fond
Model Checking Contest 2024
14th edition, Geneva, Switzerland, June 25, 2024
Execution of r232-tall-171649621500042
Last Updated
July 7, 2024

About the Execution of GreatSPN+red for JoinFreeModules-PT-0500

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
1609.739 186115.00 308346.00 548.80 T normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Formatting '/data/fkordon/mcc2024-input.r232-tall-171649621500042.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2024-input.qcow2 backing_fmt=qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
.......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
=====================================================================
Generated by BenchKit 2-5568
Executing tool greatspnxred
Input is JoinFreeModules-PT-0500, examination is QuasiLiveness
Time confinement is 1800 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r232-tall-171649621500042
=====================================================================

--------------------
preparation of the directory to be used:
/home/mcc/execution
total 2.0M
-rw-r--r-- 1 mcc users 7.1K May 14 13:22 CTLCardinality.txt
-rw-r--r-- 1 mcc users 74K May 14 13:22 CTLCardinality.xml
-rw-r--r-- 1 mcc users 5.1K May 14 13:22 CTLFireability.txt
-rw-r--r-- 1 mcc users 43K May 14 13:22 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K May 18 16:42 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 3.3K May 19 07:10 LTLCardinality.txt
-rw-r--r-- 1 mcc users 23K May 19 16:02 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.1K May 19 07:22 LTLFireability.txt
-rw-r--r-- 1 mcc users 15K May 19 18:33 LTLFireability.xml
-rw-r--r-- 1 mcc users 15K Apr 11 14:21 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 155K Apr 11 14:21 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 6.9K Apr 11 14:20 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 54K Apr 11 14:20 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.6K May 19 07:12 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.8K May 19 15:27 UpperBounds.xml
-rw-r--r-- 1 mcc users 6 May 18 16:42 equiv_col
-rw-r--r-- 1 mcc users 5 May 18 16:42 instance
-rw-r--r-- 1 mcc users 6 May 18 16:42 iscolored
-rw-r--r-- 1 mcc users 1.6M May 18 16:42 model.pnml

--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

FORMULA_NAME QuasiLiveness

=== Now, execution of the tool begins

BK_START 1716534689245

Invoking MCC driver with
BK_TOOL=greatspnxred
BK_EXAMINATION=QuasiLiveness
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=1800
BK_INPUT=JoinFreeModules-PT-0500
BK_MEMORY_CONFINEMENT=16384
Applying reductions before tool greatspn
Invoking reducer
Running Version 202405141337
[2024-05-24 07:11:30] [INFO ] Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, QuasiLiveness, -timeout, 180, -rebuildPNML]
[2024-05-24 07:11:30] [INFO ] Parsing pnml file : /home/mcc/execution/model.pnml
[2024-05-24 07:11:30] [INFO ] Load time of PNML (sax parser for PT used): 205 ms
[2024-05-24 07:11:30] [INFO ] Transformed 2501 places.
[2024-05-24 07:11:30] [INFO ] Transformed 4001 transitions.
[2024-05-24 07:11:30] [INFO ] Parsed PT model containing 2501 places and 4001 transitions and 11502 arcs in 322 ms.
Starting structural reductions in LIVENESS mode, iteration 0 : 2501/2501 places, 4001/4001 transitions.
Reduce places removed 1 places and 0 transitions.
Iterating post reduction 0 with 1 rules applied. Total rules applied 1 place count 2500 transition count 4001
Applied a total of 1 rules in 96 ms. Remains 2500 /2501 variables (removed 1) and now considering 4001/4001 (removed 0) transitions.
Running 3000 sub problems to find dead transitions.
// Phase 1: matrix 4001 rows 2500 cols
[2024-05-24 07:11:31] [INFO ] Computed 500 invariants in 45 ms
[2024-05-24 07:11:31] [INFO ] State equation strengthened by 500 read => feed constraints.
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 2000/6501 variables, and 0 constraints, problems are : Problem set: 0 solved, 3000 unsolved in 20100 ms.
Refiners :[Positive P Invariants (semi-flows): 0/500 constraints, State Equation: 0/2500 constraints, ReadFeed: 0/500 constraints, PredecessorRefiner: 3000/3000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 3000 unsolved
Error getting values : (error "ParserException while parsing response: ((s0 5)
(s1 2)
(s3 4)
(s4 5)
(s5 5)
(s6 2)
(s8 4)
(s9 5)
(s10 5)
(s11 2)
(s13 4)
(s14 5)
(s15 5)
(s16 2)
(s18 4)
(s19 5)
(s20 5)
(s21 2)
(s23 4)
(s24 5)
(s25 5)
(s26 2)
(s28 4)
(s29 5)
(s30 5)
(s31 2)
(s33 4)
(s34 5)
(s35 5)
(s36 2)
(s38 4)
(s39 5)
(s40 5)
(s41 2)
(s43 4)
(s44 5)
(s45 5)
(s46 2)
(s48 4)
(s49 5)
(s50 5)
(s51 2)
(s53 4)
(s54 5)
(s55 5)
(s56 2)
(s58 4)
(s59 5)
(s60 5)
(s61 2)
(s63 4)
(s64 5)
(s65 5)
(s66 2)
(s68 4)
(s69 5)
(s70 5)
(s71 2)
(s73 4)
(s74 5)
(s75 5)
(s76 2)
(s78 4)
(s79 5)
(s80 5)
(s81 2)
(s83 4)
(s84 5)
(s85 5)
(s86 2)
(s88 4)
(s89 timeout
5)
(s90 org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 2000/6501 variables, and 0 constraints, problems are : Problem set: 0 solved, 3000 unsolved in 20042 ms.
Refiners :[Positive P Invariants (semi-flows): 0/500 constraints, State Equation: 0/2500 constraints, ReadFeed: 0/500 constraints, PredecessorRefiner: 0/3000 constraints, Known Traps: 0/0 constraints]
After SMT, in 41665ms problems are : Problem set: 0 solved, 3000 unsolved
Search for dead transitions found 0 dead transitions in 41731ms
[2024-05-24 07:12:12] [INFO ] Invariant cache hit.
[2024-05-24 07:12:13] [INFO ] Implicit Places using invariants in 473 ms returned []
[2024-05-24 07:12:13] [INFO ] Invariant cache hit.
[2024-05-24 07:12:14] [INFO ] State equation strengthened by 500 read => feed constraints.
[2024-05-24 07:12:14] [INFO ] Implicit Places using invariants and state equation in 1679 ms returned []
Implicit Place search using SMT with State Equation took 2158 ms to find 0 implicit places.
Running 3000 sub problems to find dead transitions.
[2024-05-24 07:12:14] [INFO ] Invariant cache hit.
[2024-05-24 07:12:14] [INFO ] State equation strengthened by 500 read => feed constraints.
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 2000/6501 variables, and 0 constraints, problems are : Problem set: 0 solved, 3000 unsolved in 30061 ms.
Refiners :[Positive P Invariants (semi-flows): 0/500 constraints, State Equation: 0/2500 constraints, ReadFeed: 0/500 constraints, PredecessorRefiner: 3000/3000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 3000 unsolved
Error getting values : (error "ParserException while parsing response: ((s0 5)
(s1 2)
(s3 4)
(s4 5)
(s5 5)
(s6 2)
(s8 4)
(s9 5)
(s10 5)
(s11 2)
(s13 4)
(s14 5)
(s15 5)
(s16 2)
(s18 4)
(s19 5)
(s20 5)
(s21 2)
(s23 4)
(s24 5)
(s25 5)
(s26 2)
(s28 4)
(s29 5)
(s30 5)
(s31 2)
(s33 4)
(s34 5)
(s35 5)
(s36 2)
(s38 4)
(s39 5)
(s40 5)
(s41 2)
(s43 4)
(s44 5)
(s45 5)
(s46 2)
(s48 4)
(s49 5)
(s50 5)
(s51 2)
(s53 4)
(s54 5)
(s55 5)
(s56 2)
(s58 4)
(s59 5)
(s60 5)
(s61 2)
(s63 4)
(s64 5)
(s65 5)
(s66 2)
(s68 4)
(s69 5)
(s70 5)
(s71 2)
(s73 4)
(s74 5)
(s75 5)
(s76 2)
(s78 4)
(s79 5)
(s80 5)
(s81 2)
(s83 4)
(s84 5)
(s85 5)
(s86 2)
(s88 4)
(s89 5)
(s90 5)
(s91 2)
(s93 4)
(s94 5)
(s95 5)
(s96 2)
(s98 4)
(s99 5)
(s100 5)
(s101 2)
(s103 4)
(s104 5)
(s105 5)
(s106 2)
(s108 4)
(s109 5)
(s110 5)
(s111 2)
(s113 4)
(s114 5)
(s115 5)
(s116 2)
(s118 4)
(s119 5)
(s120 5)
(s121 2)
(s123 4)
(s124 5)
(s125 5)
(s126 2)
(s128 4)
(s129 5)
(s130 5)
(s131 2)
(s133 4)
(s134 5)
(s135 5)
(s136 2)
(s138 4)
(s139 5)
(s140 5)
(s141 2)
(s143 4)
(s144 5)
(s145 5)
(s146 2)
(s148 4)
(s149 5)
(s150 5)
(s151 2)
(s153 4)
(s154 5)
(s155 5)
(s156 2)
(s158 4)
(s159 5)
(s160 5)
(s161 2)
(s163 4)
(s164 5)
(s165 5)
(s166 2)
(s168 4)
(s169 5)
(s170 5)
(s171 2)
(s173 4)
(s174 5)
(s175 5)
(s176 2)
(s178 4)
(s179 5)
(s180 5)
(s181 2)
(s183 4)
(s184 5)
(s185 5)
(s186 2)
(s188 4)
(s189 5)
(s190 5)
(s191 2)
(s193 4)
(s194 5)
(s195 5)
(s196 2)
(s198 4)
(s199 5)
(s200 5)
(s201 2)
(s203 4)
(s204 5)
(s205 5)
(s206 2)
(s208 4)
(s209 5)
(s210 5)
(s211 2)
(s213 4)
(s214 5)
(s215 5)
(s216 2)
(s218 4)
(s219 5)
(s220 5)
(s221 2)
(s223 4)
(s224 5)
(s225 5)
(s226 2)
(s228 4)
(s229 5)
(s230 5)
(s231 2)
(s233 4)
(s234 5)
(s235 5)
(s236 2)
(s238 4)
(s239 5)
(s240 5)
(s241 2)
(s243 4)
(s244 5)
(s245 5)
(s246 2)
(s248 4)
(s249 5)
(s250 5)
(s251 2)
(s253 4)
(s254 5)
(s255 5)
(s256 2)
(s258 4)
(s259 5)
(s260 5)
(s261 2)
(s263 4)
(s264 5)
(s265 5)
(s266 2)
(s268 4)
(s269 5)
(s270 5)
(s271 2)
(s273 4)
(s274 5)
(s275 5)
(s276 2)
(s278 4)
(s279 5)
(s280 5)
(s281 2)
(s283 4)
(s284 5)
(s285 5)
(s286 2)
(s288 4)
(s289 5)
(s290 5)
(s291 2)
(s293 4)
(s294 5)
(s295 5)
(s296 2)
(s298 4)
(s299 5)
(s300 5)
(s301 2)
(s303 4)
(s304 5)
(s305 5)
(s306 2)
(s308 4)
(s309 5)
(s310 5)
(s311 2)
(s313 4)
(s314 5)
(s315 5)
(s316 2)
(s318 4)
(s319 5)
(s320 5)
(s321 2)
(s323 4)
(s324 5)
(s325 5)
(s326 2)
(s328 4)
(s329 5)
(s330 5)
(s331 2)
(s333 4)
(s334 5)
(s335 5)
(s336 2)
(s338 4)
(s339 5)
(s340 5)
(s341 2)
(s343 4)
(s344 5)
(s345 5)
(s346 2)
(s348 4)
(s349 5)
(s350 5)
(s351 2)
(s353 4)
(s354 5)
(s355 5)
(s356 2)
(s358 4)
(s359 5)
(s360 5)
(s361 2)
(s363 4)
(s364 5)
(s365 5)
(s366 2)
(s368 4)
(s369 5)
(s370 5)
(s371 2)
(s373 4)
(s374 5)
(s375 5)
(s376 2)
(s378 4)
(s379 5)
(s380 5)
(s381 2)
(s383 4)
(s384 5)
(s385 5)
(s386 2)
(s388 4)
(s389 5)
(s390 5)
(s391 2)
(s393 4)
(s394 5)
(s395 5)
(s396 2)
(s398 4)
(s399 5)
(s400 5)
(s401 2)
(s403 4)
(s404 5)
(s405 5)
(s406 2)
(s408 4)
(s409 5)
(s410 5)
(s411 2)
(s413 4)
(s414 5)
(s415 5)
(s416 2)
(s418 4)
(s419 5)
(s420 5)
(s421 2)
(s423 4)
(s424 5)
(s425 5)
(s426 2)
(s428 4)
(s429 5)
(s430 5)
(s431 2)
(s433 4)
(s434 5)
(s435 5)
(s436 2)
(s438 4)
(s439 5)
(s440 5)
(s441 2)
(s443 4)
(s444 5)
(s445 5)
(s446 2)
(s448 4)
(s449 5)
(s450 5)
(s451 2)
(s453 4)
(s454 5)
(s455 5)
(s456 2)
(s458 4)
(s459 5)
(s460 5)
(s461 2)
(s463 4)
(s464 5)
(s465 5)
(s466 2)
(s468 4)
(s469 5)
(s470 5)
(s471 2)
(s473 4)
(s474 5)
(s475 5)
(s476 2)
(s478 4)
(s479 5)
(s480 5)
(s481 2)
(s483 4)
(s484 5)
(s485 5)
(s486 2)
(s488 4)
(s489 5)
(s490 5)
(s491 2)
(s493 4)
(s494 5)
(s495 5)
(s496 2)
(s498 4)
(s499 5)
(s500 5)
(s501 2)
(s503 4)
(s504 5)
(s505 5)
(s506 2)
(s508 4)
(s509 5)
(s510 5)
(s511 2)
(s513 4)
(s514 5)
(s515 5)
(s516 2)
(s518 4)
(s519 5)
(s520 5)
(s521 2)
(s523 4)
(s524 5)
(s525 5)
(s526 2)
(s528 4)
(s529 5)
(s530 5)
(s531 2)
(s533 4)
(s534 5)
(s535 5)
(s536 2)
(s538 4)
(s539 5)
(s540 5)
(s541 2)
(s543 4)
(s544 5)
(s545 5)
(s546 2)
(s548 4)
(s549 5)
(s550 5)
(s551 2)
(s553 4)
(s554 5)
(s555 5)
(s556 2)
(s558 4)
(s559 5)
(s560 5)
(s561 2)
(s563 4)
(s564 5)
(s565 5)
(s566 2)
(s568 4)
(s569 5)
(s570 5)
(s571 2)
(s573 4)
(s574 5)
(s575 5)
(s576 2)
(s578 4)
(s579 5)
(s580 5)
(s581 2)
(s583 4)
(s584 5)
(s585 5)
(s586 2)
(s588 4)
(s589 5)
(s590 5)
(s591 2)
(s593 4)
(s594 5)
(s595 5)
(s596 2)
(s598 4)
(s599 5)
(s600 5)
(s601 2)
(s603 4)
(s604 5)
(s605 5)
(s606 2)
(s608 4)
(s609 5)
(s610 5)
(s611 2)
(s613 4)
(s614 5)
(s615 5)
(s616 2)
(s618 4)
(s619 5)
(s620 5)
(s621 2)
(s623 4)
(s624 5)
(s625 5)
(s626 2)
(s628 4)
(s629 5)
(s630 5)
(s631 2)
(s633 4)
(s634 5)
(s635 5)
(s636 2)
(s638 4)
(s639 5)
(s640 5)
(s641 2)
(s643 4)
(s644 5)
(s645 5)
(s646 2)
(s648 4)
(s649 5)
(s650 5)
(s651 2)
(s653 4)
(s654 5)
(s655 5)
(s656 2)
(s658 4)
(s659 5)
(s660 5)
(s661 2)
(s663 4)
(s664 5)
(s665 5)
(s666 2)
(s668 4)
(s669 5)
(s670 5)
(s671 2)
(s673 4)
(s674 5)
(s675 5)
(s676 2)
(s678 4)
(s679 5)
(s680 5)
(s681 2)
(s683 4)
(s684 5)
(s685 5)
(s686 2)
(s688 4)
(s689 5)
(s690 5)
(s691 2)
(s693 4)
(s694 5)
(s695 5)
(s696 2)
(s698 4)
(s699 5)
(s700 5)
(s701 2)
(s703 4)
(s704 5)
(s705 5)
(s706 2)
(s708 4)
(s709 5)
(s710 5)
(s711 2)
(s713 4)
(s714 5)
(s715 5)
(s716 2)
(s718 4)
(s719 5)
(s720 5)
(s721 2)
(s723 4)
(s724 5)
(s725 5)
(s726 2)
(s728 4)
(s729 5)
(s730 5)
(s731 2)
(s733 4)
(s734 5)
(s735 5)
(s736 2)
(s738 4)
(s739 5)
(s740 5)
(s741 2)
(s743 4)
(s744 5)
(s745 5)
(s746 2)
(s748 4)
(s749 5)
(s750 5)
(s751 2)
(s753 4)
(s754 5)
(s755 5)
(s756 2)
(s758 4)
(s759 5)
(s760 5)
(s761 2)
(s763 4)
(s764 5)
(s765 5)
(s766 2)
(s768 4)
(s769 5)
(s770 5)
(s771 2)
(s773 4)
(s774 5)
(s775 5)
(s776 2)
(s778 4)
(s779 5)
(s780 5)
(s781 2)
(s783 4)
(s784 5)
(s785 5)
(s786 2)
(s788 4)
(s789 5)
(s790 5)
(s791 2)
(s793 4)
(s794 5)
(s795 5)
(s796 2)
(s798 4)
(s799 5)
(s800 5)
(s801 2)
(s803 4)
(s804 5)
(s805 5)
(s806 2)
(s808 4)
(s809 5)
(s810 5)
(s811 2)
(s813 4)
(s814 5)
(s815 5)
(s816 2)
(s818 4)
(s819 5)
(s820 5)
(s821 2)
(s823 4)
(s824 5)
(s825 5)
(s826 2)
(s828 4)
(s829 5)
(s830 5)
(s831 2)
(s833 4)
(s834 5)
(s835 5)
(s836 2)
(s838 4)
(s839 5)
(s840 5)
(s841 2)
(s843 4)
(s844 5)
(s845 5)
(s846 2)
(s848 4)
(s849 5)
(s850 5)
(s851 2)
(s853 4)
(s854 5)
(s855 5)
(s856 2)
(s858 4)
(s859 5)
(s860 5)
(s861 2)
(s863 4)
(s864 5)
(s865 5)
(s866 2)
(s868 4)
(s869 5)
(s870 5)
(s871 2)
(s873 4)
(s874 5)
(s875 5)
(s876 2)
(s878 4)
(s879 5)
(s880 5)
(s881 2)
(s883 4)
(s884 5)
(s885 5)
(s886 2)
(s888 4)
(s889 5)
(s890 5)
(s891 2)
(s893 4)
(s894 5)
(s895 5)
(s896 2)
(s898 4)
(s899 5)
(s900 5)
(s901 2)
(s903 4)
(s904 5)
(s905 5)
(s906 2)
(s908 4)
(s909 5)
(s910 5)
(s911 2)
(s913 4)
(s914 5)
(s915 5)
(s916 2)
(s918 4)
(s919 5)
(s920 5)
(s921 2)
(s923 4)
(s924 5)
(s925 5)
(s926 2)
(s928 4)
(s929 5)
(s930 5)
(s931 2)
(s933 4)
(s934 5)
(s935 5)
(s936 2)
(s938 4)
(s939 5)
(s940 5)
(s941 2)
(s943 4)
(s944 5)
(s945 5)
(s946 2)
(s948 4)
(s949 5)
(s950 5)
(s951 2)
(s953 4)
(s954 5)
(s955 5)
(s956 2)
(s958 4)
(s959 5)
(s960 5)
(s961 2)
(s963 4)
(s964 5)
(s965 5)
(s966 2)
(s968 4)
(s969 5)
(s970 5)
(s971 2)
(s973 4)
(s974 5)
(s975 5)
(s976 2)
(s978 4)
(s979 5)
(s980 5)
(s981 2)
(s983 4)
(s984 5)
(s985 5)
(s986 2)
(s988 4)
(s989 5)
(s990 5)
(s991 2)
(s993 4)
(s994 5)
(s995 5)
(s996 2)
(s998 4)
(s999 5)
(s1000 5)
(s1001 2)
(s1003 4)
(s1004 5)
(s1005 5)
(s1006 2)
(s1008 4)
(s1009 5)
(s1010 5)
(s1011 2)
(s1013 4)
(s1014 5)
(s1015 5)
(s1016 2)
(s1018 4)
(s1019 5)
(s1020 5)
(s1021 2)
(s1023 4)
(s1024 5)
(s1025 5)
(s1026 2)
(s1028 4)
(s1029 5)
(s1030 5)
(s1031 2)
(s1033 4)
(s1034 5)
(s1035 5)
(s1036 2)
(s1038 4)
(s1039 5)
(s1040 5)
(s1041 2)
(s1043 4)
(s1044 5)
(s1045 5)
(s1046 2)
(s1048 4)
(s1049 5)
(s1050 5)
(s1051 2)
(s1053 4)
(s1054 5)
(s1055 5)
(s1056 2)
(s1058 4)
(s1059 5)
(s1060 5)
(s1061 2)
(s1063 4)
(s1064 5)
(s1065 5)
(s1066 2)
(s1068 4)
(s1069 5)
(s1070 5)
(s1071 2)
(s1073 4)
(s1074 5)
(s1075 5)
(s1076 2)
(s1078 4)
(s1079 5)
(s1080 5)
(s1081 2)
(s1083 4)
(s1084 5)
(s1085 5)
(s1086 2)
(s1088 4)
(s1089 5)
(s1090 5)
(s1091 2)
(s1093 4)
(s1094 5)
(s1095 5)
(s1096 2)
(s1098 4)
(s1099 5)
(s1100 5)
(s1101 2)
(s1103 4)
(s1104 5)
(s1105 5)
(s1106 2)
(s1108 4)
(s1109 5)
(s1110 5)
(s1111 2)
(s1113 4)
(s1114 5)
(s1115 5)
(s1116 2)
(s1118 4)
(s1119 5)
(s1120 5)
(s1121 2)
(s1123 4)
(s1124 5)
(s1125 5)
(s1126 2)
(s1128 4)
(s1129 5)
(s1130 5)
(s1131 2)
(s1133 4)
(s1134 5)
(s1135 5)
(s1136 2)
(s1138 4)
(s1139 5)
(s1140 5)
(s1141 2)
(s1143 4)
(s1144 5)
(s1145 5)
(s1146 2)
(s1148 4)
(s1149 5)
(s1150 5)
(s1151 2)
(s1153 4)
(s1154 5)
(s1155 5)
(s1156 2)
(s1158 4)
(s1159 5)
(s1160 5)
(s1161 2)
(s1163 4)
(s1164 5)
(s1165 5)
(s1166 2)
(s1168 4)
(s1169 5)
(s1170 5)
(s1171 2)
(s1173 4)
(s1174 5)
(s1175 5)
(s1176 2)
(s1178 4)
(s1179 5)
(s1180 5)
(s1181 2)
(s1183 4)
(s1184 5)
(s1185 5)
(s1186 2)
(s1188 4)
(s1189 5)
(s1190 5)
(s1191 2)
(s1193 4)
(s1194 5)
(s1195 5)
(s1196 2)
(s1198 4)
(s1199 5)
(s1200 5)
(s1201 2)
(s1203 4)
(s1204 5)
(s1205 5)
(s1206 2)
(s1208 4)
(s1209 5)
(s1210 5)
(s1211 2)
(s1213 4)
(s1214 5)
(s1215 5)
(s1216 2)
(s1218 4)
(s1219 5)
(s1220 5)
(s1221 2)
(s1223 4)
(s1224 5)
(s1225 5)
(s1226 2)
(s1228 4)
(s1229 5)
(s1230 5)
(s1231 2)
(s1233 4)
(s1234 5)
(s1235 5)
(s1236 2)
(s1238 4)
(s1239 5)
(s1240 5)
(s1241 2)
(s1243 4)
(s1244 5)
(s1245 5)
(s1246 2)
(s1248 4)
(s1249 5)
(s1250 5)
(s1251 2)
(s1253 4)
(s1254 5)
(s1255 5)
(s1256 2)
(s1258 4)
(s1259 5)
(s1260 5)
(s1261 2)
(s1263 4)
(s1264 5)
(s1265 5)
(s1266 2)
(s1268 4)
(s1269 5)
(s1270 5)
(s1271 2)
(s1273 4)
(s1274 5)
(s1275 5)
(s1276 2)
(s1278 4)
(s1279 5)
(s1280 5)
(s1281 2)
(s1283 4)
(s1284 5)
(s1285 5)
(s1286 2)
(s1288 4)
(s1289 5)
(s1290 5)
(s1291 2)
(s1293 4)
(s1294 5)
(s1295 5)
(s1296 2)
(s1298 4)
(s1299 5)
(s1300 5)
(s1301 2)
(s1303 4)
(s1304 5)
(s1305 5)
(s1306 2)
(s1308 4)
(s1309 5)
(s1310 5)
(s1311 2)
(s1313 4)
(s1314 5)
(s1315 5)
(s1316 2)
(s1318 4)
(s1319 5)
(s1320 5)
(s1321 2)
(s1323 4)
(s1324 5)
(s1325 5)
(s1326 2)
(s1328 4)
(s1329 5)
(s1330 5)
(s1331 2)
(s1333 4)
(s1334 5)
(s1335 5)
(s1336 2)
(s1338 4)
(s1339 5)
(s1340 5)
(s1341 2)
(s1343 4)
(s1344 5)
(s1345 5)
(s1346 2)
(s1348 4)
(s1349 5)
(s1350 5)
(s1351 2)
(s1353 4)
(s1354 5)
(s1355 5)
(s1356 2)
(s1358 4)
(s1359 5)
(s1360 5)
(s1361 2)
(s1363 4)
(s1364 5)
(s1365 5)
(s1366 2)
(s1368 4)
(s1369 5)
(s1370 5)
(s1371 2)
(s1373 4)
(s1374 5)
(s1375 5)
(s1376 2)
(s1378 4)
(s1379 5)
(s1380 5)
(s1381 2)
(s1383 4)
(s1384 5)
(s1385 5)
(s1386 2)
(s1388 4)
(s1389 5)
(s1390 5)
(s1391 2)
(s1393 4)
(s1394 5)
(s1395 5)
(s1396 2)
(s1398 4)
(s1399 5)
(s1400 5)
(s1401 2)
(s1403 4)
(s1404 5)
(s1405 5)
(s1406 2)
(s1408 4)
(s1409 5)
(s1410 5)
(s1411 2)
(s1413 4)
(s1414 5)
(s1415 5)
(s1416 2)
(s1418 4)
(s1419 5)
(s1420 5)
(s1421 2)
(s1423 4)
(s1424 5)
(s1425 5)
(s1426 2)
(s1428 4)
(s1429 5)
(s1430 5)
(s1431 2)
(s1433 4)
(s1434 5)
(s1435 5)
(s1436 2)
(s1438 4)
(s1439 5)
(s1440 5)
(s1441 2)
(s1443 4)
(s1444 5)
(s1445 5)
(s1446 2)
(s1448 4)
(s1449 5)
(s1450 5)
(s1451 2)
(s1453 4)
(s1454 5)
(s1455 5)
(s1456 2)
(s1458 4)
(s1459 5)
(s1460 5)
(s1461 2)
(s1463 4)
(s1464 5)
(s1465 5)
(s1466 2)
(s1468 4)
(s1469 5)
(s1470 5)
(s1471 2)
(s1473 4)
(s1474 5)
(s1475 5)
(s1476 2)
(s1478 4)
(s1479 5)
(s1480 5)
(s1481 2)
(s1483 4)
(s1484 5)
(s1485 5)
(s1486 2)
(s1488 4)
(s1489 5)
(s1490 5)
(s1491 2)
(s1493 4)
(s1494 5)
(s1495 5)
(s1496 2)
(s1498 4)
(s1499 5)
(s1500 5)
(s1501 2)
(s1503 4)
(s1504 5)
(s1505 5)
(s1506 2)
(s1508 4)
(s1509 5)
(s1510 5)
(s1511 2)
(s1513 4)
(s1514 5)
(s1515 5)
(s1516 2)
(s1518 4)
(s1519 5)
(s1520 5)
(s1521 2)
(s1523 4)
(s1524 5)
(s1525 5)
(s1526 2)
(s1528 4)
(s1529 5)
(s1530 5)
(s1531 2)
(s1533 4)
(s1534 5)
(s1535 5)
(s1536 2)
(s1538 4)
(s1539 5)
(s1540 5)
(s1541 2)
(s1543 4)
(s1544 5)
(s1545 5)
(s1546 2)
(s1548 4)
(s1549 5)
(s1550 5)
(s1551 2)
(s1553 4)
(s1554 5)
(s1555 5)
(s1556 2)
(s1558 4)
(s1559 5)
(s1560 5)
(s1561 2)
(s1563 4)
(s1564 5)
(s1565 5)
(s1566 2)
(s1568 4)
(s1569 5)
(s1570 5)
(s1571 2)
(s1573 4)
(s1574 5)
(s1575 5)
(s1576 2)
(s1578 4)
(s1579 5)
(s1580 5)
(s1581 2)
(s1583 4)
(s1584 5)
(s1585 5)
(s1586 2)
(s1588 4)
(s1589 5)
(s1590 5)
(s1591 2)
(s1593 4)
(s1594 5)
(s1595 5)
(s1596 2)
(s1598 4)
(s1599 5)
(s1600 5)
(s1601 2)
(s1603 4)
(s1604 5)
(s1605 5)
(s1606 2)
(s1608 4)
(s1609 5)
(s1610 5)
(s1611 2)
(s1613 4)
(s1614 5)
(s1615 5)
(s1616 2)
(s1618 4)
(s1619 5)
(s1620 5)
(s1621 2)
(s1623 4)
(s1624 5)
(s1625 5)
(s1626 2)
(s1628 4)
(s1629 5)
(s1630 5)
(s1631 2)
(s1633 4)
(s1634 5)
(s1635 5)
(s1636 2)
(s1638 4)
(s1639 5)
(s1640 5)
(s1641 2)
(s1643 4)
(s1644 5)
(s1645 5)
(s1646 2)
(s1648 4)
(s1649 5)
(s1650 5)
(s1651 2)
(s1653 4)
(s1654 5)
(s1655 5)
(s1656 2)
(s1658 4)
(s1659 5)
(s1660 5)
(s1661 2)
(s1663 4)
(s1664 5)
(s1665 5)
(s1666 2)
(s1668 4)
(s1669 5)
(s1670 5)
(s1671 2)
(s1673 4)
(s1674 5)
(s1675 5)
(s1676 2)
(s1678 4)
(s1679 5)
(s1680 5)
(s1681 2)
(s1683 4)
(s1684 5)
(s1685 5)
(s1686 2)
(s1688 4)
(s1689 5)
(s1690 5)
(s1691 2)
(s1693 4)
(s1694 5)
(s1695 5)
(s1696 2)
(s1698 4)
(s1699 5)
(s1700 5)
(s1701 2)
(s1703 4)
(s1704 5)
(s1705 5)
(s1706 2)
(s1708 4)
(s1709 5)
(s1710 5)
(s1711 2)
(s1713 4)
(s1714 5)
(s1715 5)
(s1716 2)
(s1718 4)
(s1719 5)
(s1720 5)
(s1721 2)
(s1723 4)
(s1724 5)
(s1725 5)
(s1726 2)
(s1728 4)
(s1729 5)
(s1730 5)
(s1731 2)
(s1733 4)
(s1734 5)
(s1735 5)
(s1736 2)
(s1738 4)
(s1739 5)
(s1740 5)
(s1741 2)
(s1743 4)
(s1744 5)
(s1745 5)
(s1746 2)
(s1748 4)
(s1749 5)
(s1750 5)
(s1751 2)
(s1753 4)
(s1754 5)
(s1755 5)
(s1756 2)
(s1758 4)
(s1759 5)
(s1760 5)
(s1761timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 2000/6501 variables, and 0 constraints, problems are : Problem set: 0 solved, 3000 unsolved in 30047 ms.
Refiners :[Positive P Invariants (semi-flows): 0/500 constraints, State Equation: 0/2500 constraints, ReadFeed: 0/500 constraints, PredecessorRefiner: 0/3000 constraints, Known Traps: 0/0 constraints]
After SMT, in 61488ms problems are : Problem set: 0 solved, 3000 unsolved
Search for dead transitions found 0 dead transitions in 61519ms
Starting structural reductions in LIVENESS mode, iteration 1 : 2500/2501 places, 4001/4001 transitions.
Finished structural reductions in LIVENESS mode , in 1 iterations and 105578 ms. Remains : 2500/2501 places, 4001/4001 transitions.
Discarding 2000 transitions out of 4001. Remains 2001
Initial state reduction rules removed 1 formulas.
RANDOM walk for 40869 steps (8 resets) in 1454 ms. (28 steps per ms) remains 1846/2000 properties
BEST_FIRST walk for 124 steps (0 resets) in 17 ms. (6 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 8 ms. (13 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 11 ms. (10 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 13 ms. (8 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 12 ms. (9 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 13 ms. (8 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 10 ms. (11 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 12 ms. (9 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 12 ms. (9 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 13 ms. (8 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 15 ms. (7 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 12 ms. (9 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 14 ms. (8 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 10 ms. (11 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 8 ms. (13 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 10 ms. (11 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 8 ms. (13 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 10 ms. (11 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 9 ms. (12 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 9 ms. (12 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 7 ms. (15 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 9 ms. (12 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 8 ms. (13 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 8 ms. (13 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 8 ms. (13 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 9 ms. (12 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 9 ms. (12 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 12 ms. (9 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 8 ms. (13 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 8 ms. (13 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 8 ms. (13 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 8 ms. (13 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 8 ms. (13 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 9 ms. (12 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 9 ms. (12 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 8 ms. (13 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 9 ms. (12 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 8 ms. (13 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 9 ms. (12 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 9 ms. (12 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 11 ms. (10 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 9 ms. (12 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 9 ms. (12 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 11 ms. (10 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 8 ms. (13 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 9 ms. (12 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 9 ms. (12 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 9 ms. (12 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 9 ms. (12 steps per ms) remains 1846/1846 properties
BEST_FIRST walk for 124 steps (0 resets) in 8 ms. (13 steps per ms) remains 1846/1846 properties
Probabilistic random walk after 19058 steps, saw 19031 distinct states, run finished after 3084 ms. (steps per millisecond=6 ) properties seen :449
[2024-05-24 07:13:20] [INFO ] Invariant cache hit.
[2024-05-24 07:13:20] [INFO ] State equation strengthened by 500 read => feed constraints.
Error getting values : (error "ParserException while parsing response: ((s0 5.0)
(s3 4.0)
(s4 5.0)
(s5 5.0)
(s8 4.0)
(s9 5.0)
(s10 5.0)
(s13 4.0)
(s14 5.0)
(s15 5.0)
(s18 4.0)
(s19 5.0)
(s20 5.0)
(s23 4.0)
(s24 5.0)
(s25 5.0)
(s28 4.0)
(s29 5.0)
(s30 5.0)
(s35 5.0)
(s38 4.0)
(s39 5.0)
(s40 5.0)
(s43 4.0)
(s44 5.0)
(s45 5.0)
(s48 4.0)
(s49 5.0)
(s50 5.0)
(s53 4.0)
(s54 5.0)
(s55 5.0)
(s58 4.0)
(s59 5.0)
(s60 5.0)
(s63 4.0)
(s64 5.0)
(s65 5.0)
(s70 5.0)
(s73 4.0)
(s74 5.0)
(s75 5.0)
(s78 4.0)
(s79 5.0)
(s80 5.0)
(s83 4.0)
(s84 5.0)
(s85 5.0)
(s88 4.0)
(s89 5.0)
(s90 5.0)
(s93 4.0)
(s94 5.0)
(s95 5.0)
(s98 4.0)
(s99 5.0)
(s100 5.0)
(s103 4.0)
(s104 5.0)
(s105 5.0)
(s108 4.0)
(s109 5.0)
(s110 5.0)
(s113 4.0)
(s114 5.0)
(s115 5.0)
(s118 4.0)
(s119 5.0)
(s120 5.0)
(s123 4.0)
(s124 5.0)
(s125 5.0)
(s128 4.0)
(s129 5.0)
(s130 5.0)
(s133 4.0)
(s134 5.0)
(s135 5.0)
(s138 4.0)
(s139 5.0)
(s140 5.0)
(s143 4.0)
(s144 5.0)
(s145 5.0)
(s148 4.0)
(s149 5.0)
(s150 5.0)
(s153 4.0)
(s154 5.0)
(s155 5.0)
(s158 4.0)
(s159 5.0)
(s160 5.0)
(s163 4.0)
(s164 5.0)
(s165 5.0)
(s168 4.0)
(s169 5.0)
(s170 5.0)
(s175 5.0)
(s180 5.0)
(s183 4.0)
(s184 5.0)
(s185 5.0)
(s188 4.0)
(s189 5.0)
(s190 5.0)
(s193 4.0)
(s194 5.0)
(s195 5.0)
(s198 4.0)
(s199 5.0)
(s200 5.0)
(s205 5.0)
(s208 4.0)
(s209 5.0)
(s210 5.0)
(s213 4.0)
(s214 5.0)
(s215 5.0)
(s218 4.0)
(s219 5.0)
(s220 5.0)
(s223 4.0)
(s224 5.0)
(s225 5.0)
(s228 4.0)
(s229 5.0)
(s230 5.0)
(s235 5.0)
(s238 4.0)
(s239 5.0)
(s240 5.0)
(s243 4.0)
(s244 5.0)
(s245 5.0)
(s248 4.0)
(s249 5.0)
(s250 5.0)
(s253 4.0)
(s254 5.0)
(s255 5.0)
(s260 5.0)
(s263 4.0)
(s264 5.0)
(s265 5.0)
(s268 4.0)
(s269 5.0)
(s270 5.0)
(s273 4.0)
(s274 5.0)
(s275 5.0)
(s278 4.0)
(s279 5.0)
(s280 5.0)
(s283 4.0)
(s284 5.0)
(s285 5.0)
(s290 5.0)
(s293 4.0)
(s294 5.0)
(s295 5.0)
(s298 4.0)
(s299 5.0)
(s300 5.0)
(s303 4.0)
(s304 5.0)
(s305 5.0)
(s308 4.0)
(s309 5.0)
(s310 5.0)
(s313 4.0)
(s314 5.0)
(s315 5.0)
(s318 4.0)
(s319 5.0)
(s320 5.0)
(s323 4.0)
(s324 5.0)
(s325 5.0)
(s328 4.0)
(s329 5.0)
(s330 5.0)
(s333 4.0)
(s334 5.0)
(s335 5.0)
(s338 4.0)
(s339 5.0)
(s340 5.0)
(s343 4.0)
(s344 5.0)
(s345 5.0)
(s348 4.0)
(s349 5.0)
(s350 5.0)
(s353 4.0)
(s354 5.0)
(s355 5.0)
(s358 4.0)
(s359 5.0)
(s360 5.0)
(s363 4.0)
(s364 5.0)
(s365 5.0)
(s368 4.0)
(s369 5.0)
(s370 5.0)
(s375 5.0)
(s378 4.0)
(s379 5.0)
(s380 5.0)
(s383 4.0)
(s384 5.0)
(s385 5.0)
(s388 4.0)
(s389 5.0)
(s390 5.0)
(s393 4.0)
(s394 5.0)
(s395 5.0)
(s398 4.0)
(s399 5.0)
(s400 5.0)
(s403 4.0)
(s404 5.0)
(s405 5.0)
(s408 4.0)
(s409 5.0)
(s410 5.0)
(s413 4.0)
(s414 5.0)
(s415 5.0)
(s418 4.0)
(s419 5.0)
(s420 5.0)
(s423 4.0)
(s424 5.0)
(s425 5.0)
(s428 4.0)
(s429 5.0)
(s430 5.0)
(s435 5.0)
(s438 4.0)
(s439 5.0)
(s440 5.0)
(s443 4.0)
(s444 5.0)
(s445 5.0)
(s448 4.0)
(s449 5.0)
(s450 5.0)
(s453 4.0)
(s454 5.0)
(s455 5.0)
(s458 4.0)
(s459 5.0)
(s460 5.0)
(s463 4.0)
(s464 5.0)
(s465 5.0)
(s468 4.0)
(s469 5.0)
(s470 5.0)
(s473 4.0)
(s474 5.0)
(s475 5.0)
(s478 4.0)
(s479 5.0)
(s480 5.0)
(s483 4.0)
(s484 5.0)
(s485 5.0)
(s488 4.0)
(s489 5.0)
(s490 5.0)
(s493 4.0)
(s494 5.0)
(s495 5.0)
(s498 4.0)
(s499 5.0)
(s500 5.0)
(s505 5.0)
(s510 5.0)
(s513 4.0)
(s514 5.0)
(s515 5.0)
(s518 4.0)
(s519 5.0)
(s520 5.0)
(s523 4.0)
(s524 5.0)
(s525 5.0)
(s528 4.0)
(s529 5.0)
(s530 5.0)
(s533 4.0)
(s534 5.0)
(s535 5.0)
(s540 5.0)
(s543 4.0)
(s544 5.0)
(s545 5.0)
(s548 4.0)
(s549 5.0)
(s550 5.0)
(s553 4.0)
(s554 5.0)
(s555 5.0)
(s558 4.0)
(s559 5.0)
(s560 5.0)
(s563 4.0)
(s564 5.0)
(s565 5.0)
(s570 5.0)
(s573 4.0)
(s574 5.0)
(s575 5.0)
(s578 4.0)
(s579 5.0)
(s580 5.0)
(s583 4.0)
(s584 5.0)
(s585 5.0)
(s588 4.0)
(s589 5.0)
(s590 5.0)
(s593 4.0)
(s594 5.0)
(s595 5.0)
(s598 4.0)
(s599 5.0)
(s600 5.0)
(s603 4.0)
(s604 5.0)
(s605 5.0)
(s608 4.0)
(s609 5.0)
(s610 5.0)
(s613 4.0)
(s614 5.0)
(s615 5.0)
(s618 4.0)
(s619 5.0)
(s620 5.0)
(s623 4.0)
(s624 5.0)
(s625 5.0)
(s628 4.0)
(s629 5.0)
(s630 5.0)
(s633 4.0)
(s634 5.0)
(s635 5.0)
(s638 4.0)
(s639 5.0)
(s640 5.0)
(s643 4.0)
(s644 5.0)
(s645 5.0)
(s648 4.0)
(s649 5.0)
(s650 5.0)
(s653 4.0)
(s654 5.0)
(s655 5.0)
(s658 4.0)
(s659 5.0)
(s660 5.0)
(s665 5.0)
(s668 4.0)
(s669 5.0)
(s670 5.0)
(s673 4.0)
(s674 5.0)
(s675 5.0)
(s678 4.0)
(s679 5.0)
(s680 5.0)
(s683 4.0)
(s684 5.0)
(s685 5.0)
(s688 4.0)
(s689 5.0)
(s690 5.0)
(s693 4.0)
(s694 5.0)
(s695 5.0)
(s698 4.0)
(s699 5.0)
(s700 5.0)
(s703 4.0)
(s704 5.0)
(s705 5.0)
(s708 4.0)
(s709 5.0)
(s710 5.0)
(s713 4.0)
(s714 5.0)
(s715 5.0)
(s718 4.0)
(s719 5.0)
(s720 5.0)
(s723 4.0)
(s724 5.0)
(s725 5.0)
(s728 4.0)
(s729 5.0)
(s730 5.0)
(s733 4.0)
(s734 5.0)
(s735 5.0)
(s738 4.0)
(s739 5.0)
(s740 5.0)
(s745 5.0)
(s748 4.0)
(s749 5.0)
(s750 5.0)
(s753 4.0)
(s754 5.0)
(s755 5.0)
(s758 4.0)
(s759 5.0)
(s760 5.0)
(s765 5.0)
(s768 4.0)
(s769 5.0)
(s770 5.0)
(s773 4.0)
(s774 5.0)
(s775 5.0)
(s778 4.0)
(s779 5.0)
(s780 5.0)
(s785 5.0)
(s788 4.0)
(s789 5.0)
(s790 5.0)
(s793 4.0)
(s794 5.0)
(s795 5.0)
(s798 4.0)
(s799 5.0)
(s800 5.0)
(s803 4.0)
(s804 5.0)
(s805 5.0)
(s808 4.0)
(s809 5.0)
(s810 5.0)
(s813 4.0)
(s814 5.0)
(s815 5.0)
(s818 4.0)
(s819 5.0)
(s820 5.0)
(s823 4.0)
(s824 5.0)
(s825 5.0)
(s828 4.0)
(s829 5.0)
(s830 5.0)
(s833 4.0)
(s834 5.0)
(s835 5.0)
(s838 4.0)
(s839 5.0)
(s840 5.0)
(s845 5.0)
(s848 4.0)
(s849 5.0)
(s850 5.0)
(s853 4.0)
(s854 5.0)
(s855 5.0)
(s858 4.0)
(s859 5.0)
(s860 5.0)
(s863 4.0)
(s864 5.0)
(s865 5.0)
(s868 4.0)
(s869 5.0)
(s870 5.0)
(s875 5.0)
(s878 4.0)
(s879 5.0)
(s880 5.0)
(s883 4.0)
(s884 5.0)
(s885 5.0)
(s888 4.0)
(s889 5.0)
(s890 5.0)
(s893 4.0)
(s894 5.0)
(s895 5.0)
(s898 4.0)
(s899 5.0)
(s900 5.0)
(s903 4.0)
(s904 5.0)
(s905 5.0)
(s908 4.0)
(s909 5.0)
(s910 5.0)
(s915 5.0)
(s918 4.0)
(s919 5.0)
(s920 5.0)
(s923 4.0)
(s924 5.0)
(s925 5.0)
(s928 4.0)
(s929 5.0)
(s930 5.0)
(s933 4.0)
(s934 5.0)
(s935 5.0)
(s938 4.0)
(s939 5.0)
(s940 5.0)
(s943 4.0)
(s944 5.0)
(s945 5.0)
(s948 4.0)
(s949 5.0)
(s950 5.0)
(s953 4.0)
(s954 5.0)
(s955 5.0)
(s958 4.0)
(s959 5.0)
(s960 5.0)
(s963 4.0)
(s964 5.0)
(s965 5.0)
(s968 4.0)
(s969 5.0)
(s970 5.0)
(s973 4.0)
(s974 5.0)
(s975 5.0)
(s978 4.0)
(s979 5.0)
(s980 5.0)
(s983 4.0)
(s984 5.0)
(s985 5.0)
(s988 4.0)
(s989 5.0)
(s990 5.0)
(s995 5.0)
(s1000 5.0)
(s1003 4.0)
(s1004 5.0)
(s1005 5.0)
(s1008 4.0)
(s1009 5.0)
(s1010 5.0)
(s1013 4.0)
(s1014 5.0)
(s1015 5.0)
(s1018 4.0)
(s1019 5.0)
(s1020 5.0)
(s1023 4.0)
(s1024 5.0)
(s1025 5.0)
(s1028 4.0)
(s1029 5.0)
(s1030 5.0)
(s1033 4.0)
(s1034 5.0)
(s1035 5.0)
(s1038 4.0)
(s1039 5.0)
(s1040 5.0)
(s1043 4.0)
(s1044 5.0)
(s1045 5.0)
(s1048 4.0)
(s1049 5.0)
(s1050 5.0)
(s1053 4.0)
(s1054 5.0)
(s1055 5.0)
(s1058 4.0)
(s1059 5.0)
(s1060 5.0)
(s1063 4.0)
(s1064 5.0)
(s1065 5.0)
(s1068 4.0)
(s1069 5.0)
(s1070 5.0)
(s1073 4.0)
(s1074 5.0)
(s1075 5.0)
(s1078 4.0)
(s1079 5.0)
(s1080 5.0)
(s1083 4.0)
(s1084 5.0)
(s1085 5.0)
(s1088 4.0)
(s1089 5.0)
(s1090 5.0)
(s1093 4.0)
(s1094 5.0)
(s1095 5.0)
(s1100 5.0)
(s1103 4.0)
(s1104 5.0)
(s1105 5.0)
(s1108 4.0)
(s1109 5.0)
(s1110 5.0)
(s1113 4.0)
(s1114 5.0)
(s1115 5.0)
(s1118 4.0)
(s1119 5.0)
(s1120 5.0)
(s1123 4.0)
(s1124 5.0)
(s1125 5.0)
(s1128 4.0)
(s1129 5.0)
(s1130 5.0)
(s1135 5.0)
(s1138 4.0)
(s1139 5.0)
(s1140 5.0)
(s1143 4.0)
(s1144 5.0)
(s1145 5.0)
(s1148 4.0)
(s1149 5.0)
(s1150 5.0)
(s1153 4.0)
(s1154 5.0)
(s1155 5.0)
(s1158 4.0)
(s1159 5.0)
(s1160 5.0)
(s1163 4.0)
(s1164 5.0)
(s1165 5.0)
(s1168 4.0)
(s1169 5.0)
(s1170 5.0)
(s1175 5.0)
(s1178 4.0)
(s1179 5.0)
(s1180 5.0)
(s1183 4.0)
(s1184 5.0)
(s1185 5.0)
(s1188 4.0)
(s1189 5.0)
(s1190 5.0)
(s1193 4.0)
(s1194 5.0)
(s1195 5.0)
(s1198 4.0)
(s1199 5.0)
(s1200 5.0)
(s1203 4.0)
(s1204 5.0)
(s1205 5.0)
(s1208 4.0)
(s1209 5.0)
(s1210 5.0)
(s1213 4.0)
(s1214 5.0)
(s1215 5.0)
(s1218 4.0)
(s1219 5.0)
(s1220 5.0)
(s1223 4.0)
(s1224 5.0)
(s1225 5.0)
(s1228 4.0)
(s1229 5.0)
(s1230 5.0)
(s1233 4.0)
(s1234 5.0)
(s1235 5.0)
(s1238 4.0)
(s1239 5.0)
(s1240 5.0)
(s1243 4.0)
(s1244 5.0)
(s1245 5.0)
(s1248 4.0)
(s1249 5.0)
(s1250 5.0)
(s1255 5.0)
(s1258 4.0)
(s1259 5.0)
(s1260 5.0)
(s1263 4.0)
(s1264 5.0)
(s1265 5.0)
(s1268 4.0)
(s1269 5.0)
(s1270 5.0)
(s1273 4.0)
(s1274 5.0)
(s1275 5.0)
(s1278 4.0)
(s1279 5.0)
(s1280 5.0)
(s1283 4.0)
(s1284 5.0)
(s1285 5.0)
(s1288 4.0)
(s1289 5.0)
(s1290 5.0)
(s1293 4.0)
(s1294 5.0)
(s1295 5.0)
(s1298 4.0)
(s1299 5.0)
(s1300 5.0)
(s1303 4.0)
(s1304 5.0)
(s1305 5.0)
(s1308 4.0)
(s1309 5.0)
(s1310 5.0)
(s1313 4.0)
(s1314 5.0)
(s1315 5.0)
(s1318 4.0)
(s1319 5.0)
(s1320 5.0)
(s1325 5.0)
(s1328 4.0)
(s1329 5.0)
(s1330 5.0)
(s1333 4.0)
(s1334 5.0)
(s1335 5.0)
(s1338 4.0)
(s1339 5.0)
(s1340 5.0)
(s1343 4.0)
(s1344 5.0)
(s1345 5.0)
(s1348 4.0)
(s1349 5.0)
(s1350 5.0)
(s1353 4.0)
(s1354 5.0)
(s1355 5.0)
(s1358 4.0)
(s1359 5.0)
(s1360 5.0)
(s1363 4.0)
(s1364 5.0)
(s1365 5.0)
(s1368 4.0)
(s1369 5.0)
(s1370 5.0)
(s1373 4.0)
(s1374 5.0)
(s1375 5.0)
(s1378 4.0)
(s1379 5.0)
(s1380 5.0)
(s1383 4.0)
(s1384 5.0)
(s1385 5.0)
(s1388 4.0)
(s1389 5.0)
(s1390 5.0)
(s1393 4.0)
(s1394 5.0)
(s1395 5.0)
(s1398 4.0)
(s1399 5.0)
(s1400 5.0)
(s1403 4.0)
(s1404 5.0)
(s1405 5.0)
(s1408 4.0)
(s1409 5.0)
(s1410 5.0)
(s1413 4.0)
(s1414 5.0)
(s1415 5.0)
(s1418 4.0)
(s1419 5.0)
(s1420 5.0)
(s1423 4.0)
(s1424 5.0)
(s1425 5.0)
(s1430 5.0)
(s1435 5.0)
(s1438 4.0)
(s1439 5.0)
(s1440 5.0)
(s1443 4.0)
(s1444 5.0)
(s1445 5.0)
(s1448 4.0)
(s1449 5.0)
(s1450 5.0)
(s1453 4.0)
(s1454 5.0)
(s1455 5.0)
(s1458 4.0)
(s1459 5.0)
(s1460 5.0)
(s1463 4.0)
(s1464 5.0)
(s1465 5.0)
(s1468 timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 1397/6501 variables, and 0 constraints, problems are : Problem set: 0 solved, 1397 unsolved in 5030 ms.
Refiners :[Positive P Invariants (semi-flows): 0/500 constraints, State Equation: 0/2500 constraints, ReadFeed: 0/500 constraints, PredecessorRefiner: 1397/1397 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 1397 unsolved
Error getting values : (error "ParserException while parsing response: ((s0 5)
(s3 4)
(s4 5)
(s5 5)
(s8 4)
(s9 5)
(s10 5)
(s13 4)
(s14 5)
(s15 5)
(s18 4)
(s19 5)
(s20 5)
(s23 4)
(s24 5)
(s25 5)
(s28 4)
(s29 5)
(s30 5)
(s35 5)
(s38 4)
(s39 5)
(s40 5)
(s43 4)
(s44 5)
(s45 5)
(s48 4)
(s49 5)
(s50 5)
(s53 4)
(s54 5)
(s55 5)
(s58 4)
(s59 5)
(s60 5)
(s63 4)
(s64 5)
(s65 5)
(s70 5)
(s73 4)
(s74 5)
(s75 5)
(s78 4)
(s79 5)
(s80 5)
(s83 4)
(s84 5)
(s85 5)
(s88 4)
(s89 5)
(s90 5)
(s93 4)
(s94 5)
(s95 5)
(s98 4)
(s99 5)
(s100 5)
(s103 4)
(s104 5)
(s105 5)
(s108 4)
(s109 5)
(s110 5)
(s113 4)
(s114 5)
(s115 5)
(s118 4)
(s119 5)
(s120 5)
(s123 4)
(s124 5)
(s125 5)
(s128 4)
(s129 5)
(s130 5)
(s133 4)
(s134 5)
(s135 5)
(s138 4)
(s139 5)
(s140 5)
(s143 4)
(s144 5)
(s145 5)
(s148 4)
(s149 5)
(s150 5)
(s153 4)
(s154 5)
(s155 5)
(s158 4)
(s159 5)
(s160 5)
(s163 4)
(s164 5)
(s165 5)
(s168 4)
(s169 5)
(s170 5)
(s175 5)
(s180 5)
(s183 4)
(s184 5)
(s185 5)
(s188 4)
(s189 5)
(s190 5)
(s193 4)
(s194 5)
(s195 5)
(s198 4)
(s199 5)
(s200 5)
(s205 5)
(s208 4)
(s209 5)
(s210 5)
(s213 4)
(s214 5)
(s215 5)
(s218 4)
(s219 5)
(s220 5)
(s223 4)
(s224 5)
(s225 5)
(s228 4)
(s229 5)
(s230 5)
(s235 5)
(s238 4)
(s239 5)
(s240 5)
(s243 4)
(s244 5)
(s245 5)
(s248 4)
(s249 5)
(s250 5)
(s253 4)
(s254 5)
(s255 5)
(s260 5)
(s263 4)
(s264 5)
(s265 5)
(s268 4)
(s269 5)
(s270 5)
(s273 4)
(s274 5)
(s275 5)
(s278 4)
(s279 5)
(s280 5)
(s283 4)
(s284 5)
(s285 5)
(s290 5)
(s293 4)
(s294 5)
(s295 5)
(s298 4)
(s299 5)
(s300 5)
(s303 4)
(s304 5)
(s305 5)
(s308 4)
(s309 5)
(s310 5)
(s313 4)
(s314 5)
(s315 5)
(s318 4)
(s319 5)
(s320 5)
(s323 4)
(s324 5)
(s325 5)
(s328 4)
(s329 5)
(s330 5)
(s333 4)
(s334 5)
(s335 5)
(s338 4)
(s339 5)
(s340 5)
(s343 4)
(s344 5)
(s345 5)
(s348 4)
(s349 5)
(s350 5)
(s353 4)
(s354 5)
(s355 5)
(s358 timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 1397/6501 variables, and 0 constraints, problems are : Problem set: 0 solved, 1397 unsolved in 5029 ms.
Refiners :[Positive P Invariants (semi-flows): 0/500 constraints, State Equation: 0/2500 constraints, ReadFeed: 0/500 constraints, PredecessorRefiner: 0/1397 constraints, Known Traps: 0/0 constraints]
After SMT, in 10756ms problems are : Problem set: 0 solved, 1397 unsolved
Skipping Parikh replay, no witness traces provided.
Support contains 1397 out of 2500 places. Attempting structural reductions.
Starting structural reductions in REACHABILITY mode, iteration 0 : 2500/2500 places, 4001/4001 transitions.
Graph (complete) has 6000 edges and 2500 vertex of which 2495 are kept as prefixes of interest. Removing 5 places using SCC suffix rule.10 ms
Discarding 5 places :
Also discarding 8 output transitions
Drop transitions (Output transitions of discarded places.) removed 8 transitions
Drop transitions (Empty/Sink Transition effects.) removed 1 transitions
Reduce isomorphic transitions removed 1 transitions.
Iterating post reduction 0 with 1 rules applied. Total rules applied 2 place count 2495 transition count 3992
Applied a total of 2 rules in 173 ms. Remains 2495 /2500 variables (removed 5) and now considering 3992/4001 (removed 9) transitions.
Running 2994 sub problems to find dead transitions.
// Phase 1: matrix 3992 rows 2495 cols
[2024-05-24 07:13:31] [INFO ] Computed 499 invariants in 18 ms
[2024-05-24 07:13:31] [INFO ] State equation strengthened by 499 read => feed constraints.
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 1996/6487 variables, and 0 constraints, problems are : Problem set: 0 solved, 2994 unsolved in 20047 ms.
Refiners :[Positive P Invariants (semi-flows): 0/499 constraints, State Equation: 0/2495 constraints, ReadFeed: 0/499 constraints, PredecessorRefiner: 2994/2994 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 2994 unsolved
Error getting values : (error "ParserException while parsing response: ((s0 5)
(s1 2)
(s3 4)
(s4 5)
(s5 5)
(s6 2)
(s8 4)
(s9 5)
(s10 5)
(s11 2)
(s13 4)
(s14 5)
(s15 5)
(s16 2)
(s18 4)
(s19 5)
(s20 5)
(s21 2)
(s23 4)
(s24 5)
(s25 5)
(s26 2)
(s28 4)
(s29 5)
(s30 5)
(s31 2)
(s33 4)
(s34 5)
(s35 5)
(s36 2)
(s38 4)
(s39 5)
(s40 5)
(s41 2)
(s43 4)
(s44 5)
(s45 5)
(s46 2)
(s48 4)
(s49 5)
(s50 5)
(s51 2)
(s53 4)
(s54 5)
(s55 5)
(s56 2)
(s58 4)
(s59 5)
(s60 5)
(s61 2)
(s63 4)
(s64 5)
(s65 5)
(s66 2)
(s68 4)
(s69 5)
(s70 5)
(s71 2)
(s73 4)
(s74 5)
(s75 5)
(s76 2)
(s78 4)
(s79 5)
(s80 5)
(s81 2)
(s83 4)
(s84 5)
(s85 5)
(s86 2)
(s88 4)
(s89 5)
(s90 5)
(s91 2)
(s93 4)
(s94 5)
(s95 5)
(s96 2)
(s98 4)
(s99 5)
(s100 5)
(s101 2)
(s103 4)
(s104 5)
(s105 5)
(s106 2)
(s108 4)
(s109 5)
(s110 5)
(s111 2)
(s113 4)
(s114 5)
(s115 5)
(s116 2)
(s118 4)
(s119 5)
(s120 5)
(s121 2)
(s123 4)
(s124 5)
(s125 5)
(s126 2)
(s128 4)
(s129 5)
(s130 5)
(s131 2)
(s133 4)
(s134 5)
(s135 5)
(s136 2)
(s138 4)
(s139 5)
(s140 5)
(s141 2)
(s143 4)
(s144 5)
(s145 5)
(s146 2)
(s148 4)
(s149 5)
(s150 5)
(s151 2)
(s153 4)
(s154 5)
(s155 5)
(s156 2)
(s158 4)
(s159 5)
(s160 5)
(s161 2)
(s163 4)
(s164 5)
(s165 5)
(s166 2)
(s168 4)
(s169 5)
(s170 5)
(s171 2)
(s173 4)
(s174 5)
(s175 5)
(s176 2)
(s178 4)
(s179 5)
(s180 5)
(s181 2)
(s183 4)
(s184 5)
(s185 5)
(s186 2)
(s188 4)
(s189 5)
(s190 5)
(s191 2)
(s193 4)
(s194 5)
(s195 5)
(s196 2)
(s198 4)
(s199 5)
(s200 5)
(s201 2)
(s203 4)
(s204 5)
(s205 5)
(s206 2)
(s208 4)
(s209 5)
(s210 5)
(s211 2)
(s213 4)
(s214 5)
(s215 5)
(s216 2)
(s218 4)
(s219 5)
(s220 5)
(s221 2)
(s223 4)
(s224 5)
(s225 5)
(s226 2)
(s228 4)
(s229 5)
(s230 5)
(s231 2)
(s233 4)
(s234 5)
(s235 5)
(s236 2)
(s238 4)
(s239 5)
(s240 5)
(s241 2)
(s243 4)
(s244 5)
(s245 5)
(s246 2)
(s248 4)
(s249 5)
(s250 5)
(s251 2)
(s253 4)
(s254 5)
(s255 5)
(s256 2)
(s258 4)
(s259 5)
(s260 5)
(s261 2)
(s263 4)
(s264 5)
(s265 5)
(s266 2)
(s268 4)
(s269 5)
(s270 5)
(s271 2)
(s273 4)
(s274 5)
(s275 5)
(s276 2)
(s278 4)
(s279 5)
(s280 5)
(s281 2)
(s283 4)
(s284 5)
(s285 5)
(s286 2)
(s288 4)
(s289 5)
(s290 5)
(s291 2)
(s293 4)
(s294 5)
(s295 5)
(s296 2)
(s298 4)
(s299 5)
(s300 5)
(s301 2)
(s303 4)
(s304 5)
(s305 5)
(s306 2)
(s308 4)
(s309 5)
(s310 5)
(s311 2)
(s313 4)
(s314 5)
(s315 5)
(s316 2)
(s318 4)
(s319 5)
(s320 5)
(s321 2)
(s323 4)
(s324 5)
(s325 5)
(s326 2)
(s328 4)
(s329 5)
(s330 5)
(s331 2)
(s333 4)
(s334 5)
(s335 5)
(s336 2)
(s338 4)
(s339 5)
(s340 5)
(s341 2)
(s343 4)
(s344 5)
(s345 5)
(s346 2)
(s348 4)
(s349 5)
(s350 5)
(s351 2)
(s353 4)
(s354 5)
(s355 5)
(s356 2)
(s358 4)
(s359 5)
(s360 5)
(s361 2)
(s363 4)
(s364 5)
(s365 5)
(s366 2)
(s368 4)
(s369 5)
(s370 5)
(s371 2)
(s373 4)
(s374 5)
(s375 5)
(s376 2)
(s378 4)
(s379 5)
(s380 5)
(s381 2)
(s383 4)
(s384 5)
(s385 5)
(s386 2)
(s388 4)
(s389 5)
(s390 5)
(s391 2)
(s393 4)
(s394 5)
(s395 5)
(s396 2)
(s398 4)
(s399 5)
(s400 5)
(s401 2)
(s403 4)
(s404 5)
(s405 5)
(s406 2)
(s408 4)
(s409 5)
(s410 5)
(s411 2)
(s413 4)
(s414 5)
(s415 5)
(s416 2)
(s418 4)
(s419 5)
(s420 5)
(s421 2)
(s423 4)
(s424 5)
(s425 5)
(s426 2)
(s428 4)
(s429 5)
(s430 5)
(s431 2)
(s433 4)
(s434 5)
(s435 5)
(s436 2)
(s438 4)
(s439 5)
(s440 5)
(s441 2)
(s443 4)
(s444 5)
(s445 5)
(s446 2)
(s448 4)
(s449 5)
(s450 5)
(s451 2)
(s453 4)
(s454 5)
(s455 5)
(s456 2)
(s458 4)
(s459 5)
(s460 5)
(s461 2)
(s463 4)
(s464 5)
(s465 5)
(s466 2)
(s468 4)
(s469 5)
(s470 5)
(s471 2)
(s473 4)
(s474 5)
(s475 5)
(s476 2)
(s478 4)
(s479 5)
(s480 5)
(s481 2)
(s483 4)
(s484 5)
(s485 5)
(s486 2)
(s488 4)
(s489 5)
(s490 5)
(s491 2)
(s493 4)
(s494 5)
(s495 5)
(s496 2)
(s498 4)
(s499 5)
(s500 5)
(s501 2)
(s503 4)
(s504 5)
(s505 5)
(s506 2)
(s508 4)
(s509 5)
(s510 5)
(s511 2)
(s513 4)
(s514 5)
(s515 5)
(s516 2)
(s518 4)
(s519 5)
(s520 5)
(s521 2)
(s523 4)
(s524 5)
(s525 5)
(s526 2)
(s528 4)
(s529 5)
(s530 5)
(s531 2)
(s533 4)
(s534 5)
(s535 5)
(s536 2)
(s538 4)
(s539 5)
(s540 5)
(s541 2)
(s543 4)
(s544 5)
(s545 5)
(s546 2)
(s548 4)
(s549 5)
(s550 5)
(s551 2)
(s553 4)
(s554 5)
(s555 5)
(s556 2)
(s558 4)
(s559 5)
(s560 5)
(s561 2)
(s563 4)
(s564 5)
(s565 5)
(s566 2)
(s568 4)
(s569 5)
(s570 5)
(s571 2)
(s573 4)
(s574 5)
(s575 5)
(s576 2)
(s578 4)
(s579 5)
(s580 5)
(s581 2)
(s583 4)
(s584 5)
(s585 5)
(s586 2)
(s588 4)
(s589 5)
(s590 5)
(s591 2)
(s593 4)
(s594 5)
(s595 5)
(s596 2)
(s598 4)
(s599 5)
(s600 5)
(s601 2)
(s603 4)
(s604 5)
(s605 5)
(s606 2)
(s608 4)
(s609 5)
(s610 5)
(s611 2)
(s613 4)
(s614 5)
(s615 5)
(s616 2)
(s618 4)
(s619 5)
(s620 5)
(s621 2)
(s623 4)
(s624 5)
(s625 5)
(s626 2)
(s628 4)
(s629 5)
(s630 5)
(s631 2)
(s633 4)
(s634 5)
(s635 5)
(s636 2)
(s638 4)
(s639 5)
(s640 5)
(s641 2)
(s643 4)
(s644 5)
(s645 5)
(s646 2)
(s648 4)
(s649 5)
(s650 5)
(s651 2)
(s653 4)
(s654 5)
(s655 5)
(s656 2)
(s658 4)
(s659 5)
(s660 5)
(s661 2)
(s663 4)
(s664 5)
(s665 5)
(s666 2)
(s668 4)
(s669 5)
(s670 5)
(s671 2)
(s673 4)
(s674 5)
(s675 5)
(s676 2)
(s678 4)
(s679 5)
(s680 5)
(s681 2)
(s683 4)
(s684 5)
(s685 5)
(s686 2)
(s688 4)
(s689 5)
(s690 5)
(s691 2)
(s693 4)
(s694 5)
(s695 5)
(s696 2)
(s698 4)
(s699 5)
(s700 5)
(s701 2)
(s703 4)
(s704 5)
(s705 5)
(s706 2)
(s708 4)
(s709 5)
(s710 5)
(s711 2)
(s713 4)
(s714 5)
(s715 5)
(s716 2)
(s718 4)
(s719 5)
(s720 5)
(s721 2)
(s723 4)
(s724 5)
(s725 5)
(s726 2)
(s728 4)
(s729 5)
(s730 5)
(s731 2)
(s733 4)
(s734 5)
(s735 5)
(s736 2)
(s738 4)
(s739 5)
(s740 5)
(s741 2)
(s743 4)
(s744 5)
(s745 5)
(s746 2)
(s748 4)
(s749 5)
(s750 5)
(s751 2)
(s753 4)
(s754 5)
(s755 5)
(s756 2)
(s758 4)
(s759 5)
(s760 5)
(s761 2)
(s763 4)
(s764 5)
(s765 5)
(s766 2)
(s768 4)
(s769 5)
(s770 5)
(s771 2)
(s773 4)
(s774 5)
(s775 5)
(s776 2)
(s778 4)
(s779 5)
(s780 5)
(s781 2)
(s783 4)
(s784 5)
(s785 5)
(s786 2)
(s788 4)
(s789 5)
(s790 5)
(s791 2)
(s793 4)
(s794 5)
(s795 5)
(s796 2)
(s798 4)
(s799 5)
(s800 5)
(s801 2)
(s803 4)
(s804 5)
(s805 5)
(s806 2)
(s808 4)
(s809 5)
(s810 5)
(s811 2)
(s813 4)
(s814 5)
(s815 5)
(s816 2)
(s818 4)
(s819 5)
(s820 5)
(s821 2)
(s823 4)
(s824 5)
(s825 5)
(s826 2)
(s828 4)
(s829 5)
(s830 5)
(s831 2)
(s833 4)
(s834 5)
(s835 5)
(s836 2)
(s838 4)
(s839 5)
(s840 5)
(s841 2)
(s843 4)
(s844 5)
(s845 5)
(s846 2)
(s848 4)
(s849 5)
(s850 5)
(s851 2)
(s853 4)
(s854 5)
(s855 5)
(s856 2)
(s858 4)
(s859 5)
(s860 5)
(s861 2)
(s863 4)
(s864 5)
(s865 5)
(s866 2)
(s868 4)
(s869 5)
(s870 5)
(s871 2)
(s873 4)
(s874 5)
(s875 5)
(s876 2)
(s878 4)
(s879 5)
(s880 5)
(s881 2)
(s883 4)
(s884 5)
(s885 5)
(s886 2)
(s888 4)
(s889 5)
(s890 5)
(s891 2)
(s893 4)
(s894 5)
(s895 5)
(s896 2)
(s898 4)
(s899 5)
(s900 5)
(s901 2)
(s903 4)
(s904 5)
(s905 5)
(s906 2)
(s908 4)
(s909 5)
(s910 5)
(s911 2)
(s913 4)
(s914 5)
(s915 5)
(s916 2)
(s918 4)
(s919 5)
(s920 5)
(s921 2)
(s923 4)
(s924 5)
(s925 5)
(s926 2)
(s928 4)
(s929 5)
(s930 5)
(s931 2)
(s933 4)
(s934 5)
(s935 5)
(s936 2)
(s938 4)
(s939 5)
(s940 5)
(s941 2)
(s943 4)
(s944 5)
(s945 5)
(s946 2)
(s948 4)
(s949 5)
(s950 5)
(s951 2)
(s953 4)
(s954 5)
(s955 5)
(s956 2)
(s958 4)
(s959 5)
(s960 5)
(s961 2)
(s963 4)
(s964 5)
(s965 5)
(s966 2)
(s968 4)
(s969 5)
(s970 5)
(s971 2)
(s973 4)
(s974 5)
(s975 5)
(s976 2)
(s978 4)
(s979 5)
(s980 5)
(s981 2)
(s983 4)
(s984 5)
(s985 5)
(s986 2)
(s988 4)
(s989 5)
(s990 5)
(s991 2)
(s993 4)
(s994 5)
(s995 5)
(s996 2)
(s998 4)
(s999 5)
(s1000 5)
(s1001 2)
(s1003 4)
(s1004 5)
(s1005 5)
(s1006 2)
(s1008 4)
(s1009 5)
(s1010 5)
(s1011 2)
(s1013 4)
(s1014 5)
(s1015 5)
(s1016 2)
(s1018 4)
(s1019 5)
(s1020 5)
(s1021 2)
(s1023 4)
(s1024 5)
(s1025 5)
(s1026 2)
(s1028 4)
(s1029 5)
(s1030 5)
(s1031 2)
(s1033 4)
(s1034 5)
(s1035 5)
(s1036 2)
(s1038 4)
(s1039 5)
(s1040 5)
(s1041 2)
(s1043 4)
(s1044 5)
(s1045 5)
(s1046 2)
(s1048 4)
(s1049 5)
(s1050 5)
(s1051 2)
(s1053 4)
(s1054 5)
(s1055 5)
(s1056 2)
(s1058 4)
(s1059 5)
(s1060 5)
(s1061 2)
(s1063 4)
(s1064 5)
(s1065 5)
(s1066 2)
(s1068 4)
(s1069 5)
(s1070 5)
(s1071 2)
(s1073 4)
(s1074 5)
(s1075 5)
(s1076 2)
(s1078 4)
(s1079 5)
(s1080 5)
(s1081 2)
(s1083 4)
(s1084 5)
(s1085 5)
(s1086 2)
(s1088 4)
(s1089 5)
(s1090 5)
(s1091 2)
(s1093 4)
(s1094 5)
(s1095 5)
(s1096 2)
(s1098 4)
(s1099 5)
(s1100 5)
(s1101 2)
(s1103 4)
(s1104 5)
(s1105 5)
(s1106 2)
(s1108 4)
(s1109 5)
(s1110 5)
(s1111 2)
(s1113 4)
(s1114 5)
(s1115 5)
(s1116 2)
(s1118 4)
(s1119 5)
(s1120 5)
(s1121 2)
(s1123 4)
(s1124 5)
(s1125 5)
(s1126 2)
(s1128 4)
(s1129 5)
(s1130 5)
(s1131 2)
(s1133 4)
(s1134 5)
(s1135 5)
(s1136 2)
(s1138 4)
(s1139 5)
(s1140 5)
(s1141 2)
(s1143 4)
(s1144 5)
(s1145 5)
(s1146 2)
(s1148 4)
(s1149 5)
(s1150 5)
(s1151 2)
(s1153 4)
(s1154 5)
(s1155 5)
(s1156 2)
(s1158 4)
(s1159 5)
(s1160 5)
(s1161 2)
(s1163 4)
(s1164 5)
(s1165 5)
(s1166 2)
(s1168 4)
(s1169 5)
(s1170 5)
(s1171 2)
(s1173 4)
(s1174 5)
(s1175 5)
(s1176 2)
(s1178 4)
(s1179 5)
(s1180 5)
(s1181 2)
(s1183 4)
(s1184 5)
(s1185 5)
(s1186 2)
(s1188 4)
(s1189 5)
(s1190 5)
(s1191 2)
(s1193 4)
(s1194 5)
(s1195 5)
(s1196 2)
(s1198 4)
(s1199 5)
(s1200 5)
(s1201 2)
(s1203 4)
(s1204 5)
(s1205 5)
(s1206 2)
(s1208 4)
(s1209 5)
(s1210 5)
(s1211 2)
(s1213 4)
(s1214 5)
(s1215 5)
(s1216 2)
(s1218 4)
(s1219 5)
(s1220 5)
(s1221 2)
(s1223 4)
(s1224 5)
(s1225 5)
(s1226 2)
(s1228 4)
(s1229 5)
(s1230 5)
(s1231 2)
(s1233 4)
(s1234 5)
(s1235 5)
(s1236 2)
(s1238 4)
(s1239 5)
(s1240 5)
(s1241 2)
(s1243 4)
(s1244 5)
(s1245 5)
(s1246 2)
(s1248 4)
(s1249 5)
(s1250 5)
(s1251 2)
(s1253 4)
(s1254 5)
(s1255 5)
(s1256 2)
(s1258 4)
(s1259 5)
(s1260 5)
(s1261 2)
(s1263 4)
(s1264 5)
(s1265 5)
(s1266 2)
(s1268 4)
(s1269 5)
(s1270 5)
(s1271 2)
(s1273 4)
(s1274 5)
(s1275 5)
(s1276 2)
(s1278 4)
(s1279 5)
(s1280 5)
(s1281 2)
(s1283 4)
(s1284 5)
(s1285 5)
(s1286 2)
(s1288 4)
(s1289 5)
(s1290 5)
(s1291 2)
(s1293 4)
(s1294 5)
(s1295 5)
(s1296 2)
(s1298 4)
(s1299 5)
(s1300 5)
(s1301 2)
(s1303 4)
(s1304 5)
(s1305 5)
(s1306 2)
(s1308 4)
(s1309 5)
(s1310 5)
(s1311 2)
(s1313 4)
(s1314 5)
(s1315 5)
(s1316 2)
(s1318 4)
(s1319 5)
(s1320 5)
(s1321 2)
(s1323 4)
(s1324 5)
(s1325 5)
(s1326 2)
(s1328 4)
(s1329 5)
(s1330 5)
(s1331 2)
(s1333 4)
(s1334 5)
(s1335 5)
(s1336 2)
(s1338 4)
(s1339 5)
(s1340 5)
(s1341 2)
(s1343 4)
(s1344 5)
(s1345 5)
(s1346 2)
(s1348 4)
(s1349 5)
(s1350 5)
(s1351 2)
(s1353 4)
(s1354 5)
(s1355 5)
(s1356 2)
(s1358 4)
(s1359 5)
(s1360 5)
(s1361 2)
(s1363 4)
(s1364 5)
(s1365 5)
(s1366 2)
(s1368 4)
(s1369 5)
(s1370 5)
(s1371 2)
(s1373 4)
(s1374 5)
(s1375 5)
(s1376 2)
(s1378 4)
(s1379 5)
(s1380 5)
(s1381 2)
(s1383 4)
(s1384 5)
(s1385 5)
(s1386 2)
(s1388 4)
(s1389 5)
(s1390 5)
(s1391 2)
(s1393 4)
(s1394 5)
(s1395 5)
(s1396 2)
(s1398 4)
(s1399 5)
(s1400 5)
(s1401 2)
(s1403 4)
(s1404 5)
(s1405 5)
(s1406 2)
(s1408 4)
(s1409 5)
(s1410 5)
(s1411 2)
(s1413 4)
(s1414 5)
(s1415 5)
(s1416 2)
(s1418 4)
(s1419 5)
(s1420 5)
(s1421 2)
(s1423 4)
(s1424 5)
(s1425 5)
(s1426 2)
(s1428 4)
(s1429 5)
(s1430 5)
(s1431 2)
(s1433 4)
(s1434 5)
(s1435 5)
(s1436 2)
(s1438 4)
(s1439 5)
(s1440 5)
(s1441 2)
(s1443 4)
(s1444 5)
(s1445 5)
(s1446 2)
(s1448 4)
(s1449 5)
(s1450 5)
(s1451 2)
(s1453 4)
(s1454 5)
(s1455 5)
(s1456 2)
(s1458 4)
(s1459 5)
(s1460 5)
(s1461 2)
(s1463 4)
(s1464 5)
(s1465 5)
(s1466 2)
(s1468 4)
(s1469 5)
(s1470 5)
(s1471 2)
(s1473 4)
(s1474 5)
(s1475 5)
(s1476 2)
(s1478 4)
(s1479 5)
(s1480 5)
(s1481 2)
(s1483 4)
(s1484 5)
(s1485 5)
(s1486 2)
(s1488 4)
(s1489 5)
(s1490 5)
(s1491 2)
(s1493 4)
(s1494 5)
(s1495 5)
(s1496 2)
(s1498 4)
(s1499 5)
(s1500 5)
(s1501 2)
(s1503 4)
(s1504 5)
(s1505 5)
(s1506 2)
(s1508 4)
(s1509 5)
(s1510 5)
(s1511 2)
(s1513 4)
(s1514 5)
(s1515 5)
(s1516 2)
(s1518 4)
(s1519 5)
(s1520 5)
(s1521 2)
(s1523 4)
(s1524 5)
(s1525 5)
(s1526 2)
(s1528 4)
(s1529 5)
(s1530 5)
(s1531 2)
(s1533 4)
(s1534 5)
(s1535 5)
(s1536 2)
(s1538 4)
(s1539 5)
(s1540 5)
(s1541 2)
(s1543 4)
(s1544 5)
(s1545 5)
(s1546 2)
(s1548 4)
(s1549 5)
(s1550 5)
(s1551 2)
(s1553 4)
(s1554 5)
(s1555 5)
(s1556 2)
(s1558 4)
(s1559 5)
(s1560 5)
(s1561 2)
(s1563 4)
(s1564 5)
(s1565 5)
(s1566 2)
(s1568 4)
(s1569 5)
(s1570 5)
(s1571 2)
(s1573 4)
(s1574 5)
(s1575 5)
(s1576 2)
(s1578 4)
(s1579 5)
(s1580 5)
(s1581 2)
(s1583 4)
(s1584 5)
(s1585 5)
(s1586 2)
(s1588 4)
(s1589 5)
(s1590 5)
(s1591 2)
(s1593 4)
(s1594 5)
(s1595 5)
(s1596 2)
(s1598 4)
(s1599 5)
(s1600 5)
(s1601 2)
(s1603 4)
(s1604 5)
(s1605 5)
(s1606 2)
(s1608 4)
(s1609 5)
(s1610 5)
(s1611 2)
(s1613 4)
(s1614 5)
(s1615 5)
(s1616 2)
(s1618 4)
(s1619 5)
(s1620 5)
(s1621 2)
(s1623 4)
(s1624 5)
(s1625 5)
(s1626 2)
(s1628 4)
(s1629 5)
(s1630 5)
(s1631 2)
(s1633 4)
(s1634 5)
(s1635 5)
(s1636 2)
(s1638 4)
(s1639 5)
(s1640 5)
(s1641 2)
(s1643 4)
(s1644 5)
(s1645 5)
(s1646 2)
(s1648 4)
(s1649 5)
(s1650 5)
(s1651 2)
(s1653 4)
(s1654 5)
(s1655 5)
(s1656 2)
(s1658 4)
(s1659 5)
(s1660 5)
(s1661 2)
(s1663 4)
(s1664 5)
(s1665 5)
(s1666 2)
(s1668 4)
(s1669 5)
(s1670 5)
(s1671 2)
(s1673 4)
(s1674 5)
(s1675 5)
(s1676 2)
(s1678 4)
(s1679 5)
(s1680 5)
(s1681 2)
(s1683 4)
(s1684 5)
(s1685 5)
(s1686 2)
(s1688 4)
(s1689 5)
(s1690 5)
(s1691 2)
(s1693 4)
(s1694 5)
(s1695 5)
(s1696 2)
(s1698 4)
(s1699 5)
(s1700 5)
(s1701 2)
(s1703 4)
(s1704 5)
(s1705 5)
(s1706 2)
(s1708 4)
(s1709 5)
(s1710 5)
(s1711 2)
(s1713 4)
(s1714 5)
(s1715 5)
(s1716 2)
(s1718 4)
(s1719 5)
(s1720 5)
(s1721 2)
(s1723 4)
(s1724 5)
(s1725 5)
(s1726 2)
(s1728 4)
(s1729 5)
(s1730 5)
(s1731 2)
(s1733 4)
(s1734 5)
(s1735 5)
(s1736 2)
(s1738 4)
(s1739 5)
(s1740 5)
(s1741 2)
(s1743 4)
(s1744 5)
(s1745 5)
(s1746 2)
(s1748 4)
(s1749 5)
(s1750 5)
(s1751 2)
(s1753 4)
(s1754 5)
(s1755 5)
(s1756 2)
(s1758 4)
(s1759 5)
(s1760 5)
(s1761 2)
(s1763 4)
(s1764 5)
(s1765 5)
(s1766 2)
(s1768 4)
(s1769 5)
(s1770 5)
(s1771 2)
(s1773 4)
(s1774 5)
(s1775 5)
(s1776 2)
(s1778 4)
(s1779 5)
(s1780 5)
(s1781 2)
(s1783 4)
(s1784 5)
(s1785 5)
(s1786 2)
(s1788 4)
(s1789 5)
(s1790 5)
(s1791 2)
(s1793 4)
(s1794 5)
(s1795 5)
(s1796 2)
(s1798 4)
(s1799 5)
(s1800 5)
(s1801 2)
(s1803 4)
(s1804 5)
(s1805 5)
(s1806 2)
(s1808 4)
(s1809 5)
(s1810 5)
(s1811 2)
(s1813 4)
(s1814 5)
(s1815 5)
(s1816 2)
(s1818 4)
(s1819 5)
(s1820 5)
(s1821 2)
(s1823 4)
(s1824 5)
(s1825 5)
(s1826 2)
(s1828 4)
(s1829 5)
(s1830 5)
(s1831 2)
(s1833 4)
(s1834 5)
(s1835 5)
(s1836 2)
(s1838 4)
(s1839 5)
(s1840 5)
(s1841 2)
(s1843 4)
(s1844 5)
(s1845 5)
(s1846 2)
(s1848 4)
(s1849 5)
(s1850 5)
(s1851 2)
(s1853 4)
(s1854 5)
(s1855 5)
(s1856 2)
(s1858 4)
(s1859 5)
(s1860 5)
(s1861 2)
(s1863 4)
(s1864 5)
(s1865 5)
(s1866 2)
(s1868 4)
(s1869 5)
(s1870 5)
(s1871 2)
(s1873 timeout
4)
(s1874 org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 1996/6487 variables, and 0 constraints, problems are : Problem set: 0 solved, 2994 unsolved in 20048 ms.
Refiners :[Positive P Invariants (semi-flows): 0/499 constraints, State Equation: 0/2495 constraints, ReadFeed: 0/499 constraints, PredecessorRefiner: 0/2994 constraints, Known Traps: 0/0 constraints]
After SMT, in 41247ms problems are : Problem set: 0 solved, 2994 unsolved
Search for dead transitions found 0 dead transitions in 41277ms
Finished structural reductions in REACHABILITY mode , in 1 iterations and 41455 ms. Remains : 2495/2500 places, 3992/4001 transitions.
RANDOM walk for 4000667 steps (8 resets) in 88861 ms. (45 steps per ms) remains 0/1397 properties
Able to resolve query QuasiLiveness after proving 2001 properties.
FORMULA QuasiLiveness TRUE TECHNIQUES RANDOM_WALK PROBABILISTIC_WALK TOPOLOGICAL INITIAL_STATE
Total runtime 184939 ms.
ITS solved all properties within timeout

BK_STOP 1716534875360

--------------------
content from stderr:

+ ulimit -s 65536
+ [[ -z '' ]]
+ export LTSMIN_MEM_SIZE=8589934592
+ LTSMIN_MEM_SIZE=8589934592
+ export PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ export LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
+ LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
++ sed s/.jar//
++ perl -pe 's/.*\.//g'
++ ls /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/plugins/fr.lip6.move.gal.application.pnmcc_1.0.0.202405141337.jar
+ VERSION=202405141337
+ echo 'Running Version 202405141337'
+ /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/its-tools -pnfolder /home/mcc/execution -examination QuasiLiveness -timeout 180 -rebuildPNML

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="JoinFreeModules-PT-0500"
export BK_EXAMINATION="QuasiLiveness"
export BK_TOOL="greatspnxred"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="1800"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5568"
echo " Executing tool greatspnxred"
echo " Input is JoinFreeModules-PT-0500, examination is QuasiLiveness"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r232-tall-171649621500042"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"

tar xzf /home/mcc/BenchKit/INPUTS/JoinFreeModules-PT-0500.tgz
mv JoinFreeModules-PT-0500 execution
cd execution
if [ "QuasiLiveness" = "ReachabilityDeadlock" ] || [ "QuasiLiveness" = "UpperBounds" ] || [ "QuasiLiveness" = "QuasiLiveness" ] || [ "QuasiLiveness" = "StableMarking" ] || [ "QuasiLiveness" = "Liveness" ] || [ "QuasiLiveness" = "OneSafe" ] || [ "QuasiLiveness" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh

echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "QuasiLiveness" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "QuasiLiveness" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "QuasiLiveness.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property QuasiLiveness.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "QuasiLiveness.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' QuasiLiveness.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ "QuasiLiveness" = "ReachabilityDeadlock" ] || [ "QuasiLiveness" = "QuasiLiveness" ] || [ "QuasiLiveness" = "StableMarking" ] || [ "QuasiLiveness" = "Liveness" ] || [ "QuasiLiveness" = "OneSafe" ] ; then
echo "FORMULA_NAME QuasiLiveness"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;