784 5)
(s2785 5)
(s2786 2)
(s2788 4)
(s2789 5)
(s2790 5)
(s2791 2)
(s2793 4)
(s2794 5)
(s2795 5)
(s2796 2)
(s2798 4)
(s2799 5)
(s2800 5)
(s2801 2)
(s2803 4)
(s2804 5)
(s2805 5)
(s2806 2)
(s2808 4)
(s2809 5)
(s2810 5)
(s2811 2)
(s2813 4)
(s2814 5)
(s2815 5)
(s2816 2)
(s2818 4)
(s2819 5)
(s2820 5)
(s2821 2)
(s2823 4)
(s2824 5)
(s2825 5)
(s2826 2)
(s2828 4)
(s2829 5)
(s2830 5)
(s2831 2)
(s2833 4)
(s2834 5)
(s2835 5)
(s2836 2)
(s2838 4)
(s2839 5)
(s2840 5)
(s2841 2)
(s2843 4)
(s2844 5)
(s2845 5)
(s2846 2)
(s2848 4)
(s2849 5)
(s2850 5)
(s2851 2)
(s2853 4)
(s2854 5)
(s2855 5)
(s2856 2)
(s2858 4)
(s2859 5)
(s2860 5)
(s2861 2)
(s2863 4)
(s2864 5)
(s2865 5)
(s2866 2)
(s2868 4)
(s2869 5)
(s2870 5)
(s2871 2)
(s2873 4)
(s2874 5)
(s2875 5)
(s2876 2)
(s2878 4)
(s2879 5)
(s2880 5)
(s2881 2)
(s2883 4)
(s2884 5)
(s2885 5)
(s2886 2)
(s2888 4)
(s2889 5)
(s2890 5)
(s2891 2)
(s2893 4)
(s2894 5)
(s2895 5)
(s2896 2)
(s2898 4)
(s2899 5)
(s2900 5)
(s2901 2)
(s2903 4)
(s2904 5)
(s2905 5)
(s2906 2)
(s2908 4)
(s2909 5)
(s2910 5)
(s2911 2)
(s2913 4)
(s2914 5)
(s2915 5)
(s2916 2)
(s2918 4)
(s2919 5)
(s2920 5)
(s2921 2)
(s2923 4)
(s2924 5)
(s2925 5)
(s2926 2)
(s2928 4)
(s2929 5)
(s2930 5)
(s2931 2)
(s2933 4)
(s2934 5)
(s2935 5)
(s2936 2)
(s2938 4)
(s2939 5)
(s2940 5)
(s2941 2)
(s2943 4)
(s2944 5)
(s2945 5)
(s2946 2)
(s2948 4)
(s2949 5)
(s2950 5)
(s2951 2)
(s2953 4)
(s2954 5)
(s2955 5)
(s2956 2)
(s2958 4)
(s2959 5)
(s2960 5)
(s2961 2)
(s2963 4)
(s2964 5)
(s2965 5)
(s2966 2)
(s2968 4)
(s2969 5)
(s2970 5)
(s2971 2)
(s2973 4)
(s2974 5)
(s2975 5)
(s2976 2)
(s2978 4)
(s2979 5)
(s2980 5)
(s2981 2)
(s2983 4)
(s2984 5)
(s2985 5)
(s2986 2)
(s2988 4)
(s2989 5)
(s2990 5)
(s2991 2)
(s2993 4)
(s2994 5)
(s2995 5)
(s2996 2)
(s2998 4)
(s2999 5)
(s3000 5)
(s3001 2)
(s3003 4)
(s3004 5)
(s3005 5)
(s3006 2)
(s3008 4)
(s3009 5)
(s3010 5)
(s3011 2)
(s3013 4)
(s3014 5)
(s3015 5)
(s3016 2)
(s3018 4)
(s3019 5)
(s3020 5)
(s3021 2)
(s3023 4)
(s3024 5)
(s3025 5)
(s3026 2)
(s3028 4)
(s3029 5)
(s3030 5)
(s3031 2)
(s3033 4)
(s3034 5)
(s3035 5)
(s3036 2)
(s3038 4)
(s3039 5)
(s3040 5)
(s3041 2)
(s3043 4)
(s3044 5)
(s3045 5)
(s3046 2)
(s3048 4)
(s3049 5)
(s3050 5)
(s3051 2)
(s3053 4)
(s3054 5)
(s3055 5)
(s3056 2)
(s3058 4)
(s3059 5)
(s3060 5)
(s3061 2)
(s3063 4)
(s3064 5)
(s3065 5)
(s3066 2)
(s3068 4)
(s3069 5)
(s3070 5)
(s3071 2)
(s3073 4)
(s3074 5)
(s3075 5)
(s3076 2)
(s3078 4)
(s3079 5)
(s3080 5)
(s3081 2)
(s3083 4)
(s3084 5)
(s3085 5)
(s3086 2)
(s3088 4)
(s3089 5)
(s3090 5)
(s3091 2)
(s3093 4)
(s3094 5)
(s3095 5)
(s3096 2)
(s3098 4)
(s3099 5)
(s3100 5)
(s3101 2)
(s3103 4)
(s3104 5)
(s3105 5)
(s3106 2)
(s3108 4)
(s3109 5)
(s3110 5)
(s3111 2)
(s3113 4)
(s3114 5)
(s3115 5)
(s3116 2)
(s3118 4)
(s3119 5)
(s3120 5)
(s3121 2)
(s3123 4)
(s3124 5)
(s3125 5)
(s3126 2)
(s3128 4)
(s3129 5)
(s3130 5)
(s3131 2)
(s3133 4)
(s3134 5)
(s3135 5)
(s3136 2)
(s3138 4)
(s3139 5)
(s3140 5)
(s3141 2)
(s3143 4)
(s3144 5)
(s3145 5)
(s3146 2)
(s3148 4)
(s3149 5)
(s3150 5)
(s3151 2)
(s3153 4)
(s3154 5)
(s3155 5)
(s3156 2)
(s3158 4)
(s3159 5)
(s3160 5)
(s3161 2)
(s3163 4)
(s3164 5)
(s3165 5)
(s3166 2)
(s3168 4)
(s3169 5)
(s3170 5)
(s3171 2)
(s3173 4)
(s3174 5)
(s3175 5)
(s3176 2)
(s3178 4)
(s3179 5)
(s3180 5)
(s3181 2)
(s3183 4)
(s3184 5)
(s3185 5)
(s3186 2)
(s3188 4)
(s3189 5)
(s3190 5)
(s3191 2)
(s3193 4)
(s3194 5)
(s3195 5)
(s3196 2)
(s3198 4)
(s3199 5)
(s3200 5)
(s3201 2)
(s3203 4)
(s3204 5)
(s3205 5)
(s3206 2)
(s3208 4)
(s3209 5)
(s3210 5)
(s3211 2)
(s3213 4)
(s3214 5)
(s3215 5)
(s3216 2)
(s3218 4)
(s3219 5)
(s3220 5)
(s3221 2)
(s3223 4)
(s3224 5)
(s3225 5)
(s3226 2)
(s3228 4)
(s3229 5)
(s3230 5)
(s3231 2)
(s3233 4)
(s3234 5)
(s3235 5)
(s3236 2)
(s3238 4)
(s3239 5)
(s3240 5)
(s3241 2)
(s3243 4)
(s3244 5)
(s3245 5)
(s3246 2)
(s3248 4)
(s3249 5)
(s3250 5)
(s3251 2)
(s3253 4)
(s3254 5)
(s3255 5)
(s3256 2)
(s3258 4)
(s3259 5)
(s3260 5)
(s3261 2)
(s3263 4)
(s3264 5)
(s3265 5)
(s3266 2)
(s3268 4)
(s3269 5)
(s3270 5)
(s3271 2)
(s3273 4)
(s3274 5)
(s3275 5)
(s3276 2)
(s3278 4)
(s3279 5)
(s3280 5)
(s3281 2)
(s3283 4)
(s3284 5)
(s3285 5)
(s3286 2)
(s3288 4)
(s3289 5)
(s3290 5)
(s3291 2)
(s3293 4)
(s3294 5)
(s3295 5)
(s3296 2)
(s3298 4)
(s3299 5)
(s3300 5)
(s3301 2)
(s3303 4)
(s3304 5)
(s3305 5)
(s3306 2)
(s3308 4)
(s3309 5)
(s3310 5)
(s3311 2)
(s3313 4)
(s3314 5)
(s3315 5)
(s3316 2)
(s3318 4)
(s3319 5)
(s3320 5)
(s3321 2)
(s3323 4)
(s3324 5)
(s3325 5)
(s3326 2)
(s3328 4)
(s3329 5)
(s3330 5)
(s3331 2)
(s3333 4)
(s3334 5)
(s3335 5)
(s3336 2)
(s3338 4)
(s3339 5)
(s3340 5)
(s3341 2)
(s3343 4)
(s3344 5)
(s3345 5)
(s3346 2)
(s3348 4)
(s3349 5)
(s3350 5)
(s3351 2)
(s3353 4)
(s3354 5)
(s3355 5)
(s3356 2)
(s3358 4)
(s3359 5)
(s3360 5)
(s3361 2)
(s3363 4)
(s3364 5)
(s3365 5)
(s3366 2)
(s3368 4)
(s3369 5)
(s3370 5)
(s3371 2)
(s3373 4)
(s3374 5)
(s3375 5)
(s3376 2)
(s3378 4)
(s3379 5)
(s3380 5)
(s3381 2)
(s3383 4)
(s3384 5)
(s3385 5)
(s3386 2)
(s3388 4)
(s3389 5)
(s3390 5)
(s3391 2)
(s3393 4)
(s3394 5)
(s3395 5)
(s3396 2)
(s3398 4)
(s3399 5)
(s3400 5)
(s3401 2)
(s3403 4)
(s3404 5)
(s3405 5)
(s3406 2)
(s3408 4)
(s3409 5)
(s3410 5)
(s3411 2)
(s3413 4)
(s3414 5)
(s3415 5)
(s3416 2)
(s3418 4)
(s3419 5)
(s3420 5)
(s3421 2)
(s3423 4)
(s3424 5)
(s3425 5)
(s3426 2)
(s3428 4)
(s3429 5)
(s3430 5)
(s3431 2)
(s3433 4)
(s3434 5)
(s3435 5)
(s3436 2)
(s3438 4)
(s3439 5)
(s3440 5)
(s3441 2)
(s3443 4)
(s3444 5)
(s3445 5)
(s3446 2)
(s3448 4)
(s3449 5)
(s3450 5)
(s3451 2)
(s3453 4)
(s3454 5)
(s3455 5)
(s3456 2)
(s3458 4)
(s3459 5)
(s3460 5)
(s3461 2)
(s3463 4)
(s3464 5)
(s3465 5)
(s3466 2)
(s3468 4)
(s3469 5)
(s3470 5)
(s3471 2)
(s3473 4)
(s3474 5)
(s3475 5)
(s3476 2)
(s3478 4)
(s3479 5)
(s3480 5)
(s3481 2)
(s3483 4)
(s3484 5)
(s3485 5)
(s3486 2)
(s3488 4)
(s3489 5)
(s3490 5)
(s3491 2)
(s3493 4)
(s3494 5)
(s3495 5)
(s3496 2)
(s3498 4)
(s3499 5)
(s3500 5)
(s3501 2)
(s3503 4)
(s3504 5)
(s3505 5)
(s3506 2)
(s3508 4)
(s3509 5)
(s3510 5)
(s3511 2)
(s3513 4)
(s3514 5)
(s3515 5)
(s3516 2)
(s3518 4)
(s3519 5)
(s3520 5)
(s3521 2)
(s3523 4)
(s3524 5)
(s3525 5)
(s3526 2)
(s3528 4)
(s3529 5)
(s3530 5)
(s3531 2)
(s3533 4)
(s3534 5)
(s3535 5)
(s3536 2)
(s3538 4)
(s3539 5)
(s3540 5)
(s3541 2)
(s3543 4)
(s3544 5)
(s3545 5)
(s3546 2)
(s3548 4)
(s3549 5)
(s3550 5)
(s3551 2)
(s3553 4)
(s3554 5)
(s3555 5)
(s3556 2)
(s3558 4)
(s3559 5)
(s3560 5)
(s3561 2)
(s3563 4)
(s3564 5)
(s3565 5)
(s3566 2)
(s3568 4)
(s3569 5)
(s3570 5)
(s3571 2)
(s3573 4)
(s3574 5)
(s3575 5)
(s3576 2)
(s3578 4)
(s3579 5)
(s3580 5)
(s3581 2)
(s3583 4)
(s3584 5)
(s3585 5)
(s3586 2)
(s3588 4)
(s3589 5)
(s3590 5)
(s3591 2)
(s3593 4)
(s3594 5)
(s3595 5)
(s3596 2)
(s3598 4)
(s3599 5)
(s3600 5)
(s3601 2)
(s3603 4)
(s3604 5)
(s3605 5)
(s3606 2)
(s3608 4)
(s3609 5)
(s3610 5)
(s3611 2)
(s3613 4)
(s3614 5)
(s3615 5)
(s3616 2)
(s3618 4)
(s3619 5)
(s3620 5)
(s3621 2)
(s3623 4)
(s3624 5)
(s3625 5)
(s3626 2)
(s3628 4)
(s3629 5)
(s3630 5)
(s3631 2)
(s3633 4)
(s3634 5)
(s3635 5)
(s3636 2)
(s3638 4)
(s3639 5)
(s3640 5)
(s3641 2)
(s3643 4)
(s3644 5)
(s3645 5)
(s3646 2)
(s3648 4)
(s3649 5)
(s3650 5)
(s3651 2)
(s3653 4)
(s3654 5)
(s3655 5)
(s3656 2)
(s3658 4)
(s3659 5)
(s3660 5)
(s3661 2)
(s3663 4)
(s3664 5)
(s3665 5)
(s3666 2)
(s3668 4)
(s3669 5)
(s3670 5)
(s3671 2)
(s3673 4)
(s3674 5)
(s3675 5)
(s3676 2)
(s3678 4)
(s3679 5)
(s3680 5)
(s3681 2)
(s3683 4)
(s3684 5)
(s3685 5)
(s3686 2)
(s3688 4)
(s3689 5)
(s3690 5)
(s3691 2)
(s3693 4)
(s3694 5)
(s3695 5)
(s3696 2)
(s3698 4)
(s3699 5)
(s3700 5)
(s3701 2)
(s3703 4)
(s3704 5)
(s3705 5)
(s3706 2)
(s3708 4)
(s3709 5)
(s3710 5)
(s3711 2)
(s3713 4)
(s3714 5)
(s3715 5)
(s3716 2)
(s3718 4)
(s3719 5)
(s3720 5)
(s3721 2)
(s3723 4)
(s3724 5)
(s3725 5)
(s3726 2)
(s3728 4)
(s3729 5)
(s3730 5)
(s3731 2)
(s3733 4)
(s3734 5)
(s3735 5)
(s3736 2)
(s3738 4)
(s3739 5)
(s3740 5)
(s3741 2)
(s3743 4)
(s3744 5)
(s3745 5)
(s3746 2)
(s3748 4)
(s3749 5)
(s3750 5)
(s3751 2)
(s3753 4)
(s3754 5)
(s3755 5)
(s3756 2)
(s3758 4)
(s3759 5)
(s3760 5)
(s3761 2)
(s3763 4)
(s3764 5)
(s3765 5)
(s3766 2)
(s3768 4)
(s3769 5)
(s3770 5)
(s3771 2)
(s3773 4)
(s3774 5)
(s3775 5)
(s3776 2)
(s3778 4)
(s3779 5)
(s3780 5)
(s3781 2)
(s3783 4)
(s3784 5)
(s3785 5)
(s3786 2)
(s3788 4)
(s3789 5)
(s3790 5)
(s3791 2)
(s3793 4)
(s3794 5)
(s3795 5)
(s3796 2)
(s3798 4)
(s3799 5)
(s3800 5)
(s3801 2)
(s3803 4)
(s3804 5)
(s3805 5)
(s3806 2)
(s3808 4)
(s3809 5)
(s3810 5)
(s3811 2)
(s3813 4)
(s3814 5)
(s3815 5)
(s3816 2)
(s3818 4)
(s3819 5)
(s3820 5)
(s3821 2)
(s3823 4)
(s3824 5)
(s3825 5)
(s3826 2)
(s3828 4)
(s3829 5)
(s3830 5)
(s3831 2)
(s3833 4)
(s3834 5)
(s3835 5)
(s3836 2)
(s3838 4)
(s3839 5)
(s3840 5)
(s3841 2)
(s3843 4)
(s3844 5)
(s3845 5)
(s3846 2)
(s3848 4)
(s3849 5)
(s3850 5)
(s3851 2)
(s3853 4)
(s3854 5)
(s3855 5)
(s3856 2)
(s3858 4)
(s3859 5)
(s3860 5)
(s3861 2)
(s3863 4)
(s3864 5)
(s3865 5)
(s3866 2)
(s3868 4)
(s3869 5)
(s3870 5)
(s3871 2)
(s3873 4)
(s3874 5)
(s3875 5)
(s3876 2)
(s3878 4)
(s3879 5)
(s3880 5)
(s3881 2)
(s3883 4)
(s3884 5)
(s3885 5)
(s3886 2)
(s3888 4)
(s3889 5)
(s3890 5)
(s3891 2)
(s3893 4)
(s3894 5)
(s3895 5)
(s3896 2)
(s3898 4)
(s3899 5)
(s3900 5)
(s3901 2)
(s3903 4)
(s3904 5)
(s3905 5)
(s3906 2)
(s3908 4)
(s3909 5)
(s3910 5)
(s3911 2)
(s3913 4)
(s3914 5)
(s3915 5)
(s3916 2)
(s3918 4)
(s3919 5)
(s3920 5)
(s3921 2)
(s3923 4)
(s3924 5)
(s3925 5)
(s3926 2)
(s3928 4)
(s3929 5)
(s3930 5)
(s3931 2)
(s3933 4)
(s3934 5)
(s3935 5)
(s3936 2)
(s3938 4)
(s3939 5)
(s3940 5)
(s3941 2)
(s3943 4)
(s3944 5)
(s3945 5)
(s3946 2)
(s3948 4)
(s3949 5)
(s3950 5)
(s3951 2)
(s3953 4)
(s3954 5)
(s3955 5)
(s3956 2)
(s3958 4)
(s3959 5)
(s3960 5)
(s3961 2)
(s3963 4)
(s3964 5)
(s3965 5)
(s3966 2)
(s3968 4)
(s3969 5)
(s3970 5)
(s3971 2)
(s3973 4)
(s3974 5)
(s3975 5)
(s3976 2)
(s3978 4)
(s3979 5)
(s3980 5)
(s3981 2)
(s3983 4)
(s3984 5)
(s3985 5)
(s3986 2)
(s3988 4)
(s3989 5)
(s3990 5)
(s3991 2)
(s3993 4)
(s3994 5)
(s3995 5)
(s3996 2)
(s3998 4)
(s3999 5)
(s4000 5)
(s4001 2)
(s4003 4)
(s4004 5)
(s4005 5)
(s4006 2)
(s4008 4)
(s4009 5)
(s4010 5)
(s4011 2)
(s4013 4)
(s4014 5)
(s4015 5)
(s4016 2)
(s4018 4)
(s4019 5)
(s4020 5)
(s4021 2)
(s4023 4)
(s4024 5)
(s4025 5)
(s4026 2)
(s4028 4)
(s4029 5)
(s4030 5)
(s4031 2)
(s4033 4)
(s4034 5)
(s4035 5)
(s4036 2)
(s4038 4)
(s4039 5)
(s4040 5)
(s4041 2)
(s4043 4)
(s4044 5)
(s4045 5)
(s4046 2)
(s4048 4)
(s4049 5)
(s4050 5)
(s4051 2)
(s4053 4)
(s4054 5)
(s4055 5)
(s4056 2)
(s4058 4)
(s4059 5)
(s4060 5)
(s4061 2)
(s4063 4)
(s4064 5)
(s4065 5)
(s4066 2)
(s4068 4)
(s4069 5)
(s4070 5)
(s4071 2)
(s4073 4)
(s4074 5)
(s4075 5)
(s4076 2)
(s4078 4)
(s4079 5)
(s4080 5)
(s4081 2)
(s4083 4)
(s4084 5)
(s4085 5)
(s4086 2)
(s4088 4)
(s4089 5)
(s4090 5)
(s4091 2)
(s4093 4)
(s4094 5)
(s4095 5)
(s4096 2)
(s4098 4)
(s4099 5)
(s4100 5)
(s4101 2)
(s4103 4)
(s4104 5)
(s4105 5)
(s4106 2)
(s4108 4)
(s4109 5)
(s4110 5)
(s4111 2)
(s4113 4)
(s4114 5)
(s4115 5)
(s4116 2)
(s4118 4)
(s4119 5)
(s4120 5)
(s4121 2)
(s4123 4)
(s4124 5)
(s4125 5)
(s4126 2)
(s4128 4)
(s4129 5)
(s4130 5)
(s4131 2)
(s4133 4)
(s4134 5)
(s4135 5)
(s4136 2)
(s4138 4)
(s4139 5)
(s4140 5)
(s4141 2)
(s4143 4)
(s4144 5)
(s4145 5)
(s4146 2)
(s4148 4)
(s4149 5)
(s4150 5)
(s4151 2)
(s4153 4)
(s4154 5)
(s4155 5)
(s4156 2)
(s4158 4)
(s4159 5)
(s4160 5)
(s4161 2)
(s4163 4)
(s4164 5)
(s4165 5)
(s4166 2)
(s4168 4)
(s4169 5)
(s4170 5)
(s4171 2)
(s4173 4)
(s4174 5)
(s4175 5)
(s4176 2)
(s4178 4)
(s4179 5)
(s4180 5)
(s4181 2)
(s4183 4)
(s4184 5)
(s4185 5)
(s4186 2)
(s4188 4)
(s4189 5)
(s4190 5)
(s4191 2)
(s4193 4)
(s4194 5)
(s4195 5)
(s4196 2)
(s4198 4)
(s4199 5)
(s4200 5)
(s4201 2)
(s4203 4)
(s4204 5)
(s4205 5)
(s4206 2)
(s4208 4)
(s4209 5)
(s4210 5)
(s4211 2)
(s4213 4)
(s4214 5)
(s4215 5)
(s4216 2)
(s4218 4)
(s4219 5)
(s4220 5)
(s4221 2)
(s4223 4)
(s4224 5)
(s4225 5)
(s4226 2)
(s4228 4)
(s4229 5)
(s4230 5)
(s4231 2)
(s4233 4)
(s4234 5)
(s4235 5)
(s4236 2)
(s4238 4)
(s4239 5)
(s4240 5)
(s4241 2)
(s4243 4)
(s4244 5)
(s4245 5)
(s4246 2)
(s4248 4)
(s4249 5)
(s4250 5)
(s4251 2)
(s4253 4)
(s4254 5)
(s4255 5)
(s4256 2)
(s4258 4)
(s4259 5)
(s4260 5)
(s4261 2)
(s4263 4)
(s4264 5)
(s4265 5)
(s4266 2)
(s4268 4)
(s4269 5)
(s4270 5)
(s4271 2)
(s4273 4)
(s4274 5)
(s4275 5)
(s4276 2)
(s4278 4)
(s4279 5)
(s4280 5)
(s4281 2)
(s4283 4)
(s4284 5)
(s4285 5)
(s4286 2)
(s4288 4)
(s4289 5)
(s4290 5)
(s4291 2)
(s4293 4)
(s4294 5)
(s4295 5)
(s4296 2)
(s4298 4)
(s4299 5)
(s4300 5)
(s4301 2)
(s4303 4)
(s4304 5)
(s4305 5)
(s4306 2)
(s4308 4)
(s4309 5)
(s4310 5)
(s4311 2)
(s4313 4)
(s4314 5)
(s4315 5)
(s4316 2)
(s4318 4)
(s4319 5)
(s4320 5)
(s4321 2)
(s4323 4)
(s4324 5)
(s4325 5)
(s4326 2)
(s4328 4)
(s4329 5)
(s4330 5)
(s4331 2)
(s4333 4)
(s4334 5)
(s4335 5)
(s4336 2)
(s4338 4)
(s4339 5)
(s4340 5)
(s4341 2)
(s4343 4)
(s4344 5)
(s4345 5)
(s4346 2)
(s4348 4)
(s4349 5)
(s4350 5)
(s4351 2)
(s4353 4)
(s4354 5)
(s4355 5)
(s4356 2)
(s4358 4)
(s4359 5)
(s4360 5)
(s4361 2)
(s4363 4)
(s4364 5)
(s4365 5)
(s4366 2)
(s4368 4)
(s4369 5)
(s4370 5)
(s4371 2)
(s4373 4)
(s4374 5)
(s4375 5)
(s4376 2)
(s4378 4)
(s4379 5)
(s4380 5)
(s4381 2)
(s4383 4)
(s4384 5)
(s4385 5)
(s4386 2)
(s4388 4)
(s4389 5)
(s4390 5)
(s4391 2)
(s4393 4)
(s4394 5)
(s4395 5)
(s4396 2)
(s4398 4)
(s4399 5)
(s4400 5)
(s4401 2)
(s4403 4)
(s4404 5)
(s4405 5)
(s4406 2)
(s4408 4)
(s4409 5)
(s4410 5)
(s4411 2)
(s4413 4)
(s4414 5)
(s4415 5)
(s4416 2)
(s4418 4)
(s4419 5)
(s4420 5)
(s4421 2)
(s4423 4)
(s4424 5)
(s4425 5)
(s4426 2)
(s4428 4)
(s4429 5)
(s4430 5)
(s4431 2)
(s4433 4)
(s4434 5)
(s4435 5)
(s4436 2)
(s4438 4)
(s4439 5)
(s4440 5)
(s4441 2)
(s4443 4)
(s4444 5)
(s4445 5)
(s4446 2)
(s4448 4)
(s4449 5)
(s4450 5)
(s4451 2)
(s4453 4)
(s4454 5)
(s4455 5)
(s4456 2)
(s4458 4)
(s4459 5)
(s4460 5)
(s4461 2)
(s4463 4)
(s4464 5)
(s4465 5)
(s4466 2)
(s4468 4)
(s4469 5)
(s4470 5)
(s4471 2)
(s4473 4)
(s4474 5)
(s4475 5)
(s4476 2)
(s4478 4)
(s4479 5)
(s4480 5)
(s4481 2)
(s4483 4)
(s4484 5)
(s4485 5)
(s4486 2)
(s4488 4)
(s4489 5)
(s4490 5)
(s4491 2)
(s4493 4)
(s4494 5)
(s4495 5)
(s4496 2)
(s4498 4)
(s4499 5)
(s4500 5)
(s4501 2)
(s4503 4)
(s4504 5)
(s4505 5)
(s4506 2)
(s4508 4)
(s4509 5)
(s4510 5)
(s4511 2)
(s4513 4)
(s4514 5)
(s4515 5)
(s4516 2)
(s4518 4)
(s4519 5)
(s4520 5)
(s4521 2)
(s4523 4)
(s4524 5)
(s4525 5)
(s4526 2)
(s4528 4)
(s4529 5)
(s4530 5)
(s4531 2)
(s4533 4)
(s4534 5)
(s4535 5)
(s4536 2)
(s4538 4)
(s4539 5)
(s4540 5)
(s4541 2)
(s4543 4)
(s4544 5)
(s4545 5)
(s4546 2)
(s4548 4)
(s4549 5)
(s4550 5)
(s4551 2)
(s4553 4)
(s4554 5)
(s4555 5)
(s4556 2)
(s4558 4)
(s4559 5)
(s4560 5)
(s4561 2)
(s4563 4)
(s4564 5)
(s4565 5)
(s4566 2)
(s4568 4)
(s4569 5)
(s4570 5)
(s4571 2)
(s4573 4)
(s4574 5)
(s4575 5)
(s4576 2)
(s4578 4)
(s4579 5)
(s4580 5)
(s4581 2)
(s4583 4)
(s4584 5)
(s4585 5)
(s4586 2)
(s4588 4)
(s4589 5)
(s4590 5)
(s4591 2)
(s4593 4)
(s4594 5)
(s4595 5)
(s4596 2)
(s4598 4)
(s4599 5)
(s4600 5)
(s4601 2)
(s4603 4)
(s4604 5)
(s4605 5)
(s4606 2)
(s4608 4)
(s4609 5)
(s4610 5)
(s4611 2)
(s4613 4)
(s4614 5)
(s4615 5)
(s4616 2)
(s4618 4)
(s4619 5)
(s4620 5)
(s4621 2)
(s4623 4)
(s4624 5)
(s4625 5)
(s4626 2)
(s4628 4)
(s4629 5)
(s4630 5)
(s4631 2)
(s4633 4)
(s4634 5)
(s4635 5)
(s4636 2)
(s4638 4)
(s4639 5)
(s4640 5)
(s4641 2)
(s4643 4)
(s4644 5)
(s4645 5)
(s4646 2)
(s4648 4)
(s4649 5)
(s4650 5)
(s4651 2)
(s4653 4)
(s4654 5)
(s4655 5)
(s4656 2)
(s4658 4)
(s4659 5)
(s4660 5)
(s4661 2)
(s4663 4)
(s4664 5)
(s4665 5)
(s4666 2)
(s4668 4)
(s4669 5)
(s4670 5)
(s4671 2)
(s4673 4)
(s4674 5)
(s4675 5)
(s4676 2)
(s4678 4)
(s4679 5)
(s4680 5)
(s4681 2)
(s4683 4)
(s4684 5)
(s4685 5)
(s4686 2)
(s4688 4)
(s4689 5)
(s4690 5)
(s4691 2)
(s4693 4)
(s4694 5)
(s4695 5)
(s4696 2)
(s4698 4)
(s4699 5)
(s4700 5)
(s4701 2)
(s4703 4)
(s4704 5)
(s4705 5)
(s4706 2)
(s4708 4)
(s4709 5)
(s4710 5)
(s4711 2)
(s4713 4)
(s4714 5)
(s4715 5)
(s4716 2)
(s4718 4)
(s4719 5)
(s4720 5)
(s4721 2)
(s4723 4)
(s4724 5)
(s4725 5)
(s4726 2)
(s4728 4)
(s4729 5)
(s4730 5)
(s4731 2)
(s4733 4)
(s4734 5)
(s4735 5)
(s4736 2)
(s4738 4)
(s4739 5)
(s4740 5)
(s4741 2)
(s4743 4)
(s4744 5)
(s4745 5)
(s4746 2)
(s4748 4)
(s4749 5)
(s4750 5)
(s4751 2)
(s4753 4)
(s4754 5)
(s4755 5)
(s4756 2)
(s4758 4)
(s4759 5)
(s4760 5)
(s4761 2)
(s4763 4)
(s4764 5)
(s4765 5)
(s4766 2)
(s4768 4)
(s4769 5)
(s4770 5)
(s4771 2)
(s4773 4)
(s4774 5)
(s4775 5)
(s4776 2)
(s4778 4)
(s4779 5)
(s4780 5)
(s4781 2)
(s4783 4)
(s4784 5)
(s4785 5)
(s4786 2)
(s4788 4)
(s4789 5)
(s4790 5)
(s4791 2)
(s4793 4)
(s4794 5)
(s4795 5)
(s4796 2)
(s4798 4)
(s4799 5)
(s4800 5)
(s4801 2)
(s4803 4)
(s4804 5)
(s4805 5)
(s4806 2)
(s4808 4)
(s4809 5)
(s4810 5)
(s4811 2)
(s4813 4)
(s4814 5)
(s4815 5)
(s4816 2)
(s4818 4)
(s4819 5)
(s4820 5)
(s4821 2)
(s4823 4)
(s4824 5)
(s4825 5)
(s4826 2)
(s4828 4)
(s4829 5)
(s4830 5)
(s4831 2)
(s4833 4)
(s4834 5)
(s4835 5)
(s4836 2)
(s4838 4)
(s4839 5)
(s4840 5)
(s4841 2)
(s4843 4)
(s4844 5)
(s4845 5)
(s4846 2)
(s4848 4)
(s4849 5)
(s4850 5)
(s4851 2)
(s4853 4)
(s4854 5)
(s4855 5)
(s4856 2)
(s4858 4)
(s4859 5)
(s4860 5)
(s4861 2)
(s4863 4)
(s4864 5)
(s4865 5)
(s4866 2)
(s4868 4)
(s4869 5)
(s4870 5)
(s4871 2)
(s4873 4)
(s4874 5)
(s4875 5)
(s4876 2)
(s4878 4)
(s4879 5)
(s4880 5)
(s4881 2)
(s4883 4)
(s4884 5)
(s4885 5)
(s4886 2)
(s4888 4)
(s4889 5)
(s4890 5)
(s4891 2)
(s4893 4)
(s4894 5)
(s4895 5)
(s4896 2)
(s4898 4)
(s4899 5)
(s4900 5)
(s4901 2)
(s4903 4)
(s4904 5)
(s4905 5)
(s4906 2)
(s4908 4)
(s4909 5)
(s4910 5)
(s4911 2)
(s4913 4)
(s4914 5)
(s4915 5)
(s4916 2)
(s4918 4)
(s4919 5)
(s4920 5)
(s4921 2)
(s4923 4)
(s4924 5)
(s4925 5)
(s4926 2)
(s4928 4)
(s4929 5)
(s4930 5)
(s4931 2)
(s4933 4)
(s4934 5)
(s4935 5)
(s4936 2)
(s4938 4)
(s4939 5)
(s4940 5)
(s4941 2)
(s4943 4)
(s4944 5)
(s4945 5)
(s4946 2)
(s4948 4)
(s4949 5)
(s4950 5)
(s4951 2)
(s4953 4)
(s4954 5)
(s4955 5)
(s4956 2)
(s4958 4)
(s4959 5)
(s4960 5)
(s4961 2)
(s4963 4)
(s4964 5)
(s4965 5)
(s4966 2)
(s4968 4)
(s4969 5)
(s4970 5)
(s4971 2)
(s4973 4)
(s4974 5)
(s4975 5)
(s4976 2)
(s4978 4)
(s4979 5)
(s4980 5)
(s4981 2)
(s4983 4)
(s4984 5)
(s4985 5)
(s4986 2)
(s4988 4)
(s4989 5)
(s4990 5)
(s4991 2)
(s4993 4)
(s4994 5)
(s4995 5)
(s4996 2)
(s4998 4)
(s4999 5)
(s5000 5)
(s5001 2)
(s5003 4)
(s5004 5)
(s5005 5)
(s5006 2)
(s5008 4)
(s5009 5)
(s5010 5)
(s5011 2)
(s5013 4)
(s5014 5)
(s5015 5)
(s5016 2)
(s5018 4)
(s5019 5)
(s5020 5)
(s5021 2)
(s5023 4)
(s5024 5)
(s5025 5)
(s5026 2)
(s5028 4)
(s5029 5)
(s5030 5)
(s5031 2)
(s5033 4)
(s5034 5)
(s5035 5)
(s5036 2)
(s5038 4)
(s5039 5)
(s5040 5)
(s5041 2)
(s5043 4)
(s5044 5)
(s5045 5)
(s5046 2)
(s5048 4)
(s5049 5)
(s5050 5)
(s5051 2)
(s5053 4)
(s5054 5)
(s5055 5)
(s5056 2)
(s5058 4)
(s5059 5)
(s5060 5)
(s5061 2)
(s5063 4)
(s5064 5)
(s5065 5)
(s5066 2)
(s5068 4)
(s5069 5)
(s5070 5)
(s5071 2)
(s5073 4)
(s5074 5)
(s5075 5)
(s5076 2)
(s5078 4)
(s5079 5)
(s5080 5)
(s5081 2)
(s5083 4)
(s5084 5)
(s5085 5)
(s5086 2)
(s5088 4)
(s5089 5)
(s5090 5)
(s5091 2)
(s5093 4)
(s5094 5)
(s5095 5)
(s5096 2)
(s5098 4)
(s5099 5)
(s5100 5)
(s5101 2)
(s5103 4)
(s5104 5)
(s5105 5)
(s5106 2)
(s5108 4)
(s5109 5)
(s5110 5)
(s5111 2)
(s5113 4)
(s5114 5)
(s5115 5)
(s5116 2)
(s5118 4)
(s5119 5)
(s5120 5)
(s5121 2)
(s5123 4)
(s5124 5)
(s5125 5)
(s5126 2)
(s5128 4)
(s5129 5)
(s5130 5)
(s5131 2)
(s5133 4)
(s5134 5)
(s5135 5)
(s5136 2)
(s5138 4)
(s5139 5)
(s5140 5)
(s5141 2)
(s5143 4)
(s5144 5)
(s5145 5)
(s5146 2)
(s5148 4)
(s5149 5)
(s5150 5)
(s5151 2)
(s5153 4)
(s5154 5)
(s5155 5)
(s5156 2)
(s5158 4)
(s5159 5)
(s5160 5)
(s5161 2)
(s5163 4)
(s5164 5)
(s5165 5)
(s5166 2)
(s5168 4)
(s5169 5)
(s5170 5)
(s5171 2)
(s5173 4)
(s5174 5)
(s5175 5)
(s5176 2)
(s5178 4)
(s5179 5)
(s5180 5)
(s5181 2)
(s5183 4)
(s5184 5)
(s5185 5)
(s5186 2)
(s5188 4)
(s5189 5)
(s5190 5)
(s5191 2)
(s5193 4)
(s5194 5)
(s5195 5)
(s5196 2)
(s5198 4)
(s5199 5)
(s5200 5)
(s5201 2)
(s5203 4)
(s5204 5)
(s5205 5)
(s5206 2)
(s5208 4)
(s5209 5)
(s5210 5)
(s5211 2)
(s5213 4)
(s5214 5)
(s5215 5)
(s5216 2)
(s5218 4)
(s5219 5)
(s5220 5)
(s5221 2)
(s5223 4)
(s5224 5)
(s5225 5)
(s5226 2)
(s5228 4)
(s5229 5)
(s5230 5)
(s5231 2)
(s5233 4)
(s5234 5)
(s5235 5)
(s5236 2)
(s5238 4)
(s5239 5)
(s5240 5)
(s5241 2)
(s5243 4)
(s5244 5)
(s5245 5)
(s5246 2)
(s5248 4)
(s5249 5)
(s5250 5)
(s5251 2)
(s5253 4)
(s5254 5)
(s5255 5)
(s5256 2)
(s5258 4)
(s5259 5)
(s5260 5)
(s5261 2)
(s5263 4)
(s5264 5)
(s5265 5)
(s5266 2)
(s5268 4)
(s5269 5)
(s5270 5)
(s5271 2)
(s5273 4)
(s5274 5)
(s5275 5)
(s5276 2)
(s5278 4)
(s5279 5)
(s5280 5)
(s5281 2)
(s5283 4)
(s5284 5)
(s5285 5)
(s5286 2)
(s5288 4)
(s5289 5)
(s5290 5)
(s5291 2)
(s5293 4)
(s5294 5)
(s5295 5)
(s5296 2)
(s5298 4)
(s5299 5)
(s5300 5)
(s5301 2)
(s5303 4)
(s5304 5)
(s5305 5)
(s5306 2)
(s5308 4)
(s5309 5)
(s5310 5)
(s5311 2)
(s5313 4)
(s5314 5)
(s5315 5)
(s5316 2)
(s5318 4)
(s5319 5)
(s5320 5)
(s5321 2)
(s5323 4)
(s5324 5)
(s5325 5)
(s5326 2)
(s5328 4)
(s5329 5)
(s5330 5)
(s5331 2)
(s5333 4)
(s5334 5)
(s5335 5)
(s5336 2)
(s5338 4)
(s5339 5)
(s5340 5)
(s5341 2)
(s5343 4)
(s5344 5)
(s5345 5)
(s5346 2)
(s5348 4)
(s5349 5)
(s5350 5)
(s5351 2)
(s5353 4)
(s5354 5)
(s5355 5)
(s5356 2)
(s5358 4)
(s5359 5)
(s5360 5)
(s5361 2)
(s5363 4)
(s5364 5)
(s5365 5)
(s5366 2)
(s5368 4)
(s5369 5)
(s5370 5)
(s5371 2)
(s5373 4)
(s5374 5)
(s5375 5)
(s5376 2)
(s5378 4)
(s5379 5)
(s5380 5)
(s5381 2)
(s5383 4)
(s5384 5)
(s5385 5)
(s5386 2)
(s5388 4)
(s5389 5)
(s5390 5)
(s5391 2)
(s5393 4)
(s5394 5)
(s5395 5)
(s5396 2)
(s5398 4)
(s5399 5)
(s5400 5)
(s5401 2)
(s5403 4)
(s5404 5)
(s5405 5)
(s5406 2)
(s5408 4)
(s5409 5)
(s5410 5)
(s5411 2)
(s5413 4)
(s5414 5)
(s5415 5)
(s5416 2)
(s5418 4)
(s5419 5)
(s5420 5)
(s5421 2)
(s5423 4)
(s5424 5)
(s5425 5)
(s5426 2)
(s5428 4)
(s5429 5)
(s5430 5)
(s5431 2)
(s5433 4)
(s5434 5)
(s5435 5)
(s5436 2)
(s5438 4)
(s5439 5)
(s5440 5)
(s5441 2)
(s5443 4)
(s5444 5)
(s5445 5)
(s5446 2)
(s5448 4)
(s5449 5)
(s5450 5)
(s5451 2)
(s5453 4)
(s5454 5)
(s5455 5)
(s5456 2)
(s5458 4)
(s5459 5)
(s5460 5)
(s5461 2)
(s5463 4)
(s5464 5)
(s5465 5)
(s5466 2)
(s5468 4)
(s5469 5)
(s5470 5)
(s5471 2)
(s5473 4)
(s5474 5)
(s5475 5)
(s5476 2)
(s5478 4)
(s5479 5)
(s5480 5)
(s5481 2)
(s5483 4)
(s5484 5)
(s5485 5)
(s5486 2)
(s5488 4)
(s5489 5)
(s5490 5)
(s5491 2)
(s5493 4)
(s5494 5)
(s5495 5)
(s5496 2)
(s5498 4)
(s5499 5)
(s5500 5)
(s5501 2)
(s5503 4)
(s5504 5)
(s5505 5)
(s5506 2)
(s5508 4)
(s5509 5)
(s5510 5)
(s5511 2)
(s5513 4)
(s5514 5)
(s5515 5)
(s5516 2)
(s5518 4)
(s5519 5)
(s5520 5)
(s5521 2)
(s5523 4)
(s5524 5)
(s5525 5)
(s5526 2)
(s5528 4)
(s5529 5)
(s5530 5)
(s5531 2)
(s5533 4)
(s5534 5)
(s5535 5)
(s5536 2)
(s5538 4)
(s5539 5)
(s5540 5)
(s5541 2)
(s5543 4)
(s5544 5)
(s5545 5)
(s5546 2)
(s5548 4)
(s5549 5)
(s5550 5)
(s5551 2)
(s5553 4)
(s5554 5)
(s5555 5)
(s5556 2)
(s5558 4)
(s5559 5)
(s5560 5)
(s5561 2)
(s5563 4)
(s5564 5)
(s5565 5)
(s5566 2)
(s5568 4)
(s5569 5)
(s5570 5)
(s5571 2)
(s5573 4)
(s5574 5)
(s5575 5)
(s5576 2)
(s5578 4)
(s5579 5)
(s5580 5)
(s5581 2)
(s5583 4)
(s5584 5)
(s5585 5)
(s5586 2)
(s5588 4)
(s5589 5)
(s5590 5)
(s5591 2)
(s5593 4)
(s5594 5)
(s5595 5)
(s5596 2)
(s5598 4)
(s5599 5)
(s5600 5)
(s5601 2)
(s5603 4)
(s5604 5)
(s5605 5)
(s5606 2)
(s5608 4)
(s5609 5)
(s5610 5)
(s5611 2)
(s5613 4)
(s5614 5)
(s5615 5)
(s5616 2)
(s5618 4)
(s5619 5)
(s5620 5)
(s5621 2)
(s5623 4)
(s5624 5)
(s5625 5)
(s5626 2)
(s5628 4)
(s5629 5)
(s5630 5)
(s5631 2)
(s5633 4)
(s5634 5)
(s5635 5)
(s5636 2)
(s5638 4)
(s5639 5)
(s5640 5)
(s5641 2)
(s5643 4)
(s5644 5)
(s5645 5)
(s5646 2)
(s5648 4)
(s5649 5)
(s5650 5)
(s5651 2)
(s5653 4)
(s5654 5)
(s5655 5)
(s5656 2)
(s5658 4)
(s5659 5)
(s5660 5)
(s5661 2)
(s5663 4)
(s5664 5)
(s5665 5)
(s5666 2)
(s5668 4)
(s5669 5)
(s5670 5)
(s5671 2)
(s5673 4)
(s5674 5)
(s5675 5)
(s5676 2)
(s5678 4)
(s5679 5)
(s5680 5)
(s5681 2)
(s5683 4)
(s5684 5)
(s5685 5)
(s5686 2)
(s5688 4)
(s5689 5)
(s5690 5)
(s5691 2)
(s5693 4)
(s5694 5)
(s5695 5)
(s5696 2)
(s5698 4)
(s5699 5)
(s5700 5)
(s5701 2)
(s5703 4)
(s5704 5)
(s5705 5)
(s5706 2)
(s5708 4)
(s5709 5)
(s5710 5)
(s5711 2)
(s5713 4)
(s5714 5)
(s5715 5)
(s5716 2)
(s5718 4)
(s5719 5)
(s5720 5)
(s5721 2)
(s5723 4)
(s5724 5)
(s5725 5)
(s5726 2)
(s5728 4)
(s5729 5)
(s5730 5)
(s5731 2)
(s5733 4)
(s5734 5)
(s5735 5)
(s5736 2)
(s5738 4)
(s5739 5)
(s5740 5)
(s5741 2)
(s5743 4)
(s5744 5)
(s5745 5)
(s5746 2)
(s5748 4)
(s5749 5)
(s5750 5)
(s5751 2)
(s5753 4)
(s5754 5)
(s5755 5)
(s5756 2)
(s5758 4)
(s5759 5)
(s5760 5)
(s5761 2)
(s5763 4)
(s5764 5)
(s5765 5)
(s5766 2)
(s5768 4)
(s5769 5)
(s5770 5)
(s5771 2)
(s5773 4)
(s5774 5)
(s5775 5)
(s5776 2)
(s5778 4)
(s5779 5)
(s5780 5)
(s5781 2)
(s5783 4)
(s5784 5)
(s5785 5)
(s5786 2)
(s5788 4)
(s5789 5)
(s5790 5)
(s5791 2)
(s5793 4)
(s5794 5)
(s5795 5)
(s5796 2)
(s5798 4)
(s5799 5)
(s5800 5)
(s5801 2)
(s5803 4)
(s5804 5)
(s5805 5)
(s5806 2)
(s5808 4)
(s5809 5)
(s5810 5)
(s5811 2)
(s5813 4)
(s5814 5)
(s5815 5)
(s5816 2)
(s5818 4)
(s5819 5)
(s5820 5)
(s5821 2)
(s5823 4)
(s5824 5)
(s5825 5)
(s5826 2)
(s5828 4)
(s5829 5)
(s5830 5)
(s5831 2)
(s5833 4)
(s5834 5)
(s5835 5)
(s5836 2)
(s5838 4)
(s5839 5)
(s5840 5)
(s5841 2)
(s5843 4)
(s5844 5)
(s5845 5)
(s5846 2)
(s5848 4)
(s5849 5)
(s5850 5)
(s5851 2)
(s5853 4)
(s5854 5)
(s5855 5)
(s5856 2)
(s5858 4)
(s5859 5)
(s5860 5)
(s5861 2)
(s5863 4)
(s5864 5)
(s5865 5)
(s5866 2)
(s5868 4)
(s5869 5)
(s5870 5)
(s5871 2)
(s5873 4)
(s5874 5)
(s5875 5)
(s5876 2)
(s5878 4)
(s5879 5)
(s5880 5)
(s5881 2)
(s5883 4)
(s5884 5)
(s5885 5)
(s5886 2)
(s5888 4)
(s5889 5)
(s5890 5)
(s5891 2)
(s5893 4)
(s5894 5)
(s5895 5)
(s5896 2)
(s5898 4)
(s5899 5)
(s5900 5)
(s5901 2)
(s5903 4)
(s5904 5)
(s5905 5)
(s5906 2)
(s5908 4)
(s5909 5)
(s5910 5)
(s5911 2)
(s5913 4)
(s5914 5)
(s5915 5)
(s5916 2)
(s5918 4)
(s5919 5)
(s5920 5)
(s5921 2)
(s5923 4)
(s5924 5)
(s5925 5)
(s5926 2)
(s5928 4)
(s5929 5)
(s5930 5)
(s5931 2)
(s5933 4)
(s5934 5)
(s5935 5)
(s5936 2)
(s5938 4)
(s5939 5)
(s5940 5)
(s5941 2)
(s5943 4)
(s5944 5)
(s5945 5)
(s5946 2)
(s5948 4)
(s5949 5)
(s5950 5)
(s5951 2)
(s5953 4)
(s5954 5)
(s5955 5)
(s5956 2)
(s5958 4)
(s5959 5)
(s5960 5)
(s5961 2)
(s5963 4)
(s5964 5)
(s5965 5)
(s5966 2)
(s5968 4)
(s5969 5)
(s5970 5)
(s5971 2)
(s5973 4)
(s5974 5)
(s5975 5)
(s5976 2)
(s5978 4)
(s5979 5)
(s5980 5)
(s5981 2)
(s5983 4)
(s5984 5)
(s5985 5)
(s5986 2)
(s5988 4)
(s5989 5)
(s5990 5)
(s5991 2)
(s5993 4)
(s5994 5)
(s5995 5)
(s5996 2)
(s5998 4)
(s5999 5)
(s6000 5)
(s6001 2)
(s6003 4)
(s6004 5)
(s6005 5)
(s6006 2)
(s6008 4)
(s6009 5)
(s6010 5)
(s6011 2)
(s6013 4)
(s6014 5)
(s6015 5)
(s6016 2)
(s6018 4)
(s6019 5)
(s6020 5)
(s6021 2)
(s6023 4)
(s6024 5)
(s6025 5)
(s6026 2)
(s6028 4)
(s6029 5)
(s6030 5)
(s6031 2)
(s6033 4)
(s6034 5)
(s6035 5)
(s6036 2)
(s6038 4)
(s6039 5)
(s6040 5)
(s6041 2)
(s6043 4)
(s6044 5)
(s6045 5)
(s6046 2)
(s6048 4)
(s6049 5)
(s6050 5)
(s6051 2)
(s6053 4)
(s6054 5)
(s6055 5)
(s6056 2)
(s6058 4)
(s6059 5)
(s6060 5)
(s6061 2)
(s6063 4)
(s6064 5)
(s6065 5)
(s6066 2)
(s6068 4)
(s6069 5)
(s6070 5)
(s6071 2)
(s6073 4)
(s6074 5)
(s6075 5)
(s6076 2)
(s6078 4)
(s6079 5)
(s6080 5)
(s6081 2)
(s6083 4)
(s6084 5)
(s6085 5)
(s6086 2)
(s6088 4)
(s6089 5)
(s6090 5)
(s6091 2)
(s6093 4)
(s6094 5)
(s6095 5)
(s6096 2)
(s6098 4)
(s6099 5)
(s6100 5)
(s6101 2)
(s6103 4)
(s6104 5)
(s6105 5)
(s6106 2)
(s6108 4)
(s6109 5)
(s6110 5)
(s6111 2)
(s6113 4)
(s6114 5)
(s6115 5)
(s6116 2)
(s6118 4)
(s6119 5)
(s6120 5)
(s6121 2)
(s6123 4)
(s6124 5)
(s6125 5)
(s6126 2)
(s6128 4)
(s6129 5)
(s6130 5)
(s6131 2)
(s6133 4)
(s6134 5)
(s6135 5)
(s6136 2)
(s6138 4)
(s6139 5)
(s6140 5)
(s6141 2)
(s6143 4)
(s6144 5)
(s6145 5)
(s6146 2)
(s6148 4)
(s6149 5)
(s6150 5)
(s6151 2)
(s6153 4)
(s6154 5)
(s6155 5)
(s6156 2)
(s6158 4)
(s6159 5)
(s6160 5)
(s6161 2)
(s6163 4)
(s6164 5)
(s6165 5)
(s6166 2)
(s6168 4)
(s6169 5)
(s6170 5)
(s6171 2)
(s6173 4)
(s6174 5)
(s6175 5)
(s6176 2)
(s6178 4)
(s6179 5)
(s6180 5)
(s6181 2)
(s6183 4)
(s6184 5)
(s6185 5)
(s6186 2)
(s6188 4)
(s6189 5)
(s6190 5)
(s6191 2)
(s6193 4)
(s6194 5)
(s6195 5)
(s6196 2)
(s6198 4)
(s6199 5)
(s6200 5)
(s6201 2)
(s6203 4)
(s6204 5)
(s6205 5)
(s6206 2)
(s6208 4)
(s6209 5)
(s6210 5)
(s6211 2)
(s6213 4)
(s6214 5)
(s6215 5)
(s6216 2)
(s6218 4)
(s6219 5)
(s6220 5)
(s6221 2)
(s6223 4)
(s6224 5)
(s6225 5)
(s6226 2)
(s6228 4)
(s6229 5)
(s6230 5)
(s6231 2)
(s6233 4)
(s6234 5)
(s6235 5)
(s6236 2)
(s6238 4)
(s6239 5)
(s6240 5)
(s6241 2)
(s6243 4)
(s6244 5)
(s6245 5)
(s6246 2)
(s6248 4)
(s6249 5)
(s6250 5)
(s6251 2)
(s6253 4)
(s6254 5)
(s6255 5)
(s6256 2)
(s6258 4)
(s6259 5)
(s6260 5)
(s6261 2)
(s6263 4)
(s6264 5)
(s6265 5)
(s6266 2)
(s6268 4)
(s6269 5)
(s6270 5)
(s6271 2)
(s6273 4)
(s6274 5)
(s6275 5)
(s6276 2)
(s6278 4)
(s6279 5)
(s6280 5)
(s6281 2)
(s6283 4)
(s6284 5)
(s6285 5)
(s6286 2)
(s6288 4)
(s6289 5)
(s6290 5)
(s6291 2)
(s6293 4)
(s6294 5)
(s6295 5)
(s6296 2)
(s6298 4)
(s6299 5)
(s6300 5)
(s6301 2)
(s6303 4)
(s6304 5)
(s6305 5)
(s6306 2)
(s6308 4)
(s6309 5)
(s6310 5)
(s6311 2)
(s6313 4)
(s6314 5)
(s6315 5)
(s6316 2)
(s6318 4)
(s6319 5)
(s6320 5)
(s6321 2)
(s6323 4)
(s6324 5)
(s6325 5)
(s6326 2)
(s6328 4)
(s6329 5)
(s6330 5)
(s6331 2)
(s6333 4)
(s6334 5)
(s6335 5)
(s6336 2)
(s6338 4)
(s6339 5)
(s6340 5)
(s6341 2)
(s6343 4)
(s6344 5)
(s6345 5)
(s6346 2)
(s6348 4)
(s6349 5)
(s6350 5)
(s6351 2)
(s6353 4)
(s6354 5)
(s6355 5)
(s6356 2)
(s6358 4)
(s6359 5)
(s6360 5)
(s6361 2)
(s6363 4)
(s6364 5)
(s6365 5)
(s6366 2)
(s6368 4)
(s6369 5)
(s6370 5)
(s6371 2)
(s6373 4)
(s6374 5)
(s6375 5)
(s6376 2)
(s6378 4)
(s6379 5)
(s6380 5)
(s6381 2)
(s6383 4)
(s6384 5)
(s6385 5)
(s6386 2)
(s6388 4)
(s6389 5)
(s6390 5)
(s6391 2)
(s6393 4)
(s6394 5)
(s6395 5)
(s6396 2)
(s6398 4)
(s6399 5)
(s6400 5)
(s6401 2)
(s6403 4)
(s6404 5)
(s6405 5)
(s6406 2)
(s6408 4)
(s6409 5)
(s6410 5)
(s6411 2)
(s6413 4)
(s6414 5)
(s6415 5)
(s6416 2)
(s6418 4)
(s6419 5)
(s6420 5)
(s6421 2)
(s6423 4)
(s6424 5)
(s6425 5)
(s6426 2)
(s6428 4)
(s6429 5)
(s6430 5)
(s6431 2)
(s6433 4)
(s6434 5)
(s6435 5)
(s6436 2)
(s6438 4)
(s6439 5)
(s6440 5)
(s6441 2)
(s6443 4)
(s6444 5)
(s6445 5)
(s6446 2)
(s6448 4)
(s6449 5)
(s6450 5)
(s6451 2)
(s6453 4)
(s6454 5)
(s6455 5)
(s6456 2)
(s6458 4)
(s6459 5)
(s6460 5)
(s6461 2)
(s6463 4)
(s6464 5)
(s6465 5)
(s6466 2)
(s6468 4)
(s6469 5)
(s6470 5)
(s6471 2)
(s6473 4)
(s6474 5)
(s6475 5)
(s6476 2)
(s6478 4)
(s6479 5)
(s6480 5)
(s6481 2)
(s6483 4)
(s6484 5)
(s6485 5)
(s6486 2)
(s6488 4)
(s6489 5)
(s6490 5)
(s6491 2)
(s6493 4)
(s6494 5)
(s6495 5)
(s6496 2)
(s6498 4)
(s6499 5)
(s6500 5)
(s6501 2)
(s6503 4)
(s6504 5)
(s6505 5)
(s6506 2)
(s6508 4)
(s6509 5)
(s6510 5)
(s6511 2)
(s6513 4)
(s6514 5)
(s6515 5)
(s6516 2)
(s6518 4)
(s6519 5)
(s6520 5)
(s6521 2)
(s6523 4)
(s6524 5)
(s6525 5)
(s6526 2)
(s6528 4)
(s6529 5)
(s6530 5)
(s6531 2)
(s6533 4)
(s6534 5)
(s6535 5)
(s6536 2)
(s6538 4)
(s6539 5)
(s6540 5)
(s6541 2)
(s6543 4)
(s6544 5)
(s6545 5)
(s6546 2)
(s6548 4)
(s6549 5)
(s6550 5)
(s6551 2)
(s6553 4)
(s6554 5)
(s6555 5)
(s6556 2)
(s6558 4)
(s6559 5)
(s6560 5)
(s6561 2)
(s6563 4)
(s6564 5)
(s6565 5)
(s6566 2)
(s6568 4)
(s6569 5)
(s6570 5)
(s6571 2)
(s6573 4)
(s6574 5)
(s6575 5)
(s6576 2)
(s6578 4)
(s6579 5)
(s6580 5)
(s6581 2)
(s6583 4)
(s6584 5)
(s6585 5)
(s6586 2)
(s6588 4)
(s6589 5)
(s6590 5)
(s6591 2)
(s6593 4)
(s6594 5)
(s6595 5)
(s6596 2)
(s6598 4)
(s6599 5)
(s6600 5)
(s6601 2)
(s6603 4)
(s6604 5)
(s6605 5)
(s6606 2)
(s6608 4)
(s6609 5)
(s6610 5)
(s6611 2)
(s6613 4)
(s6614 5)
(s6615 5)
(s6616 2)
(s6618 4)
(s6619 5)
(s6620 5)
(s6621 2)
(s6623 4)
(s6624 5)
(s6625 5)
(s6626 2)
(s6628 4)
(s6629 5)
(s6630 5)
(s6631 2)
(s6633 4)
(s6634 5)
(s6635 5)
(s6636 2)
(s6638 4)
(s6639 5)
(s6640 5)
(s6641 2)
(s6643 4)
(s6644 5)
(s6645 5)
(s6646 2)
(s6648 4)
(s6649 5)
(s6650 5)
(s6651 2)
(s6653 4)
(s6654 5)
(s6655 5)
(s6656 2)
(s6658 4)
(s6659 5)
(s6660 5)
(s6661 2)
(s6663 4)
(s6664 5)
(s6665 5)
(s6666 2)
(s6668 4)
(s6669 5)
(s6670 5)
(s6671 2)
(s6673 4)
(s6674 5)
(s6675 5)
(s6676 2)
(s6678 4)
(s6679 5)
(s6680 5)
(s6681 2)
(s6683 4)
(s6684 5)
(s6685 5)
(s6686 2)
(s6688 4)
(s6689 5)
(s6690 5)
(s6691 2)
(s6693 4)
(s6694 5)
(s6695 5)
(s6696 2)
(s6698 4)
(s6699 5)
(s6700 5)
(s6701 2)
(s6703 4)
(s6704 5)
(s6705 5)
(s6706 2)
(s6708 4)
(s6709 5)
(s6710 5)
(s6711 2)
(s6713 4)
(s6714 5)
(s6715 5)
(s6716 2)
(s6718 4)
(s6719 5)
(s6720 5)
(s6721 2)
(s6723 4)
(s6724 5)
(s6725 5)
(s6726 2)
(s6728 4)
(s6729 5)
(s6730 5)
(s6731 2)
(s6733 4)
(s6734 5)
(s6735 5)
(s6736 2)
(s6738 4)
(s6739 5)
(s6740 5)
(s6741 2)
(s6743 4)
(s6744 5)
(s6745 5)
(s6746 2)
(s6748 4)
(s6749 5)
(s6750 5)
(s6751 2)
(s6753 4)
(s6754 5)
(s6755 5)
(s6756 2)
(s6758 4)
(s6759 5)
(s6760 5)
(s6761 2)
(s6763 4)
(s6764 5)
(s6765 5)
(s6766 2)
(s6768 4)
(s6769 5)
(s6770 5)
(s6771 2)
(s6773 4)
(s6774 5)
(s6775 5)
(s6776 2)
(s6778 4)
(s6779 5)
(s6780 5)
(s6781 2)
(s6783 4)
(s6784 5)
(s6785 5)
(s6786 2)
(s6788 4)
(s6789 5)
(s6790 5)
(s6791 2)
(s6793 4)
(s6794 5)
(s6795 5)
(s6796 2)
(s6798 4)
(s6799 5)
(s6800 5)
(s6801 2)
(s6803 4)
(s6804 5)
(s6805 5)
(s6806 2)
(s6808 4)
(s6809 5)
(s6810 5)
(s6811 2)
(s6813 4)
(s6814 5)
(s6815 5)
(s6816 2)
(s6818 4)
(s6819 5)
(s6820 5)
(s6821 2)
(s6823 4)
(s6824 5)
(s6825 5)
(s6826 2)
(s6828 4)
(s6829 5)
(s6830 5)
(s6831 2)
(s6833 4)
(s6834 5)
(s6835 5)
(s6836 2)
(s6838 4)
(s6839 5)
(s6840 5)
(s6841 2)
(s6843 4)
(s6844 5)
(s6845 5)
(s6846 2)
(s6848 4)
(s6849 5)
(s6850 5)
(s6851 2)
(s6853 4)
(s6854 5)
(s6855 5)
(s6856 2)
(s6858 4)
(s6859 5)
(s6860 5)
(s6861 2)
(s6863 4)
(s6864 5)
(s6865 5)
(s6866 2)
(s6868 4)
(s6869 5)
(s6870 5)
(s6871 2)
(s6873 4)
(s6874 5)
(s6875 5)
(s6876 2)
(s6878 4)
(s6879 5)
(s6880 5)
(s6881 2)
(s6883 4)
(s6884 5)
(s6885 5)
(s6886 2)
(s6888 4)
(s6889 5)
(s6890 5)
(s6891 2)
(s6893 4)
(s6894 5)
(s6895 5)
(s6896 2)
(s6898 4)
(s6899 5)
(s6900 5)
(s6901 2)
(s6903 4)
(s6904 5)
(s6905 5)
(s6906 2)
(s6908 4)
(s6909 5)
(s6910 5)
(s6911 2)
(s6913 4)
(s6914 5)
(s6915 5)
(s6916 2)
(s6918 4)
(s6919 5)
(s6920 5)
(s6921 2)
(s6923 4)
(s6924 5)
(s6925 5)
(s6926 2)
(s6928 4)
(s6929 5)
(s6930 5)
(s6931 2)
(s6933 4)
(s6934 5)
(s6935 5)
(s6936 2)
(s6938 4)
(s6939 5)
(s6940 5)
(s6941 2)
(s6943 4)
(s6944 5)
(s6945 5)
(s6946 2)
(s6948 4)
(s6949 5)
(s6950 5)
(s6951 2)
(s6953 4)
(s6954 5)
(s6955 5)
(s6956 2)
(s6958 4)
(s6959 5)
(s6960 5)
(s6961 2)
(s6963 4)
(s6964 5)
(s6965 5)
(s6966 2)
(s6968 4)
(s6969 5)
(s6970 5)
(s6971 2)
(s6973 4)
(s6974 5)
(s6975 5)
(s6976 2)
(s6978 4)
(s6979 5)
(s6980 5)
(s6981 2)
(s6983 4)
(s6984 5)
(s6985 5)
(s6986 2)
(s6988 4)
(s6989 5)
(s6990 5)
(s6991 2)
(s6993 4)
(s6994 5)
(s6995 5)
(s6996 2)
(s6998 4)
(s6999 5)
(s7000 5)
(s7001 2)
(s7003 4)
(s7004 5)
(s7005 5)
(s7006 2)
(s7008 4)
(s7009 5)
(s7010 5)
(s7011 2)
(s7013 4)
(s7014 5)
(s7015 5)
(s7016 2)
(s7018 4)
(s7019 5)
(s7020 5)
(s7021 2)
(s7023 4)
(s7024 5)
(s7025 5)
(s7026 2)
(s7028 4)
(s7029 5)
(s7030 5)
(s7031 2)
(s7033 4)
(s7034 5)
(s7035 5)
(s7036 2)
(s7038 4)
(s7039 5)
(s7040 5)
(s7041 2)
(s7043 4)
(s7044 5)
(s7045 5)
(s7046 2)
(s7048 4)
(s7049 5)
(s7050 5)
(s7051 2)
(s7053 4)
(s7054 5)
(s7055 5)
(s7056 2)
(s7058 4)
(s7059 5)
(s7060 5)
(s7061 2)
(s7063 4)
(s7064 5)
(s7065 5)
(s7066 2)
(s7068 4)
(s7069 5)
(s7070 5)
(s7071 2)
(s7073 4)
(s7074 5)
(s7075 5)
(s7076 2)
(s7078 4)
(s7079 5)
(s7080 5)
(s7081 2)
(s7083 4)
(s7084 5)
(s7085 5)
(s7086 2)
(s7088 4)
(s7089 5)
(s7090 5)
(s7091 2)
(s7093 4)
(s7094 5)
(s7095 5)
(s7096 2)
(s7098 4)
(s7099 5)
(s7100 5)
(s7101 2)
(s7103 4)
(s7104 5)
(s7105 5)
(s7106 2)
(s7108 4)
(s7109 5)
(s7110 5)
(s7111 2)
(s7113 4)
(s7114 5)
(s7115 5)
(s7116 2)
(s7118 4)
(s7119 5)
(s7120 5)
(s7121 2)
(s7123 4)
(s7124 5)
(s7125 5)
(s7126 2)
(s7128 4)
(s7129 5)
(s7130 5)
(s7131 2)
(s7133 4)
(s7134 5)
(s7135 5)
(s7136 2)
(s7138 4)
(s7139 5)
(s7140 5)
(s7141 2)
(s7143 4)
(s7144 5)
(s7145 5)
(s7146 2)
(s7148 4)
(s7149 5)
(s7150 5)
(s7151 2)timeout
(s7153 org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 20160 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 0/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 57946ms problems are : Problem set: 0 solved, 12000 unsolved
Search for dead transitions found 0 dead transitions in 57963ms
[2025-06-02 08:45:05] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 08:45:08] [INFO ] Implicit Places using invariants in 3096 ms returned []
Implicit Place search using SMT only with invariants took 3100 ms to find 0 implicit places.
Running 12000 sub problems to find dead transitions.
[2025-06-02 08:45:08] [INFO ] Invariant cache hit.
[2025-06-02 08:45:09] [INFO ] State equation strengthened by 2000 read => feed constraints.
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 30166 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 12000/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 12000 unsolved
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 8000/26001 variables, and 0 constraints, problems are : Problem set: 0 solved, 12000 unsolved in 30137 ms.
Refiners :[Positive P Invariants (semi-flows): 0/2000 constraints, State Equation: 0/10000 constraints, ReadFeed: 0/2000 constraints, PredecessorRefiner: 0/12000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 78997ms problems are : Problem set: 0 solved, 12000 unsolved
Search for dead transitions found 0 dead transitions in 79031ms
Finished structural reductions in LTL mode , in 1 iterations and 140801 ms. Remains : 10000/10000 places, 16001/16001 transitions.
[2025-06-02 08:46:28] [INFO ] Flatten gal took : 616 ms
[2025-06-02 08:46:29] [INFO ] Flatten gal took : 369 ms
[2025-06-02 08:46:29] [INFO ] Input system was already deterministic with 16001 transitions.
[2025-06-02 08:46:30] [INFO ] Flatten gal took : 311 ms
[2025-06-02 08:46:30] [INFO ] Flatten gal took : 303 ms
[2025-06-02 08:46:30] [INFO ] Time to serialize gal into /tmp/CTLCardinality5920486684462666151.gal : 88 ms
[2025-06-02 08:46:30] [INFO ] Time to serialize properties into /tmp/CTLCardinality12936390439183116241.ctl : 0 ms
Invoking ITS tools like this :cd /home/mcc/execution;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64' '--gc-threshold' '2000000' '--quiet' '-i' '/tmp/CTLCardinality5920486684462666151.gal' '-t' 'CGAL' '-ctl' '/tmp/CTLCardinality12936390439183116241.ctl' '--gen-order' 'FOLLOW'
its-ctl command run as :
/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64 --gc-threshold 2000000 --quiet -...284
No direction supplied, using forward translation only.
Parsed 1 CTL formulae.
Detected timeout of ITS tools.
[2025-06-02 08:47:01] [INFO ] Flatten gal took : 310 ms
[2025-06-02 08:47:01] [INFO ] Applying decomposition
[2025-06-02 08:47:01] [INFO ] Flatten gal took : 280 ms
Converted graph to binary with : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202505121319/bin/convert-linux64' '-i' '/tmp/graph4469624370334495803.txt' '-o' '/tmp/graph4469624370334495803.bin' '-w' '/tmp/graph4469624370334495803.weights'
Built communities with : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202505121319/bin/louvain-linux64' '/tmp/graph4469624370334495803.bin' '-l' '-1' '-v' '-w' '/tmp/graph4469624370334495803.weights' '-q' '0' '-e' '0.001'
[2025-06-02 08:47:02] [INFO ] Decomposing Gal with order
[2025-06-02 08:47:03] [INFO ] Rewriting arrays to variables to allow decomposition.
[2025-06-02 08:47:08] [INFO ] Removed a total of 2 redundant transitions.
[2025-06-02 08:47:08] [INFO ] Flatten gal took : 400 ms
[2025-06-02 08:47:09] [INFO ] Fuse similar labels procedure discarded/fused a total of 4 labels/synchronizations in 798 ms.
[2025-06-02 08:47:10] [INFO ] Time to serialize gal into /tmp/CTLCardinality11854807233189440723.gal : 63 ms
[2025-06-02 08:47:10] [INFO ] Time to serialize properties into /tmp/CTLCardinality17640288507867208013.ctl : 0 ms
Invoking ITS tools like this :cd /home/mcc/execution;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64' '--gc-threshold' '2000000' '--quiet' '-i' '/tmp/CTLCardinality11854807233189440723.gal' '-t' 'CGAL' '-ctl' '/tmp/CTLCardinality17640288507867208013.ctl' '--gen-order' 'FOLLOW'
its-ctl command run as :
/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64 --gc-threshold 2000000 --quiet -...285
No direction supplied, using forward translation only.
Parsed 1 CTL formulae.
Detected timeout of ITS tools.
[2025-06-02 08:47:40] [INFO ] Flatten gal took : 370 ms
[2025-06-02 08:47:40] [INFO ] Flatten gal took : 330 ms
[2025-06-02 08:47:41] [INFO ] Applying decomposition
[2025-06-02 08:47:41] [INFO ] Flatten gal took : 279 ms
Converted graph to binary with : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202505121319/bin/convert-linux64' '-i' '/tmp/graph15975148516846059165.txt' '-o' '/tmp/graph15975148516846059165.bin' '-w' '/tmp/graph15975148516846059165.weights'
Built communities with : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202505121319/bin/louvain-linux64' '/tmp/graph15975148516846059165.bin' '-l' '-1' '-v' '-w' '/tmp/graph15975148516846059165.weights' '-q' '0' '-e' '0.001'
[2025-06-02 08:47:42] [INFO ] Decomposing Gal with order
[2025-06-02 08:47:43] [INFO ] Rewriting arrays to variables to allow decomposition.
[2025-06-02 08:47:49] [INFO ] Flatten gal took : 329 ms
[2025-06-02 08:47:50] [INFO ] Fuse similar labels procedure discarded/fused a total of 0 labels/synchronizations in 407 ms.
[2025-06-02 08:47:50] [INFO ] Time to serialize gal into /tmp/CTLCardinality1116183015931191614.gal : 67 ms
[2025-06-02 08:47:50] [INFO ] Time to serialize properties into /tmp/CTLCardinality110044463363821719.ctl : 1 ms
Invoking ITS tools like this :cd /home/mcc/execution;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64' '--gc-threshold' '2000000' '--quiet' '-i' '/tmp/CTLCardinality1116183015931191614.gal' '-t' 'CGAL' '-ctl' '/tmp/CTLCardinality110044463363821719.ctl' '--gen-order' 'FOLLOW'
its-ctl command run as :
/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ctl-linux64 --gc-threshold 2000000 --quiet -...282
No direction supplied, using forward translation only.
Parsed 12 CTL formulae.
BK_TIME_CONFINEMENT_REACHED
--------------------
content from stderr:
+ export BINDIR=/home/mcc/BenchKit/bin//../itstools/bin//../
+ BINDIR=/home/mcc/BenchKit/bin//../itstools/bin//../
++ pwd
+ export MODEL=/home/mcc/execution
+ MODEL=/home/mcc/execution
+ [[ CTLCardinality = StateSpace ]]
+ /home/mcc/BenchKit/bin//../itstools/bin//..//runeclipse.sh /home/mcc/execution CTLCardinality -its -ltsmin -greatspnpath /home/mcc/BenchKit/bin//../itstools/bin//..//greatspn/ -order META -manyOrder -smt -timeout 3600
+ ulimit -s 65536
+ [[ -z '' ]]
+ export LTSMIN_MEM_SIZE=8589934592
+ LTSMIN_MEM_SIZE=8589934592
++ sed s/.jar//
++ perl -pe 's/.*\.//g'
++ ls /home/mcc/BenchKit/bin//../itstools/bin//..//itstools/plugins/fr.lip6.move.gal.application.pnmcc_1.0.0.202505121319.jar
+ VERSION=202505121319
+ echo 'Running Version 202505121319'
+ /home/mcc/BenchKit/bin//../itstools/bin//..//itstools/its-tools -pnfolder /home/mcc/execution -examination CTLCardinality -its -ltsmin -greatspnpath /home/mcc/BenchKit/bin//../itstools/bin//..//greatspn/ -order META -manyOrder -smt -timeout 3600
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="JoinFreeModules-PT-2000"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="itstools"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5832"
echo " Executing tool itstools"
echo " Input is JoinFreeModules-PT-2000, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r114-tall-174876422800473"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/JoinFreeModules-PT-2000.tgz
mv JoinFreeModules-PT-2000 execution
cd execution
if [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "UpperBounds" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] || [ "CTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME CTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;