About the Execution of GreatSPN+red for JoinFreeModules-PT-1000
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
3535.575 | 487855.00 | 906040.00 | 922.30 | T | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fkordon/mcc2024-input.r232-tall-171649621500047.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2024-input.qcow2 backing_fmt=qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
=====================================================================
Generated by BenchKit 2-5568
Executing tool greatspnxred
Input is JoinFreeModules-PT-1000, examination is QuasiLiveness
Time confinement is 1800 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r232-tall-171649621500047
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 3.5M
-rw-r--r-- 1 mcc users 5.8K May 14 13:22 CTLCardinality.txt
-rw-r--r-- 1 mcc users 53K May 14 13:22 CTLCardinality.xml
-rw-r--r-- 1 mcc users 5.8K May 14 13:22 CTLFireability.txt
-rw-r--r-- 1 mcc users 51K May 14 13:22 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K May 18 16:42 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 3.8K May 19 07:10 LTLCardinality.txt
-rw-r--r-- 1 mcc users 27K May 19 16:03 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.2K May 19 07:22 LTLFireability.txt
-rw-r--r-- 1 mcc users 17K May 19 18:33 LTLFireability.xml
-rw-r--r-- 1 mcc users 15K Apr 11 14:23 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 155K Apr 11 14:23 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 7.1K Apr 11 14:22 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 56K Apr 11 14:22 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.6K May 19 07:12 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.8K May 19 15:27 UpperBounds.xml
-rw-r--r-- 1 mcc users 6 May 18 16:42 equiv_col
-rw-r--r-- 1 mcc users 5 May 18 16:42 instance
-rw-r--r-- 1 mcc users 6 May 18 16:42 iscolored
-rw-r--r-- 1 mcc users 3.1M May 18 16:42 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
FORMULA_NAME QuasiLiveness
=== Now, execution of the tool begins
BK_START 1716534886072
Invoking MCC driver with
BK_TOOL=greatspnxred
BK_EXAMINATION=QuasiLiveness
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=1800
BK_INPUT=JoinFreeModules-PT-1000
BK_MEMORY_CONFINEMENT=16384
Applying reductions before tool greatspn
Invoking reducer
Running Version 202405141337
[2024-05-24 07:14:47] [INFO ] Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, QuasiLiveness, -timeout, 180, -rebuildPNML]
[2024-05-24 07:14:47] [INFO ] Parsing pnml file : /home/mcc/execution/model.pnml
[2024-05-24 07:14:47] [INFO ] Load time of PNML (sax parser for PT used): 314 ms
[2024-05-24 07:14:47] [INFO ] Transformed 5001 places.
[2024-05-24 07:14:47] [INFO ] Transformed 8001 transitions.
[2024-05-24 07:14:47] [INFO ] Parsed PT model containing 5001 places and 8001 transitions and 23002 arcs in 453 ms.
Starting structural reductions in LIVENESS mode, iteration 0 : 5001/5001 places, 8001/8001 transitions.
Reduce places removed 1 places and 0 transitions.
Iterating post reduction 0 with 1 rules applied. Total rules applied 1 place count 5000 transition count 8001
Applied a total of 1 rules in 162 ms. Remains 5000 /5001 variables (removed 1) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
// Phase 1: matrix 8001 rows 5000 cols
[2024-05-24 07:14:48] [INFO ] Computed 1000 invariants in 56 ms
[2024-05-24 07:14:48] [INFO ] State equation strengthened by 1000 read => feed constraints.
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20173 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20075 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 44830ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 44924ms
[2024-05-24 07:15:32] [INFO ] Invariant cache hit.
[2024-05-24 07:15:33] [INFO ] Implicit Places using invariants in 998 ms returned []
[2024-05-24 07:15:33] [INFO ] Invariant cache hit.
[2024-05-24 07:15:37] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2024-05-24 07:15:37] [INFO ] Implicit Places using invariants and state equation in 3720 ms returned []
Implicit Place search using SMT with State Equation took 4724 ms to find 0 implicit places.
Running 6000 sub problems to find dead transitions.
[2024-05-24 07:15:37] [INFO ] Invariant cache hit.
[2024-05-24 07:15:37] [INFO ] State equation strengthened by 1000 read => feed constraints.
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30075 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30083 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 64752ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 64808ms
Starting structural reductions in LIVENESS mode, iteration 1 : 5000/5001 places, 8001/8001 transitions.
Finished structural reductions in LIVENESS mode , in 1 iterations and 114710 ms. Remains : 5000/5001 places, 8001/8001 transitions.
Discarding 4000 transitions out of 8001. Remains 4001
Initial state reduction rules removed 1 formulas.
RANDOM walk for 42067 steps (8 resets) in 2349 ms. (17 steps per ms) remains 3911/4000 properties
BEST_FIRST walk for 124 steps (0 resets) in 17 ms. (6 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 28 ms. (4 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 23 ms. (5 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 18 ms. (6 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 24 ms. (4 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 15 ms. (7 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 17 ms. (6 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 17 ms. (6 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 13 ms. (8 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 13 ms. (8 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 13 ms. (8 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 12 ms. (9 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 19 ms. (6 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 16 ms. (7 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 17 ms. (6 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 16 ms. (7 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 14 ms. (8 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 15 ms. (7 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 15 ms. (7 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 16 ms. (7 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 14 ms. (8 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 14 ms. (8 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 18 ms. (6 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 14 ms. (8 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 14 ms. (8 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 16 ms. (7 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 17 ms. (6 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 14 ms. (8 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 15 ms. (7 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 16 ms. (7 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 13 ms. (8 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 15 ms. (7 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 15 ms. (7 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 15 ms. (7 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 15 ms. (7 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 13 ms. (8 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 14 ms. (8 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 12 ms. (9 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 12 ms. (9 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 14 ms. (8 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 12 ms. (9 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 13 ms. (8 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 13 ms. (8 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 12 ms. (9 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 15 ms. (7 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 12 ms. (9 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 12 ms. (9 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 15 ms. (7 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 13 ms. (8 steps per ms) remains 3911/3911 properties
BEST_FIRST walk for 124 steps (0 resets) in 14 ms. (8 steps per ms) remains 3911/3911 properties
Probabilistic random walk after 9005 steps, saw 9002 distinct states, run finished after 3092 ms. (steps per millisecond=2 ) properties seen :977
[2024-05-24 07:16:46] [INFO ] Invariant cache hit.
[2024-05-24 07:16:46] [INFO ] State equation strengthened by 1000 read => feed constraints.
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 2934/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 2934 unsolved in 5041 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 2934/2934 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 2934 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 2934/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 2934 unsolved in 5038 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/2934 constraints, Known Traps: 0/0 constraints]
After SMT, in 12175ms problems are : Problem set: 0 solved, 2934 unsolved
Skipping Parikh replay, no witness traces provided.
Support contains 2934 out of 5000 places. Attempting structural reductions.
Starting structural reductions in REACHABILITY mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Drop transitions (Empty/Sink Transition effects.) removed 1 transitions
Reduce isomorphic transitions removed 1 transitions.
Iterating post reduction 0 with 1 rules applied. Total rules applied 1 place count 5000 transition count 8000
Applied a total of 1 rules in 353 ms. Remains 5000 /5000 variables (removed 0) and now considering 8000/8001 (removed 1) transitions.
Running 6000 sub problems to find dead transitions.
// Phase 1: matrix 8000 rows 5000 cols
[2024-05-24 07:16:59] [INFO ] Computed 1000 invariants in 44 ms
[2024-05-24 07:16:59] [INFO ] State equation strengthened by 1000 read => feed constraints.
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13000 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20075 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Error getting values : (error "ParserException while parsing response: ((s0 5)
(s1 2)
(s3 4)
(s4 5)
(s5 5)
(s6 2)
(s8 4)
(s9 5)
(s10 5)
(s11 2)
(s13 4)
(s14 5)
(s15 5)
(s16 2)
(s18 4)
(s19 5)
(s20 5)
(s21 2)
(s23 4)
(s24 5)
(s25 5)
(s26 2)
(s28 4)
(s29 5)
(s30 5)
(s31 2)
(s33 4)
(s34 5)
(s35 5)
(s36 2)
(s38 4)
(s39 5)
(s40 5)
(s41 2)
(s43 4)
(s44 5)
(s45 5)
(s46 2)
(s48 4)
(s49 5)
(s50 5)
(s51 2)
(s53 4)
(s54 5)
(s55 5)
(s56 2)
(s58 4)
(s59 5)
(s60 5)
(s61 2)
(s63 4)
(s64 5)
(s65 5)
(s66 2)
(s68 4)
(s69 5)
(s70 5)
(s71 2)
(s73 4)
(s74 5)
(s75 5)
(s76 2)
(s78 4)
(s79 5)
(s80 5)
(s81 2)
(s83 4)
(s84 5)
(s85 5)
(s86 2)
(s88 4)
(s89 5)
(s90 5)
(s91 2)
(s93 4)
(s94 5)
(s95 5)
(s96 2)
(s98 4)
(s99 5)
(s100 5)
(s101 2)
(s103 4)
(s104 5)
(s105 5)
(s106 2)
(s108 4)
(s109 5)
(s110 5)
(s111 2)
(s113 4)
(s114 5)
(s115 5)
(s116 2)
(s118 4)
(s119 5)
(s120 5)
(s121 2)
(s123 4)
(s124 5)
(s125 5)
(s126 2)
(s128 4)
(s129 5)
(s130 5)
(s131 2)
(s133 4)
(s134 5)
(s135 5)
(s136 2)
(s138 4)
(s139 5)
(s140 5)
(s141 2)
(s143 4)
(s144 5)
(s145 5)
(s146 2)
(s148 4)
(s149 5)
(s150 5)
(s151 2)
(s153 4)
(s154 5)
(s155 5)
(s156 2)
(s158 4)
(s159 5)
(s160 5)
(s161 2)
(s163 4)
(s164 5)
(s165 5)
(s166 2)
(s168 4)
(s169 5)
(s170 5)
(s171 2)
(s173 4)
(s174 5)
(s175 5)
(s176 2)
(s178 4)
(s179 5)
(s180 5)
(s181 2)
(s183 4)
(s184 5)
(s185 5)
(s186 2)
(s188 4)
(s189 5)
(s190 5)
(s191 2)
(s193 4)
(s194 5)
(s195 5)
(s196 2)
(s198 4)
(s199 5)
(s200 5)
(s201 2)
(s203 4)
(s204 5)
(s205 5)
(s206 2)
(s208 4)
(s209 5)
(s210 5)
(s211 2)
(s213 4)
(s214 5)
(s215 5)
(s216 2)
(s218 4)
(s219 5)
(s220 5)
(s221 2)
(s223 4)
(s224 5)
(s225 5)
(s226 2)
(s228 4)
(s229 5)
(s230 5)
(s231 2)
(s233 4)
(s234 5)
(s235 5)
(s236 2)
(s238 4)
(s239 5)
(s240 5)
(s241 2)
(s243 4)
(s244 5)
(s245 5)
(s246 2)
(s248 4)
(s249 5)
(s250 5)
(s251 2)
(s253 4)
(s254 5)
(s255 5)
(s256 2)
(s258 4)
(s259 5)
(s260 5)
(s261 2)
(s263 4)
(s264 5)
(s265 5)
(s266 2)
(s268 4)
(s269 5)
(s270 5)
(s271 2)
(s273 4)
(s274 5)
(s275 5)
(s276 2)
(s278 4)
(s279 5)
(s280 5)
(s281 2)
(s283 4)
(s284 5)
(s285 5)
(s286 2)
(s288 4)
(s289 5)
(s290 5)
(s291 2)
(s293 4)
(s294 5)
(s295 5)
(s296 2)
(s298 4)
(s299 5)
(s300 5)
(s301 2)
(s303 4)
(s304 5)
(s305 5)
(s306 2)
(s308 4)
(s309 5)
(s310 5)
(s311 2)
(s313 4)
(s314 5)
(s315 5)
(s316 2)
(s318 4)
(s319 5)
(s320 5)
(s321 2)
(s323 4)
(s324 5)
(s325 5)
(s326 2)
(s328 4)
(s329 5)
(s330 5)
(s331 2)
(s333 4)
(s334 5)
(s335 5)
(s336 2)
(s338 4)
(s339 5)
(s340 5)
(s341 2)
(s343 4)
(s344 5)
(s345 5)
(s346 2)
(s348 4)
(s349 5)
(s350 5)
(s351 2)
(s353 4)
(s354 5)
(s355 5)
(s356 2)
(s358 4)
(s359 5)
(s360 5)
(s361 2)
(s363 4)
(s364 5)
(s365 5)
(s366 2)
(s368 4)
(s369 5)
(s370 5)
(s371 2)
(s373 4)
(s374 5)
(s375 5)
(s376 2)
(s378 4)
(s379 5)
(s380 5)
(s381 2)
(s383 4)
(s384 5)
(s385 5)
(s386 2)
(s388 4)
(s389 5)
(s390 5)
(s391 2)
(s393 4)
(s394 5)
(s395 5)
(s396 2)
(s398 4)
(s399 5)
(s400 5)
(s401 2)
(s403 4)
(s404 5)
(s405 5)
(s406 2)
(s408 4)
(s409 5)
(s410 5)
(s411 2)
(s413 4)
(s414 5)
(s415 5)
(s416 2)
(s418 4)
(s419 5)
(s420 5)
(s421 2)
(s423 4)
(s424 5)
(s425 5)
(s426 2)
(s428 4)
(s429 5)
(s430 5)
(s431 2)
(s433 4)
(s434 5)
(s435 5)
(s436 2)
(s438 4)
(s439 5)
(s440 5)
(s441 2)
(s443 4)
(s444 5)
(s445 5)
(s446 2)
(s448 4)
(s449 5)
(s450 5)
(s451 2)
(s453 4)
(s454 5)
(s455 5)
(s456 2)
(s458 4)
(s459 5)
(s460 5)
(s461 2)
(s463 4)
(s464 5)
(s465 5)
(s466 2)
(s468 4)
(s469 5)
(s470 5)
(s471 2)
(s473 4)
(s474 5)
(s475 5)
(s476 2)
(s478 4)
(s479 5)
(s480 5)
(s481 2)
(s483 4)
(s484 5)
(s485 5)
(s486 2)
(s488 4)
(s489 5)
(s490 5)
(s491 2)
(s493 4)
(s494 5)
(s495 5)
(s496 2)
(s498 4)
(s499 5)
(s500 5)
(s501 2)
(s503 4)
(s504 5)
(s505 5)
(s506 2)
(s508 4)
(s509 5)
(s510 5)
(s511 2)
(s513 4)
(s514 5)
(s515 5)
(s516 2)
(s518 4)
(s519 5)
(s520 5)
(s521 2)
(s523 4)
(s524 5)
(s525 5)
(s526 2)
(s528 4)
(s529 5)
(s530 5)
(s531 2)
(s533 4)
(s534 5)
(s535 5)
(s536 2)
(s538 4)
(s539 5)
(s540 5)
(s541 2)
(s543 4)
(s544 5)
(s545 5)
(s546 2)
(s548 4)
(s549 5)
(s550 5)
(s551 2)
(s553 4)
(s554 5)
(s555 5)
(s556 2)
(s558 4)
(s559 5)
(s560 5)
(s561 2)
(s563 4)
(s564 5)
(s565 5)
(s566 2)
(s568 4)
(s569 5)
(s570 5)
(s571 2)
(s573 4)
(s574 5)
(s575 5)
(s576 2)
(s578 4)
(s579 5)
(s580 5)
(s581 2)
(s583 4)
(s584 5)
(s585 5)
(s586 2)
(s588 4)
(s589 5)
(s590 5)
(s591 2)
(s593 4)
(s594 5)
(s595 5)
(s596 2)
(s598 4)
(s599 5)
(s600 5)
(s601 2)
(s603 4)
(s604 5)
(s605 5)
(s606 2)
(s608 4)
(s609 5)
(s610 5)
(s611 2)
(s613 4)
(s614 5)
(s615 5)
(s616 2)
(s618 4)
(s619 5)
(s620 5)
(s621 2)
(s623 4)
(s624 5)
(s625 5)
(s626 2)
(s628 4)
(s629 5)
(s630 5)
(s631 2)
(s633 4)
(s634 5)
(s635 5)
(s636 2)
(s638 4)
(s639 5)
(s640 5)
(s641 2)
(s643 4)
(s644 5)
(s645 5)
(s646 2)
(s648 4)
(s649 5)
(s650 5)
(s651 2)
(s653 4)
(s654 5)
(s655 5)
(s656 2)
(s658 4)
(s659 5)
(s660 5)
(s661 2)
(s663 4)
(s664 5)
(s665 5)
(s666 2)
(s668 4)
(s669 5)
(s670 5)
(s671 2)
(s673 4)
(s674 5)
(s675 5)
(s676 2)
(s678 4)
(s679 5)
(s680 5)
(s681 2)
(s683 4)
(s684 5)
(s685 5)
(s686 2)
(s688 4)
(s689 5)
(s690 5)
(s691 2)
(s693 4)
(s694 5)
(s695 5)
(s696 2)
(s698 4)
(s699 5)
(s700 5)
(s701 2)
(s703 4)
(s704 5)
(s705 5)
(s706 2)
(s708 4)
(s709 5)
(s710 5)
(s711 2)
(s713 4)
(s714 5)
(s715 5)
(s716 2)
(s718 4)
(s719 5)
(s720 5)
(s721 2)
(s723 4)
(s724 5)
(s725 5)
(s726 2)
(s728 4)
(s729 5)
(s730 5)
(s731 2)
(s733 4)
(s734 5)
(s735 5)
(s736 2)
(s738 4)
(s739 5)
(s740 5)
(s741 2)
(s743 4)
(s744 5)
(s745 5)
(s746 2)
(s748 4)
(s749 5)
(s750 5)
(s751 2)
(s753 4)
(s754 5)
(s755 5)
(s756 2)
(s758 4)
(s759 5)
(s760 5)
(s761 2)
(s763 4)
(s764 5)
(s765 5)
(s766 2)
(s768 4)
(s769 5)
(s770 5)
(s771 2)
(s773 4)
(s774 5)
(s775 5)
(s776 2)
(s778 4)
(s779 5)
(s780 5)
(s781 2)
(s783 4)
(s784 5)
(s785 5)
(s786 2)
(s788 4)
(s789 5)
(s790 5)
(s791 2)
(s793 4)
(s794 5)
(s795 5)
(s796 2)
(s798 4)
(s799 5)
(s800 5)
(s801 2)
(s803 4)
(s804 5)
(s805 5)
(s806 2)
(s808 4)
(s809 5)
(s810 5)
(s811 2)
(s813 4)
(s814 5)
(s815 5)
(s816 2)
(s818 4)
(s819 5)
(s820 5)
(s821 2)
(s823 4)
(s824 5)
(s825 5)
(s826 2)
(s828 4)
(s829 5)
(s830 5)
(s831 2)
(s833 4)
(s834 5)
(s835 5)
(s836 2)
(s838 4)
(s839 5)
(s840 5)
(s841 2)
(s843 4)
(s844 5)
(s845 5)
(s846 2)
(s848 4)
(s849 5)
(s850 5)
(s851 2)
(s853 4)
(s854 5)
(s855 5)
(s856 2)
(s858 4)
(s859 5)
(s860 5)
(s861 2)
(s863 4)
(s864 5)
(s865 5)
(s866 2)
(s868 4)
(s869 5)
(s870 5)
(s871 2)
(s873 4)
(s874 5)
(s875 5)
(s876 2)
(s878 4)
(s879 5)
(s880 5)
(s881 2)
(s883 4)
(s884 5)
(s885 5)
(s886 2)
(s888 4)
(s889 5)
(s890 5)
(s891 2)
(s893 4)
(s894 5)
(s895 5)
(s896 2)
(s898 4)
(s899 5)
(s900 5)
(s901 2)
(s903 4)
(s904 5)
(s905 5)
(s906 2)
(s908 4)
(s909 5)
(s910 5)
(s911 2)
(s913 4)
(s914 5)
(s915 5)
(s916 2)
(s918 4)
(s919 5)
(s920 5)
(s921 2)
(s923 4)
(s924 5)
(s925 5)
(s926 2)
(s928 4)
(s929 5)
(s930 5)
(s931 2)
(s933 4)
(s934 5)
(s935 5)
(s936 2)
(s938 4)
(s939 5)
(s940 5)
(s941 2)
(s943 4)
(s944 5)
(s945 5)
(s946 2)
(s948 4)
(s949 5)
(s950 5)
(s951 2)
(s953 4)
(s954 5)
(s955 5)
(s956 2)
(s958 4)
(s959 5)
(s960 5)
(s961 2)
(s963 4)
(s964 5)
(s965 5)
(s966 2)
(s968 4)
(s969 5)
(s970 5)
(s971 2)
(s973 4)
(s974 5)
(s975 5)
(s976 2)
(s978 4)
(s979 5)
(s980 5)
(s981 2)
(s983 4)
(s984 5)
(s985 5)
(s986 2)
(s988 4)
(s989 5)
(s990 5)
(s991 2)
(s993 4)
(s994 5)
(s995 5)
(s996 2)
(s998 4)
(s999 5)
(s1000 5)
(s1001 2)
(s1003 4)
(s1004 5)
(s1005 5)
(s1006 2)
(s1008 4)
(s1009 5)
(s1010 5)
(s1011 2)
(s1013 4)
(s1014 5)
(s1015 5)
(s1016 2)
(s1018 4)
(s1019 5)
(s1020 5)
(s1021 2)
(s1023 4)
(s1024 5)
(s1025 5)
(s1026 2)
(s1028 4)
(s1029 5)
(s1030 5)
(s1031 2)
(s1033 4)
(s1034 5)
(s1035 5)
(s1036 2)
(s1038 4)
(s1039 5)
(s1040 5)
(s1041 2)
(s1043 4)
(s1044 5)
(s1045 5)
(s1046 2)
(s1048 4)
(s1049 5)
(s1050 5)
(s1051 2)
(s1053 4)
(s1054 5)
(s1055 5)
(s1056 2)
(s1058 4)
(s1059 5)
(s1060 5)
(s1061 2)
(s1063 4)
(s1064 5)
(s1065 5)
(s1066 2)
(s1068 4)
(s1069 5)
(s1070 5)
(s1071 2)
(s1073 4)
(s1074 5)
(s1075 5)
(s1076 2)
(s1078 4)
(s1079 5)
(s1080 5)
(s1081 2)
(s1083 4)
(s1084 5)
(s1085 5)
(s1086 2)
(s1088 4)
(s1089 5)
(s1090 5)
(s1091 2)
(s1093 4)
(s1094 5)
(s1095 5)
(s1096 2)
(s1098 4)
(s1099 5)
(s1100 5)
(s1101 2)
(s1103 4)
(s1104 5)
(s1105 5)
(s1106 2)
(s1108 4)
(s1109 5)
(s1110 5)
(s1111 2)
(s1113 4)
(s1114 5)
(s1115 5)
(s1116 2)
(s1118 4)
(s1119 5)
(s1120 5)
(s1121 2)
(s1123 4)
(s1124 5)
(s1125 5)
(s1126 2)
(s1128 4)
(s1129 5)
(s1130 5)
(s1131 2)
(s1133 4)
(s1134 5)
(s1135 5)
(s1136 2)
(s1138 4)
(s1139 5)
(s1140 5)
(s1141 2)
(s1143 4)
(s1144 5)
(s1145 5)
(s1146 2)
(s1148 4)
(s1149 5)
(s1150 5)
(s1151 2)
(s1153 4)
(s1154 5)
(s1155 5)
(s1156 2)
(s1158 4)
(s1159 5)
(s1160 5)
(s1161 2)
(s1163 4)
(s1164 5)
(s1165 5)
(s1166 2)
(s1168 4)
(s1169 5)
(s1170 5)
(s1171 2)
(s1173 4)
(s1174 5)
(s1175 5)
(s1176 2)
(s1178 4)
(s1179 5)
(s1180 5)
(s1181 2)
(s1183 4)
(s1184 5)
(s1185 5)
(s1186 2)
(s1188 4)
(s1189 5)
(s1190 5)
(s1191 2)
(s1193 4)
(s1194 5)
(s1195 5)
(s1196 2)
(s1198 4)
(s1199 5)
(s1200 5)
(s1201 2)
(s1203 4)
(s1204 5)
(s1205 5)
(s1206 2)
(s1208 4)
(s1209 5)
(s1210 5)
(s1211 2)
(s1213 4)
(s1214 5)
(s1215 5)
(s1216 2)
(s1218 4)
(s1219 5)
(s1220 5)
(s1221 2)
(s1223 4)
(s1224 5)
(s1225 5)
(s1226 2)
(s1228 4)
(s1229 5)
(s1230 5)
(s1231 2)
(s1233 4)
(s1234 5)
(s1235 5)
(s1236 2)
(s1238 4)
(s1239 5)
(s1240 5)
(s1241 2)
(s1243 4)
(s1244 5)
(s1245 5)
(s1246 2)
(s1248 4)
(s1249 5)
(s1250 5)
(s1251 2)
(s1253 4)
(s1254 5)
(s1255 5)
(s1256 2)
(s1258 4)
(s1259 5)
(s1260 5)
(s1261 2)
(s1263 4)
(s1264 5)
(s1265 5)
(s1266 2)
(s1268 4)
(s1269 5)
(s1270 5)
(s1271 2)
(s1273 4)
(s1274 5)
(s1275 5)
(s1276 2)
(s1278 4)
(s1279 5)
(s1280 5)
(s1281 2)
(s1283 4)
(s1284 5)
(s1285 5)
(s1286 2)
(s1288 4)
(s1289 5)
(s1290 5)
(s1291 2)
(s1293 4)
(s1294 5)
(s1295 5)
(s1296 2)
(s1298 4)
(s1299 5)
(s1300 5)
(s1301 2)
(s1303 4)
(s1304 5)
(s1305 5)
(s1306 2)
(s1308 4)
(s1309 5)
(s1310 5)
(s1311 2)
(s1313 4)
(s1314 5)
(s1315 5)
(s1316 2)
(s1318 4)
(s1319 5)
(s1320 5)
(s1321 2)
(s1323 4)
(s1324 5)
(s1325 5)
(s1326 2)
(s1328 4)
(s1329 5)
(s1330 5)
(s1331 2)
(s1333 4)
(s1334 5)
(s1335 5)
(s1336 2)
(s1338 4)
(s1339 5)
(s1340 5)
(s1341 2)
(s1343 4)
(s1344 5)
(s1345 5)
(s1346 2)
(s1348 4)
(s1349 5)
(s1350 5)
(s1351 2)
(s1353 4)
(s1354 5)
(s1355 5)
(s1356 2)
(s1358 4)
(s1359 5)
(s1360 5)
(s1361 2)
(s1363 4)
(s1364 5)
(s1365 5)
(s1366 2)
(s1368 4)
(s1369 5)
(s1370 5)
(s1371 2)
(s1373 4)
(s1374 5)
(s1375 5)
(s1376 2)
(s1378 4)
(s1379 5)
(s1380 5)
(s1381 2)
(s1383 4)
(s1384 5)
(s1385 5)
(s1386 2)
(s1388 4)
(s1389 5)
(s1390 5)
(s1391 2)
(s1393 4)
(s1394 5)
(s1395 5)
(s1396 2)
(s1398 4)
(s1399 5)
(s1400 5)
(s1401 2)
(s1403 4)
(s1404 5)
(s1405 5)
(s1406 2)
(s1408 4)
(s1409 5)
(s1410 5)
(s1411 2)
(s1413 4)
(s1414 5)
(s1415 5)
(s1416 2)
(s1418 4)
(s1419 5)
(s1420 5)
(s1421 2)
(s1423 4)
(s1424 5)
(s1425 5)
(s1426 2)
(s1428 4)
(s1429 5)
(s1430 5)
(s1431 2)
(s1433 4)
(s1434 5)
(s1435 5)
(s1436 2)
(s1438 4)
(s1439 5)
(s1440 5)
(s1441 2)
(s1443 4)
(s1444 5)
(s1445 5)
(s1446 2)
(s1448 4)
(s1449 5)
(s1450 5)
(s1451 2)
(s1453 4)
(s1454 5)
(s1455 5)
(s1456 2)
(s1458 4)
(s1459 5)
(s1460 5)
(s1461 2)
(s1463 4)
(s1464 5)
(s1465 5)
(s1466 2)
(s1468 4)
(s1469 5)
(s1470 5)
(s1471 2)
(s1473 4)
(s1474 5)
(s1475 5)
(s1476 2)
(s1478 4)
(s1479 5)
(s1480 5)
(s1481 2)
(s1483 4)
(s1484 5)
(s1485 5)
(s1486 2)
(s1488 4)
(s1489 5)
(s1490 5)
(s1491 2)
(s1493 4)
(s1494 5)
(s1495 5)
(s1496 2)
(s1498 4)
(s1499 5)
(s1500 5)
(s1501 2)
(s1503 4)
(s1504 5)
(s1505 5)
(s1506 2)
(s1508 4)
(s1509 5)
(s1510 5)
(s1511 2)
(s1513 4)
(s1514 5)
(s1515 5)
(s1516 2)
(s1518 4)
(s1519 5)
(s1520 5)
(s1521 2)
(s1523 4)
(s1524 5)
(s1525 5)
(s1526 2)
(s1528 4)
(s1529 5)
(s1530 5)
(s1531 2)
(s1533 4)
(s1534 5)
(s1535 5)
(s1536 2)
(s1538 4)
(s1539 5)
(s1540 5)
(s1541 2)
(s1543 4)
(s1544 5)
(s1545 5)
(s1546 2)
(s1548 4)
(s1549 5)
(s1550 5)
(s1551 2)
(s1553 4)
(s1554 5)
(s1555 5)
(s1556 2)
(s1558 4)
(s1559 5)
(s1560 5)
(s1561 2)
(s1563 4)
(s1564 5)
(s1565 5)
(s1566 2)
(s1568 4)
(s1569 5)
(s1570 5)
(s1571 2)
(s1573 4)
(s1574 5)
(s1575 5)
(s1576 2)
(s1578 4)
(s1579 5)
(s1580 5)
(s1581 2)
(s1583 4)
(s1584 5)
(s1585 5)
(s1586 2)
(s1588 4)
(s1589 5)
(s1590 5)
(s1591 2)
(s1593 4)
(s1594 5)
(s1595 5)
(s1596 2)
(s1598 4)
(s1599 5)
(s1600 5)
(s1601 2)
(s1603 4)
(s1604 5)
(s1605 5)
(s1606 2)
(s1608 4)
(s1609 5)
(s1610 5)
(s1611 2)
(s1613 4)
(s1614 5)
(s1615 5)
(s1616 2)
(s1618 4)
(s1619 5)
(s1620 5)
(s1621 2)
(s1623 4)
(s1624 5)
(s1625 5)
(s1626 2)
(s1628 4)
(s1629 5)
(s1630 5)
(s1631 2)
(s1633 4)
(s1634 5)
(s1635 5)
(s1636 2)
(s1638 4)
(s1639 5)
(s1640 5)
(s1641 2)
(s1643 4)
(s1644 5)
(s1645 5)
(s1646 2)
(s1648 4)
(s1649 5)
(s1650 5)
(s1651 2)
(s1653 4)
(s1654 5)
(s1655 5)
(s1656 2)
(s1658 4)
(s1659 5)
(s1660 5)
(s1661 2)
(s1663 4)
(s1664 5)
(s1665 5)
(s1666 2)
(s1668 4)
(s1669 5)
(s1670 5)
(s1671 2)
(s1673 4)
(s1674 5)
(s1675 5)
(s1676 2)
(s1678 4)
(s1679 5)
(s1680 5)
(s1681 2)
(s1683 4)
(s1684 5)
(s1685 5)
(s1686 2)
(s1688 4)
(s1689 5)
(s1690 5)
(s1691 2)
(s1693 4)
(s1694 5)
(s1695 5)
(s1696 2)
(s1698 4)
(s1699 5)
(s1700 5)
(s1701 2)
(s1703 4)
(s1704 5)
(s1705 5)
(s1706 2)
(s1708 4)
(s1709 5)
(s1710 5)
(s1711 2)
(s1713 4)
(s1714 5)
(s1715 5)
(s1716 2)
(s1718 4)
(s1719 5)
(s1720 5)
(s1721 2)
(s1723 4)
(s1724 5)
(s1725 5)
(s1726 2)
(s1728 4)
(s1729 5)
(s1730 5)
(s1731 2)
(s1733 4)
(s1734 5)
(s1735 5)
(s1736 2)
(s1738 4)
(s1739 5)
(s1740 5)
(s1741 2)
(s1743 4)
(s1744 5)
(s1745 5)
(s1746 2)
(s1748 4)
(s1749 5)
(s1750 5)
(s1751 2)
(s1753 4)
(s1754 5)
(s1755 5)
(s1756 2)
(s1758 4)
(s1759 5)
(s1760 5)
(s1761 2)
(s1763 4)
(s1764 5)
(s1765 5)
(s1766 2)
(s1768 4)
(s1769 5)
(s1770 5)
(s1771 2)
(s1773 4)
(s1774 5)
(s1775 5)
(s1776 2)
(s1778 4)
(s1779 5)
(s1780 5)
(s1781 2)
(s1783 4)
(s1784 5)
(s1785 5)
(s1786 2)
(s1788 4)
(s1789 5)
(s1790 5)
(s1791 2)
(s1793 4)
(s1794 5)
(s1795 5)
(s1796 2)
(s1798 4)
(s1799 5)
(s1800 5)
(s1801 2)
(s1803 4)
(s1804 5)
(s1805 5)
(s1806 2)
(s1808 4)
(s1809 5)
(s1810 5)
(s1811 2)
(s1813 4)
(s1814 5)
(s1815 5)
(s1816 2)
(s1818 4)
(s1819 5)
(s1820 5)
(s1821 2)
(s1823 4)
(s1824 5)
(s1825 5)
(s1826 2)
(s1828 4)
(s1829 5)
(s1830 5)
(s1831 2)
(s1833 4)
(s1834 5)
(s1835 5)
(s1836 2)
(s1838 4)
(s1839 5)
(s1840 5)
(s1841 2)
(s1843 4)
(s1844 5)
(s1845 5)
(s1846 2)
(s1848 4)
(s1849 5)
(s1850 5)
(s1851 2)
(s1853 4)
(s1854 5)
(s1855 5)
(s1856 2)
(s1858 4)
(s1859 5)
(s1860 5)
(s1861 2)
(s1863 4)
(s1864 5)
(s1865 5)
(s1866 2)
(s1868 4)
(s1869 5)
(s1870 5)
(s1871 2)
(s1873 4)
(s1874 5)
(s1875 5)
(s1876 2)
(s1878 4)
(s1879 5)
(s1880 5)
(s1881 2)
(s1883 4)
(s1884 5)
(s1885 5)
(s1886 2)
(s1888 4)
(s1889 5)
(s1890 5)
(s1891 2)
(s1893 4)
(s1894 5)
(s1895 5)
(s1896 2)
(s1898 4)
(s1899 5)
(s1900 5)
(s1901 2)
(s1903 4)
(s1904 5)
(s1905 5)
(s1906 2)
(s1908 4)
(s1909 5)
(s1910 5)
(s1911 2)
(s1913 4)
(s1914 5)
(s1915 5)
(s1916 2)
(s1918 4)
(s1919 5)
(s1920 5)
(s1921 2)
(s1923 4)
(s1924 5)
(s1925 5)
(s1926 2)
(s1928 4)
(s1929 5)
(s1930 5)
(s1931 2)
(s1933 4)
(s1934 5)
(s1935 5)
(s1936 2)
(s1938 4)
(s1939 5)
(s1940 5)
(s1941 2)
(s1943 4)
(s1944 5)
(s1945 5)
(s1946 2)
(s1948 4)
(s1949 5)
(s1950 5)
(s1951 2)
(s1953 4)
(s1954 5)
(s1955 5)
(s1956 2)
(s1958 4)
(s1959 5)
(s1960 5)
(s1961 2)
(s1963 4)
(s1964 5)
(s1965 5)
(s1966 2)
(s1968 4)
(s1969 5)
(s1970 5)
(s1971 2)
(s1973 4)
(s1974 5)
(s1975 5)
(s1976 2)
(s1978 4)
(s1979 5)
(s1980 5)
(s1981 2)
(s1983 4)
(s1984 5)
(s1985 5)
(s1986 2)
(s1988 4)
(s1989 5)
(s1990 5)
(s1991 2)
(s1993 4)
(s1994 5)
(s1995 5)
(s1996 2)
(s1998 4)
(s1999 5)
(s2000 5)
(s2001 2)
(s2003 4)
(s2004 5)
(s2005 5)
(s2006 2)
(s2008 4)
(s2009 5)
(s2010 5)
(s2011 2)
(s2013 4)
(s2014 5)
(s2015 5)
(s2016 2)
(s2018 4)
(s2019 5)
(s2020 5)
(s2021 2)
(s2023 4)
(s2024 5)
(s2025 5)
(s2026 2)
(s2028 4)
(s2029 5)
(s2030 5)
(s2031 2)
(s2033 4)
(s2034 5)
(s2035 5)
(s2036 2)
(s2038 4)
(s2039 5)
(s2040 5)
(s2041 2)
(s2043 4)
(s2044 5)
(s2045 5)
(s2046 2)
(s2048 4)
(s2049 5)
(s2050 5)
(s2051 2)
(s2053 4)
(s2054 5)
(s2055 5)
(s2056 2)
(s2058 4)
(s2059 5)
(s2060 5)
(s2061 2)
(s2063 4)
(s2064 5)
(s2065 5)
(s2066 2)
(s2068 4)
(s2069 5)
(s2070 5)
(s2071 2)
(s2073 4)
(s2074 5)
(s2075 5)
(s2076 2)
(s2078 4)
(s2079 5)
(s2080 5)
(s2081 2)
(s2083 4)
(s2084 5)
(s2085 5)
(s2086 2)
(s2088 4)
(s2089 5)
(s2090 5)
(s2091 2)
(s2093 4)
(s2094 5)
(s2095 5)
(s2096 2)
(s2098 4)
(s2099 5)
(s2100 5)
(s2101 2)
(s2103 4)
(s2104 5)
(s2105 5)
(s2106 2)
(s2108 4)
(s2109 5)
(s2110 5)
(s2111 2)
(s2113 4)
(s2114 5)
(s2115 5)
(s2116 2)
(s2118 4)
(s2119 5)
(s2120 5)
(s2121 2)
(s2123 4)
(s2124 5)
(s2125 5)
(s2126 2)
(s2128 4)
(s2129 5)
(s2130 5)
(s2131 2)
(s2133 4)
(s2134 5)
(s2135 5)
(s2136 2)
(s2138 4)
(s2139 5)
(s2140 5)
(s2141 2)
(s2143 4)
(s2144 5)
(s2145 5)
(s2146 2)
(s2148 4)
(s2149 5)
(s2150 5)
(s2151 2)
(s2153 4)
(s2154 5)
(s2155 5)
(s2156 2)
(s2158 4)
(s2159 5)
(s2160 5)
(s2161 2)
(s2163 4)
(s2164 5)
(s2165 5)
(s2166 2)
(s2168 4)
(s2169 5)
(s2170 5)
(s2171 2)
(s2173 4)
(s2174 5)
(s2175 5)
(s2176 2)
(s2178 4)
(s2179 5)
(s2180 5)
(s2181 2)
(s2183 4)
(s2184 5)
(s2185 5)
(s2186 2)
(s2188 4)
(s2189 5)
(s2190 5)
(s2191 2)
(s2193 4)
(s2194 5)
(s2195 5)
(s2196 2)
(s2198 4)
(s2199 5)
(s2200 5)
(s2201 2)
(s2203 4)
(s2204 5)
(s2205 5)
(s2206 2)
(s2208 4)
(s2209 5)
(s2210 5)
(s2211 2)
(s2213 4)
(s2214 5)
(s2215 5)
(s2216 2)
(s2218 4)
(s2219 5)
(s2220 5)
(s2221 2)
(s2223 4)
(s2224 5)
(s2225 5)
(s2226 2)
(s2228 4)
(s2229 5)
(s2230 5)
(s2231 2)
(s2233 4)
(s2234 5)
(s2235 5)
(s2236 2)
(s2238 4)
(s2239 5)
(s2240 5)
(s2241 2)
(s2243 4)
(s2244 5)
(s2245 5)
(s2246 2)
(s2248 4)
(s2249 5)
(s2250 5)
(s2251 2)
(s2253 4)
(s2254 5)
(s2255 5)
(s2256 2)
(s2258 4)
(s2259 5)
(s2260 5)
(s2261 2)
(s2263 4)
(s2264 5)
(s2265 5)
(s2266 2)
(s2268 4)
(s2269 5)
(s2270 5)
(s2271 2)
(s2273 4)
(s2274 5)
(s2275 5)
(s2276 2)
(s2278 4)
(s2279 5)
(s2280 5)
(s2281 2)
(s2283 4)
(s2284 5)
(s2285 5)
(s2286 2)
(s2288 4)
(s2289 5)
(s2290 5)
(s2291 2)
(s2293 4)
(s2294 5)
(s2295 5)
(s2296 2)
(s2298 4)
(s2299 5)
(s2300 5)
(s2301 2)
(s2303 4)
(s2304 5)
(s2305 5)
(s2306 2)
(s2308 4)
(s2309 5)
(s2310 5)
(s2311 2)
(s2313 4)
(s2314 5)
(s2315 5)
(s2316 2)
(s2318 4)
(s2319 5)
(s2320 5)
(s2321 2)
(s2323 4)
(s2324 5)
(s2325 5)
(s2326 2)
(s2328 4)
(s2329 5)
(s2330 5)
(s2331 2)
(s2333 4)
(s2334 5)
(s2335 5)
(s2336 2)
(s2338 4)
(s2339 5)
(s2340 5)
(s2341 2)
(s2343 4)
(s2344 5)
(s2345 5)
(s2346 2)
(s2348 4)
(s2349 5)
(s2350 5)
(s2351 2)
(s2353 4)
(s2354 5)
(s2355 5)
(s2356 2)
(s2358 4)
(s2359 5)
(s2360 5)
(s2361 2)
(s2363 4)
(s2364 5)
(s2365 5)
(s2366 2)
(s2368 4)
(s2369 5)
(s2370 5)
(s2371 2)
(s2373 4)
(s2374 5)
(s2375 5)
(s2376 2)
(s2378 4)
(s2379 5)
(s2380 5)
(s2381 2)
(s2383 4)
(s2384 5)
(s2385 5)
(s2386 2)
(s2388 4)
(s2389 5)
(s2390 5)
(s2391 2)
(s2393 4)
(s2394 5)
(s2395 5)
(s2396 2)
(s2398 4)
(s2399 5)
(s2400 5)
(s2401 2)
(s2403 4)
(s2404 5)
(s2405 5)
(s2406 2)
(s2408 4)
(s2409 5)
(s2410 5)
(s2411 2)
(s2413 4)
(s2414 5)
(s2415 5)
(s2416 2)
(s2418 4)
(s2419 5)
(s2420 5)
(s2421 2)
(s2423 4)
(s2424 5)
(s2425 5)
(s2426 2)
(s2428 4)
(s2429 5)
(s2430 5)
(s2431 2)
(s2433 4)
(s2434 5)
(s2435 5)
(s2436 2)
(s2438 4)
(s2439 5)
(s2440 5)
(s2441 2)
(s2443 4)
(s2444 5)
(s2445 5)
(s2446 2)
(s2448 4)
(s2449 5)
(s2450 5)
(s2451 2)
(s2453 4)
(s2454 5)
(s2455 5)
(s2456 2)
(s2458 4)
(s2459 5)
(s2460 5)
(s2461 2)
(s2463 4)
(s2464 5)
(s2465 5)
(s2466 2)
(s2468 4)
(s2469 5)
(s2470 5)
(s2471 2)
(s2473 4)
(s2474 5)
(s2475 5)
(s2476 2)
(s2478 4)
(s2479 5)
(s2480 5)
(s2481 2)
(s2483 4)
(s2484 5)
(s2485 5)
(s2486 2)
(s2488 4)
(s2489 5)
(s2490 5)
(s2491 2)
(s2493 4)
(s2494 5)
(s2495 5)
(s2496 2)
(s2498 4)
(s2499 5)
(s2500 5)
(s2501 2)
(s2503 4)
(s2504 5)
(s2505 5)
(s2506 2)
(s2508 4)
(s2509 5)
(s2510 5)
(s2511 2)
(s2513 4)
(s2514 5)
(s2515 5)
(s2516 2)
(s2518 4)
(s2519 5)
(s2520 5)
(s2521 2)
(s2523 4)
(s2524 5)
(s2525 5)
(s2526 2)
(s2528 4)
(s2529 5)
(s2530 5)
(s2531 2)
(s2533 4)
(s2534 5)
(s2535 5)
(s2536 2)
(s2538 4)
(s2539 5)
(s2540 5)
(s2541 2)
(s2543 4)
(s2544 5)
(s2545 5)
(s2546 2)
(s2548 4)
(s2549 5)
(s2550 5)
(s2551 2)
(s2553 4)
(s2554 5)
(s2555 5)
(s2556 2)
(s2558 4)
(s2559 5)
(s2560 5)
(s2561 2)
(s2563 4)
(s2564 5)
(s2565 5)
(s2566 2)
(s2568 4)
(s2569 5)
(s2570 5)
(s2571 2)
(s2573 4)
(s2574 5)
(s2575 5)
(s2576 2)
(s2578 4)
(s2579 5)
(s2580 5)
(s2581 2)
(s2583 4)
(s2584 5)
(s2585 5)
(s2586 2)
(s2588 4)
(s2589 5)
(s2590 5)
(s2591 2)
(s2593 4)
(s2594 5)
(s2595 5)
(s2596 2)
(s2598 4)
(s2599 5)
(s2600 5)
(s2601 2)
(s2603 4)
(s2604 5)
(s2605 5)
(s2606 2)
(s2608 4)
(s2609 5)
(s2610 5)
(s2611 2)
(s2613 4)
(s2614 5)
(s2615 5)
(s2616 2)
(s2618 4)
(s2619 5)
(s2620 5)
(s2621 2)
(s2623 4)
(s2624 5)
(s2625 5)
(s2626 2)
(s2628 4)
(s2629 5)
(s2630 5)
(s2631 2)
(s2633 4)
(s2634 5)
(s2635 5)
(s2636 2)
(s2638 4)
(s2639 5)
(s2640 5)
(s2641 2)
(s2643 4)
(s2644 5)
(s2645 5)
(s2646 2)
(s2648 4)
(s2649 5)
(s2650 5)
(s2651 2)
(s2653 4)
(s2654 5)
(s2655 5)
(s2656 2)
(s2658 4)
(s2659 5)
(s2660 5)
(s2661 2)
(s2663 4)
(s2664 5)
(s2665 5)
(s2666 2)
(s2668 4)
(s2669 5)
(s2670 5)
(s2671 2)
(s2673 4)
(s2674 5)
(s2675 5)
(s2676 2)
(s2678 4)
(s2679 5)
(s2680 5)
(s2681 2)
(s2683 4)
(s2684 5)
(s2685 5)
(s2686 2)
(s2688 4)
(s2689 5)
(s2690 5)
(s2691 2)
(s2693 4)
(s2694 5)
(s2695 5)
(s2696 2)
(s2698 4)
(s2699 5)
(s2700 5)
(s2701 2)
(s2703 4)
(s2704 5)
(s2705 5)
(s2706 2)
(s2708 4)
(s2709 5)
(s2710 5)
(s2711 2)
(s2713 4)
(s2714 5)
(s2715 5)
(s2716 2)
(s2718 4)
(s2719 5)
(s2720 5)
(s2721 2)
(s2723 4)
(s2724 5)
(s2725 5)
(s2726 2)
(s2728 4)
(s2729 5)
(s2730 5)
(s2731 2)
(s2733 4)
(s2734 5)
(s2735 5)
(s2736 2)
(s2738 4)
(s2739 5)
(s2740 5)
(s2741 2)
(s2743 4)
(s2744 5)
(s2745 5)
(s2746 2)
(s2748 4)
(s2749 5)
(s2750 5)
(s2751 2)
(s2753 4)
(s2754 5)
(s2755 5)
(s2756 2)
(s2758 4)
(s2759 5)
(s2760 5)
(s2761 2)
(s2763 4)
(s2764 5)
(s2765 5)
(s2766 2)
(s2768 4)
(s2769 5)
(s2770 5)
(s2771 2)
(s2773 4)
(s2774 5)
(s2775 5)
(s2776 2)
(s2778 4)
(s2779 5)
(s2780 5)
(s2781 2)
(s2783 4)
(s2784 5)
(s2785 5)
(s2786 2)
(s2788 4)
(s2789 5)
(s2790 5)
(s2791 2)
(s2793 4)
(s2794 5)
(s2795 5)
(s2796 2)
(s2798 4)
(s2799 5)
(s2800 5)
(s2801 2)
(s2803 4)
(s2804 5)
(s2805 5)
(s2806 2)
(s2808 4)
(s2809 5)
(s2810 5)
(s2811 2)
(s2813 4)
(s2814 5)
(s2815 5)
(s2816 2)
(s2818 4)
(s2819 5)
(s2820 5)
(s2821 2)
(s2823 4)
(s2824 5)
(s2825 5)
(s2826 2)
(s2828 4)
(s2829 5)
(s2830 5)
(s2831 2)
(s2833 4)
(s2834 5)
(s2835 5)
(s2836 2)
(s2838 4)
(s2839 5)
(s2840 5)
(s2841 2)
(s2843 4)
(s2844 5)
(s2845 5)
(s2846 2)
(s2848 4)
(s2849 5)
(s2850 5)
(s2851 2)
(s2853 4)
(s2854 5)
(s2855 5)
(s2856 2)
(s2858 4)
(s2859 5)
(s2860 5)
(s2861 2)
(s2863 4)
(s2864 5)
(s2865 5)
(s2866 2)
(s2868 4)
(s2869 5)
(s2870 5)
(s2871 2)
(s2873 4)
(s2874 5)
(s2875 5)
(s2876 2)
(s2878 4)
(s2879 5)
(s2880 5)
(s2881 2)
(s2883 4)
(s2884 5)
(s2885 5)
(s2886 2)
(s2888 4)
(s2889 5)
(s2890 5)
(s2891 2)
(s2893 4)
(s2894 5)
(s2895 5)
(s2896 2)
(s2898 4)
(s2899 5)
(s2900 5)
(s2901 2)
(s2903 4)
(s2904 5)
(s2905 5)
(s2906 2)
(s2908 4)
(s2909 5)
(s2910 5)
(s2911 2)
(s2913 4)
(s2914 5)
(s2915 5)
(s2916 2)
(s2918 4)
(s2919 5)
(s2920 5)
(s2921 2)
(s2923 4)
(s2924 5)
(s2925 5)
(s2926 2)
(s2928 4)
(s2929 5)
(s2930 5)
(s2931 2)
(s2933 4)
(s2934 5)
(s2935 5)
(s2936 2)
(s2938 4)
(s2939 5)
(s2940 5)
(s2941 2)
(s2943 4)
(s2944 5)
(s2945 5)
(s2946 2)
(s2948 4)
(s2949 5)
(s2950 5)
(s2951 2)
(s2953 4)
(s2954 5)
(s2955 5)
(s2956 2)
(s2958 4)
(s2959 5)
(s2960 5)
(s2961 2)
(s2963 4)
(s2964 5)
(s2965 5)
(s2966 2)
(s2968 4)
(s2969 5)
(s2970 5)
(s2971 2)
(s2973 4)
(s2974 5)
(s2975 5)
(s2976 2)
(s2978 4)
(s2979 5)
(s2980 5)
(s2981 2)
(s2983 4)
(s2984 5)
(s2985 5)
(s2986 2)
(s2988 4)
(s2989 5)
(s2990 5)
(s2991 2)
(s2993 4)
(s2994 5)
(s2995 5)
(s2996 2)
(s2998 4)
(s2999 5)
(s3000 5)
(s3001 2)
(s3003 4)
(s3004 5)
(s3005 5)
(s3006 2)
(s3008 4)
(s3009 5)
(s3010 5)
(s3011 2)
(s3013 4)
(s3014 5)
(s3015 5)
(s3016 2)
(s3018 4)
(s3019 5)
(s3020 5)
(s3021 2)
(s3023 4)
(s3024 5)
(s3025 5)
(s3026 2)
(s3028 4)
(s3029 5)
(s3030 5)
(s3031 2)
(s3033 4)
(s3034 5)
(s3035 5)
(s3036 2)
(s3038 4)
(s3039 5)
(s3040 5)
(s3041 2)
(s3043 4)
(s3044 5)
(s3045 5)
(s3046 2)
(s3048 4)
(s3049 5)
(s3050 5)
(s3051 2)
(s3053 4)
(s3054 5)
(s3055 5)
(s3056 2)
(s3058 4)
(s3059 5)
(s3060 5)
(s3061 2)
(s3063 4)
(s3064 5)
(s3065 5)
(s3066 2)
(s3068 4)
(s3069 5)
(s3070 5)
(s3071 2)
(s3073 4)
(s3074 5)
(s3075 5)
(s3076 2)
(s3078 4)
(s3079 5)
(s3080 5)
(s3081 2)
(s3083 4)
(s3084 5)
(s3085 5)
(s3086 2)
(s3088 4)
(s3089 5)
(s3090 5)
(s3091 2)
(s3093 4)
(s3094 5)
(s3095 5)
(s3096 2)
(s3098 4)
(s3099 5)
(s3100 5)
(s3101 2)
(s3103 4)
(s3104 5)
(s3105 5)
(s3106 2)
(s3108 4)
(s3109 5)
(s3110 5)
(s3111 2)
(s3113 4)
(s3114 5)
(s3115 5)
(s3116 2)
(s3118 4)
(s3119 5)
(s3120 5)
(s3121 2)
(s3123 4)
(s3124 5)
(s3125 5)
(s3126 2)
(s3128 4)
(s3129 5)
(s3130 5)
(s3131 2)
(s3133 4)
(s3134 5)
(s3135 5)
(s3136 2)
(s3138 4)
(s3139 5)
(s3140 5)
(s3141 2)
(s3143 4)
(s3144 5)
(s3145 5)
(s3146 2)
(s3148 4)
(s3149 5)
(s3150 5)
(s3151 2)
(s3153 4)
(s3154 5)
(s3155 5)
(s3156 2)
(s3158 4)
(s3159 5)
(s3160 5)
(s3161 2)
(s3163 4)
(s3164 5)
(s3165 5)
(s3166 2)
(s3168 4)
(s3169 5)
(s3170 5)
(s3171 2)
(s3173 4)
(s3174 5)
(s3175 5)
(s3176 2)
(s3178 4)
(s3179 5)
(s3180 5)
(s3181 2)
(s3183 4)
(s3184 5)
(s3185 5)
(s3186 2)
(s3188 4)
(s3189 5)
(s3190 5)
(s3191 2)
(s3193 4)
(s3194 5)
(s3195 5)
(s3196 2)
(s3198 4)
(s3199 5)
(s3200 5)
(s3201 2)
(s3203 4)
(s3204 5)
(s3205 5)
(s3206 2)
(s3208 4)
(s3209 5)
(s3210 5)
(s3211 2)
(s3213 4)
(s3214 5)
(s3215 5)
(s3216 2)
(s3218 4)
(s3219 5)
(s3220 5)
(s3221 2)
(s3223 4)
(s3224 5)
(s3225 5)
(s3226 2)
(s3228 4)
(s3229 5)
(s3230 5)
(s3231 2)
(s3233 4)
(s3234 5)
(s3235 5)
(s3236 2)
(s3238 4)
(s3239 5)
(s3240 5)
(s3241 2)
(s3243 4)
(s3244 5)
(s3245 5)
(s3246 2)
(s3248 4)
(s3249 5)
(s3250 5)
(s3251 2)
(s3253 4)
(s3254 5)
(s3255 5)
(s3256 2)
(s3258 4)
(s3259 5)
(s3260 5)
(s3261 2)
(s3263 4)
(s3264 5)
(s3265 5)
(s3266 2)
(s3268 4)
(s3269 5)
(s3270 5)
(s3271 2)
(s3273 4)
(s3274 5)
(s3275 5)
(s3276 2)
(s3278 4)
(s3279 5)
(s3280 5)
(s3281 2)
(s3283 4)
(s3284 5)
(s3285 5)
(s3286 2)
(s3288 4)
(s3289 5)
(s3290 5)
(s3291 2)
(s3293 4)
(s3294 5)
(s3295 5)
(s3296 2)
(s3298 4)
(s3299 5)
(s3300 5)
(s3301 2)
(s3303 4)
(s3304 5)
(s3305 5)
(s3306 2)
(s3308 4)
(s3309 5)
(s3310 5)
(s3311 2)
(s3313 4)
(s3314 5)
(s3315 5)
(s3316 2)
(s3318 4)
(s3319 5)
(s3320 5)
(s3321 2)
(s3323 4)
(s3324 5)
(s3325 5)
(s3326 2)
(s3328 4)
(s3329 5)
(s3330 5)
(s3331 2)
(s3333 4)
(s3334 5)
(s3335 5)
(s3336 2)
(s3338 4)
(s3339 5)
(s3340 5)
(s3341 2)
(s3343 4)
(s3344 5)
(s3345 5)
(s3346 2)
(s3348 4)
(s3349 5)
(s3350 5)
(s3351 2)
(s3353 4)
(s3354 5)
(s3355 5)
(s3356 2)
(s3358 4)
(s3359 5)
(s3360 5)
(s3361 2)
(s3363 4)
(s3364 5)
(s3365 5)
(s3366 2)
(s3368 4)
(s3369 5)
(s3370 5)
(s3371 2)
(s3373 4)
(s3374 5)
(s3375 5)
(s3376 2)
(s3378 4)
(s3379 5)
(s3380 5)
(s3381 2)
(s3383 4)
(s3384 5)
(s3385 5)
(s3386 2)
(s3388 4)
(s3389 5)
(s3390 5)
(s3391 2)
(s3393 4)
(s3394 5)
(s3395 timeout
5)
(s3396 org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13000 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20082 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 44428ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 44482ms
Finished structural reductions in REACHABILITY mode , in 1 iterations and 44847 ms. Remains : 5000/5000 places, 8000/8001 transitions.
RANDOM walk for 2029120 steps (4 resets) in 120079 ms. (16 steps per ms) remains 1176/2934 properties
BEST_FIRST walk for 4004 steps (0 resets) in 257 ms. (15 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 302 ms. (13 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 240 ms. (16 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 227 ms. (17 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 242 ms. (16 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 235 ms. (16 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 250 ms. (15 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 240 ms. (16 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 236 ms. (16 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 242 ms. (16 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 236 ms. (16 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 258 ms. (15 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 254 ms. (15 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 269 ms. (14 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 288 ms. (13 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 290 ms. (13 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 283 ms. (14 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 265 ms. (15 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 237 ms. (16 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 250 ms. (15 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 240 ms. (16 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 255 ms. (15 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 246 ms. (16 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 251 ms. (15 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 234 ms. (17 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 238 ms. (16 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 234 ms. (17 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 236 ms. (16 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 237 ms. (16 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 253 ms. (15 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 236 ms. (16 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 257 ms. (15 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 245 ms. (16 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 252 ms. (15 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 235 ms. (16 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 236 ms. (16 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 243 ms. (16 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 233 ms. (17 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 235 ms. (16 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 236 ms. (16 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 253 ms. (15 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 252 ms. (15 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 226 ms. (17 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 234 ms. (17 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 233 ms. (17 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 248 ms. (16 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 254 ms. (15 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 235 ms. (16 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 238 ms. (16 steps per ms) remains 1176/1176 properties
BEST_FIRST walk for 4004 steps (0 resets) in 247 ms. (16 steps per ms) remains 1176/1176 properties
[2024-05-24 07:18:17] [INFO ] Invariant cache hit.
[2024-05-24 07:18:17] [INFO ] State equation strengthened by 1000 read => feed constraints.
At refinement iteration 0 (INCLUDED_ONLY) 0/1176 variables, 0/0 constraints. Problems are: Problem set: 0 solved, 1176 unsolved
At refinement iteration 1 (OVERLAPS) 2419/3595 variables, 719/719 constraints. Problems are: Problem set: 0 solved, 1176 unsolved
[2024-05-24 07:18:59] [INFO ] Deduced a trap composed of 3 places in 335 ms of which 31 ms to minimize.
[2024-05-24 07:18:59] [INFO ] Deduced a trap composed of 3 places in 422 ms of which 5 ms to minimize.
[2024-05-24 07:19:00] [INFO ] Deduced a trap composed of 3 places in 658 ms of which 13 ms to minimize.
[2024-05-24 07:19:01] [INFO ] Deduced a trap composed of 3 places in 899 ms of which 3 ms to minimize.
[2024-05-24 07:19:01] [INFO ] Deduced a trap composed of 3 places in 298 ms of which 4 ms to minimize.
[2024-05-24 07:19:01] [INFO ] Deduced a trap composed of 3 places in 282 ms of which 4 ms to minimize.
[2024-05-24 07:19:02] [INFO ] Deduced a trap composed of 3 places in 243 ms of which 3 ms to minimize.
[2024-05-24 07:19:02] [INFO ] Deduced a trap composed of 3 places in 214 ms of which 3 ms to minimize.
[2024-05-24 07:19:02] [INFO ] Deduced a trap composed of 3 places in 216 ms of which 3 ms to minimize.
[2024-05-24 07:19:03] [INFO ] Deduced a trap composed of 3 places in 211 ms of which 3 ms to minimize.
[2024-05-24 07:19:03] [INFO ] Deduced a trap composed of 3 places in 218 ms of which 3 ms to minimize.
[2024-05-24 07:19:03] [INFO ] Deduced a trap composed of 3 places in 247 ms of which 4 ms to minimize.
[2024-05-24 07:19:03] [INFO ] Deduced a trap composed of 3 places in 259 ms of which 3 ms to minimize.
SMT process timed out in 46103ms, After SMT, problems are : Problem set: 0 solved, 1176 unsolved
Fused 1176 Parikh solutions to 1 different solutions.
Parikh walk visited 0 properties in 0 ms.
Support contains 1176 out of 5000 places. Attempting structural reductions.
Starting structural reductions in REACHABILITY mode, iteration 0 : 5000/5000 places, 8000/8000 transitions.
Graph (complete) has 12000 edges and 5000 vertex of which 3595 are kept as prefixes of interest. Removing 1405 places using SCC suffix rule.6 ms
Discarding 1405 places :
Also discarding 2248 output transitions
Drop transitions (Output transitions of discarded places.) removed 2248 transitions
Applied a total of 1 rules in 476 ms. Remains 3595 /5000 variables (removed 1405) and now considering 5752/8000 (removed 2248) transitions.
Finished structural reductions in REACHABILITY mode , in 1 iterations and 476 ms. Remains : 3595/5000 places, 5752/8000 transitions.
RANDOM walk for 2683925 steps (5 resets) in 120053 ms. (22 steps per ms) remains 254/1176 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1778 ms. (22 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1930 ms. (20 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1748 ms. (22 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1768 ms. (22 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1882 ms. (21 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1721 ms. (23 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1719 ms. (23 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1735 ms. (23 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1734 ms. (23 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1431 ms. (27 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1651 ms. (24 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1735 ms. (23 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1571 ms. (25 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1709 ms. (23 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1404 ms. (28 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1416 ms. (28 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1430 ms. (27 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1407 ms. (28 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1442 ms. (27 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1430 ms. (27 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1435 ms. (27 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1407 ms. (28 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1409 ms. (28 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1580 ms. (25 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1735 ms. (23 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1415 ms. (28 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1787 ms. (22 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 2713 ms. (14 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 2652 ms. (15 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 2606 ms. (15 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 2663 ms. (15 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 2712 ms. (14 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 2616 ms. (15 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 2611 ms. (15 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 2721 ms. (14 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 2706 ms. (14 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 2692 ms. (14 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 2711 ms. (14 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 2322 ms. (17 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 2746 ms. (14 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 2702 ms. (14 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 2721 ms. (14 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 2753 ms. (14 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 2735 ms. (14 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 2673 ms. (14 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 2744 ms. (14 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 2715 ms. (14 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 2648 ms. (15 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 2613 ms. (15 steps per ms) remains 254/254 properties
BEST_FIRST walk for 40004 steps (8 resets) in 2623 ms. (15 steps per ms) remains 254/254 properties
// Phase 1: matrix 5752 rows 3595 cols
[2024-05-24 07:20:02] [INFO ] Computed 719 invariants in 13 ms
[2024-05-24 07:20:02] [INFO ] State equation strengthened by 719 read => feed constraints.
At refinement iteration 0 (INCLUDED_ONLY) 0/254 variables, 0/0 constraints. Problems are: Problem set: 0 solved, 254 unsolved
At refinement iteration 1 (OVERLAPS) 871/1125 variables, 225/225 constraints. Problems are: Problem set: 0 solved, 254 unsolved
[2024-05-24 07:20:05] [INFO ] Deduced a trap composed of 3 places in 100 ms of which 2 ms to minimize.
[2024-05-24 07:20:05] [INFO ] Deduced a trap composed of 3 places in 104 ms of which 2 ms to minimize.
[2024-05-24 07:20:05] [INFO ] Deduced a trap composed of 3 places in 107 ms of which 1 ms to minimize.
[2024-05-24 07:20:05] [INFO ] Deduced a trap composed of 3 places in 97 ms of which 2 ms to minimize.
[2024-05-24 07:20:05] [INFO ] Deduced a trap composed of 3 places in 99 ms of which 2 ms to minimize.
[2024-05-24 07:20:05] [INFO ] Deduced a trap composed of 3 places in 101 ms of which 2 ms to minimize.
[2024-05-24 07:20:05] [INFO ] Deduced a trap composed of 3 places in 98 ms of which 2 ms to minimize.
[2024-05-24 07:20:06] [INFO ] Deduced a trap composed of 3 places in 105 ms of which 2 ms to minimize.
[2024-05-24 07:20:06] [INFO ] Deduced a trap composed of 3 places in 97 ms of which 2 ms to minimize.
[2024-05-24 07:20:06] [INFO ] Deduced a trap composed of 3 places in 98 ms of which 1 ms to minimize.
[2024-05-24 07:20:06] [INFO ] Deduced a trap composed of 3 places in 109 ms of which 1 ms to minimize.
[2024-05-24 07:20:06] [INFO ] Deduced a trap composed of 3 places in 105 ms of which 1 ms to minimize.
[2024-05-24 07:20:06] [INFO ] Deduced a trap composed of 3 places in 107 ms of which 1 ms to minimize.
[2024-05-24 07:20:06] [INFO ] Deduced a trap composed of 3 places in 110 ms of which 2 ms to minimize.
[2024-05-24 07:20:07] [INFO ] Deduced a trap composed of 3 places in 130 ms of which 1 ms to minimize.
[2024-05-24 07:20:07] [INFO ] Deduced a trap composed of 3 places in 90 ms of which 2 ms to minimize.
[2024-05-24 07:20:07] [INFO ] Deduced a trap composed of 3 places in 79 ms of which 1 ms to minimize.
[2024-05-24 07:20:07] [INFO ] Deduced a trap composed of 3 places in 90 ms of which 1 ms to minimize.
[2024-05-24 07:20:07] [INFO ] Deduced a trap composed of 3 places in 104 ms of which 1 ms to minimize.
[2024-05-24 07:20:07] [INFO ] Deduced a trap composed of 3 places in 91 ms of which 1 ms to minimize.
At refinement iteration 2 (INCLUDED_ONLY) 0/1125 variables, 20/245 constraints. Problems are: Problem set: 0 solved, 254 unsolved
[2024-05-24 07:20:07] [INFO ] Deduced a trap composed of 3 places in 94 ms of which 2 ms to minimize.
[2024-05-24 07:20:07] [INFO ] Deduced a trap composed of 3 places in 88 ms of which 3 ms to minimize.
[2024-05-24 07:20:07] [INFO ] Deduced a trap composed of 3 places in 84 ms of which 2 ms to minimize.
[2024-05-24 07:20:08] [INFO ] Deduced a trap composed of 3 places in 91 ms of which 2 ms to minimize.
[2024-05-24 07:20:08] [INFO ] Deduced a trap composed of 3 places in 85 ms of which 1 ms to minimize.
[2024-05-24 07:20:08] [INFO ] Deduced a trap composed of 3 places in 90 ms of which 1 ms to minimize.
[2024-05-24 07:20:08] [INFO ] Deduced a trap composed of 3 places in 84 ms of which 2 ms to minimize.
[2024-05-24 07:20:08] [INFO ] Deduced a trap composed of 3 places in 79 ms of which 2 ms to minimize.
[2024-05-24 07:20:08] [INFO ] Deduced a trap composed of 3 places in 78 ms of which 2 ms to minimize.
[2024-05-24 07:20:08] [INFO ] Deduced a trap composed of 3 places in 81 ms of which 1 ms to minimize.
[2024-05-24 07:20:08] [INFO ] Deduced a trap composed of 3 places in 96 ms of which 1 ms to minimize.
[2024-05-24 07:20:08] [INFO ] Deduced a trap composed of 3 places in 82 ms of which 1 ms to minimize.
[2024-05-24 07:20:08] [INFO ] Deduced a trap composed of 3 places in 85 ms of which 1 ms to minimize.
[2024-05-24 07:20:09] [INFO ] Deduced a trap composed of 3 places in 86 ms of which 2 ms to minimize.
[2024-05-24 07:20:09] [INFO ] Deduced a trap composed of 3 places in 73 ms of which 1 ms to minimize.
[2024-05-24 07:20:09] [INFO ] Deduced a trap composed of 3 places in 73 ms of which 1 ms to minimize.
[2024-05-24 07:20:09] [INFO ] Deduced a trap composed of 3 places in 74 ms of which 2 ms to minimize.
[2024-05-24 07:20:09] [INFO ] Deduced a trap composed of 3 places in 66 ms of which 2 ms to minimize.
[2024-05-24 07:20:09] [INFO ] Deduced a trap composed of 3 places in 71 ms of which 1 ms to minimize.
[2024-05-24 07:20:09] [INFO ] Deduced a trap composed of 3 places in 70 ms of which 0 ms to minimize.
At refinement iteration 3 (INCLUDED_ONLY) 0/1125 variables, 20/265 constraints. Problems are: Problem set: 0 solved, 254 unsolved
[2024-05-24 07:20:13] [INFO ] Deduced a trap composed of 3 places in 69 ms of which 1 ms to minimize.
[2024-05-24 07:20:13] [INFO ] Deduced a trap composed of 3 places in 82 ms of which 1 ms to minimize.
[2024-05-24 07:20:13] [INFO ] Deduced a trap composed of 3 places in 77 ms of which 1 ms to minimize.
[2024-05-24 07:20:13] [INFO ] Deduced a trap composed of 3 places in 78 ms of which 10 ms to minimize.
[2024-05-24 07:20:13] [INFO ] Deduced a trap composed of 3 places in 61 ms of which 1 ms to minimize.
[2024-05-24 07:20:13] [INFO ] Deduced a trap composed of 3 places in 67 ms of which 1 ms to minimize.
[2024-05-24 07:20:13] [INFO ] Deduced a trap composed of 3 places in 74 ms of which 1 ms to minimize.
[2024-05-24 07:20:14] [INFO ] Deduced a trap composed of 3 places in 76 ms of which 0 ms to minimize.
[2024-05-24 07:20:14] [INFO ] Deduced a trap composed of 3 places in 65 ms of which 1 ms to minimize.
[2024-05-24 07:20:14] [INFO ] Deduced a trap composed of 3 places in 59 ms of which 1 ms to minimize.
[2024-05-24 07:20:14] [INFO ] Deduced a trap composed of 3 places in 68 ms of which 1 ms to minimize.
[2024-05-24 07:20:14] [INFO ] Deduced a trap composed of 3 places in 63 ms of which 1 ms to minimize.
[2024-05-24 07:20:14] [INFO ] Deduced a trap composed of 3 places in 57 ms of which 1 ms to minimize.
[2024-05-24 07:20:14] [INFO ] Deduced a trap composed of 3 places in 69 ms of which 0 ms to minimize.
[2024-05-24 07:20:14] [INFO ] Deduced a trap composed of 3 places in 67 ms of which 1 ms to minimize.
[2024-05-24 07:20:14] [INFO ] Deduced a trap composed of 3 places in 63 ms of which 1 ms to minimize.
[2024-05-24 07:20:14] [INFO ] Deduced a trap composed of 3 places in 69 ms of which 1 ms to minimize.
[2024-05-24 07:20:14] [INFO ] Deduced a trap composed of 3 places in 58 ms of which 1 ms to minimize.
[2024-05-24 07:20:14] [INFO ] Deduced a trap composed of 3 places in 57 ms of which 0 ms to minimize.
[2024-05-24 07:20:15] [INFO ] Deduced a trap composed of 3 places in 52 ms of which 1 ms to minimize.
At refinement iteration 4 (INCLUDED_ONLY) 0/1125 variables, 20/285 constraints. Problems are: Problem set: 0 solved, 254 unsolved
[2024-05-24 07:20:15] [INFO ] Deduced a trap composed of 3 places in 55 ms of which 1 ms to minimize.
[2024-05-24 07:20:15] [INFO ] Deduced a trap composed of 3 places in 64 ms of which 1 ms to minimize.
[2024-05-24 07:20:15] [INFO ] Deduced a trap composed of 3 places in 66 ms of which 1 ms to minimize.
[2024-05-24 07:20:15] [INFO ] Deduced a trap composed of 3 places in 54 ms of which 1 ms to minimize.
[2024-05-24 07:20:15] [INFO ] Deduced a trap composed of 3 places in 53 ms of which 0 ms to minimize.
[2024-05-24 07:20:15] [INFO ] Deduced a trap composed of 3 places in 53 ms of which 1 ms to minimize.
[2024-05-24 07:20:15] [INFO ] Deduced a trap composed of 3 places in 51 ms of which 0 ms to minimize.
[2024-05-24 07:20:15] [INFO ] Deduced a trap composed of 3 places in 58 ms of which 1 ms to minimize.
[2024-05-24 07:20:15] [INFO ] Deduced a trap composed of 3 places in 51 ms of which 0 ms to minimize.
[2024-05-24 07:20:15] [INFO ] Deduced a trap composed of 3 places in 51 ms of which 1 ms to minimize.
[2024-05-24 07:20:16] [INFO ] Deduced a trap composed of 3 places in 41 ms of which 1 ms to minimize.
[2024-05-24 07:20:16] [INFO ] Deduced a trap composed of 3 places in 38 ms of which 1 ms to minimize.
[2024-05-24 07:20:16] [INFO ] Deduced a trap composed of 3 places in 47 ms of which 0 ms to minimize.
[2024-05-24 07:20:16] [INFO ] Deduced a trap composed of 3 places in 41 ms of which 1 ms to minimize.
[2024-05-24 07:20:16] [INFO ] Deduced a trap composed of 3 places in 68 ms of which 0 ms to minimize.
[2024-05-24 07:20:16] [INFO ] Deduced a trap composed of 3 places in 69 ms of which 1 ms to minimize.
[2024-05-24 07:20:16] [INFO ] Deduced a trap composed of 3 places in 26 ms of which 1 ms to minimize.
[2024-05-24 07:20:16] [INFO ] Deduced a trap composed of 3 places in 35 ms of which 0 ms to minimize.
[2024-05-24 07:20:16] [INFO ] Deduced a trap composed of 3 places in 42 ms of which 1 ms to minimize.
At refinement iteration 5 (INCLUDED_ONLY) 0/1125 variables, 19/304 constraints. Problems are: Problem set: 0 solved, 254 unsolved
At refinement iteration 6 (INCLUDED_ONLY) 0/1125 variables, 0/304 constraints. Problems are: Problem set: 0 solved, 254 unsolved
At refinement iteration 7 (OVERLAPS) 1800/2925 variables, 1125/1429 constraints. Problems are: Problem set: 0 solved, 254 unsolved
At refinement iteration 8 (INCLUDED_ONLY) 0/2925 variables, 225/1654 constraints. Problems are: Problem set: 0 solved, 254 unsolved
All remaining problems are real, not stopping.
At refinement iteration 9 (INCLUDED_ONLY) 0/2925 variables, 0/1654 constraints. Problems are: Problem set: 0 solved, 254 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 2925/9347 variables, and 1654 constraints, problems are : Problem set: 0 solved, 254 unsolved in 75025 ms.
Refiners :[Positive P Invariants (semi-flows): 225/719 constraints, State Equation: 1125/3595 constraints, ReadFeed: 225/719 constraints, PredecessorRefiner: 254/254 constraints, Known Traps: 79/79 constraints]
Escalating to Integer solving :Problem set: 0 solved, 254 unsolved
At refinement iteration 0 (INCLUDED_ONLY) 0/254 variables, 0/0 constraints. Problems are: Problem set: 0 solved, 254 unsolved
At refinement iteration 1 (OVERLAPS) 871/1125 variables, 225/225 constraints. Problems are: Problem set: 0 solved, 254 unsolved
At refinement iteration 2 (INCLUDED_ONLY) 0/1125 variables, 79/304 constraints. Problems are: Problem set: 0 solved, 254 unsolved
[2024-05-24 07:21:19] [INFO ] Deduced a trap composed of 3 places in 69 ms of which 1 ms to minimize.
[2024-05-24 07:21:19] [INFO ] Deduced a trap composed of 3 places in 85 ms of which 1 ms to minimize.
[2024-05-24 07:21:19] [INFO ] Deduced a trap composed of 3 places in 69 ms of which 1 ms to minimize.
[2024-05-24 07:21:19] [INFO ] Deduced a trap composed of 3 places in 70 ms of which 1 ms to minimize.
[2024-05-24 07:21:19] [INFO ] Deduced a trap composed of 3 places in 76 ms of which 1 ms to minimize.
[2024-05-24 07:21:19] [INFO ] Deduced a trap composed of 3 places in 73 ms of which 1 ms to minimize.
[2024-05-24 07:21:19] [INFO ] Deduced a trap composed of 3 places in 72 ms of which 1 ms to minimize.
[2024-05-24 07:21:19] [INFO ] Deduced a trap composed of 3 places in 73 ms of which 1 ms to minimize.
[2024-05-24 07:21:19] [INFO ] Deduced a trap composed of 3 places in 87 ms of which 1 ms to minimize.
[2024-05-24 07:21:20] [INFO ] Deduced a trap composed of 3 places in 78 ms of which 1 ms to minimize.
[2024-05-24 07:21:20] [INFO ] Deduced a trap composed of 3 places in 70 ms of which 1 ms to minimize.
[2024-05-24 07:21:20] [INFO ] Deduced a trap composed of 3 places in 64 ms of which 1 ms to minimize.
[2024-05-24 07:21:20] [INFO ] Deduced a trap composed of 3 places in 71 ms of which 1 ms to minimize.
[2024-05-24 07:21:20] [INFO ] Deduced a trap composed of 3 places in 62 ms of which 1 ms to minimize.
[2024-05-24 07:21:20] [INFO ] Deduced a trap composed of 3 places in 60 ms of which 1 ms to minimize.
[2024-05-24 07:21:20] [INFO ] Deduced a trap composed of 3 places in 66 ms of which 1 ms to minimize.
[2024-05-24 07:21:20] [INFO ] Deduced a trap composed of 3 places in 67 ms of which 1 ms to minimize.
[2024-05-24 07:21:20] [INFO ] Deduced a trap composed of 3 places in 69 ms of which 1 ms to minimize.
[2024-05-24 07:21:20] [INFO ] Deduced a trap composed of 3 places in 80 ms of which 1 ms to minimize.
[2024-05-24 07:21:20] [INFO ] Deduced a trap composed of 3 places in 69 ms of which 1 ms to minimize.
At refinement iteration 3 (INCLUDED_ONLY) 0/1125 variables, 20/324 constraints. Problems are: Problem set: 0 solved, 254 unsolved
[2024-05-24 07:21:21] [INFO ] Deduced a trap composed of 3 places in 65 ms of which 1 ms to minimize.
[2024-05-24 07:21:21] [INFO ] Deduced a trap composed of 3 places in 66 ms of which 1 ms to minimize.
[2024-05-24 07:21:21] [INFO ] Deduced a trap composed of 3 places in 61 ms of which 1 ms to minimize.
[2024-05-24 07:21:21] [INFO ] Deduced a trap composed of 3 places in 68 ms of which 1 ms to minimize.
[2024-05-24 07:21:21] [INFO ] Deduced a trap composed of 3 places in 68 ms of which 1 ms to minimize.
[2024-05-24 07:21:21] [INFO ] Deduced a trap composed of 3 places in 45 ms of which 0 ms to minimize.
[2024-05-24 07:21:21] [INFO ] Deduced a trap composed of 3 places in 69 ms of which 1 ms to minimize.
[2024-05-24 07:21:21] [INFO ] Deduced a trap composed of 3 places in 61 ms of which 1 ms to minimize.
[2024-05-24 07:21:21] [INFO ] Deduced a trap composed of 3 places in 62 ms of which 1 ms to minimize.
[2024-05-24 07:21:21] [INFO ] Deduced a trap composed of 3 places in 54 ms of which 0 ms to minimize.
[2024-05-24 07:21:21] [INFO ] Deduced a trap composed of 3 places in 58 ms of which 1 ms to minimize.
[2024-05-24 07:21:21] [INFO ] Deduced a trap composed of 3 places in 63 ms of which 1 ms to minimize.
[2024-05-24 07:21:22] [INFO ] Deduced a trap composed of 3 places in 58 ms of which 1 ms to minimize.
[2024-05-24 07:21:22] [INFO ] Deduced a trap composed of 3 places in 54 ms of which 0 ms to minimize.
[2024-05-24 07:21:22] [INFO ] Deduced a trap composed of 3 places in 52 ms of which 1 ms to minimize.
[2024-05-24 07:21:22] [INFO ] Deduced a trap composed of 3 places in 35 ms of which 1 ms to minimize.
[2024-05-24 07:21:22] [INFO ] Deduced a trap composed of 3 places in 47 ms of which 0 ms to minimize.
[2024-05-24 07:21:22] [INFO ] Deduced a trap composed of 3 places in 62 ms of which 1 ms to minimize.
[2024-05-24 07:21:22] [INFO ] Deduced a trap composed of 3 places in 41 ms of which 0 ms to minimize.
[2024-05-24 07:21:22] [INFO ] Deduced a trap composed of 3 places in 34 ms of which 1 ms to minimize.
At refinement iteration 4 (INCLUDED_ONLY) 0/1125 variables, 20/344 constraints. Problems are: Problem set: 0 solved, 254 unsolved
[2024-05-24 07:21:22] [INFO ] Deduced a trap composed of 3 places in 60 ms of which 0 ms to minimize.
[2024-05-24 07:21:22] [INFO ] Deduced a trap composed of 3 places in 47 ms of which 1 ms to minimize.
[2024-05-24 07:21:22] [INFO ] Deduced a trap composed of 3 places in 45 ms of which 1 ms to minimize.
[2024-05-24 07:21:22] [INFO ] Deduced a trap composed of 3 places in 46 ms of which 0 ms to minimize.
[2024-05-24 07:21:22] [INFO ] Deduced a trap composed of 3 places in 40 ms of which 0 ms to minimize.
[2024-05-24 07:21:22] [INFO ] Deduced a trap composed of 3 places in 28 ms of which 0 ms to minimize.
[2024-05-24 07:21:22] [INFO ] Deduced a trap composed of 3 places in 31 ms of which 0 ms to minimize.
[2024-05-24 07:21:22] [INFO ] Deduced a trap composed of 3 places in 45 ms of which 1 ms to minimize.
[2024-05-24 07:21:23] [INFO ] Deduced a trap composed of 3 places in 28 ms of which 1 ms to minimize.
[2024-05-24 07:21:23] [INFO ] Deduced a trap composed of 3 places in 24 ms of which 0 ms to minimize.
[2024-05-24 07:21:23] [INFO ] Deduced a trap composed of 3 places in 27 ms of which 2 ms to minimize.
[2024-05-24 07:21:23] [INFO ] Deduced a trap composed of 3 places in 36 ms of which 0 ms to minimize.
At refinement iteration 5 (INCLUDED_ONLY) 0/1125 variables, 12/356 constraints. Problems are: Problem set: 0 solved, 254 unsolved
At refinement iteration 6 (INCLUDED_ONLY) 0/1125 variables, 0/356 constraints. Problems are: Problem set: 0 solved, 254 unsolved
At refinement iteration 7 (OVERLAPS) 1800/2925 variables, 1125/1481 constraints. Problems are: Problem set: 0 solved, 254 unsolved
At refinement iteration 8 (INCLUDED_ONLY) 0/2925 variables, 225/1706 constraints. Problems are: Problem set: 0 solved, 254 unsolved
At refinement iteration 9 (INCLUDED_ONLY) 0/2925 variables, 254/1960 constraints. Problems are: Problem set: 0 solved, 254 unsolved
[2024-05-24 07:22:20] [INFO ] Deduced a trap composed of 3 places in 44 ms of which 1 ms to minimize.
[2024-05-24 07:22:28] [INFO ] Deduced a trap composed of 3 places in 37 ms of which 1 ms to minimize.
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 2925/9347 variables, and 1962 constraints, problems are : Problem set: 0 solved, 254 unsolved in 75014 ms.
Refiners :[Positive P Invariants (semi-flows): 225/719 constraints, State Equation: 1125/3595 constraints, ReadFeed: 225/719 constraints, PredecessorRefiner: 254/254 constraints, Known Traps: 133/133 constraints]
After SMT, in 150209ms problems are : Problem set: 0 solved, 254 unsolved
Skipping Parikh replay, no witness traces provided.
Support contains 254 out of 3595 places. Attempting structural reductions.
Starting structural reductions in REACHABILITY mode, iteration 0 : 3595/3595 places, 5752/5752 transitions.
Graph (complete) has 8628 edges and 3595 vertex of which 1125 are kept as prefixes of interest. Removing 2470 places using SCC suffix rule.3 ms
Discarding 2470 places :
Also discarding 3952 output transitions
Drop transitions (Output transitions of discarded places.) removed 3952 transitions
Applied a total of 1 rules in 59 ms. Remains 1125 /3595 variables (removed 2470) and now considering 1800/5752 (removed 3952) transitions.
Finished structural reductions in REACHABILITY mode , in 1 iterations and 71 ms. Remains : 1125/3595 places, 1800/5752 transitions.
RANDOM walk for 4000467 steps (8 resets) in 82822 ms. (48 steps per ms) remains 0/254 properties
Able to resolve query QuasiLiveness after proving 4001 properties.
FORMULA QuasiLiveness TRUE TECHNIQUES RANDOM_WALK PROBABILISTIC_WALK TOPOLOGICAL INITIAL_STATE
Total runtime 486635 ms.
ITS solved all properties within timeout
BK_STOP 1716535373927
--------------------
content from stderr:
+ ulimit -s 65536
+ [[ -z '' ]]
+ export LTSMIN_MEM_SIZE=8589934592
+ LTSMIN_MEM_SIZE=8589934592
+ export PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ export LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
+ LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
++ sed s/.jar//
++ perl -pe 's/.*\.//g'
++ ls /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/plugins/fr.lip6.move.gal.application.pnmcc_1.0.0.202405141337.jar
+ VERSION=202405141337
+ echo 'Running Version 202405141337'
+ /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/its-tools -pnfolder /home/mcc/execution -examination QuasiLiveness -timeout 180 -rebuildPNML
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="JoinFreeModules-PT-1000"
export BK_EXAMINATION="QuasiLiveness"
export BK_TOOL="greatspnxred"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="1800"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5568"
echo " Executing tool greatspnxred"
echo " Input is JoinFreeModules-PT-1000, examination is QuasiLiveness"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r232-tall-171649621500047"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/JoinFreeModules-PT-1000.tgz
mv JoinFreeModules-PT-1000 execution
cd execution
if [ "QuasiLiveness" = "ReachabilityDeadlock" ] || [ "QuasiLiveness" = "UpperBounds" ] || [ "QuasiLiveness" = "QuasiLiveness" ] || [ "QuasiLiveness" = "StableMarking" ] || [ "QuasiLiveness" = "Liveness" ] || [ "QuasiLiveness" = "OneSafe" ] || [ "QuasiLiveness" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "QuasiLiveness" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "QuasiLiveness" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "QuasiLiveness.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property QuasiLiveness.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "QuasiLiveness.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "QuasiLiveness" = "ReachabilityDeadlock" ] || [ "QuasiLiveness" = "QuasiLiveness" ] || [ "QuasiLiveness" = "StableMarking" ] || [ "QuasiLiveness" = "Liveness" ] || [ "QuasiLiveness" = "OneSafe" ] ; then
echo "FORMULA_NAME QuasiLiveness"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;