About the Execution of ITS-Tools for JoinFreeModules-PT-1000
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
0.000 | 3600000.00 | 0.00 | 0.00 | FFFFFTTFFT?FFFFF | normal |
Execution Chart
Sorry, for this execution, no execution chart could be reported.
Trace from the execution
Formatting '/data/fkordon/mcc2025-input.r114-tall-174876422800467.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2025-input.qcow2 backing_fmt=qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
.........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
=====================================================================
Generated by BenchKit 2-5832
Executing tool itstools
Input is JoinFreeModules-PT-1000, examination is LTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r114-tall-174876422800467
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 3.5M
-rw-r--r-- 1 mcc users 7.3K May 29 14:47 CTLCardinality.txt
-rw-r--r-- 1 mcc users 76K May 29 14:47 CTLCardinality.xml
-rw-r--r-- 1 mcc users 6.3K May 29 14:47 CTLFireability.txt
-rw-r--r-- 1 mcc users 58K May 29 14:47 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K May 29 14:32 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.1K May 29 14:32 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 3.8K May 29 14:47 LTLCardinality.txt
-rw-r--r-- 1 mcc users 27K May 29 14:47 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.2K May 29 14:47 LTLFireability.txt
-rw-r--r-- 1 mcc users 16K May 29 14:47 LTLFireability.xml
-rw-r--r-- 1 mcc users 9.5K May 29 14:47 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 90K May 29 14:47 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 8.0K May 29 14:47 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 63K May 29 14:47 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.7K May 29 14:47 UpperBounds.txt
-rw-r--r-- 1 mcc users 4.1K May 29 14:47 UpperBounds.xml
-rw-r--r-- 1 mcc users 6 May 29 14:32 equiv_col
-rw-r--r-- 1 mcc users 5 May 29 14:32 instance
-rw-r--r-- 1 mcc users 6 May 29 14:32 iscolored
-rw-r--r-- 1 mcc users 3.1M May 29 14:32 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
echo here is the order used to build the result vector(from xml file)
FORMULA_NAME JoinFreeModules-PT-1000-LTLCardinality-00
FORMULA_NAME JoinFreeModules-PT-1000-LTLCardinality-01
FORMULA_NAME JoinFreeModules-PT-1000-LTLCardinality-02
FORMULA_NAME JoinFreeModules-PT-1000-LTLCardinality-03
FORMULA_NAME JoinFreeModules-PT-1000-LTLCardinality-04
FORMULA_NAME JoinFreeModules-PT-1000-LTLCardinality-05
FORMULA_NAME JoinFreeModules-PT-1000-LTLCardinality-06
FORMULA_NAME JoinFreeModules-PT-1000-LTLCardinality-07
FORMULA_NAME JoinFreeModules-PT-1000-LTLCardinality-08
FORMULA_NAME JoinFreeModules-PT-1000-LTLCardinality-09
FORMULA_NAME JoinFreeModules-PT-1000-LTLCardinality-10
FORMULA_NAME JoinFreeModules-PT-1000-LTLCardinality-11
FORMULA_NAME JoinFreeModules-PT-1000-LTLCardinality-12
FORMULA_NAME JoinFreeModules-PT-1000-LTLCardinality-13
FORMULA_NAME JoinFreeModules-PT-1000-LTLCardinality-14
FORMULA_NAME JoinFreeModules-PT-1000-LTLCardinality-15
=== Now, execution of the tool begins
BK_START 1748848591439
Invoking MCC driver with
BK_TOOL=itstools
BK_EXAMINATION=LTLCardinality
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=JoinFreeModules-PT-1000
BK_MEMORY_CONFINEMENT=16384
Not applying reductions.
Model is PT
LTLCardinality PT
Running Version 202505121319
[2025-06-02 07:16:32] [INFO ] Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, LTLCardinality, -its, -ltsmin, -greatspnpath, /home/mcc/BenchKit/bin//../itstools/bin//..//greatspn/, -order, META, -manyOrder, -smt, -timeout, 3600]
[2025-06-02 07:16:32] [INFO ] Parsing pnml file : /home/mcc/execution/model.pnml
[2025-06-02 07:16:33] [INFO ] Load time of PNML (sax parser for PT used): 311 ms
[2025-06-02 07:16:33] [INFO ] Transformed 5001 places.
[2025-06-02 07:16:33] [INFO ] Transformed 8001 transitions.
[2025-06-02 07:16:33] [INFO ] Parsed PT model containing 5001 places and 8001 transitions and 23002 arcs in 477 ms.
Parsed 16 properties from file /home/mcc/execution/LTLCardinality.xml in 14 ms.
Working with output stream class java.io.PrintStream
Initial state reduction rules removed 3 formulas.
Reduce places removed 1 places and 0 transitions.
FORMULA JoinFreeModules-PT-1000-LTLCardinality-05 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA JoinFreeModules-PT-1000-LTLCardinality-06 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA JoinFreeModules-PT-1000-LTLCardinality-09 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
Support contains 44 out of 5000 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 507 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
// Phase 1: matrix 8001 rows 5000 cols
[2025-06-02 07:16:34] [INFO ] Computed 1000 invariants in 75 ms
[2025-06-02 07:16:34] [INFO ] State equation strengthened by 1000 read => feed constraints.
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20164 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Error getting values : (error "ParserException while parsing response: ((s0 5)
(s1 2)
(s3 4)
(s4 5)
(s5 5)
(s6 2)
(s8 4)
(s9 5)
(s10 5)
(s11 2)
(s13 4)
(s14 5)
(s15 5)
(s16 2)
(s18 4)
(s19 5)
(s20 5)
(s21 2)
(s23 4)
(s24 5)
(s25 5)
(s26 2)
(s28 4)
(s29 5)
(s30 5)
(s31 2)
(s33 4)
(s34 5)
(s35 5)
(s36 2)
(s38 4)
(s39 5)
(s40 5)
(s41 2)
(s43 4)
(s44 5)
(s45 5)
(s46 2)
(s48 4)
(s49 5)
(s50 5)
(s51 2)
(s53 4)
(s54 5)
(s55 5)
(s56 2)
(s58 4)
(s59 5)
(s60 5)
(s61 2)
(s63 4)
(s64 5)
(s65 5)
(s66 2)
(s68 4)
(s69 5)
(s70 5)
(s71 2)
(s73 4)
(s74 5)
(s75 5)
(s76 2)
(s78 4)
(s79 5)
(s80 5)
(s81 2)
(s83 4)
(s84 5)
(s85 5)
(s86 2)
(s88 4)
(s89 5)
(s90 5)
(s91 2)
(s93 4)
(s94 5)
(s95 5)
(s96 2)
(s98 4)
(s99 5)
(s100 5)
(s101 2)
(s103 4)
(s104 5)
(s105 5)
(s106 2)
(s108 4)
(s109 5)
(s110 5)
(s111 2)
(s113 4)
(s114 5)
(s115 5)
(s116 2)
(s118 4)
(s119 5)
(s120 5)
(s121 2)
(s123 4)
(s124 5)
(s125 5)
(s126 2)
(s128 4)
(s129 5)
(s130 5)
(s131 2)
(s133 4)
(s134 5)
(s135 5)
(s136 2)
(s138 4)
(s139 5)
(s140 5)
(s141 2)
(s143 4)
(s144 5)
(s145 5)
(s146 2)
(s148 4)
(s149 5)
(s150 5)
(s151 2)
(s153 4)
(s154 5)
(s155 5)
(s156 2)
(s158 4)
(s159 5)
(s160 5)
(s161 2)
(s163 4)
(s164 5)
(s165 5)
(s166 2)
(s168 4)
(s169 5)
(s170 5)
(s171 2)
(s173 4)
(s174 5)
(s175 5)
(s176 2)
(s178 4)
(s179 5)
(s180 5)
(s181 2)
(s183 4)
(s184 5)
(s185 5)
(s186 2)
(s188 4)
(s189 5)
(s190 5)
(s191 2)
(s193 4)
(s194 5)
(s195 5)
(s196 2)
(s198 4)
(s199 5)
(s200 5)
(s201 2)
(s203 4)
(s204 5)
(s205 5)
(s206 2)
(s208 4)
(s209 5)
(s210 5)
(s211 2)
(s213 4)
(s214 5)
(s215 5)
(s216 2)
(s218 4)
(s219 5)
(s220 5)
(s221 2)
(s223 4)
(s224 5)
(s225 5)
(s226 2)
(s228 4)
(s229 5)
(s230 5)
(s231 2)
(s233 4)
(s234 5)
(s235 5)
(s236 2)
(s238 4)
(s239 5)
(s240 5)
(s241 2)
(s243 4)
(s244 5)
(s245 5)
(s246 2)
(s248 4)
(s249 5)
(s250 5)
(s251 2)
(s253 4)
(s254 5)
(s255 5)
(s256 2)
(s258 4)
(s259 5)
(s260 5)
(s261 2)
(s263 4)
(s264 5)
(s265 5)
(s266 2)
(s268 4)
(s269 5)
(s270 5)
(s271 2)
(s273 4)
(s274 5)
(s275 5)
(s276 2)
(s278 4)
(s279 5)
(s280 5)
(s281 2)
(s283 4)
(s284 5)
(s285 5)
(s286 2)
(s288 4)
(s289 5)
(s290 5)
(s291 2)
(s293 4)
(s294 5)
(s295 5)
(s296 2)
(s298 4)
(s299 5)
(s300 5)
(s301 2)
(s303 4)
(s304 5)
(s305 5)
(s306 2)
(s308 4)
(s309 5)
(s310 5)
(s311 2)
(s313 4)
(s314 5)
(s315 5)
(s316 2)
(s318 4)
(s319 5)
(s320 5)
(s321 2)
(s323 4)
(s324 5)
(s325 5)
(s326 2)
(s328 4)
(s329 5)
(s330 5)
(s331 2)
(s333 4)
(s334 5)
(s335 5)
(s336 2)
(s338 4)
(s339 5)
(s340 5)
(s341 2)
(s343 4)
(s344 5)
(s345 5)
(s346 2)
(s348 4)
(s349 5)
(s350 5)
(s351 2)
(s353 4)
(s354 5)
(s355 5)
(s356 2)
(s358 4)
(s359 5)
(s360 5)
(s361 2)
(s363 4)
(s364 5)
(s365 5)
(s366 2)
(s368 4)
(s369 5)
(s370 5)
(s371 2)
(s373 4)
(s374 5)
(s375 5)
(s376 2)
(s378 4)
(s379 5)
(s380 5)
(s381 2)
(s383 4)
(s384 5)
(s385 5)
(s386 2)
(s388 4)
(s389 5)
(s390 5)
(s391 2)
(s393 4)
(s394 5)
(s395 5)
(s396 2)
(s398 4)
(s399 5)
(s400 5)
(s401 2)
(s403 4)
(s404 5)
(s405 5)
(s406 2)
(s408 4)
(s409 5)
(s410 5)
(s411 2)
(s413 4)
(s414 5)
(s415 5)
(s416 2)
(s418 4)
(s419 5)
(s420 5)
(s421 2)
(s423 4)
(s424 5)
(s425 5)
(s426 2)
(s428 4)
(s429 5)
(s430 5)
(s431 2)
(s433 4)
(s434 5)
(s435 5)
(s436 2)
(s438 4)
(s439 5)
(s440 5)
(s441 2)
(s443 4)
(s444 5)
(s445 5)
(s446 2)
(s448 4)
(s449 5)
(s450 5)
(s451 2)
(s453 4)
(s454 5)
(s455 5)
(s456 2)
(s458 4)
(s459 5)
(s460 5)
(s461 2)
(s463 4)
(s464 5)
(s465 5)
(s466 2)
(s468 4)
(s469 5)
(s470 5)
(s471 2)
(s473 4)
(s474 5)
(s475 5)
(s476 2)
(s478 4)
(s479 5)
(s480 5)
(s481 2)
(s483 4)
(s484 5)
(s485 5)
(s486 2)
(s488 4)
(s489 5)
(s490 5)
(s491 2)
(s493 4)
(s494 5)
(s495 5)
(s496 2)
(s498 4)
(s499 5)
(s500 5)
(s501 2)
(s503 4)
(s504 5)
(s505 5)
(s506 2)
(s508 4)
(s509 5)
(s510 5)
(s511 2)
(s513 4)
(s514 5)
(s515 5)
(s516 2)
(s518 4)
(s519 5)
(s520 5)
(s521 2)
(s523 4)
(s524 5)
(s525 5)
(s526 2)
(s528 4)
(s529 5)
(s530 5)
(s531 2)
(s533 4)
(s534 5)
(s535 5)
(s536 2)
(s538 4)
(s539 5)
(s540 5)
(s541 2)
(s543 4)
(s544 5)
(s545 5)
(s546 2)
(s548 4)
(s549 5)
(s550 5)
(s551 2)
(s553 4)
(s554 5)
(s555 5)
(s556 2)
(s558 4)
(s559 5)
(s560 5)
(s561 2)
(s563 4)
(s564 5)
(s565 5)
(s566 2)
(s568 4)
(s569 5)
(s570 5)
(s571 2)
(s573 4)
(s574 5)
(s575 5)
(s576 2)
(s578 4)
(s579 5)
(s580 5)
(s581 2)
(s583 4)
(s584 5)
(s585 5)
(s586 2)
(s588 4)
(s589 5)
(s590 5)
(s591 2)
(s593 4)
(s594 5)
(s595 5)
(s596 2)
(s598 4)
(s599 5)
(s600 5)
(s601 2)
(s603 4)
(s604 5)
(s605 5)
(s606 2)
(s608 4)
(s609 5)
(s610 5)
(s611 2)
(s613 4)
(s614 5)
(s615 5)
(s616 2)
(s618 4)
(s619 5)
(s620 5)
(s621 2)
(s623 4)
(s624 5)
(s625 5)
(s626 2)
(s628 4)
(s629 5)
(s630 5)
(s631 2)
(s633 4)
(s634 5)
(s635 5)
(s636 2)
(s638 4)
(s639 5)
(s640 5)
(s641 2)
(s643 4)
(s644 5)
(s645 5)
(s646 2)
(s648 4)
(s649 5)
(s650 5)
(s651 2)
(s653 4)
(s654 5)
(s655 5)
(s656 2)
(s658 4)
(s659 5)
(s660 5)
(s661 2)
(s663 4)
(s664 5)
(s665 5)
(s666 2)
(s668 4)
(s669 5)
(s670 5)
(s671 2)
(s673 4)
(s674 5)
(s675 5)
(s676 2)
(s678 4)
(s679 5)
(s680 5)
(s681 2)
(s683 4)
(s684 5)
(s685 5)
(s686 2)
(s688 4)
(s689 5)
(s690 5)
(s691 2)
(s693 4)
(s694 5)
(s695 5)
(s696 2)
(s698 4)
(s699 5)
(s700 5)
(s701 2)
(s703 4)
(s704 5)
(s705 5)
(s706 2)
(s708 4)
(s709 5)
(s710 5)
(s711 2)
(s713 4)
(s714 5)
(s715 5)
(s716 2)
(s718 4)
(s719 5)
(s720 5)
(s721 2)
(s723 4)
(s724 5)
(s725 5)
(s726 2)
(s728 4)
(s729 5)
(s730 5)
(s731 2)
(s733 4)
(s734 5)
(s735 5)
(s736 2)
(s738 4)
(s739 5)
(s740 5)
(s741 2)
(s743 4)
(s744 5)
(s745 5)
(s746 2)
(s748 4)
(s749 5)
(s750 5)
(s751 2)
(s753 4)
(s754 5)
(s755 5)
(s756 2)
(s758 4)
(s759 5)
(s760 5)
(s761 2)
(s763 4)
(s764 5)
(s765 5)
(s766 2)
(s768 4)
(s769 5)
(s770 5)
(s771 2)
(s773 4)
(s774 5)
(s775 5)
(s776 2)
(s778 4)
(s779 5)
(s780 5)
(s781 2)
(s783 4)
(s784 5)
(s785 5)
(s786 2)
(s788 4)
(s789 5)
(s790 5)
(s791 2)
(s793 4)
(s794 5)
(s795 5)
(s796 2)
(s798 4)
(s799 5)
(s800 5)
(s801 2)
(s803 4)
(s804 5)
(s805 5)
(s806 2)
(s808 4)
(s809 5)
(s810 5)
(s811 2)
(s813 4)
(s814 5)
(s815 5)
(s816 2)
(s818 4)
(s819 5)
(s820 5)
(s821 2)
(s823 4)
(s824 5)
(s825 5)
(s826 2)
(s828 4)
(s829 5)
(s830 5)
(s831 2)
(s833 4)
(s834 5)
(s835 5)
(s836 2)
(s838 4)
(s839 5)
(s840 5)
(s841 2)
(s843 4)
(s844 5)
(s845 5)
(s846 2)
(s848 4)
(s849 5)
(s850 5)
(s851 2)
(s853 4)
(s854 5)
(s855 5)
(s856 2)
(s858 4)
(s859 5)
(s860 5)
(s861 2)
(s863 4)
(s864 5)
(s865 5)
(s866 2)
(s868 4)
(s869 5)
(s870 5)
(s871 2)
(s873 4)
(s874 5)
(s875 5)
(s876 2)
(s878 4)
(s879 5)
(s880 5)
(s881 2)
(s883 4)
(s884 5)
(s885 5)
(s886 2)
(s888 4)
(s889 5)
(s890 5)
(s891 2)
(s893 4)
(s894 5)
(s895 5)
(s896 2)
(s898 4)
(s899 5)
(s900 5)
(s901 2)
(s903 4)
(s904 5)
(s905 5)
(s906 2)
(s908 4)
(s909 5)
(s910 5)
(s911 2)
(s913 4)
(s914 5)
(s915 5)
(s916 2)
(s918 4)
(s919 5)
(s920 5)
(s921 2)
(s923 4)
(s924 5)
(s925 5)
(s926 2)
(s928 4)
(s929 5)
(s930 5)
(s931 2)
(s933 4)
(s934 5)
(s935 5)
(s936 2)
(s938 4)
(s939 5)
(s940 5)
(s941 2)
(s943 4)
(s944 5)
(s945 5)
(s946 2)
(s948 4)
(s949 5)
(s950 5)
(s951 2)
(s953 4)
(s954 5)
(s955 5)
(s956 2)
(s958 4)
(s959 5)
(s960 5)
(s961 2)
(s963 4)
(s964 5)
(s965 5)
(s966 2)
(s968 4)
(s969 5)
(s970 5)
(s971 2)
(s973 4)
(s974 5)
(s975 5)
(s976 2)
(s978 4)
(s979 5)
(s980 5)
(s981 2)
(s983 4)
(s984 5)
(s985 5)
(s986 2)
(s988 4)
(s989 5)
(s990 5)
(s991 2)
(s993 4)
(s994 5)
(s995 5)
(s996 2)
(s998 4)
(s999 5)
(s1000 5)
(s1001 2)
(s1003 4)
(s1004 5)
(s1005 5)
(s1006 2)
(s1008 4)
(s1009 5)
(s1010 5)
(s1011 2)
(s1013 4)
(s1014 5)
(s1015 5)
(s1016 2)
(s1018 4)
(s1019 5)
(s1020 5)
(s1021 2)
(s1023 4)
(s1024 5)
(s1025 5)
(s1026 2)
(s1028 4)
(s1029 5)
(s1030 5)
(s1031 2)
(s1033 4)
(s1034 5)
(s1035 5)
(s1036 2)
(s1038 4)
(s1039 5)
(s1040 5)
(s1041 2)
(s1043 4)
(s1044 5)
(s1045 5)
(s1046 2)
(s1048 4)
(s1049 5)
(s1050 5)
(s1051 2)
(s1053 4)
(s1054 5)
(s1055 5)
(s1056 2)
(s1058 4)
(s1059 5)
(s1060 5)
(s1061 2)
(s1063 4)
(s1064 5)
(s1065 5)
(s1066 2)
(s1068 4)
(s1069 5)
(s1070 5)
(s1071 2)
(s1073 4)
(s1074 5)
(s1075 5)
(s1076 2)
(s1078 4)
(s1079 5)
(s1080 5)
(s1081 2)
(s1083 4)
(s1084 5)
(s1085 5)
(s1086 2)
(s1088 4)
(s1089 5)
(s1090 5)
(s1091 2)
(s1093 4)
(s1094 5)
(s1095 5)
(s1096 2)
(s1098 4)
(s1099 5)
(s1100 5)
(s1101 2)
(s1103 4)
(s1104 5)
(s1105 5)
(s1106 2)
(s1108 4)
(s1109 5)
(s1110 5)
(s1111 2)
(s1113 4)
(s1114 5)
(s1115 5)
(s1116 2)
(s1118 4)
(s1119 5)
(s1120 5)
(s1121 2)
(s1123 4)
(s1124 5)
(s1125 5)
(s1126 2)
(s1128 4)
(s1129 5)
(s1130 5)
(s1131 2)
(s1133 4)
(s1134 5)
(s1135 5)
(s1136 2)
(s1138 4)
(s1139 5)
(s1140 5)
(s1141 2)
(s1143 4)
(s1144 5)
(s1145 5)
(s1146 2)
(s1148 4)
(s1149 5)
(s1150 5)
(s1151 2)
(s1153 4)
(s1154 5)
(s1155 5)
(s1156 2)
(s1158 4)
(s1159 5)
(s1160 5)
(s1161 2)
(s1163 4)
(s1164 5)
(s1165 5)
(s1166 2)
(s1168 4)
(s1169 5)
(s1170 5)
(s1171 2)
(s1173 4)
(s1174 5)
(s1175 5)
(s1176 2)
(s1178 4)
(s1179 5)
(s1180 5)
(s1181 2)
(s1183 4)
(s1184 5)
(s1185 5)
(s1186 2)
(s1188 4)
(s1189 5)
(s1190 5)
(s1191 2)
(s1193 4)
(s1194 5)
(s1195 5)
(s1196 2)
(s1198 4)
(s1199 5)
(s1200 5)
(s1201 2)
(s1203 4)
(s1204 5)
(s1205 5)
(s1206 2)
(s1208 4)
(s1209 5)
(s1210 5)
(s1211 2)
(s1213 4)
(s1214 5)
(s1215 5)
(s1216 2)
(s1218 4)
(s1219 5)
(s1220 5)
(s1221 2)
(s1223 4)
(s1224 5)
(s1225 5)
(s1226 2)
(s1228 4)
(s1229 5)
(s1230 5)
(s1231 2)
(s1233 4)
(s1234 5)
(s1235 5)
(s1236 2)
(s1238 4)
(s1239 5)
(s1240 5)
(s1241 2)
(s1243 4)
(s1244 5)
(s1245 5)
(s1246 2)
(s1248 4)
(s1249 5)
(s1250 5)
(s1251 2)
(s1253 4)
(s1254 5)
(s1255 5)
(s1256 2)
(s1258 4)
(s1259 5)
(s1260 5)
(s1261 2)
(s1263 4)
(s1264 5)
(s1265 5)
(s1266 2)
(s1268 4)
(s1269 5)
(s1270 5)
(s1271 2)
(s1273 4)
(s1274 5)
(s1275 5)
(s1276 2)
(s1278 4)
(s1279 5)
(s1280 5)
(s1281 2)
(s1283 4)
(s1284 5)
(s1285 5)
(s1286 2)
(s1288 4)
(s1289 5)
(s1290 5)
(s1291 2)
(s1293 4)
(s1294 5)
(s1295 5)
(s1296 2)
(s1298 4)
(s1299 5)
(s1300 5)
(s1301 2)
(s1303 4)
(s1304 5)
(s1305 5)
(s1306 2)
(s1308 4)
(s1309 5)
(s1310 5)
(s1311 2)
(s1313 4)
(s1314 5)
(s1315 5)
(s1316 2)
(s1318 4)
(s1319 5)
(s1320 5)
(s1321 2)
(s1323 4)
(s1324 5)
(s1325 5)
(s1326 2)
(s1328 4)
(s1329 5)
(s1330 5)
(s1331 2)
(s1333 4)
(s1334 5)
(s1335 5)
(s1336 2)
(s1338 4)
(s1339 5)
(s1340 5)
(s1341 2)
(s1343 4)
(s1344 5)
(s1345 5)
(s1346 2)
(s1348 4)
(s1349 5)
(s1350 5)
(s1351 2)
(s1353 4)
(s1354 5)
(s1355 5)
(s1356 2)
(s1358 4)
(s1359 5)
(s1360 5)
(s1361 2)
(s1363 4)
(s1364 5)
(s1365 5)
(s1366 2)
(s1368 4)
(s1369 5)
(s1370 5)
(s1371 2)
(s1373 4)
(s1374 5)
(s1375 5)
(s1376 2)
(s1378 4)
(s1379 5)
(s1380 5)
(s1381 2)
(s1383 4)
(s1384 5)
(s1385 5)
(s1386 2)
(s1388 4)
(s1389 5)
(s1390 5)
(s1391 2)
(s1393 4)
(s1394 5)
(s1395 5)
(s1396 2)
(s1398 4)
(s1399 5)
(s1400 5)
(s1401 2)
(s1403 4)
(s1404 5)
(s1405 5)
(s1406 2)
(s1408 4)
(s1409 5)
(s1410 5)
(s1411 2)
(s1413 4)
(s1414 5)
(s1415 5)
(s1416 2)
(s1418 4)
(s1419 5)
(s1420 5)
(s1421 2)
(s1423 4)
(s1424 5)
(s1425 5)
(s1426 2)
(s1428 4)
(s1429 5)
(s1430 5)
(s1431 2)
(s1433 4)
(s1434 5)
(s1435 5)
(s1436 2)
(s1438 4)
(s1439 5)
(s1440 5)
(s1441 2)
(s1443 4)
(s1444 5)
(s1445 5)
(s1446 2)
(s1448 4)
(s1449 5)
(s1450 5)
(s1451 2)
(s1453 4)
(s1454 5)
(s1455 5)
(s1456 2)
(s1458 4)
(s1459 5)
(s1460 5)
(s1461 2)
(s1463 4)
(s1464 5)
(s1465 5)
(s1466 2)
(s1468 4)
(s1469 5)
(s1470 5)
(s1471 2)
(s1473 4)
(s1474 5)
(s1475 5)
(s1476 2)
(s1478 4)
(s1479 5)
(s1480 5)
(s1481 2)
(s1483 4)
(s1484 5)
(s1485 5)
(s1486 2)
(s1488 4)
(s1489 5)
(s1490 5)
(s1491 2)
(s1493 4)
(s1494 5)
(s1495 5)
(s1496 2)
(s1498 4)
(s1499 5)
(s1500 5)
(s1501 2)
(s1503 4)
(s1504 5)
(s1505 5)
(s1506 2)
(s1508 4)
(s1509 5)
(s1510 5)
(s1511 2)
(s1513 4)
(s1514 5)
(s1515 5)
(s1516 2)
(s1518 4)
(s1519 5)
(s1520 5)
(s1521 2)
(s1523 4)
(s1524 5)
(s1525 5)
(s1526 2)
(s1528 4)
(s1529 5)
(s1530 5)
(s1531 2)
(s1533 4)
(s1534 5)
(s1535 5)
(s1536 2)
(s1538 4)
(s1539 5)
(s1540 5)
(s1541 2)
(s1543 4)
(s1544 5)
(s1545 5)
(s1546 2)
(s1548 4)
(s1549 5)
(s1550 5)
(s1551 2)
(s1553 4)
(s1554 5)
(s1555 5)
(s1556 2)
(s1558 4)
(s1559 5)
(s1560 5)
(s1561 2)
(s1563 4)
(s1564 5)
(s1565 5)
(s1566 2)
(s1568 4)
(s1569 5)
(s1570 5)
(s1571 2)
(s1573 4)
(s1574 5)
(s1575 5)
(s1576 2)
(s1578 4)
(s1579 5)
(s1580 5)
(s1581 2)
(s1583 4)
(s1584 5)
(s1585 5)
(s1586 2)
(s1588 4)
(s1589 5)
(s1590 5)
(s1591 2)
(s1593 4)
(s1594 5)
(s1595 5)
(s1596 2)
(s1598 4)
(s1599 5)
(s1600 5)
(s1601 2)
(s1603 4)
(s1604 5)
(s1605 5)
(s1606 2)
(s1608 4)
(s1609 5)
(s1610 5)
(s1611 2)
(s1613 4)
(s1614 5)
(s1615 5)
(s1616 2)
(s1618 4)
(s1619 5)
(s1620 5)
(s1621 2)
(s1623 4)
(s1624 5)
(s1625 5)
(s1626 2)
(s1628 4)
(s1629 5)
(s1630 5)
(s1631 2)
(s1633 4)
(s1634 5)
(s1635 5)
(s1636 2)
(s1638 4)
(s1639 5)
(s1640 5)
(s1641 2)
(s1643 4)
(s1644 5)
(s1645 5)
(s1646 2)
(s1648 4)
(s1649 5)
(s1650 5)
(s1651 2)
(s1653 4)
(s1654 5)
(s1655 5)
(s1656 2)
(s1658 4)
(s1659 5)
(s1660 5)
(s1661 2)
(s1663 4)
(s1664 5)
(s1665 5)
(s1666 2)
(s1668 4)
(s1669 5)
(s1670 5)
(s1671 2)
(s1673 4)
(s1674 5)
(s1675 5)
(s1676 2)
(s1678 4)
(s1679 5)
(s1680 5)
(s1681 2)
(s1683 4)
(s1684 5)
(s1685 5)
(s1686 2)
(s1688 4)
(s1689 5)
(s1690 5)
(s1691 2)
(s1693 4)
(s1694 5)
(s1695 5)
(s1696 2)
(s1698 4)
(s1699 5)
(s1700 5)
(s1701 2)
(s1703 4)
(s1704 5)
(s1705 5)
(s1706 2)
(s1708 4)
(s1709 5)
(s1710 5)
(s1711 2)
(s1713 4)
(s1714 5)
(s1715 5)
(s1716 2)
(s1718 4)
(s1719 5)
(s1720 5)
(s1721 2)
(s1723 4)
(s1724 5)
(s1725 5)
(s1726 2)
(s1728 4)
(s1729 5)
(s1730 5)
(s1731 2)
(s1733 4)
(s1734 5)
(s1735 5)
(s1736 2)
(s1738 4)
(s1739 5)
(s1740 5)
(s1741 2)
(s1743 4)
(s1744 5)
(s1745 5)
(s1746 2)
(s1748 4)
(s1749 5)
(s1750 5)
(s1751 2)
(s1753 4)
(s1754 5)
(s1755 5)
(s1756 2)
(s1758 4)
(s1759 5)
(s1760 5)
(s1761 2)
(s1763 4)
(s1764 5)
(s1765 5)
(s1766 2)
(s1768 4)
(s1769 5)
(s1770 5)
(s1771 2)
(s1773 4)
(s1774 5)
(s1775 5)
(s1776 2)
(s1778 4)
(s1779 5)
(s1780 5)
(s1781 2)
(s1783 4)
(s1784 5)
(s1785 5)
(s1786 2)
(s1788 4)
(s1789 5)
(s1790 5)
(s1791 2)
(s1793 4)
(s1794 5)
(s1795 5)
(s1796 2)
(s1798 4)
(s1799 5)
(s1800 5)
(s1801 2)
(s1803 4)
(s1804 5)
(s1805 5)
(s1806 2)
(s1808 4)
(s1809 5)
(s1810 5)
(s1811 2)
(s1813 4)
(s1814 5)
(s1815 5)
(s1816 2)
(s1818 4)
(s1819 5)
(s1820 5)
(s1821 2)
(s1823 4)
(s1824 5)
(s1825 5)
(s1826 2)
(s1828 4)
(s1829 5)
(s1830 5)
(s1831 2)
(s1833 4)
(s1834 5)
(s1835 5)
(s1836 2)
(s1838 4)
(s1839 5)
(s1840 5)
(s1841 2)
(s1843 4)
(s1844 5)
(s1845 5)
(s1846 2)
(s1848 4)
(s1849 5)
(s1850 5)
(s1851 2)
(s1853 4)
(s1854 5)
(s1855 5)
(s1856 2)
(s1858 4)
(s1859 5)
(s1860 5)
(s1861 2)
(s1863 4)
(s1864 5)
(s1865 5)
(s1866 2)
(s1868 4)
(s1869 5)
(s1870 5)
(s1871 2)
(s1873 4)
(s1874 5)
(s1875 5)
(s1876 2)
(s1878 4)
(s1879 5)
(s1880 5)
(s1881 2)
(s1883 4)
(s1884 5)
(s1885 5)
(s1886 2)
(s1888 4)
(s1889 5)
(s1890 5)
(s1891 2)
(s1893 4)
(s1894 5)
(s1895 5)
(s1896 2)
(s1898 4)
(s1899 5)
(s1900 5)
(s1901 2)
(s1903 4)
(s1904 5)
(s1905 5)
(s1906 2)
(s1908 4)
(s1909 5)
(s1910 5)
(s1911 2)
(s1913 4)
(s1914 5)
(s1915 5)
(s1916 2)
(s1918 4)
(s1919 5)
(s1920 5)
(s1921 2)
(s1923 4)
(s1924 5)
(s1925 5)
(s1926 2)
(s1928 4)
(s1929 5)
(s1930 5)
(s1931 2)
(s1933 4)
(s1934 5)
(s1935 5)
(s1936 2)
(s1938 4)
(s1939 5)
(s1940 5)
(s1941 2)
(s1943 4)
(s1944 5)
(s1945 5)
(s1946 2)
(s1948 4)
(s1949 5)
(s1950 5)
(s1951 2)
(s1953 4)
(s1954 5)
(s1955 5)
(s1956 2)
(s1958 4)
(s1959 5)
(s1960 5)
(s1961 2)
(s1963 4)
(s1964 5)
(s1965 5)
(s1966 2)
(s1968 4)
(s1969 5)
(s1970 5)
(s1971 2)
(s1973 4)
(s1974 5)
(s1975 5)
(s1976 2)
(s1978 4)
(s1979 5)
(s1980 5)
(s1981 2)
(s1983 4)
(s1984 5)
(s1985 5)
(s1986 2)
(s1988 4)
(s1989 5)
(s1990 5)
(s1991 2)
(s1993 4)
(s1994 5)
(s1995 5)
(s1996 2)
(s1998 4)
(s1999 5)
(s2000 5)
(s2001 2)
(s2003 4)
(s2004 5)
(s2005 5)
(s2006 2)
(s2008 4)
(s2009 5)
(s2010 5)
(s2011 2)
(s2013 4)
(s2014 5)
(s2015 5)
(s2016 2)
(s2018 4)
(s2019 5)
(s2020 5)
(s2021 2)
(s2023 4)
(s2024 5)
(s2025 5)
(s2026 2)
(s2028 4)
(s2029 5)
(s2030 5)
(s2031 2)
(s2033 4)
(s2034 5)
(s2035 5)
(s2036 2)
(s2038 4)
(s2039 5)
(s2040 5)
(s2041 2)
(s2043 4)
(s2044 5)
(s2045 5)
(s2046 2)
(s2048 4)
(s2049 5)
(s2050 5)
(s2051 2)
(s2053 4)
(s2054 5)
(s2055 5)
(s2056 2)
(s2058 4)
(s2059 5)
(s2060 5)
(s2061 2)
(s2063 4)
(s2064 5)
(s2065 5)
(s2066 2)
(s2068 4)
(s2069 5)
(s2070 5)
(s2071 2)
(s2073 4)
(s2074 5)
(s2075 5)
(s2076 2)
(s2078 4)
(s2079 5)
(s2080 5)
(s2081 2)
(s2083 4)
(s2084 5)
(s2085 5)
(s2086 2)
(s2088 4)
(s2089 5)
(s2090 5)
(s2091 2)
(s2093 4)
(s2094 5)
(s2095 5)
(s2096 2)
(s2098 4)
(s2099 5)
(s2100 5)
(s2101 2)
(s2103 4)
(s2104 5)
(s2105 5)
(s2106 2)
(s2108 4)
(s2109 5)
(s2110 5)
(s2111 2)
(s2113 4)
(s2114 5)
(s2115 5)
(s2116 2)
(s2118 4)
(s2119 5)
(s2120 5)
(s2121 2)
(s2123 4)
(s2124 5)
(s2125 5)
(s2126 2)
(s2128 4)
(s2129 5)
(s2130 5)
(s2131 2)
(s2133 4)
(s2134 5)
(s2135 5)
(s2136 2)
(s2138 4)
(s2139 5)
(s2140 5)
(s2141 2)
(s2143 4)
(s2144 5)
(s2145 5)
(s2146 2)
(s2148 4)
(s2149 5)
(s2150 5)
(s2151 2)
(s2153 4)
(s2154 5)
(s2155 5)
(s2156 2)
(s2158 4)
(s2159 5)
(s2160 5)
(s2161 2)
(s2163 4)
(s2164 5)
(s2165 5)
(s2166 2)
(s2168 4)
(s2169 5)
(s2170 5)
(s2171 2)
(s2173 4)
(s2174 5)
(s2175 5)
(s2176 2)
(s2178 4)
(s2179 5)
(s2180 5)
(s2181 2)
(s2183 4)
(s2184 5)
(s2185 5)
(s2186 2)
(s2188 4)
(s2189 5)
(s2190 5)
(s2191 2)
(s2193 4)
(s2194 5)
(s2195 5)
(s2196 2)
(s2198 4)
(s2199 5)
(s2200 5)
(s2201 2)
(s2203 4)
(s2204 5)
(s2205 5)
(s2206 2)
(s2208 4)
(s2209 5)
(s2210 5)
(s2211 2)
(s2213 4)
(s2214 5)
(s2215 5)
(s2216 2)
(s2218 4)
(s2219 5)
(s2220 5)
(s2221 2)
(s2223 4)
(s2224 5)
(s2225 5)
(s2226 2)
(s2228 4)
(s2229 5)
(s2230 5)
(s2231 2)
(s2233 4)
(s2234 5)
(s2235 5)
(s2236 2)
(s2238 4)
(s2239 5)
(s2240 5)
(s2241 2)
(s2243 4)
(s2244 5)
(s2245 5)
(s2246 2)
(s2248 4)
(s2249 5)
(s2250 5)
(s2251 2)
(s2253 4)
(s2254 5)
(s2255 5)
(s2256 2)
(s2258 4)
(s2259 5)
(s2260 5)
(s2261 2)
(s2263 4)
(s2264 5)
(s2265 5)
(s2266 2)
(s2268 4)
(s2269 5)
(s2270 5)
(s2271 2)
(s2273 4)
(s2274 5)
(s2275 5)
(s2276 2)
(s2278 4)
(s2279 5)
(s2280 5)
(s2281 2)
(s2283 4)
(s2284 5)
(s2285 5)
(s2286 2)
(s2288 4)
(s2289 5)
(s2290 5)
(s2291 2)
(s2293 4)
(s2294 5)
(s2295 5)
(s2296 2)
(s2298 4)
(s2299 5)
(s2300 5)
(s2301 2)
(s2303 4)
(s2304 5)
(s2305 5)
(s2306 2)
(s2308 4)
(s2309 5)
(s2310 5)
(s2311 2)
(s2313 4)
(s2314 5)
(s2315 5)
(s2316 2)
(s2318 4)
(s2319 5)
(s2320 5)
(s2321 2)
(s2323 4)
(s2324 5)
(s2325 5)
(s2326 2)
(s2328 4)
(s2329 5)
(s2330 5)
(s2331 2)
(s2333 4)
(s2334 5)
(s2335 5)
(s2336 2)
(s2338 4)
(s2339 5)
(s2340 5)
(s2341 2)
(s2343 4)
(s2344 5)
(s2345 5)
(s2346 2)
(s2348 4)
(s2349 5)
(s2350 5)
(s2351 2)
(s2353 4)
(s2354 5)
(s2355 5)
(s2356 2)
(s2358 4)
(s2359 5)
(s2360 5)
(s2361 2)
(s2363 4)
(s2364 5)
(s2365 5)
(s2366 2)
(s2368 4)
(s2369 5)
(s2370 5)
(s2371 2)
(s2373 4)
(s2374 5)
(s2375 5)
(s2376 2)
(s2378 4)
(s2379 5)
(s2380 5)
(s2381 2)
(s2383 4)
(s2384 5)
(s2385 5)
(s2386 2)
(s2388 4)
(s2389 5)
(s2390 5)
(s2391 2)
(s2393 4)
(s2394 5)
(s2395 5)
(s2396 2)
(s2398 4)
(s2399 5)
(s2400 5)
(s2401 2)
(s2403 4)
(s2404 5)
(s2405 5)
(s2406 2)
(s2408 4)
(s2409 5)
(s2410 5)
(s2411 2)
(s2413 4)
(s2414 5)
(s2415 5)
(s2416 2)
(s2418 4)
(s2419 5)
(s2420 5)
(s2421 2)
(s2423 4)
(s2424 5)
(s2425 5)
(s2426 2)
(s2428 4)
(s2429 5)
(s2430 5)
(s2431 2)
(s2433 4)
(s2434 5)
(s2435 5)
(s2436 2)
(s2438 4)
(s2439 5)
(s2440 5)
(s2441 2)
(s2443 4)
(s2444 5)
(s2445 5)
(s2446 2)
(s2448 4)
(s2449 5)
(s2450 5)
(s2451 2)
(s2453 4)
(s2454 5)
(s2455 5)
(s2456 2)
(s2458 4)
(s2459 5)
(s2460 5)
(s2461 2)
(s2463 4)
(s2464 5)
(s2465 5)
(s2466 2)
(s2468 4)
(s2469 5)
(s2470 5)
(s2471 2)
(s2473 4)
(s2474 5)
(s2475 5)
(s2476 2)
(s2478 4)
(s2479 5)
(s2480 5)
(s2481 2)
(s2483 4)
(s2484 5)
(s2485 5)
(s2486 2)
(s2488 4)
(s2489 5)
(s2490 5)
(s2491 2)
(s2493 4)
(s2494 5)
(s2495 5)
(s2496 2)
(s2498 4)
(s2499 5)
(s2500 5)
(s2501 2)
(s2503 4)
(s2504 5)
(s2505 5)
(s2506 2)
(s2508 4)
(s2509 5)
(s2510 5)
(s2511 2)
(s2513 4)
(s2514 5)
(s2515 5)
(s2516 2)
(s2518 4)
(s2519 5)
(s2520 5)
(s2521 2)
(s2523 4)
(s2524 5)
(s2525 5)
(s2526 2)
(s2528 4)
(s2529 5)
(s2530 5)
(s2531 2)
(s2533 4)
(s2534 5)
(s2535 5)
(s2536 2)
(s2538 4)
(s2539 5)
(s2540 5)
(s2541 2)
(s2543 4)
(s2544 5)
(s2545 5)
(s2546 2)
(s2548 4)
(s2549 5)
(s2550 5)
(s2551 2)
(s2553 4)
(s2554 5)
(s2555 5)
(s2556 2)
(s2558 4)
(s2559 5)
(s2560 5)
(s2561 2)
(s2563 4)
(s2564 5)
(s2565 5)
(s2566 2)
(s2568 4)
(s2569 5)
(s2570 5)
(s2571 2)
(s2573 4)
(s2574 5)
(s2575 5)
(s2576 2)
(s2578 4)
(s2579 5)
(s2580 5)
(s2581 2)
(s2583 4)
(s2584 5)
(s2585 5)
(s2586 2)
(s2588 4)
(s2589 5)
(s2590 5)
(s2591 2)
(s2593 4)
(s2594 5)
(s2595 5)
(s2596 2)
(s2598 4)
(s2599 5)
(s2600 5)
(s2601 2)
(s2603 4)
(s2604 5)
(s2605 5)
(s2606 2)
(s2608 4)
(s2609 5)
(s2610 5)
(s2611 2)
(s2613 4)
(s2614 5)
(s2615 5)
(s2616 2)
(s2618 4)
(s2619 5)
(s2620 5)
(s2621 2)
(s2623 4)
(s2624 5)
(s2625 5)
(s2626 2)
(s2628 4)
(s2629 5)
(s2630 5)
(s2631 2)
(s2633 4)
(s2634 5)
(s2635 5)
(s2636 2)
(s2638 4)
(s2639 5)
(s2640 5)
(s2641 2)
(s2643 4)
(s2644 5)
(s2645 5)
(s2646 2)
(s2648 4)
(s2649 5)
(s2650 5)
(s2651 2)
(s2653 4)
(s2654 5)
(s2655 5)
(s2656 2)
(s2658 4)
(s2659 5)
(s2660 5)
(s2661 2)
(s2663 4)
(s2664 5)
(s2665 5)
(s2666 2)
(s2668 4)
(s2669 5)
(s2670 5)
(s2671 2)
(s2673 4)
(s2674 5)
(s2675 5)
(s2676 2)
(s2678 4)
(s2679 5)
(s2680 5)
(s2681 2)
(s2683 4)
(s2684 5)
(s2685 5)
(s2686 2)
(s2688 4)
(s2689 5)
(s2690 5)
(s2691 2)
(s2693 4)
(s2694 5)
(s2695 5)
(s2696 2)
(s2698 4)
(s2699 5)
(s2700 5)
(s2701 2)
(s2703 4)
(s2704 5)
(s2705 5)
(s2706 2)
(s2708 4)
(s2709 5)
(s2710 5)
(s2711 2)
(s2713 4)
(s2714 5)
(s2715 5)
(s2716 2)
(s2718 4)
(s2719 5)
(s2720 5)
(s2721 2)
(s2723 4)
(s2724 5)
(s2725 5)
(s2726 2)
(s2728 4)
(s2729 5)
(s2730 5)
(s2731 2)
(s2733 4)
(s2734 5)
(s2735 5)
(s2736 2)
(s2738 4)
(s2739 5)
(s2740 5)
(s2741 2)
(s2743 4)
(s2744 5)
(s2745 5)
(s2746 2)
(s2748 4)
(s2749 5)
(s2750 5)
(s2751 2)
(s2753 4)
(s2754 5)
(s2755 5)
(s2756 2)
(s2758 4)
(s2759 5)
(s2760 5)
(s2761 2)
(s2763 4)
(s2764 5)
(s2765 5)
(s2766 2)
(s2768 4)
(s2769 5)
(s2770 5)
(s2771 2)
(s2773 4)
(s2774 5)
(s2775 5)
(s2776 2)
(s2778 4)
(s2779 5)
(s2780 5)
(s2781 2)
(s2783 4)
(s2784 5)
(s2785 5)
(s2786 2)
(s2788 4)
(s2789 5)
(s2790 5)
(s2791 2)
(s2793 4)
(s2794 5)
(s2795 5)
(s2796 2)
(s2798 4)
(s2799 5)
(s2800 5)
(s2801 2)
(s2803 4)
(s2804 5)
(s2805 5)
(s2806 2)
(s2808 4)
(s2809 5)
(s2810 5)
(s2811 2)
(s2813 4)
(s2814 5)
(s2815 5)
(s2816 2)
(s2818 4)
(s2819 5)
(s2820 5)
(s2821 2)
(s2823 4)
(s2824 5)
(s2825 5)
(s2826 2)
(s2828 4)
(s2829 5)
(s2830 5)
(s2831 2)
(s2833 4)
(s2834 5)
(s2835 5)
(s2836 2)
(s2838 4)
(s2839 5)
(s2840 5)
(s2841 2)
(s2843 4)
(s2844 5)
(s2845 5)
(s2846 2)
(s2848 4)
(s2849 5)
(s2850 5)
(s2851 2)
(s2853 4)
(s2854 5)
(s2855 5)
(s2856 2)
(s2858 4)
(s2859 5)
(s2860 5)
(s2861 2)
(s2863 4)
(s2864 5)
(s2865 5)
(s2866 2)
(s2868 4)
(s2869 5)
(s2870 5)
(s2871 2)
(s2873 4)
(s2874 5)
(s2875 5)
(s2876 2)
(s2878 4)
(s2879 5)
(s2880 5)
(s2881 2)
(s2883 4)
(s2884 5)
(s2885 5)
(s2886 2)
(s2888 4)
(s2889 5)
(s2890 5)
(s2891 2)
(s2893 4)
(s2894 5)
(s2895 5)
(s2896 2)
(s2898 4)
(s2899 5)
(s2900 5)
(s2901 2)
(s2903 4)
(s2904 5)
(s2905 5)
(s2906 2)
(s2908 4)
(s2909 5)
(s2910 5)
(s2911 2)
(s2913 4)
(s2914 5)
(s2915 5)
(s2916 2)
(s2918 4)
(s2919 5)
(s2920 5)
(s2921 2)
(s2923 4)
(s2924 5)
(s2925 5)
(s2926 2)
(s2928 4)
(s2929 5)
(s2930 5)
(s2931 2)
(s2933 4)
(s2934 5)
(s2935 5)
(s2936 2)
(s2938 4)
(s2939 5)
(s2940 5)
(s2941 2)
(s2943 4)
(s2944 5)
(s2945 5)
(s2946 2)
(s2948 4)
(s2949 5)
(s2950 5)
(s2951 2)
(s2953 4)
(s2954 5)
(s2955 5)
(s2956 2)
(s2958 4)
(s2959 5)
(s2960 5)
(s2961 2)
(s2963 4)
(s2964 5)
(s2965 5)
(s2966 2)
(s2968 4)
(s2969 5)
(s2970 5)
(s2971 2)
(s2973 4)
(s2974 5)
(s2975 5)
(s2976 2)
(s2978 4)
(s2979 5)
(s2980 5)
(s2981 2)
(s2983 4)
(s2984 5)
(s2985 5)
(s2986 2)
(s2988 4)
(s2989 5)
(s2990 5)
(s2991 2)
(s2993 4)
(s2994 5)
(s2995 5)
(s2996 2)
(s2998 4)
(s2999 5)
(s3000 5)
(s3001 2)
(s3003 4)
(s3004 5)
(s3005 5)
(s3006 2)
(s3008 4)
(s3009 5)
(s3010 5)
(s3011 2)
(s3013 4)
(s3014 5)
(s3015 5)
(s3016 2)
(s3018 4)
(s3019 5)
(s3020 5)
(s3021 2)
(s3023 4)
(s3024 5)
(s3025 5)
(s3026 2)
(s3028 4)
(s3029 5)
(s3030 5)
(s3031 2)
(s3033 4)
(s3034 5)
(s3035 5)
(s3036 2)
(s3038 4)
(s3039 5)
(s3040 5)
(s3041 2)
(s3043 4)
(s3044 5)
(s3045 5)
(s3046 2)
(s3048 4)
(s3049 5)
(s3050 5)
(s3051 2)
(s3053 4)
(s3054 5)
(s3055 5)
(s3056 2)
(s3058 4)
(s3059 5)
(s3060 5)
(s3061 2)
(s3063 4)
(s3064 5)
(s3065 5)
(s3066 2)
(s3068 4)
(s3069 5)
(s3070 5)
(s3071 2)
(s3073 4)
(s3074 5)
(s3075 5)
(s3076 2)
(s3078 4)
(s3079 5)
(s3080 5)
(s3081 2)
(s3083 4)
(s3084 5)
(s3085 5)
(s3086 2)
(s3088 4)
(s3089 5)
(s3090 5)
(s3091 2)
(s3093 4)
(s3094 5)
(s3095 5)
(s3096 2)
(s3098 4)
(s3099 5)
(s3100 5)
(s3101 2)
(s3103 4)
(s3104 5)
(s3105 5)
(s3106 2)
(s3108 4)
(s3109 5)
(s3110 5)
(s3111 2)
(s3113 4)
(s3114 5)
(s3115 5)
(s3116 2)
(s3118 4)
(s3119 5)
(s3120 5)
(s3121 2)
(s3123 4)
(s3124 5)
(s3125 5)
(s3126 2)
(s3128 4)
(s3129 5)
(s3130 5)
(s3131 2)
(s3133 4)
(s3134 5)
(s3135 5)
(s3136 2)
(s3138 4)
(s3139 5)
(s3140 5)
(s3141 2)
(s3143 4)
(s3144 5)
(s3145 5)
(s3146 2)
(s3148 4)
(s3149 5)
(s3150 5)
(s3151 2)
(s3153 4)
(s3154 5)
(s3155 5)
(s3156 2)
(s3158 4)
(s3159 5)
(s3160 5)
(s3161 2)
(s3163 4)
(s3164 5)
(s3165 5)
(s3166 2)
(s3168 4)
(s3169 5)
(s3170 5)
(s3171 2)
(s3173 4)
(s3174 5)
(s3175 5)
(s3176 2)
(s3178 4)
(s3179 5)
(s3180 5)
(s3181 2)
(s3183 4)
(s3184 5)
(s3185 5)
(s3186 2)
(s3188 4)
(s3189 5)
(s3190 5)
(s3191 2)
(s3193 4)
(s3194 5)
(s3195 5)
(s3196 2)
(s3198 4)
(s3199 5)
(s3200 5)
(s3201 2)
(s3203 4)
(s3204 5)
(s3205 5)
(s3206 2)
(s3208 4)
(s3209 5)
(s3210 5)
(s3211 2)
(s3213 4)
(s3214 5)
(s3215 5)
(s3216 2)
(s3218 4)
(s3219 5)
(s3220 5)
(s3221 2)
(s3223 4)
(s3224 5)
(s3225 5)
(s3226 2)
(s3228 4)
(s3229 5)
(s3230 5)
(s3231 2)
(s3233 4)
(s3234 5)
(s3235 5)
(s3236 2)
(s3238 4)
(s3239 5)
(s3240 5)
(s3241 2)
(s3243 4)
(s3244 5)
(s3245 5)
(s3246 2)
(s3248 4)
(s3249 5)
(s3250 5)
(s3251 2)
(s3253 4)
(s3254 5)
(s3255 5)
(s3256 2)
(s3258 4)
(s3259 5)
(s3260 5)
(s3261 2)
(s3263 4)
(s3264 5)
(s3265 5)
(s3266 2)
(s3268 4)
(s3269 5)
(s3270 5)
(s3271 2)
(s3273 4)
(s3274 5)
(s3275 5)
(s3276 2)
(s3278 4)
(s3279 5)
(s3280 5)
(s3281 2)
(s3283 4)
(s3284 5)
(s3285 5)
(s3286 2)
(s3288 4)
(s3289 5)
(s3290 5)
(s3291 2)
(s3293 4)
(s3294 5)
(s3295 5)
(s3296 2)
(s3298 4)
(s3299 5)
(s3300 5)
(s3301 2)
(s3303 4)
(s3304 5)
(s3305 5)
(s3306 2)
(s3308 4)
(s3309 5)
(s3310 5)
(s3311 2)
(s3313 4)
(s3314 5)
(s3315 5)
(s3316 2)
(s3318 4)
(s3319 5)
(s3320 5)
(s3321 2)
(s3323 4)
(s3324 5)
(s3325 5)
(s3326 2)
(s3328 4)
(s3329 5)
(s3330 5)
(s3331 2)
(s3333 4)
(s3334 5)
(s3335 5)
(s3336 2)
(s3338 4)
(s3339 5)
(s3340 5)
(s3341 2)
(s3343 4)
(s3344 5)
(s3345 5)
(s3346 2)
(s3348 4)
(s3349 5)
(s3350 5)
(s3351 2)
(s3353 4)
(s3354 5)
(s3355 5)
(s3356 2)
(s3358 4)
(s3359 5)
(s3360 5)
(s3361 2)
(s3363 4)
(s3364 5)
(s3365 5)
(s3366 2)
(s3368 4)
(s3369 5)
(s3370 5)
(s3371 2)
(s3373 4)
(s3374 5)
(s3375 5)
(s3376 2)
(s3378 4)
(s3379 5)
(s3380 5)
(s3381 2)
(s3383 4)
(s3384 5)
(s3385 5)
(s3386 2)
(s3388 4)
(s3389 5)
(s3390 5)
(s3391 2)
(s3393 4)
(s3394 5)
(s3395 5)
(s3396 2)
(s3398 4)
(s3399 5)
(s3400 5)
(s3401 2)
(s3403 4)
(s3404 5)
(s3405 5)
(s3406 2)
(s3408 4)
(s3409 5)
(s3410 5)
(s3411 2)
(s3413 4)
(s3414 5)
(s3415 5)
(s3416 2)
(s3418 4)
(s3419 5)
(s3420 5)
(s3421 2)
(s3423 4)
(s3424 5)
(s3425 5)
(s3426 2)
(s3428 4)
(s3429 5)
(s3430 5)
(s3431 2)
(s3433 4)
(s3434 5)
(s3435 5)
(s3436 2)
(s3438 4)
(s3439 5)
(s3440 5)
(s3441 2)
(s3443 4)
(s3444 5)
(s3445 5)
(s3446 2)
(s3448 4)
(s3449 5)
(s3450 5)
(s3451 2)
(s3453 4)
(s3454 5)
(s3455 5)
(s3456 2)
(s3458 4)
(s3459 5)
(s3460 5)
(s3461 2)
(s3463 4)
(s3464 5)
(s3465 5)
(s3466 2)
(s3468 4)
(s3469 5)
(s3470 5)
(s3471 2)
(s3473 4)
(s3474 5)
(s3475 5)
(s3476 2)
(s3478 4)
(s3479 5)
(s3480 5)
(s3481 2)
(s3483 4)
(s3484 5)
(s3485 5)
(s3486 2)
(s3488 4)
(s3489 5)
(s3490 5)
(s3491 2)
(s3493 4)
(s3494 5)
(s3495 5)
(s3496 2)
(s3498 4)
(s3499 5)
(s3500 5)
(s3501 2)
(s3503 4)
(s3504 5)
(s3505 5)
(s3506 2)
(s3508 4)
(s3509 5)
(s3510 5)
(s3511 2)
(s3513 4)
(s3514 5)
(s3515 5)
(s3516 2)
(s3518 4)
(s3519 5)
(s3520 5)
(s3521 2)
(s3523 4)
(s3524 5)
(s3525 5)
(s3526 2)
(s3528 4)
(s3529 5)
(s3530 5)
(s3531 2)
(s3533 4)
(s3534 5)
(s3535 5)
(s3536 2)
(s3538 4)
(s3539 5)
(s3540 5)
(s3541 2)
(s3543 4)
(s3544 5)
(s3545 5)
(s3546 2)
(s3548 4)
(s3549 5)
(s3550 5)
(s3551 2)
(s3553 4)
(s3554 5)
(s3555 5)
(s3556 2)
(s3558 4)
(s3559 5)
(s3560 5)
(s3561 2)
(s3563 4)
(s3564 5)
(s3565 5)
(s3566 2)
(s3568 4)
(s3569 5)
(s3570 5)
(s3571 2)
(s3573 4)
(s3574 5)
(s3575 5)
(s3576 2)
(s3578 4)
(s3579 5)
(s3580 5)
(s3581 2)
(s3583 4)
(s3584 5)
(s3585 5)
(s3586 2)
(s3588 4)
(s3589 5)
(s3590 5)
(s3591 2)
(s3593 4)
(s3594 5)
(s3595 5)
(s3596 2)
(s3598 4)
(s3599 5)
(s3600 5)
(s3601 2)
(s3603 4)
(s3604 5)
(s3605 5)
(s3606 2)
(s3608 4)
(s3609 5)
(s3610 5)
(s3611 2)
(s3613 4)
(s3614 5)
(s3615 5)
(s3616 2)
(s3618 4)
(s3619 5)
(s3620 5)
(s3621 2)
(s3623 4)
(s3624 5)
(s3625 5)
(s3626 2)
(s3628 4)
(s3629 5)
(s3630 5)
(s3631 2)
(s3633 4)
(s3634 5)
(s3635 5)
(s3636 2)
(s3638 4)
(s3639 5)
(s3640 5)
(s3641 2)
(s3643 4)
(s3644 5)
(s3645 5)
(s3646 2)
(s3648 4)
(s3649 5)
(s3650 5)
(s3651 2)
(s3653 4)
(s3654 5)
(s3655 5)
(s3656 2)
(s3658 4)
(s3659 5)
(s3660 5)
(s3661 2)
(s3663 4)
(s3664 5)
(s3665 5)
(s3666 2)
(s3668 4)
(s3669 5)
(s3670 5)
(s3671 2)
(s3673 4)
(s3674 5)
(s3675 5)
(s3676 2)
(s3678 4)
(s3679 5)
(s3680 5)
(s3681 2)
(s3683 4)
(s3684 5)
(s3685 5)
(s3686 2)
(s3688 4)
(s3689 5)
(s3690 5)
(s3691 2)
(s3693 4)
(s3694 5)
(s3695 5)
(s3696 2)
(s3698 4)
(s3699 5)
(s3700 5)
(s3701 2)
(s3703 4)
(s3704 5)
(s3705 5)
(s3706 2)
(s3708 4)
(s3709 5)
(s3710 5)
(s3711 2)
(s3713 4)
(s3714 5)
(s3715 5)
(s3716 2)
(s3718 4)
(s3719 5)
(s3720 5)
(s3721 2)
(s3723 4)
(s3724 5)
(s3725 5)
(s3726 2)
(s3728 4)
(s3729 5)
(s3730 5)
(s3731 2)
(s3733 4)
(s3734 5)
(s3735 5)
(s3736 2)
(s3738 4)
(s3739 5)
(s3740 5)
(s3741 2)
(s3743 4)
(s3744 5)
(s3745 5)
(s3746 2)
(s3748 4)
(s3749 5)
(s3750 5)
(s3751 2)
(s3753 4)
(s3754 5)
(s3755 5)
(s3756 2)
(s3758 4)
(s3759 5)
(s3760 5)
(s3761 2)
(s3763 4)
(s3764 5)
(s3765 5)
(s3766 2)
(s3768 4)
(s3769 5)
(s3770 5)
(s3771 2)
(s3773 4)
(s3774 5)
(s3775 5)
(s3776 2)
(s3778 4)
(s3779 5)
(s3780 5)
(s3781 2)
(s3783 4)
(s3784 5)
(s3785 5)
(s3786 2)
(s3788 4)
(s3789 5)
(s3790 5)
(s3791 2)
(s3793 4)
(s3794 5)
(s3795 5)
(s3796 2)
(s3798 4)
(s3799 5)
(s3800 5)
(s3801 2)
(s3803 4)
(s3804 5)
(s3805 5)
(s3806 2)
(s3808 4)
(s3809 5)
(s3810 5)
(s3811 2)
(s3813 4)
(s3814 5)
(s3815 5)
(s3816 2)
(s3818 4)
(s3819 5)
(s3820 5)
(s3821 2)
(s3823 4)
(s3824 5)
(s3825 5)
(s3826 2)
(s3828 4)
(s3829 5)
(s3830 5)
(s3831 2)
(s3833 4)
(s3834 5)
(s3835 5)
(s3836 2)
(s3838 4)
(s3839 5)
(s3840 5)
(s3841 2)
(s3843 4)
(s3844 5)
(s3845 5)
(s3846 2)
(s3848 4)
(s3849 5)
(s3850 5)
(s3851 2)
(s3853 4)
(s3854 5)
(s3855 5)
(s3856 2)
(s3858 4)
(s3859 5)
(s3860 5)
(s3861 2)
(s3863 4)
(s3864 5)
(s3865 5)
(s3866 2)
(s3868 4)
(s3869 5)
(s3870 5)
(s3871 2)
(s3873 4)
(s3874 5)
(s3875 5)
(s3876 2)
(s3878 4)
(s3879 5)
(s3880 5)
(s3881 2)
(s3883 4)
(s3884 5)
(s3885 5)
(s3886 2)
(s3888 4)
(s3889 5)
(s3890 5)
(s3891 2)
(s3893 4)
(s3894 5)
(s3895 5)
(s3896 2)
(s3898 4)
(s3899 5)
(s3900 5)
(s3901 2)
(s3903 4)
(s3904 5)
(s3905 5)
(s3906 2)
(s3908 4)
(s3909 5)
(s3910 5)
(s3911 2)
(s3913 4)
(s3914 5)
(s3915 5)
(s3916 2)
(s3918 4)
(s3919 5)
(s3920 5)
(s3921 2)
(s3923 4)
(s3924 5)
(s3925 5)
(s3926 2)
(s3928 4)
(s3929 5)
(s3930 5)
(s3931 2)
(s3933 4)
(s3934 5)
(s3935 5)
(s3936 2)
(s3938 4)
(s3939 5)
(s3940 5)
(s3941 2)
(s3943 4)
(s3944 5)
(s3945 5)
(s3946 2)
(s3948 4)
(s3949 5)
(s3950 5)
(s3951 2)
(s3953 4)
(s3954 5)
(s3955 5)
(s3956 2)
(s3958 4)
(s3959 5)
(s3960 5)
(s3961 2)
(s3963 4)
(s3964 5)
(s3965 5)
(s3966 2)
(s3968 4)
(s3969 5)
(s3970 5)
(s3971 2)
(s3973 4)
(s3974 5)
(s3975 5)
(s3976 2)
(s3978 4)
(s3979 5)
(s3980 5)
(s3981 2)
(s3983 4)
(s3984 5)
(s3985 5)
(s3986 2)
(s3988 4)
(s3989 5)
(s3990 5)
(s3991 2)
(s3993 4)
(s3994 5)
(s3995 5)
(s3996 2)
(s3998 4)
(s3999 5)
(s4000 5)
(s4001 2)
(s4003 4)
(s4004 5)
(s4005 5)
(s4006 2)
(s4008 4)
(s4009 5)
(s4010 5)
(s4011 2)
(s4013 4)
(s4014 5)
(s4015 5)
(s4016 2)
(s4018 4)
(s4019 5)
(s4020 5)
(s4021 2)
(s4023 4)
(s4024 5)
(s4025 5)
(s4026 2)
(s4028 4)
(s4029 5)
(s4030 5)
(s4031 2)
(s4033 4)
(s4034 5)
(s4035 5)
(s4036 2)
(s4038 4)
(s4039 5)
(s4040 5)
(s4041 2)
(s4043 4)
(s4044 5)
(s4045 5)
(s4046 2)
(s4048 4)
(s4049 5)
(s4050 5)
(s4051 2)
(s4053 4)
(s4054 5)
(s4055 5)
(s4056 2)
(s4058 4)
(s4059 5)
(s4060 5)
(s4061 2)
(s4063 4)
(s4064 5)
(s4065 5)
(s4066 2)
(s4068 4)
(s4069 5)
(s4070 5)
(s4071 2)
(s4073 4)
(s4074 5)
(s4075 5)
(s4076 2)
(s4078 4)
(s4079 5)
(s4080 5)
(s4081 2)
(s4083 4)
(s4084 5)
(s4085 5)
(s4086 2)
(s4088 4)
(s4089 5)
(s4090 5)
(s4091 2)
(s4093 4)
(s4094 5)
(s4095 5)
(s4096 2)
(s4098 4)
(s4099 5)
(s4100 5)
(s4101 2)
(s4103 4)
(s4104 5)
(s4105 5)
(s4106 2)
(s4108 4)
(s4109 5)
(s4110 5)
(s4111 2)
(s4113 4)
(s4114 5)
(s4115 5)
(s4116 2)
(s4118 4)
(s4119 5)
(s4120 5)
(s4121 2)
(s4123 4)
(s4124 5)
(s4125 5)
(s4126 2)
(s4128 4)
(s4129 5)
(s4130 5)
(s4131 2)
(s4133 4)
(s4134 5)
(s4135 5)
(s4136 2)
(s4138 4)
(s4139 5)
(s4140 5)
(s4141 2)
(s4143 4)
(s4144 5)
(s4145 5)
(s4146 2)
(s4148 4)
(s4149 5)
(s4150 5)
(s4151 2)
(s4153 4)
(s4154 5)
(s4155 5)
(s4156 2)
(s4158 4)
(s4159 5)
(s4160 5)
(s4161 2)
(s4163 4)
(s4164 5)
(s4165 5)
(s4166 2)
(s4168 4)
(s4169 5)
(s4170 5)
(s4171 2)
(s4173 4)
(s4174 5)
(s4175 5)
(s4176 2)
(s4178 4)
(s4179 5)
(s4180 5)
(s4181 2)
(s4183 4)
(s4184 5)
(s4185 5)
(s4186 2)
(s4188 4)
(s4189 5)
(s4190 5)
(s4191 2)
(s4193 4)
(s4194 5)
(s4195 5)
(s4196 2)
(s4198 4)
(s4199 5)
(s4200 5)
(s4201 2)
(s4203 4)
(s4204 5)
(s4205 5)
(s4206 2)
(s4208 4)
(s4209 5)
(s4210 5)
(s4211 2)
(s4213 4)
(s4214 5)
(s4215 5)
(s4216 2)
(s4218 4)
(s4219 5)
(s4220 5)
(s4221 2)
(s4223 4)
(s4224 5)
(s4225 5)
(s4226 2)
(s4228 4)
(s4229 5)
(s4230 5)
(s4231 2)
(s4233 4)
(s4234 5)
(s4235 5)
(s4236 2)
(s4238 4)
(s4239 5)
(s4240 5)
(s4241 2)
(s4243 4)
(s4244 5)
(s4245 5)
(s4246 2)
(s4248 4)
(s4249 5)
(s4250 5)
(s4251 2)
(s4253 4)
(s4254 5)
(s4255 5)
(s4256 2)
(s4258 4)
(s4259 5)
(s4260 5)
(s4261 2)
(s4263 4)
(s4264 5)
(s4265 5)
(s4266 2)
(s4268 4)
(s4269 5)
(s4270 5)
(s4271 2)
(s4273 4)
(s4274 5)
(s4275 5)
(s4276 2)
(s4278 4)
(s4279 5)
(s4280 5)
(s4281 2)
(s4283 4)
(s4284 5)
(s4285 5)
(s4286 2)
(s4288 4)
(s4289 5)
(s4290 5)
(s4291 2)
(s4293 4)
(s4294 5)
(s4295 5)
(s4296 2)
(s4298 4)
(s4299 5)
(s4300 5)
(s4301 2)
(s4303 4)
(s4304 5)
(s4305 5)
(s4306 2)
(s4308 4)
(s4309 5)
(s4310 5)
(s4311 2)
(s4313 4)
(s4314 5)
(s4315 5)
(s4316 2)
(s4318 4)
(s4319 5)
(s4320 5)
(s4321 2)
(s4323 4)
(s4324 5)
(s4325 5)
(s4326 2)
(s4328 4)
(s4329 5)
(s4330 5)
(s4331 2)
(s4333 4)
(s4334 5)
(s4335 5)
(s4336 2)
(s4338 4)
(s4339 5)
(s4340 5)
(s4341 2)
(s4343 4)
(s4344 5)
(s4345 5)
(s4346 2)
(s4348 4)
(s4349 5)
(s4350 5)
(s4351 2)
(s4353 4)
(s4354 5)
(s4355 5)
(s4356 2)
(s4358 4)
(s4359 5)
(s4360 5)
(s4361 2)
(s4363 4)
(s4364 5)
(s4365 5)
(s4366 2)
(s4368 4)
(s4369 5)
(s4370 5)
(s4371 2)
(s4373 4)
(s4374 5)
(s4375 5)
(s4376 2)
(s4378 4)
(s4379 5)
(s4380 5)
(s4381 2)
(s4383 4)
(s4384 5)
(s4385 5)
(s4386 2)
(s4388 4)
(s4389 5)
(s4390 5)
(s4391 2)
(s4393 4)
(s4394 5)
(s4395 5)
(s4396 2)
(s4398 4)
(s4399 5)
(s4400 5)
(s4401 2)
(s4403 4)
(s4404 5)
(s4405 5)
(s4406 2)
(s4408 4)
(s4409 5)
(s4410 5)
(s4411 2)
(s4413 4)
(s4414 5)
(s4415 5)
(s4416 2)
(s4418 4)
(s4419 5)
(s4420 5)
(s4421 2)
(s4423 4)
(s4424 5)
(s4425 5)
(s4426 2)
(s4428 4)
(s4429 5)
(s4430 5)
(s4431 2)
(s4433 4)
(s4434 5)
(s4435 5)
(s4436 2)
(s4438 4)
(s4439 5)
(s4440 5)
(s4441 2)
(s4443 4)
(s4444 5)
(s4445 5)
(s4446 2)
(s4448 4)
(s4449 5)
(s4450 5)
(s4451 2)
(s4453 4)
(s4454 5)
(s4455 5)
(s4456 2)
(s4458 4)
(s4459 5)
(s4460 5)
(s4461 2)
(s4463 4)
(s4464 5)
(s4465 5)
(s4466 2)
(s4468 4)
(s4469 5)
(s4470 5)
(s4471 2)
(s4473 4)
(s4474 5)
(s4475 5)
(s4476 2)
(s4478 4)
(s4479 5)
(s4480 5)
(s4481 2)
(s4483 4)
(s4484 5)
(s4485 5)
(s4486 2)
(s4488 4)
(s4489 5)
(s4490 5)
(s4491 2)
(s4493 4)
(s4494 5)
(s4495 5)
(s4496 2)
(s4498 4)
(s4499 5)
(s4500 5)
(s4501 2)
(s4503 4)
(s4504 5)
(s4505 5)
(s4506 2)
(s4508 4)
(s4509 5)
(s4510 5)
(s4511 2)
(s4513 4)
(s4514 5)
(s4515 5)
(s4516 2)
(s4518 4)
(s4519 5)
(s4520 5)
(s4521 2)
(s4523 4)
(s4524 5)
(s4525 5)
(s4526 2)
(s4528 4)
(s4529 5)
(s4530 5)
(s4531 2)
(s4533 4)
(s4534 5)
(s4535 5)
(s4536 2)
(s4538 4)
(s4539 5)
(s4540 5)
(s4541 2)
(s4543 4)
(s4544 5)
(s4545 5)
(s4546 2)
(s4548 4)
(s4549 5)
(s4550 5)
(s4551 2)
(s4553 4)
(s4554 5)
(s4555 5)
(s4556 2)
(s4558 4)
(s4559 5)
(s4560 5)
(s4561 2)
(s4563 4)
(s4564 5)
(s4565 5)
(s4566 2)
(s4568 4)
(s4569 5)
(s4570 5)
(s4571 2)
(s4573 4)
(s4574 5)
(s4575 5)
(s4576 2)
(s4578 4)
(s4579 5)
(s4580 5)
(s4581 2)
(s4583 4)
(s4584 5)
(s4585 5)
(s4586 2)
(s4588 4)
(s4589 5)
(s4590 5)
(s4591 2)
(s4593 4)
(s4594 5)
(s4595 5)
(s4596 2)
(s4598 4)
(s4599 5)
(s4600 5)
(s4601 2)
(s4603 4)
(s4604 5)
(s4605 5)
(s4606 2)
(s4608 4)
(s4609 5)
(s4610 5)
(s4611 2)
(s4613 4)
(s4614 5)
(s4615 5)
(s4616 2)
(s4618 4)
(s4619 5)
(s4620 5)
(s4621 2)
(s4623 4)
(s4624 5)
(s4625 5)
(s4626 2)
(s4628 4)
(s4629 5)
(s4630 5)
(s4631 2)
(s4633 4)
(s4634 5)
(s4635 5)
(s4636 2)
(s4638 4)
(s4639 5)
(s4640 5)
(s4641 2)
(s4643 4)
(s4644 5)
(s4645 5)
(s4646 2)
(s4648 4)
(s4649 5)
(s4650 5)
(s4651 2)
(s4653 4)
(s4654 5)
(s4655 5)
(s4656 2)
(s4658 4)
(s4659 5)
(s4660 5)
(s4661 2)
(s4663 4)
(s4664 5)
(s4665 5)
(s4666 2)
(s4668 4)
(s4669 5)
(s4670 5)
(s4671 2)
(s4673 4)
(s4674 5)
(s4675 5)
(s4676 2)
(s4678 4)
(s4679 5)
(s4680 5)
(s4681 2)
(s4683 4)
(s4684 5)
(s4685 5)
(s4686 2)
(s4688 4)
(s4689 5)
(s4690 5)
(s4691 2)
(s4693 4)
(s4694 5)
(s4695 5)
(s4696 2)
(s4698 4)
(s4699 5)
(s4700 5)
(s4701 2)
(s4703 4)
(s4704 5)
(s4705 5)
(s4706 2)
(s4708 4)
(s4709 5)
(s4710 5)
(s4711 2)
(s4713 4)
(s4714 5)
(s4715 5)
(s4716 2)
(s4718 4)
(s4719 5)
(s4720 5)
(s4721 2)
(s4723 4)
(s4724 5)
(s4725 5)
(s4726 2)
(s4728 4)
(s4729 5)
(s4730 5)
(s4731 2)
(s4733 4)
(s4734 5)
(s4735 5)
(s4736 2)
(s4738 4)
(s4739 5)
(s4740 5)
(s4741 2)
(s4743 4)
(s4744 5)
(s4745 5)
(s4746 2)
(s4748 4)
(s4749 5)
(s4750 5)
(s4751 2)
(s4753 4)
(s4754 5)
(s4755 5)
(s4756 2)
(s4758 4)
(s4759 5)
(s4760 5)
(s4761 2)
(s4763 4)
(s4764 5)
(s4765 5)
(s4766 2)
(s4768 4)
(s4769 5)
(s4770 5)
(s4771 2)
(s4773 4)
(s4774 5)
(s4775 5)
(s4776 2)
(s4778 4)
(s4779 5)
(s4780 5)
(s4781 2)
(s4783 4)
(s4784 5)
(s4785 5)
(s4786 2)
(s4788 4)
(s4789 5)
(s4790 5)
(s4791 2)
(s4793 4)
(s4794 5)
(s4795 5)
(s4796 2)
(s4798 4)
(s4799 5)
(s4800 5)
(s4801 2)
(s4803 4)
(s4804 5)
(s4805 5)
(s4806 2)
(s4808 4)
(s4809 5)
(s4810 5)
(s4811 2)
(s4813 4)
(s4814 5)
(s4815 5)
(s4816 2)
(s4818 4)
(s4819 5)
(s4820 5)
(s4821 2)
(s4823 timeout
4)
(s4824 org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20088 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 44557ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 44605ms
[2025-06-02 07:17:18] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 07:17:19] [INFO ] Implicit Places using invariants in 1176 ms returned []
[2025-06-02 07:17:19] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 07:17:23] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2025-06-02 07:17:24] [INFO ] Implicit Places using invariants and state equation in 4091 ms returned []
Implicit Place search using SMT with State Equation took 5272 ms to find 0 implicit places.
Running 6000 sub problems to find dead transitions.
[2025-06-02 07:17:24] [INFO ] Invariant cache hit.
[2025-06-02 07:17:24] [INFO ] State equation strengthened by 1000 read => feed constraints.
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30079 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30080 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 64246ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 64257ms
Finished structural reductions in LTL mode , in 1 iterations and 114734 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Support contains 44 out of 5000 places after structural reductions.
[2025-06-02 07:18:28] [INFO ] Flatten gal took : 374 ms
[2025-06-02 07:18:29] [INFO ] Flatten gal took : 228 ms
[2025-06-02 07:18:29] [INFO ] Input system was already deterministic with 8001 transitions.
Support contains 40 out of 5000 places (down from 44) after GAL structural reductions.
RANDOM walk for 40558 steps (8 resets) in 2405 ms. (16 steps per ms) remains 25/25 properties
BEST_FIRST walk for 4004 steps (0 resets) in 232 ms. (17 steps per ms) remains 25/25 properties
BEST_FIRST walk for 4004 steps (0 resets) in 238 ms. (16 steps per ms) remains 25/25 properties
BEST_FIRST walk for 4004 steps (0 resets) in 224 ms. (17 steps per ms) remains 25/25 properties
BEST_FIRST walk for 4004 steps (0 resets) in 201 ms. (19 steps per ms) remains 25/25 properties
BEST_FIRST walk for 4004 steps (0 resets) in 206 ms. (19 steps per ms) remains 25/25 properties
BEST_FIRST walk for 4004 steps (0 resets) in 212 ms. (18 steps per ms) remains 25/25 properties
BEST_FIRST walk for 4004 steps (0 resets) in 199 ms. (20 steps per ms) remains 25/25 properties
BEST_FIRST walk for 4004 steps (0 resets) in 258 ms. (15 steps per ms) remains 25/25 properties
BEST_FIRST walk for 4004 steps (0 resets) in 196 ms. (20 steps per ms) remains 25/25 properties
BEST_FIRST walk for 4004 steps (0 resets) in 191 ms. (20 steps per ms) remains 25/25 properties
BEST_FIRST walk for 4004 steps (0 resets) in 212 ms. (18 steps per ms) remains 25/25 properties
BEST_FIRST walk for 4004 steps (0 resets) in 213 ms. (18 steps per ms) remains 25/25 properties
BEST_FIRST walk for 4004 steps (0 resets) in 195 ms. (20 steps per ms) remains 25/25 properties
BEST_FIRST walk for 4004 steps (0 resets) in 196 ms. (20 steps per ms) remains 25/25 properties
BEST_FIRST walk for 4004 steps (0 resets) in 197 ms. (20 steps per ms) remains 25/25 properties
BEST_FIRST walk for 4004 steps (0 resets) in 306 ms. (13 steps per ms) remains 25/25 properties
BEST_FIRST walk for 4004 steps (0 resets) in 226 ms. (17 steps per ms) remains 25/25 properties
BEST_FIRST walk for 4004 steps (0 resets) in 223 ms. (17 steps per ms) remains 25/25 properties
BEST_FIRST walk for 4004 steps (0 resets) in 210 ms. (18 steps per ms) remains 25/25 properties
BEST_FIRST walk for 4004 steps (0 resets) in 205 ms. (19 steps per ms) remains 25/25 properties
BEST_FIRST walk for 4004 steps (0 resets) in 264 ms. (15 steps per ms) remains 25/25 properties
BEST_FIRST walk for 4004 steps (0 resets) in 248 ms. (16 steps per ms) remains 25/25 properties
BEST_FIRST walk for 4004 steps (0 resets) in 233 ms. (17 steps per ms) remains 25/25 properties
BEST_FIRST walk for 4004 steps (0 resets) in 202 ms. (19 steps per ms) remains 25/25 properties
BEST_FIRST walk for 4004 steps (0 resets) in 257 ms. (15 steps per ms) remains 25/25 properties
Probabilistic random walk after 71135 steps, saw 71084 distinct states, run finished after 6029 ms. (steps per millisecond=11 ) properties seen :7
[2025-06-02 07:18:38] [INFO ] Invariant cache hit.
[2025-06-02 07:18:38] [INFO ] State equation strengthened by 1000 read => feed constraints.
Starting Z3 with timeout 5.0 s and query timeout 500.0 ms
All remaining problems are real, not stopping.
At refinement iteration 0 (INCLUDED_ONLY) 0/26 variables, 0/0 constraints. Problems are: Problem set: 0 solved, 18 unsolved
At refinement iteration 1 (OVERLAPS) 104/130 variables, 26/26 constraints. Problems are: Problem set: 0 solved, 18 unsolved
At refinement iteration 2 (INCLUDED_ONLY) 0/130 variables, 0/26 constraints. Problems are: Problem set: 0 solved, 18 unsolved
At refinement iteration 3 (OVERLAPS) 208/338 variables, 130/156 constraints. Problems are: Problem set: 0 solved, 18 unsolved
At refinement iteration 4 (INCLUDED_ONLY) 0/338 variables, 26/182 constraints. Problems are: Problem set: 0 solved, 18 unsolved
At refinement iteration 5 (INCLUDED_ONLY) 0/338 variables, 0/182 constraints. Problems are: Problem set: 0 solved, 18 unsolved
At refinement iteration 6 (OVERLAPS) 0/338 variables, 0/182 constraints. Problems are: Problem set: 0 solved, 18 unsolved
No progress, stopping.
After SMT solving in domain Real declared 338/13001 variables, and 182 constraints, problems are : Problem set: 0 solved, 18 unsolved in 435 ms.
Refiners :[Positive P Invariants (semi-flows): 26/1000 constraints, State Equation: 130/5000 constraints, ReadFeed: 26/1000 constraints, PredecessorRefiner: 18/18 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 18 unsolved
Starting Z3 with timeout 5.0 s and query timeout 500.0 ms
At refinement iteration 0 (INCLUDED_ONLY) 0/26 variables, 0/0 constraints. Problems are: Problem set: 0 solved, 18 unsolved
At refinement iteration 1 (OVERLAPS) 104/130 variables, 26/26 constraints. Problems are: Problem set: 0 solved, 18 unsolved
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 07:18:39] [INFO ] Deduced a trap composed of 3 places in 69 ms of which 7 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 07:18:39] [INFO ] Deduced a trap composed of 3 places in 53 ms of which 3 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 07:18:39] [INFO ] Deduced a trap composed of 3 places in 55 ms of which 3 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 07:18:39] [INFO ] Deduced a trap composed of 3 places in 52 ms of which 3 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 07:18:39] [INFO ] Deduced a trap composed of 3 places in 87 ms of which 4 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 07:18:39] [INFO ] Deduced a trap composed of 3 places in 43 ms of which 4 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 07:18:39] [INFO ] Deduced a trap composed of 3 places in 44 ms of which 3 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 07:18:39] [INFO ] Deduced a trap composed of 3 places in 40 ms of which 3 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 07:18:39] [INFO ] Deduced a trap composed of 3 places in 37 ms of which 3 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 07:18:39] [INFO ] Deduced a trap composed of 3 places in 37 ms of which 3 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 07:18:39] [INFO ] Deduced a trap composed of 3 places in 42 ms of which 3 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 07:18:39] [INFO ] Deduced a trap composed of 3 places in 39 ms of which 2 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 07:18:39] [INFO ] Deduced a trap composed of 3 places in 43 ms of which 3 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 07:18:39] [INFO ] Deduced a trap composed of 3 places in 43 ms of which 2 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 07:18:39] [INFO ] Deduced a trap composed of 3 places in 35 ms of which 2 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 07:18:39] [INFO ] Deduced a trap composed of 3 places in 30 ms of which 1 ms to minimize.
At refinement iteration 2 (INCLUDED_ONLY) 0/130 variables, 16/42 constraints. Problems are: Problem set: 0 solved, 18 unsolved
At refinement iteration 3 (INCLUDED_ONLY) 0/130 variables, 0/42 constraints. Problems are: Problem set: 0 solved, 18 unsolved
At refinement iteration 4 (OVERLAPS) 208/338 variables, 130/172 constraints. Problems are: Problem set: 0 solved, 18 unsolved
At refinement iteration 5 (INCLUDED_ONLY) 0/338 variables, 26/198 constraints. Problems are: Problem set: 0 solved, 18 unsolved
At refinement iteration 6 (INCLUDED_ONLY) 0/338 variables, 18/216 constraints. Problems are: Problem set: 0 solved, 18 unsolved
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 07:18:41] [INFO ] Deduced a trap composed of 3 places in 36 ms of which 2 ms to minimize.
Starting Z3 with timeout 120.0 s and query timeout 12000.0 ms
[2025-06-02 07:18:41] [INFO ] Deduced a trap composed of 3 places in 35 ms of which 1 ms to minimize.
At refinement iteration 7 (INCLUDED_ONLY) 0/338 variables, 2/218 constraints. Problems are: Problem set: 0 solved, 18 unsolved
At refinement iteration 8 (INCLUDED_ONLY) 0/338 variables, 0/218 constraints. Problems are: Problem set: 0 solved, 18 unsolved
At refinement iteration 9 (OVERLAPS) 0/338 variables, 0/218 constraints. Problems are: Problem set: 0 solved, 18 unsolved
No progress, stopping.
After SMT solving in domain Int declared 338/13001 variables, and 218 constraints, problems are : Problem set: 0 solved, 18 unsolved in 4838 ms.
Refiners :[Positive P Invariants (semi-flows): 26/1000 constraints, State Equation: 130/5000 constraints, ReadFeed: 26/1000 constraints, PredecessorRefiner: 18/18 constraints, Known Traps: 18/18 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 5347ms problems are : Problem set: 0 solved, 18 unsolved
Fused 18 Parikh solutions to 6 different solutions.
Finished Parikh walk after 21226 steps, including 0 resets, run visited all 18 properties in 1356 ms. (steps per millisecond=15 )
Finished Parikh walk after 0 steps, including 0 resets, run visited all 0 properties in 1 ms. (steps per millisecond=0 )
Finished Parikh walk after 0 steps, including 0 resets, run visited all 0 properties in 1 ms. (steps per millisecond=0 )
Finished Parikh walk after 0 steps, including 0 resets, run visited all 0 properties in 2 ms. (steps per millisecond=0 )
Finished Parikh walk after 0 steps, including 0 resets, run visited all 0 properties in 1 ms. (steps per millisecond=0 )
Finished Parikh walk after 0 steps, including 0 resets, run visited all 0 properties in 1 ms. (steps per millisecond=0 )
Parikh walk visited 18 properties in 1374 ms.
FORMULA JoinFreeModules-PT-1000-LTLCardinality-02 FALSE TECHNIQUES REACHABILITY_KNOWLEDGE
FORMULA JoinFreeModules-PT-1000-LTLCardinality-12 FALSE TECHNIQUES REACHABILITY_KNOWLEDGE
Computed a total of 0 stabilizing places and 0 stable transitions
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202505121319/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(G((F(p0)&&(p1||X(G(!p0))))))'
Support contains 4 out of 5000 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 736 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2025-06-02 07:18:46] [INFO ] Invariant cache hit.
[2025-06-02 07:18:46] [INFO ] State equation strengthened by 1000 read => feed constraints.
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20088 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20079 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 44657ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 44672ms
[2025-06-02 07:19:31] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 07:19:32] [INFO ] Implicit Places using invariants in 1163 ms returned []
[2025-06-02 07:19:32] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 07:19:35] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2025-06-02 07:19:36] [INFO ] Implicit Places using invariants and state equation in 4136 ms returned []
Implicit Place search using SMT with State Equation took 5303 ms to find 0 implicit places.
Starting Z3 with timeout 200.0 s and query timeout 20000.0 ms
[2025-06-02 07:19:37] [INFO ] Redundant transitions in 982 ms returned []
Running 6000 sub problems to find dead transitions.
[2025-06-02 07:19:37] [INFO ] Invariant cache hit.
[2025-06-02 07:19:37] [INFO ] State equation strengthened by 1000 read => feed constraints.
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30077 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30070 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 64145ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 64164ms
Finished structural reductions in SI_LTL mode , in 1 iterations and 115896 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Stuttering acceptance computed with spot in 284 ms :[(OR (NOT p0) (NOT p1)), p0, (NOT p0), true]
Running random walk in product with property : JoinFreeModules-PT-1000-LTLCardinality-00
Stuttering criterion allowed to conclude after 0 steps with 0 reset in 3 ms.
FORMULA JoinFreeModules-PT-1000-LTLCardinality-00 FALSE TECHNIQUES STUTTER_TEST
Treatment of property JoinFreeModules-PT-1000-LTLCardinality-00 finished in 116272 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202505121319/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(X(X((p0||G(p1)))))'
Support contains 4 out of 5000 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 260 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2025-06-02 07:20:42] [INFO ] Invariant cache hit.
[2025-06-02 07:20:42] [INFO ] State equation strengthened by 1000 read => feed constraints.
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Error getting values : (error "ParserException while parsing response: ((s0 5.0)
(s1 2.0)
(s3 4.0)
(s4 5.0)
(s5 5.0)
(s6 2.0)
(s8 4.0)
(s9 5.0)
(s10 5.0)
(s11 2.0)
(s13 4.0)
(s14 5.0)
(s15 5.0)
(s16 2.0)
(s18 4.0)
(s19 5.0)
(s20 5.0)
(s21 2.0)
(s23 4.0)
(s24 5.0)
(s25 5.0)
(s26 2.0)
(s28 4.0)
(s29 5.0)
(s30 5.0)
(s31 2.0)
(s33 4.0)
(s34 5.0)
(s35 5.0)
(s36 2.0)
(s38 4.0)
(s39 5.0)
(s40 5.0)
(s41 2.0)
(s43 4.0)
(s44 5.0)
(s45 5.0)
(s46 2.0)
(s48 4.0)
(s49 5.0)
(s50 5.0)
(s51 2.0)
(s53 4.0)
(s54 5.0)
(s55 5.0)
(s56 2.0)
(s58 4.0)
(s59 5.0)
(s60 5.0)
(s61 2.0)
(s63 4.0)
(s64 5.0)
(s65 5.0)
(s66 2.0)
(s68 4.0)
(s69 5.0)
(s70 5.0)
(s71 2.0)
(s73 4.0)
(s74 5.0)
(s75 5.0)
(s76 2.0)
(s78 4.0)
(s79 5.0)
(s80 5.0)
(s81 2.0)
(s83 4.0)
(s84 5.0)
(s85 5.0)
(s86 2.0)
(s88 4.0)
(s89 5.0)
(s90 5.0)
(s91 2.0)
(s93 4.0)
(s94 5.0)
(s95 5.0)
(s96 2.0)
(s98 4.0)
(s99 5.0)
(s100 5.0)
(s101 2.0)
(s103 4.0)
(s104 5.0)
(s105 5.0)
(s106 2.0)
(s108 4.0)
(s109 5.0)
(s110 5.0)
(s111 2.0)
(s113 4.0)
(s114 5.0)
(s115 5.0)
(s116 2.0)
(s118 4.0)
(s119 5.0)
(s120 5.0)
(s121 2.0)
(s123 4.0)
(s124 5.0)
(s125 5.0)
(s126 2.0)
(s128 4.0)
(s129 5.0)
(s130 5.0)
(s131 2.0)
(s133 4.0)
(s134 5.0)
(s135 5.0)
(s136 2.0)
(s138 4.0)
(s139 5.0)
(s140 5.0)
(s141 2.0)
(s143 4.0)
(s144 5.0)
(s145 5.0)
(s146 2.0)
(s148 4.0)
(s149 5.0)
(s150 5.0)
(s151 2.0)
(s153 4.0)
(s154 5.0)
(s155 5.0)
(s156 2.0)
(s158 4.0)
(s159 5.0)
(s160 5.0)
(s161 2.0)
(s163 4.0)
(s164 5.0)
(s165 5.0)
(s166 2.0)
(s168 4.0)
(s169 5.0)
(s170 5.0)
(s171 2.0)
(s173 4.0)
(s174 5.0)
(s175 5.0)
(s176 2.0)
(s178 4.0)
(s179 5.0)
(s180 5.0)
(s181 2.0)
(s183 4.0)
(s184 5.0)
(s185 5.0)
(s186 2.0)
(s188 4.0)
(s189 5.0)
(s190 5.0)
(s191 2.0)
(s193 4.0)
(s194 5.0)
(s195 5.0)
(s196 2.0)
(s198 4.0)
(s199 5.0)
(s200 5.0)
(s201 2.0)
(s203 4.0)
(s204 5.0)
(s205 5.0)
(s206 2.0)
(s208 4.0)
(s209 5.0)
(s210 5.0)
(s211 2.0)
(s213 4.0)
(s214 5.0)
(s215 5.0)
(s216 2.0)
(s218 4.0)
(s219 5.0)
(s220 5.0)
(s221 2.0)
(s223 4.0)
(s224 5.0)
(s225 5.0)
(s226 2.0)
(s228 4.0)
(s229 5.0)
(s230 5.0)
(s231 2.0)
(s233 4.0)
(s234 5.0)
(s235 5.0)
(s236 2.0)
(s238 4.0)
(s239 5.0)
(s240 5.0)
(s241 2.0)
(s243 4.0)
(s244 5.0)
(s245 5.0)
(s246 2.0)
(s248 4.0)
(s249 5.0)
(s250 5.0)
(s251 2.0)
(s253 4.0)
(s254 5.0)
(s255 5.0)
(s256 2.0)
(s258 4.0)
(s259 5.0)
(s260 5.0)
(s261 2.0)
(s263 4.0)
(s264 5.0)
(s265 5.0)
(s266 2.0)
(s268 4.0)
(s269 5.0)
(s270 5.0)
(s271 2.0)
(s273 4.0)
(s274 5.0)
(s275 5.0)
(s276 2.0)
(s278 4.0)
(s279 5.0)
(s280 5.0)
(s281 2.0)
(s283 4.0)
(s284 5.0)
(s285 5.0)
(s286 2.0)
(s288 4.0)
(s289 5.0)
(s290 5.0)
(s291 2.0)
(s293 4.0)
(s294 5.0)
(s295 5.0)
(s296 2.0)
(s298 4.0)
(s299 5.0)
(s300 5.0)
(s301 2.0)
(s303 4.0)
(s304 5.0)
(s305 5.0)
(s306 2.0)
(s308 4.0)
(s309 5.0)
(s310 5.0)
(s311 2.0)
(s313 4.0)
(s314 5.0)
(s315 5.0)
(s316 2.0)
(s318 4.0)
(s319 5.0)
(s320 5.0)
(s321 2.0)
(s323 4.0)
(s324 5.0)
(s325 5.0)
(s326 2.0)
(s328 4.0)
(s329 5.0)
(s330 5.0)
(s331 2.0)
(s333 4.0)
(s334 5.0)
(s335 5.0)
(s336 2.0)
(s338 4.0)
(s339 5.0)
(s340 5.0)
(s341 2.0)
(s343 4.0)
(s344 5.0)
(s345 5.0)
(s346 2.0)
(s348 4.0)
(s349 5.0)
(s350 5.0)
(s351 2.0)
(s353 4.0)
(s354 5.0)
(s355 5.0)
(s356 2.0)
(s358 4.0)
(s359 5.0)
(s360 5.0)
(s361 2.0)
(s363 4.0)
(s364 5.0)
(s365 5.0)
(s366 2.0)
(s368 4.0)
(s369 5.0)
(s370 5.0)
(s371 2.0)
(s373 4.0)
(s374 5.0)
(s375 5.0)
(s376 2.0)
(s378 4.0)
(s379 5.0)
(s380 5.0)
(s381 2.0)
(s383 4.0)
(s384 5.0)
(s385 5.0)
(s386 2.0)
(s388 4.0)
(s389 5.0)
(s390 5.0)
(s391 2.0)
(s393 4.0)
(s394 5.0)
(s395 5.0)
(s396 2.0)
(s398 4.0)
(s399 5.0)
(s400 5.0)
(s401 2.0)
(s403 4.0)
(s404 5.0)
(s405 5.0)
(s406 2.0)
(s408 4.0)
(s409 5.0)
(s410 5.0)
(s411 2.0)
(s413 4.0)
(s414 5.0)
(s415 5.0)
(s416 2.0)
(s418 4.0)
(s419 5.0)
(s420 5.0)
(s421 2.0)
(s423 4.0)
(s424 5.0)
(s425 5.0)
(s426 2.0)
(s428 4.0)
(s429 5.0)
(s430 5.0)
(s431 2.0)
(s433 4.0)
(s434 5.0)
(s435 5.0)
(s436 2.0)
(s438 4.0)
(s439 5.0)
(s440 5.0)
(s441 2.0)
(s443 4.0)
(s444 5.0)
(s445 5.0)
(s446 2.0)
(s448 4.0)
(s449 5.0)
(s450 5.0)
(s451 2.0)
(s453 4.0)
(s454 5.0)
(s455 5.0)
(s456 2.0)
(s458 4.0)
(s459 5.0)
(s460 5.0)
(s461 2.0)
(s463 4.0)
(s464 5.0)
(s465 5.0)
(s466 2.0)
(s468 4.0)
(s469 5.0)
(s470 5.0)
(s471 2.0)
(s473 4.0)
(s474 5.0)
(s475 5.0)
(s476 2.0)
(s478 4.0)
(s479 5.0)
(s480 5.0)
(s481 2.0)
(s483 4.0)
(s484 5.0)
(s485 5.0)
(s486 2.0)
(s488 4.0)
(s489 5.0)
(s490 5.0)
(s491 2.0)
(s493 4.0)
(s494 5.0)
(s495 5.0)
(s496 2.0)
(s498 4.0)
(s499 5.0)
(s500 5.0)
(s501 2.0)
(s503 4.0)
(s504 5.0)
(s505 5.0)
(s506 2.0)
(s508 4.0)
(s509 5.0)
(s510 5.0)
(s511 2.0)
(s513 4.0)
(s514 5.0)
(s515 5.0)
(s516 2.0)
(s518 4.0)
(s519 5.0)
(s520 5.0)
(s521 2.0)
(s523 4.0)
(s524 5.0)
(s525 5.0)
(s526 2.0)
(s528 4.0)
(s529 5.0)
(s530 5.0)
(s531 2.0)
(s533 4.0)
(s534 5.0)
(s535 5.0)
(s536 2.0)
(s538 4.0)
(s539 5.0)
(s540 5.0)
(s541 2.0)
(s543 4.0)
(s544 5.0)
(s545 5.0)
(s546 2.0)
(s548 4.0)
(s549 5.0)
(s550 5.0)
(s551 2.0)
(s553 4.0)
(s554 5.0)
(s555 5.0)
(s556 2.0)
(s558 4.0)
(s559 5.0)
(s560 5.0)
(s561 2.0)
(s563 4.0)
(s564 5.0)
(s565 5.0)
(s566 2.0)
(s568 4.0)
(s569 5.0)
(s570 5.0)
(s571 2.0)
(s573 4.0)
(s574 5.0)
(s575 5.0)
(s576 2.0)
(s578 4.0)
(s579 5.0)
(s580 5.0)
(s581 2.0)
(s583 4.0)
(s584 5.0)
(s585 5.0)
(s586 2.0)
(s588 4.0)
(s589 5.0)
(s590 5.0)
(s591 2.0)
(s593 4.0)
(s594 5.0)
(s595 5.0)
(s596 2.0)
(s598 4.0)
(s599 5.0)
(s600 5.0)
(s601 2.0)
(s603 4.0)
(s604 5.0)
(s605 5.0)
(s606 2.0)
(s608 4.0)
(s609 5.0)
(s610 5.0)
(s611 2.0)
(s613 4.0)
(s614 5.0)
(s615 5.0)
(s616 2.0)
(s618 4.0)
(s619 5.0)
(s620 5.0)
(s621 2.0)
(s623 4.0)
(s624 5.0)
(s625 5.0)
(s626 2.0)
(s628 4.0)
(s629 5.0)
(s630 5.0)
(s631 2.0)
(s633 4.0)
(s634 5.0)
(s635 5.0)
(s636 2.0)
(s638 4.0)
(s639 5.0)
(s640 5.0)
(s641 2.0)
(s643 4.0)
(s644 5.0)
(s645 5.0)
(s646 2.0)
(s648 4.0)
(s649 5.0)
(s650 5.0)
(s651 2.0)
(s653 4.0)
(s654 5.0)
(s655 5.0)
(s656 2.0)
(s658 4.0)
(s659 5.0)
(s660 5.0)
(s661 2.0)
(s663 4.0)
(s664 5.0)
(s665 5.0)
(s666 2.0)
(s668 4.0)
(s669 5.0)
(s670 5.0)
(s671 2.0)
(s673 4.0)
(s674 5.0)
(s675 5.0)
(s676 2.0)
(s678 4.0)
(s679 5.0)
(s680 5.0)
(s681 2.0)
(s683 4.0)
(s684 5.0)
(s685 5.0)
(s686 2.0)
(s688 4.0)
(s689 5.0)
(s690 5.0)
(s691 2.0)
(s693 4.0)
(s694 5.0)
(s695 5.0)
(s696 2.0)
(s698 4.0)
(s699 5.0)
(s700 5.0)
(s701 2.0)
(s703 4.0)
(s704 5.0)
(s705 5.0)
(s706 2.0)
(s708 4.0)
(s709 5.0)
(s710 5.0)
(s711 2.0)
(s713 4.0)
(s714 5.0)
(s715 5.0)
(s716 2.0)
(s718 4.0)
(s719 5.0)
(s720 5.0)
(s721 2.0)
(s723 4.0)
(s724 5.0)
(s725 5.0)
(s726 2.0)
(s728 4.0)
(s729 5.0)
(s730 5.0)
(s731 2.0)
(s733 4.0)
(s734 5.0)
(s735 5.0)
(s736 2.0)
(s738 4.0)
(s739 5.0)
(s740 5.0)
(s741 2.0)
(s743 4.0)
(s744 5.0)
(s745 5.0)
(s746 2.0)
(s748 4.0)
(s749 5.0)
(s750 5.0)
(s751 2.0)
(s753 4.0)
(s754 5.0)
(s755 5.0)
(s756 2.0)
(s758 4.0)
(s759 5.0)
(s760 5.0)
(s761 2.0)
(s763 4.0)
(s764 5.0)
(s765 5.0)
(s766 2.0)
(s768 4.0)
(s769 5.0)
(s770 5.0)
(s771 2.0)
(s773 4.0)
(s774 5.0)
(s775 5.0)
(s776 2.0)
(s778 4.0)
(s779 5.0)
(s780 5.0)
(s781 2.0)
(s783 4.0)
(s784 5.0)
(s785 5.0)
(s786 2.0)
(s788 4.0)
(s789 5.0)
(s790 5.0)
(s791 2.0)
(s793 4.0)
(s794 5.0)
(s795 5.0)
(s796 2.0)
(s798 4.0)
(s799 5.0)
(s800 5.0)
(s801 2.0)
(s803 4.0)
(s804 5.0)
(s805 5.0)
(s806 2.0)
(s808 4.0)
(s809 5.0)
(s810 5.0)
(s811 2.0)
(s813 4.0)
(s814 5.0)
(s815 5.0)
(s816 2.0)
(s818 4.0)
(s819 5.0)
(s820 5.0)
(s821 2.0)
(s823 4.0)
(s824 5.0)
(s825 5.0)
(s826 2.0)
(s828 4.0)
(s829 5.0)
(s830 5.0)
(s831 2.0)
(s833 4.0)
(s834 5.0)
(s835 5.0)
(s836 2.0)
(s838 4.0)
(s839 5.0)
(s840 5.0)
(s841 2.0)
(s843 4.0)
(s844 5.0)
(s845 5.0)
(s846 2.0)
(s848 4.0)
(s849 5.0)
(s850 5.0)
(s851 2.0)
(s853 4.0)
(s854 5.0)
(s855 5.0)
(s856 2.0)
(s858 4.0)
(s859 5.0)
(s860 5.0)
(s861 2.0)
(s863 4.0)
(s864 5.0)
(s865 5.0)
(s866 2.0)
(s868 4.0)
(s869 5.0)
(s870 5.0)
(s871 2.0)
(s873 4.0)
(s874 5.0)
(s875 5.0)
(s876 2.0)
(s878 4.0)
(s879 5.0)
(s880 5.0)
(s881 2.0)
(s883 4.0)
(s884 5.0)
(s885 5.0)
(s886 2.0)
(s888 4.0)
(s889 5.0)
(s890 5.0)
(s891 2.0)
(s893 4.0)
(s894 5.0)
(s895 5.0)
(s896 2.0)
(s898 4.0)
(s899 5.0)
(s900 5.0)
(s901 2.0)
(s903 4.0)
(s904 5.0)
(s905 5.0)
(s906 2.0)
(s908 4.0)
(s909 5.0)
(s910 5.0)
(s911 2.0)
(s913 4.0)
(s914 5.0)
(s915 5.0)
(s916 2.0)
(s918 4.0)
(s919 5.0)
(s920 5.0)
(s921 2.0)
(s923 4.0)
(s924 5.0)
(s925 5.0)
(s926 2.0)
(s928 4.0)
(s929 5.0)
(s930 5.0)
(s931 2.0)
(s933 4.0)
(s934 5.0)
(s935 5.0)
(s936 2.0)
(s938 4.0)
(s939 5.0)
(s940 5.0)
(s941 2.0)
(s943 4.0)
(s944 5.0)
(s945 5.0)
(s946 2.0)
(s948 4.0)
(s949 5.0)
(s950 5.0)
(s951 2.0)
(s953 4.0)
(s954 5.0)
(s955 5.0)
(s956 2.0)
(s958 4.0)
(s959 5.0)
(s960 5.0)
(s961 2.0)
(s963 4.0)
(s964 5.0)
(s965 5.0)
(s966 2.0)
(s968 4.0)
(s969 5.0)
(s970 5.0)
(s971 2.0)
(s973 4.0)
(s974 5.0)
(s975 5.0)
(s976 2.0)
(s978 4.0)
(s979 5.0)
(s980 5.0)
(s981 2.0)
(s983 4.0)
(s984 5.0)
(s985 5.0)
(s986 2.0)
(s988 4.0)
(s989 5.0)
(s990 5.0)
(s991 2.0)
(s993 4.0)
(s994 5.0)
(s995 5.0)
(s996 2.0)
(s998 4.0)
(s999 5.0)
(s1000 5.0)
(s1001 2.0)
(s1003 4.0)
(s1004 5.0)
(s1005 5.0)
(s1006 2.0)
(s1008 4.0)
(s1009 5.0)
(s1010 5.0)
(s1011 2.0)
(s1013 4.0)
(s1014 5.0)
(s1015 5.0)
(s1016 2.0)
(s1018 4.0)
(s1019 5.0)
(s1020 5.0)
(s1021 2.0)
(s1023 4.0)
(s1024 5.0)
(s1025 5.0)
(s1026 2.0)
(s1028 4.0)
(s1029 5.0)
(s1030 5.0)
(s1031 2.0)
(s1033 4.0)
(s1034 5.0)
(s1035 5.0)
(s1036 2.0)
(s1038 4.0)
(s1039 5.0)
(s1040 5.0)
(s1041 2.0)
(s1043 4.0)
(s1044 5.0)
(s1045 5.0)
(s1046 2.0)
(s1048 4.0)
(s1049 5.0)
(s1050 5.0)
(s1051 2.0)
(s1053 4.0)
(s1054 5.0)
(s1055 5.0)
(s1056 2.0)
(s1058 4.0)
(s1059 5.0)
(s1060 5.0)
(s1061 2.0)
(s1063 4.0)
(s1064 5.0)
(s1065 5.0)
(s1066 2.0)
(s1068 4.0)
(s1069 5.0)
(s1070 5.0)
(s1071 2.0)
(s1073 4.0)
(s1074 5.0)
(s1075 5.0)
(s1076 2.0)
(s1078 4.0)
(s1079 5.0)
(s1080 5.0)
(s1081 2.0)
(s1083 4.0)
(s1084 5.0)
(s1085 5.0)
(s1086 2.0)
(s1088 4.0)
(s1089 5.0)
(s1090 5.0)
(s1091 2.0)
(s1093 4.0)
(s1094 5.0)
(s1095 5.0)
(s1096 2.0)
(s1098 4.0)
(s1099 5.0)
(s1100 5.0)
(s1101 2.0)
(s1103 4.0)
(s1104 5.0)
(s1105 5.0)
(s1106 2.0)
(s1108 4.0)
(s1109 5.0)
(s1110 5.0)
(s1111 2.0)
(s1113 4.0)
(s1114 5.0)
(s1115 5.0)
(s1116 2.0)
(s1118 4.0)
(s1119 5.0)
(s1120 5.0)
(s1121 2.0)
(s1123 4.0)
(s1124 5.0)
(s1125 5.0)
(s1126 2.0)
(s1128 4.0)
(s1129 5.0)
(s1130 5.0)
(s1131 2.0)
(s1133 4.0)
(s1134 5.0)
(s1135 5.0)
(s1136 2.0)
(s1138 4.0)
(s1139 5.0)
(s1140 5.0)
(s1141 2.0)
(s1143 4.0)
(s1144 5.0)
(s1145 5.0)
(s1146 2.0)
(s1148 4.0)
(s1149 5.0)
(s1150 5.0)
(s1151 2.0)
(s1153 4.0)
(s1154 5.0)
(s1155 5.0)
(s1156 2.0)
(s1158 4.0)
(s1159 5.0)
(s1160 5.0)
(s1161 2.0)
(s1163 4.0)
(s1164 5.0)
(s1165 5.0)
(s1166 2.0)
(s1168 4.0)
(s1169 5.0)
(s1170 5.0)
(s1171 2.0)
(s1173 4.0)
(s1174 5.0)
(s1175 5.0)
(s1176 2.0)
(s1178 4.0)
(s1179 5.0)
(s1180 5.0)
(s1181 2.0)
(s1183 4.0)
(s1184 5.0)
(s1185 5.0)
(s1186 2.0)
(s1188 4.0)
(s1189 5.0)
(s1190 5.0)
(s1191 2.0)
(s1193 4.0)
(s1194 5.0)
(s1195 5.0)
(s1196 2.0)
(s1198 4.0)
(s1199 5.0)
(s1200 5.0)
(s1201 2.0)
(s1203 4.0)
(s1204 5.0)
(s1205 5.0)
(s1206 2.0)
(s1208 4.0)
(s1209 5.0)
(s1210 5.0)
(s1211 2.0)
(s1213 4.0)
(s1214 5.0)
(s1215 5.0)
(s1216 2.0)
(s1218 4.0)
(s1219 5.0)
(s1220 5.0)
(s1221 2.0)
(s1223 4.0)
(s1224 5.0)
(s1225 5.0)
(s1226 2.0)
(s1228 4.0)
(s1229 5.0)
(s1230 5.0)
(s1231 2.0)
(s1233 4.0)
(s1234 5.0)
(s1235 5.0)
(s1236 2.0)
(s1238 4.0)
(s1239 5.0)
(s1240 5.0)
(s1241 2.0)
(s1243 4.0)
(s1244 5.0)
(s1245 5.0)
(s1246 2.0)
(s1248 4.0)
(s1249 5.0)
(s1250 5.0)
(s1251 2.0)
(s1253 4.0)
(s1254 5.0)
(s1255 5.0)
(s1256 2.0)
(s1258 4.0)
(s1259 5.0)
(s1260 5.0)
(s1261 2.0)
(s1263 4.0)
(s1264 5.0)
(s1265 5.0)
(s1266 2.0)
(s1268 4.0)
(s1269 5.0)
(s1270 5.0)
(s1271 2.0)
(s1273 4.0)
(s1274 5.0)
(s1275 5.0)
(s1276 2.0)
(s1278 4.0)
(s1279 5.0)
(s1280 5.0)
(s1281 2.0)
(s1283 4.0)
(s1284 5.0)
(s1285 5.0)
(s1286 2.0)
(s1288 4.0)
(s1289 5.0)
(s1290 5.0)
(s1291 2.0)
(s1293 4.0)
(s1294 5.0)
(s1295 5.0)
(s1296 2.0)
(s1298 4.0)
(s1299 5.0)
(s1300 5.0)
(s1301 2.0)
(s1303 4.0)
(s1304 5.0)
(s1305 5.0)
(s1306 2.0)
(s1308 4.0)
(s1309 5.0)
(s1310 5.0)
(s1311 2.0)
(s1313 4.0)
(s1314 5.0)
(s1315 5.0)
(s1316 2.0)
(s1318 4.0)
(s1319 5.0)
(s1320 5.0)
(s1321 2.0)
(s1323 4.0)
(s1324 5.0)
(s1325 5.0)
(s1326 2.0)
(s1328 4.0)
(s1329 5.0)
(s1330 5.0)
(s1331 2.0)
(s1333 4.0)
(s1334 5.0)
(s1335 5.0)
(s1336 2.0)
(s1338 4.0)
(s1339 5.0)
(s1340 5.0)
(s1341 2.0)
(s1343 4.0)
(s1344 5.0)
(s1345 5.0)
(s1346 2.0)
(s1348 4.0)
(s1349 5.0)
(s1350 5.0)
(s1351 2.0)
(s1353 4.0)
(s1354 5.0)
(s1355 5.0)
(s1356 2.0)
(s1358 4.0)
(s1359 5.0)
(s1360 5.0)
(s1361 2.0)
(s1363 4.0)
(s1364 5.0)
(s1365 5.0)
(s1366 2.0)
(s1368 4.0)
(s1369 5.0)
(s1370 5.0)
(s1371 2.0)
(s1373 4.0)
(s1374 5.0)
(s1375 5.0)
(s1376 2.0)
(s1378 4.0)
(s1379 5.0)
(s1380 5.0)
(s1381 2.0)
(s1383 4.0)
(s1384 5.0)
(s1385 5.0)
(s1386 2.0)
(s1388 4.0)
(s1389 5.0)
(s1390 5.0)
(s1391 2.0)
(s1393 4.0)
(s1394 5.0)
(s1395 5.0)
(s1396 2.0)
(s1398 4.0)
(s1399 5.0)
(s1400 5.0)
(s1401 2.0)
(s1403 4.0)
(s1404 5.0)
(s1405 5.0)
(s1406 2.0)
(s1408 4.0)
(s1409 5.0)
(s1410 5.0)
(s1411 2.0)
(s1413 4.0)
(s1414 5.0)
(s1415 5.0)
(s1416 2.0)
(s1418 4.0)
(s1419 5.0)
(s1420 5.0)
(s1421 2.0)
(s1423 4.0)
(s1424 5.0)
(s1425 5.0)
(s1426 2.0)
(s1428 4.0)
(s1429 5.0)
(s1430 5.0)
(s1431 2.0)
(s1433 4.0)
(s1434 5.0)
(s1435 5.0)
(s1436 2.0)
(s1438 4.0)
(s1439 5.0)
(s1440 5.0)
(s1441 2.0)
(s1443 4.0)
(s1444 5.0)
(s1445 5.0)
(s1446 timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20080 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Error getting values : (error "ParserException while parsing response: ((s0 5)
(s1 2)
(s3 4)
(s4 5)
(s5 5)
(s6 2)
(s8 4)
(s9 5)
(s10 5)
(s11 2)
(s13 4)
(s14 5)
(s15 5)
(s16 2)
(s18 4)
(s19 5)
(s20 5)
(s21 2)
(s23 4)
(s24 5)
(s25 5)
(s26 2)
(s28 4)
(s29 5)
(s30 5)
(s31 2)
(s33 4)
(s34 5)
(s35 5)
(s36 2)
(s38 4)
(s39 5)
(s40 5)
(s41 2)
(s43 4)
(s44 5)
(s45 5)
(s46 2)
(s48 4)
(s49 5)
(s50 5)
(s51 2)
(s53 4)
(s54 5)
(s55 5)
(s56 2)
(s58 4)
(s59 5)
(s60 5)
(s61 2)
(s63 4)
(s64 5)
(s65 5)
(s66 2)
(s68 4)
(s69 5)
(s70 5)
(s71 2)
(s73 4)
(s74 5)
(s75 5)
(s76 2)
(s78 4)
(s79 5)
(s80 5)
(s81 2)
(s83 4)
(s84 5)
(s85 5)
(s86 2)
(s88 4)
(s89 5)
(s90 5)
(s91 2)
(s93 4)
(s94 5)
(s95 5)
(s96 2)
(s98 4)
(s99 5)
(s100 5)
(s101 2)
(s103 4)
(s104 5)
(s105 5)
(s106 2)
(s108 4)
(s109 5)
(s110 5)
(s111 2)
(s113 4)
(s114 5)
(s115 5)
(s116 2)
(s118 4)
(s119 5)
(s120 5)
(s121 2)
(s123 4)
(s124 5)
(s125 5)
(s126 2)
(s128 4)
(s129 5)
(s130 5)
(s131 2)
(s133 4)
(s134 5)
(s135 5)
(s136 2)
(s138 4)
(s139 5)
(s140 5)
(s141 2)
(s143 4)
(s144 5)
(s145 5)
(s146 2)
(s148 4)
(s149 5)
(s150 5)
(s151 2)
(s153 4)
(s154 5)
(s155 5)
(s156 2)
(s158 4)
(s159 5)
(s160 5)
(s161 2)
(s163 4)
(s164 5)
(s165 5)
(s166 2)
(s168 4)
(s169 5)
(s170 5)
(s171 2)
(s173 4)
(s174 5)
(s175 5)
(s176 2)
(s178 4)
(s179 5)
(s180 5)
(s181 2)
(s183 4)
(s184 5)
(s185 5)
(s186 2)
(s188 4)
(s189 5)
(s190 5)
(s191 2)
(s193 4)
(s194 5)
(s195 5)
(s196 2)
(s198 4)
(s199 5)
(s200 5)
(s201 2)
(s203 4)
(s204 5)
(s205 5)
(s206 2)
(s208 4)
(s209 5)
(s210 5)
(s211 2)
(s213 4)
(s214 5)
(s215 5)
(s216 2)
(s218 4)
(s219 5)
(s220 5)
(s221 2)
(s223 4)
(s224 5)
(s225 5)
(s226 2)
(s228 4)
(s229 5)
(s230 5)
(s231 2)
(s233 4)
(s234 5)
(s235 5)
(s236 2)
(s238 4)
(s239 5)
(s240 5)
(s241 2)
(s243 4)
(s244 5)
(s245 5)
(s246 2)
(s248 4)
(s249 5)
(s250 5)
(s251 2)
(s253 4)
(s254 5)
(s255 5)
(s256 2)
(s258 4)
(s259 5)
(s260 5)
(s261 2)
(s263 4)
(s264 5)
(s265 5)
(s266 2)
(s268 4)
(s269 5)
(s270 5)
(s271 2)
(s273 4)
(s274 5)
(s275 5)
(s276 2)
(s278 4)
(s279 5)
(s280 5)
(s281 2)
(s283 4)
(s284 5)
(s285 5)
(s286 2)
(s288 4)
(s289 5)
(s290 5)
(s291 2)
(s293 4)
(s294 5)
(s295 5)
(s296 2)
(s298 4)
(s299 5)
(s300 5)
(s301 2)
(s303 4)
(s304 5)
(s305 5)
(s306 2)
(s308 4)
(s309 5)
(s310 5)
(s311 2)
(s313 4)
(s314 5)
(s315 5)
(s316 2)
(s318 4)
(s319 5)
(s320 5)
(s321 2)
(s323 4)
(s324 5)
(s325 5)
(s326 2)
(s328 4)
(s329 5)
(s330 5)
(s331 2)
(s333 4)
(s334 5)
(s335 5)
(s336 2)
(s338 4)
(s339 5)
(s340 5)
(s341 2)
(s343 4)
(s344 5)
(s345 5)
(s346 2)
(s348 4)
(s349 5)
(s350 5)
(s351 2)
(s353 4)
(s354 5)
(s355 5)
(s356 2)
(s358 4)
(s359 5)
(s360 5)
(s361 2)
(s363 4)
(s364 5)
(s365 5)
(s366 2)
(s368 4)
(s369 5)
(s370 5)
(s371 2)
(s373 4)
(s374 5)
(s375 5)
(s376 2)
(s378 4)
(s379 5)
(s380 5)
(s381 2)
(s383 4)
(s384 5)
(s385 5)
(s386 2)
(s388 4)
(s389 5)
(s390 5)
(s391 2)
(s393 4)
(s394 5)
(s395 5)
(s396 2)
(s398 4)
(s399 5)
(s400 5)
(s401 2)
(s403 4)
(s404 5)
(s405 5)
(s406 2)
(s408 4)
(s409 5)
(s410 5)
(s411 2)
(s413 4)
(s414 5)
(s415 5)
(s416 2)
(s418 4)
(s419 5)
(s420 5)
(s421 2)
(s423 4)
(s424 5)
(s425 5)
(s426 2)
(s428 4)
(s429 5)
(s430 5)
(s431 2)
(s433 4)
(s434 5)
(s435 5)
(s436 2)
(s438 4)
(s439 5)
(s440 5)
(s441 2)
(s443 4)
(s444 5)
(s445 5)
(s446 2)
(s448 4)
(s449 5)
(s450 5)
(s451 2)
(s453 4)
(s454 5)
(s455 5)
(s456 2)
(s458 4)
(s459 5)
(s460 5)
(s461 2)
(s463 4)
(s464 5)
(s465 5)
(s466 2)
(s468 4)
(s469 5)
(s470 5)
(s471 2)
(s473 4)
(s474 5)
(s475 5)
(s476 2)
(s478 4)
(s479 5)
(s480 5)
(s481 2)
(s483 4)
(s484 5)
(s485 5)
(s486 2)
(s488 4)
(s489 5)
(s490 5)
(s491 2)
(s493 4)
(s494 5)
(s495 5)
(s496 2)
(s498 4)
(s499 5)
(s500 5)
(s501 2)
(s503 4)
(s504 5)
(s505 5)
(s506 2)
(s508 4)
(s509 5)
(s510 5)
(s511 2)
(s513 4)
(s514 5)
(s515 5)
(s516 2)
(s518 4)
(s519 5)
(s520 5)
(s521 2)
(s523 4)
(s524 5)
(s525 5)
(s526 2)
(s528 4)
(s529 5)
(s530 5)
(s531 2)
(s533 4)
(s534 5)
(s535 5)
(s536 2)
(s538 4)
(s539 5)
(s540 5)
(s541 2)
(s543 4)
(s544 5)
(s545 5)
(s546 2)
(s548 4)
(s549 5)
(s550 5)
(s551 2)
(s553 4)
(s554 5)
(s555 5)
(s556 2)
(s558 4)
(s559 5)
(s560 5)
(s561 2)
(s563 4)
(s564 5)
(s565 5)
(s566 2)
(s568 4)
(s569 5)
(s570 5)
(s571 2)
(s573 4)
(s574 5)
(s575 5)
(s576 2)
(s578 4)
(s579 5)
(s580 5)
(s581 2)
(s583 4)
(s584 5)
(s585 5)
(s586 2)
(s588 4)
(s589 5)
(s590 5)
(s591 2)
(s593 4)
(s594 5)
(s595 5)
(s596 2)
(s598 4)
(s599 5)
(s600 5)
(s601 2)
(s603 4)
(s604 5)
(s605 5)
(s606 2)
(s608 4)
(s609 5)
(s610 5)
(s611 2)
(s613 4)
(s614 5)
(s615 5)
(s616 2)
(s618 4)
(s619 5)
(s620 5)
(s621 2)
(s623 4)
(s624 5)
(s625 5)
(s626 2)
(s628 4)
(s629 5)
(s630 5)
(s631 2)
(s633 4)
(s634 5)
(s635 5)
(s636 2)
(s638 4)
(s639 5)
(s640 5)
(s641 2)
(s643 4)
(s644 5)
(s645 5)
(s646 2)
(s648 4)
(s649 5)
(s650 5)
(s651 2)
(s653 4)
(s654 5)
(s655 5)
(s656 2)
(s658 4)
(s659 5)
(s660 5)
(s661 2)
(s663 4)
(s664 5)
(s665 5)
(s666 2)
(s668 4)
(s669 5)
(s670 5)
(s671 2)
(s673 4)
(s674 5)
(s675 5)
(s676 2)
(s678 4)
(s679 5)
(s680 5)
(s681 2)
(s683 4)
(s684 5)
(s685 5)
(s686 2)
(s688 4)
(s689 5)
(s690 5)
(s691 2)
(s693 4)
(s694 5)
(s695 5)
(s696 2)
(s698 4)
(s699 5)
(s700 5)
(s701 2)
(s703 4)
(s704 5)
(s705 5)
(s706 2)
(s708 4)
(s709 5)
(s710 5)
(s711 2)
(s713 4)
(s714 5)
(s715 5)
(s716 2)
(s718 4)
(s719 5)
(s720 5)
(s721 2)
(s723 4)
(s724 5)
(s725 5)
(s726 2)
(s728 4)
(s729 5)
(s730 5)
(s731 2)
(s733 4)
(s734 5)
(s735 5)
(s736 2)
(s738 4)
(s739 5)
(s740 5)
(s741 2)
(s743 4)
(s744 5)
(s745 5)
(s746 2)
(s748 4)
(s749 5)
(s750 5)
(s751 2)
(s753 4)
(s754 5)
(s755 5)
(s756 2)
(s758 4)
(s759 5)
(s760 5)
(s761 2)
(s763 4)
(s764 5)
(s765 5)
(s766 2)
(s768 4)
(s769 5)
(s770 5)
(s771 2)
(s773 4)
(s774 5)
(s775 5)
(s776 2)
(s778 4)
(s779 5)
(s780 5)
(s781 2)
(s783 4)
(s784 5)
(s785 5)
(s786 2)
(s788 4)
(s789 5)
(s790 5)
(s791 2)
(s793 4)
(s794 5)
(s795 5)
(s796 2)
(s798 4)
(s799 5)
(s800 5)
(s801 2)
(s803 4)
(s804 5)
(s805 5)
(s806 2)
(s808 4)
(s809 5)
(s810 5)
(s811 2)
(s813 4)
(s814 5)
(s815 5)
(s816 2)
(s818 4)
(s819 5)
(s820 5)
(s821 2)
(s823 4)
(s824 5)
(s825 5)
(s826 2)
(s828 4)
(s829 5)
(s830 5)
(s831 2)
(s833 4)
(s834 5)
(s835 5)
(s836 2)
(s838 4)
(s839 5)
(s840 5)
(s841 2)
(s843 4)
(s844 5)
(s845 5)
(s846 2)
(s848 4)
(s849 5)
(s850 5)
(s851 2)
(s853 4)
(s854 5)
(s855 5)
(s856 2)
(s858 4)
(s859 5)
(s860 5)
(s861 2)
(s863 4)
(s864 5)
(s865 5)
(s866 2)
(s868 4)
(s869 5)
(s870 5)
(s871 2)
(s873 4)
(s874 5)
(s875 5)
(s876 2)
(s878 4)
(s879 5)
(s880 5)
(s881 2)
(s883 4)
(s884 5)
(s885 5)
(s886 2)
(s888 4)
(s889 5)
(s890 5)
(s891 2)
(s893 4)
(s894 5)
(s895 5)
(s896 2)
(s898 4)
(s899 5)
(s900 5)
(s901 2)
(s903 4)
(s904 5)
(s905 5)
(s906 2)
(s908 4)
(s909 5)
(s910 5)
(s911 2)
(s913 4)
(s914 5)
(s915 5)
(s916 2)
(s918 4)
(s919 5)
(s920 5)
(s921 2)
(s923 4)
(s924 5)
(s925 5)
(s926 2)
(s928 4)
(s929 5)
(s930 5)
(s931 2)
(s933 4)
(s934 5)
(s935 5)
(s936 2)
(s938 4)
(s939 5)
(s940 5)
(s941 2)
(s943 4)
(s944 5)
(s945 5)
(s946 2)
(s948 4)
(s949 5)
(s950 5)
(s951 2)
(s953 4)
(s954 5)
(s955 5)
(s956 2)
(s958 4)
(s959 5)
(s960 5)
(s961 2)
(s963 4)
(s964 5)
(s965 5)
(s966 2)
(s968 4)
(s969 5)
(s970 5)
(s971 2)
(s973 4)
(s974 5)
(s975 5)
(s976 2)
(s978 4)
(s979 5)
(s980 5)
(s981 2)
(s983 4)
(s984 5)
(s985 5)
(s986 2)
(s988 4)
(s989 5)
(s990 5)
(s991 2)
(s993 4)
(s994 5)
(s995 5)
(s996 2)
(s998 4)
(s999 5)
(s1000 5)
(s1001 2)
(s1003 4)
(s1004 5)
(s1005 5)
(s1006 2)
(s1008 4)
(s1009 5)
(s1010 5)
(s1011 2)
(s1013 4)
(s1014 5)
(s1015 5)
(s1016 2)
(s1018 4)
(s1019 5)
(s1020 5)
(s1021 2)
(s1023 4)
(s1024 5)
(s1025 5)
(s1026 2)
(s1028 4)
(s1029 5)
(s1030 5)
(s1031 2)
(s1033 4)
(s1034 5)
(s1035 5)
(s1036 2)
(s1038 4)
(s1039 5)
(s1040 5)
(s1041 2)
(s1043 4)
(s1044 5)
(s1045 5)
(s1046 2)
(s1048 4)
(s1049 5)
(s1050 5)
(s1051 2)
(s1053 4)
(s1054 5)
(s1055 5)
(s1056 2)
(s1058 4)
(s1059 5)
(s1060 5)
(s1061 2)
(s1063 4)
(s1064 5)
(s1065 5)
(s1066 2)
(s1068 4)
(s1069 5)
(s1070 5)
(s1071 2)
(s1073 4)
(s1074 5)
(s1075 5)
(s1076 2)
(s1078 4)
(s1079 5)
(s1080 5)
(s1081 2)
(s1083 4)
(s1084 5)
(s1085 5)
(s1086 2)
(s1088 4)
(s1089 5)
(s1090 5)
(s1091 2)
(s1093 4)
(s1094 5)
(s1095 5)
(s1096 2)
(s1098 4)
(s1099 5)
(s1100 5)
(s1101 2)
(s1103 4)
(s1104 5)
(s1105 5)
(s1106 2)
(s1108 4)
(s1109 5)
(s1110 5)
(s1111 2)
(s1113 4)
(s1114 5)
(s1115 5)
(s1116 2)
(s1118 4)
(s1119 5)
(s1120 5)
(s1121 2)
(s1123 4)
(s1124 5)
(s1125 5)
(s1126 2)
(s1128 4)
(s1129 5)
(s1130 5)
(s1131 2)
(s1133 4)
(s1134 5)
(s1135 5)
(s1136 2)
(s1138 4)
(s1139 5)
(s1140 5)
(s1141 2)
(s1143 4)
(s1144 5)
(s1145 5)
(s1146 2)
(s1148 4)
(s1149 5)
(s1150 5)
(s1151 2)
(s1153 4)
(s1154 5)
(s1155 5)
(s1156 2)
(s1158 4)
(s1159 5)
(s1160 5)
(s1161 2)
(s1163 4)
(s1164 5)
(s1165 5)
(s1166 2)
(s1168 4)
(s1169 5)
(s1170 5)
(s1171 2)
(s1173 4)
(s1174 5)
(s1175 5)
(s1176 2)
(s1178 4)
(s1179 5)
(s1180 5)
(s1181 2)
(s1183 4)
(s1184 5)
(s1185 5)
(s1186 2)
(s1188 4)
(s1189 5)
(s1190 5)
(s1191 2)
(s1193 4)
(s1194 5)
(s1195 5)
(s1196 2)
(s1198 4)
(s1199 5)
(s1200 5)
(s1201 2)
(s1203 4)
(s1204 5)
(s1205 5)
(s1206 2)
(s1208 4)
(s1209 5)
(s1210 5)
(s1211 2)
(s1213 4)
(s1214 5)
(s1215 5)
(s1216 2)
(s1218 4)
(s1219 5)
(s1220 5)
(s1221 2)
(s1223 4)
(s1224 5)
(s1225 5)
(s1226 2)
(s1228 4)
(s1229 5)
(s1230 5)
(s1231 2)
(s1233 4)
(s1234 5)
(s1235 5)
(s1236 2)
(s1238 4)
(s1239 5)
(s1240 5)
(s1241 2)
(s1243 4)
(s1244 5)
(s1245 5)
(s1246 2)
(s1248 4)
(s1249 5)
(s1250 5)
(s1251 2)
(s1253 4)
(s1254 5)
(s1255 5)
(s1256 2)
(s1258 4)
(s1259 5)
(s1260 5)
(s1261 2)
(s1263 4)
(s1264 5)
(s1265 5)
(s1266 2)
(s1268 4)
(s1269 5)
(s1270 5)
(s1271 2)
(s1273 4)
(s1274 5)
(s1275 5)
(s1276 2)
(s1278 4)
(s1279 5)
(s1280 5)
(s1281 2)
(s1283 4)
(s1284 5)
(s1285 5)
(s1286 2)
(s1288 4)
(s1289 5)
(s1290 5)
(s1291 2)
(s1293 4)
(s1294 5)
(s1295 5)
(s1296 2)
(s1298 4)
(s1299 5)
(s1300 5)
(s1301 2)
(s1303 4)
(s1304 5)
(s1305 5)
(s1306 2)
(s1308 4)
(s1309 5)
(s1310 5)
(s1311 2)
(s1313 4)
(s1314 5)
(s1315 5)
(s1316 2)
(s1318 4)
(s1319 5)
(s1320 5)
(s1321 2)
(s1323 4)
(s1324 5)
(s1325 5)
(s1326 2)
(s1328 4)
(s1329 5)
(s1330 5)
(s1331 2)
(s1333 4)
(s1334 5)
(s1335 5)
(s1336 2)
(s1338 4)
(s1339 5)
(s1340 5)
(s1341 2)
(s1343 4)
(s1344 5)
(s1345 5)
(s1346 2)
(s1348 4)
(s1349 5)
(s1350 5)
(s1351 2)
(s1353 4)
(s1354 5)
(s1355 5)
(s1356 2)
(s1358 4)
(s1359 5)
(s1360 5)
(s1361 2)
(s1363 4)
(s1364 5)
(s1365 5)
(s1366 2)
(s1368 4)
(s1369 5)
(s1370 5)
(s1371 2)
(s1373 4)
(s1374 5)
(s1375 5)
(s1376 2)
(s1378 4)
(s1379 5)
(s1380 5)
(s1381 2)
(s1383 4)
(s1384 5)
(s1385 5)
(s1386 2)
(s1388 4)
(s1389 5)
(s1390 5)
(s1391 2)
(s1393 4)
(s1394 5)
(s1395 5)
(s1396 2)
(s1398 4)
(s1399 5)
(s1400 5)
(s1401 2)
(s1403 4)
(s1404 5)
(s1405 5)
(s1406 2)
(s1408 4)
(s1409 5)
(s1410 5)
(s1411 2)
(s1413 4)
(s1414 5)
(s1415 5)
(s1416 2)
(s1418 4)
(s1419 5)
(s1420 5)
(s1421 2)
(s1423 4)
(s1424 5)
(s1425 5)
(s1426 2)
(s1428 4)
(s1429 5)
(s1430 5)
(s1431 2)
(s1433 4)
(s1434 5)
(s1435 5)
(s1436 2)
(s1438 4)
(s1439 5)
(s1440 5)
(s1441 2)
(s1443 4)
(s1444 5)
(s1445 5)
(s1446 2)
(s1448 4)
(s1449 5)
(s1450 5)
(s1451 2)
(s1453 4)
(s1454 5)
(s1455 5)
(s1456 2)
(s1458 4)
(s1459 5)
(s1460 5)
(s1461 2)
(s1463 4)
(s1464 5)
(s1465 5)
(s1466 2)
(s1468 4)
(s1469 5)
(s1470 5)
(s1471 2)
(s1473 4)
(s1474 5)
(s1475 5)
(s1476 timeout
2)
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20072 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 44000ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 44009ms
[2025-06-02 07:21:26] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 07:21:27] [INFO ] Implicit Places using invariants in 1010 ms returned []
[2025-06-02 07:21:27] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 07:21:30] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2025-06-02 07:21:31] [INFO ] Implicit Places using invariants and state equation in 4168 ms returned []
Implicit Place search using SMT with State Equation took 5181 ms to find 0 implicit places.
Running 6000 sub problems to find dead transitions.
[2025-06-02 07:21:31] [INFO ] Invariant cache hit.
[2025-06-02 07:21:31] [INFO ] State equation strengthened by 1000 read => feed constraints.
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Error getting values : (error "Error writing to Z3 solver: java.io.IOException: Broken pipe")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30065 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30081 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 63898ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 63907ms
Finished structural reductions in LTL mode , in 1 iterations and 113386 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Stuttering acceptance computed with spot in 174 ms :[true, (NOT p1), (AND (NOT p1) (NOT p0)), (AND (NOT p1) (NOT p0)), (AND (NOT p1) (NOT p0))]
Running random walk in product with property : JoinFreeModules-PT-1000-LTLCardinality-01
Entered a terminal (fully accepting) state of product in 5957 steps with 0 reset in 2039 ms.
FORMULA JoinFreeModules-PT-1000-LTLCardinality-01 FALSE TECHNIQUES STUTTER_TEST
Treatment of property JoinFreeModules-PT-1000-LTLCardinality-01 finished in 115637 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202505121319/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!((X(X(p0))&&F(p1)&&F(p2)&&F(p3)))'
Support contains 6 out of 5000 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 249 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2025-06-02 07:22:37] [INFO ] Invariant cache hit.
[2025-06-02 07:22:37] [INFO ] State equation strengthened by 1000 read => feed constraints.
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20073 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20073 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 43923ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 43931ms
[2025-06-02 07:23:21] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 07:23:22] [INFO ] Implicit Places using invariants in 1009 ms returned []
[2025-06-02 07:23:22] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 07:23:26] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2025-06-02 07:23:26] [INFO ] Implicit Places using invariants and state equation in 4263 ms returned []
Implicit Place search using SMT with State Equation took 5275 ms to find 0 implicit places.
Running 6000 sub problems to find dead transitions.
[2025-06-02 07:23:26] [INFO ] Invariant cache hit.
[2025-06-02 07:23:26] [INFO ] State equation strengthened by 1000 read => feed constraints.
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30077 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30075 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 63911ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 63920ms
Finished structural reductions in LTL mode , in 1 iterations and 113412 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Stuttering acceptance computed with spot in 263 ms :[(OR (NOT p3) (NOT p1) (NOT p2) (NOT p0)), (NOT p0), (NOT p1), (NOT p2), (NOT p3), (NOT p0), true]
Running random walk in product with property : JoinFreeModules-PT-1000-LTLCardinality-03
Stuttering criterion allowed to conclude after 0 steps with 0 reset in 2 ms.
FORMULA JoinFreeModules-PT-1000-LTLCardinality-03 FALSE TECHNIQUES STUTTER_TEST
Treatment of property JoinFreeModules-PT-1000-LTLCardinality-03 finished in 113726 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202505121319/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(X(X(X(F(p0)))))'
Support contains 1 out of 5000 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 139 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2025-06-02 07:24:31] [INFO ] Invariant cache hit.
[2025-06-02 07:24:31] [INFO ] State equation strengthened by 1000 read => feed constraints.
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Error getting values : (error "Error writing to Z3 solver: java.io.IOException: Broken pipe")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20068 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20065 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 43872ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 43881ms
[2025-06-02 07:25:15] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 07:25:16] [INFO ] Implicit Places using invariants in 1023 ms returned []
[2025-06-02 07:25:16] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 07:25:20] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2025-06-02 07:25:20] [INFO ] Implicit Places using invariants and state equation in 4262 ms returned []
Implicit Place search using SMT with State Equation took 5299 ms to find 0 implicit places.
Running 6000 sub problems to find dead transitions.
[2025-06-02 07:25:20] [INFO ] Invariant cache hit.
[2025-06-02 07:25:20] [INFO ] State equation strengthened by 1000 read => feed constraints.
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30079 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30071 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 63921ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 63929ms
Finished structural reductions in LTL mode , in 1 iterations and 113265 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Stuttering acceptance computed with spot in 149 ms :[(NOT p0), (NOT p0), (NOT p0), (NOT p0)]
Running random walk in product with property : JoinFreeModules-PT-1000-LTLCardinality-04
Stuttering criterion allowed to conclude after 0 steps with 0 reset in 2 ms.
FORMULA JoinFreeModules-PT-1000-LTLCardinality-04 FALSE TECHNIQUES STUTTER_TEST
Treatment of property JoinFreeModules-PT-1000-LTLCardinality-04 finished in 113446 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202505121319/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(X(X(G(p0))))'
Support contains 1 out of 5000 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 141 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2025-06-02 07:26:24] [INFO ] Invariant cache hit.
[2025-06-02 07:26:24] [INFO ] State equation strengthened by 1000 read => feed constraints.
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20076 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20088 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 43901ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 43908ms
[2025-06-02 07:27:08] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 07:27:09] [INFO ] Implicit Places using invariants in 1013 ms returned []
[2025-06-02 07:27:09] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 07:27:13] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2025-06-02 07:27:14] [INFO ] Implicit Places using invariants and state equation in 4371 ms returned []
Implicit Place search using SMT with State Equation took 5400 ms to find 0 implicit places.
Running 6000 sub problems to find dead transitions.
[2025-06-02 07:27:14] [INFO ] Invariant cache hit.
[2025-06-02 07:27:14] [INFO ] State equation strengthened by 1000 read => feed constraints.
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Error getting values : (error "Error writing to Z3 solver: java.io.IOException: Broken pipe")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30064 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30072 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 63891ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 63897ms
Finished structural reductions in LTL mode , in 1 iterations and 113362 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Stuttering acceptance computed with spot in 127 ms :[true, (NOT p0), (NOT p0), (NOT p0)]
Running random walk in product with property : JoinFreeModules-PT-1000-LTLCardinality-07
Entered a terminal (fully accepting) state of product in 5679 steps with 0 reset in 1863 ms.
FORMULA JoinFreeModules-PT-1000-LTLCardinality-07 FALSE TECHNIQUES STUTTER_TEST
Treatment of property JoinFreeModules-PT-1000-LTLCardinality-07 finished in 115379 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202505121319/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(F(G(p0)))'
Support contains 3 out of 5000 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 451 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2025-06-02 07:28:20] [INFO ] Invariant cache hit.
[2025-06-02 07:28:20] [INFO ] State equation strengthened by 1000 read => feed constraints.
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20076 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20069 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 43883ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 43889ms
[2025-06-02 07:29:04] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 07:29:05] [INFO ] Implicit Places using invariants in 1003 ms returned []
[2025-06-02 07:29:05] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 07:29:09] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2025-06-02 07:29:09] [INFO ] Implicit Places using invariants and state equation in 4037 ms returned []
Implicit Place search using SMT with State Equation took 5043 ms to find 0 implicit places.
Starting Z3 with timeout 200.0 s and query timeout 20000.0 ms
[2025-06-02 07:29:10] [INFO ] Redundant transitions in 898 ms returned []
Running 6000 sub problems to find dead transitions.
[2025-06-02 07:29:10] [INFO ] Invariant cache hit.
[2025-06-02 07:29:10] [INFO ] State equation strengthened by 1000 read => feed constraints.
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Error getting values : (error "ParserException while parsing response: ((s0 5.0)
(s1 2.0)
(s3 4.0)
(s4 5.0)
(s5 5.0)
(s6 2.0)
(s8 4.0)
(s9 5.0)
(s10 5.0)
(s11 2.0)
(s13 4.0)
(s14 5.0)
(s15 5.0)
(s16 2.0)
(s18 4.0)
(s19 5.0)
(s20 5.0)
(s21 2.0)
(s23 4.0)
(s24 5.0)
(s25 5.0)
(s26 2.0)
(s28 4.0)
(s29 5.0)
(s30 5.0)
(s31 2.0)
(s33 4.0)
(s34 5.0)
(s35 5.0)
(s36 2.0)
(s38 4.0)
(s39 5.0)
(s40 5.0)
(s41 2.0)
(s43 4.0)
(s44 5.0)
(s45 5.0)
(s46 2.0)
(s48 4.0)
(s49 5.0)
(s50 5.0)
(s51 2.0)
(s53 4.0)
(s54 5.0)
(s55 5.0)
(s56 2.0)
(s58 4.0)
(s59 5.0)
(s60 5.0)
(s61 2.0)
(s63 4.0)
(s64 5.0)
(s65 5.0)
(s66 2.0)
(s68 4.0)
(s69 5.0)
(s70 5.0)
(s71 2.0)
(s73 4.0)
(s74 5.0)
(s75 5.0)
(s76 2.0)
(s78 4.0)
(s79 5.0)
(s80 5.0)
(s81 2.0)
(s83 4.0)
(s84 5.0)
(s85 5.0)
(s86 2.0)
(s88 4.0)
(s89 5.0)
(s90 5.0)
(s91 2.0)
(s93 4.0)
(s94 5.0)
(s95 5.0)
(s96 2.0)
(s98 4.0)
(s99 5.0)
(s100 5.0)
(s101 2.0)
(s103 4.0)
(s104 5.0)
(s105 5.0)
(s106 2.0)
(s108 4.0)
(s109 5.0)
(s110 5.0)
(s111 2.0)
(s113 4.0)
(s114 5.0)
(s115 5.0)
(s116 2.0)
(s118 4.0)
(s119 5.0)
(s120 5.0)
(s121 2.0)
(s123 4.0)
(s124 5.0)
(s125 5.0)
(s126 2.0)
(s128 4.0)
(s129 5.0)
(s130 5.0)
(s131 2.0)
(s133 4.0)
(s134 5.0)
(s135 5.0)
(s136 2.0)
(s138 4.0)
(s139 5.0)
(s140 5.0)
(s141 2.0)
(s143 4.0)
(s144 5.0)
(s145 5.0)
(s146 2.0)
(s148 4.0)
(s149 5.0)
(s150 5.0)
(s151 2.0)
(s153 4.0)
(s154 5.0)
(s155 5.0)
(s156 2.0)
(s158 4.0)
(s159 5.0)
(s160 5.0)
(s161 2.0)
(s163 4.0)
(s164 5.0)
(s165 5.0)
(s166 2.0)
(s168 4.0)
(s169 5.0)
(s170 5.0)
(s171 2.0)
(s173 4.0)
(s174 5.0)
(s175 5.0)
(s176 2.0)
(s178 4.0)
(s179 5.0)
(s180 5.0)
(s181 2.0)
(s183 4.0)
(s184 5.0)
(s185 5.0)
(s186 2.0)
(s188 4.0)
(s189 5.0)
(s190 5.0)
(s191 2.0)
(s193 4.0)
(s194 5.0)
(s195 5.0)
(s196 2.0)
(s198 4.0)
(s199 5.0)
(s200 5.0)
(s201 2.0)
(s203 4.0)
(s204 5.0)
(s205 5.0)
(s206 2.0)
(s208 4.0)
(s209 5.0)
(s210 5.0)
(s211 2.0)
(s213 4.0)
(s214 5.0)
(s215 5.0)
(s216 2.0)
(s218 4.0)
(s219 5.0)
(s220 5.0)
(s221 2.0)
(s223 4.0)
(s224 5.0)
(s225 5.0)
(s226 2.0)
(s228 4.0)
(s229 5.0)
(s230 5.0)
(s231 2.0)
(s233 4.0)
(s234 5.0)
(s235 5.0)
(s236 2.0)
(s238 4.0)
(s239 5.0)
(s240 5.0)
(s241 2.0)
(s243 4.0)
(s244 5.0)
(s245 5.0)
(s246 2.0)
(s248 4.0)
(s249 5.0)
(s250 5.0)
(s251 2.0)
(s253 4.0)
(s254 5.0)
(s255 5.0)
(s256 2.0)
(s258 4.0)
(s259 5.0)
(s260 5.0)
(s261 2.0)
(s263 4.0)
(s264 5.0)
(s265 5.0)
(s266 2.0)
(s268 4.0)
(s269 5.0)
(s270 5.0)
(s271 2.0)
(s273 4.0)
(s274 5.0)
(s275 5.0)
(s276 2.0)
(s278 4.0)
(s279 5.0)
(s280 5.0)
(s281 2.0)
(s283 4.0)
(s284 5.0)
(s285 5.0)
(s286 2.0)
(s288 4.0)
(s289 5.0)
(s290 5.0)
(s291 2.0)
(s293 4.0)
(s294 5.0)
(s295 5.0)
(s296 2.0)
(s298 4.0)
(s299 5.0)
(s300 5.0)
(s301 2.0)
(s303 4.0)
(s304 5.0)
(s305 5.0)
(s306 2.0)
(s308 4.0)
(s309 5.0)
(s310 5.0)
(s311 2.0)
(s313 4.0)
(s314 5.0)
(s315 5.0)
(s316 2.0)
(s318 4.0)
(s319 5.0)
(s320 5.0)
(s321 2.0)
(s323 4.0)
(s324 5.0)
(s325 5.0)
(s326 2.0)
(s328 4.0)
(s329 5.0)
(s330 5.0)
(s331 2.0)
(s333 4.0)
(s334 5.0)
(s335 5.0)
(s336 2.0)
(s338 4.0)
(s339 5.0)
(s340 5.0)
(s341 2.0)
(s343 4.0)
(s344 5.0)
(s345 5.0)
(s346 2.0)
(s348 4.0)
(s349 5.0)
(s350 5.0)
(s351 2.0)
(s353 4.0)
(s354 5.0)
(s355 5.0)
(s356 2.0)
(s358 4.0)
(s359 5.0)
(s360 5.0)
(s361 2.0)
(s363 4.0)
(s364 5.0)
(s365 5.0)
(s366 2.0)
(s368 4.0)
(s369 5.0)
(s370 5.0)
(s371 2.0)
(s373 4.0)
(s374 5.0)
(s375 5.0)
(s376 2.0)
(s378 4.0)
(s379 5.0)
(s380 5.0)
(s381 2.0)
(s383 4.0)
(s384 5.0)
(s385 5.0)
(s386 2.0)
(s388 4.0)
(s389 5.0)
(s390 5.0)
(s391 2.0)
(s393 4.0)
(s394 5.0)
(s395 5.0)
(s396 2.0)
(s398 4.0)
(s399 5.0)
(s400 5.0)
(s401 2.0)
(s403 4.0)
(s404 5.0)
(s405 5.0)
(s406 2.0)
(s408 4.0)
(s409 5.0)
(s410 5.0)
(s411 2.0)
(s413 4.0)
(s414 5.0)
(s415 5.0)
(s416 2.0)
(s418 4.0)
(s419 5.0)
(s420 5.0)
(s421 2.0)
(s423 4.0)
(s424 5.0)
(s425 5.0)
(s426 2.0)
(s428 4.0)
(s429 5.0)
(s430 5.0)
(s431 2.0)
(s433 4.0)
(s434 5.0)
(s435 5.0)
(s436 2.0)
(s438 4.0)
(s439 5.0)
(s440 5.0)
(s441 2.0)
(s443 4.0)
(s444 5.0)
(s445 5.0)
(s446 2.0)
(s448 4.0)
(s449 5.0)
(s450 5.0)
(s451 2.0)
(s453 4.0)
(s454 5.0)
(s455 5.0)
(s456 2.0)
(s458 4.0)
(s459 5.0)
(s460 5.0)
(s461 2.0)
(s463 4.0)
(s464 5.0)
(s465 5.0)
(s466 2.0)
(s468 4.0)
(s469 5.0)
(s470 5.0)
(s471 2.0)
(s473 4.0)
(s474 5.0)
(s475 5.0)
(s476 2.0)
(s478 4.0)
(s479 5.0)
(s480 5.0)
(s481 2.0)
(s483 4.0)
(s484 5.0)
(s485 5.0)
(s486 2.0)
(s488 4.0)
(s489 5.0)
(s490 5.0)
(s491 2.0)
(s493 4.0)
(s494 5.0)
(s495 5.0)
(s496 2.0)
(s498 4.0)
(s499 5.0)
(s500 5.0)
(s501 2.0)
(s503 4.0)
(s504 5.0)
(s505 5.0)
(s506 2.0)
(s508 4.0)
(s509 5.0)
(s510 5.0)
(s511 2.0)
(s513 4.0)
(s514 5.0)
(s515 5.0)
(s516 2.0)
(s518 4.0)
(s519 5.0)
(s520 5.0)
(s521 2.0)
(s523 4.0)
(s524 5.0)
(s525 5.0)
(s526 2.0)
(s528 4.0)
(s529 5.0)
(s530 5.0)
(s531 2.0)
(s533 4.0)
(s534 5.0)
(s535 5.0)
(s536 2.0)
(s538 4.0)
(s539 5.0)
(s540 5.0)
(s541 2.0)
(s543 4.0)
(s544 5.0)
(s545 5.0)
(s546 2.0)
(s548 4.0)
(s549 5.0)
(s550 5.0)
(s551 2.0)
(s553 4.0)
(s554 5.0)
(s555 5.0)
(s556 2.0)
(s558 4.0)
(s559 5.0)
(s560 5.0)
(s561 2.0)
(s563 4.0)
(s564 5.0)
(s565 5.0)
(s566 2.0)
(s568 4.0)
(s569 5.0)
(s570 5.0)
(s571 2.0)
(s573 4.0)
(s574 5.0)
(s575 5.0)
(s576 2.0)
(s578 4.0)
(s579 5.0)
(s580 5.0)
(s581 2.0)
(s583 4.0)
(s584 5.0)
(s585 5.0)
(s586 2.0)
(s588 4.0)
(s589 5.0)
(s590 5.0)
(s591 2.0)
(s593 4.0)
(s594 5.0)
(s595 5.0)
(s596 2.0)
(s598 4.0)
(s599 5.0)
(s600 5.0)
(s601 2.0)
(s603 4.0)
(s604 5.0)
(s605 5.0)
(s606 2.0)
(s608 4.0)
(s609 5.0)
(s610 5.0)
(s611 2.0)
(s613 4.0)
(s614 5.0)
(s615 5.0)
(s616 2.0)
(s618 4.0)
(s619 5.0)
(s620 5.0)
(s621 2.0)
(s623 4.0)
(s624 5.0)
(s625 5.0)
(s626 2.0)
(s628 4.0)
(s629 5.0)
(s630 5.0)
(s631 2.0)
(s633 4.0)
(s634 5.0)
(s635 5.0)
(s636 2.0)
(s638 4.0)
(s639 5.0)
(s640 5.0)
(s641 2.0)
(s643 4.0)
(s644 5.0)
(s645 5.0)
(s646 2.0)
(s648 4.0)
(s649 5.0)
(s650 5.0)
(s651 2.0)
(s653 4.0)
(s654 5.0)
(s655 5.0)
(s656 2.0)
(s658 4.0)
(s659 5.0)
(s660 5.0)
(s661 2.0)
(s663 4.0)
(s664 5.0)
(s665 5.0)
(s666 2.0)
(s668 4.0)
(s669 5.0)
(s670 5.0)
(s671 2.0)
(s673 4.0)
(s674 5.0)
(s675 5.0)
(s676 2.0)
(s678 4.0)
(s679 5.0)
(s680 5.0)
(s681 2.0)
(s683 4.0)
(s684 5.0)
(s685 5.0)
(s686 2.0)
(s688 4.0)
(s689 5.0)
(s690 5.0)
(s691 2.0)
(s693 4.0)
(s694 5.0)
(s695 5.0)
(s696 2.0)
(s698 4.0)
(s699 5.0)
(s700 5.0)
(s701 2.0)
(s703 4.0)
(s704 5.0)
(s705 5.0)
(s706 2.0)
(s708 4.0)
(s709 5.0)
(s710 5.0)
(s711 2.0)
(s713 4.0)
(s714 5.0)
(s715 5.0)
(s716 2.0)
(s718 4.0)
(s719 5.0)
(s720 5.0)
(s721 2.0)
(s723 4.0)
(s724 5.0)
(s725 5.0)
(s726 2.0)
(s728 4.0)
(s729 5.0)
(s730 5.0)
(s731 2.0)
(s733 4.0)
(s734 5.0)
(s735 5.0)
(s736 2.0)
(s738 4.0)
(s739 5.0)
(s740 5.0)
(s741 2.0)
(s743 4.0)
(s744 5.0)
(s745 5.0)
(s746 2.0)
(s748 4.0)
(s749 5.0)
(s750 5.0)
(s751 2.0)
(s753 4.0)
(s754 5.0)
(s755 5.0)
(s756 2.0)
(s758 4.0)
(s759 5.0)
(s760 5.0)
(s761 2.0)
(s763 4.0)
(s764 5.0)
(s765 5.0)
(s766 2.0)
(s768 4.0)
(s769 5.0)
(s770 5.0)
(s771 2.0)
(s773 4.0)
(s774 5.0)
(s775 5.0)
(s776 2.0)
(s778 4.0)
(s779 5.0)
(s780 5.0)
(s781 2.0)
(s783 4.0)
(s784 5.0)
(s785 5.0)
(s786 2.0)
(s788 4.0)
(s789 5.0)
(s790 5.0)
(s791 2.0)
(s793 4.0)
(s794 5.0)
(s795 5.0)
(s796 2.0)
(s798 4.0)
(s799 5.0)
(s800 5.0)
(s801 2.0)
(s803 4.0)
(s804 5.0)
(s805 5.0)
(s806 2.0)
(s808 4.0)
(s809 5.0)
(s810 5.0)
(s811 2.0)
(s813 4.0)
(s814 5.0)
(s815 5.0)
(s816 2.0)
(s818 4.0)
(s819 5.0)
(s820 5.0)
(s821 2.0)
(s823 4.0)
(s824 5.0)
(s825 5.0)
(s826 2.0)
(s828 4.0)
(s829 5.0)
(s830 5.0)
(s831 2.0)
(s833 4.0)
(s834 5.0)
(s835 5.0)
(s836 2.0)
(s838 4.0)
(s839 5.0)
(s840 5.0)
(s841 2.0)
(s843 4.0)
(s844 5.0)
(s845 5.0)
(s846 2.0)
(s848 4.0)
(s849 5.0)
(s850 5.0)
(s851 2.0)
(s853 4.0)
(s854 5.0)
(s855 5.0)
(s856 2.0)
(s858 4.0)
(s859 5.0)
(s860 5.0)
(s861 2.0)
(s863 4.0)
(s864 5.0)
(s865 5.0)
(s866 2.0)
(s868 4.0)
(s869 5.0)
(s870 5.0)
(s871 2.0)
(s873 4.0)
(s874 5.0)
(s875 5.0)
(s876 2.0)
(s878 4.0)
(s879 5.0)
(s880 5.0)
(s881 2.0)
(s883 4.0)
(s884 5.0)
(s885 5.0)
(s886 2.0)
(s888 4.0)
(s889 5.0)
(s890 5.0)
(s891 2.0)
(s893 4.0)
(s894 5.0)
(s895 5.0)
(s896 2.0)
(s898 4.0)
(s899 5.0)
(s900 5.0)
(s901 2.0)
(s903 4.0)
(s904 5.0)
(s905 5.0)
(s906 2.0)
(s908 4.0)
(s909 5.0)
(s910 5.0)
(s911 2.0)
(s913 4.0)
(s914 5.0)
(s915 5.0)
(s916 2.0)
(s918 4.0)
(s919 5.0)
(s920 5.0)
(s921 2.0)
(s923 4.0)
(s924 5.0)
(s925 5.0)
(s926 2.0)
(s928 4.0)
(s929 5.0)
(s930 5.0)
(s931 2.0)
(s933 4.0)
(s934 5.0)
(s935 5.0)
(s936 2.0)
(s938 4.0)
(s939 5.0)
(s940 5.0)
(s941 2.0)
(s943 4.0)
(s944 5.0)
(s945 5.0)
(s946 2.0)
(s948 4.0)
(s949 5.0)
(s950 5.0)
(s951 2.0)
(s953 4.0)
(s954 5.0)
(s955 5.0)
(s956 2.0)
(s958 4.0)
(s959 5.0)
(s960 5.0)
(s961 2.0)
(s963 4.0)
(s964 5.0)
(s965 5.0)
(s966 2.0)
(s968 4.0)
(s969 5.0)
(s970 5.0)
(s971 2.0)
(s973 4.0)
(s974 5.0)
(s975 5.0)
(s976 2.0)
(s978 4.0)
(s979 5.0)
(s980 5.0)
(s981 2.0)
(s983 4.0)
(s984 5.0)
(s985 5.0)
(s986 2.0)
(s988 4.0)
(s989 5.0)
(s990 5.0)
(s991 2.0)
(s993 4.0)
(s994 5.0)
(s995 5.0)
(s996 2.0)
(s998 4.0)
(s999 5.0)
(s1000 5.0)
(s1001 2.0)
(s1003 4.0)
(s1004 5.0)
(s1005 5.0)
(s1006 2.0)
(s1008 4.0)
(s1009 5.0)
(s1010 5.0)
(s1011 2.0)
(s1013 4.0)
(s1014 5.0)
(s1015 5.0)
(s1016 2.0)
(s1018 4.0)
(s1019 5.0)
(s1020 5.0)
(s1021 2.0)
(s1023 4.0)
(s1024 5.0)
(s1025 5.0)
(s1026 2.0)
(s1028 4.0)
(s1029 5.0)
(s1030 5.0)
(s1031 2.0)
(s1033 4.0)
(s1034 5.0)
(s1035 5.0)
(s1036 2.0)
(s1038 4.0)
(s1039 5.0)
(s1040 5.0)
(s1041 2.0)
(s1043 4.0)
(s1044 5.0)
(s1045 5.0)
(s1046 2.0)
(s1048 4.0)
(s1049 5.0)
(s1050 5.0)
(s1051 2.0)
(s1053 4.0)
(s1054 5.0)
(s1055 5.0)
(s1056 2.0)
(s1058 4.0)
(s1059 5.0)
(s1060 5.0)
(s1061 2.0)
(s1063 4.0)
(s1064 5.0)
(s1065 5.0)
(s1066 2.0)
(s1068 4.0)
(s1069 5.0)
(s1070 5.0)
(s1071 2.0)
(s1073 4.0)
(s1074 5.0)
(s1075 5.0)
(s1076 2.0)
(s1078 4.0)
(s1079 5.0)
(s1080 5.0)
(s1081 2.0)
(s1083 4.0)
(s1084 5.0)
(s1085 5.0)
(s1086 2.0)
(s1088 4.0)
(s1089 5.0)
(s1090 5.0)
(s1091 2.0)
(s1093 4.0)
(s1094 5.0)
(s1095 5.0)
(s1096 2.0)
(s1098 4.0)
(s1099 5.0)
(s1100 5.0)
(s1101 2.0)
(s1103 4.0)
(s1104 5.0)
(s1105 5.0)
(s1106 2.0)
(s1108 4.0)
(s1109 5.0)
(s1110 5.0)
(s1111 2.0)
(s1113 4.0)
(s1114 5.0)
(s1115 5.0)
(s1116 2.0)
(s1118 4.0)
(s1119 5.0)
(s1120 5.0)
(s1121 2.0)
(s1123 4.0)
(s1124 5.0)
(s1125 5.0)
(s1126 2.0)
(s1128 4.0)
(s1129 5.0)
(s1130 5.0)
(s1131 2.0)
(s1133 4.0)
(s1134 5.0)
(s1135 5.0)
(s1136 2.0)
(s1138 4.0)
(s1139 5.0)
(s1140 5.0)
(s1141 2.0)
(s1143 4.0)
(s1144 5.0)
(s1145 5.0)
(s1146 2.0)
(s1148 4.0)
(s1149 5.0)
(s1150 5.0)
(s1151 2.0)
(s1153 4.0)
(s1154 5.0)
(s1155 5.0)
(s1156 2.0)
(s1158 4.0)
(s1159 5.0)
(s1160 5.0)
(s1161 2.0)
(s1163 4.0)
(s1164 5.0)
(s1165 5.0)
(s1166 2.0)
(s1168 4.0)
(s1169 5.0)
(s1170 5.0)
(s1171 2.0)
(s1173 4.0)
(s1174 5.0)
(s1175 5.0)
(s1176 2.0)
(s1178 4.0)
(s1179 5.0)
(s1180 5.0)
(s1181 2.0)
(s1183 4.0)
(s1184 5.0)
(s1185 5.0)
(s1186 2.0)
(s1188 4.0)
(s1189 5.0)
(s1190 5.0)
(s1191 2.0)
(s1193 4.0)
(s1194 5.0)
(s1195 5.0)
(s1196 2.0)
(s1198 4.0)
(s1199 5.0)
(s1200 5.0)
(s1201 2.0)
(s1203 4.0)
(s1204 5.0)
(s1205 5.0)
(s1206 2.0)
(s1208 4.0)
(s1209 5.0)
(s1210 5.0)
(s1211 2.0)
(s1213 4.0)
(s1214 5.0)
(s1215 5.0)
(s1216 2.0)
(s1218 4.0)
(s1219 5.0)
(s1220 5.0)
(s1221 2.0)
(s1223 4.0)
(s1224 5.0)
(s1225 5.0)
(s1226 2.0)
(s1228 4.0)
(s1229 5.0)
(s1230 5.0)
(s1231 2.0)
(s1233 4.0)
(s1234 5.0)
(s1235 5.0)
(s1236 2.0)
(s1238 4.0)
(s1239 5.0)
(s1240 5.0)
(s1241 2.0)
(s1243 4.0)
(s1244 5.0)
(s1245 5.0)
(s1246 2.0)
(s1248 4.0)
(s1249 5.0)
(s1250 5.0)
(s1251 2.0)
(s1253 4.0)
(s1254 5.0)
(s1255 5.0)
(s1256 2.0)
(s1258 4.0)
(s1259 5.0)
(s1260 5.0)
(s1261 2.0)
(s1263 4.0)
(s1264 5.0)
(s1265 5.0)
(s1266 2.0)
(s1268 4.0)
(s1269 5.0)
(s1270 5.0)
(s1271 2.0)
(s1273 4.0)
(s1274 5.0)
(s1275 5.0)
(s1276 2.0)
(s1278 4.0)
(s1279 5.0)
(s1280 5.0)
(s1281 2.0)
(s1283 4.0)
(s1284 5.0)
(s1285 5.0)
(s1286 2.0)
(s1288 4.0)
(s1289 5.0)
(s1290 5.0)
(s1291 2.0)
(s1293 4.0)
(s1294 5.0)
(s1295 5.0)
(s1296 2.0)
(s1298 4.0)
(s1299 5.0)
(s1300 5.0)
(s1301 2.0)
(s1303 4.0)
(s1304 5.0)
(s1305 5.0)
(s1306 2.0)
(s1308 4.0)
(s1309 5.0)
(s1310 5.0)
(s1311 2.0)
(s1313 4.0)
(s1314 5.0)
(s1315 5.0)
(s1316 2.0)
(s1318 4.0)
(s1319 5.0)
(s1320 5.0)
(s1321 2.0)
(s1323 4.0)
(s1324 5.0)
(s1325 5.0)
(s1326 2.0)
(s1328 4.0)
(s1329 5.0)
(s1330 5.0)
(s1331 2.0)
(s1333 4.0)
(s1334 5.0)
(s1335 5.0)
(s1336 2.0)
(s1338 4.0)
(s1339 5.0)
(s1340 5.0)
(s1341 2.0)
(s1343 4.0)
(s1344 5.0)
(s1345 5.0)
(s1346 2.0)
(s1348 4.0)
(s1349 5.0)
(s1350 5.0)
(s1351 2.0)
(s1353 4.0)
(s1354 5.0)
(s1355 5.0)
(s1356 2.0)
(s1358 4.0)
(s1359 5.0)
(s1360 5.0)
(s1361 2.0)
(s1363 4.0)
(s1364 5.0)
(s1365 5.0)
(s1366 2.0)
(s1368 4.0)
(s1369 5.0)
(s1370 5.0)
(s1371 2.0)
(s1373 4.0)
(s1374 5.0)
(s1375 5.0)
(s1376 2.0)
(s1378 4.0)
(s1379 5.0)
(s1380 5.0)
(s1381 2.0)
(s1383 4.0)
(s1384 5.0)
(s1385 5.0)
(s1386 2.0)
(s1388 4.0)
(s1389 5.0)
(s1390 5.0)
(s1391 2.0)
(s1393 4.0)
(s1394 5.0)
(s1395 5.0)
(s1396 2.0)
(s1398 4.0)
(s1399 5.0)
(s1400 5.0)
(s1401 2.0)
(s1403 4.0)
(s1404 5.0)
(s1405 5.0)
(s1406 2.0)
(s1408 4.0)
(s1409 5.0)
(s1410 5.0)
(s1411 2.0)
(s1413 4.0)
(s1414 5.0)
(s1415 5.0)
(s1416 2.0)
(s1418 4.0)
(s1419 5.0)
(s1420 5.0)
(s1421 2.0)
(s1423 4.0)
(s1424 5.0)
(s1425 5.0)
(s1426 2.0)
(s1428 4.0)
(s1429 5.0)
(s1430 5.0)
(s1431 2.0)
(s1433 4.0)
(s1434 5.0)
(s1435 5.0)
(s1436 2.0)
(s1438 4.0)
(s1439 5.0)
(s1440 5.0)
(s1441 2.0)
(s1443 4.0)
(s1444 5.0)
(s1445 5.0)
(s1446 2.0)
(s1448 4.0)
(s1449 5.0)
(s1450 5.0)
(s1451 2.0)
(s1453 4.0)
(s1454 5.0)
(s1455 5.0)
(s1456 2.0)
(s1458 4.0)
(s1459 5.0)
(s1460 5.0)
(s1461 2.0)
(s1463 4.0)
(s1464 5.0)
(s1465 5.0)
(s1466 2.0)
(s1468 4.0)
(s1469 5.0)
(s1470 5.0)
(s1471 2.0)
(s1473 4.0)
(s1474 5.0)
(s1475 5.0)
(s1476 2.0)
(s1478 4.0)
(s1479 5.0)
(s1480 5.0)
(s1481 2.0)
(s1483 4.0)
(s1484 5.0)
(s1485 5.0)
(s1486 2.0)
(s1488 4.0)
(s1489 5.0)
(s1490 5.0)
(s1491 2.0)
(s1493 4.0)
(s1494 5.0)
(s1495 5.0)
(s1496 2.0)
(s1498 4.0)
(s1499 5.0)
(s1500 5.0)
(s1501 2.0)
(s1503 4.0)
(s1504 5.0)
(s1505 5.0)
(s1506 2.0)
(s1508 4.0)
(s1509 5.0)
(s1510 5.0)
(s1511 2.0)
(s1513 4.0)
(s1514 5.0)
(s1515 5.0)
(s1516 2.0)
(s1518 4.0)
(s1519 5.0)
(s1520 5.0)
(s1521 2.0)
(s1523 4.0)
(s1524 5.0)
(s1525 5.0)
(s1526 2.0)
(s1528 4.0)
(s1529 5.0)
(s1530 5.0)
(s1531 2.0)
(s1533 4.0)
(s1534 5.0)
(s1535 5.0)
(s1536 2.0)
(s1538 4.0)
(s1539 5.0)
(s1540 5.0)
(s1541 2.0)
(s1543 4.0)
(s1544 5.0)
(s1545 5.0)
(s1546 2.0)
(s1548 4.0)
(s1549 5.0)
(s1550 5.0)
(s1551 2.0)
(s1553 4.0)
(s1554 5.0)
(s1555 5.0)
(s1556 2.0)
(s1558 4.0)
(s1559 5.0)
(s1560 5.0)
(s1561 2.0)
(s1563 4.0)
(s1564 5.0)
(s1565 5.0)
(s1566 2.0)
(s1568 4.0)
(s1569 5.0)
(s1570 5.0)
(s1571 2.0)
(s1573 4.0)
(s1574 5.0)
(s1575 5.0)
(s1576 2.0)
(s1578 4.0)
(s1579 5.0)
(s1580 5.0)
(s1581 2.0)
(s1583 4.0)
(s1584 5.0)
(s1585 5.0)
(s1586 2.0)
(s1588 4.0)
(s1589 5.0)
(s1590 5.0)
(s1591 2.0)
(s1593 4.0)
(s1594 5.0)
(s1595 5.0)
(s1596 2.0)
(s1598 4.0)
(s1599 5.0)
(s1600 5.0)
(s1601 2.0)
(s1603 4.0)
(s1604 5.0)
(s1605 5.0)
(s1606 2.0)
(s1608 4.0)
(s1609 5.0)
(s1610 5.0)
(s1611 2.0)
(s1613 4.0)
(s1614 5.0)
(s1615 5.0)
(s1616 2.0)
(s1618 4.0)
(s1619 5.0)
(s1620 5.0)
(s1621 2.0)
(s1623 4.0)
(s1624 5.0)
(s1625 5.0)
(s1626 2.0)
(s1628 4.0)
(s1629 5.0)
(s1630 5.0)
(s1631 2.0)
(s1633 4.0)
(s1634 5.0)
(s1635 5.0)
(s1636 2.0)
(s1638 4.0)
(s1639 5.0)
(s1640 5.0)
(s1641 2.0)
(s1643 4.0)
(s1644 5.0)
(s1645 5.0)
(s1646 2.0)
(s1648 4.0)
(s1649 5.0)
(s1650 5.0)
(s1651 2.0)
(s1653 4.0)
(s1654 5.0)
(s1655 5.0)
(s1656 2.0)
(s1658 4.0)
(s1659 5.0)
(s1660 5.0)
(s1661 2.0)
(s1663 4.0)
(s1664 5.0)
(s1665 5.0)
(s1666 2.0)
(s1668 4.0)
(s1669 5.0)
(s1670 5.0)
(s1671 2.0)
(s1673 4.0)
(s1674 5.0)
(s1675 5.0)
(s1676 2.0)
(s1678 4.0)
(s1679 5.0)
(s1680 5.0)
(s1681 2.0)
(s1683 4.0)
(s1684 5.0)
(s1685 5.0)
(s1686 2.0)
(s1688 4.0)
(s1689 5.0)
(s1690 5.0)
(s1691 2.0)
(s1693 4.0)
(s1694 5.0)
(s1695 5.0)
(s1696 2.0)
(s1698 4.0)
(s1699 5.0)
(s1700 5.0)
(s1701 2.0)
(s1703 4.0)
(s1704 5.0)
(s1705 5.0)
(s1706 2.0)
(s1708 4.0)
(s1709 5.0)
(s1710 5.0)
(s1711 2.0)
(s1713 4.0)
(s1714 5.0)
(s1715 5.0)
(s1716 2.0)
(s1718 4.0)
(s1719 5.0)
(s1720 5.0)
(s1721 2.0)
(s1723 4.0)
(s1724 5.0)
(s1725 5.0)
(s1726 2.0)
(s1728 4.0)
(s1729 5.0)
(s1730 5.0)
(s1731 2.0)
(s1733 4.0)
(s1734 5.0)
(s1735 5.0)
(s1736 2.0)
(s1738 4.0)
(s1739 5.0)
(s1740 5.0)
(s1741 2.0)
(s1743 4.0)
(s1744 5.0)
(s1745 5.0)
(s1746 2.0)
(s1748 4.0)
(s1749 5.0)
(s1750 5.0)
(s1751 2.0)
(s1753 4.0)
(s1754 5.0)
(s1755 5.0)
(s1756 2.0)
(s1758 4.0)
(s1759 5.0)
(s1760 5.0)
(s1761 2.0)
(s1763 4.0)
(s1764 5.0)
(s1765 5.0)
(s1766 2.0)
(s1768 4.0)
(s1769 5.0)
(s1770 5.0)
(s1771 2.0)
(s1773 4.0)
(s1774 5.0)
(s1775 5.0)
(s1776 2.0)
(s1778 4.0)
(s1779 5.0)
(s1780 5.0)
(s1781 2.0)
(s1783 4.0)
(s1784 5.0)
(s1785 5.0)
(s1786 2.0)
(s1788 4.0)
(s1789 5.0)
(s1790 5.0)
(s1791 2.0)
(s1793 4.0)
(s1794 5.0)
(s1795 5.0)
(s1796 2.0)
(s1798 4.0)
(s1799 5.0)
(s1800 5.0)
(s1801 2.0)
(s1803 4.0)
(s1804 5.0)
(s1805 5.0)
(s1806 2.0)
(s1808 4.0)
(s1809 5.0)
(s1810 5.0)
(s1811 2.0)
(s1813 4.0)
(s1814 5.0)
(s1815 5.0)
(s1816 2.0)
(s1818 4.0)
(s1819 5.0)
(s1820 5.0)
(s1821 2.0)
(s1823 4.0)
(s1824 5.0)
(s1825 5.0)
(s1826 2.0)
(s1828 4.0)
(s1829 5.0)
(s1830 5.0)
(s1831 2.0)
(s1833 4.0)
(s1834 5.0)
(s1835 5.0)
(s1836 2.0)
(s1838 4.0)
(s1839 5.0)
(s1840 5.0)
(s1841 2.0)
(s1843 4.0)
(s1844 5.0)
(s1845 5.0)
(s1846 2.0)
(s1848 4.0)
(s1849 5.0)
(s1850 5.0)
(s1851 2.0)
(s1853 4.0)
(s1854 5.0)
(s1855 5.0)
(s1856 2.0)
(s1858 4.0)
(s1859 5.0)
(s1860 5.0)
(s1861 2.0)
(s1863 4.0)
(s1864 5.0)
(s1865 5.0)
(s1866 2.0)
(s1868 4.0)
(s1869 5.0)
(s1870 5.0)
(s1871 2.0)
(s1873 4.0)
(s1874 5.0)
(s1875 5.0)
(s1876 2.0)
(s1878 4.0)
(s1879 5.0)
(s1880 5.0)
(s1881 2.0)
(s1883 4.0)
(s1884 5.0)
(s1885 5.0)
(s1886 2.0)
(s1888 4.0)
(s1889 5.0)
(s1890 5.0)
(s1891 2.0)
(s1893 4.0)
(s1894 5.0)
(s1895 5.0)
(s1896 2.0)
(s1898 4.0)
(s1899 5.0)
(s1900 5.0)
(s1901 2.0)
(s1903 4.0)
(s1904 5.0)
(s1905 5.0)
(s1906 2.0)
(s1908 4.0)
(s1909 5.0)
(s1910 5.0)
(s1911 2.0)
(s1913 4.0)
(s1914 5.0)
(s1915 5.0)
(s1916 2.0)
(s1918 4.0)
(s1919 5.0)
(s1920 5.0)
(s1921 2.0)
(s1923 4.0)
(s1924 5.0)
(s1925 5.0)
(s1926 2.0)
(s1928 4.0)
(s1929 5.0)
(s1930 5.0)
(s1931 2.0)
(s1933 4.0)
(s1934 5.0)
(s1935 5.0)
(s1936 2.0)
(s1938 4.0)
(s1939 5.0)
(s1940 5.0)
(s1941 2.0)
(s1943 4.0)
(s1944 5.0)
(s1945 5.0)
(s1946 2.0)
(s1948 4.0)
(s1949 5.0)
(s1950 5.0)
(s1951 2.0)
(s1953 4.0)
(s1954 5.0)
(s1955 5.0)
(s1956 2.0)
(s1958 4.0)
(s1959 5.0)
(s1960 5.0)
(s1961 2.0)
(s1963 4.0)
(s1964 5.0)
(s1965 5.0)
(s1966 2.0)
(s1968 4.0)
(s1969 5.0)
(s1970 5.0)
(s1971 2.0)
(s1973 4.0)
(s1974 5.0)
(s1975 5.0)
(s1976 2.0)
(s1978 4.0)
(s1979 5.0)
(s1980 5.0)
(s1981 2.0)
(s1983 4.0)
(s1984 5.0)
(s1985 5.0)
(s1986 2.0)
(s1988 4.0)
(s1989 5.0)
(s1990 5.0)
(s1991 2.0)
(s1993 4.0)
(s1994 5.0)
(s1995 5.0)
(s1996 2.0)
(s1998 4.0)
(s1999 5.0)
(s2000 5.0)
(s2001 2.0)
(s2003 4.0)
(s2004 5.0)
(s2005 5.0)
(s2006 2.0)
(s2008 4.0)
(s2009 5.0)
(s2010 5.0)
(s2011 2.0)
(s2013 4.0)
(s2014 5.0)
(s2015 5.0)
(s2016 2.0)
(s2018 4.0)
(s2019 5.0)
(s2020 5.0)
(s2021 2.0)
(s2023 4.0)
(s2024 5.0)
(s2025 5.0)
(s2026 2.0)
(s2028 4.0)
(s2029 5.0)
(s2030 5.0)
(s2031 2.0)
(s2033 4.0)
(s2034 5.0)
(s2035 5.0)
(s2036 2.0)
(s2038 4.0)
(s2039 5.0)
(s2040 5.0)
(s2041 2.0)
(s2043 4.0)
(s2044 5.0)
(s2045 5.0)
(s2046 2.0)
(s2048 4.0)
(s2049 5.0)
(s2050 5.0)
(s2051 2.0)
(s2053 4.0)
(s2054 5.0)
(s2055 5.0)
(s2056 2.0)
(s2058 4.0)
(s2059 5.0)
(s2060 5.0)
(s2061 2.0)
(s2063 4.0)
(s2064 5.0)
(s2065 5.0)
(s2066 2.0)
(s2068 4.0)
(s2069 5.0)
(s2070 5.0)
(s2071 2.0)
(s2073 4.0)
(s2074 5.0)
(s2075 5.0)
(s2076 2.0)
(s2078 4.0)
(s2079 5.0)
(s2080 5.0)
(s2081 2.0)
(s2083 4.0)
(s2084 5.0)
(s2085 5.0)
(s2086 2.0)
(s2088 4.0)
(s2089 5.0)
(s2090 5.0)
(s2091 2.0)
(s2093 4.0)
(s2094 5.0)
(s2095 5.0)
(s2096 2.0)
(s2098 4.0)
(s2099 5.0)
(s2100 5.0)
(s2101 2.0)
(s2103 4.0)
(s2104 5.0)
(s2105 5.0)
(s2106 2.0)
(s2108 4.0)
(s2109 5.0)
(s2110 5.0)
(s2111 2.0)
(s2113 4.0)
(s2114 5.0)
(s2115 5.0)
(s2116 2.0)
(s2118 4.0)
(s2119 5.0)
(s2120 5.0)
(s2121 2.0)
(s2123 4.0)
(s2124 5.0)
(s2125 5.0)
(s2126 2.0)
(s2128 4.0)
(s2129 5.0)
(s2130 5.0)
(s2131 2.0)
(s2133 4.0)
(s2134 5.0)
(s2135 5.0)
(s2136 2.0)
(s2138 4.0)
(s2139 5.0)
(s2140 5.0)
(s2141 2.0)
(s2143 4.0)
(s2144 5.0)
(s2145 5.0)
(s2146 2.0)
(s2148 4.0)
(s2149 5.0)
(s2150 5.0)
(s2151 2.0)
(s2153 4.0)
(s2154 5.0)
(s2155 5.0)
(s2156 2.0)
(s2158 4.0)
(s2159 5.0)
(s2160 5.0)
(s2161 2.0)
(s2163 4.0)
(s2164 5.0)
(s2165 5.0)
(s2166 2.0)
(s2168 4.0)
(s2169 5.0)
(s2170 5.0)
(s2171 2.0)
(s2173 4.0)
(s2174 5.0)
(s2175 5.0)
(s2176 2.0)
(s2178 4.0)
(s2179 5.0)
(s2180 5.0)
(s2181 2.0)
(s2183 4.0)
(s2184 5.0)
(s2185 5.0)
(s2186 2.0)
(s2188 4.0)
(s2189 5.0)
(s2190 5.0)
(s2191 2.0)
(s2193 4.0)
(s2194 5.0)
(s2195 5.0)
(s2196 2.0)
(s2198 4.0)
(s2199 5.0)
(s2200 5.0)
(s2201 2.0)
(s2203 4.0)
(s2204 5.0)
(s2205 5.0)
(s2206 2.0)
(s2208 4.0)
(s2209 5.0)
(s2210 5.0)
(s2211 2.0)
(s2213 4.0)
(s2214 5.0)
(s2215 5.0)
(s2216 2.0)
(s2218 4.0)
(s2219 5.0)
(s2220 5.0)
(s2221 2.0)
(s2223 4.0)
(s2224 5.0)
(s2225 5.0)
(s2226 2.0)
(s2228 4.0)
(s2229 5.0)
(s2230 5.0)
(s2231 2.0)
(s2233 4.0)
(s2234 5.0)
(s2235 5.0)
(s2236 2.0)
(s2238 4.0)
(s2239 5.0)
(s2240 5.0)
(s2241 2.0)
(s2243 4.0)
(s2244 5.0)
(s2245 5.0)
(s2246 2.0)
(s2248 4.0)
(s2249 5.0)
(s2250 5.0)
(s2251 2.0)
(s2253 4.0)
(s2254 5.0)
(s2255 5.0)
(s2256 2.0)
(s2258 4.0)
(s2259 5.0)
(s2260 5.0)
(s2261 2.0)
(s2263 4.0)
(s2264 5.0)
(s2265 5.0)
(s2266 2.0)
(s2268 4.0)
(s2269 5.0)
(s2270 5.0)
(s2271 2.0)
(s2273 4.0)
(s2274 5.0)
(s2275 5.0)
(s2276 2.0)
(s2278 4.0)
(s2279 5.0)
(s2280 5.0)
(s2281 2.0)
(s2283 4.0)
(s2284 5.0)
(s2285 5.0)
(s2286 2.0)
(s2288 4.0)
(s2289 5.0)
(s2290 5.0)
(s2291 2.0)
(s2293 4.0)
(s2294 5.0)
(s2295 5.0)
(s2296 2.0)
(s2298 4.0)
(s2299 5.0)
(s2300 5.0)
(s2301 2.0)
(s2303 4.0)
(s2304 5.0)
(s2305 5.0)
(s2306 2.0)
(s2308 4.0)
(s2309 5.0)
(s2310 5.0)
(s2311 2.0)
(s2313 4.0)
(s2314 5.0)
(s2315 5.0)
(s2316 2.0)
(s2318 4.0)
(s2319 5.0)
(s2320 5.0)
(s2321 2.0)
(s2323 4.0)
(s2324 5.0)
(s2325 5.0)
(s2326 2.0)
(s2328 4.0)
(s2329 5.0)
(s2330 5.0)
(s2331 2.0)
(s2333 4.0)
(s2334 5.0)
(s2335 5.0)
(s2336 2.0)
(s2338 4.0)
(s2339 5.0)
(s2340 5.0)
(s2341 2.0)
(s2343 4.0)
(s2344 5.0)
(s2345 5.0)
(s2346 2.0)
(s2348 4.0)
(s2349 5.0)
(s2350 5.0)
(s2351 2.0)
(s2353 4.0)
(s2354 5.0)
(s2355 5.0)
(s2356 2.0)
(s2358 4.0)
(s2359 5.0)
(s2360 5.0)
(s2361 2.0)
(s2363 4.0)
(s2364 5.0)
(s2365 5.0)
(s2366 2.0)
(s2368 4.0)
(s2369 5.0)
(s2370 5.0)
(s2371 2.0)
(s2373 4.0)
(s2374 5.0)
(s2375 5.0)
(s2376 2.0)
(s2378 4.0)
(s2379 5.0)
(s2380 5.0)
(s2381 2.0)
(s2383 4.0)
(s2384 5.0)
(s2385 5.0)
(s2386 2.0)
(s2388 4.0)
(s2389 5.0)
(s2390 5.0)
(s2391 2.0)
(s2393 4.0)
(s2394 5.0)
(s2395 5.0)
(s2396 2.0)
(s2398 4.0)
(s2399 5.0)
(s2400 5.0)
(s2401 2.0)
(s2403 4.0)
(s2404 5.0)
(s2405 5.0)
(s2406 2.0)
(s2408 4.0)
(s2409 5.0)
(s2410 5.0)
(s2411 2.0)
(s2413 4.0)
(s2414 5.0)
(s2415 5.0)
(s2416 2.0)
(s2418 4.0)
(s2419 5.0)
(s2420 5.0)
(s2421 2.0)
(s2423 4.0)
(s2424 5.0)
(s2425 5.0)
(s2426 2.0)
(s2428 4.0)
(s2429 5.0)
(s2430 5.0)
(s2431 2.0)
(s2433 4.0)
(s2434 5.0)
(s2435 5.0)
(s2436 2.0)
(s2438 4.0)
(s2439 5.0)
(s2440 5.0)
(s2441 2.0)
(s2443 4.0)
(s2444 5.0)
(s2445 5.0)
(s2446 2.0)
(s2448 4.0)
(s2449 5.0)
(s2450 5.0)
(s2451 2.0)
(s2453 4.0)
(s2454 5.0)
(s2455 5.0)
(s2456 2.0)
(s2458 4.0)
(s2459 5.0)
(s2460 5.0)
(s2461 2.0)
(s2463 4.0)
(s2464 5.0)
(s2465 5.0)
(s2466 2.0)
(s2468 4.0)
(s2469 5.0)
(s2470 5.0)
(s2471 2.0)
(s2473 4.0)
(s2474 5.0)
(s2475 5.0)
(s2476 2.0)
(s2478 4.0)
(s2479 5.0)
(s2480 5.0)
(s2481 2.0)
(s2483 4.0)
(s2484 5.0)
(s2485 5.0)
(s2486 2.0)
(s2488 4.0)
(s2489 5.0)
(s2490 5.0)
(s2491 2.0)
(s2493 4.0)
(s2494 5.0)
(s2495 5.0)
(s2496 2.0)
(s2498 4.0)
(s2499 5.0)
(s2500 5.0)
(s2501 2.0)
(s2503 4.0)
(s2504 5.0)
(s2505 5.0)
(s2506 2.0)
(s2508 4.0)
(s2509 5.0)
(s2510 5.0)
(s2511 2.0)
(s2513 4.0)
(s2514 5.0)
(s2515 5.0)
(s2516 2.0)
(s2518 4.0)
(s2519 5.0)
(s2520 5.0)
(s2521 2.0)
(s2523 4.0)
(s2524 5.0)
(s2525 5.0)
(s2526 2.0)
(s2528 4.0)
(s2529 5.0)
(s2530 5.0)
(s2531 2.0)
(s2533 4.0)
(s2534 5.0)
(s2535 5.0)
(s2536 2.0)
(s2538 4.0)
(s2539 5.0)
(s2540 5.0)
(s2541 2.0)
(s2543 4.0)
(s2544 5.0)
(s2545 5.0)
(s2546 2.0)
(s2548 4.0)
(s2549 5.0)
(s2550 5.0)
(s2551 2.0)
(s2553 4.0)
(s2554 5.0)
(s2555 5.0)
(s2556 2.0)
(s2558 4.0)
(s2559 5.0)
(s2560 5.0)
(s2561 2.0)
(s2563 4.0)
(s2564 5.0)
(s2565 5.0)
(s2566 2.0)
(s2568 4.0)
(s2569 5.0)
(s2570 5.0)
(s2571 2.0)
(s2573 4.0)
(s2574 5.0)
(s2575 5.0)
(s2576 2.0)
(s2578 4.0)
(s2579 5.0)
(s2580 5.0)
(s2581 2.0)
(s2583 4.0)
(s2584 5.0)
(s2585 5.0)
(s2586 2.0)
(s2588 4.0)
(s2589 5.0)
(s2590 5.0)
(s2591 2.0)
(s2593 4.0)
(s2594 5.0)
(s2595 5.0)
(s2596 2.0)
(s2598 4.0)
(s2599 5.0)
(s2600 5.0)
(s2601 2.0)
(s2603 4.0)
(s2604 5.0)
(s2605 5.0)
(s2606 2.0)
(s2608 4.0)
(s2609 5.0)
(s2610 5.0)
(s2611 2.0)
(s2613 4.0)
(s2614 5.0)
(s2615 5.0)
(s2616 2.0)
(s2618 4.0)
(s2619 5.0)
(s2620 5.0)
(s2621 2.0)
(s2623 4.0)
(s2624 5.0)
(s2625 5.0)
(s2626 2.0)
(s2628 4.0)
(s2629 5.0)
(s2630 5.0)
(s2631 2.0)
(s2633 4.0)
(s2634 5.0)
(s2635 5.0)
(s2636 2.0)
(s2638 4.0)
(s2639 5.0)
(s2640 5.0)
(s2641 2.0)
(s2643 4.0)
(s2644 5.0)
(s2645 5.0)
(s2646 2.0)
(s2648 4.0)
(s2649 5.0)
(s2650 5.0)
(s2651 2.0)
(s2653 4.0)
(s2654 5.0)
(s2655 5.0)
(s2656 2.0)
(s2658 4.0)
(s2659 5.0)
(s2660 5.0)
(s2661 2.0)
(s2663 4.0)
(s2664 5.0)
(s2665 5.0)
(s2666 2.0)
(s2668 4.0)
(s2669 5.0)
(s2670 5.0)
(s2671 2.0)
(s2673 4.0)
(s2674 5.0)
(s2675 5.0)
(s2676 2.0)
(s2678 4.0)
(s2679 5.0)
(s2680 5.0)
(s2681 2.0)
(s2683 4.0)
(s2684 5.0)
(s2685 5.0)
(s2686 2.0)
(s2688 4.0)
(s2689 5.0)
(s2690 5.0)
(s2691 2.0)
(s2693 4.0)
(s2694 5.0)
(s2695 5.0)
(s2696 2.0)
(s2698 4.0)
(s2699 5.0)
(s2700 5.0)
(s2701 2.0)
(s2703 4.0)
(s2704 5.0)
(s2705 5.0)
(s2706 2.0)
(s2708 4.0)
(s2709 5.0)
(s2710 5.0)
(s2711 2.0)
(s2713 4.0)
(s2714 5.0)
(s2715 5.0)
(s2716 2.0)
(s2718 4.0)
(s2719 5.0)
(s2720 5.0)
(s2721 2.0)
(s2723 4.0)
(s2724 5.0)
(s2725 5.0)
(s2726 2.0)
(s2728 4.0)
(s2729 5.0)
(s2730 5.0)
(s2731 2.0)
(s2733 4.0)
(s2734 5.0)
(s2735 5.0)
(s2736 2.0)
(s2738 4.0)
(s2739 5.0)
(s2740 5.0)
(s2741 2.0)
(s2743 4.0)
(s2744 5.0)
(s2745 5.0)
(s2746 2.0)
(s2748 4.0)
(s2749 5.0)
(s2750 5.0)
(s2751 2.0)
(s2753 4.0)
(s2754 5.0)
(s2755 5.0)
(s2756 2.0)
(s2758 4.0)
(s2759 5.0)
(s2760 5.0)
(s2761 2.0)
(s2763 4.0)
(s2764 5.0)
(s2765 5.0)
(s2766 2.0)
(s2768 4.0)
(s2769 5.0)
(s2770 5.0)
(s2771 2.0)
(s2773 4.0)
(s2774 5.0)
(s2775 5.0)
(s2776 2.0)
(s2778 4.0)
(s2779 5.0)
(s2780 5.0)
(s2781 2.0)
(s2783 4.0)
(s2784 5.0)
(s2785 5.0)
(s2786 2.0)
(s2788 4.0)
(s2789 5.0)
(s2790 5.0)
(s2791 2.0)
(s2793 4.0)
(s2794 5.0)
(s2795 5.0)
(s2796 2.0)
(s2798 4.0)
(s2799 5.0)
(s2800 5.0)
(s2801 2.0)
(s2803 4.0)
(s2804 5.0)
(s2805 5.0)
(s2806 2.0)
(s2808 4.0)
(s2809 5.0)
(s2810 5.0)
(s2811 2.0)
(s2813 4.0)
(s2814 5.0)
(s2815 5.0)
(s2816 2.0)
(s2818 4.0)
(s2819 5.0)
(s2820 5.0)
(s2821 2.0)
(s2823 4.0)
(s2824 5.0)
(s2825 5.0)
(s2826 2.0)
(s2828 4.0)
(s2829 5.0)
(s2830 5.0)
(s2831 2.0)
(s2833 4.0)
(s2834 5.0)
(s2835 5.0)
(s2836 2.0)
(s2838 4.0)
(s2839 5.0)
(s2840 5.0)
(s2841 2.0)
(s2843 4.0)
(s2844 5.0)
(s2845 5.0)
(s2846 2.0)
(s2848 4.0)
(s2849 5.0)
(s2850 5.0)
(s2851 2.0)
(s2853 4.0)
(s2854 5.0)
(s2855 5.0)
(s2856 2.0)
(s2858 4.0)
(s2859 5.0)
(s2860 5.0)
(s2861 2.0)
(s2863 4.0)
(s2864 5.0)
(s2865 5.0)
(s2866 2.0)
(s2868 4.0)
(s2869 5.0)
(s2870 5.0)
(s2871 2.0)
(s2873 4.0)
(s2874 5.0)
(s2875 5.0)
(s2876 2.0)
(s2878 4.0)
(s2879 5.0)
(s2880 5.0)
(s2881 2.0)
(s2883 4.0)
(s2884 5.0)
(s2885 5.0)
(s2886 2.0)
(s2888 4.0)
(s2889 5.0)
(s2890 5.0)
(s2891 2.0)
(s2893 4.0)
(s2894 5.0)
(s2895 5.0)
(s2896 2.0)
(s2898 4.0)
(s2899 5.0)
(s2900 5.0)
(s2901 2.0)
(s2903 4.0)
(s2904 5.0)
(s2905 5.0)
(s2906 2.0)
(s2908 4.0)
(s2909 5.0)
(s2910 5.0)
(s2911 2.0)
(s2913 4.0)
(s2914 5.0)
(s2915 5.0)
(s2916 2.0)
(s2918 4.0)
(s2919 5.0)
(s2920 5.0)
(s2921 2.0)
(s2923 4.0)
(s2924 5.0)
(s2925 5.0)
(s2926 2.0)
(s2928 4.0)
(s2929 5.0)
(s2930 5.0)
(s2931 2.0)
(s2933 4.0)
(s2934 5.0)
(s2935 5.0)
(s2936 2.0)
(s2938 4.0)
(s2939 5.0)
(s2940 5.0)
(s2941 2.0)
(s2943 4.0)
(s2944 5.0)
(s2945 5.0)
(s2946 2.0)
(s2948 4.0)
(s2949 5.0)
(s2950 5.0)
(s2951 2.0)
(s2953 4.0)
(s2954 5.0)
(s2955 5.0)
(s2956 2.0)
(s2958 4.0)
(s2959 5.0)
(s2960 5.0)
(s2961 2.0)
(s2963 4.0)
(s2964 5.0)
(s2965 5.0)
(s2966 2.0)
(s2968 4.0)
(s2969 5.0)
(s2970 5.0)
(s2971 2.0)
(s2973 4.0)
(s2974 5.0)
(s2975 5.0)
(s2976 2.0)
(s2978 4.0)
(s2979 5.0)
(s2980 5.0)
(s2981 2.0)
(s2983 4.0)
(s2984 5.0)
(s2985 5.0)
(s2986 2.0)
(s2988 4.0)
(s2989 5.0)
(s2990 5.0)
(s2991 2.0)
(s2993 4.0)
(s2994 5.0)
(s2995 5.0)
(s2996 2.0)
(s2998 4.0)
(s2999 5.0)
(s3000 5.0)
(s3001 2.0)
(s3003 4.0)
(s3004 5.0)
(s3005 5.0)
(s3006 2.0)
(s3008 4.0)
(s3009 5.0)
(s3010 5.0)
(s3011 2.0)
(s3013 4.0)
(s3014 5.0)
(s3015 5.0)
(s3016 2.0)
(s3018 4.0)
(s3019 5.0)
(s3020 5.0)
(s3021 2.0)
(s3023 4.0)
(s3024 5.0)
(s3025 5.0)
(s3026 2.0)
(s3028 4.0)
(s3029 5.0)
(s3030 5.0)
(s3031 2.0)
(s3033 4.0)
(s3034 5.0)
(s3035 5.0)
(s3036 2.0)
(s3038 4.0)
(s3039 5.0)
(s3040 5.0)
(s3041 2.0)
(s3043 4.0)
(s3044 5.0)
(s3045 5.0)
(s3046 2.0)
(s3048 4.0)
(s3049 5.0)
(s3050 5.0)
(s3051 2.0)
(s3053 4.0)
(s3054 5.0)
(s3055 5.0)
(s3056 2.0)
(s3058 4.0)
(s3059 5.0)
(s3060 5.0)
(s3061timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30076 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Error getting values : (error "ParserException while parsing response: ((s0 5)
(s1 2)
(s3 4)
(s4 5)
(s5 5)
(s6 2)
(s8 4)
(s9 5)
(s10 5)
(s11 2)
(s13 4)
(s14 5)
(s15 5)
(s16 2)
(s18 4)
(s19 5)
(s20 5)
(s21 2)
(s23 4)
(s24 5)
(s25 5)
(s26 2)
(s28 4)
(s29 5)
(s30 5)
(s31 2)
(s33 4)
(s34 5)
(s35 5)
(s36 2)
(s38 4)
(s39 5)
(s40 5)
(s41 2)
(s43 4)
(s44 5)
(s45 5)
(s46 2)
(s48 4)
(s49 5)
(s50 5)
(s51 2)
(s53 4)
(s54 5)
(s55 5)
(s56 2)
(s58 4)
(s59 5)
(s60 5)
(s61 2)
(s63 4)
(s64 5)
(s65 5)
(s66 2)
(s68 4)
(s69 5)
(s70 5)
(s71 2)
(s73 4)
(s74 5)
(s75 5)
(s76 2)
(s78 4)
(s79 5)
(s80 5)
(s81 2)
(s83 4)
(s84 5)
(s85 5)
(s86 2)
(s88 4)
(s89 5)
(s90 5)
(s91 2)
(s93 4)
(s94 5)
(s95 5)
(s96 2)
(s98 4)
(s99 5)
(s100 5)
(s101 2)
(s103 4)
(s104 5)
(s105 5)
(s106 2)
(s108 4)
(s109 5)
(s110 5)
(s111 2)
(s113 4)
(s114 5)
(s115 5)
(s116 2)
(s118 4)
(s119 5)
(s120 5)
(s121 2)
(s123 4)
(s124 5)
(s125 5)
(s126 2)
(s128 4)
(s129 5)
(s130 5)
(s131 2)
(s133 4)
(s134 5)
(s135 5)
(s136 2)
(s138 4)
(s139 5)
(s140 5)
(s141 2)
(s143 4)
(s144 5)
(s145 5)
(s146 2)
(s148 4)
(s149 5)
(s150 5)
(s151 2)
(s153 4)
(s154 5)
(s155 5)
(s156 2)
(s158 4)
(s159 5)
(s160 5)
(s161 2)
(s163 4)
(s164 5)
(s165 5)
(s166 2)
(s168 4)
(s169 5)
(s170 5)
(s171 2)
(s173 4)
(s174 5)
(s175 5)
(s176 2)
(s178 4)
(s179 5)
(s180 5)
(s181 2)
(s183 4)
(s184 5)
(s185 5)
(s186 2)
(s188 4)
(s189 5)
(s190 5)
(s191 2)
(s193 4)
(s194 5)
(s195 5)
(s196 2)
(s198 4)
(s199 5)
(s200 5)
(s201 2)
(s203 4)
(s204 5)
(s205 5)
(s206 2)
(s208 4)
(s209 5)
(s210 5)
(s211 2)
(s213 4)
(s214 5)
(s215 5)
(s216 2)
(s218 4)
(s219 5)
(s220 5)
(s221 2)
(s223 4)
(s224 5)
(s225 5)
(s226 2)
(s228 4)
(s229 5)
(s230 5)
(s231 2)
(s233 4)
(s234 5)
(s235 5)
(s236 2)
(s238 4)
(s239 5)
(s240 5)
(s241 2)
(s243 4)
(s244 5)
(s245 5)
(s246 2)
(s248 4)
(s249 5)
(s250 5)
(s251 2)
(s253 4)
(s254 5)
(s255 5)
(s256 2)
(s258 4)
(s259 5)
(s260 5)
(s261 2)
(s263 4)
(s264 5)
(s265 5)
(s266 2)
(s268 4)
(s269 5)
(s270 5)
(s271 2)
(s273 4)
(s274 5)
(s275 5)
(s276 2)
(s278 4)
(s279 5)
(s280 5)
(s281 2)
(s283 4)
(s284 5)
(s285 5)
(s286 2)
(s288 4)
(s289 5)
(s290 5)
(s291 2)
(s293 4)
(s294 5)
(s295 5)
(s296 2)
(s298 4)
(s299 5)
(s300 5)
(s301 2)
(s303 4)
(s304 5)
(s305 5)
(s306 2)
(s308 4)
(s309 5)
(s310 5)
(s311 2)
(s313 4)
(s314 5)
(s315 5)
(s316 2)
(s318 4)
(s319 5)
(s320 5)
(s321 2)
(s323 4)
(s324 5)
(s325 5)
(s326 2)
(s328 4)
(s329 5)
(s330 5)
(s331 2)
(s333 4)
(s334 5)
(s335 5)
(s336 2)
(s338 4)
(s339 5)
(s340 5)
(s341 2)
(s343 4)
(s344 5)
(s345 5)
(s346 2)
(s348 4)
(s349 5)
(s350 5)
(s351 2)
(s353 4)
(s354 5)
(s355 5)
(s356 2)
(s358 4)
(s359 5)
(s360 5)
(s361 2)
(s363 4)
(s364 5)
(s365 5)
(s366 2)
(s368 4)
(s369 5)
(s370 5)
(s371 2)
(s373 4)
(s374 5)
(s375 5)
(s376 2)
(s378 4)
(s379 5)
(s380 5)
(s381 2)
(s383 4)
(s384 5)
(s385 5)
(s386 2)
(s388 4)
(s389 5)
(s390 5)
(s391 2)
(s393 4)
(s394 5)
(s395 5)
(s396 2)
(s398 4)
(s399 5)
(s400 5)
(s401 2)
(s403 4)
(s404 5)
(s405 5)
(s406 2)
(s408 4)
(s409 5)
(s410 5)
(s411 2)
(s413 4)
(s414 5)
(s415 5)
(s416 2)
(s418 4)
(s419 5)
(s420 5)
(s421 2)
(s423 4)
(s424 5)
(s425 5)
(s426 2)
(s428 4)
(s429 5)
(s430 5)
(s431 2)
(s433 4)
(s434 5)
(s435 5)
(s436 2)
(s438 4)
(s439 5)
(s440 5)
(s441 2)
(s443 4)
(s444 5)
(s445 5)
(s446 2)
(s448 4)
(s449 5)
(s450 5)
(s451 2)
(s453 4)
(s454 5)
(s455 5)
(s456 2)
(s458 4)
(s459 5)
(s460 5)
(s461 2)
(s463 4)
(s464 5)
(s465 5)
(s466 2)
(s468 4)
(s469 5)
(s470 5)
(s471 2)
(s473 4)
(s474 5)
(s475 5)
(s476 2)
(s478 4)
(s479 5)
(s480 5)
(s481 2)
(s483 4)
(s484 5)
(s485 5)
(s486 2)
(s488 4)
(s489 5)
(s490 5)
(s491 2)
(s493 4)
(s494 5)
(s495 5)
(s496 2)
(s498 4)
(s499 5)
(s500 5)
(s501 2)
(s503 4)
(s504 5)
(s505 5)
(s506 2)
(s508 4)
(s509 5)
(s510 5)
(s511 2)
(s513 4)
(s514 5)
(s515 5)
(s516 2)
(s518 4)
(s519 5)
(s520 5)
(s521 2)
(s523 4)
(s524 5)
(s525 5)
(s526 2)
(s528 4)
(s529 5)
(s530 5)
(s531 2)
(s533 4)
(s534 5)
(s535 5)
(s536 2)
(s538 4)
(s539 5)
(s540 5)
(s541 2)
(s543 4)
(s544 5)
(s545 5)
(s546 2)
(s548 4)
(s549 5)
(s550 5)
(s551 2)
(s553 4)
(s554 5)
(s555 5)
(s556 2)
(s558 4)
(s559 5)
(s560 5)
(s561 2)
(s563 4)
(s564 5)
(s565 5)
(s566 2)
(s568 4)
(s569 5)
(s570 5)
(s571 2)
(s573 4)
(s574 5)
(s575 5)
(s576 2)
(s578 4)
(s579 5)
(s580 5)
(s581 2)
(s583 4)
(s584 5)
(s585 5)
(s586 2)
(s588 4)
(s589 5)
(s590 5)
(s591 2)
(s593 4)
(s594 5)
(s595 5)
(s596 2)
(s598 4)
(s599 5)
(s600 5)
(s601 2)
(s603 4)
(s604 5)
(s605 5)
(s606 2)
(s608 4)
(s609 5)
(s610 5)
(s611 2)
(s613 4)
(s614 5)
(s615 5)
(s616 2)
(s618 4)
(s619 5)
(s620 5)
(s621 2)
(s623 4)
(s624 5)
(s625 5)
(s626 2)
(s628 4)
(s629 5)
(s630 5)
(s631 2)
(s633 4)
(s634 5)
(s635 5)
(s636 2)
(s638 4)
(s639 5)
(s640 5)
(s641 2)
(s643 4)
(s644 5)
(s645 5)
(s646 2)
(s648 4)
(s649 5)
(s650 5)
(s651 2)
(s653 4)
(s654 5)
(s655 5)
(s656 2)
(s658 4)
(s659 5)
(s660 5)
(s661 2)
(s663 4)
(s664 5)
(s665 5)
(s666 2)
(s668 4)
(s669 5)
(s670 5)
(s671 2)
(s673 4)
(s674 5)
(s675 5)
(s676 2)
(s678 4)
(s679 5)
(s680 5)
(s681 2)
(s683 4)
(s684 5)
(s685 5)
(s686 2)
(s688 4)
(s689 5)
(s690 5)
(s691 2)
(s693 4)
(s694 5)
(s695 5)
(s696 2)
(s698 4)
(s699 5)
(s700 5)
(s701 2)
(s703 4)
(s704 5)
(s705 5)
(s706 2)
(s708 4)
(s709 5)
(s710 5)
(s711 2)
(s713 4)
(s714 5)
(s715 5)
(s716 2)
(s718 4)
(s719 5)
(s720 5)
(s721 2)
(s723 4)
(s724 5)
(s725 5)
(s726 2)
(s728 4)
(s729 5)
(s730 5)
(s731 2)
(s733 4)
(s734 5)
(s735 5)
(s736 2)
(s738 4)
(s739 5)
(s740 5)
(s741 2)
(s743 4)
(s744 5)
(s745 5)
(s746 2)
(s748 4)
(s749 5)
(s750 5)
(s751 2)
(s753 4)
(s754 5)
(s755 5)
(s756 2)
(s758 4)
(s759 5)
(s760 5)
(s761 2)
(s763 4)
(s764 5)
(s765 5)
(s766 2)
(s768 4)
(s769 5)
(s770 5)
(s771 2)
(s773 4)
(s774 5)
(s775 5)
(s776 2)
(s778 4)
(s779 5)
(s780 5)
(s781 2)
(s783 4)
(s784 5)
(s785 5)
(s786 2)
(s788 4)
(s789 5)
(s790 5)
(s791 2)
(s793 4)
(s794 5)
(s795 5)
(s796 2)
(s798 4)
(s799 5)
(s800 5)
(s801 2)
(s803 4)
(s804 5)
(s805 5)
(s806 2)
(s808 4)
(s809 5)
(s810 5)
(s811 2)
(s813 4)
(s814 5)
(s815 5)
(s816 2)
(s818 4)
(s819 5)
(s820 5)
(s821 2)
(s823 4)
(s824 5)
(s825 5)
(s826 2)
(s828 4)
(s829 5)
(s830 5)
(s831 2)
(s833 4)
(s834 5)
(s835 5)
(s836 2)
(s838 4)
(s839 5)
(s840 5)
(s841 2)
(s843 4)
(s844 5)
(s845 5)
(s846 2)
(s848 4)
(s849 5)
(s850 5)
(s851 2)
(s853 4)
(s854 5)
(s855 5)
(s856 2)
(s858 4)
(s859 5)
(s860 5)
(s861 2)
(s863 4)
(s864 5)
(s865 5)
(s866 2)
(s868 4)
(s869 5)
(s870 5)
(s871 2)
(s873 4)
(s874 5)
(s875 5)
(s876 2)
(s878 4)
(s879 5)
(s880 5)
(s881 2)
(s883 4)
(s884 5)
(s885 5)
(s886 2)
(s888 4)
(s889 5)
(s890 5)
(s891 2)
(s893 4)
(s894 5)
(s895 5)
(s896 2)
(s898 4)
(s899 5)
(s900 5)
(s901 2)
(s903 4)
(s904 5)
(s905 5)
(s906 2)
(s908 4)
(s909 5)
(s910 5)
(s911 2)
(s913 4)
(s914 5)
(s915 5)
(s916 2)
(s918 4)
(s919 5)
(s920 5)
(s921 2)
(s923 4)
(s924 5)
(s925 5)
(s926 2)
(s928 4)
(s929 5)
(s930 5)
(s931 2)
(s933 4)
(s934 5)
(s935 5)
(s936 2)
(s938 4)
(s939 5)
(s940 5)
(s941 2)
(s943 4)
(s944 5)
(s945 5)
(s946 2)
(s948 4)
(s949 5)
(s950 5)
(s951 2)
(s953 4)
(s954 5)
(s955 5)
(s956 2)
(s958 4)
(s959 5)
(s960 5)
(s961 2)
(s963 4)
(s964 5)
(s965 5)
(s966 2)
(s968 4)
(s969 5)
(s970 5)
(s971 2)
(s973 4)
(s974 5)
(s975 5)
(s976 2)
(s978 4)
(s979 5)
(s980 5)
(s981 2)
(s983 4)
(s984 5)
(s985 5)
(s986 2)
(s988 4)
(s989 5)
(s990 5)
(s991 2)
(s993 4)
(s994 5)
(s995 5)
(s996 2)
(s998 4)
(s999 5)
(s1000 5)
(s1001 2)
(s1003 4)
(s1004 5)
(s1005 5)
(s1006 2)
(s1008 4)
(s1009 5)
(s1010 5)
(s1011 2)
(s1013 4)
(s1014 5)
(s1015 5)
(s1016 2)
(s1018 4)
(s1019 5)
(s1020 5)
(s1021 2)
(s1023 4)
(s1024 5)
(s1025 5)
(s1026 2)
(s1028 4)
(s1029 5)
(s1030 5)
(s1031 2)
(s1033 4)
(s1034 5)
(s1035 5)
(s1036 2)
(s1038 4)
(s1039 5)
(s1040 5)
(s1041 2)
(s1043 4)
(s1044 5)
(s1045 5)
(s1046 2)
(s1048 4)
(s1049 5)
(s1050 5)
(s1051 2)
(s1053 4)
(s1054 5)
(s1055 5)
(s1056 2)
(s1058 4)
(s1059 5)
(s1060 5)
(s1061 2)
(s1063 4)
(s1064 5)
(s1065 5)
(s1066 2)
(s1068 4)
(s1069 5)
(s1070 5)
(s1071 2)
(s1073 4)
(s1074 5)
(s1075 5)
(s1076 2)
(s1078 4)
(s1079 5)
(s1080 5)
(s1081 2)
(s1083 4)
(s1084 5)
(s1085 5)
(s1086 2)
(s1088 4)
(s1089 5)
(s1090 5)
(s1091 2)
(s1093 4)
(s1094 5)
(s1095 5)
(s1096 2)
(s1098 4)
(s1099 5)
(s1100 5)
(s1101 2)
(s1103 4)
(s1104 5)
(s1105 5)
(s1106 2)
(s1108 4)
(s1109 5)
(s1110 5)
(s1111 2)
(s1113 4)
(s1114 5)
(s1115 5)
(s1116 2)
(s1118 4)
(s1119 5)
(s1120 5)
(s1121 2)
(s1123 4)
(s1124 5)
(s1125 5)
(s1126 2)
(s1128 4)
(s1129 5)
(s1130 5)
(s1131 2)
(s1133 4)
(s1134 5)
(s1135 5)
(s1136 2)
(s1138 4)
(s1139 5)
(s1140 5)
(s1141 2)
(s1143 4)
(s1144 5)
(s1145 5)
(s1146 2)
(s1148 4)
(s1149 5)
(s1150 5)
(s1151 2)
(s1153 4)
(s1154 5)
(s1155 5)
(s1156 2)
(s1158 4)
(s1159 5)
(s1160 5)
(s1161 2)
(s1163 4)
(s1164 5)
(s1165 5)
(s1166 2)
(s1168 4)
(s1169 5)
(s1170 5)
(s1171 2)
(s1173 4)
(s1174 5)
(s1175 5)
(s1176 2)
(s1178 4)
(s1179 5)
(s1180 5)
(s1181 2)
(s1183 4)
(s1184 5)
(s1185 5)
(s1186 2)
(s1188 4)
(s1189 5)
(s1190 5)
(s1191 2)
(s1193 4)
(s1194 5)
(s1195 5)
(s1196 2)
(s1198 4)
(s1199 5)
(s1200 5)
(s1201 2)
(s1203 4)
(s1204 5)
(s1205 5)
(s1206 2)
(s1208 4)
(s1209 5)
(s1210 5)
(s1211 2)
(s1213 4)
(s1214 5)
(s1215 5)
(s1216 2)
(s1218 4)
(s1219 5)
(s1220 5)
(s1221 2)
(s1223 4)
(s1224 5)
(s1225 5)
(s1226 2)
(s1228 4)
(s1229 5)
(s1230 5)
(s1231 2)
(s1233 4)
(s1234 5)
(s1235 5)
(s1236 2)
(s1238 4)
(s1239 5)
(s1240 5)
(s1241 2)
(s1243 4)
(s1244 5)
(s1245 5)
(s1246 2)
(s1248 4)
(s1249 5)
(s1250 5)
(s1251 2)
(s1253 4)
(s1254 5)
(s1255 5)
(s1256 2)
(s1258 4)
(s1259 5)
(s1260 5)
(s1261 2)
(s1263 4)
(s1264 5)
(s1265 5)
(s1266 2)
(s1268 4)
(s1269 5)
(s1270 5)
(s1271 2)
(s1273 4)
(s1274 5)
(s1275 5)
(s1276 2)
(s1278 4)
(s1279 5)
(s1280 5)
(s1281 2)
(s1283 4)
(s1284 5)
(s1285 5)
(s1286 2)
(s1288 4)
(s1289 5)
(s1290 5)
(s1291 2)
(s1293 4)
(s1294 5)
(s1295 5)
(s1296 2)
(s1298 4)
(s1299 5)
(s1300 5)
(s1301 2)
(s1303 4)
(s1304 5)
(s1305 5)
(s1306 2)
(s1308 4)
(s1309 5)
(s1310 5)
(s1311 2)
(s1313 4)
(s1314 5)
(s1315 5)
(s1316 2)
(s1318 4)
(s1319 5)
(s1320 5)
(s1321 2)
(s1323 4)
(s1324 5)
(s1325 5)
(s1326 2)
(s1328 4)
(s1329 5)
(s1330 5)
(s1331 2)
(s1333 4)
(s1334 5)
(s1335 5)
(s1336 2)
(s1338 4)
(s1339 5)
(s1340 5)
(s1341 2)
(s1343 4)
(s1344 5)
(s1345 5)
(s1346 2)
(s1348 4)
(s1349 5)
(s1350 5)
(s1351 2)
(s1353 4)
(s1354 5)
(s1355 5)
(s1356 2)
(s1358 4)
(s1359 5)
(s1360 5)
(s1361 2)
(s1363 4)
(s1364 5)
(s1365 5)
(s1366 2)
(s1368 4)
(s1369 5)
(s1370 5)
(s1371 2)
(s1373 4)
(s1374 5)
(s1375 5)
(s1376 2)
(s1378 4)
(s1379 5)
(s1380 5)
(s1381 2)
(s1383 4)
(s1384 5)
(s1385 5)
(s1386 2)
(s1388 4)
(s1389 5)
(s1390 5)
(s1391 2)
(s1393 4)
(s1394 5)
(s1395 5)
(s1396 2)
(s1398 4)
(s1399 5)
(s1400 5)
(s1401 2)
(s1403 4)
(s1404 5)
(s1405 5)
(s1406 2)
(s1408 4)
(s1409 5)
(s1410 5)
(s1411 2)
(s1413 4)
(s1414 5)
(s1415 5)
(s1416 2)
(s1418 4)
(s1419 5)
(s1420 5)
(s1421 2)
(s1423 4)
(s1424 5)
(s1425 5)
(s1426 2)
(s1428 4)
(s1429 5)
(s1430 5)
(s1431 2)
(s1433 4)
(s1434 5)
(s1435 5)
(s1436 2)
(s1438 4)
(s1439 5)
(s1440 5)
(s1441 2)
(s1443 4)
(s1444 5)
(s1445 5)
(s1446 2)
(s1448 4)
(s1449 5)
(s1450 5)
(s1451 2)
(s1453 4)
(s1454 5)
(s1455 5)
(s1456 2)
(s1458 4)
(s1459 5)
(s1460 5)
(s1461 2)
(s1463 4)
(s1464 5)
(s1465 5)
(s1466 2)
(s1468 4)
(s1469 5)
(s1470 5)
(s1471 2)
(s1473 4)
(s1474 5)
(s1475 5)
(s1476 2)
(s1478 4)
(s1479 5)
(s1480 5)
(s1481 2)
(s1483 4)
(s1484 5)
(s1485 5)
(s1486 2)
(s1488 4)
(s1489 5)
(s1490 5)
(s1491 2)
(s1493 4)
(s1494 5)
(s1495 5)
(s1496 2)
(s1498 4)
(s1499 5)
(s1500 5)
(s1501 2)
(s1503 4)
(s1504 5)
(s1505 5)
(s1506 2)
(s1508 4)
(s1509 5)
(s1510 5)
(s1511 2)
(s1513 4)
(s1514 5)
(s1515 5)
(s1516 2)
(s1518 4)
(s1519 5)
(s1520 5)
(s1521 2)
(s1523 4)
(s1524 5)
(s1525 5)
(s1526 2)
(s1528 4)
(s1529 5)
(s1530 5)
(s1531 2)
(s1533 4)
(s1534 5)
(s1535 5)
(s1536 2)
(s1538 4)
(s1539 5)
(s1540 5)
(s1541 2)
(s1543 4)
(s1544 5)
(s1545 5)
(s1546 2)
(s1548 4)
(s1549 5)
(s1550 5)
(s1551 2)
(s1553 4)
(s1554 5)
(s1555 5)
(s1556 2)
(s1558 4)
(s1559 5)
(s1560 5)
(s1561 2)
(s1563 4)
(s1564 5)
(s1565 5)
(s1566 2)
(s1568 4)
(s1569 5)
(s1570 5)
(s1571 2)
(s1573 4)
(s1574 5)
(s1575 5)
(s1576 2)
(s1578 4)
(s1579 5)
(s1580 5)
(s1581 2)
(s1583 4)
(s1584 5)
(s1585 5)
(s1586 2)
(s1588 4)
(s1589 5)
(s1590 5)
(s1591 2)
(s1593 4)
(s1594 5)
(s1595 5)
(s1596 2)
(s1598 4)
(s1599 5)
(s1600 5)
(s1601 2)
(s1603 4)
(s1604 5)
(s1605 5)
(s1606 2)
(s1608 4)
(s1609 5)
(s1610 5)
(s1611 2)
(s1613 4)
(s1614 5)
(s1615 5)
(s1616 2)
(s1618 4)
(s1619 5)
(s1620 5)
(s1621 2)
(s1623 4)
(s1624 5)
(s1625 5)
(s1626 2)
(s1628 4)
(s1629 5)
(s1630 5)
(s1631 2)
(s1633 4)
(s1634 5)
(s1635 5)
(s1636 2)
(s1638 4)
(s1639 5)
(s1640 5)
(s1641 2)
(s1643 4)
(s1644 5)
(s1645 5)
(s1646 2)
(s1648 4)
(s1649 5)
(s1650 5)
(s1651 2)
(s1653 4)
(s1654 5)
(s1655 5)
(s1656 2)
(s1658 4)
(s1659 5)
(s1660 5)
(s1661 2)
(s1663 4)
(s1664 5)
(s1665 5)
(s1666 2)
(s1668 4)
(s1669 5)
(s1670 5)
(s1671 2)
(s1673 4)
(s1674 5)
(s1675 5)
(s1676 2)
(s1678 4)
(s1679 5)
(s1680 5)
(s1681 2)
(s1683 4)
(s1684 5)
(s1685 5)
(s1686 2)
(s1688 4)
(s1689 5)
(s1690 5)
(s1691 2)
(s1693 4)
(s1694 5)
(s1695 5)
(s1696 2)
(s1698 4)
(s1699 5)
(s1700 5)
(s1701 2)
(s1703 4)
(s1704 5)
(s1705 5)
(s1706 2)
(s1708 4)
(s1709 5)
(s1710 5)
(s1711 2)
(s1713 4)
(s1714 5)
(s1715 5)
(s1716 2)
(s1718 4)
(s1719 5)
(s1720 5)
(s1721 2)
(s1723 4)
(s1724 5)
(s1725 5)
(s1726 2)
(s1728 4)
(s1729 5)
(s1730 5)
(s1731 2)
(s1733 4)
(s1734 5)
(s1735 5)
(s1736 2)
(s1738 4)
(s1739 5)
(s1740 5)
(s1741 2)
(s1743 4)
(s1744 5)
(s1745 5)
(s1746 2)
(s1748 4)
(s1749 5)
(s1750 5)
(s1751 2)
(s1753 4)
(s1754 5)
(s1755 5)
(s1756 2)
(s1758 4)
(s1759 5)
(s1760 5)
(s1761 2)
(s1763 4)
(s1764 5)
(s1765 5)
(s1766 2)
(s1768 4)
(s1769 5)
(s1770 5)
(s1771 2)
(s1773 4)
(s1774 5)
(s1775 5)
(s1776 2)
(s1778 4)
(s1779 5)
(s1780 5)
(s1781 2)
(s1783 4)
(s1784 5)
(s1785 5)
(s1786 2)
(s1788 4)
(s1789 5)
(s1790 5)
(s1791 2)
(s1793 4)
(s1794 5)
(s1795 5)
(s1796 2)
(s1798 4)
(s1799 5)
(s1800 5)
(s1801 2)
(s1803 4)
(s1804 5)
(s1805 5)
(s1806 2)
(s1808 4)
(s1809 5)
(s1810 5)
(s1811 2)
(s1813 4)
(s1814 5)
(s1815 5)
(s1816 2)
(s1818 4)
(s1819 5)
(s1820 5)
(s1821 2)
(s1823 4)
(s1824 5)
(s1825 5)
(s1826 2)
(s1828 4)
(s1829 5)
(s1830 5)
(s1831 2)
(s1833 4)
(s1834 5)
(s1835 5)
(s1836 2)
(s1838 4)
(s1839 5)
(s1840 5)
(s1841 2)
(s1843 4)
(s1844 5)
(s1845 5)
(s1846 2)
(s1848 4)
(s1849 5)
(s1850 5)
(s1851 2)
(s1853 4)
(s1854 5)
(s1855 5)
(s1856 2)
(s1858 4)
(s1859 5)
(s1860 5)
(s1861 2)
(s1863 4)
(s1864 5)
(s1865 5)
(s1866 2)
(s1868 4)
(s1869 5)
(s1870 5)
(s1871 2)
(s1873 4)
(s1874 5)
(s1875 5)
(s1876 2)
(s1878 4)
(s1879 5)
(s1880 5)
(s1881 2)
(s1883 4)
(s1884 5)
(s1885 5)
(s1886 2)
(s1888 4)
(s1889 5)
(s1890 5)
(s1891 2)
(s1893 4)
(s1894 5)
(s1895 5)
(s1896 2)
(s1898 4)
(s1899 5)
(s1900 5)
(s1901 2)
(s1903 4)
(s1904 5)
(s1905 5)
(s1906 2)
(s1908 4)
(s1909 5)
(s1910 5)
(s1911 2)
(s1913 4)
(s1914 5)
(s1915 5)
(s1916 2)
(s1918 4)
(s1919 5)
(s1920 5)
(s1921 2)
(s1923 4)
(s1924 5)
(s1925 5)
(s1926 2)
(s1928 4)
(s1929 5)
(s1930 5)
(s1931 2)
(s1933 4)
(s1934 5)
(s1935 5)
(s1936 2)
(s1938 4)
(s1939 5)
(s1940 5)
(s1941 2)
(s1943 4)
(s1944 5)
(s1945 5)
(s1946 2)
(s1948 4)
(s1949 5)
(s1950 5)
(s1951 2)
(s1953 4)
(s1954 5)
(s1955 5)
(s1956 2)
(s1958 4)
(s1959 5)
(s1960 5)
(s1961 2)
(s1963 4)
(s1964 5)
(s1965 5)
(s1966 2)
(s1968 4)
(s1969 5)
(s1970 5)
(s1971 2)
(s1973 4)
(s1974 5)
(s1975 5)
(s1976 2)
(s1978 4)
(s1979 5)
(s1980 5)
(s1981 2)
(s1983 4)
(s1984 5)
(s1985 5)
(s1986 2)
(s1988 4)
(s1989 5)
(s1990 5)
(s1991 2)
(s1993 4)
(s1994 5)
(s1995 5)
(s1996 2)
(s1998 4)
(s1999 5)
(s2000 5)
(s2001 2)
(s2003 4)
(s2004 5)
(s2005 5)
(s2006 2)
(s2008 4)
(s2009 5)
(s2010 5)
(s2011 2)
(s2013 4)
(s2014 5)
(s2015 5)
(s2016 2)
(s2018 4)
(s2019 5)
(s2020 5)
(s2021 2)
(s2023 4)
(s2024 5)
(s2025 5)
(s2026 2)
(s2028 4)
(s2029 5)
(s2030 5)
(s2031 2)
(s2033 4)
(s2034 5)
(s2035 5)
(s2036 2)
(s2038 4)
(s2039 5)
(s2040 5)
(s2041 2)
(s2043 4)
(s2044 5)
(s2045 5)
(s2046 2)
(s2048 4)
(s2049 5)
(s2050 5)
(s2051 2)
(s2053 4)
(s2054 5)
(s2055 5)
(s2056 2)
(s2058 4)
(s2059 5)
(s2060 5)
(s2061 2)
(s2063 4)
(s2064 5)
(s2065 5)
(s2066 2)
(s2068 4)
(s2069 5)
(s2070 5)
(s2071 2)
(s2073 4)
(s2074 5)
(s2075 5)
(s2076 2)
(s2078 4)
(s2079 5)
(s2080 5)
(s2081 2)
(s2083 4)
(s2084 5)
(s2085 5)
(s2086 2)
(s2088 4)
(s2089 5)
(s2090 5)
(s2091 2)
(s2093 4)
(s2094 5)
(s2095 5)
(s2096 2)
(s2098 4)
(s2099 5)
(s2100 5)
(s2101 2)
(s2103 4)
(s2104 5)
(s2105 5)
(s2106 2)
(s2108 4)
(s2109 5)
(s2110 5)
(s2111 2)
(s2113 4)
(s2114 5)
(s2115 5)
(s2116 2)
(s2118 4)
(s2119 5)
(s2120 5)
(s2121 2)
(s2123 4)
(s2124 5)
(s2125 5)
(s2126 2)
(s2128 4)
(s2129 5)
(s2130 5)
(s2131 2)
(s2133 4)
(s2134 5)
(s2135 5)
(s2136 2)
(s2138 4)
(s2139 5)
(s2140 5)
(s2141 2)
(s2143 4)
(s2144 5)
(s2145 5)
(s2146 2)
(s2148 4)
(s2149 5)
(s2150 5)
(s2151 2)
(s2153 4)
(s2154 5)
(s2155 5)
(s2156 2)
(s2158 4)
(s2159 5)
(s2160 5)
(s2161 2)
(s2163 4)
(s2164 5)
(s2165 5)
(s2166 2)
(s2168 4)
(s2169 5)
(s2170 5)
(s2171 2)
(s2173 4)
(s2174 5)
(s2175 5)
(s2176 2)
(s2178 4)
(s2179 5)
(s2180 5)
(s2181 2)
(s2183 4)
(s2184 5)
(s2185 5)
(s2186 2)
(s2188 4)
(s2189 5)
(s2190 5)
(s2191 2)
(s2193 4)
(s2194 5)
(s2195 5)
(s2196 2)
(s2198 4)
(s2199 5)
(s2200 5)
(s2201 2)
(s2203 4)
(s2204 5)
(s2205 5)
(s2206 2)
(s2208 4)
(s2209 5)
(s2210 5)
(s2211 2)
(s2213 4)
(s2214 5)
(s2215 5)
(s2216 2)
(s2218 4)
(s2219 5)
(s2220 5)
(s2221 2)
(s2223 4)
(s2224 5)
(s2225 5)
(s2226 2)
(s2228 4)
(s2229 5)
(s2230 5)
(s2231 2)
(s2233 4)
(s2234 5)
(s2235 5)
(s2236 2)
(s2238 4)
(s2239 5)
(s2240 5)
(s2241 2)
(s2243 4)
(s2244 5)
(s2245 5)
(s2246 2)
(s2248 4)
(s2249 5)
(s2250 5)
(s2251 2)
(s2253 4)
(s2254 5)
(s2255 5)
(s2256 2)
(s2258 4)
(s2259 5)
(s2260 5)
(s2261 2)
(s2263 4)
(s2264 5)
(s2265 5)
(s2266 2)
(s2268 4)
(s2269 5)
(s2270 5)
(s2271 2)
(s2273 4)
(s2274 5)
(s2275 5)
(s2276 2)
(s2278 4)
(s2279 5)
(s2280 5)
(s2281 2)
(s2283 4)
(s2284 5)
(s2285 5)
(s2286 2)
(s2288 4)
(s2289 5)
(s2290 5)
(s2291 2)
(s2293 4)
(s2294 5)
(s2295 5)
(s2296 2)
(s2298 4)
(s2299 5)
(s2300 5)
(s2301 2)
(s2303 4)
(s2304 5)
(s2305 5)
(s2306 2)
(s2308 4)
(s2309 5)
(s2310 5)
(s2311 2)
(s2313 4)
(s2314 5)
(s2315 5)
(s2316 2)
(s2318 4)
(s2319 5)
(s2320 5)
(s2321 2)
(s2323 4)
(s2324 5)
(s2325 5)
(s2326 2)
(s2328 4)
(s2329 5)
(s2330 5)
(s2331 2)
(s2333 4)
(s2334 5)
(s2335 5)
(s2336 2)
(s2338 4)
(s2339 5)
(s2340 5)
(s2341 2)
(s2343 4)
(s2344 5)
(s2345 5)
(s2346 2)
(s2348 4)
(s2349 5)
(s2350 5)
(s2351 2)
(s2353 4)
(s2354 5)
(s2355 5)
(s2356 2)
(s2358 4)
(s2359 5)
(s2360 5)
(s2361 2)
(s2363 4)
(s2364 5)
(s2365 5)
(s2366 2)
(s2368 4)
(s2369 5)
(s2370 5)
(s2371 2)
(s2373 4)
(s2374 5)
(s2375 5)
(s2376 2)
(s2378 4)
(s2379 5)
(s2380 5)
(s2381 2)
(s2383 4)
(s2384 5)
(s2385 5)
(s2386 2)
(s2388 4)
(s2389 5)
(s2390 5)
(s2391 2)
(s2393 4)
(s2394 5)
(s2395 5)
(s2396 2)
(s2398 4)
(s2399 5)
(s2400 5)
(s2401 2)
(s2403 4)
(s2404 5)
(s2405 5)
(s2406 2)
(s2408 4)
(s2409 5)
(s2410 5)
(s2411 2)
(s2413 4)
(s2414 5)
(s2415 5)
(s2416 2)
(s2418 4)
(s2419 5)
(s2420 5)
(s2421 2)
(s2423 4)
(s2424 5)
(s2425 5)
(s2426 2)
(s2428 4)
(s2429 5)
(s2430 5)
(s2431 2)
(s2433 4)
(s2434 5)
(s2435 5)
(s2436 2)
(s2438 4)
(s2439 5)
(s2440 5)
(s2441 2)
(s2443 4)
(s2444 5)
(s2445 5)
(s2446 2)
(s2448 4)
(s2449 5)
(s2450 5)
(s2451 2)
(s2453 4)
(s2454 5)
(s2455 5)
(s2456 2)
(s2458 4)
(s2459 5)
(s2460 5)
(s2461 2)
(s2463 4)
(s2464 5)
(s2465 5)
(s2466 2)
(s2468 4)
(s2469 5)
(s2470 5)
(s2471 2)
(s2473 4)
(s2474 5)
(s2475 5)
(s2476 2)
(s2478 4)
(s2479 5)
(s2480 5)
(s2481 2)
(s2483 4)
(s2484 5)
(s2485 5)
(s2486 2)
(s2488 4)
(s2489 5)
(s2490 5)
(s2491 2)
(s2493 4)
(s2494 5)
(s2495 5)
(s2496 2)
(s2498 4)
(s2499 5)
(s2500 5)
(s2501 2)
(s2503 4)
(s2504 5)
(s2505 5)
(s2506 2)
(s2508 4)
(s2509 5)
(s2510 5)
(s2511 2)
(s2513 4)
(s2514 5)
(s2515 5)
(s2516 2)
(s2518 4)
(s2519 5)
(s2520 5)
(s2521 2)
(s2523 4)
(s2524 5)
(s2525 5)
(s2526 2)
(s2528 4)
(s2529 5)
(s2530 5)
(s2531 2)
(s2533 4)
(s2534 5)
(s2535 5)
(s2536 2)
(s2538 4)
(s2539 5)
(s2540 5)
(s2541 2)
(s2543 4)
(s2544 5)
(s2545 5)
(s2546 2)
(s2548 4)
(s2549 5)
(s2550 5)
(s2551 2)
(s2553 4)
(s2554 5)
(s2555 5)
(s2556 2)
(s2558 4)
(s2559 5)
(s2560 5)
(s2561 2)
(s2563 4)
(s2564 5)
(s2565 5)
(s2566 2)
(s2568 4)
(s2569 5)
(s2570 5)
(s2571 2)
(s2573 4)
(s2574 5)
(s2575 5)
(s2576 2)
(s2578 4)
(s2579 5)
(s2580 5)
(s2581 2)
(s2583 4)
(s2584 5)
(s2585 5)
(s2586 2)
(s2588 4)
(s2589 5)
(s2590 5)
(s2591 2)
(s2593 4)
(s2594 5)timeout
(s2595 org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30075 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 63880ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 63886ms
Finished structural reductions in SI_LTL mode , in 1 iterations and 114192 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Stuttering acceptance computed with spot in 34 ms :[(NOT p0)]
Running random walk in product with property : JoinFreeModules-PT-1000-LTLCardinality-08
Stuttering criterion allowed to conclude after 0 steps with 0 reset in 1 ms.
FORMULA JoinFreeModules-PT-1000-LTLCardinality-08 FALSE TECHNIQUES STUTTER_TEST
Treatment of property JoinFreeModules-PT-1000-LTLCardinality-08 finished in 114249 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202505121319/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(G(F((p0||(p1&&G(p2))))))'
Support contains 4 out of 5000 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 438 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2025-06-02 07:30:14] [INFO ] Invariant cache hit.
[2025-06-02 07:30:14] [INFO ] State equation strengthened by 1000 read => feed constraints.
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20070 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
(s969 5timeout
^^^^^^^^
(error "Invalid token: 5timeout")
Error getting values : (error "ParserException while parsing response: ((s0 5)
(s1 2)
(s3 4)
(s4 5)
(s5 5)
(s6 2)
(s8 4)
(s9 5)
(s10 5)
(s11 2)
(s13 4)
(s14 5)
(s15 5)
(s16 2)
(s18 4)
(s19 5)
(s20 5)
(s21 2)
(s23 4)
(s24 5)
(s25 5)
(s26 2)
(s28 4)
(s29 5)
(s30 5)
(s31 2)
(s33 4)
(s34 5)
(s35 5)
(s36 2)
(s38 4)
(s39 5)
(s40 5)
(s41 2)
(s43 4)
(s44 5)
(s45 5)
(s46 2)
(s48 4)
(s49 5)
(s50 5)
(s51 2)
(s53 4)
(s54 5)
(s55 5)
(s56 2)
(s58 4)
(s59 5)
(s60 5)
(s61 2)
(s63 4)
(s64 5)
(s65 5)
(s66 2)
(s68 4)
(s69 5)
(s70 5)
(s71 2)
(s73 4)
(s74 5)
(s75 5)
(s76 2)
(s78 4)
(s79 5)
(s80 5)
(s81 2)
(s83 4)
(s84 5)
(s85 5)
(s86 2)
(s88 4)
(s89 5)
(s90 5)
(s91 2)
(s93 4)
(s94 5)
(s95 5)
(s96 2)
(s98 4)
(s99 5)
(s100 5)
(s101 2)
(s103 4)
(s104 5)
(s105 5)
(s106 2)
(s108 4)
(s109 5)
(s110 5)
(s111 2)
(s113 4)
(s114 5)
(s115 5)
(s116 2)
(s118 4)
(s119 5)
(s120 5)
(s121 2)
(s123 4)
(s124 5)
(s125 5)
(s126 2)
(s128 4)
(s129 5)
(s130 5)
(s131 2)
(s133 4)
(s134 5)
(s135 5)
(s136 2)
(s138 4)
(s139 5)
(s140 5)
(s141 2)
(s143 4)
(s144 5)
(s145 5)
(s146 2)
(s148 4)
(s149 5)
(s150 5)
(s151 2)
(s153 4)
(s154 5)
(s155 5)
(s156 2)
(s158 4)
(s159 5)
(s160 5)
(s161 2)
(s163 4)
(s164 5)
(s165 5)
(s166 2)
(s168 4)
(s169 5)
(s170 5)
(s171 2)
(s173 4)
(s174 5)
(s175 5)
(s176 2)
(s178 4)
(s179 5)
(s180 5)
(s181 2)
(s183 4)
(s184 5)
(s185 5)
(s186 2)
(s188 4)
(s189 5)
(s190 5)
(s191 2)
(s193 4)
(s194 5)
(s195 5)
(s196 2)
(s198 4)
(s199 5)
(s200 5)
(s201 2)
(s203 4)
(s204 5)
(s205 5)
(s206 2)
(s208 4)
(s209 5)
(s210 5)
(s211 2)
(s213 4)
(s214 5)
(s215 5)
(s216 2)
(s218 4)
(s219 5)
(s220 5)
(s221 2)
(s223 4)
(s224 5)
(s225 5)
(s226 2)
(s228 4)
(s229 5)
(s230 5)
(s231 2)
(s233 4)
(s234 5)
(s235 5)
(s236 2)
(s238 4)
(s239 5)
(s240 5)
(s241 2)
(s243 4)
(s244 5)
(s245 5)
(s246 2)
(s248 4)
(s249 5)
(s250 5)
(s251 2)
(s253 4)
(s254 5)
(s255 5)
(s256 2)
(s258 4)
(s259 5)
(s260 5)
(s261 2)
(s263 4)
(s264 5)
(s265 5)
(s266 2)
(s268 4)
(s269 5)
(s270 5)
(s271 2)
(s273 4)
(s274 5)
(s275 5)
(s276 2)
(s278 4)
(s279 5)
(s280 5)
(s281 2)
(s283 4)
(s284 5)
(s285 5)
(s286 2)
(s288 4)
(s289 5)
(s290 5)
(s291 2)
(s293 4)
(s294 5)
(s295 5)
(s296 2)
(s298 4)
(s299 5)
(s300 5)
(s301 2)
(s303 4)
(s304 5)
(s305 5)
(s306 2)
(s308 4)
(s309 5)
(s310 5)
(s311 2)
(s313 4)
(s314 5)
(s315 5)
(s316 2)
(s318 4)
(s319 5)
(s320 5)
(s321 2)
(s323 4)
(s324 5)
(s325 5)
(s326 2)
(s328 4)
(s329 5)
(s330 5)
(s331 2)
(s333 4)
(s334 5)
(s335 5)
(s336 2)
(s338 4)
(s339 5)
(s340 5)
(s341 2)
(s343 4)
(s344 5)
(s345 5)
(s346 2)
(s348 4)
(s349 5)
(s350 5)
(s351 2)
(s353 4)
(s354 5)
(s355 5)
(s356 2)
(s358 4)
(s359 5)
(s360 5)
(s361 2)
(s363 4)
(s364 5)
(s365 5)
(s366 2)
(s368 4)
(s369 5)
(s370 5)
(s371 2)
(s373 4)
(s374 5)
(s375 5)
(s376 2)
(s378 4)
(s379 5)
(s380 5)
(s381 2)
(s383 4)
(s384 5)
(s385 5)
(s386 2)
(s388 4)
(s389 5)
(s390 5)
(s391 2)
(s393 4)
(s394 5)
(s395 5)
(s396 2)
(s398 4)
(s399 5)
(s400 5)
(s401 2)
(s403 4)
(s404 5)
(s405 5)
(s406 2)
(s408 4)
(s409 5)
(s410 5)
(s411 2)
(s413 4)
(s414 5)
(s415 5)
(s416 2)
(s418 4)
(s419 5)
(s420 5)
(s421 2)
(s423 4)
(s424 5)
(s425 5)
(s426 2)
(s428 4)
(s429 5)
(s430 5)
(s431 2)
(s433 4)
(s434 5)
(s435 5)
(s436 2)
(s438 4)
(s439 5)
(s440 5)
(s441 2)
(s443 4)
(s444 5)
(s445 5)
(s446 2)
(s448 4)
(s449 5)
(s450 5)
(s451 2)
(s453 4)
(s454 5)
(s455 5)
(s456 2)
(s458 4)
(s459 5)
(s460 5)
(s461 2)
(s463 4)
(s464 5)
(s465 5)
(s466 2)
(s468 4)
(s469 5)
(s470 5)
(s471 2)
(s473 4)
(s474 5)
(s475 5)
(s476 2)
(s478 4)
(s479 5)
(s480 5)
(s481 2)
(s483 4)
(s484 5)
(s485 5)
(s486 2)
(s488 4)
(s489 5)
(s490 5)
(s491 2)
(s493 4)
(s494 5)
(s495 5)
(s496 2)
(s498 4)
(s499 5)
(s500 5)
(s501 2)
(s503 4)
(s504 5)
(s505 5)
(s506 2)
(s508 4)
(s509 5)
(s510 5)
(s511 2)
(s513 4)
(s514 5)
(s515 5)
(s516 2)
(s518 4)
(s519 5)
(s520 5)
(s521 2)
(s523 4)
(s524 5)
(s525 5)
(s526 2)
(s528 4)
(s529 5)
(s530 5)
(s531 2)
(s533 4)
(s534 5)
(s535 5)
(s536 2)
(s538 4)
(s539 5)
(s540 5)
(s541 2)
(s543 4)
(s544 5)
(s545 5)
(s546 2)
(s548 4)
(s549 5)
(s550 5)
(s551 2)
(s553 4)
(s554 5)
(s555 5)
(s556 2)
(s558 4)
(s559 5)
(s560 5)
(s561 2)
(s563 4)
(s564 5)
(s565 5)
(s566 2)
(s568 4)
(s569 5)
(s570 5)
(s571 2)
(s573 4)
(s574 5)
(s575 5)
(s576 2)
(s578 4)
(s579 5)
(s580 5)
(s581 2)
(s583 4)
(s584 5)
(s585 5)
(s586 2)
(s588 4)
(s589 5)
(s590 5)
(s591 2)
(s593 4)
(s594 5)
(s595 5)
(s596 2)
(s598 4)
(s599 5)
(s600 5)
(s601 2)
(s603 4)
(s604 5)
(s605 5)
(s606 2)
(s608 4)
(s609 5)
(s610 5)
(s611 2)
(s613 4)
(s614 5)
(s615 5)
(s616 2)
(s618 4)
(s619 5)
(s620 5)
(s621 2)
(s623 4)
(s624 5)
(s625 5)
(s626 2)
(s628 4)
(s629 5)
(s630 5)
(s631 2)
(s633 4)
(s634 5)
(s635 5)
(s636 2)
(s638 4)
(s639 5)
(s640 5)
(s641 2)
(s643 4)
(s644 5)
(s645 5)
(s646 2)
(s648 4)
(s649 5)
(s650 5)
(s651 2)
(s653 4)
(s654 5)
(s655 5)
(s656 2)
(s658 4)
(s659 5)
(s660 5)
(s661 2)
(s663 4)
(s664 5)
(s665 5)
(s666 2)
(s668 4)
(s669 5)
(s670 5)
(s671 2)
(s673 4)
(s674 5)
(s675 5)
(s676 2)
(s678 4)
(s679 5)
(s680 5)
(s681 2)
(s683 4)
(s684 5)
(s685 5)
(s686 2)
(s688 4)
(s689 5)
(s690 5)
(s691 2)
(s693 4)
(s694 5)
(s695 5)
(s696 2)
(s698 4)
(s699 5)
(s700 5)
(s701 2)
(s703 4)
(s704 5)
(s705 5)
(s706 2)
(s708 4)
(s709 5)
(s710 5)
(s711 2)
(s713 4)
(s714 5)
(s715 5)
(s716 2)
(s718 4)
(s719 5)
(s720 5)
(s721 2)
(s723 4)
(s724 5)
(s725 5)
(s726 2)
(s728 4)
(s729 5)
(s730 5)
(s731 2)
(s733 4)
(s734 5)
(s735 5)
(s736 2)
(s738 4)
(s739 5)
(s740 5)
(s741 2)
(s743 4)
(s744 5)
(s745 5)
(s746 2)
(s748 4)
(s749 5)
(s750 5)
(s751 2)
(s753 4)
(s754 5)
(s755 5)
(s756 2)
(s758 4)
(s759 5)
(s760 5)
(s761 2)
(s763 4)
(s764 5)
(s765 5)
(s766 2)
(s768 4)
(s769 5)
(s770 5)
(s771 2)
(s773 4)
(s774 5)
(s775 5)
(s776 2)
(s778 4)
(s779 5)
(s780 5)
(s781 2)
(s783 4)
(s784 5)
(s785 5)
(s786 2)
(s788 4)
(s789 5)
(s790 5)
(s791 2)
(s793 4)
(s794 5)
(s795 5)
(s796 2)
(s798 4)
(s799 5)
(s800 5)
(s801 2)
(s803 4)
(s804 5)
(s805 5)
(s806 2)
(s808 4)
(s809 5)
(s810 5)
(s811 2)
(s813 4)
(s814 5)
(s815 5)
(s816 2)
(s818 4)
(s819 5)
(s820 5)
(s821 2)
(s823 4)
(s824 5)
(s825 5)
(s826 2)
(s828 4)
(s829 5)
(s830 5)
(s831 2)
(s833 4)
(s834 5)
(s835 5)
(s836 2)
(s838 4)
(s839 5)
(s840 5)
(s841 2)
(s843 4)
(s844 5)
(s845 5)
(s846 2)
(s848 4)
(s849 5)
(s850 5)
(s851 2)
(s853 4)
(s854 5)
(s855 5)
(s856 2)
(s858 4)
(s859 5)
(s860 5)
(s861 2)
(s863 4)
(s864 5)
(s865 5)
(s866 2)
(s868 4)
(s869 5)
(s870 5)
(s871 2)
(s873 4)
(s874 5)
(s875 5)
(s876 2)
(s878 4)
(s879 5)
(s880 5)
(s881 2)
(s883 4)
(s884 5)
(s885 5)
(s886 2)
(s888 4)
(s889 5)
(s890 5)
(s891 2)
(s893 4)
(s894 5)
(s895 5)
(s896 2)
(s898 4)
(s899 5)
(s900 5)
(s901 2)
(s903 4)
(s904 5)
(s905 5)
(s906 2)
(s908 4)
(s909 5)
(s910 5)
(s911 2)
(s913 4)
(s914 5)
(s915 5)
(s916 2)
(s918 4)
(s919 5)
(s920 5)
(s921 2)
(s923 4)
(s924 5)
(s925 5)
(s926 2)
(s928 4)
(s929 5)
(s930 5)
(s931 2)
(s933 4)
(s934 5)
(s935 5)
(s936 2)
(s938 4)
(s939 5)
(s940 5)
(s941 2)
(s943 4)
(s944 5)
(s945 5)
(s946 2)
(s948 4)
(s949 5)
(s950 5)
(s951 2)
(s953 4)
(s954 5)
(s955 5)
(s956 2)
(s958 4)
(s959 5)
(s960 5)
(s961 2)
(s963 4)
(s964 5)
(s965 5)
(s966 2)
(s968 4)
(s969 5timeout
)
(s970 org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20074 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 43910ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 43916ms
[2025-06-02 07:30:58] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 07:30:59] [INFO ] Implicit Places using invariants in 1034 ms returned []
[2025-06-02 07:30:59] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 07:31:03] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2025-06-02 07:31:03] [INFO ] Implicit Places using invariants and state equation in 4083 ms returned []
Implicit Place search using SMT with State Equation took 5118 ms to find 0 implicit places.
Starting Z3 with timeout 200.0 s and query timeout 20000.0 ms
[2025-06-02 07:31:04] [INFO ] Redundant transitions in 699 ms returned []
Running 6000 sub problems to find dead transitions.
[2025-06-02 07:31:04] [INFO ] Invariant cache hit.
[2025-06-02 07:31:04] [INFO ] State equation strengthened by 1000 read => feed constraints.
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Error getting values : (error "Error writing to Z3 solver: java.io.IOException: Broken pipe")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30067 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30079 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 63858ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 63865ms
Finished structural reductions in SI_LTL mode , in 1 iterations and 114068 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Stuttering acceptance computed with spot in 107 ms :[(OR (AND (NOT p0) (NOT p1)) (AND (NOT p0) (NOT p2))), (OR (AND (NOT p0) (NOT p1)) (AND (NOT p0) (NOT p2))), (AND (NOT p0) (NOT p2))]
Running random walk in product with property : JoinFreeModules-PT-1000-LTLCardinality-10
Product exploration timeout after 21340 steps with 0 reset in 10002 ms.
Product exploration timeout after 20470 steps with 0 reset in 10004 ms.
Computed a total of 0 stabilizing places and 0 stable transitions
Computed a total of 0 stabilizing places and 0 stable transitions
Knowledge obtained : [(AND p1 (NOT p0) p2), (X p2), (X (NOT p0))]
False Knowledge obtained : [(X (AND p1 (NOT p0) p2)), (X (NOT (AND p1 (NOT p0) p2))), (X (OR (AND (NOT p1) (NOT p0)) (AND (NOT p0) (NOT p2)))), (X (NOT (OR (AND (NOT p1) (NOT p0)) (AND (NOT p0) (NOT p2))))), (X p1), (X (NOT p1))]
Knowledge based reduction with 3 factoid took 243 ms. Reduced automaton from 3 states, 6 edges and 3 AP (stutter insensitive) to 3 states, 6 edges and 3 AP (stutter insensitive).
Stuttering acceptance computed with spot in 115 ms :[(OR (AND (NOT p0) (NOT p1)) (AND (NOT p0) (NOT p2))), (OR (AND (NOT p0) (NOT p1)) (AND (NOT p0) (NOT p2))), (AND (NOT p0) (NOT p2))]
RANDOM walk for 40565 steps (8 resets) in 2569 ms. (15 steps per ms) remains 7/7 properties
BEST_FIRST walk for 40004 steps (8 resets) in 2294 ms. (17 steps per ms) remains 7/7 properties
BEST_FIRST walk for 40004 steps (8 resets) in 2462 ms. (16 steps per ms) remains 7/7 properties
BEST_FIRST walk for 40004 steps (8 resets) in 2776 ms. (14 steps per ms) remains 4/7 properties
BEST_FIRST walk for 40004 steps (8 resets) in 2256 ms. (17 steps per ms) remains 4/4 properties
BEST_FIRST walk for 40004 steps (8 resets) in 2390 ms. (16 steps per ms) remains 4/4 properties
[2025-06-02 07:32:33] [INFO ] Invariant cache hit.
[2025-06-02 07:32:33] [INFO ] State equation strengthened by 1000 read => feed constraints.
Starting Z3 with timeout 5.0 s and query timeout 500.0 ms
All remaining problems are real, not stopping.
At refinement iteration 0 (INCLUDED_ONLY) 0/3 variables, 0/0 constraints. Problems are: Problem set: 0 solved, 4 unsolved
At refinement iteration 1 (OVERLAPS) 12/15 variables, 3/3 constraints. Problems are: Problem set: 0 solved, 4 unsolved
At refinement iteration 2 (INCLUDED_ONLY) 0/15 variables, 0/3 constraints. Problems are: Problem set: 0 solved, 4 unsolved
At refinement iteration 3 (OVERLAPS) 24/39 variables, 15/18 constraints. Problems are: Problem set: 0 solved, 4 unsolved
At refinement iteration 4 (INCLUDED_ONLY) 0/39 variables, 3/21 constraints. Problems are: Problem set: 0 solved, 4 unsolved
At refinement iteration 5 (INCLUDED_ONLY) 0/39 variables, 0/21 constraints. Problems are: Problem set: 0 solved, 4 unsolved
At refinement iteration 6 (OVERLAPS) 0/39 variables, 0/21 constraints. Problems are: Problem set: 0 solved, 4 unsolved
No progress, stopping.
After SMT solving in domain Real declared 39/13001 variables, and 21 constraints, problems are : Problem set: 0 solved, 4 unsolved in 80 ms.
Refiners :[Positive P Invariants (semi-flows): 3/1000 constraints, State Equation: 15/5000 constraints, ReadFeed: 3/1000 constraints, PredecessorRefiner: 4/4 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 4 unsolved
Starting Z3 with timeout 5.0 s and query timeout 500.0 ms
At refinement iteration 0 (INCLUDED_ONLY) 0/3 variables, 0/0 constraints. Problems are: Problem set: 0 solved, 4 unsolved
At refinement iteration 1 (OVERLAPS) 12/15 variables, 3/3 constraints. Problems are: Problem set: 0 solved, 4 unsolved
At refinement iteration 2 (INCLUDED_ONLY) 0/15 variables, 0/3 constraints. Problems are: Problem set: 0 solved, 4 unsolved
At refinement iteration 3 (OVERLAPS) 24/39 variables, 15/18 constraints. Problems are: Problem set: 0 solved, 4 unsolved
At refinement iteration 4 (INCLUDED_ONLY) 0/39 variables, 3/21 constraints. Problems are: Problem set: 0 solved, 4 unsolved
At refinement iteration 5 (INCLUDED_ONLY) 0/39 variables, 4/25 constraints. Problems are: Problem set: 0 solved, 4 unsolved
At refinement iteration 6 (INCLUDED_ONLY) 0/39 variables, 0/25 constraints. Problems are: Problem set: 0 solved, 4 unsolved
At refinement iteration 7 (OVERLAPS) 0/39 variables, 0/25 constraints. Problems are: Problem set: 0 solved, 4 unsolved
No progress, stopping.
After SMT solving in domain Int declared 39/13001 variables, and 25 constraints, problems are : Problem set: 0 solved, 4 unsolved in 344 ms.
Refiners :[Positive P Invariants (semi-flows): 3/1000 constraints, State Equation: 15/5000 constraints, ReadFeed: 3/1000 constraints, PredecessorRefiner: 4/4 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 463ms problems are : Problem set: 0 solved, 4 unsolved
Finished Parikh walk after 3123 steps, including 0 resets, run visited all 4 properties in 177 ms. (steps per millisecond=17 )
Finished Parikh walk after 0 steps, including 0 resets, run visited all 0 properties in 1 ms. (steps per millisecond=0 )
Finished Parikh walk after 0 steps, including 0 resets, run visited all 0 properties in 2 ms. (steps per millisecond=0 )
Finished Parikh walk after 0 steps, including 0 resets, run visited all 0 properties in 1 ms. (steps per millisecond=0 )
Parikh walk visited 4 properties in 185 ms.
Knowledge obtained : [(AND p1 (NOT p0) p2), (X p2), (X (NOT p0))]
False Knowledge obtained : [(X (AND p1 (NOT p0) p2)), (X (NOT (AND p1 (NOT p0) p2))), (X (OR (AND (NOT p1) (NOT p0)) (AND (NOT p0) (NOT p2)))), (X (NOT (OR (AND (NOT p1) (NOT p0)) (AND (NOT p0) (NOT p2))))), (X p1), (X (NOT p1)), (F (NOT (AND (OR p1 p0) (OR p2 p0)))), (F (NOT (AND p2 (NOT p0)))), (F (NOT p1)), (F p0), (F (NOT p2)), (F (NOT (AND p1 p2 (NOT p0)))), (F (NOT (OR p2 p0)))]
Knowledge based reduction with 3 factoid took 410 ms. Reduced automaton from 3 states, 6 edges and 3 AP (stutter insensitive) to 3 states, 6 edges and 3 AP (stutter insensitive).
Stuttering acceptance computed with spot in 118 ms :[(OR (AND (NOT p0) (NOT p1)) (AND (NOT p0) (NOT p2))), (OR (AND (NOT p0) (NOT p1)) (AND (NOT p0) (NOT p2))), (AND (NOT p0) (NOT p2))]
Stuttering acceptance computed with spot in 111 ms :[(OR (AND (NOT p0) (NOT p1)) (AND (NOT p0) (NOT p2))), (OR (AND (NOT p0) (NOT p1)) (AND (NOT p0) (NOT p2))), (AND (NOT p0) (NOT p2))]
Support contains 4 out of 5000 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 454 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2025-06-02 07:32:35] [INFO ] Invariant cache hit.
[2025-06-02 07:32:35] [INFO ] State equation strengthened by 1000 read => feed constraints.
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20068 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Error getting values : (error "ParserException while parsing response: ((s0 5)
(s1 2)
(s3 4)
(s4 5)
(s5 5)
(s6 2)
(s8 4)
(s9 5)
(s10 5)
(s11 2)
(s13 4)
(s14 5)
(s15 5)
(s16 2)
(s18 4)
(s19 5)
(s20 5)
(s21 2)
(s23 4)
(s24 5)
(s25 5)
(s26 2)
(s28 4)
(s29 5)
(s30 5)
(s31 2)
(s33 4)
(s34 5)
(s35 5)
(s36 2)
(s38 4)
(s39 5)
(s40 5)
(s41 2)
(s43 4)
(s44 5)
(s45 5)
(s46 2)
(s48 4)
(s49 5)
(s50 5)
(s51 2)
(s53 4)
(s54 5)
(s55 5)
(s56 2)
(s58 4)
(s59 5)
(s60 5)
(s61 2)
(s63 4)
(s64 5)
(s65 5)
(s66 2)
(s68 4)
(s69 5)
(s70 5)
(s71 2)
(s73 4)
(s74 5)
(s75 5)
(s76 2)
(s78 4)
(s79 5)
(s80 5)
(s81 2)
(s83 4)
(s84 5)
(s85 5)
(s86 2)
(s88 4)
(s89 5)
(s90 5)
(s91 2)
(s93 4)
(s94 5)
(s95 5)
(s96 2)
(s98 4)
(s99 5)
(s100 5)
(s101 2)
(s103 4)
(s104 5)
(s105 5)
(s106 2)
(s108 4)
(s109 5)
(s110 5)
(s111 2)
(s113 4)
(s114 5)
(s115 5)
(s116 2)
(s118 4)
(s119 5)
(s120 5)
(s121 2)
(s123 4)
(s124 5)
(s125 5)
(s126 2)
(s128 4)
(s129 5)
(s130 5)
(s131 2)
(s133 4)
(s134 5)
(s135 5)
(s136 2)
(s138 4)
(s139 5)
(s140 5)
(s141 2)
(s143 4)
(s144 5)
(s145 5)
(s146 2)
(s148 4)
(s149 5)
(s150 5)
(s151 2)
(s153 4)
(s154 5)
(s155 5)
(s156 2)
(s158 4)
(s159 5)
(s160 5)
(s161 2)
(s163 4)
(s164 5)
(s165 5)
(s166 2)
(s168 4)
(s169 5)
(s170 5)
(s171 2)
(s173 4)
(s174 5)
(s175 5)
(s176 2)
(s178 4)
(s179 5)
(s180 5)
(s181 2)
(s183 4)
(s184 5)
(s185 5)
(s186 2)
(s188 4)
(s189 5)
(s190 5)
(s191 2)
(s193 4)
(s194 5)
(s195 5)
(s196 2)
(s198 4)
(s199 5)
(s200 5)
(s201 2)
(s203 4)
(s204 5)
(s205 5)
(s206 2)
(s208 4)
(s209 5)
(s210 5)
(s211 2)
(s213 4)
(s214 5)
(s215 5)
(s216 2)
(s218 4)
(s219 5)
(s220 5)
(s221 2)
(s223 4)
(s224 5)
(s225 5)
(s226 2)
(s228 4)
(s229 5)
(s230 5)
(s231 2)
(s233 4)
(s234 5)
(s235 5)
(s236 2)
(s238 4)
(s239 5)
(s240 5)
(s241 2)
(s243 4)
(s244 5)
(s245 5)
(s246 2)
(s248 4)
(s249 5)
(s250 5)
(s251 2)
(s253 4)
(s254 5)
(s255 5)
(s256 2)
(s258 4)
(s259 5)
(s260 5)
(s261 2)
(s263 4)
(s264 5)
(s265 5)
(s266 2)
(s268 4)
(s269 5)
(s270 5)
(s271 2)
(s273 4)
(s274 5)
(s275 5)
(s276 2)
(s278 4)
(s279 5)
(s280 5)
(s281 2)
(s283 4)
(s284 5)
(s285 5)
(s286 2)
(s288 4)
(s289 5)
(s290 5)
(s291 2)
(s293 4)
(s294 5)
(s295 5)
(s296 2)
(s298 4)
(s299 5)
(s300 5)
(s301 2)
(s303 4)
(s304 5)
(s305 5)
(s306 2)
(s308 4)
(s309 5)
(s310 5)
(s311 2)
(s313 4)
(s314 5)
(s315 5)
(s316 2)
(s318 4)
(s319 5)
(s320 5)
(s321 2)
(s323 4)
(s324 5)
(s325 5)
(s326 2)
(s328 4)
(s329 5)
(s330 5)
(s331 2)
(s333 4)
(s334 5)
(s335 5)
(s336 2)
(s338 4)
(s339 5)
(s340 5)
(s341 2)
(s343 4)
(s344 5)
(s345 5)
(s346 2)
(s348 4)
(s349 5)
(s350 5)
(s351 2)
(s353 4)
(s354 5)
(s355 5)
(s356 2)
(s358 4)
(s359 5)
(s360 5)
(s361 2)
(s363 4)
(s364 5)
(s365 5)
(s366 2)
(s368 4)
(s369 5)
(s370 5)
(s371 2)
(s373 4)
(s374 5)
(s375 5)
(s376 2)
(s378 4)
(s379 5)
(s380 5)
(s381 2)
(s383 4)
(s384 5)
(s385 5)
(s386 2)
(s388 4)
(s389 5)
(s390 5)
(s391 2)
(s393 4)
(s394 5)
(s395 5)
(s396 2)
(s398 4)
(s399 5)
(s400 5)
(s401 2)
(s403 4)
(s404 5)
(s405 5)
(s406 2)
(s408 4)
(s409 5)
(s410 5)
(s411 2)
(s413 4)
(s414 5)
(s415 5)
(s416 2)
(s418 4)
(s419 5)
(s420 5)
(s421 2)
(s423 4)
(s424 5)
(s425 5)
(s426 2)
(s428 4)
(s429 5)
(s430 5)
(s431 2)
(s433 4)
(s434 5)
(s435 5)
(s436 2)
(s438 4)
(s439 5)
(s440 5)
(s441 2)
(s443 4)
(s444 5)
(s445 5)
(s446 2)
(s448 4)
(s449 5)
(s450 5)
(s451 2)
(s453 4)
(s454 5)
(s455 5)
(s456 2)
(s458 4)
(s459 5)
(s460 5)
(s461 2)
(s463 4)
(s464 5)
(s465 5)
(s466 2)
(s468 4)
(s469 5)
(s470 5)
(s471 2)
(s473 4)
(s474 5)
(s475 5)
(s476 2)
(s478 4)
(s479 5)
(s480 5)
(s481 2)
(s483 4)
(s484 5)
(s485 5)
(s486 2)
(s488 4)
(s489 5)
(s490 5)
(s491 2)
(s493 4)
(s494 5)
(s495 5)
(s496 2)
(s498 4)
(s499 5)
(s500 5)
(s501 2)
(s503 4)
(s504 5)
(s505 5)
(s506 2)
(s508 4)
(s509 5)
(s510 5)
(s511 2)
(s513 4)
(s514 5)
(s515 5)
(s516 2)
(s518 4)
(s519 5)
(s520 5)
(s521 2)
(s523 4)
(s524 5)
(s525 5)
(s526 2)
(s528 4)
(s529 5)
(s530 5)
(s531 2)
(s533 4)
(s534 5)
(s535 5)
(s536 2)
(s538 4)
(s539 5)
(s540 5)
(s541 2)
(s543 4)
(s544 5)
(s545 5)
(s546 2)
(s548 4)
(s549 5)
(s550 5)
(s551 2)
(s553 4)
(s554 5)
(s555 5)
(s556 2)
(s558 4)
(s559 5)
(s560 5)
(s561 2)
(s563 4)
(s564 5)
(s565 5)
(s566 2)
(s568 4)
(s569 5)
(s570 5)
(s571 2)
(s573 4)
(s574 5)
(s575 5)
(s576 2)
(s578 4)
(s579 5)
(s580 5)
(s581 2)
(s583 4)
(s584 5)
(s585 5)
(s586 2)
(s588 4)
(s589 5)
(s590 5)
(s591 2)
(s593 4)
(s594 5)
(s595 5)
(s596 2)
(s598 4)
(s599 5)
(s600 5)
(s601 2)
(s603 4)
(s604 5)
(s605 5)
(s606 2)
(s608 4)
(s609 5)
(s610 5)
(s611 2)
(s613 4)
(s614 5)
(s615 5)
(s616 2)
(s618 4)
(s619 5)
(s620 5)
(s621 2)
(s623 4)
(s624 5)
(s625 5)
(s626 2)
(s628 4)
(s629 5)
(s630 5)
(s631 2)
(s633 4)
(s634 5)
(s635 5)
(s636 2)
(s638 4)
(s639 5)
(s640 5)
(s641 2)
(s643 4)
(s644 5)
(s645 5)
(s646 2)
(s648 4)
(s649 5)
(s650 5)
(s651 2)
(s653 4)
(s654 5)
(s655 5)
(s656 2)
(s658 4)
(s659 5)
(s660 5)
(s661 2)
(s663 4)
(s664 5)
(s665 5)
(s666 2)
(s668 4)
(s669 5)
(s670 5)
(s671 2)
(s673 4)
(s674 5)
(s675 5)
(s676 2)
(s678 4)
(s679 5)
(s680 5)
(s681 2)
(s683 4)
(s684 5)
(s685 5)
(s686 2)
(s688 4)
(s689 5)
(s690 5)
(s691 2)
(s693 4)
(s694 5)
(s695 5)
(s696 2)
(s698 4)
(s699 5)
(s700 5)
(s701 2)
(s703 4)
(s704 5)
(s705 5)
(s706 2)
(s708 4)
(s709 5)
(s710 5)
(s711 2)
(s713 4)
(s714 5)
(s715 5)
(s716 2)
(s718 4)
(s719 5)
(s720 5)
(s721 2)
(s723 4)
(s724 5)
(s725 5)
(s726 2)
(s728 4)
(s729 5)
(s730 5)
(s731 2)
(s733 4)
(s734 5)
(s735 5)
(s736 2)
(s738 4)
(s739 5)
(s740 5)
(s741 2)
(s743 4)
(s744 5)
(s745 5)
(s746 2)
(s748 4)
(s749 5)
(s750 5)
(s751 2)
(s753 4)
(s754 5)
(s755 5)
(s756 2)
(s758 4)
(s759 5)
(s760 5)
(s761 2)
(s763 4)
(s764 5)
(s765 5)
(s766 2)
(s768 4)
(s769 5)
(s770 5)
(s771 2)
(s773 4)
(s774 5)
(s775 5)
(s776 2)
(s778 4)
(s779 5)
(s780 5)
(s781 2)
(s783 4)
(s784 5)
(s785 5)
(s786 2)
(s788 4)
(s789 5)
(s790 5)
(s791 2)
(s793 4)
(s794 5)
(s795 5)
(s796 2)
(s798 4)
(s799 5)
(s800 5)
(s801 2)
(s803 4)
(s804 5)
(s805 5)
(s806 2)
(s808 4)
(s809 5)
(s810 5)
(s811 2)
(s813 4)
(s814 5)
(s815 5)
(s816 2)
(s818 4)
(s819 5)
(s820 5)
(s821 2)
(s823 4)
(s824 5)
(s825 5)
(s826 2)
(s828 4)
(s829 5)
(s830 5)
(s831 2)
(s833 4)
(s834 5)
(s835 5)
(s836 2)
(s838 4)
(s839 5)
(s840 5)
(s841 2)
(s843 4)
(s844 5)
(s845 5)
(s846 2)
(s848 4)
(s849 5)
(s850 5)
(s851 2)
(s853 4)
(s854 5)
(s855 5)
(s856 2)
(s858 4)
(s859 5)
(s860 5)
(s861 2)
(s863 4)
(s864 5)
(s865 5)
(s866 2)
(s868 4)
(s869 5)
(s870 5)
(s871 2)
(s873 4)
(s874 5)
(s875 5)
(s876 2)
(s878 4)
(s879 5)
(s880 5)
(s881 2)
(s883 4)
(s884 5)
(s885 5)
(s886 2)
(s888 4)
(s889 5)
(s890 5)
(s891 2)
(s893 4)
(s894 5)
(s895 5)
(s896 2)
(s898 4)
(s899 5)
(s900 5)
(s901 2)
(s903 4)
(s904 5)
(s905 5)
(s906 2)
(s908 4)
(s909 5)
(s910 5)
(s911 2)
(s913 4)
(s914 5)
(s915 5)
(s916 2)
(s918 4)
(s919 5)
(s920 5)
(s921 2)
(s923 4)
(s924 5)
(s925 5)
(s926 2)
(s928 4)
(s929 5)
(s930 5)
(s931 2)
(s933 4)
(s934 5)
(s935 5)
(s936 2)
(s938 4)
(s939 5)
(s940 5)
(s941 2)
(s943 4)
(s944 5)
(s945 5)
(s946 2)
(s948 4)
(s949 5)
(s950 5)
(s951 2)
(s953 4)
(s954 5)
(s955 5)
(s956 2)
(s958 4)
(s959 5)
(s960 5)
(s961 2)
(s963 4)
(s964 5)
(s965 5)
(s966 2)
(s968 4)
(s969 5)
(s970 5)
(s971 2)
(s973 4)
(s974 5)
(s975 5)
(s976 2)
(s978 4)
(s979 5)
(s980 5)
(s981 2)
(s983 4)
(s984 5)
(s985 5)
(s986 2)
(s988 4)
(s989 5)
(s990 5)
(s991 2)
(s993 4)
(s994 5)
(s995 5)
(s996 2)
(s998 4)
(s999 5)
(s1000 5)
(s1001 2)
(s1003 4)
(s1004 5)
(s1005 5)
(s1006 2)
(s1008 4)
(s1009 5)
(s1010 5)
(s1011 2)
(s1013 4)
(s1014 5)
(s1015 5)
(s1016 2)
(s1018 4)
(s1019 5)
(s1020 5)
(s1021 2)
(s1023 4)
(s1024 5)
(s1025 5)
(s1026 2)
(s1028 4)
(s1029 5)
(s1030 5)
(s1031 2)
(s1033 4)
(s1034 5)
(s1035 5)
(s1036 2)
(s1038 4)
(s1039 5)
(s1040 5)
(s1041 2)
(s1043 4)
(s1044 5)
(s1045 5)
(s1046 2)
(s1048 4)
(s1049 5)
(s1050 5)
(s1051 2)
(s1053 4)
(s1054 5)
(s1055 5)
(s1056 2)
(s1058 4)
(s1059 5)
(s1060 5)
(s1061 2)
(s1063 4)
(s1064 5)
(s1065 5)
(s1066 2)
(s1068 4)
(s1069 5)
(s1070 5)
(s1071 2)
(s1073 4)
(s1074 5)
(s1075 5)
(s1076 2)
(s1078 4)
(s1079 5)
(s1080 5)
(s1081 2)
(s1083 4)
(s1084 5)
(s1085 5)
(s1086 2)
(s1088 4)
(s1089 5)
(s1090 5)
(s1091 2)
(s1093 4)
(s1094 5)
(s1095 5)
(s1096 2)
(s1098 4)
(s1099 5)
(s1100 5)
(s1101 2)
(s1103 4)
(s1104 5)
(s1105 5)
(s1106 2)
(s1108 4)
(s1109 5)
(s1110 5)
(s1111 2)
(s1113 4)
(s1114 5)
(s1115 5)
(s1116 2)
(s1118 4)
(s1119 5)
(s1120 5)
(s1121 2)
(s1123 4)
(s1124 5)
(s1125 5)
(s1126 2)
(s1128 4)
(s1129 5)
(s1130 5)
(s1131 2)
(s1133 4)
(s1134 5)
(s1135 5)
(s1136 2)
(s1138 4)
(s1139 5)
(s1140 5)
(s1141 2)
(s1143 4)
(s1144 timeout
5 org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20076 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 43876ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 43882ms
[2025-06-02 07:33:18] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 07:33:19] [INFO ] Implicit Places using invariants in 1032 ms returned []
[2025-06-02 07:33:19] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 07:33:23] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2025-06-02 07:33:24] [INFO ] Implicit Places using invariants and state equation in 4218 ms returned []
Implicit Place search using SMT with State Equation took 5251 ms to find 0 implicit places.
Starting Z3 with timeout 200.0 s and query timeout 20000.0 ms
[2025-06-02 07:33:25] [INFO ] Redundant transitions in 953 ms returned []
Running 6000 sub problems to find dead transitions.
[2025-06-02 07:33:25] [INFO ] Invariant cache hit.
[2025-06-02 07:33:25] [INFO ] State equation strengthened by 1000 read => feed constraints.
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30072 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Error getting values : (error "Error writing to Z3 solver: java.io.IOException: Broken pipe")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30070 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 63885ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 63890ms
Finished structural reductions in SI_LTL mode , in 1 iterations and 114461 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Computed a total of 0 stabilizing places and 0 stable transitions
Computed a total of 0 stabilizing places and 0 stable transitions
Knowledge obtained : [(AND p1 (NOT p0) p2), (X p2), (X (NOT p0))]
False Knowledge obtained : [(X (AND p1 p2 (NOT p0))), (X (NOT (AND p1 p2 (NOT p0)))), (X (OR (AND (NOT p1) (NOT p0)) (AND (NOT p2) (NOT p0)))), (X (NOT (OR (AND (NOT p1) (NOT p0)) (AND (NOT p2) (NOT p0))))), (X p1), (X (NOT p1))]
Knowledge based reduction with 3 factoid took 215 ms. Reduced automaton from 3 states, 6 edges and 3 AP (stutter insensitive) to 3 states, 6 edges and 3 AP (stutter insensitive).
Stuttering acceptance computed with spot in 117 ms :[(OR (AND (NOT p0) (NOT p1)) (AND (NOT p0) (NOT p2))), (OR (AND (NOT p0) (NOT p1)) (AND (NOT p0) (NOT p2))), (AND (NOT p0) (NOT p2))]
RANDOM walk for 41065 steps (8 resets) in 2083 ms. (19 steps per ms) remains 7/7 properties
BEST_FIRST walk for 40004 steps (8 resets) in 2214 ms. (18 steps per ms) remains 7/7 properties
BEST_FIRST walk for 40004 steps (8 resets) in 2074 ms. (19 steps per ms) remains 7/7 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1867 ms. (21 steps per ms) remains 4/7 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1850 ms. (21 steps per ms) remains 4/4 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1836 ms. (21 steps per ms) remains 4/4 properties
[2025-06-02 07:34:33] [INFO ] Invariant cache hit.
[2025-06-02 07:34:33] [INFO ] State equation strengthened by 1000 read => feed constraints.
Starting Z3 with timeout 5.0 s and query timeout 500.0 ms
All remaining problems are real, not stopping.
At refinement iteration 0 (INCLUDED_ONLY) 0/3 variables, 0/0 constraints. Problems are: Problem set: 0 solved, 4 unsolved
At refinement iteration 1 (OVERLAPS) 12/15 variables, 3/3 constraints. Problems are: Problem set: 0 solved, 4 unsolved
At refinement iteration 2 (INCLUDED_ONLY) 0/15 variables, 0/3 constraints. Problems are: Problem set: 0 solved, 4 unsolved
At refinement iteration 3 (OVERLAPS) 24/39 variables, 15/18 constraints. Problems are: Problem set: 0 solved, 4 unsolved
At refinement iteration 4 (INCLUDED_ONLY) 0/39 variables, 3/21 constraints. Problems are: Problem set: 0 solved, 4 unsolved
At refinement iteration 5 (INCLUDED_ONLY) 0/39 variables, 0/21 constraints. Problems are: Problem set: 0 solved, 4 unsolved
At refinement iteration 6 (OVERLAPS) 0/39 variables, 0/21 constraints. Problems are: Problem set: 0 solved, 4 unsolved
No progress, stopping.
After SMT solving in domain Real declared 39/13001 variables, and 21 constraints, problems are : Problem set: 0 solved, 4 unsolved in 64 ms.
Refiners :[Positive P Invariants (semi-flows): 3/1000 constraints, State Equation: 15/5000 constraints, ReadFeed: 3/1000 constraints, PredecessorRefiner: 4/4 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 4 unsolved
Starting Z3 with timeout 5.0 s and query timeout 500.0 ms
At refinement iteration 0 (INCLUDED_ONLY) 0/3 variables, 0/0 constraints. Problems are: Problem set: 0 solved, 4 unsolved
At refinement iteration 1 (OVERLAPS) 12/15 variables, 3/3 constraints. Problems are: Problem set: 0 solved, 4 unsolved
At refinement iteration 2 (INCLUDED_ONLY) 0/15 variables, 0/3 constraints. Problems are: Problem set: 0 solved, 4 unsolved
At refinement iteration 3 (OVERLAPS) 24/39 variables, 15/18 constraints. Problems are: Problem set: 0 solved, 4 unsolved
At refinement iteration 4 (INCLUDED_ONLY) 0/39 variables, 3/21 constraints. Problems are: Problem set: 0 solved, 4 unsolved
At refinement iteration 5 (INCLUDED_ONLY) 0/39 variables, 4/25 constraints. Problems are: Problem set: 0 solved, 4 unsolved
At refinement iteration 6 (INCLUDED_ONLY) 0/39 variables, 0/25 constraints. Problems are: Problem set: 0 solved, 4 unsolved
At refinement iteration 7 (OVERLAPS) 0/39 variables, 0/25 constraints. Problems are: Problem set: 0 solved, 4 unsolved
No progress, stopping.
After SMT solving in domain Int declared 39/13001 variables, and 25 constraints, problems are : Problem set: 0 solved, 4 unsolved in 280 ms.
Refiners :[Positive P Invariants (semi-flows): 3/1000 constraints, State Equation: 15/5000 constraints, ReadFeed: 3/1000 constraints, PredecessorRefiner: 4/4 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 396ms problems are : Problem set: 0 solved, 4 unsolved
Finished Parikh walk after 7455 steps, including 2 resets, run visited all 4 properties in 371 ms. (steps per millisecond=20 )
Finished Parikh walk after 0 steps, including 0 resets, run visited all 0 properties in 1 ms. (steps per millisecond=0 )
Finished Parikh walk after 0 steps, including 0 resets, run visited all 0 properties in 1 ms. (steps per millisecond=0 )
Finished Parikh walk after 0 steps, including 0 resets, run visited all 0 properties in 1 ms. (steps per millisecond=0 )
Parikh walk visited 4 properties in 377 ms.
Knowledge obtained : [(AND p1 (NOT p0) p2), (X p2), (X (NOT p0))]
False Knowledge obtained : [(X (AND p1 p2 (NOT p0))), (X (NOT (AND p1 p2 (NOT p0)))), (X (OR (AND (NOT p1) (NOT p0)) (AND (NOT p2) (NOT p0)))), (X (NOT (OR (AND (NOT p1) (NOT p0)) (AND (NOT p2) (NOT p0))))), (X p1), (X (NOT p1)), (F (NOT (AND (OR p1 p0) (OR p2 p0)))), (F (NOT (AND p2 (NOT p0)))), (F (NOT p1)), (F p0), (F (NOT p2)), (F (NOT (AND p1 p2 (NOT p0)))), (F (NOT (OR p2 p0)))]
Knowledge based reduction with 3 factoid took 463 ms. Reduced automaton from 3 states, 6 edges and 3 AP (stutter insensitive) to 3 states, 6 edges and 3 AP (stutter insensitive).
Stuttering acceptance computed with spot in 114 ms :[(OR (AND (NOT p0) (NOT p1)) (AND (NOT p0) (NOT p2))), (OR (AND (NOT p0) (NOT p1)) (AND (NOT p0) (NOT p2))), (AND (NOT p0) (NOT p2))]
Stuttering acceptance computed with spot in 123 ms :[(OR (AND (NOT p0) (NOT p1)) (AND (NOT p0) (NOT p2))), (OR (AND (NOT p0) (NOT p1)) (AND (NOT p0) (NOT p2))), (AND (NOT p0) (NOT p2))]
Stuttering acceptance computed with spot in 127 ms :[(OR (AND (NOT p0) (NOT p1)) (AND (NOT p0) (NOT p2))), (OR (AND (NOT p0) (NOT p1)) (AND (NOT p0) (NOT p2))), (AND (NOT p0) (NOT p2))]
Product exploration timeout after 20080 steps with 0 reset in 10003 ms.
Product exploration timeout after 19440 steps with 0 reset in 10004 ms.
Built C files in :
/tmp/ltsmin15737952442074611053
[2025-06-02 07:34:54] [INFO ] Too many transitions (8001) to apply POR reductions. Disabling POR matrices.
[2025-06-02 07:34:54] [INFO ] Built C files in 100ms conformant to PINS (ltsmin variant)in folder :/tmp/ltsmin15737952442074611053
Running compilation step : cd /tmp/ltsmin15737952442074611053;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202505121319/bin/limit_time.pl' '3' 'gcc' '-c' '-I/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202505121319/bin/include/' '-I.' '-std=c99' '-fPIC' '-O0' 'model.c'
WARNING : LTS min runner thread failed on error :java.lang.RuntimeException: Compilation or link of executable timed out.java.util.concurrent.TimeoutException: Subprocess running cd /tmp/ltsmin15737952442074611053;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202505121319/bin/limit_time.pl' '3' 'gcc' '-c' '-I/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202505121319/bin/include/' '-I.' '-std=c99' '-fPIC' '-O0' 'model.c' killed by timeout after 3 SECONDS
java.lang.RuntimeException: Compilation or link of executable timed out.java.util.concurrent.TimeoutException: Subprocess running cd /tmp/ltsmin15737952442074611053;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202505121319/bin/limit_time.pl' '3' 'gcc' '-c' '-I/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202505121319/bin/include/' '-I.' '-std=c99' '-fPIC' '-O0' 'model.c' killed by timeout after 3 SECONDS
at fr.lip6.move.gal.application.runner.ltsmin.LTSminRunner$1.run(LTSminRunner.java:93)
at java.base/java.lang.Thread.run(Thread.java:1583)
Support contains 4 out of 5000 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 423 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2025-06-02 07:34:58] [INFO ] Invariant cache hit.
[2025-06-02 07:34:58] [INFO ] State equation strengthened by 1000 read => feed constraints.
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Error getting values : (error "Error writing to Z3 solver: java.io.IOException: Broken pipe")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20070 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20072 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 43859ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 43865ms
[2025-06-02 07:35:42] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 07:35:43] [INFO ] Implicit Places using invariants in 1023 ms returned []
[2025-06-02 07:35:43] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 07:35:47] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2025-06-02 07:35:47] [INFO ] Implicit Places using invariants and state equation in 4151 ms returned []
Implicit Place search using SMT with State Equation took 5191 ms to find 0 implicit places.
Starting Z3 with timeout 200.0 s and query timeout 20000.0 ms
[2025-06-02 07:35:48] [INFO ] Redundant transitions in 740 ms returned []
Running 6000 sub problems to find dead transitions.
[2025-06-02 07:35:48] [INFO ] Invariant cache hit.
[2025-06-02 07:35:48] [INFO ] State equation strengthened by 1000 read => feed constraints.
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30071 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Error getting values : (error "ParserException while parsing response: ((s0 5)
(s1 2)
(s3 4)
(s4 5)
(s5 5)
(s6 2)
(s8 4)
(s9 5)
(s10 5)
(s11 2)
(s13 4)
(s14 5)
(s15 5)
(s16 2)
(s18 4)
(s19 5)
(s20 5)
(s21 2)
(s23 4)
(s24 5)
(s25 5)
(s26 2)
(s28 4)
(s29 5)
(s30 5)
(s31 2)
(s33 4)
(s34 5)
(s35 5)
(s36 2)
(s38 4)
(s39 5)
(s40 5)
(s41 2)
(s43 4)
(s44 5)
(s45 5)
(s46 2)
(s48 4)
(s49 5)
(s50 5)
(s51 2)
(s53 4)
(s54 5)
(s55 5)
(s56 2)
(s58 4)
(s59 5)
(s60 5)
(s61 2)
(s63 4)
(s64 5)
(s65 5)
(s66 2)
(s68 4)
(s69 5)
(s70 5)
(s71 2)
(s73 4)
(s74 5)
(s75 5)
(s76 2)
(s78 4)
(s79 5)
(s80 5)
(s81 2)
(s83 4)
(s84 5)
(s85 5)
(s86 2)
(s88 4)
(s89 5)
(s90 5)
(s91 2)
(s93 4)
(s94 5)
(s95 5)
(s96 2)
(s98 4)
(s99 5)
(s100 5)
(s101 2)
(s103 4)
(s104 5)
(s105 5)
(s106 2)
(s108 4)
(s109 5)
(s110 5)
(s111 2)
(s113 4)
(s114 5)
(s115 5)
(s116 2)
(s118 4)
(s119 5)
(s120 5)
(s121 2)
(s123 4)
(s124 5)
(s125 5)
(s126 2)
(s128 4)
(s129 5)
(s130 5)
(s131 2)
(s133 4)
(s134 5)
(s135 5)
(s136 2)
(s138 4)
(s139 5)
(s140 5)
(s141 2)
(s143 4)
(s144 5)
(s145 5)
(s146 2)
(s148 4)
(s149 5)
(s150 5)
(s151 2)
(s153 4)
(s154 5)
(s155 5)
(s156 2)
(s158 4)
(s159 5)
(s160 5)
(s161 2)
(s163 4)
(s164 5)
(s165 5)
(s166 2)
(s168 4)
(s169 5)
(s170 5)
(s171 2)
(s173 4)
(s174 5)
(s175 5)
(s176 2)
(s178 4)
(s179 5)
(s180 5)
(s181 2)
(s183 4)
(s184 5)
(s185 5)
(s186 2)
(s188 4)
(s189 5)
(s190 5)
(s191 2)
(s193 4)
(s194 5)
(s195 5)
(s196 2)
(s198 4)
(s199 5)
(s200 5)
(s201 2)
(s203 4)
(s204 5)
(s205 5)
(s206 2)
(s208 4)
(s209 5)
(s210 5)
(s211 2)
(s213 4)
(s214 5)
(s215 5)
(s216 2)
(s218 4)
(s219 5)
(s220 5)
(s221 2)
(s223 4)
(s224 5)
(s225 5)
(s226 2)
(s228 4)
(s229 5)
(s230 5)
(s231 2)
(s233 4)
(s234 5)
(s235 5)
(s236 2)
(s238 4)
(s239 5)
(s240 5)
(s241 2)
(s243 4)
(s244 5)
(s245 5)
(s246 2)
(s248 4)
(s249 5)
(s250 5)
(s251 2)
(s253 4)
(s254 5)
(s255 5)
(s256 2)
(s258 4)
(s259 5)
(s260 5)
(s261 2)
(s263 4)
(s264 5)
(s265 5)
(s266 2)
(s268 4)
(s269 5)
(s270 5)
(s271 2)
(s273 4)
(s274 5)
(s275 5)
(s276 2)
(s278 4)
(s279 5)
(s280 5)
(s281 2)
(s283 4)
(s284 5)
(s285 5)
(s286 2)
(s288 4)
(s289 5)
(s290 5)
(s291 2)
(s293 4)
(s294 5)
(s295 5)
(s296 2)
(s298 4)
(s299 5)
(s300 5)
(s301 2)
(s303 4)
(s304 5)
(s305 5)
(s306 2)
(s308 4)
(s309 5)
(s310 5)
(s311 2)
(s313 4)
(s314 5)
(s315 5)
(s316 2)
(s318 4)
(s319 5)
(s320 5)
(s321 2)
(s323 4)
(s324 5)
(s325 5)
(s326 2)
(s328 4)
(s329 5)
(s330 5)
(s331 2)
(s333 4)
(s334 5)
(s335 5)
(s336 2)
(s338 4)
(s339 5)
(s340 5)
(s341 2)
(s343 4)
(s344 5)
(s345 5)
(s346 2)
(s348 4)
(s349 5)
(s350 5)
(s351 2)
(s353 4)
(s354 5)
(s355 5)
(s356 2)
(s358 4)
(s359 5)
(s360 5)
(s361 2)
(s363 4)
(s364 5)
(s365 5)
(s366 2)
(s368 4)
(s369 5)
(s370 5)
(s371 2)
(s373 4)
(s374 5)
(s375 5)
(s376 2)
(s378 4)
(s379 5)
(s380 5)
(s381 2)
(s383 4)
(s384 5)
(s385 5)
(s386 2)
(s388 4)
(s389 5)
(s390 5)
(s391 2)
(s393 4)
(s394 5)
(s395 5)
(s396 2)
(s398 4)
(s399 5)
(s400 5)
(s401 2)
(s403 4)
(s404 5)
(s405 5)
(s406 2)
(s408 4)
(s409 5)
(s410 5)
(s411 2)
(s413 4)
(s414 5)
(s415 5)
(s416 2)
(s418 4)
(s419 5)
(s420 5)
(s421 2)
(s423 4)
(s424 5)
(s425 5)
(s426 2)
(s428 4)
(s429 5)
(s430 5)
(s431 2)
(s433 4)
(s434 5)
(s435 5)
(s436 2)
(s438 4)
(s439 5)
(s440 5)
(s441 2)
(s443 4)
(s444 5)
(s445 5)
(s446 2)
(s448 4)
(s449 5)
(s450 5)
(s451 2)
(s453 4)
(s454 5)
(s455 5)
(s456 2)
(s458 4)
(s459 5)
(s460 5)
(s461 2)
(s463 4)
(s464 5)
(s465 5)
(s466 2)
(s468 4)
(s469 5)
(s470 5)
(s471 2)
(s473 4)
(s474 5)
(s475 5)
(s476 2)
(s478 4)
(s479 5)
(s480 5)
(s481 2)
(s483 4)
(s484 5)
(s485 5)
(s486 2)
(s488 4)
(s489 5)
(s490 5)
(s491 2)
(s493 4)
(s494 5)
(s495 5)
(s496 2)
(s498 4)
(s499 5)
(s500 5)
(s501 2)
(s503 4)
(s504 5)
(s505 5)
(s506 2)
(s508 4)
(s509 5)
(s510 5)
(s511 2)
(s513 4)
(s514 5)
(s515 5)
(s516 2)
(s518 4)
(s519 5)
(s520 5)
(s521 2)
(s523 4)
(s524 5)
(s525 5)
(s526 2)
(s528 4)
(s529 5)
(s530 5)
(s531 2)
(s533 4)
(s534 5)
(s535 5)
(s536 2)
(s538 4)
(s539 5)
(s540 5)
(s541 2)
(s543 4)
(s544 5)
(s545 5)
(s546 2)
(s548 4)
(s549 5)
(s550 5)
(s551 2)
(s553 4)
(s554 5)
(s555 5)
(s556 2)
(s558 4)
(s559 5)
(s560 5)
(s561 2)
(s563 4)
(s564 5)
(s565 5)
(s566 2)
(s568 4)
(s569 5)
(s570 5)
(s571 2)
(s573 4)
(s574 5)
(s575 5)
(s576 2)
(s578 4)
(s579 5)
(s580 5)
(s581 2)
(s583 4)
(s584 5)
(s585 5)
(s586 2)
(s588 4)
(s589 5)
(s590 5)
(s591 2)
(s593 4)
(s594 5)
(s595 5)
(s596 2)
(s598 4)
(s599 5)
(s600 5)
(s601 2)
(s603 4)
(s604 5)
(s605 5)
(s606 2)
(s608 4)
(s609 5)
(s610 5)
(s611 2)
(s613 4)
(s614 5)
(s615 5)
(s616 2)
(s618 4)
(s619 5)
(s620 5)
(s621 2)
(s623 4)
(s624 5)
(s625 5)
(s626 2)
(s628 4)
(s629 5)
(s630 5)
(s631 2)
(s633 4)
(s634 5)
(s635 5)
(s636 2)
(s638 4)
(s639 5)
(s640 5)
(s641 2)
(s643 4)
(s644 5)
(s645 5)
(s646 2)
(s648 4)
(s649 5)
(s650 5)
(s651 2)
(s653 4)
(s654 5)
(s655 5)
(s656 2)
(s658 4)
(s659 5)
(s660 5)
(s661 2)
(s663 4)
(s664 5)
(s665 5)
(s666 2)
(s668 4)
(s669 5)
(s670 5)
(s671 2)
(s673 4)
(s674 5)
(s675 5)
(s676 2)
(s678 4)
(s679 5)
(s680 5)
(s681 2)
(s683 4)
(s684 5)
(s685 5)
(s686 2)
(s688 4)
(s689 5)
(s690 5)
(s691 2)
(s693 4)
(s694 5)
(s695 5)
(s696 2)
(s698 4)
(s699 5)
(s700 5)
(s701 2)
(s703 4)
(s704 5)
(s705 5)
(s706 2)
(s708 4)
(s709 5)
(s710 5)
(s711 2)
(s713 4)
(s714 5)
(s715 5)
(s716 2)
(s718 4)
(s719 5)
(s720 5)
(s721 2)
(s723 4)
(s724 5)
(s725 5)
(s726 2)
(s728 4)
(s729 5)
(s730 5)
(s731 2)
(s733 4)
(s734 5)
(s735 5)
(s736 2)
(s738 4)
(s739 5)
(s740 5)
(s741 2)
(s743 4)
(s744 5)
(s745 5)
(s746 2)
(s748 4)
(s749 5)
(s750 5)
(s751 2)
(s753 4)
(s754 5)
(s755 5)
(s756 2)
(s758 4)
(s759 5)
(s760 5)
(s761 2)
(s763 4)
(s764 5)
(s765 5)
(s766 2)
(s768 4)
(s769 5)
(s770 5)
(s771 2)
(s773 4)
(s774 5)
(s775 5)
(s776 2)
(s778 4)
(s779 5)
(s780 5)
(s781 2)
(s783 4)
(s784 5)
(s785 5)
(s786 2)
(s788 4)
(s789 5)
(s790 5)
(s791 2)
(s793 4)
(s794 5)
(s795 5)
(s796 2)
(s798 4)
(s799 5)
(s800 5)
(s801 2)
(s803 4)
(s804 5)
(s805 5)
(s806 2)
(s808 4)
(s809 5)
(s810 5)
(s811 2)
(s813 4)
(s814 5)
(s815 5)
(s816 2)
(s818 4)
(s819 5)
(s820 5)
(s821 2)
(s823 4)
(s824 5)
(s825 5)
(s826 2)
(s828 4)
(s829 5)
(s830 5)
(s831 2)
(s833 4)
(s834 5)
(s835 5)
(s836 2)
(s838 4)
(s839 5)
(s840 5)
(s841 2)
(s843 4)
(s844 5)
(s845 5)
(s846 2)
(s848 4)
(s849 5)
(s850 5)
(s851 2)
(s853 4)
(s854 5)
(s855 5)
(s856 2)
(s858 4)
(s859 5)
(s860 5)
(s861 2)
(s863 4)
(s864 5)
(s865 5)
(s866 2)
(s868 4)
(s869 5)
(s870 5)
(s871 2)
(s873 4)
(s874 5)
(s875 5)
(s876 2)
(s878 4)
(s879 5)
(s880 5)
(s881 2)
(s883 4)
(s884 5)
(s885 5)
(s886 2)
(s888 4)
(s889 5)
(s890 5)
(s891 2)
(s893 4)
(s894 5)
(s895 5)
(s896 2)
(s898 4)
(s899 5)
(s900 5)
(s901 2)
(s903 4)
(s904 5)
(s905 5)
(s906 2)
(s908 4)
(s909 5)
(s910 5)
(s911 2)
(s913 4)
(s914 5)
(s915 5)
(s916 2)
(s918 4)
(s919 5)
(s920 5)
(s921 2)
(s923 4)
(s924 5)
(s925 5)
(s926 2)
(s928 4)
(s929 5)
(s930 5)
(s931 2)
(s933 4)
(s934 5)
(s935 5)
(s936 2)
(s938 4)
(s939 5)
(s940 5)
(s941 2)
(s943 4)
(s944 5)
(s945 5)
(s946 2)
(s948 4)
(s949 5)
(s950 5)
(s951 2)
(s953 4)
(s954 5)
(s955 5)
(s956 2)
(s958 4)
(s959 5)
(s960 5)
(s961 2)
(s963 4)
(s964 5)
(s965 5)
(s966 2)
(s968 4)
(s969 5)
(s970 5)
(s971 2)
(s973 4)
(s974 5)
(s975 5)
(s976 2)
(s978 4)
(s979 5)
(s980 5)
(s981 2)
(s983 4)
(s984 5)
(s985 5)
(s986 2)
(s988 4)
(s989 5)
(s990 5)
(s991 2)
(s993 4)
(s994 5)
(s995 5)
(s996 2)
(s998 4)
(s999 5)
(s1000 5)
(s1001 2)
(s1003 4)
(s1004 5)
(s1005 5)
(s1006 2)
(s1008 4)
(s1009 5)
(s1010 5)
(s1011 2)
(s1013 4)
(s1014 5)
(s1015 5)
(s1016 2)
(s1018 4)
(s1019 5)
(s1020 5)
(s1021 2)
(s1023 4)
(s1024 5)
(s1025 5)
(s1026 2)
(s1028 4)
(s1029 5)
(s1030 5)
(s1031 2)
(s1033 4)
(s1034 5)
(s1035 5)
(s1036 2)
(s1038 4)
(s1039 5)
(s1040 5)
(s1041 2)
(s1043 4)
(s1044 5)
(s1045 5)
(s1046 2)
(s1048 4)
(s1049 5)
(s1050 5)
(s1051 2)
(s1053 4)
(s1054 5)
(s1055 5)
(s1056 2)
(s1058 4)
(s1059 5)
(s1060 5)
(s1061 2)
(s1063 4)
(s1064 5)
(s1065 5)
(s1066 2)
(s1068 4)
(s1069 5)
(s1070 5)
(s1071 2)
(s1073 4)
(s1074 5)
(s1075 5)
(s1076 2)
(s1078 4)
(s1079 5)
(s1080 5)
(s1081 2)
(s1083 4)
(s1084 5)
(s1085 5)
(s1086 2)
(s1088 4)
(s1089 5)
(s1090 5)
(s1091 2)
(s1093 4)
(s1094 5)
(s1095 5)
(s1096 2)
(s1098 4)
(s1099 5)
(s1100 5)
(s1101 2)
(s1103 4)
(s1104 5)
(s1105 5)
(s1106 2)
(s1108 4)
(s1109 5)
(s1110 5)
(s1111 2)
(s1113 4)
(s1114 5)
(s1115 5)
(s1116 2)
(s1118 4)
(s1119 5)
(s1120 5)
(s1121 2)
(s1123 4)
(s1124 5)
(s1125 5)
(s1126 2)
(s1128 4)
(s1129 5)
(s1130 5)
(s1131 2)
(s1133 4)
(s1134 5)
(s1135 5)
(s1136 2)
(s1138 4)
(s1139 5)
(s1140 5)
(s1141 2)
(s1143 4)
(s1144 5)
(s1145 5)
(s1146 2)
(s1148 4)
(s1149 5)
(s1150 5)
(s1151 2)
(s1153 4)
(s1154 5)
(s1155 5)
(s1156 2)
(s1158 4)
(s1159 5)
(s1160 5)
(s1161 2)
(s1163 4)
(s1164 5)
(s1165 5)
(s1166 2)
(s1168 4)
(s1169 5)
(s1170 5)
(s1171 2)
(s1173 4)
(s1174 5)
(s1175 5)
(s1176 2)
(s1178 4)
(s1179 5)
(s1180 5)
(s1181 2)
(s1183 4)
(s1184 5)
(s1185 5)
(s1186 2)
(s1188 4)
(s1189 5)
(s1190 5)
(s1191 2)
(s1193 4)
(s1194 5)
(s1195 5)
(s1196 2)
(s1198 4)
(s1199 5)
(s1200 5)
(s1201 2)
(s1203 4)
(s1204 5)
(s1205 5)
(s1206 2)
(s1208 4)
(s1209 5)
(s1210 5)
(s1211 2)
(s1213 4)
(s1214 5)
(s1215 5)
(s1216 2)
(s1218 4)
(s1219 5)
(s1220 5)
(s1221 2)
(s1223 4)
(s1224 5)
(s1225 5)
(s1226 2)
(s1228 4)
(s1229 5)
(s1230 5)
(s1231 2)
(s1233 4)
(s1234 5)
(s1235 5)
(s1236 2)
(s1238 4)
(s1239 5)
(s1240 5)
(s1241 2)
(s1243 4)
(s1244 5)
(s1245 5)
(s1246 2)
(s1248 4)
(s1249 5)
(s1250 5)
(s1251 2)
(s1253 4)
(s1254 5)
(s1255 5)
(s1256 2)
(s1258 4)
(s1259 5)
(s1260 5)
(s1261 2)
(s1263 4)
(s1264 5)
(s1265 5)
(s1266 2)
(s1268 4)
(s1269 5)
(s1270 5)
(s1271 2)
(s1273 4)
(s1274 5)
(s1275 5)
(s1276 2)
(s1278 4)
(s1279 5)
(s1280 5)
(s1281 2)
(s1283 4)
(s1284 5)
(s1285 5)
(s1286 2)
(s1288 4)
(s1289 5)
(s1290 5)
(s1291 2)
(s1293 4)
(s1294 5)
(s1295 5)
(s1296 2)
(s1298 4)
(s1299 5)
(s1300 5)
(s1301 2)
(s1303 4)
(s1304 5)
(s1305 5)
(s1306 2)
(s1308 4)
(s1309 5)
(s1310 5)
(s1311 2)
(s1313 4)
(s1314 5)
(s1315 5)
(s1316 2)
(s1318 4)
(s1319 5)
(s1320 5)
(s1321 2)
(s1323 4)
(s1324 5)
(s1325 5)
(s1326 2)
(s1328 4)
(s1329 5)
(s1330 5)
(s1331 2)
(s1333 4)
(s1334 5)
(s1335 5)
(s1336 2)
(s1338 4)
(s1339 5)
(s1340 5)
(s1341 2)
(s1343 4)
(s1344 5)
(s1345 5)
(s1346 2)
(s1348 4)
(s1349 5)
(s1350 5)
(s1351 2)
(s1353 4)
(s1354 5)
(s1355 5)
(s1356 2)
(s1358 4)
(s1359 5)
(s1360 5)
(s1361 2)
(s1363 4)
(s1364 5)
(s1365 5)
(s1366 2)
(s1368 4)
(s1369 5)
(s1370 5)
(s1371 2)
(s1373 4)
(s1374 5)
(s1375 5)
(s1376 2)
(s1378 4)
(s1379 5)
(s1380 5)
(s1381 2)
(s1383 4)
(s1384 5)
(s1385 5)
(s1386 2)
(s1388 4)
(s1389 5)
(s1390 5)
(s1391 2)
(s1393 4)
(s1394 5)
(s1395 5)
(s1396 2)
(s1398 4)
(s1399 5)
(s1400 5)
(s1401 2)
(s1403 4)
(s1404 5)
(s1405 5)
(s1406 2)
(s1408 4)
(s1409 5)
(s1410 5)
(s1411 2)
(s1413 4)
(s1414 5)
(s1415 5)
(s1416 2)
(s1418 4)
(s1419 5)
(s1420 5)
(s1421 2)
(s1423 4)
(s1424 5)
(s1425 5)
(s1426 2)
(s1428 4)
(s1429 5)
(s1430 5)
(s1431 2)
(s1433 4)
(s1434 5)
(s1435 5)
(s1436 2)
(s1438 4)
(s1439 5)
(s1440 5)
(s1441 2)
(s1443 4)
(s1444 5)
(s1445 5)
(s1446 2)
(s1448 4)
(s1449 5)
(s1450 5)
(s1451 2)
(s1453 4)
(s1454 5)
(s1455 5)
(s1456 2)
(s1458 4)
(s1459 5)
(s1460 5)
(s1461 2)
(s1463 4)
(s1464 5)
(s1465 5)
(s1466 2)
(s1468 4)
(s1469 5)
(s1470 5)
(s1471 2)
(s1473 4)
(s1474 5)
(s1475 5)
(s1476 2)
(s1478 4)
(s1479 5)
(s1480 5)
(s1481 2)
(s1483 4)
(s1484 5)
(s1485 5)
(s1486 2)
(s1488 4)
(s1489 5)
(s1490 5)
(s1491 2)
(s1493 4)
(s1494 5)
(s1495 5)
(s1496 2)
(s1498 4)
(s1499 5)
(s1500 5)
(s1501 2)
(s1503 4)
(s1504 5)
(s1505 5)
(s1506 2)
(s1508 4)
(s1509 5)
(s1510 5)
(s1511 2)
(s1513 4)
(s1514 5)
(s1515 5)
(s1516 2)
(s1518 4)
(s1519 5)
(s1520 5)
(s1521 2)
(s1523 4)
(s1524 5)
(s1525 5)
(s1526 2)
(s1528 4)
(s1529 5)
(s1530 5)
(s1531 2)
(s1533 4)
(s1534 5)
(s1535 5)
(s1536 2)
(s1538 4)
(s1539 5)
(s1540 5)
(s1541 2)
(s1543 4)
(s1544 5)
(s1545 5)
(s1546 2)
(s1548 4)
(s1549 5)
(s1550 5)
(s1551 2)
(s1553 4)
(s1554 5)
(s1555 5)
(s1556 2)
(s1558 4)
(s1559 5)
(s1560 5)
(s1561 2)
(s1563 4)
(s1564 5)
(s1565 5)
(s1566 2)
(s1568 4)
(s1569 5)
(s1570 5)
(s1571 2)
(s1573 4)
(s1574 5)
(s1575 5)
(s1576 2)
(s1578 4)
(s1579 5)
(s1580 5)
(s1581 2)
(s1583 4)
(s1584 5)
(s1585 5)
(s1586 2)
(s1588 4)
(s1589 5)
(s1590 5)
(s1591 2)
(s1593 4)
(s1594 5)
(s1595 5)
(s1596 2)
(s1598 4)
(s1599 5)
(s1600 5)
(s1601 2)
(s1603 4)
(s1604 5)
(s1605 5)
(s1606 2)
(s1608 4)
(s1609 5)
(s1610 5)
(s1611 2)
(s1613 4)
(s1614 5)
(s1615 5)
(s1616 2)
(s1618 4)
(s1619 5)
(s1620 5)
(s1621 2)
(s1623 4)
(s1624 5)
(s1625 5)
(s1626 2)
(s1628 4)
(s1629 5)
(s1630 5)
(s1631 2)
(s1633 4)
(s1634 5)
(s1635 5)
(s1636 2)
(s1638 4)
(s1639 5)
(s1640 5)
(s1641 2)
(s1643 4)
(s1644 5)
(s1645 5)
(s1646 2)
(s1648 4)
(s1649 5)
(s1650 5)
(s1651 2)
(s1653 4)
(s1654 5)
(s1655 5)
(s1656 2)
(s1658 4)
(s1659 5)
(s1660 5)
(s1661 2)
(s1663 4)
(s1664 5)
(s1665 5)
(s1666 2)
(s1668 4)
(s1669 5)
(s1670 5)
(s1671 2)
(s1673 4)
(s1674 5)
(s1675 5)
(s1676 2)
(s1678 4)
(s1679 5)
(s1680 5)
(s1681 2)
(s1683 4)
(s1684 5)
(s1685 5)
(s1686 2)
(s1688 4)
(s1689 5)
(s1690 5)
(s1691 2)
(s1693 4)
(s1694 5)
(s1695 5)
(s1696 2)
(s1698 4)
(s1699 5)
(s1700 5)
(s1701 2)
(s1703 4)
(s1704 5)
(s1705 5)
(s1706 2)
(s1708 4)
(s1709 5)
(s1710 5)
(s1711 2)
(s1713 4)
(s1714 5)
(s1715 5)
(s1716 2)
(s1718 4)
(s1719 5)
(s1720 5)
(s1721 2)
(s1723 4)
(s1724 5)
(s1725 5)
(s1726 2)
(s1728 4)
(s1729 5)
(s1730 5)
(s1731 2)
(s1733 4)
(s1734 5)
(s1735 5)
(s1736 2)
(s1738 4)
(s1739 5)
(s1740 5)
(s1741 2)
(s1743 4)
(s1744 5)
(s1745 5)
(s1746 2)
(s1748 4)
(s1749 5)
(s1750 5)
(s1751 2)
(s1753 4)
(s1754 5)
(s1755 5)
(s1756 2)
(s1758 4)
(s1759 5)
(s1760 5)
(s1761 2)
(s1763 4)
(s1764 5)
(s1765 5)
(s1766 2)
(s1768 4)
(s1769 5)
(s1770 5)
(s1771 2)
(s1773 4)
(s1774 5)
(s1775 5)
(s1776 2)
(s1778 4)
(s1779 5)
(s1780 5)
(s1781 2)
(s1783 4)
(s1784 5)
(s1785 5)
(s1786 2)
(s1788 4)
(s1789 5)
(s1790 5)
(s1791 2)
(s1793 4)
(s1794 5)
(s1795 5)
(s1796 2)
(s1798 4)
(s1799 5)
(s1800 5)
(s1801 2)
(s1803 4)
(s1804 5)
(s1805 5)
(s1806 2)
(s1808 4)
(s1809 5)
(s1810 5)
(s1811 2)
(s1813 4)
(s1814 5)
(s1815 5)
(s1816 2)
(s1818 4)
(s1819 5)
(s1820 5)
(s1821 2)
(s1823 4)
(s1824 5)
(s1825 5)
(s1826 2)
(s1828 4)
(s1829 5)
(s1830 5)
(s1831 2)
(s1833 4)
(s1834 5)
(s1835 5)
(s1836 2)
(s1838 4)
(s1839 5)
(s1840 5)
(s1841 2)
(s1843 4)
(s1844 5)
(s1845 5)
(s1846 2)
(s1848 4)
(s1849 5)
(s1850 5)
(s1851 2)
(s1853 4)
(s1854 5)
(s1855 5)
(s1856 2)
(s1858 4)
(s1859 5)
(s1860 5)
(s1861 2)
(s1863 4)
(s1864 5)
(s1865 5)
(s1866 2)
(s1868 4)
(s1869 5)
(s1870 5)
(s1871 2)
(s1873 4)
(s1874 5)
(s1875 5)
(s1876 2)
(s1878 4)
(s1879 5)
(s1880 5)
(s1881 2)
(s1883 4)
(s1884 5)
(s1885 5)
(s1886 2)
(s1888 4)
(s1889 5)
(s1890 5)
(s1891 2)
(s1893 4)
(s1894 5)
(s1895 5)
(s1896 2)
(s1898 4)
(s1899 5)
(s1900 5)
(s1901 2)
(s1903 4)
(s1904 5)
(s1905 5)
(s1906 2)
(s1908 4)
(s1909 5)
(s1910 5)
(s1911 2)
(s1913 4)
(s1914 5)
(s1915 5)
(s1916 2)
(s1918 4)
(s1919 5)
(s1920 5)
(s1921 2)
(s1923 4)
(s1924 5)
(s1925 5)
(s1926 2)
(s1928 4)
(s1929 5)
(s1930 5)
(s1931 2)
(s1933 4)
(s1934 5)
(s1935 5)
(s1936 2)
(s1938 4)
(s1939 5)
(s1940 5)
(s1941 2)
(s1943 4)
(s1944 5)
(s1945 5)
(s1946 2)
(s1948 4)
(s1949 5)
(s1950 5)
(s1951 2)
(s1953 4)
(s1954 5)
(s1955 5)
(s1956 2)
(s1958 4)
(s1959 5)
(s1960 5)
(s1961 2)
(s1963 4)
(s1964 5)
(s1965 5)
(s1966 2)
(s1968 4)
(s1969 5)
(s1970 5)
(s1971 2)
(s1973 4)
(s1974 5)
(s1975 5)
(s1976 2)
(s1978 4)
(s1979 5)
(s1980 5)
(s1981 2)
(s1983 4)
(s1984 5)
(s1985 5)
(s1986 2)
(s1988 4)
(s1989 5)
(s1990 5)
(s1991 2)
(s1993 4)
(s1994 5)
(s1995 5)
(s1996 2)
(s1998 4)
(s1999 5)
(s2000 5)
(s2001 2)
(s2003 4)
(s2004 5)
(s2005 5)
(s2006 2)
(s2008 4)
(s2009 5)
(s2010 5)
(s2011 2)
(s2013 4)
(s2014 5)
(s2015 5)
(s2016 2)
(s2018 4)
(s2019 5)
(s2020 5)
(s2021 2)
(s2023 4)
(s2024 5)
(s2025 5)
(s2026 2)
(s2028 4)
(s2029 5)
(s2030 5)
(s2031 2)
(s2033 4)
(s2034 5)
(s2035 5)
(s2036 2)
(s2038 4)
(s2039 5)
(s2040 5)
(s2041 2)
(s2043 4)
(s2044 5)
(s2045 5)
(s2046 2)
(s2048 4)
(s2049 5)
(s2050 5)
(s2051 2)
(s2053 4)
(s2054 5)
(s2055 5)
(s2056 2)
(s2058 4)
(s2059 5)
(s2060 5)
(s2061 2)
(s2063 4)
(s2064 5)
(s2065 5)
(s2066 2)
(s2068 4)
(s2069 5)
(s2070 5)
(s2071 2)
(s2073 4)
(s2074 5)
(s2075 5)
(s2076 2)
(s2078 4)
(s2079 5)
(s2080 5)
(s2081 2)
(s2083 4)
(s2084 5)
(s2085 5)
(s2086 2)
(s2088 4)
(s2089 5)
(s2090 5)
(s2091 2)
(s2093 4)
(s2094 5)
(s2095 5)
(s2096 2)
(s2098 4)
(s2099 5)
(s2100 5)
(s2101 2)
(s2103 4)
(s2104 5)
(s2105 5)
(s2106 2)
(s2108 4)
(s2109 5)
(s2110 5)
(s2111 2)
(s2113 4)
(s2114 5)
(s2115 5)
(s2116 2)
(s2118 4)
(s2119 5)
(s2120 5)
(s2121 2)
(s2123 4)
(s2124 5)
(s2125 5)
(s2126 2)
(s2128 4)
(s2129 5)
(s2130 5)
(s2131 2)
(s2133 4)
(s2134 5)
(s2135 5)
(s2136 2)
(s2138 4)
(s2139 5)
(s2140 5)
(s2141 2)
(s2143 4)
(s2144 5)
(s2145 5)
(s2146 2)
(s2148 4)
(s2149 5)
(s2150 5)
(s2151 2)
(s2153 4)
(s2154 5)
(s2155 5)
(s2156 2)
(s2158 4)
(s2159 5)
(s2160 5)
(s2161 2)
(s2163 4)
(s2164 5)
(s2165 5)
(s2166 2)
(s2168 4)
(s2169 5)
(s2170 5)
(s2171 2)
(s2173 4)
(s2174 5)
(s2175 5)
(s2176 2)
(s2178 4)
(s2179 5)
(s2180 5)
(s2181 2)
(s2183 4)
(s2184 5)
(s2185 5)
(s2186 2)
(s2188 4)
(s2189 5)
(s2190 5)
(s2191 2)
(s2193 4)
(s2194 5)
(s2195 5)
(s2196 2)
(s2198 4)
(s2199 5)
(s2200 5)
(s2201 2)
(s2203 4)
(s2204 5)
(s2205 5)
(s2206 2)
(s2208 4)
(s2209 5)
(s2210 5)
(s2211 2)
(s2213 4)
(s2214 5)
(s2215 5)
(s2216 2)
(s2218 4)
(s2219 5)
(s2220 5)
(s2221 2)
(s2223 4)
(s2224 5)
(s2225 5)
(s2226 2)
(s2228 4)
(s2229 5)
(s2230 5)
(s2231 2)
(s2233 4)
(s2234 5)
(s2235 5)
(s2236 2)
(s2238 4)
(s2239 5)
(s2240 5)
(s2241 2)
(s2243 4)
(s2244 5)
(s2245 5)
(s2246 2)
(s2248 4)
(s2249 5)
(s2250 5)
(s2251 2)
(s2253 4)
(s2254 5)
(s2255 5)
(s2256 2)
(s2258 4)
(s2259 5)
(s2260 5)
(s2261 2)
(s2263 4)
(s2264 5)
(s2265 5)
(s2266 2)
(s2268 4)
(s2269 5)
(s2270 5)
(s2271 2)
(s2273 4)
(s2274 5)
(s2275 5)
(s2276 2)
(s2278 4)
(s2279 5)
(s2280 5)
(s2281 2)
(s2283 4)
(s2284 5)
(s2285 5)
(s2286 2)
(s2288 4)
(s2289 5)
(s2290 5)
(s2291 2)
(s2293 4)
(s2294 5)
(s2295 5)
(s2296 2)
(s2298 4)
(s2299 5)
(s2300 5)
(s2301 2)
(s2303 4)
(s2304 5)
(s2305 5)
(s2306 2)
(s2308 4)
(s2309 5)
(s2310 5)
(s2311 2)
(s2313 4)
(s2314 5)
(s2315 5)
(s2316 2)
(s2318 4)
(s2319 5)
(s2320 5)
(s2321 2)
(s2323 4)
(s2324 5)
(s2325 5)
(s2326 2)
(s2328 4)
(s2329 5)
(s2330 5)
(s2331 2)
(s2333 4)
(s2334 5)
(s2335 5)
(s2336 2)
(s2338 4)
(s2339 5)
(s2340 5)
(s2341 2)
(s2343 4)
(s2344 5)
(s2345 5)
(s2346 2)
(s2348 4)
(s2349 5)
(s2350 5)
(s2351 2)
(s2353 4)
(s2354 5)
(s2355 5)
(s2356 2)
(s2358 4)
(s2359 5)
(s2360 5)
(s2361 2)
(s2363 4)
(s2364 5)
(s2365 5)
(s2366 2)
(s2368 4)
(s2369 5)
(s2370 5)
(s2371 2)
(s2373 4)
(s2374 5)
(s2375 5)
(s2376 2)
(s2378 4)
(s2379 5)
(s2380 5)
(s2381 2)
(s2383 4)
(s2384 5)
(s2385 5)
(s2386 2)
(s2388 4)
(s2389 5)
(s2390 5)
(s2391 2)
(s2393 4)
(s2394 5)
(s2395 5)
(s2396 2)
(s2398 4)
(s2399 5)
(s2400 5)
(s2401 2)
(s2403 4)
(s2404 5)
(s2405 5)
(s2406 2)
(s2408 4)
(s2409 5)
(s2410 5)
(s2411 2)
(s2413 4)
(s2414 5)
(s2415 5)
(s2416 2)
(s2418 4)
(s2419 5)
(s2420 5)
(s2421 2)
(s2423 4)
(s2424 5)
(s2425 5)
(s2426 2)
(s2428 4)
(s2429 5)
(s2430 5)
(s2431 2)
(s2433 4)
(s2434 5)
(s2435 5)
(s2436 2)
(s2438 4)
(s2439 5)
(s2440 5)
(s2441 2)
(s2443 4)
(s2444 5)
(s2445 5)
(s2446 2)
(s2448 4)
(s2449 5)
(s2450 5)
(s2451 2)
(s2453 4)
(s2454 5)
(s2455 5)
(s2456 2)
(s2458 4)
(s2459 5)
(s2460 5)
(s2461 2)
(s2463 4)
(s2464 5)
(s2465 timeout
5 org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30077 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 63876ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 63882ms
Finished structural reductions in SI_LTL mode , in 1 iterations and 114118 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Built C files in :
/tmp/ltsmin12642046513356670171
[2025-06-02 07:36:52] [INFO ] Too many transitions (8001) to apply POR reductions. Disabling POR matrices.
[2025-06-02 07:36:52] [INFO ] Built C files in 83ms conformant to PINS (ltsmin variant)in folder :/tmp/ltsmin12642046513356670171
Running compilation step : cd /tmp/ltsmin12642046513356670171;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202505121319/bin/limit_time.pl' '3' 'gcc' '-c' '-I/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202505121319/bin/include/' '-I.' '-std=c99' '-fPIC' '-O0' 'model.c'
WARNING : LTS min runner thread failed on error :java.lang.RuntimeException: Compilation or link of executable timed out.java.util.concurrent.TimeoutException: Subprocess running cd /tmp/ltsmin12642046513356670171;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202505121319/bin/limit_time.pl' '3' 'gcc' '-c' '-I/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202505121319/bin/include/' '-I.' '-std=c99' '-fPIC' '-O0' 'model.c' killed by timeout after 3 SECONDS
java.lang.RuntimeException: Compilation or link of executable timed out.java.util.concurrent.TimeoutException: Subprocess running cd /tmp/ltsmin12642046513356670171;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202505121319/bin/limit_time.pl' '3' 'gcc' '-c' '-I/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202505121319/bin/include/' '-I.' '-std=c99' '-fPIC' '-O0' 'model.c' killed by timeout after 3 SECONDS
at fr.lip6.move.gal.application.runner.ltsmin.LTSminRunner$1.run(LTSminRunner.java:93)
at java.base/java.lang.Thread.run(Thread.java:1583)
[2025-06-02 07:36:55] [INFO ] Flatten gal took : 157 ms
[2025-06-02 07:36:55] [INFO ] Flatten gal took : 149 ms
[2025-06-02 07:36:55] [INFO ] Time to serialize gal into /tmp/LTL8346849815749609563.gal : 47 ms
[2025-06-02 07:36:55] [INFO ] Time to serialize properties into /tmp/LTL3933453443008670511.prop : 1 ms
Invoking ITS tools like this :cd /home/mcc/execution;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ltl-linux64' '--gc-threshold' '2000000' '-i' '/tmp/LTL8346849815749609563.gal' '-t' 'CGAL' '-hoa' '/tmp/aut16611691832437783969.hoa' '-atoms' '/tmp/LTL3933453443008670511.prop' '-c' '-stutter-deadlock' '--gen-order' 'FOLLOW'
its-ltl command run as :
/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ltl-linux64 --gc-threshold 2000000 -i /tmp/L...318
Loading property file /tmp/LTL3933453443008670511.prop.
Loaded 3 atomic propositions.
Checking formula 0 provided in automaton : /tmp/aut16611691832437783969.hoa
Detected timeout of ITS tools.
[2025-06-02 07:37:11] [INFO ] Flatten gal took : 140 ms
[2025-06-02 07:37:11] [INFO ] Flatten gal took : 142 ms
[2025-06-02 07:37:11] [INFO ] Time to serialize gal into /tmp/LTL12535098599633971857.gal : 27 ms
[2025-06-02 07:37:11] [INFO ] Time to serialize properties into /tmp/LTL8971689605158942892.ltl : 2 ms
Invoking ITS tools like this :cd /home/mcc/execution;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ltl-linux64' '--gc-threshold' '2000000' '-i' '/tmp/LTL12535098599633971857.gal' '-t' 'CGAL' '-LTL' '/tmp/LTL8971689605158942892.ltl' '-c' '-stutter-deadlock' '--gen-order' 'FOLLOW'
its-ltl command run as :
/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ltl-linux64 --gc-threshold 2000000 -i /tmp/L...276
Read 1 LTL properties
Checking formula 0 : !((G(F(("(p4114>p3093)")||((G("(p1418>=2)"))&&("((p2787<2)||(p4114>p3093))"))))))
Formula 0 simplified : FG(!"(p4114>p3093)" & (!"((p2787<2)||(p4114>p3093))" | F!"(p1418>=2)"))
Detected timeout of ITS tools.
[2025-06-02 07:37:26] [INFO ] Flatten gal took : 135 ms
[2025-06-02 07:37:26] [INFO ] Applying decomposition
[2025-06-02 07:37:26] [INFO ] Flatten gal took : 137 ms
Converted graph to binary with : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202505121319/bin/convert-linux64' '-i' '/tmp/graph9251470222744588749.txt' '-o' '/tmp/graph9251470222744588749.bin' '-w' '/tmp/graph9251470222744588749.weights'
Built communities with : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202505121319/bin/louvain-linux64' '/tmp/graph9251470222744588749.bin' '-l' '-1' '-v' '-w' '/tmp/graph9251470222744588749.weights' '-q' '0' '-e' '0.001'
[2025-06-02 07:37:27] [INFO ] Decomposing Gal with order
[2025-06-02 07:37:27] [INFO ] Rewriting arrays to variables to allow decomposition.
[2025-06-02 07:37:28] [INFO ] Flatten gal took : 204 ms
[2025-06-02 07:37:28] [INFO ] Fuse similar labels procedure discarded/fused a total of 0 labels/synchronizations in 214 ms.
[2025-06-02 07:37:28] [INFO ] Time to serialize gal into /tmp/LTL16436867175430697612.gal : 29 ms
[2025-06-02 07:37:28] [INFO ] Time to serialize properties into /tmp/LTL17034763108785928500.ltl : 0 ms
Invoking ITS tools like this :cd /home/mcc/execution;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ltl-linux64' '--gc-threshold' '2000000' '-i' '/tmp/LTL16436867175430697612.gal' '-t' 'CGAL' '-LTL' '/tmp/LTL17034763108785928500.ltl' '-c' '-stutter-deadlock' '--gen-order' 'FOLLOW'
its-ltl command run as :
/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ltl-linux64 --gc-threshold 2000000 -i /tmp/L...277
Read 1 LTL properties
Checking formula 0 : !((G(F(("(gu823.p4114>gu823.p3093)")||((G("(gu283.p1418>=2)"))&&("((gu557.p2787<2)||(gu823.p4114>gu823.p3093))"))))))
Formula 0 simplified : FG(!"(gu823.p4114>gu823.p3093)" & (!"((gu557.p2787<2)||(gu823.p4114>gu823.p3093))" | F!"(gu283.p1418>=2)"))
Detected timeout of ITS tools.
Treatment of property JoinFreeModules-PT-1000-LTLCardinality-10 finished in 449625 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202505121319/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(X((p0||X(F((G(F(p0))||(F(p0)&&X(X(p1))&&(p1 U (p2||G(p1))))))))))'
Support contains 4 out of 5000 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 135 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2025-06-02 07:37:44] [INFO ] Invariant cache hit.
[2025-06-02 07:37:44] [INFO ] State equation strengthened by 1000 read => feed constraints.
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20077 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20082 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 43876ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 43884ms
[2025-06-02 07:38:27] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 07:38:28] [INFO ] Implicit Places using invariants in 970 ms returned []
[2025-06-02 07:38:28] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 07:38:32] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2025-06-02 07:38:33] [INFO ] Implicit Places using invariants and state equation in 4142 ms returned []
Implicit Place search using SMT with State Equation took 5114 ms to find 0 implicit places.
Running 6000 sub problems to find dead transitions.
[2025-06-02 07:38:33] [INFO ] Invariant cache hit.
[2025-06-02 07:38:33] [INFO ] State equation strengthened by 1000 read => feed constraints.
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30085 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30078 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 63857ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 63863ms
Finished structural reductions in LTL mode , in 1 iterations and 113014 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Stuttering acceptance computed with spot in 465 ms :[(NOT p0), (NOT p0), (NOT p0), (NOT p0), (AND (NOT p0) (NOT p1)), (AND (NOT p2) (NOT p1) (NOT p0)), (AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1)), (AND (NOT p2) (NOT p1) (NOT p0))]
Running random walk in product with property : JoinFreeModules-PT-1000-LTLCardinality-11
Stuttering criterion allowed to conclude after 0 steps with 0 reset in 2 ms.
FORMULA JoinFreeModules-PT-1000-LTLCardinality-11 FALSE TECHNIQUES STUTTER_TEST
Treatment of property JoinFreeModules-PT-1000-LTLCardinality-11 finished in 113525 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202505121319/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(X(F((p0||G(p1)))))'
Support contains 2 out of 5000 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 133 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2025-06-02 07:39:37] [INFO ] Invariant cache hit.
[2025-06-02 07:39:37] [INFO ] State equation strengthened by 1000 read => feed constraints.
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Error getting values : (error "ParserException while parsing response: ((s0 5.0)
(s1 2.0)
(s3 4.0)
(s4 5.0)
(s5 5.0)
(s6 2.0)
(s8 4.0)
(s9 5.0)
(s10 5.0)
(s11 2.0)
(s13 4.0)
(s14 5.0)
(s15 5.0)
(s16 2.0)
(s18 4.0)
(s19 5.0)
(s20 5.0)
(s21 2.0)
(s23 4.0)
(s24 5.0)
(s25 5.0)
(s26 2.0)
(s28 4.0)
(s29 5.0)
(s30 5.0)
(s31 2.0)
(s33 4.0)
(s34 5.0)
(s35 5.0)
(s36 2.0)
(s38 4.0)
(s39 5.0)
(s40 5.0)
(s41 2.0)
(s43 4.0)
(s44 5.0)
(s45 5.0)
(s46 2.0)
(s48 4.0)
(s49 5.0)
(s50 5.0)
(s51 2.0)
(s53 4.0)
(s54 5.0)
(s55 5.0)
(s56 2.0)
(s58 4.0)
(s59 5.0)
(s60 5.0)
(s61 2.0)
(s63 4.0)
(s64 5.0)
(s65 5.0)
(s66 2.0)
(s68 4.0)
(s69 5.0)
(s70 5.0)
(s71 2.0)
(s73 4.0)
(s74 5.0)
(s75 5.0)
(s76 2.0)
(s78 4.0)
(s79 5.0)
(s80 5.0)
(s81 2.0)
(s83 4.0)
(s84 5.0)
(s85 5.0)
(s86 2.0)
(s88 4.0)
(s89 5.0)
(s90 5.0)
(s91 2.0)
(s93 4.0)
(s94 5.0)
(s95 5.0)
(s96 2.0)
(s98 4.0)
(s99 5.0)
(s100 5.0)
(s101 2.0)
(s103 4.0)
(s104 5.0)
(s105 5.0)
(s106 2.0)
(s108 4.0)
(s109 5.0)
(s110 5.0)
(s111 2.0)
(s113 4.0)
(s114 5.0)
(s115 5.0)
(s116 2.0)
(s118 4.0)
(s119 5.0)
(s120 5.0)
(s121 2.0)
(s123 4.0)
(s124 5.0)
(s125 5.0)
(s126 2.0)
(s128 4.0)
(s129 5.0)
(s130 5.0)
(s131 2.0)
(s133 4.0)
(s134 5.0)
(s135 5.0)
(s136 2.0)
(s138 4.0)
(s139 5.0)
(s140 5.0)
(s141 2.0)
(s143 4.0)
(s144 5.0)
(s145 5.0)
(s146 2.0)
(s148 4.0)
(s149 5.0)
(s150 5.0)
(s151 2.0)
(s153 4.0)
(s154 5.0)
(s155 5.0)
(s156 2.0)
(s158 4.0)
(s159 5.0)
(s160 5.0)
(s161 2.0)
(s163 4.0)
(s164 5.0)
(s165 5.0)
(s166 2.0)
(s168 4.0)
(s169 5.0)
(s170 5.0)
(s171 2.0)
(s173 4.0)
(s174 5.0)
(s175 5.0)
(s176 2.0)
(s178 4.0)
(s179 5.0)
(s180 5.0)
(s181 2.0)
(s183 4.0)
(s184 5.0)
(s185 5.0)
(s186 2.0)
(s188 4.0)
(s189 5.0)
(s190 5.0)
(s191 2.0)
(s193 4.0)
(s194 5.0)
(s195 5.0)
(s196 2.0)
(s198 4.0)
(s199 5.0)
(s200 5.0)
(s201 2.0)
(s203 4.0)
(s204 5.0)
(s205 5.0)
(s206 2.0)
(s208 4.0)
(s209 5.0)
(s210 5.0)
(s211 2.0)
(s213 4.0)
(s214 5.0)
(s215 5.0)
(s216 2.0)
(s218 4.0)
(s219 5.0)
(s220 5.0)
(s221 2.0)
(s223 4.0)
(s224 5.0)
(s225 5.0)
(s226 2.0)
(s228 4.0)
(s229 5.0)
(s230 5.0)
(s231 2.0)
(s233 4.0)
(s234 5.0)
(s235 5.0)
(s236 2.0)
(s238 4.0)
(s239 5.0)
(s240 5.0)
(s241 2.0)
(s243 4.0)
(s244 5.0)
(s245 5.0)
(s246 2.0)
(s248 4.0)
(s249 5.0)
(s250 5.0)
(s251 2.0)
(s253 4.0)
(s254 5.0)
(s255 5.0)
(s256 2.0)
(s258 4.0)
(s259 5.0)
(s260 5.0)
(s261 2.0)
(s263 4.0)
(s264 5.0)
(s265 5.0)
(s266 2.0)
(s268 4.0)
(s269 5.0)
(s270 5.0)
(s271 2.0)
(s273 4.0)
(s274 5.0)
(s275 5.0)
(s276 2.0)
(s278 4.0)
(s279 5.0)
(s280 5.0)
(s281 2.0)
(s283 4.0)
(s284 5.0)
(s285 5.0)
(s286 2.0)
(s288 4.0)
(s289 5.0)
(s290 5.0)
(s291 2.0)
(s293 4.0)
(s294 5.0)
(s295 5.0)
(s296 2.0)
(s298 4.0)
(s299 5.0)
(s300 5.0)
(s301 2.0)
(s303 4.0)
(s304 5.0)
(s305 5.0)
(s306 2.0)
(s308 4.0)
(s309 5.0)
(s310 5.0)
(s311 2.0)
(s313 4.0)
(s314 5.0)
(s315 5.0)
(s316 2.0)
(s318 4.0)
(s319 5.0)
(s320 5.0)
(s321 2.0)
(s323 4.0)
(s324 5.0)
(s325 5.0)
(s326 2.0)
(s328 4.0)
(s329 5.0)
(s330 5.0)
(s331 2.0)
(s333 4.0)
(s334 5.0)
(s335 5.0)
(s336 2.0)
(s338 4.0)
(s339 5.0)
(s340 5.0)
(s341 2.0)
(s343 4.0)
(s344 5.0)
(s345 5.0)
(s346 2.0)
(s348 4.0)
(s349 5.0)
(s350 5.0)
(s351 2.0)
(s353 4.0)
(s354 5.0)
(s355 5.0)
(s356 2.0)
(s358 4.0)
(s359 5.0)
(s360 5.0)
(s361 2.0)
(s363 4.0)
(s364 5.0)
(s365 5.0)
(s366 2.0)
(s368 4.0)
(s369 5.0)
(s370 5.0)
(s371 2.0)
(s373 4.0)
(s374 5.0)
(s375 5.0)
(s376 2.0)
(s378 4.0)
(s379 5.0)
(s380 5.0)
(s381 2.0)
(s383 4.0)
(s384 5.0)
(s385 5.0)
(s386 2.0)
(s388 4.0)
(s389 5.0)
(s390 5.0)
(s391 2.0)
(s393 4.0)
(s394 5.0)
(s395 5.0)
(s396 2.0)
(s398 4.0)
(s399 5.0)
(s400 5.0)
(s401 2.0)
(s403 4.0)
(s404 5.0)
(s405 5.0)
(s406 2.0)
(s408 4.0)
(s409 5.0)
(s410 5.0)
(s411 2.0)
(s413 4.0)
(s414 5.0)
(s415 5.0)
(s416 2.0)
(s418 4.0)
(s419 5.0)
(s420 5.0)
(s421 2.0)
(s423 4.0)
(s424 5.0)
(s425 5.0)
(s426 2.0)
(s428 4.0)
(s429 5.0)
(s430 5.0)
(s431 2.0)
(s433 4.0)
(s434 5.0)
(s435 5.0)
(s436 2.0)
(s438 4.0)
(s439 5.0)
(s440 5.0)
(s441 2.0)
(s443 4.0)
(s444 5.0)
(s445 5.0)
(s446 2.0)
(s448 4.0)
(s449 5.0)
(s450 5.0)
(s451 2.0)
(s453 4.0)
(s454 5.0)
(s455 5.0)
(s456 2.0)
(s458 4.0)
(s459 5.0)
(s460 5.0)
(s461 2.0)
(s463 4.0)
(s464 5.0)
(s465 5.0)
(s466 2.0)
(s468 4.0)
(s469 5.0)
(s470 5.0)
(s471 2.0)
(s473 4.0)
(s474 5.0)
(s475 5.0)
(s476 2.0)
(s478 4.0)
(s479 5.0)
(s480 5.0)
(s481 2.0)
(s483 4.0)
(s484 5.0)
(s485 5.0)
(s486 2.0)
(s488 4.0)
(s489 5.0)
(s490 5.0)
(s491 2.0)
(s493 4.0)
(s494 5.0)
(s495 5.0)
(s496 2.0)
(s498 4.0)
(s499 5.0)
(s500 5.0)
(s501 2.0)
(s503 4.0)
(s504 5.0)
(s505 5.0)
(s506 2.0)
(s508 4.0)
(s509 5.0)
(s510 5.0)
(s511 2.0)
(s513 4.0)
(s514 5.0)
(s515 5.0)
(s516 2.0)
(s518 4.0)
(s519 5.0)
(s520 5.0)
(s521 2.0)
(s523 4.0)
(s524 5.0)
(s525 5.0)
(s526 2.0)
(s528 4.0)
(s529 5.0)
(s530 5.0)
(s531 2.0)
(s533 4.0)
(s534 5.0)
(s535 5.0)
(s536 2.0)
(s538 4.0)
(s539 5.0)
(s540 5.0)
(s541 2.0)
(s543 4.0)
(s544 5.0)
(s545 5.0)
(s546 2.0)
(s548 4.0)
(s549 5.0)
(s550 5.0)
(s551 2.0)
(s553 4.0)
(s554 5.0)
(s555 5.0)
(s556 2.0)
(s558 4.0)
(s559 5.0)
(s560 5.0)
(s561 2.0)
(s563 4.0)
(s564 5.0)
(s565 5.0)
(s566 2.0)
(s568 4.0)
(s569 5.0)
(s570 5.0)
(s571 2.0)
(s573 4.0)
(s574 5.0)
(s575 5.0)
(s576 2.0)
(s578 4.0)
(s579 5.0)
(s580 5.0)
(s581 2.0)
(s583 4.0)
(s584 5.0)
(s585 5.0)
(s586 2.0)
(s588 4.0)
(s589 5.0)
(s590 5.0)
(s591 2.0)
(s593 4.0)
(s594 5.0)
(s595 5.0)
(s596 2.0)
(s598 4.0)
(s599 5.0)
(s600 5.0)
(s601 2.0)
(s603 4.0)
(s604 5.0)
(s605 5.0)
(s606 2.0)
(s608 4.0)
(s609 5.0)
(s610 5.0)
(s611 2.0)
(s613 4.0)
(s614 5.0)
(s615 5.0)
(s616 2.0)
(s618 4.0)
(s619 5.0)
(s620 5.0)
(s621 2.0)
(s623 4.0)
(s624 5.0)
(s625 5.0)
(s626 2.0)
(s628 4.0)
(s629 5.0)
(s630 5.0)
(s631 2.0)
(s633 4.0)
(s634 5.0)
(s635 5.0)
(s636 2.0)
(s638 4.0)
(s639 5.0)
(s640 5.0)
(s641 2.0)
(s643 4.0)
(s644 5.0)
(s645 5.0)
(s646 2.0)
(s648 4.0)
(s649 5.0)
(s650 5.0)
(s651 2.0)
(s653 4.0)
(s654 5.0)
(s655 5.0)
(s656 2.0)
(s658 4.0)
(s659 5.0)
(s660 5.0)
(s661 2.0)
(s663 4.0)
(s664 5.0)
(s665 5.0)
(s666 2.0)
(s668 4.0)
(s669 5.0)
(s670 5.0)
(s671 2.0)
(s673 4.0)
(s674 5.0)
(s675 5.0)
(s676 2.0)
(s678 4.0)
(s679 5.0)
(s680 5.0)
(s681 2.0)
(s683 4.0)
(s684 5.0)
(s685 5.0)
(s686 2.0)
(s688 4.0)
(s689 5.0)
(s690 5.0)
(s691 2.0)
(s693 4.0)
(s694 5.0)
(s695 5.0)
(s696 2.0)
(s698 4.0)
(s699 5.0)
(s700 5.0)
(s701 2.0)
(s703 4.0)
(s704 5.0)
(s705 5.0)
(s706 2.0)
(s708 4.0)
(s709 5.0)
(s710 5.0)
(s711 2.0)
(s713 4.0)
(s714 5.0)
(s715 5.0)
(s716 2.0)
(s718 4.0)
(s719 5.0)
(s720 5.0)
(s721 2.0)
(s723 4.0)
(s724 5.0)
(s725 5.0)
(s726 2.0)
(s728 4.0)
(s729 5.0)
(s730 5.0)
(s731 2.0)
(s733 4.0)
(s734 5.0)
(s735 5.0)
(s736 2.0)
(s738 4.0)
(s739 5.0)
(s740 5.0)
(s741 2.0)
(s743 4.0)
(s744 5.0)
(s745 5.0)
(s746 2.0)
(s748 4.0)
(s749 5.0)
(s750 5.0)
(s751 2.0)
(s753 4.0)
(s754 5.0)
(s755 5.0)
(s756 2.0)
(s758 4.0)
(s759 5.0)
(s760 5.0)
(s761 2.0)
(s763 4.0)
(s764 5.0)
(s765 5.0)
(s766 2.0)
(s768 4.0)
(s769 5.0)
(s770 5.0)
(s771 2.0)
(s773 4.0)
(s774 5.0)
(s775 5.0)
(s776 2.0)
(s778 4.0)
(s779 5.0)
(s780 5.0)
(s781 2.0)
(s783 4.0)
(s784 5.0)
(s785 5.0)
(s786 2.0)
(s788 4.0)
(s789 5.0)
(s790 5.0)
(s791 2.0)
(s793 4.0)
(s794 5.0)
(s795 5.0)
(s796 2.0)
(s798 4.0)
(s799 5.0)
(s800 5.0)
(s801 2.0)
(s803 4.0)
(s804 5.0)
(s805 5.0)
(s806 2.0)
(s808 4.0)
(s809 5.0)
(s810 5.0)
(s811 2.0)
(s813 4.0)
(s814 5.0)
(s815 5.0)
(s816 2.0)
(s818 4.0)
(s819 5.0)
(s820 5.0)
(s821 2.0)
(s823 4.0)
(s824 5.0)
(s825 5.0)
(s826 2.0)
(s828 4.0)
(s829 5.0)
(s830 5.0)
(s831 2.0)
(s833 4.0)
(s834 5.0)
(s835 5.0)
(s836 2.0)
(s838 4.0)
(s839 5.0)
(s840 5.0)
(s841 2.0)
(s843 4.0)
(s844 5.0)
(s845 5.0)
(s846 2.0)
(s848 4.0)
(s849 5.0)
(s850 5.0)
(s851 2.0)
(s853 4.0)
(s854 5.0)
(s855 5.0)
(s856 2.0)
(s858 4.0)
(s859 5.0)
(s860 5.0)
(s861 2.0)
(s863 4.0)
(s864 5.0)
(s865 5.0)
(s866 2.0)
(s868 4.0)
(s869 5.0)
(s870 5.0)
(s871 2.0)
(s873 4.0)
(s874 5.0)
(s875 5.0)
(s876 2.0)
(s878 4.0)
(s879 5.0)
(s880 5.0)
(s881 2.0)
(s883 4.0)
(s884 5.0)
(s885 5.0)
(s886 2.0)
(s888 4.0)
(s889 5.0)
(s890 5.0)
(s891 2.0)
(s893 4.0)
(s894 5.0)
(s895 5.0)
(s896 2.0)
(s898 4.0)
(s899 5.0)
(s900 5.0)
(s901 2.0)
(s903 4.0)
(s904 5.0)
(s905 5.0)
(s906 2.0)
(s908 4.0)
(s909 5.0)
(s910 5.0)
(s911 2.0)
(s913 4.0)
(s914 5.0)
(s915 5.0)
(s916 2.0)
(s918 4.0)
(s919 5.0)
(s920 5.0)
(s921 2.0)
(s923 4.0)
(s924 5.0)
(s925 5.0)
(s926 2.0)
(s928 4.0)
(s929 5.0)
(s930 5.0)
(s931 2.0)
(s933 4.0)
(s934 5.0)
(s935 5.0)
(s936 2.0)
(s938 4.0)
(s939 5.0)
(s940 5.0)
(s941 2.0)
(s943 4.0)
(s944 5.0)
(s945 5.0)
(s946 2.0)
(s948 4.0)
(s949 5.0)
(s950 5.0)
(s951 2.0)
(s953 4.0)
(s954 5.0)
(s955 5.0)
(s956 2.0)
(s958 4.0)
(s959 5.0)
(s960 5.0)
(s961 2.0)
(s963 4.0)
(s964 5.0)
(s965 5.0)
(s966 2.0)
(s968 4.0)
(s969 5.0)
(s970 5.0)
(s971 2.0)
(s973 4.0)
(s974 5.0)
(s975 5.0)
(s976 2.0)
(s978 4.0)
(s979 5.0)
(s980 5.0)
(s981 2.0)
(s983 4.0)
(s984 5.0)
(s985 5.0)
(s986 2.0)
(s988 4.0)
(s989 5.0)
(s990 5.0)
(s991 2.0)
(s993 4.0)
(s994 5.0)
(s995 5.0)
(s996 2.0)
(s998 4.0)
(s999 5.0)
(s1000 5.0)
(s1001 2.0)
(s1003 4.0)
(s1004 5.0)
(s1005 5.0)
(s1006 2.0)
(s1008 4.0)
(s1009 5.0)
(s1010 5.0)
(s1011 2.0)
(s1013 4.0)
(s1014 5.0)
(s1015 5.0)
(s1016 2.0)
(s1018 4.0)
(s1019 5.0)
(s1020 5.0)
(s1021 2.0)
(s1023 4.0)
(s1024 5.0)
(s1025 5.0)
(s1026 2.0)
(s1028 4.0)
(s1029 5.0)
(s1030 5.0)
(s1031 2.0)
(s1033 4.0)
(s1034 5.0)
(s1035 5.0)
(s1036 2.0)
(s1038 4.0)
(s1039 5.0)
(s1040 5.0)
(s1041 2.0)
(s1043 4.0)
(s1044 5.0)
(s1045 5.0)
(s1046 2.0)
(s1048 4.0)
(s1049 5.0)
(s1050 5.0)
(s1051 2.0)
(s1053 4.0)
(s1054 5.0)
(s1055 5.0)
(s1056 2.0)
(s1058 4.0)
(s1059 5.0)
(s1060 5.0)
(s1061 2.0)
(s1063 4.0)
(s1064 5.0)
(s1065 5.0)
(s1066 2.0)
(s1068 4.0)
(s1069 5.0)
(s1070 5.0)
(s1071 2.0)
(s1073 4.0)
(s1074 5.0)
(s1075 5.0)
(s1076 2.0)
(s1078 4.0)
(s1079 5.0)
(s1080 5.0)
(s1081 2.0)
(s1083 4.0)
(s1084 5.0)
(s1085 5.0)
(s1086 2.0)
(s1088 4.0)
(s1089 5.0)
(s1090 5.0)
(s1091 2.0)
(s1093 4.0)
(s1094 5.0)
(s1095 5.0)
(s1096 2.0)
(s1098 4.0)
(s1099 5.0)
(s1100 5.0)
(s1101 2.0)
(s1103 4.0)
(s1104 5.0)
(s1105 5.0)
(s1106 2.0)
(s1108 4.0)
(s1109 5.0)
(s1110 5.0)
(s1111 2.0)
(s1113 4.0)
(s1114 5.0)
(s1115 5.0)
(s1116 2.0)
(s1118 4.0)
(s1119 5.0)
(s1120 5.0)
(s1121 2.0)
(s1123 4.0)
(s1124 5.0)
(s1125 5.0)
(s1126 2.0)
(s1128 4.0)
(s1129 5.0)
(s1130 5.0)
(s1131 2.0)
(s1133 4.0)
(s1134 5.0)
(s1135 5.0)
(s1136 2.0)
(s1138 4.0)
(s1139 5.0)
(s1140 5.0)
(s1141 2.0)
(s1143 4.0)
(s1144 5.0)
(s1145 5.0)
(s1146 2.0)
(s1148 4.0)
(s1149 5.0)
(s1150 5.0)
(s1151 2.0)
(s1153 4.0)
(s1154 5.0)
(s1155 5.0)
(s1156 2.0)
(s1158 4.0)
(s1159 5.0)
(s1160 5.0)
(s1161 2.0)
(s1163 4.0)
(s1164 5.0)
(s1165 5.0)
(s1166 2.0)
(s1168 4.0)
(s1169 5.0)
(s1170 5.0)
(s1171 2.0)
(s1173 4.0)
(s1174 5.0)
(s1175 5.0)
(s1176 2.0)
(s1178 4.0)
(s1179 5.0)
(s1180 5.0)
(s1181 2.0)
(s1183 4.0)
(s1184 5.0)
(s1185 5.0)
(s1186 2.0)
(s1188 4.0)
(s1189 5.0)
(s1190 5.0)
(s1191 2.0)
(s1193 4.0)
(s1194 5.0)
(s1195 5.0)
(s1196 2.0)
(s1198 4.0)
(s1199 5.0)
(s1200 5.0)
(s1201 2.0)
(s1203 4.0)
(s1204 5.0)
(s1205 5.0)
(s1206 2.0)
(s1208 4.0)
(s1209 5.0)
(s1210 5.0)
(s1211 2.0)
(s1213 4.0)
(s1214 5.0)
(s1215 5.0)
(s1216 2.0)
(s1218 4.0)
(s1219 5.0)
(s1220 5.0)
(s1221 2.0)
(s1223 4.0)
(s1224 5.0)
(s1225 5.0)
(s1226 2.0)
(s1228 4.0)
(s1229 5.0)
(s1230 5.0)
(s1231 2.0)
(s1233 4.0)
(s1234 5.0)
(s1235 5.0)
(s1236 2.0)
(s1238 4.0)
(s1239 5.0)
(s1240 5.0)
(s1241 2.0)
(s1243 4.0)
(s1244 5.0)
(s1245 5.0)
(s1246 2.0)
(s1248 4.0)
(s1249 5.0)
(s1250 5.0)
(s1251 2.0)
(s1253 4.0)
(s1254 5.0)
(s1255 5.0)
(s1256 2.0)
(s1258 4.0)
(s1259 5.0)
(s1260 5.0)
(s1261 2.0)
(s1263 4.0)
(s1264 5.0)
(s1265 5.0)
(s1266 2.0)
(s1268 4.0)
(s1269 5.0)
(s1270 5.0)
(s1271 2.0)
(s1273 4.0)
(s1274 5.0)
(s1275 5.0)
(s1276 2.0)
(s1278 4.0)
(s1279 5.0)
(s1280 5.0)
(s1281 2.0)
(s1283 4.0)
(s1284 5.0)
(s1285 5.0)
(s1286 2.0)
(s1288 4.0)
(s1289 5.0)
(s1290 5.0)
(s1291 2.0)
(s1293 4.0)
(s1294 5.0)
(s1295 5.0)
(s1296 2.0)
(s1298 4.0)
(s1299 5.0)
(s1300 5.0)
(s1301 2.0)
(s1303 4.0)
(s1304 5.0)
(s1305 5.0)
(s1306 2.0)
(s1308 4.0)
(s1309 5.0)
(s1310 5.0)
(s1311 2.0)
(s1313 4.0)
(s1314 5.0)
(s1315 5.0)
(s1316 2.0)
(s1318 4.0)
(s1319 5.0)
(s1320 5.0)
(s1321 2.0)
(s1323 4.0)
(s1324 5.0)
(s1325 5.0)
(s1326 2.0)
(s1328 4.0)
(s1329 5.0)
(s1330 5.0)
(s1331 2.0)
(s1333 4.0)
(s1334 5.0)
(s1335 5.0)
(s1336 2.0)
(s1338 4.0)
(s1339 5.0)
(s1340 5.0)
(s1341 2.0)
(s1343 4.0)
(s1344 5.0)
(s1345 5.0)
(s1346 2.0)
(s1348 4.0)
(s1349 5.0)
(s1350 5.0)
(s1351 2.0)
(s1353 4.0)
(s1354 5.0)
(s1355 5.0)
(s1356 2.0)
(s1358 4.0)
(s1359 5.0)
(s1360 5.0)
(s1361 2.0)
(s1363 4.0)
(s1364 5.0)
(s1365 5.0)
(s1366 2.0)
(s1368 4.0)
(s1369 5.0)
(s1370 5.0)
(s1371 2.0)
(s1373 4.0)
(s1374 5.0)
(s1375 5.0)
(s1376 2.0)
(s1378 4.0)
(s1379 5.0)
(s1380 5.0)
(s1381 2.0)
(s1383 4.0)
(s1384 5.0)
(s1385 5.0)
(s1386 2.0)
(s1388 4.0)
(s1389 5.0)
(s1390 5.0)
(s1391 2.0)
(s1393 4.0)
(s1394 5.0)
(s1395 5.0)
(s1396 2.0)
(s1398 4.0)
(s1399 5.0)
(s1400 5.0)
(s1401 2.0)
(s1403 4.0)
(s1404 5.0)
(s1405 5.0)
(s1406 2.0)
(s1408 4.0)
(s1409 5.0)
(s1410 5.0)
(s1411 2.0)
(s1413 4.0)
(s1414 5.0)
(s1415 5.0)
(s1416 2.0)
(s1418 4.0)
(s1419 5.0)
(s1420 5.0)
(s1421 2.0)
(s1423 4.0)
(s1424 5.0)
(s1425 5.0)
(s1426 2.0)
(s1428 4.0)
(s1429 5.0)
(s1430 5.0)
(s1431 2.0)
(s1433 4.0)
(s1434 5.0)
(s1435 5.0)
(s1436 2.0)
(s1438 4.0)
(s1439 5.0)
(s1440 5.0)
(s1441 2.0)
(s1443 4.0)
(s1444 5.0)
(s1445 5.0)
(s1446 2.0)
(s1448 4.0)
(s1449 5.0)
(s1450 5.0)
(s1451 2.0)
(s1453 4.0)
(s1454 5.0)
(s1455 5.0)
(s1456 2.0)
(s1458 4.0)
(s1459 5.0)
(s1460 5.0)
(s1461 2.0)
(s1463 4.0)
(s1464 5.0)
(s1465 5.0)
(s1466 2.0)
(s1468 4.0)
(s1469 5.0)
(s1470 5.0)
(s1471 2.0)
(s1473 4.0)
(s1474 5.0)
(s1475 5.0)
(s1476 2.0)
(s1478 4.0)
(s1479 5.0)
(s1480 5.0)
(s1481 2.0)
(s1483 4.0)
(s1484 5.0)
(s1485 5.0)
(s1486 2.0)
(s1488 4.0)
(s1489 5.0)
(s1490 5.0)
(s1491 2.0)
(s1493 4.0)
(s1494 5.0)
(s1495 5.0)
(s1496 2.0)
(s1498 4.0)
(s1499 5.0)
(s1500 5.0)
(s1501 2.0)
(s1503 4.0)
(s1504 5.0)
(s1505 5.0)
(s1506 2.0)
(s1508 4.0)
(s1509 5.0)
(s1510 5.0)
(s1511 2.0)
(s1513 4.0)
(s1514 5.0)
(s1515 5.0)
(s1516 2.0)
(s1518 4.0)
(s1519 5.0)
(s1520 5.0)
(s1521 2.0)
(s1523 4.0)
(s1524 5.0)
(s1525 5.0)
(s1526 2.0)
(s1528 4.0)
(s1529 5.0)
(s1530 5.0)
(s1531 2.0)
(s1533 4.0)
(s1534 5.0)
(s1535 5.0)
(s1536 2.0)
(s1538 4.0)
(s1539 5.0)
(s1540 5.0)
(s1541 2.0)
(s1543 4.0)
(s1544 5.0)
(s1545 5.0)
(s1546 2.0)
(s1548 4.0)
(s1549 5.0)
(s1550 5.0)
(s1551 2.0)
(s1553 4.0)
(s1554 5.0)
(s1555 5.0)
(s1556 2.0)
(s1558 4.0)
(s1559 5.0)
(s1560 5.0)
(s1561 2.0)
(s1563 4.0)
(s1564 5.0)
(s1565 5.0)
(s1566 2.0)
(s1568 4.0)
(s1569 5.0)
(s1570 5.0)
(s1571 2.0)
(s1573 4.0)
(s1574 5.0)
(s1575 5.0)
(s1576 2.0)
(s1578 4.0)
(s1579 5.0)
(s1580 5.0)
(s1581 2.0)
(s1583 4.0)
(s1584 5.0)
(s1585 5.0)
(s1586 2.0)
(s1588 4.0)
(s1589 5.0)
(s1590 5.0)
(s1591 2.0)
(s1593 4.0)
(s1594 5.0)
(s1595 5.0)
(s1596 2.0)
(s1598 4.0)
(s1599 5.0)
(s1600 5.0)
(s1601 2.0)
(s1603 4.0)
(s1604 5.0)
(s1605 5.0)
(s1606 2.0)
(s1608 4.0)
(s1609 5.0)
(s1610 5.0)
(s1611 2.0)
(s1613 4.0)
(s1614 5.0)
(s1615 5.0)
(s1616 2.0)
(s1618 4.0)
(s1619 5.0)
(s1620 5.0)
(s1621 2.0)
(s1623 4.0)
(s1624 5.0)
(s1625 5.0)
(s1626 2.0)
(s1628 4.0)
(s1629 5.0)
(s1630 5.0)
(s1631 2.0)
(s1633 4.0)
(s1634 5.0)
(s1635 5.0)
(s1636 2.0)
(s1638 4.0)
(s1639 5.0)
(s1640 5.0)
(s1641 2.0)
(s1643 4.0)
(s1644 5.0)
(s1645 5.0)
(s1646 2.0)
(s1648 4.0)
(s1649 5.0)
(s1650 5.0)
(s1651 2.0)
(s1653 4.0)
(s1654 5.0)
(s1655 5.0)
(s1656 2.0)
(s1658 4.0)
(s1659 5.0)
(s1660 5.0)
(s1661 2.0)
(s1663 4.0)
(s1664 5.0)
(s1665 5.0)
(s1666 2.0)
(s1668 4.0)
(s1669 5.0)
(s1670 5.0)
(s1671 2.0)
(s1673 4.0)
(s1674 5.0)
(s1675 5.0)
(s1676 2.0)
(s1678 4.0)
(s1679 5.0)
(s1680 5.0)
(s1681 2.0)
(s1683 4.0)
(s1684 5.0)
(s1685 5.0)
(s1686 2.0)
(s1688 4.0)
(s1689 5.0)
(s1690 5.0)
(s1691 2.0)
(s1693 4.0)
(s1694 5.0)
(s1695 5.0)
(s1696 2.0)
(s1698 4.0)
(s1699 5.0)
(s1700 5.0)
(s1701 2.0)
(s1703 4.0)
(s1704 5.0)
(s1705 5.0)
(s1706 2.0)
(s1708 4.0)
(s1709 5.0)
(s1710 5.0)
(s1711 2.0)
(s1713 4.0)
(s1714 5.0)
(s1715 5.0)
(s1716 2.0)
(s1718 4.0)
(s1719 5.0)
(s1720 5.0)
(s1721 2.0)
(s1723 4.0)
(s1724 5.0)
(s1725 5.0)
(s1726 2.0)
(s1728 4.0)
(s1729 5.0)
(s1730 5.0)
(s1731 2.0)
(s1733 4.0)
(s1734 5.0)
(s1735 5.0)
(s1736 2.0)
(s1738 4.0)
(s1739 5.0)
(s1740 5.0)
(s1741 2.0)
(s1743 4.0)
(s1744 5.0)
(s1745 5.0)
(s1746 2.0)
(s1748 4.0)
(s1749 5.0)
(s1750 5.0)
(s1751 2.0)
(s1753 4.0)
(s1754 5.0)
(s1755 5.0)
(s1756 2.0)
(s1758 4.0)
(s1759 5.0)
(s1760 5.0)
(s1761 2.0)
(s1763 4.0)
(s1764 5.0)
(s1765 5.0)
(s1766 2.0)
(s1768 4.0)
(s1769 5.0)
(s1770 5.0)
(s1771 2.0)
(s1773 4.0)
(s1774 5.0)
(s1775 5.0)
(s1776 2.0)
(s1778 4.0)
(s1779 5.0)
(s1780 5.0)
(s1781 2.0)
(s1783 4.0)
(s1784 5.0)
(s1785 5.0)
(s1786 2.0)
(s1788 4.0)
(s1789 5.0)
(s1790 5.0)
(s1791 2.0)
(s1793 4.0)
(s1794 5.0)
(s1795 5.0)
(s1796 2.0)
(s1798 4.0)
(s1799 5.0)
(s1800 5.0)
(s1801 2.0)
(s1803 4.0)
(s1804 5.0)
(s1805 5.0)
(s1806 2.0)
(s1808 4.0)
(s1809 5.0)
(s1810 5.0)
(s1811 2.0)
(s1813 4.0)
(s1814 5.0)
(s1815 5.0)
(s1816 2.0)
(s1818 4.0)
(s1819 5.0)
(s1820 5.0)
(s1821 2.0)
(s1823 4.0)
(s1824 5.0)
(s1825 5.0)
(s1826 2.0)
(s1828 4.0)
(s1829 5.0)
(s1830 5.0)
(s1831 2.0)
(s1833 4.0)
(s1834 5.0)
(s1835 5.0)
(s1836 2.0)
(s1838 4.0)
(s1839 5.0)
(s1840 5.0)
(s1841 2.0)
(s1843 4.0)
(s1844 5.0)
(s1845 5.0)
(s1846 2.0)
(s1848 4.0)
(s1849 5.0)
(s1850 5.0)
(s1851 2.0)
(s1853 4.0)
(s1854 5.0)
(s1855 5.0)
(s1856 2.0)
(s1858 4.0)
(s1859 5.0)
(s1860 5.0)
(s1861 2.0)
(s1863 4.0)
(s1864 5.0)
(s1865 5.0)
(s1866 2.0)
(s1868 4.0)
(s1869 5.0)
(s1870 5.0)
(s1871 2.0)
(s1873 4.0)
(s1874 5.0)
(s1875 5.0)
(s1876 2.0)
(s1878 4.0)
(s1879 5.0)
(s1880 5.0)
(s1881 2.0)
(s1883 4.0)
(s1884 5.0)
(s1885 5.0)
(s1886 2.0)
(s1888 4.0)
(s1889 5.0)
(s1890 5.0)
(s1891 2.0)
(s1893 4.0)
(s1894 5.0)
(s1895 5.0)
(s1896 2.0)
(s1898 4.0)
(s1899 5.0)
(s1900 5.0)
(s1901 2.0)
(s1903 4.0)
(s1904 5.0)
(s1905 5.0)
(s1906 2.0)
(s1908 4.0)
(s1909 5.0)
(s1910 5.0)
(s1911 2.0)
(s1913 4.0)
(s1914 5.0)
(s1915 5.0)
(s1916 2.0)
(s1918 4.0)
(s1919 5.0)
(s1920 5.0)
(s1921 2.0)
(s1923 4.0)
(s1924 5.0)
(s1925 5.0)
(s1926 2.0)
(s1928 4.0)
(s1929 5.0)
(s1930 5.0)
(s1931 2.0)
(s1933 4.0)
(s1934 5.0)
(s1935 5.0)
(s1936 2.0)
(s1938 4.0)
(s1939 5.0)
(s1940 5.0)
(s1941 2.0)
(s1943 4.0)
(s1944 5.0)
(s1945 5.0)
(s1946 2.0)
(s1948 4.0)
(s1949 5.0)
(s1950 5.0)
(s1951 2.0)
(s1953 4.0)
(s1954 5.0)
(s1955 5.0)
(s1956 2.0)
(s1958 4.0)
(s1959 5.0)
(s1960 5.0)
(s1961 2.0)
(s1963 4.0)
(s1964 5.0)
(s1965 5.0)
(s1966 2.0)
(s1968 4.0)
(s1969 5.0)
(s1970 5.0)
(s1971 2.0)
(s1973 4.0)
(s1974 5.0)
(s1975 5.0)
(s1976 2.0)
(s1978 4.0)
(s1979 5.0)
(s1980 5.0)
(s1981 2.0)
(s1983 4.0)
(s1984 5.0)
(s1985 5.0)
(s1986 2.0)
(s1988 4.0)
(s1989 5.0)
(s1990 5.0)
(s1991 2.0)
(s1993 4.0)
(s1994 5.0)
(s1995 5.0)
(s1996 2.0)
(s1998 4.0)
(s1999 5.0)
(s2000 5.0)
(s2001 2.0)
(s2003 4.0)
(s2004 5.0)
(s2005 5.0)
(s2006 2.0)
(s2008 4.0)
(s2009 5.0)
(s2010 5.0)
(s2011 2.0)
(s2013 4.0)
(s2014 5.0)
(s2015 5.0)
(s2016 2.0)
(s2018 4.0)
(s2019 5.0)
(s2020 5.0)
(s2021 2.0)
(s2023 4.0)
(s2024 5.0)
(s2025 5.0)
(s2026 2.0)
(s2028 4.0)
(s2029 5.0)
(s2030 5.0)
(s2031 2.0)
(s2033 4.0)
(s2034 5.0)
(s2035 5.0)
(s2036 2.0)
(s2038 4.0)
(s2039 5.0)
(s2040 5.0)
(s2041 2.0)
(s2043 4.0)
(s2044 5.0)
(s2045 5.0)
(s2046 2.0)
(s2048 4.0)
(s2049 5.0)
(s2050 5.0)
(s2051 2.0)
(s2053 4.0)
(s2054 5.0)
(s2055 5.0)
(s2056 2.0)
(s2058 4.0)
(s2059 5.0)
(s2060 5.0)
(s2061 2.0)
(s2063 4.0)
(s2064 5.0)
(s2065 5.0)
(s2066 2.0)
(s2068 4.0)
(s2069 5.0)
(s2070 5.0)
(s2071 2.0)
(s2073 4.0)
(s2074 5.0)
(s2075 5.0)
(s2076 2.0)
(s2078 4.0)
(s2079 5.0)
(s2080 5.0)
(s2081 2.0)
(s2083 4.0)
(s2084 5.0)
(s2085 5.0)
(s2086 2.0)
(s2088 4.0)
(s2089 5.0)
(s2090 5.0)
(s2091 2.0)
(s2093 4.0)
(s2094 5.0)
(s2095 5.0)
(s2096 2.0)
(s2098 4.0)
(s2099 5.0)
(s2100 5.0)
(s2101 2.0)
(s2103 4.0)
(s2104 5.0)
(s2105 5.0)
(s2106 2.0)
(s2108 4.0)
(s2109 5.0)
(s2110 5.0)
(s2111 2.0)
(s2113 4.0)
(s2114 5.0)
(s2115 5.0)
(s2116 2.0)
(s2118 4.0)
(s2119 5.0)
(s2120 5.0)
(s2121 2.0)
(s2123 4.0)
(s2124 5.0)
(s2125 5.0)
(s2126 2.0)
(s2128 4.0)
(s2129 5.0)
(s2130 5.0)
(s2131 2.0)
(s2133 4.0)
(s2134 5.0)
(s2135 5.0)
(s2136 2.0)
(s2138 4.0)
(s2139 5.0)
(s2140 5.0)
(s2141 2.0)
(s2143 4.0)
(s2144 5.0)
(s2145 5.0)
(s2146 2.0)
(s2148 4.0)
(s2149 5.0)
(s2150 5.0)
(s2151 2.0)
(s2153 4.0)
(s2154 5.0)
(s2155 5.0)
(s2156 2.0)
(s2158 4.0)
(s2159 5.0)
(s2160 5.0)
(s2161 2.0)
(s2163 4.0)
(s2164 5.0)
(s2165 5.0)
(s2166 2.0)
(s2168 4.0)
(s2169 5.0)
(s2170 5.0)
(s2171 2.0)
(s2173 4.0)
(s2174 5.0)
(s2175 5.0)
(s2176 2.0)
(s2178 4.0)
(s2179 5.0)
(s2180 5.0)
(s2181 2.0)
(s2183 4.0)
(s2184 5.0)
(s2185 5.0)
(s2186 2.0)
(s2188 4.0)
(s2189 5.0)
(s2190 5.0)
(s2191 2.0)
(s2193 4.0)
(s2194 5.0)
(s2195 5.0)
(s2196 2.0)
(s2198 4.0)
(s2199 5.0)
(s2200 5.0)
(s2201 2.0)
(s2203 4.0)
(s2204 5.0)
(s2205 5.0)
(s2206 2.0)
(s2208 4.0)
(s2209 5.0)
(s2210 5.0)
(s2211 2.0)
(s2213 4.0)
(s2214 5.0)
(s2215 5.0)
(s2216 2.0)
(s2218 4.0)
(s2219 5.0)
(s2220 5.0)
(s2221 2.0)
(s2223 4.0)
(s2224 5.0)
(s2225 5.0)
(s2226 2.0)
(s2228 4.0)
(s2229 5.0)
(s2230 5.0)
(s2231 2.0)
(s2233 4.0)
(s2234 5.0)
(s2235 5.0)
(s2236 2.0)
(s2238 4.0)
(s2239 5.0)
(s2240 5.0)
(s2241 2.0)
(s2243 4.0)
(s2244 5.0)
(s2245 5.0)
(s2246 2.0)
(s2248 4.0)
(s2249 5.0)
(s2250 5.0)
(s2251 2.0)
(s2253 4.0)
(s2254 5.0)
(s2255 5.0)
(s2256 2.0)
(s2258 4.0)
(s2259 5.0)
(s2260 5.0)
(s2261 2.0)
(s2263 4.0)
(s2264 5.0)
(s2265 5.0)
(s2266 2.0)
(s2268 4.0)
(s2269 5.0)
(s2270 5.0)
(s2271 2.0)
(s2273 4.0)
(s2274 5.0)
(s2275 5.0)
(s2276 2.0)
(s2278 4.0)
(s2279 5.0)
(s2280 5.0)
(s2281 2.0)
(s2283 4.0)
(s2284 5.0)
(s2285 5.0)
(s2286 2.0)
(s2288 4.0)
(s2289 5.0)
(s2290 5.0)
(s2291 2.0)
(s2293 4.0)
(s2294 5.0)
(s2295 5.0)
(s2296 2.0)
(s2298 4.0)
(s2299 5.0)
(s2300 5.0)
(s2301 2.0)
(s2303 4.0)
(s2304 5.0)
(s2305 5.0)
(s2306 2.0)
(s2308 4.0)
(s2309 5.0)
(s2310 5.0)
(s2311 2.0)
(s2313 4.0)
(s2314 5.0)
(s2315 5.0)
(s2316 2.0)
(s2318 4.0)
(s2319 5.0)
(s2320 5.0)
(s2321 2.0)
(s2323 4.0)
(s2324 5.0)
(s2325 5.0)
(s2326 2.0)
(s2328 4.0)
(s2329 5.0)
(s2330 5.0)
(s2331 2.0)
(s2333 4.0)
(s2334 5.0)
(s2335 5.0)
(s2336 2.0)
(s2338 4.0)
(s2339 5.0)
(s2340 5.0)
(s2341 2.0)
(s2343 4.0)
(s2344 5.0)
(s2345 5.0)
(s2346 2.0)
(s2348 4.0)
(s2349 5.0)
(s2350 5.0)
(s2351 2.0)
(s2353 4.0)
(s2354 5.0)
(s2355 5.0)
(s2356 2.0)
(s2358 4.0)
(s2359 5.0)
(s2360 5.0)
(s2361 2.0)
(s2363 4.0)
(s2364 5.0)
(s2365 5.0)
(s2366 2.0)
(s2368 4.0)
(s2369 5.0)
(s2370 5.0)
(s2371 2.0)
(s2373 4.0)
(s2374 5.0)
(s2375 5.0)
(s2376 2.0)
(s2378 4.0)
(s2379 5.0)
(s2380 5.0)
(s2381 2.0)
(s2383 4.0)
(s2384 5.0)
(s2385 5.0)
(s2386 2.0)
(s2388 4.0)
(s2389 5.0)
(s2390 5.0)
(s2391 2.0)
(s2393 4.0)
(s2394 5.0)
(s2395 5.0)
(s2396 2.0)
(s2398 4.0)
(s2399 5.0)
(s2400 5.0)
(s2401 2.0)
(s2403 4.0)
(s2404 5.0)
(s2405 5.0)
(s2406 2.0)
(s2408 4.0)
(s2409 5.0)
(s2410 5.0)
(s2411 2.0)
(s2413 4.0)
(s2414 5.0)
(s2415 5.0)
(s2416 2.0)
(s2418 4.0)
(s2419 5.0)
(s2420 5.0)
(s2421 2.0)
(s2423 4.0)
(s2424 5.0)
(s2425 5.0)
(s2426 2.0)
(s2428 4.0)
(s2429 5.0)
(s2430 5.0)
(s2431 2.0)
(s2433 4.0)
(s2434 5.0)
(s2435 5.0)
(s2436 2.0)
(s2438 4.0)
(s2439 5.0)
(s2440 5.0)
(s2441 2.0)
(s2443 4.0)
(s2444 5.0)
(s2445 5.0)
(s2446 2.0)
(s2448 4.0)
(s2449 5.0)
(s2450 5.0)
(s2451 2.0)
(s2453 4.0)
(s2454 5.0)
(s2455 5.0)
(s2456 2.0)
(s2458 4.0)
(s2459 5.0)
(s2460 5.0)
(s2461 2.0)
(s2463 4.0)
(s2464 5.0)
(s2465 5.0)
(s2466 2.0)
(s2468 4.0)
(s2469 5.0)
(s2470 5.0)
(s2471 2.0)
(s2473 4.0)
(s2474 5.0)
(s2475 5.0)
(s2476 2.0)
(s2478 4.0)
(s2479 5.0)
(s2480 5.0)
(s2481 2.0)
(s2483 4.0)
(s2484 5.0)
(s2485 5.0)
(s2486 2.0)
(s2488 4.0)
(s2489 5.0)
(s2490 5.0)
(s2491 2.0)
(s2493 4.0)
(s2494 5.0)
(s2495 5.0)
(s2496 2.0)
(s2498 4.0)
(s2499 5.0)
(s2500 5.0)
(s2501 2.0)
(s2503 4.0)
(s2504 5.0)
(s2505 5.0)
(s2506 2.0)
(s2508 4.0)
(s2509 5.0)
(s2510 5.0)
(s2511 2.0)
(s2513 4.0)
(s2514 5.0)
(s2515 5.0)
(s2516 2.0)
(s2518 4.0)
(s2519 5.0)
(s2520 5.0)
(s2521 2.0)
(s2523 4.0)
(s2524 5.0)
(s2525 5.0)
(s2526 2.0)
(s2528 4.0)
(s2529 5.0)
(s2530 5.0)
(s2531 2.0)
(s2533 4.0)
(s2534 5.0)
(s2535 5.0)
(s2536 2.0)
(s2538 4.0)
(s2539 5.0)
(s2540 5.0)
(s2541 2.0)
(s2543 4.0)
(s2544 5.0)
(s2545 5.0)
(s2546 2.0)
(s2548 4.0)
(s2549 5.0)
(s2550 5.0)
(s2551 2.0)
(s2553 4.0)
(s2554 5.0)
(s2555 5.0)
(s2556 2.0)
(s2558 4.0)
(s2559 5.0)
(s2560 5.0)
(s2561 2.0)
(s2563 4.0)
(s2564 5.0)
(s2565 5.0)
(s2566 2.0)
(s2568 4.0)
(s2569 5.0)
(s2570 5.0)
(s2571 2.0)
(s2573 4.0)
(s2574 5.0)
(s2575 5.0)
(s2576 2.0)
(s2578 4.0)
(s2579 5.0)
(s2580 5.0)
(s2581 2.0)
(s2583 4.0)
(s2584 5.0)
(s2585 5.0)
(s2586 2.0)
(s2588 4.0)
(s2589 5.0)
(s2590 5.0)
(s2591 2.0)
(s2593 4.0)
(s2594 5.0)
(s2595 5.0)
(s2596 2.0)
(s2598 4.0)
(s2599 5.0)
(s2600 5.0)
(s2601 2.0)
(s2603 4.0)
(s2604 5.0)
(s2605 5.0)
(s2606 2.0)
(s2608 4.0)
(s2609 5.0)
(s2610 5.0)
(s2611 2.0)
(s2613 4.0)
(s2614 5.0)
(s2615 5.0)
(s2616 2.0)
(s2618 4.0)
(s2619 5.0)
(s2620 5.0)
(s2621 2.0)
(s2623 4.0)
(s2624 5.0)
(s2625 5.0)
(s2626 2.0)
(s2628 4.0)
(s2629 5.0)
(s2630 5.0)
(s2631 2.0)
(s2633 4.0)
(s2634 5.0)
(s2635 5.0)
(s2636 2.0)
(s2638 4.0)
(s2639 5.0)
(s2640 5.0)
(s2641 2.0)
(s2643 4.0)
(s2644 5.0)
(s2645 5.0)
(s2646 2.0)
(s2648 4.0)
(s2649 5.0)
(s2650 5.0)
(s2651 2.0)
(s2653 4.0)
(s2654 5.0)
(s2655 5.0)
(s2656 2.0)
(s2658 4.0)
(s2659 5.0)
(s2660 5.0)
(s2661 2.0)
(s2663 4.0)
(s2664 5.0)
(s2665 5.0)
(s2666 2.0)
(s2668 4.0)
(s2669 5.0)
(s2670 5.0)
(s2671 2.0)
(s2673 4.0)
(s2674 5.0)
(s2675 5.0)
(s2676 2.0)
(s2678 4.0)
(s2679 5.0)
(s2680 5.0)
(s2681 2.0)
(s2683 4.0)
(s2684 5.0)
(s2685 5.0)
(s2686 2.0)
(s2688 4.0)
(s2689 5.0)
(s2690 5.0)
(s2691 2.0)
(s2693 4.0)
(s2694 5.0)
(s2695 5.0)
(s2696 2.0)
(s2698 4.0)
(s2699 5.0)
(s2700 5.0)
(s2701 2.0)
(s2703 4.0)
(s2704 5.0)
(s2705 5.0)
(s2706 2.0)
(s2708 4.0)
(s2709 5.0)
(s2710 5.0)
(s2711 2.0)
(s2713 4.0)
(s2714 5.0)
(s2715 5.0)
(s2716 2.0)
(s2718 4.0)
(s2719 5.0)
(s2720 5.0)
(s2721 2.0)
(s2723 4.0)
(s2724 5.0)
(s2725 5.0)
(s2726 2.0)
(s2728 4.0)
(s2729 5.0)
(s2730 5.0)
(s2731 2.0)
(s2733 4.0)
(s2734 5.0)
(s2735 5.0)
(s2736 2.0)
(s2738 4.0)
(s2739 5.0)
(s2740 5.0)
(s2741 2.0)
(s2743 4.0)
(s2744 5.0)
(s2745 5.0)
(s2746 2.0)
(s2748 4.0)
(s2749 5.0)
(s2750 5.0)
(s2751 2.0)
(s2753 4.0)
(s2754 5.0)
(s2755 5.0)
(s2756 2.0)
(s2758 4.0)
(s2759 5.0)
(s2760 5.0)
(s2761 2.0)
(s2763 4.0)
(s2764 5.0)
(s2765 5.0)
(s2766 2.0)
(s2768 4.0)
(s2769 5.0)
(s2770 5.0)
(s2771 2.0)
(s2773 4.0)
(s2774 5.0)
(s2775 5.0)
(s2776 2.0)
(s2778 4.0)
(s2779 5.0)
(s2780 5.0)
(s2781 2.0)
(s2783 4.0)
(s2784 5.0)
(s2785 5.0)
(s2786 2.0)
(s2788 4.0)
(s2789 5.0)
(s2790 5.0)
(s2791 2.0)
(s2793 4.0)
(s2794 5.0)
(s2795 5.0)
(s2796 2.0)
(s2798 4.0)
(s2799 5.0)
(s2800 5.0)
(s2801 2.0)
(s2803 4.0)
(s2804 5.0)
(s2805 5.0)
(s2806 2.0)
(s2808 4.0)
(s2809 5.0)
(s2810 5.0)
(s2811 2.0)
(s2813 4.0)
(s2814 5.0)
(s2815 5.0)
(s2816 2.0)
(s2818 4.0)
(s2819 5.0)
(s2820 5.0)
(s2821 2.0)
(s2823 4.0)
(s2824 5.0)
(s2825 5.0)
(s2826 2.0)
(s2828 4.0)
(s2829 5.0)
(s2830 5.0)
(s2831 2.0)
(s2833 4.0)
(s2834 5.0)
(s2835 5.0)
(s2836 2.0)
(s2838 4.0)
(s2839 5.0)
(s2840 5.0)
(s2841 2.0)
(s2843 4.0)
(s2844 5.0)
(s2845 5.0)
(s2846 2.0)
(s2848 4.0)
(s2849 5.0)
(s2850 5.0)
(s2851 2.0)
(s2853 4.0)
(s2854 5.0)
(s2855 5.0)
(s2856 2.0)
(s2858 4.0)
(s2859 5.0)
(s2860 5.0)
(s2861 2.0)
(s2863 4.0)
(s2864 5.0)
(s2865 5.0)
(s2866 2.0)
(s2868 4.0)
(s2869 5.0)
(s2870 5.0)
(s2871 2.0)
(s2873 4.0)
(s2874 5.0)
(s2875 5.0)
(s2876 2.0)
(s2878 4.0)
(s2879 5.0)
(s2880 5.0)
(s2881 2.0)
(s2883 4.0)
(s2884 5.0)
(s2885 5.0)
(s2886 2.0)
(s2888 4.0)
(s2889 5.0)
(s2890 5.0)
(s2891 2.0)
(s2893 4.0)
(s2894 5.0)
(s2895 5.0)
(s2896 2.0)
(s2898 4.0)
(s2899 5.0)
(s2900 5.0)
(s2901 2.0)
(s2903 4.0)
(s2904 5.0)
(s2905 5.0)
(s2906 2.0)
(s2908 4.0)
(s2909 5.0)
(s2910 5.0)
(s2911 2.0)
(s2913 4.0)
(s2914 5.0)
(s2915 5.0)
(s2916 2.0)
(s2918 4.0)
(s2919 5.0)
(s2920 5.0)
(s2921 2.0)
(s2923 4.0)
(s2924 5.0)
(s2925 5.0)
(s2926 2.0)
(s2928 4.0)
(s2929 5.0)
(s2930 5.0)
(s2931 2.0)
(s2933 4.0)
(s2934 5.0)
(s2935 5.0)
(s2936 2.0)
(s2938 4.0)
(s2939 5.0)
(s2940 5.0)
(s2941 2.0)
(s2943 4.0)
(s2944 5.0)
(s2945 5.0)
(s2946 2.0)
(s2948 4.0)
(s2949 5.0)
(s2950 5.0)
(s2951 2.0)
(s2953 4.0)
(s2954 5.0)
(s2955 5.0)
(s2956 2.0)
(s2958 4.0)
(s2959 5.0)
(s2960 5.0)
(s2961 2.0)
(s2963 4.0)
(s2964 5.0)
(s2965 5.0)
(s2966 2.0)
(s2968 4.0)
(s2969 5.0)
(s2970 5.0)
(s2971 2.0)
(s2973 4.0)
(s2974 5.0)
(s2975 5.0)
(s2976 2.0)
(s2978 4.0)
(s2979 5.0)
(s2980 5.0)
(s2981 2.0)
(s2983 4.0)
(s2984 5.0)
(s2985 5.0)
(s2986 2.0)
(s2988 4.0)
(s2989 5.0)
(s2990 5.0)
(s2991 2.0)
(s2993 4.0)
(s2994 5.0)
(s2995 5.0)
(s2996 2.0)
(s2998 4.0)
(s2999 5.0)
(s3000 5.0)
(s3001 2.0)
(s3003 4.0)
(s3004 5.0)
(s3005 5.0)
(s3006 2.0)
(s3008 4.0)
(s3009 5.0)
(s3010 5.0)
(s3011 2.0)
(s3013 4.0)
(s3014 5.0)
(s3015 5.0)
(s3016 2.0)
(s3018 4.0)
(s3019 5.0)
(s3020 5.0)
(s3021 2.0)
(s3023 4.0)
(s3024 5.0)
(s3025 5.0)
(s3026 2.0)
(s3028 4.0)
(s3029 5.0)
(s3030 5.0)
(s3031 2.0)
(s3033 4.0)
(s3034 5.0)
(s3035 5.0)
(s3036 2.0)
(s3038 4.0)
(s3039 5.0)
(s3040 5.0)
(s3041 2.0)
(s3043 4.0)
(s3044 5.0)
(s3045 5.0)
(s3046 2.0)
(s3048 4.0)
(s3049 5.0)
(s3050 5.0)
(s3051 2.0)
(s3053 4.0)
(s3054 5.0)
(s3055 5.0)
(s3056 2.0)
(s3058 4.0)
(s3059 5.0)
(s3060 5.0)
(s3061 2.0)
(s3063 4.0)
(s3064 5.0)
(s3065 5.0)
(s3066 2.0)
(s3068 4.0)
(s3069 5.0)
(s3070 5.0)
(s3071 2.0)
(s3073 4.0)
(s3074 5.0)
(s3075 5.0)
(s3076 2.0)
(s3078 4.0)
(s3079 5.0)
(s3080 5.0)
(s3081 2.0)
(s3083 4.0)
(s3084 5.0)
(s3085 5.0)
(s3086 2.0)
(s3088 4.0)
(s3089 5.0)
(s3090 5.0)
(s3091 2.0)
(s3093 4.0)
(s3094 5.0)
(s3095 5.0)
(s3096 2.0)
(s3098 4.0)
(s3099 5.0)
(s3100 5.0)
(s3101 2.0)
(s3103 4.0)
(s3104 5.0)
(s3105 5.0)
(s3106 2.0)
(s3108 4.0)
(s3109 5.0)
(s3110 5.0)
(s3111 2.0)
(s3113 4.0)
(s3114 5.0)
(s3115 5.0)
(s3116 2.0)
(s3118 4.0)
(s3119 5.0)
(s3120 5.0)
(s3121 2.0)
(s3123 4.0)
(s3124 5.0)
(s3125 5.0)
(s3126 2.0)
(s3128 4.0)
(s3129 5.0)
(s3130 5.0)
(s3131 2.0)
(s3133 4.0)
(s3134 5.0)
(s3135 5.0)
(s3136 2.0)
(s3138 4.0)
(s3139 5.0)
(s3140 5.0)
(s3141 2.0)
(s3143 4.0)
(s3144 5.0)
(s3145 5.0)
(s3146 2.0)
(s3148 4.0)
(s3149 5.0)
(s3150 5.0)
(s3151 2.0)
(s3153 4.0)
(s3154 5.0)
(s3155 5.0)
(s3156 2.0)
(s3158 4.0)
(s3159 5.0)
(s3160 5.0)
(s3161 2.0)
(s3163 4.0)
(s3164 5.0)
(s3165 5.0)
(s3166 2.0)
(s3168 4.0)
(s3169 5.0)
(s3170 5.0)
(s3171 2.0)
(s3173 4.0)
(s3174 5.0)
(s3175 5.0)
(s3176 2.0)
(s3178 4.0)
(s3179 5.0)
(s3180 5.0)
(s3181 2.0)
(s3183 4.0)
(s3184 5.0)
(s3185 5.0)
(s3186 2.0)
(s3188 4.0)
(s3189 5.0)
(s3190 5.0)
(s3191 2.0)
(s3193 4.0)
(s3194 5.0)
(s3195 5.0)
(s3196 2.0)
(s3198 4.0)
(s3199 5.0)
(s3200 5.0)
(s3201 2.0)
(s3203 4.0)
(s3204 5.0)
(s3205 5.0)
(s3206 2.0)
(s3208 4.0)
(s3209 5.0)
(s3210 5.0)
(s3211 2.0)
(s3213 4.0)
(s3214 5.0)
(s3215 5.0)
(s3216 2.0)
(s3218 4.0)
(s3219 5.0)
(s3220 5.0)
(s3221 2.0)
(s3223 4.0)
(s3224 5.0)
(s3225 5.0)
(s3226 2.0)
(s3228 4.0)
(s3229 5.0)
(s3230 5.0)
(s3231 2.0)
(s3233 4.0)
(s3234 5.0)
(s3235 5.0)
(s3236 2.0)
(s3238 4.0)
(s3239 5.0)
(s3240 5.0)
(s3241 2.0)
(s3243 4.0)
(s3244 5.0)
(s3245 5.0)
(s3246 2.0)
(s3248 4.0)
(s3249 5.0)
(s3250 5.0)
(s3251 2.0)
(s3253 4.0)
(s3254 5.0)
(s3255 5.0)
(s3256 2.0)
(s3258 4.0)
(s3259 5.0)
(s3260 5.0)
(s3261 2.0)
(s3263 4.0)
(s3264 5.0)
(s3265 5.0)
(s3266 2.0)
(s3268 4.0)
(s3269 5.0)
(s3270 5.0)
(s3271 2.0)
(s3273 4.0)
(s3274 5.0)
(s3275 5.0)
(s3276 2.0)
(s3278 4.0)
(s3279 5.0)
(timeout
s3280 org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20078 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20093 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 43872ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 43878ms
[2025-06-02 07:40:21] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 07:40:22] [INFO ] Implicit Places using invariants in 1003 ms returned []
[2025-06-02 07:40:22] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 07:40:26] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2025-06-02 07:40:26] [INFO ] Implicit Places using invariants and state equation in 4130 ms returned []
Implicit Place search using SMT with State Equation took 5136 ms to find 0 implicit places.
Running 6000 sub problems to find dead transitions.
[2025-06-02 07:40:26] [INFO ] Invariant cache hit.
[2025-06-02 07:40:26] [INFO ] State equation strengthened by 1000 read => feed constraints.
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30066 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Error getting values : (error "Error writing to Z3 solver: java.io.IOException: Broken pipe")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30066 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 63858ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 63864ms
Finished structural reductions in LTL mode , in 1 iterations and 113023 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Stuttering acceptance computed with spot in 70 ms :[(AND (NOT p1) (NOT p0)), (AND (NOT p1) (NOT p0))]
Running random walk in product with property : JoinFreeModules-PT-1000-LTLCardinality-13
Stuttering criterion allowed to conclude after 0 steps with 0 reset in 0 ms.
FORMULA JoinFreeModules-PT-1000-LTLCardinality-13 FALSE TECHNIQUES STUTTER_TEST
Treatment of property JoinFreeModules-PT-1000-LTLCardinality-13 finished in 113116 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202505121319/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(X((G(p0) U p1)))'
Support contains 3 out of 5000 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 132 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2025-06-02 07:41:30] [INFO ] Invariant cache hit.
[2025-06-02 07:41:30] [INFO ] State equation strengthened by 1000 read => feed constraints.
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20071 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20071 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 43878ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 43884ms
[2025-06-02 07:42:14] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 07:42:15] [INFO ] Implicit Places using invariants in 990 ms returned []
[2025-06-02 07:42:15] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 07:42:19] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2025-06-02 07:42:19] [INFO ] Implicit Places using invariants and state equation in 4177 ms returned []
Implicit Place search using SMT with State Equation took 5177 ms to find 0 implicit places.
Running 6000 sub problems to find dead transitions.
[2025-06-02 07:42:19] [INFO ] Invariant cache hit.
[2025-06-02 07:42:19] [INFO ] State equation strengthened by 1000 read => feed constraints.
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30077 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30064 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 63865ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 63871ms
Finished structural reductions in LTL mode , in 1 iterations and 113078 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Stuttering acceptance computed with spot in 117 ms :[(NOT p1), (NOT p1), true, (NOT p0)]
Running random walk in product with property : JoinFreeModules-PT-1000-LTLCardinality-14
Stuttering criterion allowed to conclude after 0 steps with 0 reset in 1 ms.
FORMULA JoinFreeModules-PT-1000-LTLCardinality-14 FALSE TECHNIQUES STUTTER_TEST
Treatment of property JoinFreeModules-PT-1000-LTLCardinality-14 finished in 113221 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202505121319/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(X((F(p0)&&(p1||X(G(p0))))))'
Support contains 3 out of 5000 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 130 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2025-06-02 07:43:23] [INFO ] Invariant cache hit.
[2025-06-02 07:43:23] [INFO ] State equation strengthened by 1000 read => feed constraints.
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Error getting values : (error "Error writing to Z3 solver: java.io.IOException: Broken pipe")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20067 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Starting Z3 with timeout 20.0 s and query timeout 2000.0 ms
Error getting values : (error "ParserException while parsing response: ((s0 5)
(s1 2)
(s3 4)
(s4 5)
(s5 5)
(s6 2)
(s8 4)
(s9 5)
(s10 5)
(s11 2)
(s13 4)
(s14 5)
(s15 5)
(s16 2)
(s18 4)
(s19 5)
(s20 5)
(s21 2)
(s23 4)
(s24 5)
(s25 5)
(s26 2)
(s28 4)
(s29 5)
(s30 5)
(s31 2)
(s33 4)
(s34 5)
(s35 5)
(s36 2)
(s38 4)
(s39 5)
(s40 5)
(s41 2)
(s43 4)
(s44 5)
(s45 5)
(s46 2)
(s48 4)
(s49 5)
(s50 5)
(s51 2)
(s53 4)
(s54 5)
(s55 5)
(s56 2)
(s58 4)
(s59 5)
(s60 5)
(s61 2)
(s63 4)
(s64 5)
(s65 5)
(s66 2)
(s68 4)
(s69 5)
(s70 5)
(s71 2)
(s73 4)
(s74 5)
(s75 5)
(s76 2)
(s78 4)
(s79 5)
(s80 5)
(s81 2)
(s83 4)
(s84 5)
(s85 5)
(s86 2)
(s88 4)
(s89 5)
(s90 5)
(s91 2)
(s93 4)
(s94 5)
(s95 5)
(s96 2)
(s98 4)
(s99 5)
(s100 5)
(s101 2)
(s103 4)
(s104 5)
(s105 5)
(s106 2)
(s108 4)
(s109 5)
(s110 5)
(s111 2)
(s113 4)
(s114 5)
(s115 5)
(s116 2)
(s118 4)
(s119 5)
(s120 5)
(s121 2)
(s123 4)
(s124 5)
(s125 5)
(s126 2)
(s128 4)
(s129 5)
(s130 5)
(s131 2)
(s133 4)
(s134 5)
(s135 5)
(s136 2)
(s138 4)
(s139 5)
(s140 5)
(s141 2)
(s143 4)
(s144 5)
(s145 5)
(s146 2)
(s148 4)
(s149 5)
(s150 5)
(s151 2)
(s153 4)
(s154 5)
(s155 5)
(s156 2)
(s158 4)
(s159 5)
(s160 5)
(s161 2)
(s163 4)
(s164 5)
(s165 5)
(s166 2)
(s168 4)
(s169 5)
(s170 5)
(s171 2)
(s173 4)
(s174 5)
(s175 5)
(s176 2)
(s178 4)
(s179 5)
(s180 5)
(s181 2)
(s183 4)
(s184 5)
(s185 5)
(s186 2)
(s188 4)
(s189 5)
(s190 5)
(s191 2)
(s193 4)
(s194 5)
(s195 5)
(s196 2)
(s198 4)
(s199 5)
(s200 5)
(s201 2)
(s203 4)
(s204 5)
(s205 5)
(s206 2)
(s208 4)
(s209 5)
(s210 5)
(s211 2)
(s213 4)
(s214 5)
(s215 5)
(s216 2)
(s218 4)
(s219 5)
(s220 5)
(s221 2)
(s223 4)
(s224 5)
(s225 5)
(s226 2)
(s228 4)
(s229 5)
(s230 5)
(s231 2)
(s233 4)
(s234 5)
(s235 5)
(s236 2)
(s238 4)
(s239 5)
(s240 5)
(s241 2)
(s243 4)
(s244 5)
(s245 5)
(s246 2)
(s248 4)
(s249 5)
(s250 5)
(s251 2)
(s253 4)
(s254 5)
(s255 5)
(s256 2)
(s258 4)
(s259 5)
(s260 5)
(s261 2)
(s263 4)
(s264 5)
(s265 5)
(s266 2)
(s268 4)
(s269 5)
(s270 5)
(s271 2)
(s273 4)
(s274 5)
(s275 5)
(s276 2)
(s278 4)
(s279 5)
(s280 5)
(s281 2)
(s283 4)
(s284 5)
(s285 5)
(s286 2)
(s288 4)
(s289 5)
(s290 5)
(s291 2)
(s293 4)
(s294 5)
(s295 5)
(s296 2)
(s298 4)
(s299 5)
(s300 5)
(s301 2)
(s303 4)
(s304 5)
(s305 5)
(s306 2)
(s308 4)
(s309 5)
(s310 5)
(s311 2)
(s313 4)
(s314 5)
(s315 5)
(s316 2)
(s318 4)
(s319 5)
(s320 5)
(s321 2)
(s323 4)
(s324 5)
(s325 5)
(s326 2)
(s328 4)
(s329 5)
(s330 5)
(s331 2)
(s333 4)
(s334 5)
(s335 5)
(s336 2)
(s338 4)
(s339 5)
(s340 5)
(s341 2)
(s343 4)
(s344 5)
(s345 5)
(s346 2)
(s348 4)
(s349 5)
(s350 5)
(s351 2)
(s353 4)
(s354 5)
(s355 5)
(s356 2)
(s358 4)
(s359 5)
(s360 5)
(s361 2)
(s363 4)
(s364 5)
(s365 5)
(s366 2)
(s368 4)
(s369 5)
(s370 5)
(s371 2)
(s373 4)
(s374 5)
(s375 5)
(s376 2)
(s378 4)
(s379 5)
(s380 5)
(s381 2)
(s383 4)
(s384 5)
(s385 5)
(s386 2)
(s388 4)
(s389 5)
(s390 5)
(s391 2)
(s393 4)
(s394 5)
(s395 5)
(s396 2)
(s398 4)
(s399 5)
(s400 5)
(s401 2)
(s403 4)
(s404 5)
(s405 5)
(s406 2)
(s408 4)
(s409 5)
(s410 5)
(s411 2)
(s413 4)
(s414 5)
(s415 5)
(s416 2)
(s418 4)
(s419 5)
(s420 5)
(s421 2)
(s423 4)
(s424 5)
(s425 5)
(s426 2)
(s428 4)
(s429 5)
(s430 5)
(s431 2)
(s433 4)
(s434 5)
(s435 5)
(s436 2)
(s438 4)
(s439 5)
(s440 5)
(s441 2)
(s443 4)
(s444 5)
(s445 5)
(s446 2)
(s448 4)
(s449 5)
(s450 5)
(s451 2)
(s453 4)
(s454 5)
(s455 5)
(s456 2)
(s458 4)
(s459 5)
(s460 5)
(s461 2)
(s463 4)
(s464 5)
(s465 5)
(s466 2)
(s468 4)
(s469 5)
(s470 5)
(s471 2)
(s473 4)
(s474 5)
(s475 5)
(s476 2)
(s478 4)
(s479 5)
(s480 5)
(s481 2)
(s483 4)
(s484 5)
(s485 5)
(s486 2)
(s488 4)
(s489 5)
(s490 5)
(s491 2)
(s493 4)
(s494 5)
(s495 5)
(s496 2)
(s498 4)
(s499 5)
(s500 5)
(s501 2)
(s503 4)
(s504 5)
(s505 5)
(s506 2)
(s508 4)
(s509 5)
(s510 5)
(s511 2)
(s513 4)
(s514 5)
(s515 5)
(s516 2)
(s518 4)
(s519 5)
(s520 5)
(s521 2)
(s523 4)
(s524 5)
(s525 5)
(s526 2)
(s528 4)
(s529 5)
(s530 5)
(s531 2)
(s533 4)
(s534 5)
(s535 5)
(s536 2)
(s538 4)
(s539 5)
(s540 5)
(s541 2)
(s543 4)
(s544 5)
(s545 5)
(s546 2)
(s548 4)
(s549 5)
(s550 5)
(s551 2)
(s553 4)
(s554 5)
(s555 5)
(s556 2)
(s558 4)
(s559 5)
(s560 5)
(s561 2)
(s563 4)
(s564 5)
(s565 5)
(s566 2)
(s568 4)
(s569 5)
(s570 5)
(s571 2)
(s573 4)
(s574 5)
(s575 5)
(s576 2)
(s578 4)
(s579 5)
(s580 5)
(s581 2)
(s583 4)
(s584 5)
(s585 5)
(s586 2)
(s588 4)
(s589 5)
(s590 5)
(s591 2)
(s593 4)
(s594 5)
(s595 5)
(s596 2)
(s598 4)
(s599 5)
(s600 5)
(s601 2)
(s603 4)
(s604 5)
(s605 5)
(s606 2)
(s608 4)
(s609 5)
(s610 5)
(s611 2)
(s613 4)
(s614 5)
(s615 5)
(s616 2)
(s618 4)
(s619 5)
(s620 5)
(s621 2)
(s623 4)
(s624 5)
(s625 5)
(s626 2)
(s628 4)
(s629 5)
(s630 5)
(s631 2)
(s633 4)
(s634 5)
(s635 5)
(s636 2)
(s638 4)
(s639 5)
(s640 5)
(s641 2)
(s643 4)
(s644 5)
(s645 5)
(s646 2)
(s648 4)
(s649 5)
(s650 5)
(s651 2)
(s653 4)
(s654 5)
(s655 5)
(s656 2)
(s658 4)
(s659 5)
(s660 5)
(s661 2)
(s663 4)
(s664 5)
(s665 5)
(s666 2)
(s668 4)
(s669 5)
(s670 5)
(s671 2)
(s673 4)
(s674 5)
(s675 5)
(s676 2)
(s678 4)
(s679 5)
(s680 5)
(s681 2)
(s683 4)
(s684 5)
(s685 5)
(s686 2)
(s688 4)
(s689 5)
(s690 5)
(s691 2)
(s693 4)
(s694 5)
(s695 5)
(s696 2)
(s698 4)
(s699 5)
(s700 5)
(s701 2)
(s703 4)
(s704 5)
(s705 5)
(s706 2)
(s708 4)
(s709 5)
(s710 5)
(s711 2)
(s713 4)
(s714 5)
(s715 5)
(s716 2)
(s718 4)
(s719 5)
(s720 5)
(s721 2)
(s723 4)
(s724 5)
(s725 5)
(s726 2)
(s728 4)
(s729 5)
(s730 5)
(s731 2)
(s733 4)
(s734 5)
(s735 5)
(s736 2)
(s738 4)
(s739 5)
(s740 5)
(s741 2)
(s743 4)
(s744 5)
(s745 5)
(s746 2)
(s748 4)
(s749 5)
(s750 5)
(s751 2)
(s753 4)
(s754 5)
(s755 5)
(s756 2)
(s758 4)
(s759 5)
(s760 5)
(s761 2)
(s763 4)
(s764 5)
(s765 5)
(s766 2)
(s768 4)
(s769 5)
(s770 5)
(s771 2)
(s773 4)
(s774 5)
(s775 5)
(s776 2)
(s778 4)
(s779 5)
(s780 5)
(s781 2)
(s783 4)
(s784 5)
(s785 5)
(s786 2)
(s788 4)
(s789 5)
(s790 5)
(s791 2)
(s793 4)
(s794 5)
(s795 5)
(s796 2)
(s798 4)
(s799 5)
(s800 5)
(s801 2)
(s803 4)
(s804 5)
(s805 5)
(s806 2)
(s808 4)
(s809 5)
(s810 5)
(s811 2)
(s813 4)
(s814 5)
(s815 5)
(s816 2)
(s818 4)
(s819 5)
(s820 5)
(s821 2)
(s823 4)
(s824 5)
(s825 5)
(s826 2)
(s828 4)
(s829 5)
(s830 5)
(s831 2)
(s833 4)
(s834 5)
(s835 5)
(s836 2)
(s838 4)
(s839 5)
(s840 5)
(s841 2)
(s843 4)
(s844 5)
(s845 5)
(s846 2)
(s848 4)
(s849 5)
(s850 5)
(s851 2)
(s853 4)
(s854 5)
(s855 5)
(s856 2)
(s858 4)
(s859 5)
(s860 5)
(s861 2)
(s863 4)
(s864 5)
(s865 5)
(s866 2)
(s868 4)
(s869 5)
(s870 5)
(s871 2)
(s873 4)
(s874 5)
(s875 5)
(s876 2)
(s878 4)
(s879 5)
(s880 5)
(s881 2)
(s883 4)
(s884 5)
(s885 5)
(s886 2)
(s888 4)
(s889 5)
(s890 5)
(s891 2)
(s893 4)
(s894 5)
(s895 5)
(s896 2)
(s898 4)
(s899 5)
(s900 5)
(s901 2)
(s903 4)
(s904 5)
(s905 5)
(s906 2)
(s908 4)
(s909 5)
(s910 5)
(s911 2)
(s913 4)
(s914 5)
(s915 5)
(s916 2)
(s918 4)
(s919 5)
(s920 5)
(s921 2)
(s923 4)
(s924 5)
(s925 5)
(s926 2)
(s928 4)
(s929 5)
(s930 5)
(s931 2)
(s933 4)
(s934 5)
(s935 5)
(s936 2)
(s938 4)
(s939 5)
(s940 5)
(s941 2)
(s943 4)
(s944 5)
(s945 5)
(s946 2)
(s948 4)
(s949 5)
(s950 5)
(s951 2)
(s953 4)
(s954 5)
(s955 5)
(s956 2)
(s958 4)
(s959 5)
(s960 5)
(s961 2)
(s963 4)
(s964 5)
(s965 5)
(s966 2)
(s968 4)
(s969 5)
(s970 5)
(s971 2)
(s973 4)
(s974 5)
(s975 5)
(s976 2)
(s978 4)
(s979 5)
(s980 5)
(s981 2)
(s983 4)
(s984 5)
(s985 5)
(s986 2)
(s988 4)
(s989 5)
(s990 5)
(s991 2)
(s993 4)
(s994 5)
(s995 5)
(s996 2)
(s998 4)
(s999 5)
(s1000 5)
(s1001 2)
(s1003 4)
(s1004 5)
(s1005 5)
(s1006 2)
(s1008 4)
(s1009 5)
(s1010 5)
(s1011 2)
(s1013 4)
(s1014 5)
(s1015 5)
(s1016 2)
(s1018 4)
(s1019 5)
(s1020 5)
(s1021 2)
(s1023 4)
(s1024 5)
(s1025 5)
(s1026 2)
(s1028 4)
(s1029 5)
(s1030 5)
(s1031 2)
(s1033 4)
(s1034 5)
(s1035 5)
(s1036 2)
(s1038 4)
(s1039 5)
(s1040 5)
(s1041 2)
(s1043 4)
(s1044 5)
(s1045 5)
(s1046 2)
(s1048 4)
(s1049 5)
(s1050 5)
(s1051 2)
(s1053 4)
(s1054 5)
(s1055 5)
(s1056 2)
(s1058 4)
(s1059 5)
(s1060 5)
(s1061 2)
(s1063 4)
(s1064 5)
(s1065 5)
(s1066 2)
(s1068 4)
(s1069 5)
(s1070 5)
(s1071 2)
(s1073 4)
(s1074 5)
(s1075 5)
(s1076 2)
(s1078 4)
(s1079 5)
(s1080 5)
(s1081 2)
(s1083 4)
(s1084 5)
(s1085 5)
(s1086 2)
(s1088 4)
(s1089 5)
(s1090 5)
(s1091 2)
(s1093 4)
(s1094 5)
(s1095 5)
(s1096 2)
(s1098 4)
(s1099 5)
(s1100 5)
(s1101 2)
(s1103 4)
(s1104 5)
(s1105 5)
(s1106 2)
(s1108 4)
(s1109 5)
(s1110 5)
(s1111 2)
(s1113 4)
(s1114 5)
(s1115 5)
(s1116 2)
(s1118 4)
(s1119 5)
(s1120 5)
(s1121 2)
(s1123 4)
(s1124 5)
(s1125 5)
(s1126 2)
(s1128 4)
(s1129 5)
(s1130 5)
(s1131 2)
(s1133 4)
(s1134 5)
(s1135 5)
(s1136 2)
(s1138 4)
(s1139 5)
(s1140 5)
(s1141 2)
(s1143 4)
(s1144 5)
(s1145 5)
(s1146 2)
(s1148 4)
(s1149 5)
(s1150 5)
(s1151 2)
(s1153 4)
(s1154 5)
(s1155 5)
(s1156 2)
(s1158 4)
(s1159 5)
(s1160 5)
(s1161 2)
(s1163 4)
(s1164 5)
(s1165 5)
(s1166 2)
(s1168 4)
(s1169 5)
(s1170 5)
(s1171 2)
(s1173 4)
(s1174 5)
(s1175 5)
(s1176 2)
(s1178 4)
(s1179 5)
(s1180 5)
(s1181 2)
(s1183 4)
(s1184 5)
(s1185 5)
(s1186 2)
(s1188 4)
(s1189 5)
(s1190 5)
(s1191 2)
(s1193 4)
(s1194 5)
(s1195 5)
(s1196 2)
(s1198 4)
(s1199 5)
(s1200 5)
(s1201 2)
(s1203 4)
(s1204 5)
(s1205 5)
(s1206 2)
(s1208 4)
(s1209 5)
(s1210 5)
(s1211 2)
(s1213 4)
(s1214 5)
(s1215 5)
(s1216 2)
(s1218 4)
(s1219 5)
(s1220 5)
(s1221 2)
(s1223 4)
(s1224 5)
(s1225 5)
(s1226 2)
(s1228 4)
(s1229 5)
(s1230 5)
(s1231 2)
(s1233 4)
(s1234 5)
(s1235 5)
(s1236 2)
(s1238 4)
(s1239 5)
(s1240 5)
(s1241 2)
(s1243 4)
(s1244 5)
(s1245 5)
(s1246 2)
(s1248 4)
(s1249 5)
(s1250 5)
(s1251 2)
(s1253 4)
(s1254 5)
(s1255 5)
(s1256 2)
(s1258 4)
(s1259 5)
(s1260 5)
(s1261 2)
(s1263 4)
(s1264 5)
(s1265 5)
(s1266 2)
(s1268 4)
(s1269 5)
(s1270 5)
(s1271 2)
(s1273 4)
(s1274 5)
(s1275 5)
(s1276 2)
(s1278 4)
(s1279 5)
(s1280 5)
(s1281 2)
(s1283 4)
(s1284 5)
(s1285 5)
(s1286 2)
(s1288 4)
(s1289 5)
(s1290 5)
(s1291 2)
(s1293 4)
(s1294 5)
(s1295 5)
(s1296 2)
(s1298 4)
(s1299 5)
(s1300 5)
(s1301 2)
(s1303 4)
(s1304 5)
(s1305 5)
(s1306 2)
(s1308 4)
(s1309 5)
(s1310 5)
(s1311 2)
(s1313 4)
(s1314 5)
(s1315 5)
(s1316 2)
(s1318 4)
(s1319 5)
(s1320 5)
(s1321 2)
(s1323 4)
(s1324 5)
(s1325 5)
(s1326 2)
(s1328 4)
(s1329 5)
(s1330 5)
(s1331 2)
(s1333 4)
(s1334 5)
(s1335 5)
(s1336 2)
(s1338 4)
(s1339 5)
(s1340 5)
(s1341 2)
(s1343 4)
(s1344 5)
(s1345 5)
(s1346 2)
(s1348 4)
(s1349 5)
(s1350 5)
(s1351 2)
(s1353 4)
(s1354 5)
(s1355 5)
(s1356 2)
(s1358 4)
(s1359 5)
(s1360 5)
(s1361 2)
(s1363 4)
(s1364 5)
(s1365 5)
(s1366 2)
(s1368 4)
(s1369 5)
(s1370 5)
(s1371 2)
(s1373 4)
(s1374 5)
(s1375 5)
(s1376 2)
(s1378 4)
(s1379 5)
(s1380 5)
(s1381 2)
(s1383 4)
(s1384 5)
(s1385 5)
(s1386 2)
(s1388 4)
(s1389 5)
(s1390 5)
(s1391 2)
(s1393 4)
(s1394 5)
(s1395 5)
(s1396 2)
(s1398 4)
(s1399 5)
(s1400 5)
(s1401 2)
(s1403 4)
(s1404 5)
(s1405 5)
(s1406 2)
(s1408 4)
(s1409 5)
(s1410 5)
(s1411 2)
(s1413 4)
(s1414 5)
(s1415 5)
(s1416 2)
(s1418 4)
(s1419 5)
(s1420 5)
(s1421 2)
(s1423 4)
(s1424 5)
(s1425 5)
(s1426 2)
(s1428 4)
(s1429 5)
(s1430 5)
(s1431 2)
(s1433 4)
(s1434 5)
(s1435 5)
(s1436 2)
(s1438 4)
(s1439 5)
(s1440 5)
(s1441 2)
(s1443 4)
(s1444 5)
(s1445 5)
(s1446 2)
(s1448 4)
(s1449 5)
(s1450 5)
(s1451 2)
(s1453 4)
(s1454 5)
(s1455 5)
(s1456 2)
(s1458 4)
(s1459 5)
(s1460 5)
(s1461 2)
(s1463 4)
(s1464 5)
(s1465 5)
(s1466 2)
(s1468 4)
(s1469 5)
(s1470 5)
(s1471 2)
(s1473 4)
(s1474 5)
(s1475 5)
(s1476 2)
(s1478 4)
(s1479 5)
(s1480 5)
(s1481 2)
(s1483 4)
(s1484 5)
(s1485 5)
(s1486 2)
(s1488 4)
(s1489 5)
(s1490 5)
(s1491 2)
(s1493 4)
(s1494 5)
(s1495 5)
(s1496 2)
(s1498 4)
(s1499 5)
(s1500 5)
(s1501 2)
(s1503 4)
(s1504 5)
(s1505 5)
(s1506 2)
(s1508 4)
(s1509 5)
(s1510 5)
(s1511 2)
(s1513 4)
(s1514 5)
(s1515 5)
(s1516 2)
(s1518 4)
(s1519 5)
(s1520 5)
(s1521 2)
(s1523 4)
(s1524 5)
(s1525 5)
(s1526 2)
(s1528 4)
(s1529 5)
(s1530 5)
(s1531 2)
(s1533 4)
(s1534 5)
(s1535 5)
(s1536 2)
(s1538 4)
(s1539 5)
(s1540 5)
(s1541 2)
(s1543 4)
(s1544 5)
(s1545 5)
(s1546 2)
(s1548 4)
(s1549 5)
(s1550 5)
(s1551 2)
(s1553 4)
(s1554 5)
(s1555 5)
(s1556 2)
(s1558 4)
(s1559 5)
(s1560 5)
(s1561 2)
(s1563 4)
(s1564 5)
(s1565 5)
(s1566 2)
(s1568 4)
(s1569 5)
(s1570 5)
(s1571 2)
(s1573 4)
(s1574 5)
(s1575 5)
(s1576 2)
(s1578 4)
(s1579 5)
(s1580 5)
(s1581 2)
(s1583 4)
(s1584 5)
(s1585 5)
(s1586 2)
(s1588 4)
(s1589 5)
(s1590 5)
(s1591 2)
(s1593 4)
(s1594 5)
(s1595 5)
(s1596 2)
(s1598 4)
(s1599 5)
(s1600 5)
(s1601 2)
(s1603 4)
(s1604 5)
(s1605 5)
(s1606 2)
(s1608 4)
(s1609 5)
(s1610 5)
(s1611 2)
(s1613 4)
(s1614 5)
(s1615 5)
(s1616 2)
(s1618 4)
(s1619 5)
(s1620 5)
(s1621 2)
(s1623 4)
(s1624 5)
(s1625 5)
(s1626 2)
(s1628 4)
(s1629 5)
(s1630 5)
(s1631 2)
(s1633 4)
(s1634 5)
(s1635 5)
(s1636 2)
(s1638 4)
(s1639 5)
(s1640 5)
(s1641 2)
(s1643 4)
(s1644 5)
(s1645 5)
(s1646 2)
(s1648 4)
(s1649 5)
(s1650 5)
(s1651 2)
(s1653 4)
(s1654 5)
(s1655 5)
(s1656 2)
(s1658 4)
(s1659 5)
(s1660 5)
(s1661 2)
(s1663 4)
(s1664 5)
(s1665 5)
(s1666 2)
(s1668 4)
(s1669 5)
(s1670 5)
(s1671 2)
(s1673 4)
(s1674 5)
(s1675 5)
(s1676 2)
(s1678 4)
(s1679 5)
(s1680 5)
(s1681 2)
(s1683 4)
(s1684 5)
(s1685 5)
(s1686 2)
(s1688 4)
(s1689 5)
(s1690 5)
(s1691 2)
(s1693 4)
(s1694 5)
(s1695 5)
(s1696 2)
(s1698 4)
(s1699 5)
(s1700 5)
(s1701 2)
(s1703 4)
(s1704 5)
(s1705 5)
(s1706 2)
(s1708 4)
(s1709 5)
(s1710 5)
(s1711 2)
(s1713 4)
(s1714 5)
(s1715 5)
(s1716 2)
(s1718 4)
(s1719 5)
(s1720 5)
(s1721 2)
(s1723 4)
(s1724 5)
(s1725 5)
(s1726 2)
(s1728 4)
(s1729 5)
(s1730 5)
(s1731 2)
(s1733 4)
(s1734 5)
(s1735 5)
(s1736 2)
(s1738 4)
(s1739 5)
(s1740 5)
(s1741 2)
(s1743 4)
(s1744 5)
(s1745 5)
(s1746 2)
(s1748 4)
(s1749 5)
(s1750 5)
(s1751 2)
(s1753 4)
(s1754 5)
(s1755 5)
(s1756 2)
(s1758 4)
(s1759 5)
(s1760 5)
(s1761 2)
(s1763 4)
(s1764 5)
(s1765 5)
(s1766 2)
(s1768 4)
(s1769 5)
(s1770 5)
(s1771 2)
(s1773 4)
(s1774 5)
(s1775 5)
(s1776 2)
(s1778 4)
(s1779 5)
(s1780 5)
(s1781 2)
(s1783 4)
(s1784 5)
(s1785 5)
(s1786 2)
(s1788 4)
(s1789 5)
(s1790 5)
(s1791 2)
(s1793 4)
(s1794 5)
(s1795 5)
(s1796 2)
(s1798 4)
(s1799 5)
(s1800 5)
(s1801 2)
(s1803 4)
(s1804 5)
(s1805 5)
(s1806 2)
(s1808 4)
(s1809 5)
(s1810 5)
(s1811 2)
(s1813 4)
(s1814 5)
(s1815 5)
(s1816 2)
(s1818 4)
(s1819 5)
(s1820 5)
(s1821 2)
(s1823 4)
(s1824 5)
(s1825 5)
(s1826 2)
(s1828 4)
(s1829 5)
(s1830 5)
(s1831 2)
(s1833 4)
(s1834 5)
(s1835 5)
(s1836 2)
(s1838 4)
(s1839 5)
(s1840 5)
(s1841 2)
(s1843 4)
(s1844 5)
(s1845 5)
(s1846 2)
(s1848 4)
(s1849 5)
(s1850 5)
(s1851 2)
(s1853 4)
(s1854 5)
(s1855 5)
(s1856 2)
(s1858 4)
(s1859 5)
(s1860 5)
(s1861 2)
(s1863 4)
(s1864 5)
(s1865 5)
(s1866 2)
(s1868 4)
(s1869 5)
(s1870 5)
(s1871 2)
(s1873 4)
(s1874 5)
(s1875 5)
(s1876 2)
(s1878 4)
(s1879 5)
(s1880 5)
(s1881 2)
(s1883 4)
(s1884 5)
(s1885 5)
(s1886 2)
(s1888 4)
(s1889 5)
(s1890 5)
(s1891 2)
(s1893 4)
(s1894 5)
(s1895 5)
(s1896 2)
(s1898 4)
(s1899 5)
(s1900 5)
(s1901 2)
(s1903 4)
(s1904 5)
(s1905 5)
(s1906 2)
(s1908 4)
(s1909 5)
(s1910 5)
(s1911 2)
(s1913 4)
(s1914 5)
(s1915 5)
(s1916 2)
(s1918 4)
(s1919 5)
(s1920 5)
(s1921 2)
(s1923 4)
(s1924 5)
(s1925 5)
(s1926 2)
(s1928 4)
(s1929 5)
(s1930 5)
(s1931 2)
(s1933 4)
(s1934 5)
(s1935 5)
(s1936 2)
(s1938 4)
(s1939 5)
(s1940 5)
(s1941 2)
(s1943 4)
(s1944 5)
(s1945 5)
(s1946 2)
(s1948 4)
(s1949 5)
(s1950 5)
(s1951 2)
(s1953 4)
(s1954 5)
(s1955 5)
(s1956 2)
(s1958 4)
(s1959 5)
(s1960 5)
(s1961 2)
(s1963 4)
(s1964 5)
(s1965 5)
(s1966 2)
(s1968 4)
(s1969 5)
(s1970 5)
(s1971 2)
(s1973 4)
(s1974 5)
(s1975 5)
(s1976 2)
(s1978 4)
(s1979 5)
(s1980 5)
(s1981 2)
(s1983 4)
(s1984 5)
(s1985 5)
(s1986 2)
(s1988 4)
(s1989 5)
(s1990 5)
(s1991 2)
(s1993 4)
(s1994 5)
(s1995 5)
(s1996 2)
(s1998 4)
(s1999 5)
(s2000 5)
(s2001 2)
(s2003 4)
(s2004 5)
(s2005 5)
(s2006 2)
(s2008 4)
(s2009 5)
(s2010 5)
(s2011 2)
(s2013 4)
(s2014 5)
(s2015 5)
(s2016 2)
(s2018 4)
(s2019 5)
(s2020 5)
(s2021 2)
(s2023 4)
(s2024 5)
(s2025 5)
(s2026 2)
(s2028 4)
(s2029 5)
(s2030 5)
(s2031 2)
(s2033 4)
(s2034 5)
(s2035 5)
(s2036 2)
(s2038 4)
(s2039 5)
(s2040 5)
(s2041 2)
(s2043 4)
(s2044 5)
(s2045 5)
(s2046 2)
(s2048 4)
(s2049 5)
(s2050 5)
(s2051 2)
(s2053 4)
(s2054 5)
(s2055 5)
(s2056 2)
(s2058 4)
(s2059 5)
(s2060 5)
(s2061 2)
(s2063 4)
(s2064 5)
(s2065 5)
(s2066 2)
(s2068 4)
(s2069 5)
(s2070 5)
(s2071 2)
(s2073 4)
(s2074 5)
(s2075 5)
(s2076 2)
(s2078 4)
(s2079 5)
(s2080 5)
(s2081 2)
(s2083 4)
(s2084 5)
(s2085 5)
(s2086 2)
(s2088 4)
(s2089 5)
(s2090 5)
(s2091 2)
(s2093 4)
(s2094 5)
(s2095 5)
(s2096 2)
(s2098 4)
(s2099 5)
(s2100 5)
(s2101 2)
(s2103 4)
(s2104 5)
(s2105 5)
(s2106 2)
(s2108 4)
(s2109 5)
(s2110 5)
(s2111 2)
(s2113 4)
(s2114 5)
(s2115 5)
(s2116 2)
(s2118 4)
(s2119 5)
(s2120 5)
(s2121 2)
(s2123 4)
(s2124 5)
(s2125 5)
(s2126 2)
(s2128 4)
(s2129 5)
(s2130 5)
(s2131 2)
(s2133 4)
(s2134 5)
(s2135 5)
(s2136 2)
(s2138 4)
(s2139 5)
(s2140 5)
(s2141 2)
(s2143 4)
(s2144 5)
(s2145 5)
(s2146 2)
(s2148 4)
(s2149 5)
(s2150 5)
(s2151 2)
(s2153 4)
(s2154 5)
(s2155 5)
(s2156 2)
(s2158 4)
(s2159 5)
(s2160 5)
(s2161 2)
(s2163 4)
(s2164 5)
(s2165 5)
(s2166 2)
(s2168 4)
(s2169 5)
(s2170 5)
(s2171 2)
(s2173 4)
(s2174 5)
(s2175 5)
(s2176 2)
(s2178 4)
(s2179 5)
(s2180 5)
(s2181 2)
(s2183 4)
(s2184 5)
(s2185 5)
(s2186 2)
(s2188 4)
(s2189 5)
(s2190 5)
(s2191 2)
(s2193 4)
(s2194 5)
(s2195 5)
(s2196 2)
(s2198 4)
(s2199 5)
(s2200 5)
(s2201 2)
(s2203 4)
(s2204 5)
(s2205 5)
(s2206 2)
(s2208 4)
(s2209 5)
(s2210 5)
(s2211 2)
(s2213 4)
(s2214 5)
(s2215 5)
(s2216 2)
(s2218 4)
(s2219 5)
(s2220 5)
(s2221 2)
(s2223 4)
(s2224 5)
(s2225 5)
(s2226 2)
(s2228 4)
(s2229 5)
(s2230 5)
(s2231 2)
(s2233 4)
(s2234 5)
(s2235 5)
(s2236 2)
(s2238 4)
(s2239 5)
(s2240 5)
(s2241 2)
(s2243 4)
(s2244 5)
(s2245 5)
(s2246 2)
(s2248 4)
(s2249 5)
(s2250 5)
(s2251 2)
(s2253 4)
(s2254 5)
(s2255 5)
(s2256 2)
(s2258 4)
(s2259 5)
(s2260 5)
(s2261 2)
(s2263 4)
(s2264 5)
(s2265 5)
(s2266 2)
(s2268 4)
(s2269 5)
(s2270 5)
(s2271 2)
(s2273 4)
(s2274 5)
(s2275 5)
(s2276 2)
(s2278 4)
(s2279 5)
(s2280 5)
(s2281 2)
(s2283 4)
(s2284 5)
(s2285 5)
(s2286 2)
(s2288 4)
(s2289 5)
(s2290 5)
(s2291 2)
(s2293 4)
(s2294 5)
(s2295 5)
(s2296 2)
(s2298 4)
(s2299 5)
(s2300 5)
(s2301 2)
(s2303 4)
(s2304 5)
(s2305 5)
(s2306 2)
(s2308 4)
(s2309 5)
(s2310 5)
(s2311 2)
(s2313 4)
(s2314 5)
(s2315 5)
(s2316 2)
(s2318 4)
(s2319 5)
(s2320 5)
(s2321 2)
(s2323 4)
(s2324 5)
(s2325 5)
(s2326 2)
(s2328 4)
(s2329 5)
(s2330 5)
(s2331 2)
(s2333 4)
(s2334 5)
(s2335 5)
(s2336 2)
(s2338 4)
(s2339 5)
(s2340 5)
(s2341 2)
(s2343 4)
(s2344 5)
(s2345 5)
(s2346 2)
(s2348 4)
(s2349 5)
(s2350 5)
(s2351 2)
(s2353 4)
(s2354 5)
(s2355 5)
(s2356 2)
(s2358 4)
(s2359 5)
(s2360 5)
(s2361 2)
(s2363 4)
(s2364 5)
(s2365 5)
(s2366 2)
(s2368 4)
(s2369 5)
(s2370 5)
(s2371 2)
(s2373 4)
(s2374 5)
(s2375 5)
(s2376 2)
(s2378 4)
(s2379 5)
(s2380 5)
(s2381 2)
(s2383 4)
(s2384 5)
(s2385 5)
(s2386 2)
(s2388 4)
(s2389 5)
(s2390 5)
(s2391 2)
(s2393 4)
(s2394 5)
(s2395 5)
(s2396 2)
(s2398 4)
(s2399 5)
(s2400 5)
(s2401 2)
(s2403 4)
(s2404 5)
(s2405 5)
(s2406 2)
(s2408 4)
(s2409 5)
(s2410 5)
(s2411 2)
(s2413 4)
(s2414 5)
(s2415 5)
(s2416 2)
(s2418 4)
(s2419 5)
(s2420 5)
(s2421 2)
(s2423 4)
(s2424 5)
(s2425 5)
(s2426 2)
(s2428 4)
(s2429 5)
(s2430 5)
(s2431 2)
(s2433 4)
(s2434 5)
(s2435 5)
(s2436 2)
(s2438 4)
(s2439 5)
(s2440 5)
(s2441 2)
(s2443 4)
(s2444 5)
(s2445 5)
(s2446 2)
(s2448 4)
(s2449 5)
(s2450 5)
(s2451 2)
(s2453 4)
(s2454 5)
(s2455 5)
(s2456 2)
(s2458 4)
(s2459 5)
(s2460 5)
(s2461 2)
(s2463 4)
(s2464 5)
(s2465 5)
(s2466 2)
(s2468 4)
(s2469 5)
(s2470 5)
(s2471 2)
(s2473 4)
(s2474 5)
(s2475 5)
(s2476 2)
(s2478 4)
(s2479 5)
(s2480 5)
(s2481 2)
(s2483 4)
(s2484 5)
(s2485 5)
(s2486 2)
(s2488 4)
(s2489 5)
(s2490 5)
(s2491 2)
(s2493 4)
(s2494 5)
(s2495 5)
(s2496 2)
(s2498 4)
(s2499 5)
(s2500 5)
(s2501 2)
(s2503 4)
(s2504 5)
(s2505 5)
(s2506 2)
(s2508 4)
(s2509 5)
(s2510 5)
(s2511 2)
(s2513 4)
(s2514 5)
(s2515 5)
(s2516 2)
(s2518 4)
(s2519 5)
(s2520 5)
(s2521 2)
(s2523 4)
(s2524 5)
(s2525 5)
(s2526 2)
(s2528 4)
(s2529 5)
(s2530 5)
(s2531 2)
(s2533 4)
(s2534 5)
(s2535 5)
(s2536 2)
(s2538 4)
(s2539 5)
(s2540 5)
(s2541 2)
(s2543 4)
(s2544 5)
(s2545 5)
(s2546 2)
(s2548 4)
(s2549 5)
(s2550 5)
(s2551 2)
(s2553 4)
(s2554 5)
(s2555 5)
(s2556 2)
(s2558 4)
(s2559 5)
(s2560 5)
(s2561 2)
(s2563 4)
(s2564 5)
(s2565 5)
(s2566 2)
(s2568 4)
(s2569 5)
(s2570 5)
(s2571 2)
(s2573 4)
(s2574 5)
(s2575 5)
(s2576 2)
(s2578 4)
(s2579 5)
(s2580 5)
(s2581 2)
(s2583 4)
(s2584 5)
(s2585 5)
(s2586 2)
(s2588 4)
(s2589 5)
(s2590 5)
(s2591 2)
(s2593 4)
(s2594 5)
(s2595 5)
(s2596 2)
(s2598 4)
(s2599 5)
(s2600 5)
(s2601 2)
(s2603 4)
(s2604 5)
(s2605 5)
(s2606 2)
(s2608 4)
(s2609 5)
(s2610 5)
(s2611 2)
(s2613 4)
(s2614 5)
(s2615 5)
(s2616 2)
(s2618 4)
(s2619 5)
(s2620 5)
(s2621 2)
(s2623 4)
(s2624 5)
(s2625 5)
(s2626 2)
(s2628 4)
(s2629 5)
(s2630 5)
(s2631 2)
(s2633 4)
(s2634 5)
(s2635 5)
(s2636 2)
(s2638 4)
(s2639 5)
(s2640 5)
(s2641 2)
(s2643 4)
(s2644 5)
(s2645 5)
(s2646 2)
(s2648 4)
(s2649 5)
(s2650 5)
(s2651 2)
(s2653 4)
(s2654 5)
(s2655 5)
(s2656 2)
(s2658 4)
(s2659 5)
(s2660 5)
(s2661 2)
(s2663 4)
(s2664 5)
(s2665 5)
(s2666 2)
(s2668 4)
(s2669 5)
(s2670 5)
(s2671 2)
(s2673 4)
(s2674 5)
(s2675 5)
(s2676 2)
(s2678 4)
(s2679 5)
(s2680 5)
(s2681 2)
(s2683 4)
(s2684 5)
(s2685 5)
(s2686 2)
(s2688 4)
(s2689 5)
(s2690 5)
(s2691 2)
(s2693 4)
(s2694 5)
(s2695 5)
(s2696 2)
(s2698 4)
(s2699 5)
(s2700 5)
(s2701 2)
(s2703 4)
(s2704 5)
(s2705 5)
(s2706 2)
(s2708 4)
(s2709 5)
(s2710 5)
(s2711 2)
(s2713 4)
(s2714 5)
(s2715 5)
(s2716 2)
(s2718 4)
(s2719 5)
(s2720 5)
(s2721 2)
(s2723 4)
(s2724 5)
(s2725 5)
(s2726 2)
(s2728 4)
(s2729 5)
(s2730 5)
(s2731 2)
(s2733 4)
(s2734 5)
(s2735 5)
(s2736 2)
(s2738 4)
(s2739 5)
(s2740 5)
(s2741 2)
(s2743 4)
(s2744 5)
(s2745 5)
(s2746 2)
(s2748 4)
(s2749 5)
(s2750 5)
(s2751 2)
(s2753 4)
(s2754 5)
(s2755 5)
(s2756 2)
(s2758 4)
(s2759 5)
(s2760 5)
(s2761 2)
(s2763 4)
(s2764 5)
(s2765 5)
(s2766 2)
(s2768 4)
(s2769 5)
(s2770 5)
(s2771 2)
(s2773 4)
(s2774 5)
(s2775 5)
(s2776 2)
(s2778 4)
(s2779 5)
(s2780 5)
(s2781 2)
(s2783 4)
(s2784 5)
(s2785 5)
(s2786 2)
(s2788 4)
(s2789 5)
(s2790 5)
(s2791 2)
(s2793 4)
(s2794 5)
(s2795 5)
(s2796 2)
(s2798 4)
(s2799 5)
(s2800 5)
(s2801 2)
(s2803 4)
(s2804 5)
(s2805 5)
(s2806 2)
(s2808 4)
(s2809 5)
(s2810 5)
(s2811 2)
(s2813 4)
(s2814 5)
(s2815 5)
(s2816 2)
(s2818 4)
(s2819 5)
(s2820 5)
(s2821 2)
(s2823 4)
(s2824 5)
(s2825 5)
(s2826 2)
(s2828 4)
(s2829 5)
(s2830 5)
(s2831 2)
(s2833 4)
(s2834 5)
(s2835 5)
(s2836 2)
(s2838 4)
(s2839 5)
(s2840 5)
(s2841 2)
(s2843 4)
(s2844 5)
(s2845 5)
(s2846 2)
(s2848 4)
(s2849 5)
(s2850 5)
(s2851 2)
(s2853 4)
(s2854 5)
(s2855 5)
(s2856 2)
(s2858 4)
(s2859 5)
(s2860 5)
(s2861 2)
(s2863 4)
(s2864 5)
(s2865 5)
(s2866 2)
(s2868 4)
(s2869 5)
(s2870 5)
(s2871 2)
(s2873 4)
(s2874 5)
(s2875 5)
(s2876 2)
(s2878 4)
(s2879 5)
(s2880 5)
(s2881 2)
(s2883 4)
(s2884 5)
(s2885 5)
(s2886 2)
(s2888 4)
(s2889 5)
(s2890 5)
(s2891 2)
(s2893 4)
(s2894 5)
(s2895 5)
(s2896 2)
(s2898 4)
(s2899 5)
(s2900 5)
(s2901 2)
(s2903 4)
(s2904 5)
(s2905 5)
(s2906 2)
(s2908 4)
(s2909 5)
(s2910 5)
(s2911 2)
(s2913 4)
(s2914 5)
(s2915 5)
(s2916 2)
(s2918 4)
(s2919 5)
(s2920 5)
(s2921 2)
(s2923 4)
(s2924 5)
(s2925 5)
(s2926 2)
(s2928 4)
(s2929 5)
(s2930 5)
(s2931 2)
(s2933 4)
(s2934 5)
(s2935 5)
(s2936 2)
(s2938 4)
(s2939 5)
(s2940 5)
(s2941 2)
(s2943 4)
(s2944 5)
(s2945 5)
(s2946 2)
(s2948 4)
(s2949 5)
(s2950 5)
(s2951 2)
(s2953 4)
(s2954 5)
(s2955 5)
(s2956 2)
(s2958 4)
(s2959 5)
(s2960 5)
(s2961 2)
(s2963 4)
(s2964 5)
(s2965 5)
(s2966 2)
(s2968 4)
(s2969 5)
(s2970 5)
(s2971 2)
(s2973 4)
(s2974 5)
(s2975 5)
(s2976 2)
(s2978 4)
(s2979 5)
(s2980 5)
(s2981 2)
(s2983 4)
(s2984 5)
(s2985 5)
(s2986 2)
(s2988 4)
(s2989 5)
(s2990 5)
(s2991 2)
(s2993 4)
(s2994 5)
(s2995 5)
(s2996 2)
(s2998 4)
(s2999 5)
(s3000 5)
(s3001 2)
(s3003 4)
(s3004 5)
(s3005 5)
(s3006 2)
(s3008 4)
(s3009 5)
(s3010 5)
(s3011 2)
(s3013 4)
(s3014 5)
(s3015 5)
(s3016 2)
(s3018 4)
(s3019 5)
(s3020 5)
(s3021 2)
(s3023 4)
(s3024 5)
(s3025 5)
(s3026 2)
(s3028 4)
(s3029 5)
(s3030 5)
(s3031 2)
(s3033 4)
(s3034 5)
(s3035 5)
(s3036 2)
(s3038 4)
(s3039 5)
(s3040 5)
(s3041 2)
(s3043 4)
(s3044 5)
(s3045 5)
(s3046 2)
(s3048 4)
(s3049 5)
(s3050 5)
(s3051 2)
(s3053 4)
(s3054 5)
(s3055 5)
(s3056 2)
(s3058 4)
(s3059 5)
(s3060 5)
(s3061 2)
(s3063 4)
(s3064 5)
(s3065 5)
(s3066 2)
(s3068 4)
(s3069 5)
(s3070 5)
(s3071 2)
(s3073 4)
(s3074 5)
(s3075 5)
(s3076 2)
(s3078 4)
(s3079 5)
(s3080 5)
(s3081 2)
(s3083 4)
(s3084 5)
(s3085 5)
(s3086 2)
(s3088 4)
(s3089 5)
(s3090 5)
(s3091 2)
(s3093 4)
(s3094 5)
(s3095 5)
(s3096 2)
(s3098 4)
(s3099 5)
(s3100 5)
(s3101 2)
(s3103 4)
(s3104 5)
(s3105 5)
(s3106 2)
(s3108 4)
(s3109 5)
(s3110 5)
(s3111 2)
(s3113 4)
(s3114 5)
(s3115 5)
(s3116 2)
(s3118 4)
(s3119 5)
(s3120 5)
(s3121 2)
(s3123 4)
(s3124 5)
(s3125 5)
(s3126 2)
(s3128 4)
(s3129 5)
(s3130 5)
(s3131 2)
(s3133 4)
(s3134 5)
(s3135 5)
(s3136 2)
(s3138 4)
(s3139 5)
(s3140 5)
(s3141 2)
(s3143 4)
(s3144 5)
(s3145 5)
(s3146 2)
(s3148 4)
(s3149 5)
(s3150 5)
(s3151 2)
(s3153 4)
(s3154 5)
(s3155 5)
(s3156 2)
(s3158 4)
(s3159 5)
(s3160 5)
(s3161 2)
(s3163 4)
(s3164 5)
(s3165 5)
(s3166 2)
(s3168 4)
(s3169 5)
(s3170 5)
(s3171 2)
(s3173 4)
(s3174 5)
(s3175 5)
(s3176 2)
(s3178 4)
(s3179 5)
(s3180 5)
(s3181 2)
(s3183 4)
(s3184 5)
(s3185 5)
(s3186 2)
(s3188 4)
(s3189 5)
(s3190 5)
(s3191 2)
(s3193 4)
(s3194 5)
(s3195 5)
(s3196 2)
(s3198 4)
(s3199 5)
(s3200 5)
(s3201 2)
(s3203 4)
(s3204 5)
(s3205 5)
(s3206 2)
(s3208 4)
(s3209 5)
(s3210 5)
(s3211 2)
(s3213 4)
(s3214 5)
(s3215 5)
(s3216 2)
(s3218 4)
(s3219 5)
(s3220 5)
(s3221 2)
(s3223 4)
(s3224 5)
(s3225 5)
(s3226 2)
(s3228 4)
(s3229 5)
(s3230 5)
(s3231 2)
(s3233 4)
(s3234 5)
(s3235 5)
(s3236 2)
(s3238 4)
(s3239 5)
(s3240 5)
(s3241 2)
(s3243 4)
(s3244 5)
(s3245 5)
(s3246 2)
(s3248 4)
(s3249 5)
(s3250 5)
(s3251 2)
(s3253 4)
(s3254 5)
(s3255 5)
(s3256 2)
(s3258 4)
(s3259 5)
(s3260 5)
(s3261 2)
(s3263 4)
(s3264 5)
(s3265 5)
(s3266 2)
(s3268 4)
(s3269 5)
(s3270 5)
(s3271 2)
(s3273 4)
(s3274 5)
(s3275 5)
(s3276 2)
(s3278 4)
(s3279 5)
(s3280 5)
(s3281 2)
(s3283 4)
(s3284 5)
(s3285 5)
(s3286 2)
(s3288 4)
(s3289 5)
(s3290 5)
(s3291 2)
(s3293 4)
(s3294 5)
(s3295 5)
(s3296 2)
(s3298 4)
(s3299 5)
(s3300 5)
(s3301 2)
(s3303 4)
(s3304 5)
(s3305 5)
(s3306 2)
(s3308 4)
(s3309 5)
(s3310 5)
(s3311 2)
(s3313 4)
(s3314 5)
(s3315 5)
(s3316 2)
(s3318 4)
(s3319 5)
(s3320 5)
(s3321 2)
(s3323 4)
(s3324 5)
(s3325 5)
(s3326 2)
(s3328 4)
(s3329 5)
(s3330 5)
(s3331 2)
(s3333 4)
(s3334 5)
(s3335 5)
(s3336 2)
(s3338 4)
(s3339 5)
(s3340 5)
(s3341 2)
(s3343 4)
(s3344 5)
(s3345 5)
(s3346 2)
(s3348 4)
(s3349 5)
(s3350 5)
(s3351 2)
(s3353 4)
(s3354 5)
(s3355 5)
(s3356 2)
(s3358 4)
(s3359 5)
(s3360 5)
(s3361 2)
(s3363 4)
(s3364 5)
(s3365 5)
(s3366 2)
(s3368 4)
(s3369 5)
(s3370 5)
(s3371 2)
(s3373 4)
(s3374 5)
(s3375 5)
(s3376 2)
(s3378 4)
(s3379 5)
(s3380 5)
(s3381 2)
(s3383 4)
(s3384 5)
(s3385 5)
(s3386 2)
(s3388 4)
(s3389 5)
(s3390 5)
(s3391 2)
(s3393 4)
(s3394 5)
(s3395 5)
(s3396 2)
(s3398 4)
(s3399 5)
(s3400 5)
(s3401 2)
(s3403 4)
(s3404 5)
(s3405 5)
(s3406 2)
(s3408 4)
(s3409 5)
(s3410 5)
(s3411 2)
(s3413 4)
(s3414 5)
(s3415 5)
(s3416 2)
(s3418 4)
(s3419 5)
(s3420 5)
(s3421 2)
(s3423 4)
(s3424 5)
(s3425 5)
(s3426 2)
(s3428 4)
(s3429 5)
(s3430 5)
(s3431 2)
(s3433 4)
(s3434 5)
(s3435 5)
(s3436 2)
(s3438 4)
(s3439 5)
(s3440 5)
(s3441 2)
(s3443 4)
(s3444 5)
(s3445 5)
(s3446 2)
(s3448 4)
(s3449 5)
(s3450 5)
(s3451 2)
(s3453 4)
(s3454 5)
(s3455 5)
(s3456 2)
(s3458 4)
(s3459 5)
(s3460 5)
(s3461 2)
(s3463 4)
(s3464 5)
(s3465 5)
(s3466 2)
(s3468 4)
(s3469 5)
(s3470 5)
(s3471 2)
(s3473 4)
(s3474 5)
(s3475 5)
(s3476 2)
(s3478 4)
(s3479 5)
(s3480 5)
(s3481 2)
(s3483 4)
(s3484 5)
(s3485 5)
(s3486 2)
(s3488 4)
(s3489 5)
(s3490 5)
(s3491 2)
(s3493 4)
(s3494 5)
(s3495 5)
(s3496 2)
(s3498 4)
(s3499 5)
(s3500 5)
(s3501 2)
(s3503 4)
(s3504 5)
(s3505 5)
(s3506 2)
(s3508 4)
(s3509 5)
(s3510 5)
(s3511 2)
(s3513 4)
(s3514 5)
(s3515 5)
(s3516 2)
(s3518 4)
(s3519 5)
(s3520 5)
(s3521 2)
(s3523 4)
(s3524 5)
(s3525 5)
(s3526 2)
(s3528 4)
(s3529 5)
(s3530 5)
(s3531 2)
(s3533 4)
(s3534 5)
(s3535 5)
(s3536 2)
(s3538 4)
(s3539 5)
(s3540 5)
(s3541 2)
(s3543 4)
(s3544 5)
(s3545 5)
(s3546 2)
(s3548 4)
(s3549 5)
(s3550 5)
(s3551 2)
(s3553 4)
(s3554 5)
(s3555 5)
(s3556 2)
(s3558 4)
(s3559 5)
(s3560 5)
(s3561 2)
(s3563 4)
(s3564 5)
(s3565 5)
(s3566 2)
(s3568 4)
(s3569 5)
(s3570 5)
(s3571 2)
(s3573 4)
(s3574 5)
(s3575 5)
(s3576 2)
(s3578 4)
(s3579 5)
(s3580 5)
(s3581 2)
(s3583 4)
(s3584 5)
(s3585 5)
(s3586 2)
(s3588 4)
(s3589 5)
(s3590 5)
(s3591 2)
(s3593 4)
(s3594 5)
(s3595 5)
(s3596 2)
(s3598 4)
(s3599 5)
(s3600 5)
(s3601 2)
(s3603 4)
(s3604 5)
(s3605 5)
(s3606 2)
(s3608 4)
(s3609 5)
(s3610 5)
(s3611 2)
(s3613 4)
(s3614 5)
(s3615 5)
(s3616 2)
(s3618 4)
(s3619 5)
(s3620 5)
(s3621 2)
(s3623 4)
(s3624 5)
(s3625 5)
(s3626 2)
(s3628 4)
(s3629 5)
(s3630 5)
(s3631 2)
(s3633 4)
(s3634 5)
(s3635 5)
(s3636 2)
(s3638 4)
(s3639 5)
(s3640 5)
(s3641 2)
(s3643 4)
(s3644 5)
(s3645 5)
(s3646 2)
(s3648 4)
(s3649 5)
(s3650 5)
(s3651 2)
(s3653 4)
(s3654 5)
(s3655 5)
(s3656 2)
(s3658 4)
(s3659 5)
(s3660 5)
(s3661 2)
(s3663 4)
(s3664 5)
(s3665 5)
(s3666 2)
(s3668 4)
(s3669 5)
(s3670 5)
(s3671 2)
(s3673 4)
(s3674 5)
(s3675 5)
(s3676 2)
(s3678 4)
(s3679 5)
(s3680 5)
(s3681 2)
(s3683 4)
(s3684 5)
(s3685 5)
(s3686 2)
(s3688 4)
(s3689 5)
(s3690 5)
(s3691 2)
(s3693 4)
(s3694 5)
(s3695 5)
(s3696 2)
(s3698 4)
(s3699 5)
(s3700 5)
(s3701 2)
(s3703 4)
(s3704 5)
(s3705 5)
(s3706 2)
(s3708 4)
(s3709 5)
(s3710 5)
(s3711 2)
(s3713 4)
(s3714 5)
(s3715 5)
(s3716 2)
(s3718 4)
(s3719 5)
(s3720 5)
(s3721 2)
(s3723 4)
(s3724 5)
(s3725 5)
(s3726 2)
(s3728 4)
(s3729 5)
(s3730 5)
(s3731 2)
(s3733 4)
(s3734 5)
(s3735 5)
(s3736 2)
(s3738 4)
(s3739 5)
(s3740 5)
(s3741 2)
(s3743 4)
(s3744 5)
(s3745 5)
(s3746 2)
(s3748 4)
(s3749 5)
(s3750 5)
(s3751 2)
(s3753 4)
(s3754 5)
(s3755 5)
(s3756 2)
(s3758 4)
(s3759 5)
(s3760 5)
(s3761 2)
(s3763 4)
(s3764 5)
(s3765 5)
(s3766 2)
(s3768 4)
(s3769 5)
(s3770 5)
(s3771 2)
(s3773 4)
(s3774 5)
(s3775 5)
(s3776 2)
(s3778 4)
(s3779 5)
(s3780 5)
(s3781 2)
(s3783 4)
(s3784 5)
(s3785 5)
(s3786 2)
(s3788 4)
(s3789 5)
(s3790 5)
(s3791 2)
(s3793 4)
(s3794 5)
(s3795 5)
(s3796 2)
(s3798 4)
(s3799 5)
(s3800 5)
(s3801 2)
(s3803 4)
(s3804 5)
(s3805 5)
(s3806 2)
(s3808 4)
(s3809 5)
(s3810 5)
(s3811 2)
(s3813 4)
(s3814 5)
(s3815 5)
(s3816 2)
(s3818 4)
(s3819 5)
(s3820 5)
(s3821 2)
(s3823 4)
(s3824 5)
(s3825 5)
(s3826 2)
(s3828 4)
(s3829 5)
(s3830 5)
(s3831 2)
(s3833 4)
(s3834 5)
(s3835 5)
(s3836 2)
(s3838 4)
(s3839 5)
(s3840 5)
(s3841 2)
(s3843 4)
(s3844 5)
(s3845 5)
(s3846 2)
(s3848 4)
(s3849 5)
(s3850 5)
(s3851 2)
(s3853 4)
(s3854 5)
(s3855 5)
(s3856 2)
(s3858 4)
(s3859 5)
(s3860 5)
(s3861 2)
(s3863 4)
(s3864 5)
(s3865 5)
(s3866 2)
(s3868 4)
(s3869 5)
(s3870 5)
(s3871 2)
(s3873 4)
(s3874 5)
(s3875 5)
(s3876 2)
(s3878 4)
(s3879 5)
(s3880 5)
(s3881 2)
(s3883 4)
(s3884 5)
(s3885 5)
(s3886 2)
(s3888 4)
(s3889 5)
(s3890 5)
(s3891 2)
(s3893 4)
(s3894 5)
(s3895 5)
(s3896 2)
(s3898 4)
(s3899 5)
(s3900 5)
(s3901 2)
(s3903 4)
(s3904 5)
(s3905 5)
(s3906 2)
(s3908 4)
(s3909 5)
(s3910 5)
(s3911 2)
(s3913 4)
(s3914 5)
(s3915 5)
(s3916 2)
(s3918 4)
(s3919 5)
(s3920 5)
(s3921 2)
(s3923 4)
(s3924 5)
(s3925 5)
(s3926 2)
(s3928 4)
(s3929 5)
(s3930 5)
(s3931 2)
(s3933 4)
(s3934 5)
(s3935 5)
(s3936 2)
(s3938 4)
(s3939 5)
(s3940 5)
(s3941 2)
(s3943 4)
(s3944 5)timeout
(s3945 org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20081 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 43877ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 43883ms
[2025-06-02 07:44:07] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 07:44:08] [INFO ] Implicit Places using invariants in 1033 ms returned []
[2025-06-02 07:44:08] [INFO ] Invariant cache hit.
Starting Z3 with timeout 160.0 s and query timeout 16000.0 ms
[2025-06-02 07:44:12] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2025-06-02 07:44:12] [INFO ] Implicit Places using invariants and state equation in 4084 ms returned []
Implicit Place search using SMT with State Equation took 5118 ms to find 0 implicit places.
Running 6000 sub problems to find dead transitions.
[2025-06-02 07:44:12] [INFO ] Invariant cache hit.
[2025-06-02 07:44:12] [INFO ] State equation strengthened by 1000 read => feed constraints.
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30076 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Starting Z3 with timeout 30.0 s and query timeout 3000.0 ms
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30089 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints, Known Traps Along Path: 0/0 constraints]
After SMT, in 63868ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 63874ms
Finished structural reductions in LTL mode , in 1 iterations and 113018 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Stuttering acceptance computed with spot in 130 ms :[true, (NOT p0), (NOT p0), (NOT p0), (NOT p0)]
Running random walk in product with property : JoinFreeModules-PT-1000-LTLCardinality-15
Stuttering criterion allowed to conclude after 0 steps with 0 reset in 1 ms.
FORMULA JoinFreeModules-PT-1000-LTLCardinality-15 FALSE TECHNIQUES STUTTER_TEST
Treatment of property JoinFreeModules-PT-1000-LTLCardinality-15 finished in 113173 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202505121319/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(G(F((p0||(p1&&G(p2))))))'
[2025-06-02 07:45:17] [INFO ] Flatten gal took : 200 ms
Using solver Z3 to compute partial order matrices.
Built C files in :
/tmp/ltsmin18102249982613007705
[2025-06-02 07:45:17] [INFO ] Too many transitions (8001) to apply POR reductions. Disabling POR matrices.
[2025-06-02 07:45:17] [INFO ] Applying decomposition
[2025-06-02 07:45:17] [INFO ] Built C files in 88ms conformant to PINS (ltsmin variant)in folder :/tmp/ltsmin18102249982613007705
Running compilation step : cd /tmp/ltsmin18102249982613007705;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202505121319/bin/limit_time.pl' '720' 'gcc' '-c' '-I/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202505121319/bin/include/' '-I.' '-std=c99' '-fPIC' '-O0' 'model.c'
[2025-06-02 07:45:17] [INFO ] Flatten gal took : 143 ms
Converted graph to binary with : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202505121319/bin/convert-linux64' '-i' '/tmp/graph2440506413784204363.txt' '-o' '/tmp/graph2440506413784204363.bin' '-w' '/tmp/graph2440506413784204363.weights'
Built communities with : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.202505121319/bin/louvain-linux64' '/tmp/graph2440506413784204363.bin' '-l' '-1' '-v' '-w' '/tmp/graph2440506413784204363.weights' '-q' '0' '-e' '0.001'
[2025-06-02 07:45:17] [INFO ] Decomposing Gal with order
[2025-06-02 07:45:18] [INFO ] Rewriting arrays to variables to allow decomposition.
[2025-06-02 07:45:19] [INFO ] Flatten gal took : 170 ms
[2025-06-02 07:45:19] [INFO ] Fuse similar labels procedure discarded/fused a total of 0 labels/synchronizations in 206 ms.
[2025-06-02 07:45:19] [INFO ] Time to serialize gal into /tmp/LTLCardinality8209462669305876302.gal : 26 ms
[2025-06-02 07:45:19] [INFO ] Time to serialize properties into /tmp/LTLCardinality13576859192386641934.ltl : 0 ms
Invoking ITS tools like this :cd /home/mcc/execution;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ltl-linux64' '--gc-threshold' '2000000' '-i' '/tmp/LTLCardinality8209462669305876302.gal' '-t' 'CGAL' '-LTL' '/tmp/LTLCardinality13576859192386641934.ltl' '-c' '-stutter-deadlock' '--gen-order' 'FOLLOW'
its-ltl command run as :
/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ltl-linux64 --gc-threshold 2000000 -i /tmp/L...298
Read 1 LTL properties
Checking formula 0 : !((G(F(("(gu823.p4114>gu823.p3093)")||(("((gu557.p2787<2)||(gu823.p4114>gu823.p3093))")&&(G("(gu283.p1418>=2)")))))))
Formula 0 simplified : FG(!"(gu823.p4114>gu823.p3093)" & (!"((gu557.p2787<2)||(gu823.p4114>gu823.p3093))" | F!"(gu283.p1418>=2)"))
Compilation finished in 36016 ms.
Running link step : cd /tmp/ltsmin18102249982613007705;'gcc' '-shared' '-o' 'gal.so' 'model.o'
Link finished in 109 ms.
Running LTSmin : cd /tmp/ltsmin18102249982613007705;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.ltsmin.binaries_1.0.0.202505121319/bin/pins2lts-mc-linux64' './gal.so' '--threads=8' '-p' '--pins-guards' '--when' '--ltl' '[](<>(((LTLAPp0==true)||((LTLAPp1==true)&&[]((LTLAPp2==true))))))' '--buchi-type=spotba'
Detected timeout of ITS tools.
[2025-06-02 08:14:54] [INFO ] Flatten gal took : 344 ms
[2025-06-02 08:14:54] [INFO ] Time to serialize gal into /tmp/LTLCardinality32382679486498544.gal : 113 ms
[2025-06-02 08:14:54] [INFO ] Time to serialize properties into /tmp/LTLCardinality6976163322136233964.ltl : 0 ms
Invoking ITS tools like this :cd /home/mcc/execution;'/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ltl-linux64' '--gc-threshold' '2000000' '-i' '/tmp/LTLCardinality32382679486498544.gal' '-t' 'CGAL' '-LTL' '/tmp/LTLCardinality6976163322136233964.ltl' '-c' '-stutter-deadlock' '--gen-order' 'FOLLOW'
its-ltl command run as :
/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.202505121319/bin/its-ltl-linux64 --gc-threshold 2000000 -i /tmp/L...295
Read 1 LTL properties
Checking formula 0 : !((G(F(("(p4114>p3093)")||(("((p2787<2)||(p4114>p3093))")&&(G("(p1418>=2)")))))))
Formula 0 simplified : FG(!"(p4114>p3093)" & (!"((p2787<2)||(p4114>p3093))" | F!"(p1418>=2)"))
BK_TIME_CONFINEMENT_REACHED
--------------------
content from stderr:
+ export BINDIR=/home/mcc/BenchKit/bin//../itstools/bin//../
+ BINDIR=/home/mcc/BenchKit/bin//../itstools/bin//../
++ pwd
+ export MODEL=/home/mcc/execution
+ MODEL=/home/mcc/execution
+ [[ LTLCardinality = StateSpace ]]
+ /home/mcc/BenchKit/bin//../itstools/bin//..//runeclipse.sh /home/mcc/execution LTLCardinality -its -ltsmin -greatspnpath /home/mcc/BenchKit/bin//../itstools/bin//..//greatspn/ -order META -manyOrder -smt -timeout 3600
+ ulimit -s 65536
+ [[ -z '' ]]
+ export LTSMIN_MEM_SIZE=8589934592
+ LTSMIN_MEM_SIZE=8589934592
++ perl -pe 's/.*\.//g'
++ sed s/.jar//
++ ls /home/mcc/BenchKit/bin//../itstools/bin//..//itstools/plugins/fr.lip6.move.gal.application.pnmcc_1.0.0.202505121319.jar
+ VERSION=202505121319
+ echo 'Running Version 202505121319'
+ /home/mcc/BenchKit/bin//../itstools/bin//..//itstools/its-tools -pnfolder /home/mcc/execution -examination LTLCardinality -its -ltsmin -greatspnpath /home/mcc/BenchKit/bin//../itstools/bin//..//greatspn/ -order META -manyOrder -smt -timeout 3600
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="JoinFreeModules-PT-1000"
export BK_EXAMINATION="LTLCardinality"
export BK_TOOL="itstools"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5832"
echo " Executing tool itstools"
echo " Input is JoinFreeModules-PT-1000, examination is LTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r114-tall-174876422800467"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/JoinFreeModules-PT-1000.tgz
mv JoinFreeModules-PT-1000 execution
cd execution
if [ "LTLCardinality" = "ReachabilityDeadlock" ] || [ "LTLCardinality" = "UpperBounds" ] || [ "LTLCardinality" = "QuasiLiveness" ] || [ "LTLCardinality" = "StableMarking" ] || [ "LTLCardinality" = "Liveness" ] || [ "LTLCardinality" = "OneSafe" ] || [ "LTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "LTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "LTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "LTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "LTLCardinality" = "ReachabilityDeadlock" ] || [ "LTLCardinality" = "QuasiLiveness" ] || [ "LTLCardinality" = "StableMarking" ] || [ "LTLCardinality" = "Liveness" ] || [ "LTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME LTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;