fond
Model Checking Contest 2024
14th edition, Geneva, Switzerland, June 25, 2024
Execution of r223-tall-171649610600075
Last Updated
July 7, 2024

About the Execution of GreatSPN+red for JoinFreeModules-PT-1000

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
5316.436 3600000.00 4250931.00 8500.80 FFFF?F?FF?F?FFFF normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Formatting '/data/fkordon/mcc2024-input.r223-tall-171649610600075.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2024-input.qcow2 backing_fmt=qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
=====================================================================
Generated by BenchKit 2-5568
Executing tool greatspnxred
Input is JoinFreeModules-PT-1000, examination is LTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r223-tall-171649610600075
=====================================================================

--------------------
preparation of the directory to be used:
/home/mcc/execution
total 3.5M
-rw-r--r-- 1 mcc users 5.8K May 14 13:22 CTLCardinality.txt
-rw-r--r-- 1 mcc users 53K May 14 13:22 CTLCardinality.xml
-rw-r--r-- 1 mcc users 5.8K May 14 13:22 CTLFireability.txt
-rw-r--r-- 1 mcc users 51K May 14 13:22 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K May 18 16:42 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.1K May 18 16:42 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 3.8K May 19 07:10 LTLCardinality.txt
-rw-r--r-- 1 mcc users 27K May 19 16:03 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.2K May 19 07:22 LTLFireability.txt
-rw-r--r-- 1 mcc users 17K May 19 18:33 LTLFireability.xml
-rw-r--r-- 1 mcc users 15K Apr 11 14:23 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 155K Apr 11 14:23 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 7.1K Apr 11 14:22 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 56K Apr 11 14:22 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.6K May 19 07:12 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.8K May 19 15:27 UpperBounds.xml
-rw-r--r-- 1 mcc users 6 May 18 16:42 equiv_col
-rw-r--r-- 1 mcc users 5 May 18 16:42 instance
-rw-r--r-- 1 mcc users 6 May 18 16:42 iscolored
-rw-r--r-- 1 mcc users 3.1M May 18 16:42 model.pnml

--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME JoinFreeModules-PT-1000-LTLCardinality-00
FORMULA_NAME JoinFreeModules-PT-1000-LTLCardinality-01
FORMULA_NAME JoinFreeModules-PT-1000-LTLCardinality-02
FORMULA_NAME JoinFreeModules-PT-1000-LTLCardinality-03
FORMULA_NAME JoinFreeModules-PT-1000-LTLCardinality-04
FORMULA_NAME JoinFreeModules-PT-1000-LTLCardinality-05
FORMULA_NAME JoinFreeModules-PT-1000-LTLCardinality-06
FORMULA_NAME JoinFreeModules-PT-1000-LTLCardinality-07
FORMULA_NAME JoinFreeModules-PT-1000-LTLCardinality-08
FORMULA_NAME JoinFreeModules-PT-1000-LTLCardinality-09
FORMULA_NAME JoinFreeModules-PT-1000-LTLCardinality-10
FORMULA_NAME JoinFreeModules-PT-1000-LTLCardinality-11
FORMULA_NAME JoinFreeModules-PT-1000-LTLCardinality-12
FORMULA_NAME JoinFreeModules-PT-1000-LTLCardinality-13
FORMULA_NAME JoinFreeModules-PT-1000-LTLCardinality-14
FORMULA_NAME JoinFreeModules-PT-1000-LTLCardinality-15

=== Now, execution of the tool begins

BK_START 1716504582216

Invoking MCC driver with
BK_TOOL=greatspnxred
BK_EXAMINATION=LTLCardinality
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=JoinFreeModules-PT-1000
BK_MEMORY_CONFINEMENT=16384
Applying reductions before tool greatspn
Invoking reducer
Running Version 202405141337
[2024-05-23 22:49:43] [INFO ] Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, LTLCardinality, -timeout, 360, -rebuildPNML]
[2024-05-23 22:49:43] [INFO ] Parsing pnml file : /home/mcc/execution/model.pnml
[2024-05-23 22:49:43] [INFO ] Load time of PNML (sax parser for PT used): 315 ms
[2024-05-23 22:49:43] [INFO ] Transformed 5001 places.
[2024-05-23 22:49:43] [INFO ] Transformed 8001 transitions.
[2024-05-23 22:49:43] [INFO ] Parsed PT model containing 5001 places and 8001 transitions and 23002 arcs in 445 ms.
Parsed 16 properties from file /home/mcc/execution/LTLCardinality.xml in 14 ms.
Working with output stream class java.io.PrintStream
Reduce places removed 1 places and 0 transitions.
Support contains 56 out of 5000 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 579 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
// Phase 1: matrix 8001 rows 5000 cols
[2024-05-23 22:49:44] [INFO ] Computed 1000 invariants in 59 ms
[2024-05-23 22:49:44] [INFO ] State equation strengthened by 1000 read => feed constraints.
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20162 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20088 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 44928ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 45014ms
[2024-05-23 22:50:29] [INFO ] Invariant cache hit.
[2024-05-23 22:50:30] [INFO ] Implicit Places using invariants in 1069 ms returned []
[2024-05-23 22:50:30] [INFO ] Invariant cache hit.
[2024-05-23 22:50:34] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2024-05-23 22:50:34] [INFO ] Implicit Places using invariants and state equation in 3722 ms returned []
Implicit Place search using SMT with State Equation took 4799 ms to find 0 implicit places.
Running 6000 sub problems to find dead transitions.
[2024-05-23 22:50:34] [INFO ] Invariant cache hit.
[2024-05-23 22:50:34] [INFO ] State equation strengthened by 1000 read => feed constraints.
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30070 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30076 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 64447ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 64496ms
Finished structural reductions in LTL mode , in 1 iterations and 114968 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Support contains 56 out of 5000 places after structural reductions.
[2024-05-23 22:51:39] [INFO ] Flatten gal took : 384 ms
[2024-05-23 22:51:39] [INFO ] Flatten gal took : 208 ms
[2024-05-23 22:51:40] [INFO ] Input system was already deterministic with 8001 transitions.
Support contains 54 out of 5000 places (down from 56) after GAL structural reductions.
RANDOM walk for 41561 steps (8 resets) in 3052 ms. (13 steps per ms) remains 32/35 properties
BEST_FIRST walk for 4004 steps (0 resets) in 268 ms. (14 steps per ms) remains 32/32 properties
BEST_FIRST walk for 4004 steps (0 resets) in 265 ms. (15 steps per ms) remains 32/32 properties
BEST_FIRST walk for 4004 steps (0 resets) in 274 ms. (14 steps per ms) remains 32/32 properties
BEST_FIRST walk for 4004 steps (0 resets) in 249 ms. (16 steps per ms) remains 32/32 properties
BEST_FIRST walk for 4004 steps (0 resets) in 232 ms. (17 steps per ms) remains 32/32 properties
BEST_FIRST walk for 4004 steps (0 resets) in 341 ms. (11 steps per ms) remains 32/32 properties
BEST_FIRST walk for 4004 steps (0 resets) in 232 ms. (17 steps per ms) remains 32/32 properties
BEST_FIRST walk for 4004 steps (0 resets) in 253 ms. (15 steps per ms) remains 32/32 properties
BEST_FIRST walk for 4004 steps (0 resets) in 248 ms. (16 steps per ms) remains 32/32 properties
BEST_FIRST walk for 4004 steps (0 resets) in 249 ms. (16 steps per ms) remains 32/32 properties
BEST_FIRST walk for 4004 steps (0 resets) in 225 ms. (17 steps per ms) remains 32/32 properties
BEST_FIRST walk for 4004 steps (0 resets) in 245 ms. (16 steps per ms) remains 32/32 properties
BEST_FIRST walk for 4004 steps (0 resets) in 222 ms. (17 steps per ms) remains 32/32 properties
BEST_FIRST walk for 4004 steps (0 resets) in 239 ms. (16 steps per ms) remains 32/32 properties
BEST_FIRST walk for 4004 steps (0 resets) in 309 ms. (12 steps per ms) remains 32/32 properties
BEST_FIRST walk for 4004 steps (0 resets) in 280 ms. (14 steps per ms) remains 32/32 properties
BEST_FIRST walk for 4004 steps (0 resets) in 239 ms. (16 steps per ms) remains 32/32 properties
BEST_FIRST walk for 4004 steps (0 resets) in 299 ms. (13 steps per ms) remains 32/32 properties
BEST_FIRST walk for 4004 steps (0 resets) in 254 ms. (15 steps per ms) remains 32/32 properties
BEST_FIRST walk for 4004 steps (0 resets) in 239 ms. (16 steps per ms) remains 32/32 properties
BEST_FIRST walk for 4004 steps (0 resets) in 215 ms. (18 steps per ms) remains 32/32 properties
BEST_FIRST walk for 4004 steps (0 resets) in 226 ms. (17 steps per ms) remains 32/32 properties
BEST_FIRST walk for 4004 steps (0 resets) in 230 ms. (17 steps per ms) remains 32/32 properties
BEST_FIRST walk for 4004 steps (0 resets) in 322 ms. (12 steps per ms) remains 32/32 properties
BEST_FIRST walk for 4004 steps (0 resets) in 225 ms. (17 steps per ms) remains 32/32 properties
BEST_FIRST walk for 4004 steps (0 resets) in 235 ms. (16 steps per ms) remains 32/32 properties
BEST_FIRST walk for 4004 steps (0 resets) in 224 ms. (17 steps per ms) remains 32/32 properties
BEST_FIRST walk for 4004 steps (0 resets) in 226 ms. (17 steps per ms) remains 32/32 properties
BEST_FIRST walk for 4004 steps (0 resets) in 238 ms. (16 steps per ms) remains 32/32 properties
BEST_FIRST walk for 4004 steps (0 resets) in 231 ms. (17 steps per ms) remains 32/32 properties
BEST_FIRST walk for 4004 steps (0 resets) in 231 ms. (17 steps per ms) remains 32/32 properties
BEST_FIRST walk for 4004 steps (0 resets) in 272 ms. (14 steps per ms) remains 32/32 properties
Probabilistic random walk after 101202 steps, saw 101124 distinct states, run finished after 9002 ms. (steps per millisecond=11 ) properties seen :3
[2024-05-23 22:51:52] [INFO ] Invariant cache hit.
[2024-05-23 22:51:52] [INFO ] State equation strengthened by 1000 read => feed constraints.
All remaining problems are real, not stopping.
At refinement iteration 0 (INCLUDED_ONLY) 0/43 variables, 0/0 constraints. Problems are: Problem set: 0 solved, 29 unsolved
At refinement iteration 1 (OVERLAPS) 172/215 variables, 43/43 constraints. Problems are: Problem set: 0 solved, 29 unsolved
At refinement iteration 2 (INCLUDED_ONLY) 0/215 variables, 0/43 constraints. Problems are: Problem set: 0 solved, 29 unsolved
At refinement iteration 3 (OVERLAPS) 344/559 variables, 215/258 constraints. Problems are: Problem set: 0 solved, 29 unsolved
At refinement iteration 4 (INCLUDED_ONLY) 0/559 variables, 43/301 constraints. Problems are: Problem set: 0 solved, 29 unsolved
At refinement iteration 5 (INCLUDED_ONLY) 0/559 variables, 0/301 constraints. Problems are: Problem set: 0 solved, 29 unsolved
At refinement iteration 6 (OVERLAPS) 0/559 variables, 0/301 constraints. Problems are: Problem set: 0 solved, 29 unsolved
No progress, stopping.
After SMT solving in domain Real declared 559/13001 variables, and 301 constraints, problems are : Problem set: 0 solved, 29 unsolved in 1082 ms.
Refiners :[Positive P Invariants (semi-flows): 43/1000 constraints, State Equation: 215/5000 constraints, ReadFeed: 43/1000 constraints, PredecessorRefiner: 29/29 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 29 unsolved
At refinement iteration 0 (INCLUDED_ONLY) 0/43 variables, 0/0 constraints. Problems are: Problem set: 0 solved, 29 unsolved
At refinement iteration 1 (OVERLAPS) 172/215 variables, 43/43 constraints. Problems are: Problem set: 0 solved, 29 unsolved
[2024-05-23 22:51:54] [INFO ] Deduced a trap composed of 3 places in 67 ms of which 15 ms to minimize.
[2024-05-23 22:51:54] [INFO ] Deduced a trap composed of 3 places in 54 ms of which 1 ms to minimize.
[2024-05-23 22:51:54] [INFO ] Deduced a trap composed of 3 places in 39 ms of which 0 ms to minimize.
[2024-05-23 22:51:54] [INFO ] Deduced a trap composed of 3 places in 41 ms of which 1 ms to minimize.
[2024-05-23 22:51:54] [INFO ] Deduced a trap composed of 3 places in 39 ms of which 1 ms to minimize.
[2024-05-23 22:51:54] [INFO ] Deduced a trap composed of 3 places in 38 ms of which 1 ms to minimize.
[2024-05-23 22:51:54] [INFO ] Deduced a trap composed of 3 places in 42 ms of which 0 ms to minimize.
[2024-05-23 22:51:54] [INFO ] Deduced a trap composed of 3 places in 38 ms of which 2 ms to minimize.
[2024-05-23 22:51:54] [INFO ] Deduced a trap composed of 3 places in 36 ms of which 1 ms to minimize.
[2024-05-23 22:51:54] [INFO ] Deduced a trap composed of 3 places in 30 ms of which 1 ms to minimize.
[2024-05-23 22:51:55] [INFO ] Deduced a trap composed of 3 places in 35 ms of which 1 ms to minimize.
[2024-05-23 22:51:55] [INFO ] Deduced a trap composed of 3 places in 32 ms of which 1 ms to minimize.
[2024-05-23 22:51:55] [INFO ] Deduced a trap composed of 3 places in 33 ms of which 0 ms to minimize.
[2024-05-23 22:51:55] [INFO ] Deduced a trap composed of 3 places in 31 ms of which 1 ms to minimize.
[2024-05-23 22:51:55] [INFO ] Deduced a trap composed of 3 places in 31 ms of which 1 ms to minimize.
[2024-05-23 22:51:55] [INFO ] Deduced a trap composed of 3 places in 29 ms of which 1 ms to minimize.
[2024-05-23 22:51:55] [INFO ] Deduced a trap composed of 3 places in 29 ms of which 1 ms to minimize.
[2024-05-23 22:51:55] [INFO ] Deduced a trap composed of 3 places in 27 ms of which 1 ms to minimize.
[2024-05-23 22:51:55] [INFO ] Deduced a trap composed of 3 places in 28 ms of which 0 ms to minimize.
[2024-05-23 22:51:55] [INFO ] Deduced a trap composed of 3 places in 26 ms of which 0 ms to minimize.
At refinement iteration 2 (INCLUDED_ONLY) 0/215 variables, 20/63 constraints. Problems are: Problem set: 0 solved, 29 unsolved
[2024-05-23 22:51:55] [INFO ] Deduced a trap composed of 3 places in 25 ms of which 0 ms to minimize.
[2024-05-23 22:51:55] [INFO ] Deduced a trap composed of 3 places in 25 ms of which 1 ms to minimize.
[2024-05-23 22:51:55] [INFO ] Deduced a trap composed of 3 places in 24 ms of which 1 ms to minimize.
At refinement iteration 3 (INCLUDED_ONLY) 0/215 variables, 3/66 constraints. Problems are: Problem set: 0 solved, 29 unsolved
At refinement iteration 4 (INCLUDED_ONLY) 0/215 variables, 0/66 constraints. Problems are: Problem set: 0 solved, 29 unsolved
At refinement iteration 5 (OVERLAPS) 344/559 variables, 215/281 constraints. Problems are: Problem set: 0 solved, 29 unsolved
At refinement iteration 6 (INCLUDED_ONLY) 0/559 variables, 43/324 constraints. Problems are: Problem set: 0 solved, 29 unsolved
At refinement iteration 7 (INCLUDED_ONLY) 0/559 variables, 29/353 constraints. Problems are: Problem set: 0 solved, 29 unsolved
[2024-05-23 22:51:56] [INFO ] Deduced a trap composed of 3 places in 30 ms of which 0 ms to minimize.
[2024-05-23 22:51:57] [INFO ] Deduced a trap composed of 3 places in 32 ms of which 2 ms to minimize.
At refinement iteration 8 (INCLUDED_ONLY) 0/559 variables, 2/355 constraints. Problems are: Problem set: 0 solved, 29 unsolved
At refinement iteration 9 (INCLUDED_ONLY) 0/559 variables, 0/355 constraints. Problems are: Problem set: 0 solved, 29 unsolved
At refinement iteration 10 (OVERLAPS) 0/559 variables, 0/355 constraints. Problems are: Problem set: 0 solved, 29 unsolved
No progress, stopping.
After SMT solving in domain Int declared 559/13001 variables, and 355 constraints, problems are : Problem set: 0 solved, 29 unsolved in 4937 ms.
Refiners :[Positive P Invariants (semi-flows): 43/1000 constraints, State Equation: 215/5000 constraints, ReadFeed: 43/1000 constraints, PredecessorRefiner: 29/29 constraints, Known Traps: 25/25 constraints]
After SMT, in 6107ms problems are : Problem set: 0 solved, 29 unsolved
Fused 29 Parikh solutions to 6 different solutions.
Finished Parikh walk after 739 steps, including 0 resets, run visited all 1 properties in 39 ms. (steps per millisecond=18 )
Finished Parikh walk after 0 steps, including 0 resets, run visited all 0 properties in 1 ms. (steps per millisecond=0 )
Finished Parikh walk after 0 steps, including 0 resets, run visited all 0 properties in 1 ms. (steps per millisecond=0 )
Finished Parikh walk after 0 steps, including 0 resets, run visited all 0 properties in 2 ms. (steps per millisecond=0 )
Finished Parikh walk after 0 steps, including 0 resets, run visited all 0 properties in 1 ms. (steps per millisecond=0 )
Parikh walk visited 29 properties in 5057 ms.
FORMULA JoinFreeModules-PT-1000-LTLCardinality-12 FALSE TECHNIQUES REACHABILITY_KNOWLEDGE
Computed a total of 0 stabilizing places and 0 stable transitions
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202405141337/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(X(G(p0)))'
Support contains 2 out of 5000 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 290 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2024-05-23 22:52:05] [INFO ] Invariant cache hit.
[2024-05-23 22:52:05] [INFO ] State equation strengthened by 1000 read => feed constraints.
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20098 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20085 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 44407ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 44459ms
[2024-05-23 22:52:49] [INFO ] Invariant cache hit.
[2024-05-23 22:52:50] [INFO ] Implicit Places using invariants in 1145 ms returned []
[2024-05-23 22:52:50] [INFO ] Invariant cache hit.
[2024-05-23 22:52:54] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2024-05-23 22:52:54] [INFO ] Implicit Places using invariants and state equation in 3680 ms returned []
Implicit Place search using SMT with State Equation took 4830 ms to find 0 implicit places.
Running 6000 sub problems to find dead transitions.
[2024-05-23 22:52:54] [INFO ] Invariant cache hit.
[2024-05-23 22:52:54] [INFO ] State equation strengthened by 1000 read => feed constraints.
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30070 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Error getting values : (error "ParserException while parsing response: ((s0 5)
(s1 2)
(s3 4)
(s4 5)
(s5 5)
(s6 2)
(s8 4)
(s9 5)
(s10 5)
(s11 2)
(s13 4)
(s14 5)
(s15 5)
(s16 2)
(s18 4)
(s19 5)
(s20 5)
(s21 2)
(s23 4)
(s24 5)
(s25 5)
(s26 2)
(s28 4)
(s29 5)
(s30 5)
(s31 2)
(s33 4)
(s34 5)
(s35 5)
(s36 2)
(s38 4)
(s39 5)
(s40 5)
(s41 2)
(s43 4)
(s44 5)
(s45 5)
(s46 2)
(s48 4)
(s49 5)
(s50 5)
(s51 2)
(s53 4)
(s54 5)
(s55 5)
(s56 2)
(s58 4)
(s59 5)
(s60 5)
(s61 2)
(s63 4)
(s64 5)
(s65 5)
(s66 2)
(s68 4)
(s69 5)
(s70 5)
(s71 2)
(s73 4)
(s74 5)
(s75 5)
(s76 2)
(s78 4)
(s79 5)
(s80 5)
(s81 2)
(s83 4)
(s84 5)
(s85 5)
(s86 2)
(s88 4)
(s89 5)
(s90 5)
(s91 2)
(s93 4)
(s94 5)
(s95 5)
(s96 2)
(s98 4)
(s99 5)
(s100 5)
(s101 2)
(s103 4)
(s104 5)
(s105 5)
(s106 2)
(s108 4)
(s109 5)
(s110 5)
(s111 2)
(s113 4)
(s114 5)
(s115 5)
(s116 2)
(s118 4)
(s119 5)
(s120 5)
(s121 2)
(s123 4)
(s124 5)
(s125 5)
(s126 2)
(s128 4)
(s129 5)
(s130 5)
(s131 2)
(s133 4)
(s134 5)
(s135 5)
(s136 2)
(s138 4)
(s139 5)
(s140 5)
(s141 2)
(s143 4)
(s144 5)
(s145 5)
(s146 2)
(s148 4)
(s149 5)
(s150 5)
(s151 2)
(s153 4)
(s154 5)
(s155 5)
(s156 2)
(s158 4)
(s159 5)
(s160 5)
(s161 2)
(s163 4)
(s164 5)
(s165 5)
(s166 2)
(s168 4)
(s169 5)
(s170 5)
(s171 2)
(s173 4)
(s174 5)
(s175 5)
(s176 2)
(s178 4)
(s179 5)
(s180 5)
(s181 2)
(s183 4)
(s184 5)
(s185 5)
(s186 2)
(s188 4)
(s189 5)
(s190 5)
(s191 2)
(s193 4)
(s194 5)
(s195 5)
(s196 2)
(s198 4)
(s199 5)
(s200 5)
(s201 2)
(s203 4)
(s204 5)
(s205 5)
(s206 2)
(s208 4)
(s209 5)
(s210 5)
(s211 2)
(s213 4)
(s214 5)
(s215 5)
(s216 2)
(s218 4)
(s219 5)
(s220 5)
(s221 2)
(s223 4)
(s224 5)
(s225 5)
(s226 2)
(s228 4)
(s229 5)
(s230 5)
(s231 2)
(s233 4)
(s234 5)
(s235 5)
(s236 2)
(s238 4)
(s239 5)
(s240 5)
(s241 2)
(s243 4)
(s244 5)
(s245 5)
(s246 2)
(s248 4)
(s249 5)
(s250 5)
(s251 2)
(s253 4)
(s254 5)
(s255 5)
(s256 2)
(s258 4)
(s259 5)
(s260 5)
(s261 2)
(s263 4)
(s264 5)
(s265 5)
(s266 2)
(s268 4)
(s269 5)
(s270 5)
(s271 2)
(s273 4)
(s274 5)
(s275 5)
(s276 2)
(s278 4)
(s279 5)
(s280 5)
(s281 2)
(s283 4)
(s284 5)
(s285 5)
(s286 2)
(s288 4)
(s289 5)
(s290 5)
(s291 2)
(s293 4)
(s294 5)
(s295 5)
(s296 2)
(s298 4)
(s299 5)
(s300 5)
(s301 2)
(s303 4)
(s304 5)
(s305 5)
(s306 2)
(s308 4)
(s309 5)
(s310 5)
(s311 2)
(s313 4)
(s314 5)
(s315 5)
(s316 2)
(s318 4)
(s319 5)
(s320 5)
(s321 2)
(s323 4)
(s324 5)
(s325 5)
(s326 2)
(s328 4)
(s329 5)
(s330 5)
(s331 2)
(s333 4)
(s334 5)
(s335 5)
(s336 2)
(s338 4)
(s339 5)
(s340 5)
(s341 2)
(s343 4)
(s344 5)
(s345 5)
(s346 2)
(s348 4)
(s349 5)
(s350 5)
(s351 2)
(s353 4)
(s354 5)
(s355 5)
(s356 2)
(s358 4)
(s359 5)
(s360 5)
(s361 2)
(s363 4)
(s364 5)
(s365 5)
(s366 2)
(s368 4)
(s369 5)
(s370 5)
(s371 2)
(s373 4)
(s374 5)
(s375 5)
(s376 2)
(s378 4)
(s379 5)
(s380 5)
(s381 2)
(s383 4)
(s384 5)
(s385 5)
(s386 2)
(s388 4)
(s389 5)
(s390 5)
(s391 2)
(s393 4)
(s394 5)
(s395 5)
(s396 2)
(s398 4)
(s399 5)
(s400 5)
(s401 2)
(s403 4)
(s404 5)
(s405 5)
(s406 2)
(s408 4)
(s409 5)
(s410 5)
(s411 2)
(s413 4)
(s414 5)
(s415 5)
(s416 2)
(s418 4)
(s419 5)
(s420 5)
(s421 2)
(s423 4)
(s424 5)
(s425 5)
(s426 2)
(s428 4)
(s429 5)
(s430 5)
(s431 2)
(s433 4)
(s434 5)
(s435 5)
(s436 2)
(s438 4)
(s439 5)
(s440 5)
(s441 2)
(s443 4)
(s444 5)
(s445 5)
(s446 2)
(s448 4)
(s449 5)
(s450 5)
(s451 2)
(s453 4)
(s454 5)
(s455 5)
(s456 2)
(s458 4)
(s459 5)
(s460 5)
(s461 2)
(s463 4)
(s464 5)
(s465 5)
(s466 2)
(s468 4)
(s469 5)
(s470 5)
(s471 2)
(s473 4)
(s474 5)
(s475 5)
(s476 2)
(s478 4)
(s479 5)
(s480 5)
(s481 2)
(s483 4)
(s484 5)
(s485 5)
(s486 2)
(s488 4)
(s489 5)
(s490 5)
(s491 2)
(s493 4)
(s494 5)
(s495 5)
(s496 2)
(s498 4)
(s499 5)
(s500 5)
(s501 2)
(s503 4)
(s504 5)
(s505 5)
(s506 2)
(s508 4)
(s509 5)
(s510 5)
(s511 2)
(s513 4)
(s514 5)
(s515 5)
(s516 2)
(s518 4)
(s519 5)
(s520 5)
(s521 2)
(s523 4)
(s524 5)
(s525 5)
(s526 2)
(s528 4)
(s529 5)
(s530 5)
(s531 2)
(s533 4)
(s534 5)
(s535 5)
(s536 2)
(s538 4)
(s539 5)
(s540 5)
(s541 2)
(s543 4)
(s544 5)
(s545 5)
(s546 2)
(s548 4)
(s549 5)
(s550 5)
(s551 2)
(s553 4)
(s554 5)
(s555 5)
(s556 2)
(s558 4)
(s559 5)
(s560 5)
(s561 2)
(s563 4)
(s564 5)
(s565 5)
(s566 2)
(s568 4)
(s569 5)
(s570 5)
(s571 2)
(s573 4)
(s574 5)
(s575 5)
(s576 2)
(s578 4)
(s579 5)
(s580 5)
(s581 2)
(s583 4)
(s584 5)
(s585 5)
(s586 2)
(s588 4)
(s589 5)
(s590 5)
(s591 2)
(s593 4)
(s594 5)
(s595 5)
(s596 2)
(s598 4)
(s599 5)
(s600 5)
(s601 2)
(s603 4)
(s604 5)
(s605 5)
(s606 2)
(s608 4)
(s609 5)
(s610 5)
(s611 2)
(s613 4)
(s614 5)
(s615 5)
(s616 2)
(s618 4)
(s619 5)
(s620 5)
(s621 2)
(s623 4)
(s624 5)
(s625 5)
(s626 2)
(s628 4)
(s629 5)
(s630 5)
(s631 2)
(s633 4)
(s634 5)
(s635 5)
(s636 2)
(s638 4)
(s639 5)
(s640 5)
(s641 2)
(s643 4)
(s644 5)
(s645 5)
(s646 2)
(s648 4)
(s649 5)
(s650 5)
(s651 2)
(s653 4)
(s654 5)
(s655 5)
(s656 2)
(s658 4)
(s659 5)
(s660 5)
(s661 2)
(s663 4)
(s664 5)
(s665 5)
(s666 2)
(s668 4)
(s669 5)
(s670 5)
(s671 2)
(s673 4)
(s674 5)
(s675 5)
(s676 2)
(s678 4)
(s679 5)
(s680 5)
(s681 2)
(s683 4)
(s684 5)
(s685 5)
(s686 2)
(s688 4)
(s689 5)
(s690 5)
(s691 2)
(s693 4)
(s694 5)
(s695 5)
(s696 2)
(s698 4)
(s699 5)
(s700 5)
(s701 2)
(s703 4)
(s704 5)
(s705 5)
(s706 2)
(s708 4)
(s709 5)
(s710 5)
(s711 2)
(s713 4)
(s714 5)
(s715 5)
(s716 2)
(s718 4)
(s719 5)
(s720 5)
(s721 2)
(s723 4)
(s724 5)
(s725 5)
(s726 2)
(s728 4)
(s729 5)
(s730 5)
(s731 2)
(s733 4)
(s734 5)
(s735 5)
(s736 2)
(s738 4)
(s739 5)
(s740 5)
(s741 2)
(s743 4)
(s744 5)
(s745 5)
(s746 2)
(s748 4)
(s749 5)
(s750 5)
(s751 2)
(s753 4)
(s754 5)
(s755 5)
(s756 2)
(s758 4)
(s759 5)
(s760 5)
(s761 2)
(s763 4)
(s764 5)
(s765 5)
(s766 2)
(s768 4)
(s769 5)
(s770 5)
(s771 2)
(s773 4)
(s774 5)
(s775 5)
(s776 2)
(s778 4)
(s779 5)
(s780 5)
(s781 2)
(s783 4)
(s784 5)
(s785 5)
(s786 2)
(s788 4)
(s789 5)
(s790 5)
(s791 2)
(s793 4)
(s794 5)
(s795 5)
(s796 2)
(s798 4)
(s799 5)
(s800 5)
(s801 2)
(s803 4)
(s804 5)
(s805 5)
(s806 2)
(s808 4)
(s809 5)
(s810 5)
(s811 2)
(s813 4)
(s814 5)
(s815 5)
(s816 2)
(s818 4)
(s819 5)
(s820 5)
(s821 2)
(s823 4)
(s824 5)
(s825 5)
(s826 2)
(s828 4)
(s829 5)
(s830 5)
(s831 2)
(s833 4)
(s834 5)
(s835 5)
(s836 2)
(s838 4)
(s839 5)
(s840 5)
(s841 2)
(s843 4)
(s844 5)
(s845 5)
(s846 2)
(s848 4)
(s849 5)
(s850 5)
(s851 2)
(s853 4)
(s854 5)
(s855 5)
(s856 2)
(s858 4)
(s859 5)
(s860 5)
(s861 2)
(s863 4)
(s864 5)
(s865 5)
(s866 2)
(s868 4)
(s869 5)
(s870 5)
(s871 2)
(s873 4)
(s874 5)
(s875 5)
(s876 2)
(s878 4)
(s879 5)
(s880 5)
(s881 2)
(s883 4)
(s884 5)
(s885 5)
(s886 2)
(s888 4)
(s889 5)
(s890 5)
(s891 2)
(s893 4)
(s894 5)
(s895 5)
(s896 2)
(s898 4)
(s899 5)
(s900 5)
(s901 2)
(s903 4)
(s904 5)
(s905 5)
(s906 2)
(s908 4)
(s909 5)
(s910 5)
(s911 2)
(s913 4)
(s914 5)
(s915 5)
(s916 2)
(s918 4)
(s919 5)
(s920 5)
(s921 2)
(s923 4)
(s924 5)
(s925 5)
(s926 2)
(s928 4)
(s929 5)
(s930 5)
(s931 2)
(s933 4)
(s934 5)
(s935 5)
(s936 2)
(s938 4)
(s939 5)
(s940 5)
(s941 2)
(s943 4)
(s944 5)
(s945 5)
(s946 2)
(s948 4)
(s949 5)
(s950 5)
(s951 2)
(s953 4)
(s954 5)
(s955 5)
(s956 2)
(s958 4)
(s959 5)
(s960 5)
(s961 2)
(s963 4)
(s964 5)
(s965 5)
(s966 2)
(s968 4)
(s969 5)
(s970 5)
(s971 2)
(s973 4)
(s974 5)
(s975 5)
(s976 2)
(s978 4)
(s979 5)
(s980 5)
(s981 2)
(s983 4)
(s984 5)
(s985 5)
(s986 2)
(s988 4)
(s989 5)
(s990 5)
(s991 2)
(s993 4)
(s994 5)
(s995 5)
(s996 2)
(s998 4)
(s999 5)
(s1000 5)
(s1001 2)
(s1003 4)
(s1004 5)
(s1005 5)
(s1006 2)
(s1008 4)
(s1009 5)
(s1010 5)
(s1011 2)
(s1013 4)
(s1014 5)
(s1015 5)
(s1016 2)
(s1018 4)
(s1019 5)
(s1020 5)
(s1021 2)
(s1023 4)
(s1024 5)
(s1025 5)
(s1026 2)
(s1028 4)
(s1029 5)
(s1030 5)
(s1031 2)
(s1033 4)
(s1034 5)
(s1035 5)
(s1036 2)
(s1038 4)
(s1039 5)
(s1040 5)
(s1041 2)
(s1043 4)
(s1044 5)
(s1045 5)
(s1046 2)
(s1048 4)
(s1049 5)
(s1050 5)
(s1051 2)
(s1053 4)
(s1054 5)
(s1055 5)
(s1056 2)
(s1058 4)
(s1059 5)
(s1060 5)
(s1061 2)
(s1063 4)
(s1064 5)
(s1065 5)
(s1066 2)
(s1068 4)
(s1069 5)
(s1070 5)
(s1071 2)
(s1073 4)
(s1074 5)
(s1075 5)
(s1076 2)
(s1078 4)
(s1079 5)
(s1080 5)
(s1081 2)
(s1083 4)
(s1084 5)
(s1085 5)
(s1086 2)
(s1088 4)
(s1089 5)
(s1090 5)
(s1091 2)
(s1093 4)
(s1094 5)
(s1095 5)
(s1096 2)
(s1098 4)
(s1099 5)
(s1100 5)
(s1101 2)
(s1103 4)
(s1104 5)
(s1105 5)
(s1106 2)
(s1108 4)
(s1109 5)
(s1110 5)
(s1111 2)
(s1113 4)
(s1114 5)
(s1115 5)
(s1116 2)
(s1118 4)
(s1119 5)
(s1120 5)
(s1121 2)
(s1123 4)
(s1124 5)
(s1125 5)
(s1126 2)
(s1128 4)
(s1129 5)
(s1130 5)
(s1131 2)
(s1133 4)
(s1134 5)
(s1135 5)
(s1136 2)
(s1138 4)
(s1139 5)
(s1140 5)
(s1141 2)
(s1143 4)
(s1144 5)
(s1145 5)
(s1146 2)
(s1148 4)
(s1149 5)
(s1150 5)
(s1151 2)
(s1153 4)
(s1154 5)
(s1155 5)
(s1156 2)
(s1158 4)
(s1159 5)
(s1160 5)
(s1161 2)
(s1163 4)
(s1164 5)
(s1165 5)
(s1166 2)
(s1168 4)
(s1169 5)
(s1170 5)
(s1171 2)
(s1173 4)
(s1174 5)
(s1175 5)
(s1176 2)
(s1178 4)
(s1179 5)
(s1180 5)
(s1181 2)
(s1183 4)
(s1184 5)
(s1185 5)
(s1186 2)
(s1188 4)
(s1189 5)
(s1190 5)
(s1191 2)
(s1193 4)
(s1194 5)
(s1195 5)
(s1196 2)
(s1198 4)
(s1199 5)
(s1200 5)
(s1201 2)
(s1203 4)
(s1204 5)
(s1205 5)
(s1206 2)
(s1208 4)
(s1209 5)
(s1210 5)
(s1211 2)
(s1213 4)
(s1214 5)
(s1215 5)
(s1216 2)
(s1218 4)
(s1219 5)
(s1220 5)
(s1221 2)
(s1223 4)
(s1224 5)
(s1225 5)
(s1226 2)
(s1228 4)
(s1229 5)
(s1230 5)
(s1231 2)
(s1233 4)
(s1234 5)
(s1235 5)
(s1236 2)
(s1238 4)
(s1239 5)
(s1240 5)
(s1241 2)
(s1243 4)
(s1244 5)
(s1245 5)
(s1246 2)
(s1248 4)
(s1249 5)
(s1250 5)
(s1251 2)
(s1253 4)
(s1254 5)
(s1255 5)
(s1256 2)
(s1258 4)
(s1259 5)
(s1260 5)
(s1261 2)
(s1263 4)
(s1264 5)
(s1265 5)
(s1266 2)
(s1268 4)
(s1269 5)
(s1270 5)
(s1271 2)
(s1273 4)
(s1274 5)
(s1275 5)
(s1276 2)
(s1278 4)
(s1279 5)
(s1280 5)
(s1281 2)
(s1283 4)
(s1284 5)
(s1285 5)
(s1286 2)
(s1288 4)
(s1289 5)
(s1290 5)
(s1291 2)
(s1293 4)
(s1294 5)
(s1295 5)
(s1296 2)
(s1298 4)
(s1299 5)
(s1300 5)
(s1301 2)
(s1303 4)
(s1304 5)
(s1305 5)
(s1306 2)
(s1308 4)
(s1309 5)
(s1310 5)
(s1311 2)
(s1313 4)
(s1314 5)
(s1315 5)
(s1316 2)
(s1318 4)
(s1319 5)
(s1320 5)
(s1321 2)
(s1323 4)
(s1324 5)
(s1325 5)
(s1326 2)
(s1328 4)
(s1329 5)
(s1330 5)
(s1331 2)
(s1333 4)
(s1334 5)
(s1335 5)
(s1336 2)
(s1338 4)
(s1339 5)
(s1340 5)
(s1341 2)
(s1343 4)
(s1344 5)
(s1345 5)
(s1346 2)
(s1348 4)
(s1349 5)
(s1350 5)
(s1351 2)
(s1353 4)
(s1354 5)
(s1355 5)
(s1356 2)
(s1358 4)
(s1359 5)
(s1360 5)
(s1361 2)
(s1363 4)
(s1364 5)
(s1365 5)
(s1366 2)
(s1368 4)
(s1369 5)
(s1370 5)
(s1371 2)
(s1373 4)
(s1374 5)
(s1375 5)
(s1376 2)
(s1378 4)
(s1379 5)
(s1380 5)
(s1381 2)
(s1383 4)
(s1384 5)
(s1385 5)
(s1386 2)
(s1388 4)
(s1389 5)
(s1390 5)
(s1391 2)
(s1393 4)
(s1394 5)
(s1395 5)
(s1396 2)
(s1398 4)
(s1399 5)
(s1400 5)
(s1401 2)
(s1403 4)
(s1404 5)
(s1405 5)
(s1406 2)
(s1408 4)
(s1409 5)
(s1410 5)
(s1411 2)
(s1413 4)
(s1414 5)
(s1415 5)
(s1416 2)
(s1418 4)
(s1419 5)
(s1420 5)
(s1421 2)
(s1423 4)
(s1424 5)
(s1425 5)
(s1426 2)
(s1428 4)
(s1429 5)
(s1430 5)
(s1431 2)
(s1433 4)
(s1434 5)
(s1435 5)
(s1436 2)
(s1438 4)
(s1439 5)
(s1440 5)
(s1441 2)
(s1443 4)
(s1444 5)
(s1445 5)
(s1446 2)
(s1448 4)
(s1449 5)
(s1450 5)
(s1451 2)
(s1453 4)
(s1454 5)
(s1455 5)
(s1456 2)
(s1458 4)
(s1459 5)
(s1460 5)
(s1461 2)
(s1463 4)
(s1464 5)
(s1465 5)
(s1466 2)
(s1468 4)
(s1469 5)
(s1470 5)
(s1471 2)
(s1473 4)
(s1474 5)
(s1475 5)
(s1476 2)
(s1478 4)
(s1479 5)
(s1480 5)
(s1481 2)
(s1483 4)
(s1484 5)
(s1485 5)
(s1486 2)
(s1488 4)
(s1489 5)
(s1490 5)
(s1491 2)
(s1493 4)
(s1494 5)
(s1495 5)
(s1496 2)
(s1498 4)
(s1499 5)
(s1500 5)
(s1501 2)
(s1503 4)
(s1504 5)
(s1505 5)
(s1506 2)
(s1508 4)
(s1509 5)
(s1510 5)
(s1511 2)
(s1513 4)
(s1514 5)
(s1515 5)
(s1516 2)
(s1518 4)
(s1519 5)
(s1520 5)
(s1521 2)
(s1523 4)
(s1524 5)
(s1525 5)
(s1526 2)
(s1528 4)
(s1529 5)
(s1530 5)
(s1531 2)
(s1533 4)
(s1534 5)
(s1535 5)
(s1536 2)
(s1538 4)
(s1539 5)
(s1540 5)
(s1541 2)
(s1543 4)
(s1544 5)
(s1545 5)
(s1546 2)
(s1548 4)
(s1549 5)
(s1550 5)
(s1551 2)
(s1553 4)
(s1554 5)
(s1555 5)
(s1556 2)
(s1558 4)
(s1559 5)
(s1560 5)
(s1561 2)
(s1563 4)
(s1564 5)
(s1565 5)
(s1566 2)
(s1568 4)
(s1569 5)
(s1570 5)
(s1571 2)
(s1573 4)
(s1574 5)
(s1575 5)timeout

(s1576 org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30077 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 64095ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 64143ms
Finished structural reductions in LTL mode , in 1 iterations and 113747 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Stuttering acceptance computed with spot in 200 ms :[true, (NOT p0), (NOT p0)]
Running random walk in product with property : JoinFreeModules-PT-1000-LTLCardinality-00
Product exploration timeout after 21260 steps with 0 reset in 10005 ms.
Product exploration timeout after 20080 steps with 0 reset in 10005 ms.
Computed a total of 0 stabilizing places and 0 stable transitions
Computed a total of 0 stabilizing places and 0 stable transitions
Knowledge obtained : [p0, (X p0)]
False Knowledge obtained : []
Knowledge sufficient to adopt a stutter insensitive property.
Knowledge based reduction with 2 factoid took 69 ms. Reduced automaton from 3 states, 4 edges and 1 AP (stutter sensitive) to 2 states, 3 edges and 1 AP (stutter insensitive).
Stuttering acceptance computed with spot in 44 ms :[true, (NOT p0)]
RANDOM walk for 41562 steps (8 resets) in 2167 ms. (19 steps per ms) remains 1/1 properties
BEST_FIRST walk for 40004 steps (8 resets) in 2001 ms. (19 steps per ms) remains 1/1 properties
Probabilistic random walk after 46080 steps, saw 46047 distinct states, run finished after 3057 ms. (steps per millisecond=15 ) properties seen :0
[2024-05-23 22:54:23] [INFO ] Invariant cache hit.
[2024-05-23 22:54:23] [INFO ] State equation strengthened by 1000 read => feed constraints.
All remaining problems are real, not stopping.
At refinement iteration 0 (INCLUDED_ONLY) 0/2 variables, 0/0 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 1 (OVERLAPS) 8/10 variables, 2/2 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 2 (INCLUDED_ONLY) 0/10 variables, 0/2 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 3 (OVERLAPS) 16/26 variables, 10/12 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 4 (INCLUDED_ONLY) 0/26 variables, 2/14 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 5 (INCLUDED_ONLY) 0/26 variables, 0/14 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 6 (OVERLAPS) 0/26 variables, 0/14 constraints. Problems are: Problem set: 0 solved, 1 unsolved
No progress, stopping.
After SMT solving in domain Real declared 26/13001 variables, and 14 constraints, problems are : Problem set: 0 solved, 1 unsolved in 60 ms.
Refiners :[Positive P Invariants (semi-flows): 2/1000 constraints, State Equation: 10/5000 constraints, ReadFeed: 2/1000 constraints, PredecessorRefiner: 1/1 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 1 unsolved
At refinement iteration 0 (INCLUDED_ONLY) 0/2 variables, 0/0 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 1 (OVERLAPS) 8/10 variables, 2/2 constraints. Problems are: Problem set: 0 solved, 1 unsolved
[2024-05-23 22:54:23] [INFO ] Deduced a trap composed of 3 places in 34 ms of which 1 ms to minimize.
At refinement iteration 2 (INCLUDED_ONLY) 0/10 variables, 1/3 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 3 (INCLUDED_ONLY) 0/10 variables, 0/3 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 4 (OVERLAPS) 16/26 variables, 10/13 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 5 (INCLUDED_ONLY) 0/26 variables, 2/15 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 6 (INCLUDED_ONLY) 0/26 variables, 1/16 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 7 (INCLUDED_ONLY) 0/26 variables, 0/16 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 8 (OVERLAPS) 0/26 variables, 0/16 constraints. Problems are: Problem set: 0 solved, 1 unsolved
No progress, stopping.
After SMT solving in domain Int declared 26/13001 variables, and 16 constraints, problems are : Problem set: 0 solved, 1 unsolved in 118 ms.
Refiners :[Positive P Invariants (semi-flows): 2/1000 constraints, State Equation: 10/5000 constraints, ReadFeed: 2/1000 constraints, PredecessorRefiner: 1/1 constraints, Known Traps: 1/1 constraints]
After SMT, in 210ms problems are : Problem set: 0 solved, 1 unsolved
Finished Parikh walk after 1675 steps, including 0 resets, run visited all 1 properties in 79 ms. (steps per millisecond=21 )
Parikh walk visited 1 properties in 80 ms.
Knowledge obtained : [p0, (X p0)]
False Knowledge obtained : [(F (NOT p0))]
Property proved to be false thanks to negative knowledge :(F (NOT p0))
Knowledge based reduction with 2 factoid took 87 ms. Reduced automaton from 2 states, 3 edges and 1 AP (stutter insensitive) to 1 states, 1 edges and 0 AP (stutter insensitive).
FORMULA JoinFreeModules-PT-1000-LTLCardinality-00 FALSE TECHNIQUES KNOWLEDGE
Treatment of property JoinFreeModules-PT-1000-LTLCardinality-00 finished in 139117 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202405141337/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!((F(p0)&&X(p1)))'
Support contains 4 out of 5000 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 302 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2024-05-23 22:54:24] [INFO ] Invariant cache hit.
[2024-05-23 22:54:24] [INFO ] State equation strengthened by 1000 read => feed constraints.
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20081 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Error getting values : (error "ParserException while parsing response: ((s0 5)
(s1 2)
(s3 4)
(s4 5)
(s5 5)
(s6 2)
(s8 timeout
4 org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20074 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 44432ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 44499ms
[2024-05-23 22:55:08] [INFO ] Invariant cache hit.
[2024-05-23 22:55:09] [INFO ] Implicit Places using invariants in 967 ms returned []
[2024-05-23 22:55:09] [INFO ] Invariant cache hit.
[2024-05-23 22:55:13] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2024-05-23 22:55:13] [INFO ] Implicit Places using invariants and state equation in 3778 ms returned []
Implicit Place search using SMT with State Equation took 4749 ms to find 0 implicit places.
Running 6000 sub problems to find dead transitions.
[2024-05-23 22:55:13] [INFO ] Invariant cache hit.
[2024-05-23 22:55:13] [INFO ] State equation strengthened by 1000 read => feed constraints.
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30070 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30070 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 64082ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 64131ms
Finished structural reductions in LTL mode , in 1 iterations and 113706 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Stuttering acceptance computed with spot in 119 ms :[(OR (NOT p1) (NOT p0)), (NOT p0), (NOT p1), true]
Running random walk in product with property : JoinFreeModules-PT-1000-LTLCardinality-01
Stuttering criterion allowed to conclude after 0 steps with 0 reset in 1 ms.
FORMULA JoinFreeModules-PT-1000-LTLCardinality-01 FALSE TECHNIQUES STUTTER_TEST
Treatment of property JoinFreeModules-PT-1000-LTLCardinality-01 finished in 113853 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202405141337/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(X((p0&&X((p1&&(F(p1) U p2))))))'
Support contains 4 out of 5000 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 205 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2024-05-23 22:56:18] [INFO ] Invariant cache hit.
[2024-05-23 22:56:18] [INFO ] State equation strengthened by 1000 read => feed constraints.
Error getting values : (error "ParserException while parsing response: ((s0 5.0)
(s1 2.0)
(s3 4.0)
(s4 5.0)
(s5 5.0)
(s6 2.0)
(s8 4.0)
(s9 5.0)
(s10 5.0)
(s11 2.0)
(s13 4.0)
(s14 5.0)
(s15 5.0)
(s16 2.0)
(s18 4.0)
(s19 5.0)
(s20 5.0)
(s21 2.0)
(s23 4.0)
(s24 5.0)
(s25 5.0)
(s26 2.0)
(s28 4.0)
(s29 5.0)
(s30 5.0)
(s31 2.0)
(s33 4.0)
(s34 5.0)
(s35 5.0)
(s36 2.0)
(s38 4.0)
(s39 5.0)
(s40 5.0)
(s41 2.0)
(s43 4.0)
(s44 5.0)
(s45 5.0)
(s46 2.0)
(s48 4.0)
(s49 5.0)
(s50 5.0)
(s51 2.0)
(s53 4.0)
(s54 5.0)
(s55 5.0)
(s56 2.0)
(s58 4.0)
(s59 5.0)
(s60 5.0)
(s61 2.0)
(s63 4.0)
(s64 5.0)
(s65 5.0)
(s66 2.0)
(s68 4.0)
(s69 5.0)
(s70 5.0)
(s71 2.0)
(s73 4.0)
(s74 5.0)
(s75 5.0)
(s76 2.0)
(s78 4.0)
(s79 5.0)
(s80 5.0)
(s81 2.0)
(s83 4.0)
(s84 5.0)
(s85 5.0)
(s86 2.0)
(s88 4.0)
(s89 5.0)
(s90 5.0)
(s91 2.0)
(s93 4.0)
(s94 5.0)
(s95 5.0)
(s96 2.0)
(s98 4.0)
(s99 5.0)
(s100 5.0)
(s101 2.0)
(s103 4.0)
(s104 5.0)
(s105 5.0)
(s106 2.0)
(s108 4.0)
(s109 5.0)
(s110 5.0)
(s111 2.0)
(s113 4.0)
(s114 5.0)
(s115 5.0)
(s116 2.0)
(s118 4.0)
(s119 5.0)
(s120 5.0)
(s121 2.0)
(s123 4.0)
(s124 5.0)
(s125 5.0)
(s126 2.0)
(s128 4.0)
(s129 5.0)
(s130 5.0)
(s131 2.0)
(s133 4.0)
(s134 5.0)
(s135 5.0)
(s136 2.0)
(s138 4.0)
(s139 5.0)
(s140 5.0)
(s141 2.0)
(s143 4.0)
(s144 5.0)
(s145 5.0)
(s146 2.0)
(s148 4.0)
(s149 5.0)
(s150 5.0)
(s151 2.0)
(s153 4.0)
(s154 5.0)
(s155 5.0)
(s156 2.0)
(s158 4.0)
(s159 5.0)
(s160 5.0)
(s161 2.0)
(s163 4.0)
(s164 5.0)
(s165 5.0)
(s166 2.0)
(s168 4.0)
(s169 5.0)
(s170 5.0)
(s171 2.0)
(s173 4.0)
(s174 5.0)
(s175 5.0)
(s176 2.0)
(s178 4.0)
(s179 5.0)
(s180 5.0)
(s181 2.0)
(s183 4.0)
(s184 5.0)
(s185 5.0)
(s186 2.0)
(s188 4.0)
(s189 5.0)
(s190 5.0)
(s191 2.0)
(s193 4.0)
(s194 5.0)
(s195 5.0)
(s196 2.0)
(s198 4.0)
(s199 5.0)
(s200 5.0)
(s201 timeout
2.0)
(s203 org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20074 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20071 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 44062ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 44108ms
[2024-05-23 22:57:02] [INFO ] Invariant cache hit.
[2024-05-23 22:57:03] [INFO ] Implicit Places using invariants in 868 ms returned []
[2024-05-23 22:57:03] [INFO ] Invariant cache hit.
[2024-05-23 22:57:06] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2024-05-23 22:57:06] [INFO ] Implicit Places using invariants and state equation in 3758 ms returned []
Implicit Place search using SMT with State Equation took 4629 ms to find 0 implicit places.
Running 6000 sub problems to find dead transitions.
[2024-05-23 22:57:06] [INFO ] Invariant cache hit.
[2024-05-23 22:57:06] [INFO ] State equation strengthened by 1000 read => feed constraints.
Error getting values : (error "Error writing to Z3 solver: java.io.IOException: Broken pipe")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30068 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30089 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 64864ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 64912ms
Finished structural reductions in LTL mode , in 1 iterations and 113892 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Stuttering acceptance computed with spot in 240 ms :[(OR (NOT p0) (NOT p1) (NOT p2)), (OR (NOT p0) (NOT p1) (NOT p2)), true, (OR (NOT p1) (NOT p2)), (NOT p2), (NOT p1)]
Running random walk in product with property : JoinFreeModules-PT-1000-LTLCardinality-02
Stuttering criterion allowed to conclude after 0 steps with 0 reset in 1 ms.
FORMULA JoinFreeModules-PT-1000-LTLCardinality-02 FALSE TECHNIQUES STUTTER_TEST
Treatment of property JoinFreeModules-PT-1000-LTLCardinality-02 finished in 114174 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202405141337/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(X((F(G((p0 U X(p1))))&&G(p2))))'
Support contains 4 out of 5000 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 214 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2024-05-23 22:58:12] [INFO ] Invariant cache hit.
[2024-05-23 22:58:12] [INFO ] State equation strengthened by 1000 read => feed constraints.
(s1936 2.0timeout
^^^^^^^^^^
(error "Invalid token: 2.0timeout")
Error getting values : (error "ParserException while parsing response: ((s0 5.0)
(s1 2.0)
(s3 4.0)
(s4 5.0)
(s5 5.0)
(s6 2.0)
(s8 4.0)
(s9 5.0)
(s10 5.0)
(s11 2.0)
(s13 4.0)
(s14 5.0)
(s15 5.0)
(s16 2.0)
(s18 4.0)
(s19 5.0)
(s20 5.0)
(s21 2.0)
(s23 4.0)
(s24 5.0)
(s25 5.0)
(s26 2.0)
(s28 4.0)
(s29 5.0)
(s30 5.0)
(s31 2.0)
(s33 4.0)
(s34 5.0)
(s35 5.0)
(s36 2.0)
(s38 4.0)
(s39 5.0)
(s40 5.0)
(s41 2.0)
(s43 4.0)
(s44 5.0)
(s45 5.0)
(s46 2.0)
(s48 4.0)
(s49 5.0)
(s50 5.0)
(s51 2.0)
(s53 4.0)
(s54 5.0)
(s55 5.0)
(s56 2.0)
(s58 4.0)
(s59 5.0)
(s60 5.0)
(s61 2.0)
(s63 4.0)
(s64 5.0)
(s65 5.0)
(s66 2.0)
(s68 4.0)
(s69 5.0)
(s70 5.0)
(s71 2.0)
(s73 4.0)
(s74 5.0)
(s75 5.0)
(s76 2.0)
(s78 4.0)
(s79 5.0)
(s80 5.0)
(s81 2.0)
(s83 4.0)
(s84 5.0)
(s85 5.0)
(s86 2.0)
(s88 4.0)
(s89 5.0)
(s90 5.0)
(s91 2.0)
(s93 4.0)
(s94 5.0)
(s95 5.0)
(s96 2.0)
(s98 4.0)
(s99 5.0)
(s100 5.0)
(s101 2.0)
(s103 4.0)
(s104 5.0)
(s105 5.0)
(s106 2.0)
(s108 4.0)
(s109 5.0)
(s110 5.0)
(s111 2.0)
(s113 4.0)
(s114 5.0)
(s115 5.0)
(s116 2.0)
(s118 4.0)
(s119 5.0)
(s120 5.0)
(s121 2.0)
(s123 4.0)
(s124 5.0)
(s125 5.0)
(s126 2.0)
(s128 4.0)
(s129 5.0)
(s130 5.0)
(s131 2.0)
(s133 4.0)
(s134 5.0)
(s135 5.0)
(s136 2.0)
(s138 4.0)
(s139 5.0)
(s140 5.0)
(s141 2.0)
(s143 4.0)
(s144 5.0)
(s145 5.0)
(s146 2.0)
(s148 4.0)
(s149 5.0)
(s150 5.0)
(s151 2.0)
(s153 4.0)
(s154 5.0)
(s155 5.0)
(s156 2.0)
(s158 4.0)
(s159 5.0)
(s160 5.0)
(s161 2.0)
(s163 4.0)
(s164 5.0)
(s165 5.0)
(s166 2.0)
(s168 4.0)
(s169 5.0)
(s170 5.0)
(s171 2.0)
(s173 4.0)
(s174 5.0)
(s175 5.0)
(s176 2.0)
(s178 4.0)
(s179 5.0)
(s180 5.0)
(s181 2.0)
(s183 4.0)
(s184 5.0)
(s185 5.0)
(s186 2.0)
(s188 4.0)
(s189 5.0)
(s190 5.0)
(s191 2.0)
(s193 4.0)
(s194 5.0)
(s195 5.0)
(s196 2.0)
(s198 4.0)
(s199 5.0)
(s200 5.0)
(s201 2.0)
(s203 4.0)
(s204 5.0)
(s205 5.0)
(s206 2.0)
(s208 4.0)
(s209 5.0)
(s210 5.0)
(s211 2.0)
(s213 4.0)
(s214 5.0)
(s215 5.0)
(s216 2.0)
(s218 4.0)
(s219 5.0)
(s220 5.0)
(s221 2.0)
(s223 4.0)
(s224 5.0)
(s225 5.0)
(s226 2.0)
(s228 4.0)
(s229 5.0)
(s230 5.0)
(s231 2.0)
(s233 4.0)
(s234 5.0)
(s235 5.0)
(s236 2.0)
(s238 4.0)
(s239 5.0)
(s240 5.0)
(s241 2.0)
(s243 4.0)
(s244 5.0)
(s245 5.0)
(s246 2.0)
(s248 4.0)
(s249 5.0)
(s250 5.0)
(s251 2.0)
(s253 4.0)
(s254 5.0)
(s255 5.0)
(s256 2.0)
(s258 4.0)
(s259 5.0)
(s260 5.0)
(s261 2.0)
(s263 4.0)
(s264 5.0)
(s265 5.0)
(s266 2.0)
(s268 4.0)
(s269 5.0)
(s270 5.0)
(s271 2.0)
(s273 4.0)
(s274 5.0)
(s275 5.0)
(s276 2.0)
(s278 4.0)
(s279 5.0)
(s280 5.0)
(s281 2.0)
(s283 4.0)
(s284 5.0)
(s285 5.0)
(s286 2.0)
(s288 4.0)
(s289 5.0)
(s290 5.0)
(s291 2.0)
(s293 4.0)
(s294 5.0)
(s295 5.0)
(s296 2.0)
(s298 4.0)
(s299 5.0)
(s300 5.0)
(s301 2.0)
(s303 4.0)
(s304 5.0)
(s305 5.0)
(s306 2.0)
(s308 4.0)
(s309 5.0)
(s310 5.0)
(s311 2.0)
(s313 4.0)
(s314 5.0)
(s315 5.0)
(s316 2.0)
(s318 4.0)
(s319 5.0)
(s320 5.0)
(s321 2.0)
(s323 4.0)
(s324 5.0)
(s325 5.0)
(s326 2.0)
(s328 4.0)
(s329 5.0)
(s330 5.0)
(s331 2.0)
(s333 4.0)
(s334 5.0)
(s335 5.0)
(s336 2.0)
(s338 4.0)
(s339 5.0)
(s340 5.0)
(s341 2.0)
(s343 4.0)
(s344 5.0)
(s345 5.0)
(s346 2.0)
(s348 4.0)
(s349 5.0)
(s350 5.0)
(s351 2.0)
(s353 4.0)
(s354 5.0)
(s355 5.0)
(s356 2.0)
(s358 4.0)
(s359 5.0)
(s360 5.0)
(s361 2.0)
(s363 4.0)
(s364 5.0)
(s365 5.0)
(s366 2.0)
(s368 4.0)
(s369 5.0)
(s370 5.0)
(s371 2.0)
(s373 4.0)
(s374 5.0)
(s375 5.0)
(s376 2.0)
(s378 4.0)
(s379 5.0)
(s380 5.0)
(s381 2.0)
(s383 4.0)
(s384 5.0)
(s385 5.0)
(s386 2.0)
(s388 4.0)
(s389 5.0)
(s390 5.0)
(s391 2.0)
(s393 4.0)
(s394 5.0)
(s395 5.0)
(s396 2.0)
(s398 4.0)
(s399 5.0)
(s400 5.0)
(s401 2.0)
(s403 4.0)
(s404 5.0)
(s405 5.0)
(s406 2.0)
(s408 4.0)
(s409 5.0)
(s410 5.0)
(s411 2.0)
(s413 4.0)
(s414 5.0)
(s415 5.0)
(s416 2.0)
(s418 4.0)
(s419 5.0)
(s420 5.0)
(s421 2.0)
(s423 4.0)
(s424 5.0)
(s425 5.0)
(s426 2.0)
(s428 4.0)
(s429 5.0)
(s430 5.0)
(s431 2.0)
(s433 4.0)
(s434 5.0)
(s435 5.0)
(s436 2.0)
(s438 4.0)
(s439 5.0)
(s440 5.0)
(s441 2.0)
(s443 4.0)
(s444 5.0)
(s445 5.0)
(s446 2.0)
(s448 4.0)
(s449 5.0)
(s450 5.0)
(s451 2.0)
(s453 4.0)
(s454 5.0)
(s455 5.0)
(s456 2.0)
(s458 4.0)
(s459 5.0)
(s460 5.0)
(s461 2.0)
(s463 4.0)
(s464 5.0)
(s465 5.0)
(s466 2.0)
(s468 4.0)
(s469 5.0)
(s470 5.0)
(s471 2.0)
(s473 4.0)
(s474 5.0)
(s475 5.0)
(s476 2.0)
(s478 4.0)
(s479 5.0)
(s480 5.0)
(s481 2.0)
(s483 4.0)
(s484 5.0)
(s485 5.0)
(s486 2.0)
(s488 4.0)
(s489 5.0)
(s490 5.0)
(s491 2.0)
(s493 4.0)
(s494 5.0)
(s495 5.0)
(s496 2.0)
(s498 4.0)
(s499 5.0)
(s500 5.0)
(s501 2.0)
(s503 4.0)
(s504 5.0)
(s505 5.0)
(s506 2.0)
(s508 4.0)
(s509 5.0)
(s510 5.0)
(s511 2.0)
(s513 4.0)
(s514 5.0)
(s515 5.0)
(s516 2.0)
(s518 4.0)
(s519 5.0)
(s520 5.0)
(s521 2.0)
(s523 4.0)
(s524 5.0)
(s525 5.0)
(s526 2.0)
(s528 4.0)
(s529 5.0)
(s530 5.0)
(s531 2.0)
(s533 4.0)
(s534 5.0)
(s535 5.0)
(s536 2.0)
(s538 4.0)
(s539 5.0)
(s540 5.0)
(s541 2.0)
(s543 4.0)
(s544 5.0)
(s545 5.0)
(s546 2.0)
(s548 4.0)
(s549 5.0)
(s550 5.0)
(s551 2.0)
(s553 4.0)
(s554 5.0)
(s555 5.0)
(s556 2.0)
(s558 4.0)
(s559 5.0)
(s560 5.0)
(s561 2.0)
(s563 4.0)
(s564 5.0)
(s565 5.0)
(s566 2.0)
(s568 4.0)
(s569 5.0)
(s570 5.0)
(s571 2.0)
(s573 4.0)
(s574 5.0)
(s575 5.0)
(s576 2.0)
(s578 4.0)
(s579 5.0)
(s580 5.0)
(s581 2.0)
(s583 4.0)
(s584 5.0)
(s585 5.0)
(s586 2.0)
(s588 4.0)
(s589 5.0)
(s590 5.0)
(s591 2.0)
(s593 4.0)
(s594 5.0)
(s595 5.0)
(s596 2.0)
(s598 4.0)
(s599 5.0)
(s600 5.0)
(s601 2.0)
(s603 4.0)
(s604 5.0)
(s605 5.0)
(s606 2.0)
(s608 4.0)
(s609 5.0)
(s610 5.0)
(s611 2.0)
(s613 4.0)
(s614 5.0)
(s615 5.0)
(s616 2.0)
(s618 4.0)
(s619 5.0)
(s620 5.0)
(s621 2.0)
(s623 4.0)
(s624 5.0)
(s625 5.0)
(s626 2.0)
(s628 4.0)
(s629 5.0)
(s630 5.0)
(s631 2.0)
(s633 4.0)
(s634 5.0)
(s635 5.0)
(s636 2.0)
(s638 4.0)
(s639 5.0)
(s640 5.0)
(s641 2.0)
(s643 4.0)
(s644 5.0)
(s645 5.0)
(s646 2.0)
(s648 4.0)
(s649 5.0)
(s650 5.0)
(s651 2.0)
(s653 4.0)
(s654 5.0)
(s655 5.0)
(s656 2.0)
(s658 4.0)
(s659 5.0)
(s660 5.0)
(s661 2.0)
(s663 4.0)
(s664 5.0)
(s665 5.0)
(s666 2.0)
(s668 4.0)
(s669 5.0)
(s670 5.0)
(s671 2.0)
(s673 4.0)
(s674 5.0)
(s675 5.0)
(s676 2.0)
(s678 4.0)
(s679 5.0)
(s680 5.0)
(s681 2.0)
(s683 4.0)
(s684 5.0)
(s685 5.0)
(s686 2.0)
(s688 4.0)
(s689 5.0)
(s690 5.0)
(s691 2.0)
(s693 4.0)
(s694 5.0)
(s695 5.0)
(s696 2.0)
(s698 4.0)
(s699 5.0)
(s700 5.0)
(s701 2.0)
(s703 4.0)
(s704 5.0)
(s705 5.0)
(s706 2.0)
(s708 4.0)
(s709 5.0)
(s710 5.0)
(s711 2.0)
(s713 4.0)
(s714 5.0)
(s715 5.0)
(s716 2.0)
(s718 4.0)
(s719 5.0)
(s720 5.0)
(s721 2.0)
(s723 4.0)
(s724 5.0)
(s725 5.0)
(s726 2.0)
(s728 4.0)
(s729 5.0)
(s730 5.0)
(s731 2.0)
(s733 4.0)
(s734 5.0)
(s735 5.0)
(s736 2.0)
(s738 4.0)
(s739 5.0)
(s740 5.0)
(s741 2.0)
(s743 4.0)
(s744 5.0)
(s745 5.0)
(s746 2.0)
(s748 4.0)
(s749 5.0)
(s750 5.0)
(s751 2.0)
(s753 4.0)
(s754 5.0)
(s755 5.0)
(s756 2.0)
(s758 4.0)
(s759 5.0)
(s760 5.0)
(s761 2.0)
(s763 4.0)
(s764 5.0)
(s765 5.0)
(s766 2.0)
(s768 4.0)
(s769 5.0)
(s770 5.0)
(s771 2.0)
(s773 4.0)
(s774 5.0)
(s775 5.0)
(s776 2.0)
(s778 4.0)
(s779 5.0)
(s780 5.0)
(s781 2.0)
(s783 4.0)
(s784 5.0)
(s785 5.0)
(s786 2.0)
(s788 4.0)
(s789 5.0)
(s790 5.0)
(s791 2.0)
(s793 4.0)
(s794 5.0)
(s795 5.0)
(s796 2.0)
(s798 4.0)
(s799 5.0)
(s800 5.0)
(s801 2.0)
(s803 4.0)
(s804 5.0)
(s805 5.0)
(s806 2.0)
(s808 4.0)
(s809 5.0)
(s810 5.0)
(s811 2.0)
(s813 4.0)
(s814 5.0)
(s815 5.0)
(s816 2.0)
(s818 4.0)
(s819 5.0)
(s820 5.0)
(s821 2.0)
(s823 4.0)
(s824 5.0)
(s825 5.0)
(s826 2.0)
(s828 4.0)
(s829 5.0)
(s830 5.0)
(s831 2.0)
(s833 4.0)
(s834 5.0)
(s835 5.0)
(s836 2.0)
(s838 4.0)
(s839 5.0)
(s840 5.0)
(s841 2.0)
(s843 4.0)
(s844 5.0)
(s845 5.0)
(s846 2.0)
(s848 4.0)
(s849 5.0)
(s850 5.0)
(s851 2.0)
(s853 4.0)
(s854 5.0)
(s855 5.0)
(s856 2.0)
(s858 4.0)
(s859 5.0)
(s860 5.0)
(s861 2.0)
(s863 4.0)
(s864 5.0)
(s865 5.0)
(s866 2.0)
(s868 4.0)
(s869 5.0)
(s870 5.0)
(s871 2.0)
(s873 4.0)
(s874 5.0)
(s875 5.0)
(s876 2.0)
(s878 4.0)
(s879 5.0)
(s880 5.0)
(s881 2.0)
(s883 4.0)
(s884 5.0)
(s885 5.0)
(s886 2.0)
(s888 4.0)
(s889 5.0)
(s890 5.0)
(s891 2.0)
(s893 4.0)
(s894 5.0)
(s895 5.0)
(s896 2.0)
(s898 4.0)
(s899 5.0)
(s900 5.0)
(s901 2.0)
(s903 4.0)
(s904 5.0)
(s905 5.0)
(s906 2.0)
(s908 4.0)
(s909 5.0)
(s910 5.0)
(s911 2.0)
(s913 4.0)
(s914 5.0)
(s915 5.0)
(s916 2.0)
(s918 4.0)
(s919 5.0)
(s920 5.0)
(s921 2.0)
(s923 4.0)
(s924 5.0)
(s925 5.0)
(s926 2.0)
(s928 4.0)
(s929 5.0)
(s930 5.0)
(s931 2.0)
(s933 4.0)
(s934 5.0)
(s935 5.0)
(s936 2.0)
(s938 4.0)
(s939 5.0)
(s940 5.0)
(s941 2.0)
(s943 4.0)
(s944 5.0)
(s945 5.0)
(s946 2.0)
(s948 4.0)
(s949 5.0)
(s950 5.0)
(s951 2.0)
(s953 4.0)
(s954 5.0)
(s955 5.0)
(s956 2.0)
(s958 4.0)
(s959 5.0)
(s960 5.0)
(s961 2.0)
(s963 4.0)
(s964 5.0)
(s965 5.0)
(s966 2.0)
(s968 4.0)
(s969 5.0)
(s970 5.0)
(s971 2.0)
(s973 4.0)
(s974 5.0)
(s975 5.0)
(s976 2.0)
(s978 4.0)
(s979 5.0)
(s980 5.0)
(s981 2.0)
(s983 4.0)
(s984 5.0)
(s985 5.0)
(s986 2.0)
(s988 4.0)
(s989 5.0)
(s990 5.0)
(s991 2.0)
(s993 4.0)
(s994 5.0)
(s995 5.0)
(s996 2.0)
(s998 4.0)
(s999 5.0)
(s1000 5.0)
(s1001 2.0)
(s1003 4.0)
(s1004 5.0)
(s1005 5.0)
(s1006 2.0)
(s1008 4.0)
(s1009 5.0)
(s1010 5.0)
(s1011 2.0)
(s1013 4.0)
(s1014 5.0)
(s1015 5.0)
(s1016 2.0)
(s1018 4.0)
(s1019 5.0)
(s1020 5.0)
(s1021 2.0)
(s1023 4.0)
(s1024 5.0)
(s1025 5.0)
(s1026 2.0)
(s1028 4.0)
(s1029 5.0)
(s1030 5.0)
(s1031 2.0)
(s1033 4.0)
(s1034 5.0)
(s1035 5.0)
(s1036 2.0)
(s1038 4.0)
(s1039 5.0)
(s1040 5.0)
(s1041 2.0)
(s1043 4.0)
(s1044 5.0)
(s1045 5.0)
(s1046 2.0)
(s1048 4.0)
(s1049 5.0)
(s1050 5.0)
(s1051 2.0)
(s1053 4.0)
(s1054 5.0)
(s1055 5.0)
(s1056 2.0)
(s1058 4.0)
(s1059 5.0)
(s1060 5.0)
(s1061 2.0)
(s1063 4.0)
(s1064 5.0)
(s1065 5.0)
(s1066 2.0)
(s1068 4.0)
(s1069 5.0)
(s1070 5.0)
(s1071 2.0)
(s1073 4.0)
(s1074 5.0)
(s1075 5.0)
(s1076 2.0)
(s1078 4.0)
(s1079 5.0)
(s1080 5.0)
(s1081 2.0)
(s1083 4.0)
(s1084 5.0)
(s1085 5.0)
(s1086 2.0)
(s1088 4.0)
(s1089 5.0)
(s1090 5.0)
(s1091 2.0)
(s1093 4.0)
(s1094 5.0)
(s1095 5.0)
(s1096 2.0)
(s1098 4.0)
(s1099 5.0)
(s1100 5.0)
(s1101 2.0)
(s1103 4.0)
(s1104 5.0)
(s1105 5.0)
(s1106 2.0)
(s1108 4.0)
(s1109 5.0)
(s1110 5.0)
(s1111 2.0)
(s1113 4.0)
(s1114 5.0)
(s1115 5.0)
(s1116 2.0)
(s1118 4.0)
(s1119 5.0)
(s1120 5.0)
(s1121 2.0)
(s1123 4.0)
(s1124 5.0)
(s1125 5.0)
(s1126 2.0)
(s1128 4.0)
(s1129 5.0)
(s1130 5.0)
(s1131 2.0)
(s1133 4.0)
(s1134 5.0)
(s1135 5.0)
(s1136 2.0)
(s1138 4.0)
(s1139 5.0)
(s1140 5.0)
(s1141 2.0)
(s1143 4.0)
(s1144 5.0)
(s1145 5.0)
(s1146 2.0)
(s1148 4.0)
(s1149 5.0)
(s1150 5.0)
(s1151 2.0)
(s1153 4.0)
(s1154 5.0)
(s1155 5.0)
(s1156 2.0)
(s1158 4.0)
(s1159 5.0)
(s1160 5.0)
(s1161 2.0)
(s1163 4.0)
(s1164 5.0)
(s1165 5.0)
(s1166 2.0)
(s1168 4.0)
(s1169 5.0)
(s1170 5.0)
(s1171 2.0)
(s1173 4.0)
(s1174 5.0)
(s1175 5.0)
(s1176 2.0)
(s1178 4.0)
(s1179 5.0)
(s1180 5.0)
(s1181 2.0)
(s1183 4.0)
(s1184 5.0)
(s1185 5.0)
(s1186 2.0)
(s1188 4.0)
(s1189 5.0)
(s1190 5.0)
(s1191 2.0)
(s1193 4.0)
(s1194 5.0)
(s1195 5.0)
(s1196 2.0)
(s1198 4.0)
(s1199 5.0)
(s1200 5.0)
(s1201 2.0)
(s1203 4.0)
(s1204 5.0)
(s1205 5.0)
(s1206 2.0)
(s1208 4.0)
(s1209 5.0)
(s1210 5.0)
(s1211 2.0)
(s1213 4.0)
(s1214 5.0)
(s1215 5.0)
(s1216 2.0)
(s1218 4.0)
(s1219 5.0)
(s1220 5.0)
(s1221 2.0)
(s1223 4.0)
(s1224 5.0)
(s1225 5.0)
(s1226 2.0)
(s1228 4.0)
(s1229 5.0)
(s1230 5.0)
(s1231 2.0)
(s1233 4.0)
(s1234 5.0)
(s1235 5.0)
(s1236 2.0)
(s1238 4.0)
(s1239 5.0)
(s1240 5.0)
(s1241 2.0)
(s1243 4.0)
(s1244 5.0)
(s1245 5.0)
(s1246 2.0)
(s1248 4.0)
(s1249 5.0)
(s1250 5.0)
(s1251 2.0)
(s1253 4.0)
(s1254 5.0)
(s1255 5.0)
(s1256 2.0)
(s1258 4.0)
(s1259 5.0)
(s1260 5.0)
(s1261 2.0)
(s1263 4.0)
(s1264 5.0)
(s1265 5.0)
(s1266 2.0)
(s1268 4.0)
(s1269 5.0)
(s1270 5.0)
(s1271 2.0)
(s1273 4.0)
(s1274 5.0)
(s1275 5.0)
(s1276 2.0)
(s1278 4.0)
(s1279 5.0)
(s1280 5.0)
(s1281 2.0)
(s1283 4.0)
(s1284 5.0)
(s1285 5.0)
(s1286 2.0)
(s1288 4.0)
(s1289 5.0)
(s1290 5.0)
(s1291 2.0)
(s1293 4.0)
(s1294 5.0)
(s1295 5.0)
(s1296 2.0)
(s1298 4.0)
(s1299 5.0)
(s1300 5.0)
(s1301 2.0)
(s1303 4.0)
(s1304 5.0)
(s1305 5.0)
(s1306 2.0)
(s1308 4.0)
(s1309 5.0)
(s1310 5.0)
(s1311 2.0)
(s1313 4.0)
(s1314 5.0)
(s1315 5.0)
(s1316 2.0)
(s1318 4.0)
(s1319 5.0)
(s1320 5.0)
(s1321 2.0)
(s1323 4.0)
(s1324 5.0)
(s1325 5.0)
(s1326 2.0)
(s1328 4.0)
(s1329 5.0)
(s1330 5.0)
(s1331 2.0)
(s1333 4.0)
(s1334 5.0)
(s1335 5.0)
(s1336 2.0)
(s1338 4.0)
(s1339 5.0)
(s1340 5.0)
(s1341 2.0)
(s1343 4.0)
(s1344 5.0)
(s1345 5.0)
(s1346 2.0)
(s1348 4.0)
(s1349 5.0)
(s1350 5.0)
(s1351 2.0)
(s1353 4.0)
(s1354 5.0)
(s1355 5.0)
(s1356 2.0)
(s1358 4.0)
(s1359 5.0)
(s1360 5.0)
(s1361 2.0)
(s1363 4.0)
(s1364 5.0)
(s1365 5.0)
(s1366 2.0)
(s1368 4.0)
(s1369 5.0)
(s1370 5.0)
(s1371 2.0)
(s1373 4.0)
(s1374 5.0)
(s1375 5.0)
(s1376 2.0)
(s1378 4.0)
(s1379 5.0)
(s1380 5.0)
(s1381 2.0)
(s1383 4.0)
(s1384 5.0)
(s1385 5.0)
(s1386 2.0)
(s1388 4.0)
(s1389 5.0)
(s1390 5.0)
(s1391 2.0)
(s1393 4.0)
(s1394 5.0)
(s1395 5.0)
(s1396 2.0)
(s1398 4.0)
(s1399 5.0)
(s1400 5.0)
(s1401 2.0)
(s1403 4.0)
(s1404 5.0)
(s1405 5.0)
(s1406 2.0)
(s1408 4.0)
(s1409 5.0)
(s1410 5.0)
(s1411 2.0)
(s1413 4.0)
(s1414 5.0)
(s1415 5.0)
(s1416 2.0)
(s1418 4.0)
(s1419 5.0)
(s1420 5.0)
(s1421 2.0)
(s1423 4.0)
(s1424 5.0)
(s1425 5.0)
(s1426 2.0)
(s1428 4.0)
(s1429 5.0)
(s1430 5.0)
(s1431 2.0)
(s1433 4.0)
(s1434 5.0)
(s1435 5.0)
(s1436 2.0)
(s1438 4.0)
(s1439 5.0)
(s1440 5.0)
(s1441 2.0)
(s1443 4.0)
(s1444 5.0)
(s1445 5.0)
(s1446 2.0)
(s1448 4.0)
(s1449 5.0)
(s1450 5.0)
(s1451 2.0)
(s1453 4.0)
(s1454 5.0)
(s1455 5.0)
(s1456 2.0)
(s1458 4.0)
(s1459 5.0)
(s1460 5.0)
(s1461 2.0)
(s1463 4.0)
(s1464 5.0)
(s1465 5.0)
(s1466 2.0)
(s1468 4.0)
(s1469 5.0)
(s1470 5.0)
(s1471 2.0)
(s1473 4.0)
(s1474 5.0)
(s1475 5.0)
(s1476 2.0)
(s1478 4.0)
(s1479 5.0)
(s1480 5.0)
(s1481 2.0)
(s1483 4.0)
(s1484 5.0)
(s1485 5.0)
(s1486 2.0)
(s1488 4.0)
(s1489 5.0)
(s1490 5.0)
(s1491 2.0)
(s1493 4.0)
(s1494 5.0)
(s1495 5.0)
(s1496 2.0)
(s1498 4.0)
(s1499 5.0)
(s1500 5.0)
(s1501 2.0)
(s1503 4.0)
(s1504 5.0)
(s1505 5.0)
(s1506 2.0)
(s1508 4.0)
(s1509 5.0)
(s1510 5.0)
(s1511 2.0)
(s1513 4.0)
(s1514 5.0)
(s1515 5.0)
(s1516 2.0)
(s1518 4.0)
(s1519 5.0)
(s1520 5.0)
(s1521 2.0)
(s1523 4.0)
(s1524 5.0)
(s1525 5.0)
(s1526 2.0)
(s1528 4.0)
(s1529 5.0)
(s1530 5.0)
(s1531 2.0)
(s1533 4.0)
(s1534 5.0)
(s1535 5.0)
(s1536 2.0)
(s1538 4.0)
(s1539 5.0)
(s1540 5.0)
(s1541 2.0)
(s1543 4.0)
(s1544 5.0)
(s1545 5.0)
(s1546 2.0)
(s1548 4.0)
(s1549 5.0)
(s1550 5.0)
(s1551 2.0)
(s1553 4.0)
(s1554 5.0)
(s1555 5.0)
(s1556 2.0)
(s1558 4.0)
(s1559 5.0)
(s1560 5.0)
(s1561 2.0)
(s1563 4.0)
(s1564 5.0)
(s1565 5.0)
(s1566 2.0)
(s1568 4.0)
(s1569 5.0)
(s1570 5.0)
(s1571 2.0)
(s1573 4.0)
(s1574 5.0)
(s1575 5.0)
(s1576 2.0)
(s1578 4.0)
(s1579 5.0)
(s1580 5.0)
(s1581 2.0)
(s1583 4.0)
(s1584 5.0)
(s1585 5.0)
(s1586 2.0)
(s1588 4.0)
(s1589 5.0)
(s1590 5.0)
(s1591 2.0)
(s1593 4.0)
(s1594 5.0)
(s1595 5.0)
(s1596 2.0)
(s1598 4.0)
(s1599 5.0)
(s1600 5.0)
(s1601 2.0)
(s1603 4.0)
(s1604 5.0)
(s1605 5.0)
(s1606 2.0)
(s1608 4.0)
(s1609 5.0)
(s1610 5.0)
(s1611 2.0)
(s1613 4.0)
(s1614 5.0)
(s1615 5.0)
(s1616 2.0)
(s1618 4.0)
(s1619 5.0)
(s1620 5.0)
(s1621 2.0)
(s1623 4.0)
(s1624 5.0)
(s1625 5.0)
(s1626 2.0)
(s1628 4.0)
(s1629 5.0)
(s1630 5.0)
(s1631 2.0)
(s1633 4.0)
(s1634 5.0)
(s1635 5.0)
(s1636 2.0)
(s1638 4.0)
(s1639 5.0)
(s1640 5.0)
(s1641 2.0)
(s1643 4.0)
(s1644 5.0)
(s1645 5.0)
(s1646 2.0)
(s1648 4.0)
(s1649 5.0)
(s1650 5.0)
(s1651 2.0)
(s1653 4.0)
(s1654 5.0)
(s1655 5.0)
(s1656 2.0)
(s1658 4.0)
(s1659 5.0)
(s1660 5.0)
(s1661 2.0)
(s1663 4.0)
(s1664 5.0)
(s1665 5.0)
(s1666 2.0)
(s1668 4.0)
(s1669 5.0)
(s1670 5.0)
(s1671 2.0)
(s1673 4.0)
(s1674 5.0)
(s1675 5.0)
(s1676 2.0)
(s1678 4.0)
(s1679 5.0)
(s1680 5.0)
(s1681 2.0)
(s1683 4.0)
(s1684 5.0)
(s1685 5.0)
(s1686 2.0)
(s1688 4.0)
(s1689 5.0)
(s1690 5.0)
(s1691 2.0)
(s1693 4.0)
(s1694 5.0)
(s1695 5.0)
(s1696 2.0)
(s1698 4.0)
(s1699 5.0)
(s1700 5.0)
(s1701 2.0)
(s1703 4.0)
(s1704 5.0)
(s1705 5.0)
(s1706 2.0)
(s1708 4.0)
(s1709 5.0)
(s1710 5.0)
(s1711 2.0)
(s1713 4.0)
(s1714 5.0)
(s1715 5.0)
(s1716 2.0)
(s1718 4.0)
(s1719 5.0)
(s1720 5.0)
(s1721 2.0)
(s1723 4.0)
(s1724 5.0)
(s1725 5.0)
(s1726 2.0)
(s1728 4.0)
(s1729 5.0)
(s1730 5.0)
(s1731 2.0)
(s1733 4.0)
(s1734 5.0)
(s1735 5.0)
(s1736 2.0)
(s1738 4.0)
(s1739 5.0)
(s1740 5.0)
(s1741 2.0)
(s1743 4.0)
(s1744 5.0)
(s1745 5.0)
(s1746 2.0)
(s1748 4.0)
(s1749 5.0)
(s1750 5.0)
(s1751 2.0)
(s1753 4.0)
(s1754 5.0)
(s1755 5.0)
(s1756 2.0)
(s1758 4.0)
(s1759 5.0)
(s1760 5.0)
(s1761 2.0)
(s1763 4.0)
(s1764 5.0)
(s1765 5.0)
(s1766 2.0)
(s1768 4.0)
(s1769 5.0)
(s1770 5.0)
(s1771 2.0)
(s1773 4.0)
(s1774 5.0)
(s1775 5.0)
(s1776 2.0)
(s1778 4.0)
(s1779 5.0)
(s1780 5.0)
(s1781 2.0)
(s1783 4.0)
(s1784 5.0)
(s1785 5.0)
(s1786 2.0)
(s1788 4.0)
(s1789 5.0)
(s1790 5.0)
(s1791 2.0)
(s1793 4.0)
(s1794 5.0)
(s1795 5.0)
(s1796 2.0)
(s1798 4.0)
(s1799 5.0)
(s1800 5.0)
(s1801 2.0)
(s1803 4.0)
(s1804 5.0)
(s1805 5.0)
(s1806 2.0)
(s1808 4.0)
(s1809 5.0)
(s1810 5.0)
(s1811 2.0)
(s1813 4.0)
(s1814 5.0)
(s1815 5.0)
(s1816 2.0)
(s1818 4.0)
(s1819 5.0)
(s1820 5.0)
(s1821 2.0)
(s1823 4.0)
(s1824 5.0)
(s1825 5.0)
(s1826 2.0)
(s1828 4.0)
(s1829 5.0)
(s1830 5.0)
(s1831 2.0)
(s1833 4.0)
(s1834 5.0)
(s1835 5.0)
(s1836 2.0)
(s1838 4.0)
(s1839 5.0)
(s1840 5.0)
(s1841 2.0)
(s1843 4.0)
(s1844 5.0)
(s1845 5.0)
(s1846 2.0)
(s1848 4.0)
(s1849 5.0)
(s1850 5.0)
(s1851 2.0)
(s1853 4.0)
(s1854 5.0)
(s1855 5.0)
(s1856 2.0)
(s1858 4.0)
(s1859 5.0)
(s1860 5.0)
(s1861 2.0)
(s1863 4.0)
(s1864 5.0)
(s1865 5.0)
(s1866 2.0)
(s1868 4.0)
(s1869 5.0)
(s1870 5.0)
(s1871 2.0)
(s1873 4.0)
(s1874 5.0)
(s1875 5.0)
(s1876 2.0)
(s1878 4.0)
(s1879 5.0)
(s1880 5.0)
(s1881 2.0)
(s1883 4.0)
(s1884 5.0)
(s1885 5.0)
(s1886 2.0)
(s1888 4.0)
(s1889 5.0)
(s1890 5.0)
(s1891 2.0)
(s1893 4.0)
(s1894 5.0)
(s1895 5.0)
(s1896 2.0)
(s1898 4.0)
(s1899 5.0)
(s1900 5.0)
(s1901 2.0)
(s1903 4.0)
(s1904 5.0)
(s1905 5.0)
(s1906 2.0)
(s1908 4.0)
(s1909 5.0)
(s1910 5.0)
(s1911 2.0)
(s1913 4.0)
(s1914 5.0)
(s1915 5.0)
(s1916 2.0)
(s1918 4.0)
(s1919 5.0)
(s1920 5.0)
(s1921 2.0)
(s1923 4.0)
(s1924 5.0)
(s1925 5.0)
(s1926 2.0)
(s1928 4.0)
(s1929 5.0)
(s1930 5.0)
(s1931 2.0)
(s1933 4.0)
(s1934 5.0)
(s1935 5.0)
(s1936 2.0timeout
)
(s1938 org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20101 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20074 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 44829ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 44889ms
[2024-05-23 22:58:57] [INFO ] Invariant cache hit.
[2024-05-23 22:58:58] [INFO ] Implicit Places using invariants in 896 ms returned []
[2024-05-23 22:58:58] [INFO ] Invariant cache hit.
[2024-05-23 22:59:01] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2024-05-23 22:59:01] [INFO ] Implicit Places using invariants and state equation in 3832 ms returned []
Implicit Place search using SMT with State Equation took 4731 ms to find 0 implicit places.
Running 6000 sub problems to find dead transitions.
[2024-05-23 22:59:01] [INFO ] Invariant cache hit.
[2024-05-23 22:59:01] [INFO ] State equation strengthened by 1000 read => feed constraints.
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30072 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Error getting values : (error "ParserException while parsing response: ((s0 5)
(s1 2)
(s3 4)
(s4 5)
(s5 5)
(s6 2)
(s8 4)
(s9 5)
(s10 5)
(s11 2)
(s13 4)
(s14 5)
(s15 5)
(s16 2)
(s18 4)
(s19 5)
(s20 5)
(s21 2)
(s23 4)
(s24 5)
(s25 5)
(s26 2)
(s28 4)
(s29 5)
(s30 5)
(s31 2)
(s33 4)
(s34 5)
(s35 5)
(s36 2)
(s38 4)
(s39 5)
(s40 5)
(s41 2)
(s43 4)
(s44 5)
(s45 5)
(s46 2)
(s48 4)
(s49 5)
(s50 5)
(s51 2)
(s53 4)
(s54 5)
(s55 5)
(s56 2)
(s58 4)
(s59 5)
(s60 5)
(s61 2)
(s63 4)
(s64 5)
(s65 5)
(s66 2)
(s68 4)
(s69 5)
(s70 5)
(s71 2)
(s73 4)
(s74 5)
(s75 5)
(s76 2)
(s78 4)
(s79 5)
(s80 5)
(s81 2)
(s83 4)
(s84 5)
(s85 5)
(s86 2)
(s88 4)
(s89 5)
(s90 5)
(s91 2)
(s93 4)
(s94 5)
(s95 5)
(s96 2)
(s98 4)
(s99 5)
(s100 5)
(s101 2)
(s103 4)
(s104 5)
(s105 5)
(s106 2)
(s108 4)
(s109 5)
(s110 5)
(s111 2)
(s113 4)
(s114 5)
(s115 5)
(s116 2)
(s118 4)
(s119 5)
(s120 5)
(s121 2)
(s123 4)
(s124 5)
(s125 5)
(s126 2)
(s128 4)
(s129 5)
(s130 5)
(s131 2)
(s133 4)
(s134 5)
(s135 5)
(s136 2)
(s138 4)
(s139 5)
(s140 5)
(s141 2)
(s143 4)
(s144 5)
(s145 5)
(s146 2)
(s148 4)
(s149 5)
(s150 5)
(s151 2)
(s153 4)
(s154 5)
(s155 5)
(s156 2)
(s158 4)
(s159 5)
(s160 5)
(s161 2)
(s163 4)
(s164 5)
(s165 5)
(s166 2)
(s168 4)
(s169 5)
(s170 5)
(s171 2)
(s173 4)
(s174 5)
(s175 5)
(s176 2)
(s178 4)
(s179 5)
(s180 5)
(s181 2)
(s183 4)
(s184 5)
(s185 5)
(s186 2)
(s188 4)
(s189 5)
(s190 5)
(s191 2)
(s193 4)
(s194 5)
(s195 5)
(s196 2)
(s198 4)
(s199 5)
(s200 5)
(s201 2)
(s203 4)
(s204 5)
(s205 5)
(s206 2)
(s208 4)
(s209 5)
(s210 5)
(s211 2)
(s213 4)
(s214 5)
(s215 5)
(s216 2)
(s218 4)
(s219 5)
(s220 5)
(s221 2)
(s223 4)
(s224 5)
(s225 5)
(s226 2)
(s228 4)
(s229 5)
(s230 5)
(s231 2)
(s233 4)
(s234 5)
(s235 5)
(s236 2)
(s238 4)
(s239 5)
(s240 5)
(s241 2)
(s243 4)
(s244 5)
(s245 5)
(s246 2)
(s248 4)
(s249 5)
(s250 5)
(s251 2)
(s253 4)
(s254 5)
(s255 5)
(s256 2)
(s258 4)
(s259 5)
(s260 5)
(s261 2)
(s263 4)
(s264 5)
(s265 5)
(s266 2)
(s268 4)
(s269 5)
(s270 5)
(s271 2)
(s273 4)
(s274 5)
(s275 5)
(s276 2)
(s278 4)
(s279 5)
(s280 5)
(s281 2)
(s283 4)
(s284 5)
(s285 5)
(s286 2)
(s288 4)
(s289 5)
(s290 5)
(s291 2)
(s293 4)
(s294 5)
(s295 5)
(s296 2)
(s298 4)
(s299 5)
(s300 5)
(s301 2)
(s303 4)
(s304 5)
(s305 5)
(s306 2)
(s308 4)
(s309 5)
(s310 5)
(s311 2)
(s313 4)
(s314 5)
(s315 5)
(s316 2)
(s318 4)
(s319 5)
(s320 5)
(s321 2)
(s323 4)
(s324 5)
(s325 5)
(s326 2)
(s328 4)
(s329 5)
(s330 5)
(s331 2)
(s333 4)
(s334 5)
(s335 5)
(s336 2)
(s338 4)
(s339 5)
(s340 5)
(s341 2)
(s343 4)
(s344 5)
(s345 5)
(s346 2)
(s348 4)
(s349 5)
(s350 5)
(s351 2)
(s353 4)
(s354 5)
(s355 5)
(s356 2)
(s358 4)
(s359 5)
(s360 5)
(s361 2)
(s363 4)
(s364 5)
(s365 5)
(s366 2)
(s368 4)
(s369 5)
(s370 5)
(s371 2)
(s373 4)
(s374 5)
(s375 5)
(s376 2)
(s378 4)
(s379 5)
(s380 5)
(s381 2)
(s383 4)
(s384 5)
(s385 5)
(s386 2)
(s388 4)
(s389 5)
(s390 5)
(s391 2)
(s393 4)
(s394 5)
(s395 5)
(s396 2)
(s398 4)
(s399 5)
(s400 5)
(s401 2)
(s403 4)
(s404 5)
(s405 5)
(s406 2)
(s408 4)
(s409 5)
(s410 5)
(s411 2)
(s413 4)
(s414 5)
(s415 5)
(s416 2)
(s418 4)
(s419 5)
(s420 5)
(s421 2)
(s423 4)
(s424 5)
(s425 5)
(s426 2)
(s428 4)
(s429 5)
(s430 5)
(s431 2)
(s433 4)
(s434 5)
(s435 5)
(s436 2)
(s438 4)
(s439 5)
(s440 5)
(s441 2)
(s443 4)
(s444 5)
(s445 5)
(s446 2)
(s448 4)
(s449 5)
(s450 5)
(s451 2)
(s453 4)
(s454 5)
(s455 5)
(s456 2)
(s458 4)
(s459 5)
(s460 5)
(s461 2)
(s463 4)
(s464 5)
(s465 5)
(s466 2)
(s468 4)
(s469 5)
(s470 5)
(s471 2)
(s473 4)
(s474 5)
(s475 5)
(s476 2)
(s478 4)
(s479 5)
(s480 5)
(s481 2)
(s483 4)
(s484 5)
(s485 5)
(s486 2)
(s488 4)
(s489 5)
(s490 5)
(s491 2)
(s493 4)
(s494 5)
(s495 5)
(s496 2)
(s498 4)
(s499 5)
(s500 5)
(s501 2)
(s503 4)
(s504 5)
(s505 5)
(s506 2)
(s508 4)
(s509 5)
(s510 5)
(s511 2)
(s513 4)
(s514 5)
(s515 5)
(s516 2)
(s518 4)
(s519 5)
(s520 5)
(s521 2)
(s523 4)
(s524 5)
(s525 5)
(s526 2)
(s528 4)
(s529 5)
(s530 5)
(s531 2)
(s533 4)
(s534 5)
(s535 5)
(s536 2)
(s538 4)
(s539 5)
(s540 5)
(s541 2)
(s543 4)
(s544 5)
(s545 5)
(s546 2)
(s548 4)
(s549 5)
(s550 5)
(s551 2)
(s553 4)
(s554 5)
(s555 5)
(s556 2)
(s558 4)
(s559 5)
(s560 5)
(s561 2)
(s563 4)
(s564 5)
(s565 5)
(s566 2)
(s568 4)
(s569 5)
(s570 5)
(s571 2)
(s573 4)
(s574 5)
(s575 5)
(s576 2)
(s578 4)
(s579 5)
(s580 5)
(s581 2)
(s583 4)
(s584 5)
(s585 5)
(s586 2)
(s588 4)
(s589 5)
(s590 5)
(s591 2)
(s593 4)
(s594 5)
(s595 5)
(s596 2)
(s598 4)
(s599 5)
(s600 5)
(s601 2)
(s603 4)
(s604 5)
(s605 5)
(s606 2)
(s608 4)
(s609 5)
(s610 5)
(s611 2)
(s613 4)
(s614 5)
(s615 5)
(s616 2)
(s618 4)
(s619 5)
(s620 5)
(s621 2)
(s623 4)
(s624 5)
(s625 5)
(s626 2)
(s628 4)
(s629 5)
(s630 5)
(s631 2)
(s633 4)
(s634 5)
(s635 5)
(s636 2)
(s638 4)
(s639 5)
(s640 5)
(s641 2)
(s643 4)
(s644 5)
(s645 5)
(s646 2)
(s648 4)
(s649 5)
(s650 5)
(s651 2)
(s653 4)
(s654 5)
(s655 5)
(s656 2)
(s658 4)
(s659 5)
(s660 5)
(s661 2)
(s663 4)
(s664 5)
(s665 5)
(s666 2)
(s668 4)
(s669 5)
(s670 5)
(s671 2)
(s673 4)
(s674 5)
(s675 5)
(s676 2)
(s678 4)
(s679 5)
(s680 5)
(s681 2)
(s683 4)
(s684 5)
(s685 5)
(s686 2)
(s688 4)
(s689 5)
(s690 5)
(s691 2)
(s693 4)
(s694 5)
(s695 5)
(s696 2)
(s698 4)
(s699 5)
(s700 5)
(s701 2)
(s703 4)
(s704 5)
(s705 5)
(s706 2)
(s708 4)
(s709 5)
(s710 5)
(s711 2)
(s713 4)
(s714 5)
(s715 5)
(s716 2)
(s718 4)
(s719 5)
(s720 5)
(s721 2)
(s723 4)
(s724 5)
(s725 5)
(s726 2)
(s728 4)
(s729 5)
(s730 5)
(s731 2)
(s733 4)
(s734 5)
(s735 5)
(s736 2)
(s738 4)
(s739 5)
(s740 5)
(s741 2)
(s743 4)
(s744 5)
(s745 5)
(s746 2)
(s748 4)
(s749 5)
(s750 5)
(s751 2)
(s753 4)
(s754 5)
(s755 5)
(s756 2)
(s758 4)
(s759 5)
(s760 5)
(s761 2)
(s763 4)
(s764 5)
(s765 5)
(s766 2)
(s768 4)
(s769 5)
(s770 5)
(s771 2)
(s773 4)
(s774 5)
(s775 5)
(s776 2)
(s778 4)
(s779 5)
(s780 5)
(s781 2)
(s783 4)
(s784 5)
(s785 5)
(s786 2)
(s788 4)
(s789 5)
(s790 5)
(s791 2)
(s793 4)
(s794 5)
(s795 5)
(s796 2)
(s798 4)
(s799 5)
(s800 5)
(s801 2)
(s803 4)
(s804 5)
(s805 5)
(s806 2)
(s808 4)
(s809 5)
(s810 5)
(s811 2)
(s813 4)
(s814 5)
(s815 5)
(s816 2)
(s818 4)
(s819 5)
(s820 5)
(s821 2)
(s823 4)
(s824 5)
(s825 5)
(s826 2)
(s828 4)
(s829 5)
(s830 5)
(s831 2)
(s833 4)
(s834 5)
(s835 5)
(s836 2)
(s838 4)
(s839 5)
(s840 5)
(s841 2)
(s843 4)
(s844 5)
(s845 5)
(s846 2)
(s848 4)
(s849 5)
(s850 5)
(s851 2)
(s853 4)
(s854 5)
(s855 5)
(s856 2)
(s858 4)
(s859 5)
(s860 5)
(s861 2)
(s863 4)
(s864 5)
(s865 5)
(s866 2)
(s868 4)
(s869 5)
(s870 5)
(s871 2)
(s873 4)
(s874 5)
(s875 5)
(s876 2)
(s878 4)
(s879 5)
(s880 5)
(s881 2)
(s883 4)
(s884 5)
(s885 5)
(s886 2)
(s888 4)
(s889 5)
(s890 5)
(s891 2)
(s893 4)
(s894 5)
(s895 5)
(s896 2)
(s898 4)
(s899 5)
(s900 5)
(s901 2)
(s903 4)
(s904 5)
(s905 5)
(s906 2)
(s908 4)
(s909 5)
(s910 5)
(s911 2)
(s913 4)
(s914 5)
(s915 5)
(s916 2)
(s918 4)
(s919 5)
(s920 5)
(s921 2)
(s923 4)
(s924 5)
(s925 5)
(s926 2)
(s928 4)
(s929 5)
(s930 5)
(s931 2)
(s933 4)
(s934 5)
(s935 5)
(s936 2)
(s938 4)
(s939 5)
(s940 5)
(s941 2)
(s943 4)
(s944 5)
(s945 5)
(s946 2)
(s948 4)
(s949 5)
(s950 5)
(s951 2)
(s953 4)
(s954 5)
(s955 5)
(s956 2)
(s958 4)
(s959 5)
(s960 5)
(s961 2)
(s963 4)
(s964 5)
(s965 5)
(s966 2)
(s968 4)
(s969 5)
(s970 5)
(s971 2)
(s973 4)
(s974 5)
(s975 5)
(s976 2)
(s978 4)
(s979 5)
(s980 5)
(s981 2)
(s983 4)
(s984 5)
(s985 5)
(s986 2)
(s988 4)
(s989 5)
(s990 5)
(s991 2)
(s993 4)
(s994 5)
(s995 5)
(s996 2)
(s998 4)
(s999 5)
(s1000 5)
(s1001 2)
(s1003 4)
(s1004 5)
(s1005 5)
(s1006 2)
(s1008 4)
(s1009 5)
(s1010 5)
(s1011 2)
(s1013 4)
(s1014 5)
(s1015 5)
(s1016 2)
(s1018 4)
(s1019 5)
(s1020 5)
(s1021 2)
(s1023 4)
(s1024 5)
(s1025 5)
(s1026 2)
(s1028 4)
(s1029 5)
(s1030 5)
(s1031 2)
(s1033 4)
(s1034 5)
(s1035 5)
(s1036 2)
(s1038 4)
(s1039 5)
(s1040 5)
(s1041 2)
(s1043 4)
(s1044 5)
(s1045 5)
(s1046 2)
(s1048 4)
(s1049 5)
(s1050 5)
(s1051 2)
(s1053 4)
(s1054 5)
(s1055 5)
(s1056 2)
(s1058 4)
(s1059 5)
(s1060 5)
(s1061 2)
(s1063 4)
(s1064 5)
(s1065 5)
(s1066 2)
(s1068 4)
(s1069 5)
(s1070 5)
(s1071 2)
(s1073 4)
(s1074 5)
(s1075 5)
(s1076 2)
(s1078 4)
(s1079 5)
(s1080 5)
(s1081 2)
(s1083 4)
(s1084 5)
(s1085 5)
(s1086 2)
(s1088 4)
(s1089 5)
(s1090 5)
(s1091 2)
(s1093 4)
(s1094 5)
(s1095 5)
(s1096 2)
(s1098 4)
(s1099 5)
(s1100 5)
(s1101 2)
(s1103 4)
(s1104 5)
(s1105 5)
(s1106 2)
(s1108 4)
(s1109 5)
(s1110 5)
(s1111 2)
(s1113 4)
(s1114 5)
(s1115 5)
(s1116 2)
(s1118 4)
(s1119 5)
(s1120 5)
(s1121 2)
(s1123 4)
(s1124 5)
(s1125 5)
(s1126 2)
(s1128 4)
(s1129 5)
(s1130 5)
(s1131 2)
(s1133 4)
(s1134 5)
(s1135 5)
(s1136 2)
(s1138 4)
(s1139 5)
(s1140 5)
(s1141 2)
(s1143 4)
(s1144 5)
(s1145 5)
(s1146 2)
(s1148 4)
(s1149 5)
(s1150 5)
(s1151 2)
(s1153 4)
(s1154 5)
(s1155 5)
(s1156 2)
(s1158 4)
(s1159 5)
(s1160 5)
(s1161 2)
(s1163 4)
(s1164 5)
(s1165 5)
(s1166 2)
(s1168 4)
(s1169 5)
(s1170 5)
(s1171 2)
(s1173 4)
(s1174 5)
(s1175 5)
(s1176 2)
(s1178 4)
(s1179 5)
(s1180 5)
(s1181 2)
(s1183 4)
(s1184 5)
(s1185 5)
(s1186 2)
(s1188 4)
(s1189 5)
(s1190 5)
(s1191 2)
(s1193 4)
(s1194 5)
(s1195 5)
(s1196 2)
(s1198 4)
(s1199 5)
(s1200 5)
(s1201 2)
(s1203 4)
(s1204 5)
(s1205 5)
(s1206 2)
(s1208 4)
(s1209 5)
(s1210 5)
(s1211 2)
(s1213 4)
(s1214 5)
(s1215 5)
(s1216 2)
(s1218 4)
(s1219 5)
(s1220 5)
(s1221 2)
(s1223 4)
(s1224 5)
(s1225 5)
(s1226 2)
(s1228 4)
(s1229 5)
(s1230 5)
(s1231 2)
(s1233 4)
(s1234 5)
(s1235 5)
(s1236 2)
(s1238 4)
(s1239 5)
(s1240 5)
(s1241 2)
(s1243 4)
(s1244 5)
(s1245 5)
(s1246 2)
(s1248 4)
(s1249 5)
(s1250 5)
(s1251 2)
(s1253 4)
(s1254 5)
(s1255 5)
(s1256 2)
(s1258 4)
(s1259 5)
(s1260 5)
(s1261 2)
(s1263 4)
(s1264 5)
(s1265 5)
(s1266 2)
(s1268 4)
(s1269 5)
(s1270 5)
(s1271 2)
(s1273 4)
(s1274 5)
(s1275 5)
(s1276 2)
(s1278 4)
(s1279 5)
(s1280 5)
(s1281 2)
(s1283 4)
(s1284 5)
(s1285 5)
(s1286 2)
(s1288 4)
(s1289 5)
(s1290 5)
(s1291 2)
(s1293 4)
(s1294 5)
(s1295 5)
(s1296 2)
(s1298 4)
(s1299 5)
(s1300 5)
(s1301 2)
(s1303 4)
(s1304 5)
(s1305 5)
(s1306 2)
(s1308 4)
(s1309 5)
(s1310 5)
(s1311 2)
(s1313 4)
(s1314 5)
(s1315 5)
(s1316 2)
(s1318 4)
(s1319 5)
(s1320 5)
(s1321 2)
(s1323 4)
(s1324 5)
(s1325 5)
(s1326 2)
(s1328 4)
(s1329 5)
(s1330 5)
(s1331 2)
(s1333 4)
(s1334 5)
(s1335 5)
(s1336 2)
(s1338 4)
(s1339 5)
(s1340 5)
(s1341 2)
(s1343 4)
(s1344 5)
(s1345 5)
(s1346 2)
(s1348 4)
(s1349 5)
(s1350 5)
(s1351 2)
(s1353 4)
(s1354 5)
(s1355 5)
(s1356 2)
(s1358 4)
(s1359 5)
(s1360 5)
(s1361 2)
(s1363 4)
(s1364 5)
(s1365 5)
(s1366 2)
(s1368 4)
(s1369 5)
(s1370 5)
(s1371 2)
(s1373 4)
(s1374 5)
(s1375 5)
(s1376 2)
(s1378 4)
(s1379 5)
(s1380 5)
(s1381 2)
(s1383 4)
(s1384 5)
(s1385 5)
(s1386 2)
(s1388 4)
(s1389 5)
(s1390 5)
(s1391 2)
(s1393 4)
(s1394 5)
(s1395 5)
(s1396 2)
(s1398 4)
(s1399 5)
(s1400 5)
(s1401 2)
(s1403 4)
(s1404 5)
(s1405 5)
(s1406 2)
(s1408 4)
(s1409 5)
(s1410 5)
(s1411 2)
(s1413 4)
(s1414 5)
(s1415 5)
(s1416 2)
(s1418 4)
(s1419 5)
(s1420 5)
(s1421 2)
(s1423 4)
(s1424 5)
(s1425 5)
(s1426 2)
(s1428 4)
(s1429 5)
(s1430 5)
(s1431 2)
(s1433 4)
(s1434 5)
(s1435 5)
(s1436 2)
(s1438 4)
(s1439 5)
(s1440 5)
(s1441 2)
(s1443 4)
(s1444 5)
(s1445 5)
(s1446 2)
(s1448 4)
(s1449 5)
(s1450 5)
(s1451 2)
(s1453 4)
(s1454 5)
(s1455 5)
(s1456 2)
(s1458 4)
(s1459 5)
(s1460 5)
(s1461 2)
(s1463 4)
(s1464 5)
(s1465 5)
(s1466 2)
(s1468 4)
(s1469 5)
(s1470 5)
(s1471 2)
(s1473 4)
(s1474 5)
(s1475 5)
(s1476 2)
(s1478 4)
(s1479 5)
(s1480 5)
(s1481 2)
(s1483 4)
(s1484 5)
(s1485 5)
(s1486 2)
(s1488 4)
(s1489 5)
(s1490 5)
(s1491 2)
(s1493 4)
(s1494 5)
(s1495 5)
(s1496 2)
(s1498 4)
(s1499 5)
(s1500 5)
(s1501 2)
(s1503 4)
(s1504 5)
(s1505 5)
(s1506 2)
(s1508 4)
(s1509 5)
(s1510 5)
(s1511 2)
(s1513 4)
(s1514 5)
(s1515 5)
(s1516 2)
(s1518 4)
(s1519 5)
(s1520 5)
(s1521 2)
(s1523 4)
(s1524 5)
(s1525 5)
(s1526 2)
(s1528 4)
(s1529 5)
(s1530 5)
(s1531 2)
(s1533 4)
(s1534 5)
(s1535 5)
(s1536 2)
(s1538 4)
(s1539 5)
(s1540 5)
(s1541 2)
(s1543 4)
(s1544 5)
(s1545 5)
(s1546 2)
(s1548 4)
(s1549 5)
(s1550 5)
(s1551 2)
(s1553 4)
(s1554 5)
(s1555 5)
(s1556 2)
(s1558 4)
(s1559 5)
(s1560 5)
(s1561 2)
(s1563 4)
(s1564 5)
(s1565 5)
(s1566 2)
(s1568 4)
(s1569 5)
(s1570 5)
(s1571 2)
(s1573 4)
(s1574 5)
(s1575 5)
(s1576 2)
(s1578 4)
(s1579 5)
(s1580 5)
(s1581 2)
(s1583 4)
(s1584 5)
(s1585 5)
(s1586 2)
(s1588 4)
(s1589 5)
(s1590 5)
(s1591 2)
(s1593 4)
(s1594 5)
(s1595 5)
(s1596 2)
(s1598 4)
(s1599 5)
(s1600 5)
(s1601 2)
(s1603 4)
(s1604 5)
(s1605 5)
(s1606 2)
(s1608 timeout
4) org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30076 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 64424ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 64483ms
Finished structural reductions in LTL mode , in 1 iterations and 114345 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Stuttering acceptance computed with spot in 227 ms :[(OR (NOT p2) (NOT p1)), (OR (NOT p2) (NOT p1)), true, (NOT p1), (NOT p1), (NOT p1)]
Running random walk in product with property : JoinFreeModules-PT-1000-LTLCardinality-03
Stuttering criterion allowed to conclude after 0 steps with 0 reset in 1 ms.
FORMULA JoinFreeModules-PT-1000-LTLCardinality-03 FALSE TECHNIQUES STUTTER_TEST
Treatment of property JoinFreeModules-PT-1000-LTLCardinality-03 finished in 114609 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202405141337/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(X(X(F((p0||X(p1))))))'
Support contains 3 out of 5000 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 213 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:00:06] [INFO ] Invariant cache hit.
[2024-05-23 23:00:06] [INFO ] State equation strengthened by 1000 read => feed constraints.
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20080 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20074 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 44346ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 44400ms
[2024-05-23 23:00:51] [INFO ] Invariant cache hit.
[2024-05-23 23:00:52] [INFO ] Implicit Places using invariants in 850 ms returned []
[2024-05-23 23:00:52] [INFO ] Invariant cache hit.
[2024-05-23 23:00:55] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2024-05-23 23:00:55] [INFO ] Implicit Places using invariants and state equation in 3751 ms returned []
Implicit Place search using SMT with State Equation took 4605 ms to find 0 implicit places.
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:00:55] [INFO ] Invariant cache hit.
[2024-05-23 23:00:55] [INFO ] State equation strengthened by 1000 read => feed constraints.
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30074 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Error getting values : (error "ParserException while parsing response: ((s0 5)
(s1 2)
(s3 4)
(s4 5)
(s5 5)
(s6 2)
(s8 4)
(s9 5)
(s10 5)
(s11 2)
(s13 4)
(s14 5)
(s15 5)
(s16 2)
(s18 4)
(s19 5)
(s20 5)
(s21 2)
(s23 4)
(s24 5)
(s25 5)
(s26 2)
(s28 4)
(s29 5)
(s30 5)
(s31 2)
(s33 4)
(s34 5)
(s35 5)
(s36 2)
(s38 4)
(s39 5)
(s40 5)
(s41 2)
(s43 4)
(s44 5)
(s45 5)
(s46 2)
(s48 4)
(s49 5)
(s50 5)
(s51 2)
(s53 4)
(s54 5)
(s55 5)
(s56 2)
(s58 4)
(s59 5)
(s60 5)
(s61 2)
(s63 4)
(s64 5)
(s65 5)
(s66 2)
(s68 4)
(s69 5)
(s70 5)
(s71 2)
(s73 4)
(s74 5)
(s75 5)
(s76 2)
(s78 4)
(s79 5)
(s80 5)
(s81 2)
(s83 4)
(s84 5)
(s85 5)
(s86 2)
(s88 4)
(s89 5)
(s90 5)
(s91 2)
(s93 4)
(s94 5)
(s95 5)
(s96 2)
(s98 4)
(s99 5)
(s100 5)
(s101 2)
(s103 4)
(s104 5)
(s105 5)
(s106 2)
(s108 4)
(s109 5)
(s110 5)
(s111 2)
(s113 4)
(s114 5)
(s115 5)
(s116 2)
(s118 4)
(s119 5)
(s120 5)
(s121 2)
(s123 4)
(s124 5)
(s125 5)
(s126 2)
(s128 4)
(s129 5)
(s130 5)
(s131 2)
(s133 4)
(s134 5)
(s135 5)
(s136 2)
(s138 4)
(s139 5)
(s140 5)
(s141 2)
(s143 4)
(s144 5)
(s145 5)
(s146 2)
(s148 4)
(s149 5)
(s150 5)
(s151 2)
(s153 4)
(s154 5)
(s155 5)
(s156 2)
(s158 4)
(s159 5)
(s160 5)
(s161 2)
(s163 4)
(s164 5)
(s165 5)
(s166 2)
(s168 4)
(s169 5)
(s170 5)
(s171 2)
(s173 4)
(s174 5)
(s175 5)
(s176 2)
(s178 4)
(s179 5)
(s180 5)
(s181 2)
(s183 4)
(s184 5)
(s185 5)
(s186 2)
(s188 4)
(s189 5)
(s190 5)
(s191 2)
(s193 4)
(s194 5)
(s195 5)
(s196 2)
(s198 4)
(s199 5)
(s200 5)
(s201 2)
(s203 4)
(s204 5)
(s205 5)
(s206 2)
(s208 4)
(s209 5)
(s210 5)
(s211 2)
(s213 4)
(s214 5)
(s215 5)
(s216 2)
(s218 4)
(s219 5)
(s220 5)
(s221 2)
(s223 4)
(s224 5)
(s225 5)
(s226 2)
(s228 4)
(s229 5)
(s230 5)
(s231 2)
(s233 4)
(s234 5)
(s235 5)
(s236 2)
(s238 4)
(s239 5)
(s240 5)
(s241 2)
(s243 4)
(s244 5)
(s245 5)
(s246 2)
(s248 4)
(s249 5)
(s250 5)
(s251 2)
(s253 4)
(s254 5)
(s255 5)
(s256 2)
(s258 4)
(s259 5)
(s260 5)
(s261 2)
(s263 4)
(s264 5)
(s265 5)
(s266 2)
(s268 4)
(s269 5)
(s270 5)
(s271 2)
(s273 4)
(s274 5)
(s275 5)
(s276 2)
(s278 4)
(s279 5)
(s280 5)
(s281 2)
(s283 4)
(s284 5)
(s285 5)
(s286 2)
(s288 4)
(s289 5)
(s290 5)
(s291 2)
(s293 4)
(s294 5)
(s295 5)
(s296 2)
(s298 4)
(s299 5)
(s300 5)
(s301 2)
(s303 4)
(s304 5)
(s305 5)
(s306 2)
(s308 4)
(s309 5)
(s310 5)
(s311 2)
(s313 4)
(s314 5)
(s315 5)
(s316 2)
(s318 4)
(s319 5)
(s320 5)
(s321 2)
(s323 4)
(s324 5)
(s325 5)
(s326 2)
(s328 4)
(s329 5)
(s330 5)
(s331 2)
(s333 4)
(s334 5)
(s335 5)
(s336 2)
(s338 4)
(s339 5)
(s340 5)
(s341 2)
(s343 4)
(s344 5)
(s345 5)
(s346 2)
(s348 4)
(s349 5)
(s350 5)
(s351 2)
(s353 4)
(s354 5)
(s355 5)
(s356 2)
(s358 4)
(s359 5)
(s360 5)
(s361 2)
(s363 4)
(s364 5)
(s365 5)
(s366 2)
(s368 4)
(s369 5)
(s370 5)
(s371 2)
(s373 4)
(s374 5)
(s375 5)
(s376 2)
(s378 4)
(s379 5)
(s380 5)
(s381 2)
(s383 4)
(s384 5)
(s385 5)
(s386 2)
(s388 4)
(s389 5)
(s390 5)
(s391 2)
(s393 4)
(s394 5)
(s395 5)
(s396 2)
(s398 4)
(s399 5)
(s400 5)
(s401 2)
(s403 4)
(s404 5)
(s405 5)
(s406 2)
(s408 4)
(s409 5)
(s410 5)
(s411 2)
(s413 4)
(s414 5)
(s415 5)
(s416 2)
(s418 4)
(s419 5)
(s420 5)
(s421 2)
(s423 4)
(s424 5)
(s425 5)
(s426 2)
(s428 4)
(s429 5)
(s430 5)
(s431 2)
(s433 4)
(s434 5)
(s435 5)
(s436 2)
(s438 4)
(s439 5)
(s440 5)
(s441 2)
(s443 4)
(s444 5)
(s445 5)
(s446 2)
(s448 4)
(s449 5)
(s450 5)
(s451 2)
(s453 4)
(s454 5)
(s455 5)
(s456 2)
(s458 4)
(s459 5)
(s460 5)
(s461 2)
(s463 4)
(s464 5)
(s465 5)
(s466 2)
(s468 4)
(s469 5)
(s470 5)
(s471 2)
(s473 4)
(s474 5)
(s475 5)
(s476 2)
(s478 4)
(s479 5)
(s480 5)
(s481 2)
(s483 4)
(s484 5)
(s485 5)
(s486 2)
(s488 4)
(s489 5)
(s490 5)
(s491 2)
(s493 4)
(s494 5)
(s495 5)
(s496 2)
(s498 4)
(s499 5)
(s500 5)
(s501 2)
(s503 4)
(s504 5)
(s505 5)
(s506 2)
(s508 4)
(s509 5)
(s510 5)
(s511 2)
(s513 4)
(s514 5)
(s515 5)
(s516 2)
(s518 4)
(s519 5)
(s520 5)
(s521 2)
(s523 4)
(s524 5)
(s525 5)
(s526 2)
(s528 4)
(s529 5)
(s530 5)
(s531 2)
(s533 4)
(s534 5)
(s535 5)
(s536 2)
(s538 4)
(s539 5)
(s540 5)
(s541 2)
(s543 4)
(s544 5)
(s545 5)
(s546 2)
(s548 4)
(s549 5)
(s550 5)
(s551 2)
(s553 4)
(s554 5)
(s555 5)
(s556 2)
(s558 4)
(s559 5)
(s560 5)
(s561 2)
(s563 4)
(s564 5)
(s565 5)
(s566 2)
(s568 4)
(s569 5)
(s570 5)
(s571 2)
(s573 4)
(s574 5)
(s575 5)
(s576 2)
(s578 4)
(s579 5)
(s580 5)
(s581 2)
(s583 4)
(s584 5)
(s585 5)
(s586 2)
(s588 4)
(s589 5)
(s590 5)
(s591 2)
(s593 4)
(s594 5)
(s595 5)
(s596 2)
(s598 4)
(s599 5)
(s600 5)
(s601 2)
(s603 4)
(s604 5)
(s605 5)
(s606 2)
(s608 4)
(s609 5)
(s610 5)
(s611 2)
(s613 4)
(s614 5)
(s615 5)
(s616 2)
(s618 4)
(s619 5)
(s620 5)
(s621 2)
(s623 4)
(s624 5)
(s625 5)
(s626 2)
(s628 4)
(s629 5)
(s630 5)
(s631 2)
(s633 4)
(s634 5)
(s635 5)
(s636 2)
(s638 4)
(s639 5)
(s640 5)
(s641 2)
(s643 4)
(s644 5)
(s645 5)
(s646 2)
(s648 4)
(s649 5)
(s650 5)
(s651 2)
(s653 4)
(s654 5)
(s655 5)
(s656 2)
(s658 4)
(s659 5)
(s660 5)
(s661 2)
(s663 4)
(s664 5)
(s665 5)
(s666 2)
(s668 4)
(s669 5)
(s670 5)
(s671 2)
(s673 4)
(s674 5)
(s675 5)
(s676 2)
(s678 4)
(s679 5)
(s680 5)
(s681 2)
(s683 4)
(s684 5)
(s685 5)
(s686 2)
(s688 4)
(s689 5)
(s690 5)
(s691 2)
(s693 4)
(s694 5)
(s695 5)
(s696 2)
(s698 4)
(s699 5)
(s700 5)
(s701 2)
(s703 4)
(s704 5)
(s705 5)
(s706 2)
(s708 4)
(s709 5)
(s710 5)
(s711 2)
(s713 4)
(s714 5)
(s715 5)
(s716 2)
(s718 4)
(s719 5)
(s720 5)
(s721 2)
(s723 4)
(s724 5)
(s725 5)
(s726 2)
(s728 4)
(s729 5)
(s730 5)
(s731 2)
(s733 4)
(s734 5)
(s735 5)
(s736 2)
(s738 4)
(s739 5)
(s740 5)
(s741 2)
(s743 4)
(s744 5)
(s745 5)
(s746 2)
(s748 4)
(s749 5)
(s750 5)
(s751 2)
(s753 4)
(s754 5)
(s755 5)
(s756 2)
(s758 4)
(s759 5)
(s760 5)
(s761 2)
(s763 4)
(s764 5)
(s765 5)
(s766 2)
(s768 4)
(s769 5)
(s770 5)
(s771 2)
(s773 4)
(s774 5)
(s775 5)
(s776 2)
(s778 4)
(s779 5)
(s780 5)
(s781 2)
(s783 4)
(s784 5)
(s785 5)
(s786 2)
(s788 4)
(s789 5)
(s790 5)
(s791 2)
(s793 4)
(s794 5)
(s795 5)
(s796 2)
(s798 4)
(s799 5)
(s800 5)
(s801 2)
(s803 4)
(s804 5)
(s805 5)
(s806 2)
(s808 4)
(s809 5)
(s810 5)
(s811 2)
(s813 4)
(s814 5)
(s815 5)
(s816 2)
(s818 4)
(s819 5)
(s820 5)
(s821 2)
(s823 4)
(s824 5)
(s825 5)
(s826 2)
(s828 4)
(s829 5)
(s830 5)
(s831 2)
(s833 4)
(s834 5)
(s835 5)
(s836 2)
(s838 4)
(s839 5)
(s840 5)
(s841 2)
(s843 4)
(s844 5)
(s845 5)
(s846 2)
(s848 4)
(s849 5)
(s850 5)
(s851 2)
(s853 4)
(s854 5)
(s855 5)
(s856 2)
(s858 4)
(s859 5)
(s860 5)
(s861 2)
(s863 4)
(s864 5)
(s865 5)
(s866 2)
(s868 4)
(s869 5)
(s870 5)
(s871 2)
(s873 4)
(s874 5)
(s875 5)
(s876 2)
(s878 4)
(s879 5)
(s880 5)
(s881 2)
(s883 4)
(s884 5)
(s885 5)
(s886 2)
(s888 4)
(s889 5)
(s890 5)
(s891 2)
(s893 4)
(s894 5)
(s895 5)
(s896 2)
(s898 4)
(s899 5)
(s900 5)
(s901 2)
(s903 4)
(s904 5)
(s905 5)
(s906 2)
(s908 4)
(s909 5)
(s910 5)
(s911 2)
(s913 4)
(s914 5)
(s915 5)
(s916 2)
(s918 4)
(s919 5)
(s920 5)
(s921 2)
(s923 4)
(s924 5)
(s925 5)
(s926 2)
(s928 4)
(s929 5)
(s930 5)
(s931 2)
(s933 4)
(s934 5)
(s935 5)
(s936 2)
(s938 4)
(s939 5)
(s940 5)
(s941 2)
(s943 4)
(s944 5)
(s945 5)
(s946 2)
(s948 4)
(s949 5)
(s950 5)
(s951 2)
(s953 4)
(s954 5)
(s955 5)
(s956 2)
(s958 4)
(s959 5)
(s960 5)
(s961 2)
(s963 4)
(s964 5)
(s965 5)
(s966 2)
(s968 4)
(s969 5)
(s970 5)
(s971 2)
(s973 4)
(s974 5)
(s975 5)
(s976 2)
(s978 4)
(s979 5)
(s980 5)
(s981 2)
(s983 4)
(s984 5)
(s985 5)
(s986 2)
(s988 4)
(s989 5)
(s990 5)
(s991 2)
(s993 4)
(s994 5)
(s995 5)
(s996 2)
(s998 4)
(s999 5)
(s1000 5)
(s1001 2)
(s1003 4)
(s1004 5)
(s1005 5)
(s1006 2)
(s1008 4)
(s1009 5)
(s1010 5)
(s1011 2)
(s1013 4)
(s1014 5)
(s1015 5)
(s1016 2)
(s1018 4)
(s1019 5)
(s1020 5)
(s1021 2)
(s1023 4)
(s1024 5)
(s1025 5)
(s1026 2)
(s1028 4)
(s1029 5)
(s1030 5)
(s1031 2)
(s1033 4)
(s1034 5)
(s1035 5)
(s1036 2)
(s1038 4)
(s1039 5)
(s1040 5)
(s1041 2)
(s1043 4)
(s1044 5)
(s1045 5)
(s1046 2)
(s1048 4)
(s1049 5)
(s1050 5)
(s1051 2)
(s1053 4)
(s1054 5)
(s1055 5)
(s1056 2)
(s1058 4)
(s1059 5)
(s1060 5)
(s1061 2)
(s1063 4)
(s1064 5)
(s1065 5)
(s1066 2)
(s1068 4)
(s1069 5)
(s1070 5)
(s1071 2)
(s1073 4)
(s1074 5)
(s1075 5)
(s1076 2)
(s1078 4)
(s1079 5)
(s1080 5)
(s1081 2)
(s1083 4)
(s1084 5)
(s1085 5)
(s1086 2)
(s1088 4)
(s1089 5)
(s1090 5)
(s1091 2)
(s1093 4)
(s1094 5)
(s1095 5)
(s1096 2)
(s1098 4)
(s1099 5)
(s1100 5)
(s1101 2)
(s1103 4)
(s1104 5)
(s1105 5)
(s1106 2)
(s1108 4)
(s1109 5)
(s1110 5)
(s1111 2)
(s1113 4)
(s1114 5)
(s1115 5)
(s1116 2)
(s1118 4)
(s1119 5)
(s1120 5)
(s1121 2)
(s1123 4)
(s1124 5)
(s1125 5)
(s1126 2)
(s1128 4)
(s1129 5)
(s1130 5)
(s1131 2)
(s1133 4)
(s1134 5)
(s1135 5)
(s1136 2)
(s1138 4)
(s1139 5)
(s1140 5)
(s1141 2)
(s1143 4)
(s1144 5)
(s1145 5)
(s1146 2)
(s1148 4)
(s1149 5)
(s1150 5)
(s1151 2)
(s1153 4)
(s1154 5)
(s1155 5)
(s1156 2)
(s1158 4)
(s1159 5)
(s1160 5)
(s1161 2)
(s1163 4)
(s1164 5)
(s1165 5)
(s1166 2)
(s1168 4)
(s1169 5)
(s1170 5)
(s1171 2)
(s1173 4)
(s1174 5)
(s1175 5)
(s1176 2)
(s1178 4)
(s1179 5)
(s1180 5)
(s1181 2)
(s1183 4)
(s1184 5)
(s1185 5)
(s1186 2)
(s1188 4)
(s1189 5)
(s1190 5)
(s1191 2)
(s1193 4)
(s1194 5)
(s1195 5)
(s1196 2)
(s1198 4)
(s1199 5)
(s1200 5)
(s1201 2)
(s1203 4)
(s1204 5)
(s1205 5)
(s1206 2)
(s1208 4)
(s1209 5)
(s1210 5)
(s1211 2)
(s1213 4)
(s1214 5)
(s1215 5)
(s1216 2)
(s1218 4)
(s1219 5)
(s1220 5)
(s1221 2)
(s1223 4)
(s1224 5)
(s1225 5)
(s1226 2)
(s1228 4)
(s1229 5)
(s1230 5)
(s1231 2)
(s1233 4)
(s1234 5)
(s1235 5)
(s1236 2)
(s1238 4)
(s1239 5)
(s1240 5)
(s1241 2)
(s1243 4)
(s1244 5)
(s1245 5)
(s1246 2)
(s1248 4)
(s1249 5)
(s1250 5)
(s1251 2)
(s1253 4)
(s1254 5)
(s1255 5)
(s1256 2)
(s1258 4)
(s1259 5)
(s1260 5)
(s1261 2)
(s1263 4)
(s1264 5)
(s1265 5)
(s1266 2)
(s1268 4)
(s1269 5)
(s1270 5)
(s1271 2)
(s1273 4)
(s1274 5)
(s1275 5)
(s1276 2)
(s1278 4)
(s1279 5)
(s1280 5)
(s1281 2)
(s1283 4)
(s1284 5)
(s1285 5)
(s1286 2)
(s1288 4)
(s1289 5)
(s1290 5)
(s1291 2)
(s1293 4)
(s1294 5)
(s1295 5)
(s1296 2)
(s1298 4)
(s1299 5)
(s1300 5)
(s1301 2)
(s1303 4)
(s1304 5)
(s1305 5)
(s1306 2)
(s1308 4)
(s1309 5)
(s1310 5)
(s1311 2)
(s1313 4)
(s1314 5)
(s1315 5)
(s1316 2)
(s1318 4)
(s1319 5)
(s1320 5)
(s1321 2)
(s1323 4)
(s1324 5)
(s1325 5)
(s1326 2)
(s1328 4)
(s1329 5)
(s1330 5)
(s1331 2)
(s1333 4)
(s1334 5)
(s1335 5)
(s1336 2)
(s1338 4)
(s1339 5)
(s1340 5)
(s1341 2)
(s1343 4)
(s1344 5)
(s1345 5)
(s1346 2)
(s1348 4)
(s1349 5)
(s1350 5)
(s1351 2)
(s1353 4)
(s1354 5)
(s1355 5)
(s1356 2)
(s1358 4)
(s1359 5)
(s1360 5)
(s1361 2)
(s1363 4)
(s1364 5)
(s1365 5)
(s1366 2)
(s1368 4)
(s1369 5)
(s1370 5)
(s1371 2)
(s1373 4)
(s1374 5)
(s1375 5)
(s1376 2)
(s1378 4)
(s1379 5)
(s1380 5)
(s1381 2)
(s1383 4)
(s1384 5)
(s1385 5)
(s1386 2)
(s1388 4)
(s1389 5)
(s1390 5)
(s1391 2)
(s1393 4)
(s1394 5)
(s1395 5)
(s1396 2)
(s1398 4)
(s1399 5)
(s1400 5)
(s1401 2)
(s1403 4)
(s1404 5)
(s1405 5)
(s1406 2)
(s1408 4)
(s1409 5)
(s1410 5)
(s1411 2)
(s1413 4)
(s1414 5)
(s1415 5)
(s1416 2)
(s1418 4)
(s1419 5)
(s1420 5)
(s1421 2)
(s1423 4)
(s1424 5)
(s1425 5)
(s1426 2)
(s1428 4)
(s1429 5)
(s1430 5)
(s1431 2)
(s1433 4)
(s1434 5)
(s1435 5)
(s1436 2)
(s1438 4)
(s1439 5)
(s1440 5)
(s1441 2)
(s1443 4)
(s1444 5)
(s1445 5)
(s1446 2)
(s1448 4)
(s1449 5)
(s1450 5)
(s1451 2)
(s1453 4)
(s1454 5)
(s1455 5)
(s1456 2)
(s1458 4)
(s1459 5)
(s1460 5)
(s1461 2)
(s1463 4)
(s1464 5)
(s1465 5)
(s1466 2)
(s1468 4)
(s1469 5)
(s1470 5)
(s1471 2)
(s1473 4)
(s1474 5)
(s1475 5)
(s1476 2)
(s1478 4)
(s1479 5)
(s1480 5)
(s1481 2)
(s1483 4)
(s1484 5)
(s1485 5)
(s1486 2)
(s1488 4)
(s1489 5)
(s1490 5)
(s1491 2)
(s1493 4)
(s1494 5)
(s1495 5)
(s1496 2)
(s1498 4)
(s1499 5)
(s1500 5)
(s1501 2)
(s1503 4)
(s1504 5)
(s1505 5)
(s1506 2)
(s1508 4)
(s1509 5)
(s1510 5)
(s1511 2)
(s1513 4)
(s1514 5)
(s1515 5)
(s1516 2)
(s1518 4)
(s1519 5)
(s1520 5)
(s1521 2)
(s1523 4)
(s1524 5)
(s1525 5)
(s1526 2)
(s1528 4)
(s1529 5)
(s1530 5)
(s1531 2)
(s1533 4)
(s1534 5)
(s1535 5)
(s1536 2)
(s1538 4)
(s1539 5)
(s1540 5)
(s1541 2)
(s1543 4)
(s1544 5)
(s1545 5)
(s1546 2)
(s1548 4)
(s1549 5)
(s1550 5)
(s1551 2)
(s1553 4)
(s1554 5)
(s1555 5)
(s1556 2)
(s1558 4)
(s1559 5)
(s1560 5)
(s1561 2)
(s1563 4)
(s1564 5)
(s1565 5)
(s1566 2)
(s1568 4)
(s1569 5)
(s1570 5)
(s1571 2)
(s1573 4)
(s1574 5)
(s1575 5)
(s1576 2)
(s1578 4)
(s1579 5)
(s1580 5)
(s1581 2)
(s1583 4)
(s1584 5)
(s1585 5)
(s1586 2)
(s1588 4)
(s1589 5)
(s1590 5)
(s1591 2)
(s1593 4)
(s1594 5)
(s1595 5)
(s1596 2)
(s1598 4)
(s1599 5)
(s1600 5)
(s1601 2)
(s1603 4)
(s1604 5)
(s1605 5)
(s1606 2)
(s1608 4)
(s1609 5)
(s1610 5)
(s1611 2)
(s1613 4)
(s1614 5)
(s1615 5)
(s1616 2)
(s1618 4)
(s1619 5)
(s1620 5)
(s1621 2)
(s1623 4)
(s1624 5)
(s1625 5)
(s1626 2)
(s1628 4)
(s1629 5)
(s1630 5)
(s1631 2)
(s1633 4)
(s1634 5)
(s1635 5)
(s1636 2)
(s1638 4)
(s1639 5)
(s1640 5)
(s1641 2)
(s1643 4)
(s1644 5)
(s1645 5)
(s1646 2)
(s1648 4)
(s1649 5)
(s1650 5)
(s1651 2)
(s1653 4)
(s1654 5)
(s1655 5)
(s1656 2)
(s1658 4)
(s1659 5)
(s1660 5)
(s1661 2)
(s1663 4)
(s1664 5)
(s1665 5)
(s1666 2)
(s1668 4)
(s1669 5)
(s1670 5)
(s1671 2)
(s1673 4)
(s1674 5)
(s1675 5)
(s1676 2)
(s1678 4)
(s1679 5)
(s1680 5)
(s1681 2)
(s1683 4)
(s1684 5)
(s1685 5)
(s1686 2)
(s1688 4)
(s1689 5)
(s1690 5)
(s1691 2)
(s1693 4)
(s1694 5)
(s1695 5)
(s1696 2)
(s1698 4)
(s1699 5)
(s1700 5)
(s1701 2)
(s1703 4)
(s1704 5)
(s1705 5)
(s1706 2)
(s1708 4)
(s1709 5)
(s1710 5)
(s1711 2)
(s1713 4)
(s1714 5)
(s1715 5)
(s1716 2)
(s1718 4)
(s1719 5)
(s1720 5)
(s1721 2)
(s1723 4)
(s1724 5)
(s1725 5)
(s1726 2)
(s1728 4)
(s1729 5)
(s1730 5)
(s1731 2)
(s1733 4)
(s1734 5)
(s1735 5)
(s1736 2)
(s1738 4)
(s1739 5)
(s1740 5)
(s1741 2)
(s1743 4)
(s1744 5)
(s1745 5)
(s1746 2)
(s1748 4)
(s1749 5)
(s1750 5)
(s1751 2)
(s1753 4)
(s1754 5)
(s1755 5)
(s1756 2)
(s1758 4)
(s1759 5)
(s1760 5)
(s1761 2)
(s1763 4)
(s1764 5)
(s1765 5)
(s1766 2)
(s1768 4)
(s1769 5)
(s1770 5)
(s1771 2)
(s1773 4)
(s1774 5)
(s1775 5)
(s1776 2)
(s1778 4)
(s1779 5)
(s1780 5)
(s1781 2)
(s1783 4)
(s1784 5)
(s1785 5)
(s1786 2)
(s1788 4)
(s1789 5)
(s1790 5)
(s1791 2)
(s1793 4)
(s1794 5)
(s1795 5)
(s1796 2)
(s1798 4)
(s1799 5)
(s1800 5)
(s1801 2)
(s1803 4)
(s1804 5)
(s1805 5)
(s1806 2)
(s1808 4)
(s1809 5)
(s1810 5)
(s1811 2)
(s1813 4)
(s1814 5)
(s1815 5)
(s1816 2)
(s1818 4)
(s1819 5)
(s1820 5)
(s1821 2)
(s1823 4)
(s1824 5)
(s1825 5)
(s1826 2)
(s1828 4)
(s1829 5)
(s1830 5)
(s1831 2)
(s1833 4)
(s1834 5)
(s1835 5)
(s1836 2)
(s1838 4)
(s1839 5)
(s1840 5)
(s1841 2)
(s1843 4)
(s1844 5)
(s1845 5)
(s1846 2)
(s1848 4)
(s1849 5)
(s1850 5)
(s1851 2)
(s1853 4)
(s1854 5)
(s1855 5)
(s1856 2)
(s1858 4)
(s1859 5)
(s1860 5)
(s1861 2)
(s1863 4)
(s1864 5)
(s1865 5)
(s1866 2)
(s1868 4)
(s1869 5)
(s1870 5)
(s1871 2)
(s1873 4)
(s1874 5)
(s1875 5)
(s1876 2)
(s1878 4)
(s1879 5)
(s1880 5)
(s1881 2)
(s1883 4)
(s1884 5)
(s1885 5)
(s1886 2)
(s1888 4)
(s1889 5)
(s1890 5)
(s1891 2)
(s1893 4)
(s1894 5)
(s1895 5)
(s1896 2)
(s1898 4)
(s1899 5)
(s1900 5)
(s1901 2)
(s1903 4)
(s1904 5)
(s1905 5)
(s1906 2)
(s1908 4)
(s1909 5)
(s1910 5)
(s1911 2)
(s1913 4)
(s1914 5)
(s1915 5)
(s1916 2)
(s1918 4)
(s1919 5)
(s1920 5)
(s1921 2)
(s1923 4)
(s1924 5)
(s1925 5)
(s1926 2)
(s1928 4)
(s1929 5)
(s1930 5)
(s1931 2)
(s1933 4)
(s1934 5)
(s1935 5)
(s1936 2)
(s1938 4)
(s1939 5)
(s1940 5)
(s1941 2)
(s1943 4)
(s1944 5)
(s1945 5)
(s1946 2)
(s1948 4)
(s1949 5)
(s1950 5)
(s1951 2)
(s1953 4)
(s1954 5)
(s1955 5)
(s1956 2)
(s1958 4)
(s1959 5)
(s1960 5)
(s1961 2)
(s1963 4)
(s1964 5)
(s1965 5)
(s1966 2)
(s1968 4)
(s1969 5)
(s1970 5)
(s1971 2)
(s1973 4)
(s1974 5)
(s1975 5)
(s1976 2)
(s1978 4)
(s1979 5)
(s1980 5)
(s1981 2)
(s1983 4)
(s1984 5)
(s1985 5)
(s1986 2)
(s1988 4)
(s1989 5)
(s1990 5)
(s1991 2)
(s1993 4)
(s1994 5)
(s1995 5)
(s1996 2)
(s1998 4)
(s1999 5)
(s2000 5)
(s2001 2)
(s2003 4)
(s2004 5)
(s2005 5)
(s2006 2)
(s2008 4)
(s2009 5)
(s2010 5)
(s2011 2)
(s2013 4)
(s2014 5)
(s2015 5)
(s2016 2)
(s2018 4)
(s2019 5)
(s2020 5)
(s2021 2)
(s2023 4)
(s2024 5)
(s2025 5)
(s2026 2)
(s2028 4)
(s2029 5)
(s2030 5)
(s2031 2)
(s2033 4)
(s2034 5)
(s2035 5)
(s2036 2)
(s2038 4)
(s2039 5)
(s2040 5)
(s2041 2)
(s2043 4)
(s2044 5)
(s2045 5)
(s2046 2)
(s2048 4)
(s2049 5)
(s2050 5)
(s2051 2)
(s2053 4)
(s2054 5)
(s2055 5)
(s2056 2)
(s2058 4)
(s2059 5)
(s2060 5)
(s2061 2)
(s2063 4)
(s2064 5)
(s2065 5)
(s2066 2)
(s2068 4)
(s2069 5)
(s2070 5)
(s2071 2)
(s2073 4)
(s2074 5)
(s2075 5)
(s2076 2)
(s2078 4)
(s2079 5)
(s2080 5)
(s2081 2)
(s2083 4)
(s2084 5)
(s2085 5)
(s2086 2)
(s2088 4)
(s2089 5)
(s2090 5)
(s2091 2)
(s2093 4)
(s2094 5)
(s2095 5)
(s2096 2)
(s2098 4)
(s2099 5)
(s2100 5)
(s2101 2)
(s2103 4)
(s2104 5)
(s2105 5)
(s2106 2)
(s2108 4)
(s2109 5)
(s2110 5)
(s2111 2)
(s2113 4)
(s2114 5)
(s2115 5)
(s2116 2)
(s2118 4)
(s2119 5)
(s2120 5)
(s2121 2)
(s2123 4)
(s2124 5)
(s2125 5)
(s2126 2)
(s2128 4)
(s2129 5)
(s2130 5)
(s2131 2)
(s2133 4)
(s2134 5)
(s2135 5)
(s2136 2)
(s2138 4)
(s2139 5)
(s2140 5)
(s2141 2)
(s2143 4)
(s2144 5)
(s2145 5)
(s2146 2)
(s2148 4)
(s2149 5)
(s2150 5)
(s2151 2)
(s2153 4)
(s2154 5)
(s2155 5)
(s2156 2)
(s2158 4)
(s2159 5)
(s2160 5)
(s2161 2)
(s2163 4)
(s2164 5)
(s2165 5)
(s2166 2)
(s2168 4)
(s2169 5)
(s2170 5)
(s2171 2)
(s2173 4)
(s2174 5)
(s2175 5)
(s2176 2)
(s2178 4)
(s2179 5)
(s2180 5)
(s2181 2)
(s2183 4)
(s2184 5)
(s2185 5)
(s2186 2)
(s2188 4)
(s2189 5)
(s2190 5)
(s2191 2)
(s2193 4)
(s2194 5)
(s2195 5)
(s2196 2)
(s2198 4)
(s2199 5)
(s2200 5)
(s2201 2)
(s2203 4)
(s2204 5)
(s2205 5)
(s2206 2)
(s2208 4)
(s2209 5)
(s2210 5)
(s2211 2)
(s2213 4)
(s2214 5)
(s2215 5)
(s2216 2)
(s2218 4)
(s2219 5)
(s2220 5)
(s2221 2)
(s2223 4)
(s2224 5)
(s2225 5)
(s2226 2)
(s2228 4)
(s2229 5)
(s2230 5)
(s2231 2)
(s2233 4)
(s2234 5)
(s2235 5)
(s2236 2)
(s2238 4)
(s2239 5)
(s2240 5)
(s2241 2)
(s2243 4)
(s2244 5)
(s2245 5)
(s2246 2)
(s2248 4)
(s2249 5)
(s2250 5)
(s2251 2)
(s2253 4)
(s2254 5)
(s2255 5)
(s2256 2)
(s2258 4)
(s2259 5)
(s2260 5)
(s2261 2)
(s2263 4)
(s2264 5)
(s2265 5)
(s2266 2)
(s2268 4)
(s2269 5)
(s2270 5)
(s2271 2)
(s2273 4)
(s2274 5)
(s2275 5)
(s2276 2)
(s2278 4)
(s2279 5)
(s2280 5)
(s2281 2)
(s2283 4)
(s2284 5)
(s2285 5)
(s2286 2)
(s2288 4)
(s2289 5)
(s2290 5)
(s2291 2)
(s2293 4)
(s2294 5)
(s2295 5)
(s2296 2)
(s2298 4)
(s2299 5)
(s2300 5)
(s2301 2)
(s2303 4)
(s2304 5)
(s2305 5)
(s2306 2)
(s2308 4)
(s2309 5)
(s2310 5)
(s2311 2)
(s2313 4)
(s2314 5)
(s2315 5)
(s2316 2)
(s2318 4)
(s2319 5)
(s2320 5)
(s2321 2)
(s2323 4)
(s2324 5)
(s2325 5)
(s2326 2)
(s2328 4)
(s2329 5)
(s2330 5)
(s2331 2)
(s2333 4)
(s2334 5)
(s2335 5)
(s2336 2)
(s2338 4)
(s2339 5)
(s2340 5)
(s2341 2)
(s2343 4)
(s2344 5)
(s2345 5)
(s2346 2)
(s2348 4)
(s2349 5)
(s2350 5)
(s2351 2)
(s2353 4)
(s2354 5)
(s2355 5)
(s2356 2)
(s2358 4)
(s2359 5)
(s2360 5)
(s2361 2)
(s2363 4)
(s2364 5)
(s2365 5)
(s2366 2)
(s2368 4)
(s2369 5)
(s2370 5)
(s2371 2)
(s2373 4)
(s2374 5)
(s2375 5)
(s2376 2)
(s2378 4)
(s2379 5)
(s2380 5)
(s2381 2)
(s2383 4)
(s2384 5)
(s2385 5)
(s2386 2)
(s2388 4)
(s2389 5)
(s2390 5)
(s2391 2)
(s2393 4)
(s2394 5)
(s2395 5)
(s2396 2)
(s2398 4)
(s2399 5)
(s2400 5)
(s2401 2)
(s2403 4)
(s2404 5)
(s2405 5)
(s2406 2)
(s2408 4)
(s2409 5)
(s2410 5)
(s2411 2)
(s2413 4)
(s2414 5)
(s2415 5)
(s2416 2)
(s2418 4)
(s2419 5)
(s2420 5)
(s2421 2)
(s2423 4)
(s2424 5)
(s2425 5)
(s2426 2)
(s2428 4)
(s2429 5)
(s2430 5)
(s2431 2)
(s2433 4)
(s2434 5)
(s2435 5)
(s2436 2)
(s2438 4)
(s2439 5)
(s2440 5)
(s2441 2)
(s2443 4)
(s2444 5)
(s2445 5)
(s2446 2)
(s2448 4)
(s2449 5)
(s2450 5)
(s2451 2)
(s2453 4)
(s2454 5)
(s2455 5)
(s2456 2)
(s2458 4)
(s2459 5)
(s2460 5)
(s2461 2)
(s2463 4)
(s2464 5)
(s2465 5)
(s2466 2)
(s2468 4)
(s2469 5)
(s2470 5)
(s2471 2)
(s2473 4)
(s2474 5)
(s2475 5)
(s2476 2)
(s2478 4)
(s2479 5)
(s2480 5)
(s2481 2)
(s2483 4)
(s2484 5)
(s2485 5)
(s2486 2)
(s2488 4)
(s2489 5)
(s2490 5)
(s2491 2)
(s2493 4)
(s2494 5)
(s2495 5)
(s2496 2)
(s2498 4)
(s2499 5)
(s2500 5)
(s2501 2)
(s2503 4)
(s2504 5)
(s2505 5)
(s2506 2)
(s2508 4)
(s2509 5)
(s2510 5)
(s2511 2)
(s2513 4)
(s2514 5)
(s2515 5)
(s2516 2)
(s2518 4)
(s2519 5)
(s2520 5)
(s2521 2)
(s2523 4)
(s2524 5)
(s2525 5)
(s2526 2)
(s2528 4)
(s2529 5)
(s2530 5)
(s2531 2)
(s2533 4)
(s2534 5)
(s2535 5)
(s2536 2)
(s2538 4)
(s2539 5)
(s2540 5)
(s2541 2)
(s2543 4)
(s2544 5)
(s2545 5)
(s2546 2)
(s2548 4)
(s2549 5)
(s2550 5)
(s2551 2)
(s2553 4)
(s2554 5)
(s2555 5)
(s2556 2)
(s2558 4)
(s2559 5)
(s2560 5)
(s2561 2)
(s2563 4)
(s2564 5)
(s2565 5)
(s2566 2)
(s2568 4)
(s2569 5)
(s2570 5)
(s2571 2)
(s2573 4)
(s2574 5)
(s2575 5)
(s2576 2)
(s2578 4)
(s2579 5)
(s2580 5)
(s2581 2)
(s2583 4)
(s2584 5)
(s2585 5)
(s2586 2)
(s2588 4)
(s2589 5)
(s2590 5)
(s2591 2)
(s2593 4)
(s2594 5)
(s2595 5)
(s2596 2)
(s2598 4)
(s2599 5)
(s2600 5)
(s2601 2)
(s2603 4)
(s2604 5)
(s2605 5)
(s2606 2)
(s2608 4)
(s2609 5)
(s2610 5)
(s2611 2)
(s2613 4)
(s2614 5)
(s2615 5)
(s2616 2)
(s2618 4)
(s2619 5)
(s2620 5)
(s2621 2)
(s2623 4)
(s2624 5)
(s2625 5)
(s2626 2)
(s2628 4)
(s2629 5)
(s2630 5)
(s2631 2)
(s2633 4)
(s2634 5)
(s2635 5)
(s2636 2)
(s2638 4)
(s2639 5)
(s2640 5)
(s2641 2)
(s2643 4)
(s2644 5)
(s2645 5)
(s2646 2)
(s2648 4)
(s2649 5)
(s2650 5)
(s2651 2)
(s2653 4)
(s2654 5)
(s2655 5)
(s2656 2)
(s2658 4)
(s2659 5)
(s2660 5)
(s2661 2)
(s2663 4)
(s2664 5)
(s2665 5)
(s2666 2)
(s2668 4)
(s2669 5)
(s2670 5)
(s2671 2)
(s2673 4)
(s2674 5)
(s2675 5)
(s2676 2)
(s2678 4)
(s2679 5)
(s2680 5)
(s2681 2)
(s2683 4)
(s2684 5)
(s2685 5)
(s2686 2)
(s2688 4)
(s2689 5)
(s2690 5)
(s2691 2)
(s2693 4)
(s2694 5)
(s2695 5)
(s2696 2)
(s2698 4)
(s2699 5)
(s2700 5)
(s2701 2)
(s2703 4)
(s2704 5)
(s2705 5)
(s2706 2)
(s2708 4)
(s2709 5)
(s2710 5)
(s2711 2)
(s2713 4)
(s2714 5)
(s2715 5)
(s2716 2)
(s2718 4)
(s2719 5)
(s2720 5)
(s2721 2)
(s2723 4)
(s2724 5)
(s2725 5)
(s2726 2)
(s2728 4)
(s2729 5)
(s2730 5)
(s2731 2)
(s2733 4)
(s2734 5)
(s2735 5)
(s2736 2)
(s2738 4)
(s2739 5)
(s2740 5)
(s2741 2)
(s2743 4)
(s2744 5)
(s2745 5)
(s2746 2)
(s2748 4)
(s2749 5)
(s2750 5)
(s2751 2)
(s2753 4)
(s2754 5)
(s2755 5)
(s2756 2)
(s2758 4)
(s2759 5)
(s2760 5)
(s2761 2)
(s2763 4)
(s2764 5)
(s2765 5)
(s2766 2)
(s2768 4)
(s2769 5)
(s2770 5)
(s2771 2)
(s2773 4)
(s2774 5)
(s2775 5)
(s2776 2)
(s2778 4)
(s2779 5)
(s2780 5)
(s2781 2)
(s2783 4)
(s2784 5)
(s2785 5)
(s2786 2)
(s2788 4)
(s2789 5)
(s2790 5)
(s2791 2)
(s2793 4)
(s2794 5)
(s2795 5)
(s2796 2)
(s2798 4)
(s2799 5)
(s2800 5)
(s2801 2)
(s2803 4)
(s2804 5)
(s2805 5)
(s2806 2)
(s2808 4)
(s2809 5)
(s2810 5)
(s2811 2)
(s2813 4)
(s2814 5)
(s2815 5)
(s2816 2)
(s2818 4)
(s2819 5)
(s2820 5)
(s2821 2)
(s2823 4)
(s2824 5)
(s2825 5)
(s2826 2)
(s2828 4)
(s2829 5)
(s2830 5)
(s2831 2)
(s2833 4)
(s2834 5)
(s2835 5)
(s2836 2)
(s2838 4)
(s2839 5)
(s2840 5)
(s2841 2)
(s2843 4)
(s2844 5)
(s2845 5)
(s2846 2)
(s2848 4)
(s2849 5)
(s2850 5)
(s2851 2)
(s2853 4)
(s2854 5)
(s2855 5)
(s2856 2)
(s2858 4)
(s2859 5)
(s2860 5)
(s2861 2)
(s2863 4)
(s2864 5)
(s2865 5)
(s2866 2)
(s2868 4)
(s2869 5)
(s2870 5)
(s2871 2)
(s2873 4)
(s2874 5)
(s2875 5)
(s2876 2)
(s2878 4)
(s2879 5)
(s2880 5)
(s2881 2)
(s2883 4)
(s2884 5)
(s2885 5)
(s2886 2)
(s2888 4)
(s2889 5)
(s2890 5)
(s2891 2)
(s2893 4)
(s2894 5)
(s2895 5)
(s2896 2)
(s2898 4)
(s2899 5)
(s2900 5)
(s2901 2)
(s2903 4)
(s2904 5)
(s2905 5)
(s2906 2)
(s2908 4)
(s2909 5)
(s2910 5)
(s2911 2)
(s2913 4)
(s2914 5)
(s2915 5)
(s2916 2)
(s2918 4)
(s2919 5)
(s2920 5)
(s2921 2)
(s2923 4)
(s2924 5)
(s2925 5)
(s2926 2)
(s2928 4)
(s2929 5)
(s2930 5)
(s2931 2)
(s2933 4)
(s2934 5)
(s2935 5)
(s2936 2)
(s2938 4)
(s2939 5)
(s2940 5)
(s2941 2)
(s2943 4)
(s2944 5)
(s2945 5)
(s2946 2)
(s2948 4)
(s2949 5)
(s2950 5)
(s2951 2)
(s2953 4)
(s2954 5)
(s2955 5)
(s2956 2)
(s2958 4)
(s2959 5)
(s2960 5)
(s2961 2)
(s2963 4)
(s2964 5)
(s2965 5)
(s2966 2)
(s2968 4)
(s2969 5)
(s2970 5)
(s2971 2)
(s2973 4)
(s2974 5)
(s2975 5)
(s2976 2)
(s2978 4)
(s2979 5)
(s2980 5)
(s2981 2)
(s2983 4)
(s2984 5)
(s2985 5)
(s2986 2)
(s2988 4)
(s2989 5)
(s2990 5)
(s2991 2)
(s2993 4)
(s2994 5)
(s2995 5)
(s2996 2)
(s2998 4)
(s2999 5)
(s3000 5)
(s3001 2)
(s3003 4)
(s3004 5)
(s3005 5)
(s3006 2)
(s3008 4)
(s3009 5)
(s3010 5)
(s3011 2)
(s3013 4)
(s3014 5)
(s3015 5)
(s3016 2)
(s3018 4)
(s3019 5)
(s3020 5)
(s3021 2)
(s3023 4)
(s3024 5)
(s3025 5)
(s3026 2)
(s3028 4)
(s3029 5)
(s3030 5)
(s3031 2)
(s3033 4)
(s3034 5)
(s3035 5)
(s3036 2)
(s3038 4)
(s3039 5)
(s3040 5)
(s3041 2)
(s3043 4)
(s3044 5)
(s3045 5)
(s3046 2)
(s3048 4)
(s3049 5)
(s3050 5)
(s3051 2)
(s3053 4)
(s3054 5)
(s3055 5)
(s3056 2)
(s3058 4)
(s3059 5)
(s3060 5)
(s3061 2)
(s3063 4)
(s3064 5)
(s3065 5)
(s3066 2)
(s3068 4)
(s3069 5)
(s3070 5)
(s3071 2)
(s3073 4)
(s3074 5)
(s3075 5)
(s3076 2)
(s3078 4)
(s3079 5)
(s3080 5)
(s3081 2)
(s3083 4)
(s3084 5)
(s3085 5)
(s3086 2)
(s3088 4)
(s3089 5)
(s3090 5)
(s3091 2)
(s3093 4)
(s3094 5)
(s3095 5)
(s3096 2)
(s3098 4)
(s3099 5)
(s3100 5)
(s3101 2)
(s3103 4)
(s3104 5)
(s3105 5)
(s3106 2)
(s3108 4)
(s3109 5)
(s3110 5)
(s3111 2)
(s3113 4)
(s3114 5)
(s3115 5)
(s3116 2)
(s3118 4)
(s3119 5)
(s3120 5)
(s3121 2)
(s3123 4)
(s3124 5)
(s3125 5)
(s3126 2)
(s3128 4)
(s3129 5)
(s3130 5)
(s3131 2)
(s3133 4)
(s3134 5)
(s3135 5)
(s3136 2)
(s3138 4)
(s3139 5)
(s3140 5)
(s3141 2)
(s3143 4)
(s3144 5)
(s3145 5)
(s3146 2)
(s3148 4)
(s3149 5)
(s3150 5)
(s3151 2)
(s3153 4)
(s3154 5)
(s3155 5)
(s3156 2)
(s3158 4)
(s3159 5)
(s3160 5)
(s3161 2)
(s3163 4)
(s3164 5)
(s3165 5)
(s3166 2)
(s3168 4)
(s3169 5)
(s3170 5)
(s3171 2)
(s3173 4)
(s3174 5)
(s3175 5)
(s3176 2)
(s3178 4)
(s3179 5)
(s3180 5)
(s3181 2)
(s3183 4)
(s3184 5)
(s3185 5)
(s3186 2)
(s3188 4)
(s3189 5)
(s3190 5)
(s3191 2)
(s3193 4)
(s3194 5)
(s3195 5)
(s3196 2)
(s3198 4)
(s3199 5)
(s3200 5)
(s3201 2)
(s3203 4)
(s3204 5)
(s3205 5)
(s3206 2)
(s3208 4)
(s3209 5)
(s3210 5)
(s3211 2)
(s3213 4)
(s3214 5)
(s3215 5)
(s3216 2)
(s3218 4)
(s3219 5)
(s3220 5)
(s3221 2)
(s3223 4)
(s3224 5)
(s3225 5)
(s3226 2)
(s3228 4)
(s3229 5)
(s3230 5)
(s3231 2)
(s3233 4)
(s3234 5)
(s3235 5)
(s3236 2)
(s3238 4)
(s3239 5)
(s3240 5)
(s3241 2)
(s3243 4)
(s3244 5)
(s3245 5)
(s3246 2)
(s3248 4)
(s3249 5)
(s3250 5)
(s3251 2)
(s3253 4)
(s3254 5)
(s3255 5)
(s3256 2)
(s3258 4)
(s3259 5)
(s3260 5)
(s3261 2)
(s3263 4)
(s3264 5)
(s3265 5)
(s3266 2)
(s3268 4)
(s3269 5)
(s3270 5)
(s3271 2)
(s3273 4)
(s3274 5)
(s3275 5)
(s3276 2)
(s3278 4)
(s3279 5)
(s3280 5)
(s3281 2)
(s3283 4)
(s3284 5)
(s3285 5)
(s3286 2)
(s3288 4)
(s3289 5)
(s3290 5)
(s3291 2)
(s3293 4)
(s3294 5)
(s3295 5)
(s3296 2)
(s3298 4)
(s3299 5)
(s3300 5)
(s3301 2)
(s3303 4)
(s3304 5)
(s3305 5)
(s3306 2)
(s3308 4)
(s3309 5)
(s3310 5)
(s3311 2)
(s3313 4)
(s3314 5)
(s3315 5)
(s3316 2)
(s3318 4)
(s3319 5)
(s3320 5)
(s3321 2)
(s3323 4)
(s3324 5)
(s3325 5)
(s3326 2)
(s3328 4)
(s3329 5)
(s3330 5)
(s3331 2)
(s3333 4)
(s3334 5)
(s3335 5)
(s3336 2)
(s3338 4)
(s3339 5)
(s3340 5)
(s3341 2)
(s3343 4)
(s3344 5)
(s3345 5)
(s3346 2)
(s3348 4)
(s3349 5)
(s3350 5)
(s3351 2)
(s3353 4)
(s3354 5)
(s3355 5)
(s3356 2)
(s3358 4)
(s3359 5)
(s3360 5)
(s3361 2)
(s3363 4)
(s3364 5)
(s3365 5)
(s3366 2)
(s3368 4)
(s3369 5)
(s3370 5)
(s3371 2)
(s3373 4)
(s3374 5)
(s3375 5)
(s3376 2)
(s3378 4)
(s3379 5)
(s3380 5)
(s3381 2)
(s3383 4)
(s3384 5)
(s3385 5)
(s3386 2)
(s3388 4)
(s3389 5)
(s3390 5)
(s3391 2)
(s3393 4)
(s3394 5)
(s3395 5)
(s3396 2)
(s3398 4)
(s3399 5)
(s3400 5)
(s3401 2)
(s3403 4)
(s3404 5)
(s3405 5)
(s3406 2)
(s3408 4)
(s3409 5)
(s3410 5)
(s3411 2)
(s3413 4)
(s3414 5)
(s3415 5)
(s3416 2)
(s3418 4)
(s3419 5)
(s3420 5)
(s3421 2)
(s3423 4)
(s3424 5)
(s3425 5)
(s3426 2)
(s3428 4)
(s3429 5)
(s3430 5)
(s3431 2)
(s3433 4)
(s3434 5)
(s3435 5)
(s3436 2)
(s3438 4)
(s3439 5)
(s3440 5)
(s3441 2)
(s3443 4)
(s3444 5)
(s3445 5)
(s3446 2)
(s3448 4)
(s3449 5)
(s3450 5)
(s3451 2)
(s3453 4)
(s3454 5)
(s3455 5)
(s3456 2)
(s3458 4)
(s3459 5)
(s3460 5)
(s3461 2)
(s3463 4)
(s3464 5)
(s3465 5)
(s3466 2)
(s3468 4)
(s3469 5)
(s3470 5)
(s3471 2)
(s3473 4)
(s3474 5)
(s3475 5)
(s3476 2)
(s3478 4)
(s3479 5)
(s3480 5)
(s3481 2)
(s3483 4)
(s3484 5)
(s3485 5)
(s3486 2)
(s3488 4)
(s3489 5)
(s3490 5)
(s3491 2)
(s3493 4)
(s3494 5)
(s3495 5)
(s3496 2)
(s3498 4)
(s3499 5)
(s3500 5)
(s3501 2)
(s3503 4)
(s3504 5)
(s3505 5)
(s3506 2)
(s3508 4)
(s3509 5)
(s3510 5)
(s3511 2)
(s3513 4)
(s3514 5)
(s3515 5)
(s3516 2)
(s3518 4)
(s3519 5)
(s3520 5)
(s3521 2)
(s3523 4)
(s3524 5)
(s3525 5)
(s3526 2)
(s3528 4)
(s3529 5)
(s3530 5)
(s3531 2)
(s3533 4)
(s3534 5)
(s3535 5)
(s3536 2)
(s3538 4)
(s3539 5)
(s3540 5)
(s3541 2)
(s3543 4)
(s3544 5)
(s3545 5)
(s3546 2)
(s3548 4)
(s3549 5)
(s3550 5)
(s3551 2)
(s3553 4)
(s3554 5)
(s3555 5)
(s3556 2)
(s3558 4)
(s3559 5)
(s3560 5)
(s3561 2)
(s3563 4)
(s3564 5)
(s3565 5)
(s3566 2)
(s3568 4)
(s3569 5)
(s3570 5)
(s3571 2)
(s3573 4)
(s3574 5)
(s3575 5)
(s3576 2)
(s3578 4)
(s3579 5)
(s3580 5)
(s3581 2)
(s3583 4)
(s3584 5)
(s3585 5)
(s3586 2)
(s3588 4)
(s3589 5)
(s3590 5)
(s3591 2)
(s3593 4)
(s3594 5)
(s3595 5)
(s3596 2)
(s3598 4)
(s3599 5)
(s3600 5)
(s3601 2)
(s3603 4)
(s3604 5)
(s3605 5)
(s3606 2)
(s3608 4)
(s3609 5)
(s3610 5)
(s3611 2)
(s3613 4)
(s3614 5)
(s3615 5)
(s3616 2)
(s3618 4)
(s3619 5)
(s3620 5)
(s3621 2)
(s3623 4)
(s3624 5)
(s3625 5)
(s3626 2)
(s3628 4)
(s3629 5)
(s3630 5)
(s3631 2)
(s3633 4)
(s3634 5)
(s3635 5)
(s3636 2)
(s3638 4)
(s3639 5)
(s3640 5)
(s3641 2)
(s3643 4)
(s3644 5)
(s3645 5)
(s3646 2)
(s3648 4)
(s3649 5)
(s3650 5)
(s3651 2)
(s3653 4)
(s3654 5)
(s3655 5)
(s3656 2)
(s3658 4)
(s3659 5)
(s3660 5)
(s3661 2)
(s3663 4)
(s3664 5)
(s3665 5)
(s3666 2)
(s3668 4)
(s3669 5)
(s3670 5)
(s3671 2)
(s3673 4)
(s3674 5)
(s3675 5)
(s3676 2)
(s3678 4)
(s3679 5)
(s3680 5)
(s3681 2)
(s3683 4)
(s3684 5)
(s3685 5)
(s3686 2)
(s3688 4)
(s3689 5)
(s3690 5)
(s3691 2)
(s3693 4)
(s3694 5)
(s3695 5)
(s3696 2)
(s3698 4)
(s3699 5)
(s3700 5)
(s3701 2)
(s3703 4)
(s3704 5)
(s3705 5)
(s3706 2)
(s3708 4)
(s3709 5)
(s3710 5)
(s3711 2)
(s3713 4)
(s3714 5)
(s3715 5)
(s3716 2)
(s3718 4)
(s3719 5)
(s3720 5)
(s3721 2)
(s3723 4)
(s3724 5)
(s3725 5)
(s3726 2)
(s3728 4)
(s3729 5)
(s3730 5)
(s3731 2)
(s3733 4)
(s3734 5)
(s3735 5)
(s3736 2)
(s3738 4)
(s3739 5)
(s3740 5)
(s3741 2)
(s3743 4)
(s3744 5)
(s3745 5)
(s3746 2)
(s3748 4)
(s3749 5)
(s3750 5)
(s3751 2)
(s3753 4)
(s3754 5)
(s3755 5)
(s3756 2)
(s3758 4)
(s3759 5)
(s3760 5)
(s3761 2)
(s3763 4)
(s3764 5)
(s3765 5)
(s3766 2)
(s3768 4)
(s3769 5)
(s3770 5)
(s3771 2)
(s3773 4)
(s3774 5)
(s3775 5)
(s3776 2)
(s3778 4)
(s3779 5)
(s3780 5)
(s3781 2)
(s3783 4)
(s3784 5)
(s3785 5)
(s3786 2)
(s3788 4)
(s3789 5)
(s3790 5)
(s3791 2)
(s3793 4)
(s3794 5)
(s3795 5)
(s3796 2)
(s3798 4)
(s3799 5)
(s3800 5)
(s3801 2)
(s3803 4)
(s3804 5)
(s3805 5)
(s3806 2)
(s3808 4)
(s3809 5)
(s3810 5)
(s3811 2)
(s3813 4)
(s3814 5)
(s3815 5)
(s3816 2)
(s3818 4)
(s3819 5)
(s3820 5)
(s3821 2)
(s3823 4)
(s3824 5)
(s3825 5)
(s3826 2)
(s3828 4)
(s3829 5)
(s3830 5)
(s3831 2)
(s3833 4)
(s3834 5)
(s3835 5)
(s3836 2)
(s3838 4)
(s3839 5)
(s3840 5)
(s3841 2)
(s3843 4)
(s3844 5)
(s3845 5)
(s3846 2)
(s3848 4)
(s3849 5)
(s3850 5)
(s3851 2)
(s3853 4)
(s3854 5)
(s3855 5)
(s3856 2)
(s3858 4)
(s3859 5)
(s3860 5)
(s3861 2)
(s3863 4)
(s3864 5)
(s3865 5)
(s3866 2)
(s3868 4)
(s3869 5)
(s3870 5)
(s3871 2)
(s3873 4)
(s3874 5)
(s3875 5)
(s3876 2)
(s3878 4)
(s3879 5)
(s3880 5)
(s3881 2)
(s3883 4)
(s3884 5)
(s3885 5)
(s3886 2)
(s3888 4)
(s3889 5)
(s3890 5)
(s3891 2)
(s3893 4)
(s3894 5)
(s3895 5)
(s3896 2)
(s3898 4)
(s3899 5)
(s3900 5)
(s3901 2)
(s3903 4)
(s3904 5)
(s3905 5)
(s3906 2)
(s3908 4)
(s3909 5)
(s3910 5)
(s3911 2)
(s3913 4)
(s3914 5)
(s3915 5)
(s3916 2)
(s3918 4)
(s3919 5)
(s3920 5)
(s3921 2)
(s3923 4)
(s3924 5)
(s3925 5)
(s3926 2)
(s3928 4)
(s3929 5)
(s3930 5)
(s3931 2)
(s3933 4)
(s3934 5)
(s3935 5)
(s3936 2)
(s3938 4)
(s3939 5)
(s3940 5)
(s3941 2)
(s3943 4)
(s3944 5)
(s3945 5)
(s3946 2)
(s3948 4)
(s3949 5)
(s3950 5)
(s3951 2)
(s3953 4)
(s3954 5)
(s3955 5)
(s3956 2)
(s3958 4)
(s3959 5)
(s3960 5)
(s3961 2)
(s3963 4)
(s3964 5)
(s3965 5)
(s3966 2)
(s3968 4)
(s3969 5)
(s3970 5)
(s3971 2)
(s3973 4)
(s3974 5)
(s3975 5)
(s3976 2)
(s3978 4)
(s3979 5)
(s3980 5)
(s3981 2)
(s3983 4)
(s3984 5)
(s3985 5)
(s3986 2)
(s3988 4)
(s3989 5)
(s3990 5)
(s3991 2)
(s3993 4)
(s3994 5)
(s3995 5)
(s3996 2)
(s3998 4)
(s3999 5)
(s4000 5)
(s4001 2)
(s4003 4)
(s4004 5)
(s4005 5)
(s4006 2)
(s4008 timeout
4)
(s4009 org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30094 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 64203ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 64249ms
Finished structural reductions in LTL mode , in 1 iterations and 113486 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Stuttering acceptance computed with spot in 166 ms :[(AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1))]
Running random walk in product with property : JoinFreeModules-PT-1000-LTLCardinality-04
Product exploration timeout after 61720 steps with 20573 reset in 10002 ms.
Product exploration timeout after 57000 steps with 19000 reset in 10002 ms.
Computed a total of 0 stabilizing places and 0 stable transitions
Computed a total of 0 stabilizing places and 0 stable transitions
Knowledge obtained : [(AND p0 p1)]
False Knowledge obtained : []
Knowledge based reduction with 1 factoid took 83 ms. Reduced automaton from 4 states, 4 edges and 2 AP (stutter sensitive) to 4 states, 4 edges and 2 AP (stutter sensitive).
Stuttering acceptance computed with spot in 134 ms :[(AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1))]
RANDOM walk for 40563 steps (8 resets) in 1921 ms. (21 steps per ms) remains 3/3 properties
BEST_FIRST walk for 40004 steps (8 resets) in 2482 ms. (16 steps per ms) remains 3/3 properties
BEST_FIRST walk for 40004 steps (8 resets) in 2002 ms. (19 steps per ms) remains 3/3 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1938 ms. (20 steps per ms) remains 2/3 properties
[2024-05-23 23:02:23] [INFO ] Invariant cache hit.
[2024-05-23 23:02:23] [INFO ] State equation strengthened by 1000 read => feed constraints.
At refinement iteration 0 (INCLUDED_ONLY) 0/3 variables, 0/0 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 1 (OVERLAPS) 12/15 variables, 3/3 constraints. Problems are: Problem set: 0 solved, 2 unsolved
[2024-05-23 23:02:23] [INFO ] Deduced a trap composed of 3 places in 19 ms of which 0 ms to minimize.
At refinement iteration 2 (INCLUDED_ONLY) 0/15 variables, 1/4 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 3 (INCLUDED_ONLY) 0/15 variables, 0/4 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 4 (OVERLAPS) 24/39 variables, 15/19 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 5 (INCLUDED_ONLY) 0/39 variables, 3/22 constraints. Problems are: Problem set: 0 solved, 2 unsolved
All remaining problems are real, not stopping.
At refinement iteration 6 (INCLUDED_ONLY) 0/39 variables, 0/22 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 7 (OVERLAPS) 0/39 variables, 0/22 constraints. Problems are: Problem set: 0 solved, 2 unsolved
No progress, stopping.
After SMT solving in domain Real declared 39/13001 variables, and 22 constraints, problems are : Problem set: 0 solved, 2 unsolved in 126 ms.
Refiners :[Positive P Invariants (semi-flows): 3/1000 constraints, State Equation: 15/5000 constraints, ReadFeed: 3/1000 constraints, PredecessorRefiner: 2/2 constraints, Known Traps: 1/1 constraints]
Escalating to Integer solving :Problem set: 0 solved, 2 unsolved
At refinement iteration 0 (INCLUDED_ONLY) 0/3 variables, 0/0 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 1 (OVERLAPS) 12/15 variables, 3/3 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 2 (INCLUDED_ONLY) 0/15 variables, 1/4 constraints. Problems are: Problem set: 0 solved, 2 unsolved
[2024-05-23 23:02:23] [INFO ] Deduced a trap composed of 3 places in 24 ms of which 0 ms to minimize.
At refinement iteration 3 (INCLUDED_ONLY) 0/15 variables, 1/5 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 4 (INCLUDED_ONLY) 0/15 variables, 0/5 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 5 (OVERLAPS) 24/39 variables, 15/20 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 6 (INCLUDED_ONLY) 0/39 variables, 3/23 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 7 (INCLUDED_ONLY) 0/39 variables, 2/25 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 8 (INCLUDED_ONLY) 0/39 variables, 0/25 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 9 (OVERLAPS) 0/39 variables, 0/25 constraints. Problems are: Problem set: 0 solved, 2 unsolved
No progress, stopping.
After SMT solving in domain Int declared 39/13001 variables, and 25 constraints, problems are : Problem set: 0 solved, 2 unsolved in 147 ms.
Refiners :[Positive P Invariants (semi-flows): 3/1000 constraints, State Equation: 15/5000 constraints, ReadFeed: 3/1000 constraints, PredecessorRefiner: 2/2 constraints, Known Traps: 2/2 constraints]
After SMT, in 303ms problems are : Problem set: 0 solved, 2 unsolved
Finished Parikh walk after 17 steps, including 0 resets, run visited all 2 properties in 2 ms. (steps per millisecond=8 )
Finished Parikh walk after 0 steps, including 0 resets, run visited all 0 properties in 1 ms. (steps per millisecond=0 )
Parikh walk visited 2 properties in 6 ms.
Knowledge obtained : [(AND p0 p1)]
False Knowledge obtained : [(F (NOT p0)), (F (NOT p1)), (F (NOT (OR p0 p1)))]
Knowledge based reduction with 1 factoid took 209 ms. Reduced automaton from 4 states, 4 edges and 2 AP (stutter sensitive) to 4 states, 4 edges and 2 AP (stutter sensitive).
Stuttering acceptance computed with spot in 134 ms :[(AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1))]
Stuttering acceptance computed with spot in 151 ms :[(AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1))]
Support contains 3 out of 5000 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 214 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:02:24] [INFO ] Invariant cache hit.
[2024-05-23 23:02:24] [INFO ] State equation strengthened by 1000 read => feed constraints.
Error getting values : (error "ParserException while parsing response: ((s0 5.0)
(s1 2.0)
(s3 4.0)
(s4 5.0)
(s5 5.0)
(s6 2.0)
(s8 4.0)
(s9 5.0)
(s10 5.0)
(s11 2.0)
(s13 4.0)
(s14 5.0)
(s15 5.0)
(s16 2.0)
(s18 4.0)
(s19 5.0)
(s20 5.0)
(s21 2.0)
(s23 4.0)
(s24 5.0)
(s25 5.0)
(s26 2.0)
(s28 4.0)
(s29 5.0)
(s30 5.0)
(s31 2.0)
(s33 4.0)
(s34 5.0)
(s35 5.0)
(s36 2.0)
(s38 4.0)
(s39 5.0)
(s40 5.0)
(s41 2.0)
(s43 4.0)
(s44 5.0)
(s45 5.0)
(s46 2.0)
(s48 4.0)
(s49 5.0)
(s50 5.0)
(s51 2.0)
(s53 4.0)
(s54 5.0)
(s55 5.0)
(s56 2.0)
(s58 4.0)
(s59 5.0)
(s60 5.0)
(s61 2.0)
(s63 4.0)
(s64 5.0)
(s65 5.0)
(s66 2.0)
(s68 4.0)
(s69 5.0)
(s70 5.0)
(s71 2.0)
(s73 4.0)
(s74 5.0)
(s75 5.0)
(s76 2.0)
(s78 4.0)
(s79 5.0)
(s80 5.0)
(s81 2.0)
(s83 4.0)
(s84 5.0)
(s85 5.0)
(s86 2.0)
(s88 4.0)
(s89 5.0)
(s90 5.0)
(s91 2.0)
(s93 4.0)
(s94 5.0)
(s95 5.0)
(s96 2.0)
(s98 4.0)
(s99 5.0)
(s100 5.0)
(s101 2.0)
(s103 4.0)
(s104 5.0)
(s105 5.0)
(s106 2.0)
(s108 4.0)
(s109 5.0)
(s110 5.0)
(s111 2.0)
(s113 4.0)
(s114 5.0)
(s115 5.0)
(s116 2.0)
(s118 4.0)
(s119 5.0)
(s120 5.0)
(s121 2.0)
(s123 4.0)
(s124 5.0)
(s125 5.0)
(s126 2.0)
(s128 4.0)
(s129 5.0)
(s130 5.0)
(s131 2.0)
(s133 4.0)
(s134 5.0)
(s135 5.0)
(s136 2.0)
(s138 4.0)
(s139 5.0)
(s140 5.0)
(s141 2.0)
(s143 4.0)
(s144 5.0)
(s145 5.0)
(s146 2.0)
(s148 4.0)
(s149 5.0)
(s150 5.0)
(s151 2.0)
(s153 4.0)
(s154 5.0)
(s155 5.0)
(s156 2.0)
(s158 4.0)
(s159 5.0)
(s160 5.0)
(s161 2.0)
(s163 4.0)
(s164 5.0)
(s165 5.0)
(s166 2.0)
(s168 4.0)
(s169 5.0)
(s170 5.0)
(s171 2.0)
(s173 4.0)
(s174 5.0)
(s175 5.0)
(s176 2.0)
(s178 4.0)
(s179 5.0)
(s180 5.0)
(s181 2.0)
(s183 4.0)
(s184 5.0)
(s185 5.0)
(s186 2.0)
(s188 4.0)
(s189 5.0)
(s190 5.0)
(s191 2.0)
(s193 4.0)
(s194 5.0)
(s195 5.0)
(s196 2.0)
(s198 4.0)
(s199 5.0)
(s200 5.0)
(s201 2.0)
(s203 4.0)
(s204 5.0)
(s205 5.0)
(s206 2.0)
(s208 4.0)
(s209 5.0)
(s210 5.0)
(s211 2.0)
(s213 4.0)
(s214 5.0)
(s215 5.0)
(s216 2.0)
(s218 4.0)
(s219 5.0)
(s220 5.0)
(s221 2.0)
(s223 4.0)
(s224 5.0)
(s225 5.0)
(s226 2.0)
(s228 4.0)
(s229 5.0)
(s230 5.0)
(s231 2.0)
(s233 4.0)
(s234 5.0)
(s235 5.0)
(s236 2.0)
(s238 4.0)
(s239 5.0)
(s240 5.0)
(s241 2.0)
(s243 4.0)
(s244 5.0)
(s245 5.0)
(s246 2.0)
(s248 4.0)
(s249 5.0)
(s250 5.0)
(s251 2.0)
(s253 4.0)
(s254 5.0)
(s255 5.0)
(s256 2.0)
(s258 4.0)
(s259 5.0)
(s260 5.0)
(s261 2.0)
(s263 4.0)
(s264 5.0)
(s265 5.0)
(s266 2.0)
(s268 4.0)
(s269 5.0)
(s270 5.0)
(s271 2.0)
(s273 4.0)
(s274 5.0)
(s275 5.0)
(s276 2.0)
(s278 4.0)
(s279 5.0)
(s280 5.0)
(s281 2.0)
(s283 4.0)
(s284 5.0)
(s285 5.0)
(s286 2.0)
(s288 4.0)
(s289 5.0)
(s290 5.0)
(s291 2.0)
(s293 4.0)
(s294 5.0)
(s295 5.0)
(s296 2.0)
(s298 4.0)
(s299 5.0)
(s300 5.0)
(s301 2.0)
(s303 4.0)
(s304 5.0)
(s305 5.0)
(s306 2.0)
(s308 4.0)
(s309 5.0)
(s310 5.0)
(s311 2.0)
(s313 4.0)
(s314 5.0)
(s315 5.0)
(s316 2.0)
(s318 4.0)
(s319 5.0)
(s320 5.0)
(s321 2.0)
(s323 4.0)
(s324 5.0)
(s325 5.0)
(s326 2.0)
(s328 4.0)
(s329 5.0)
(s330 5.0)
(s331 2.0)
(s333 4.0)
(s334 5.0)
(s335 5.0)
(s336 2.0)
(s338 4.0)
(s339 5.0)
(s340 5.0)
(s341 2.0)
(s343 4.0)
(s344 5.0)
(s345 5.0)
(s346 2.0)
(s348 4.0)
(s349 5.0)
(s350 5.0)
(s351 2.0)
(s353 4.0)
(s354 5.0)
(s355 5.0)
(s356 2.0)
(s358 4.0)
(s359 5.0)
(s360 5.0)
(s361 2.0)
(s363 4.0)
(s364 5.0)
(s365 5.0)
(s366 2.0)
(s368 4.0)
(s369 5.0)
(s370 5.0)
(s371 2.0)
(s373 4.0)
(s374 5.0)
(s375 5.0)
(s376 2.0)
(s378 4.0)
(s379 5.0)
(s380 5.0)
(s381 2.0)
(s383 4.0)
(s384 5.0)
(s385 5.0)
(s386 2.0)
(s388 4.0)
(s389 5.0)
(s390 5.0)
(s391 2.0)
(s393 4.0)
(s394 5.0)
(s395 5.0)
(s396 2.0)
(s398 4.0)
(s399 5.0)
(s400 5.0)
(s401 2.0)
(s403 4.0)
(s404 5.0)
(s405 5.0)
(s406 2.0)
(s408 4.0)
(s409 5.0)
(s410 5.0)
(s411 2.0)
(s413 4.0)
(s414 5.0)
(s415 5.0)
(s416 2.0)
(s418 4.0)
(s419 5.0)
(s420 5.0)
(s421 2.0)
(s423 4.0)
(s424 5.0)
(s425 5.0)
(s426 2.0)
(s428 4.0)
(s429 5.0)
(s430 5.0)
(s431 2.0)
(s433 4.0)
(s434 5.0)
(s435 5.0)
(s436 2.0)
(s438 4.0)
(s439 5.0)
(s440 5.0)
(s441 2.0)
(s443 4.0)
(s444 5.0)
(s445 5.0)
(s446 2.0)
(s448 4.0)
(s449 5.0)
(s450 5.0)
(s451 2.0)
(s453 4.0)
(s454 5.0)
(s455 5.0)
(s456 2.0)
(s458 4.0)
(s459 5.0)
(s460 5.0)
(s461 2.0)
(s463 4.0)
(s464 5.0)
(s465 5.0)
(s466 2.0)
(s468 4.0)
(s469 5.0)
(s470 5.0)
(s471 2.0)
(s473 4.0)
(s474 5.0)
(s475 5.0)
(s476 2.0)
(s478 4.0)
(s479 5.0)
(s480 5.0)
(s481 2.0)
(s483 4.0)
(s484 5.0)
(s485 5.0)
(s486 2.0)
(s488 4.0)
(s489 5.0)
(s490 5.0)
(s491 2.0)
(s493 4.0)
(s494 5.0)
(s495 5.0)
(s496 2.0)
(s498 4.0)
(s499 5.0)
(s500 5.0)
(s501 2.0)
(s503 4.0)
(s504 5.0)
(s505 5.0)
(s506 2.0)
(s508 4.0)
(s509 5.0)
(s510 5.0)
(s511 2.0)
(s513 4.0)
(s514 5.0)
(s515 5.0)
(s516 2.0)
(s518 4.0)
(s519 5.0)
(s520 5.0)
(s521 2.0)
(s523 4.0)
(s524 5.0)
(s525 5.0)
(s526 2.0)
(s528 4.0)
(s529 5.0)
(s530 5.0)
(s531 2.0)
(s533 4.0)
(s534 5.0)
(s535 5.0)
(s536 2.0)
(s538 4.0)
(s539 5.0)
(s540 5.0)
(s541 2.0)
(s543 4.0)
(s544 5.0)
(s545 5.0)
(s546 2.0)
(s548 4.0)
(s549 5.0)
(s550 5.0)
(s551 2.0)
(s553 4.0)
(s554 5.0)
(s555 5.0)
(s556 2.0)
(s558 4.0)
(s559 5.0)
(s560 5.0)
(s561 2.0)
(s563 4.0)
(s564 5.0)
(s565 5.0)
(s566 2.0)
(s568 4.0)
(s569 5.0)
(s570 5.0)
(s571 2.0)
(s573 4.0)
(s574 5.0)
(s575 5.0)
(s576 2.0)
(s578 4.0)
(s579 5.0)
(s580 5.0)
(s581 2.0)
(s583 4.0)
(s584 5.0)
(s585 5.0)
(s586 2.0)
(s588 4.0)
(s589 5.0)
(s590 5.0)
(s591 2.0)
(s593 4.0)
(s594 5.0)
(s595 5.0)
(s596 2.0)
(s598 4.0)
(s599 5.0)
(s600 5.0)
(s601 2.0)
(s603 4.0)
(s604 5.0)
(s605 5.0)
(s606 2.0)
(s608 4.0)
(s609 5.0)
(s610 5.0)
(s611 2.0)
(s613 4.0)
(s614 5.0)
(s615 5.0)
(s616 2.0)
(s618 4.0)
(s619 5.0)
(s620 5.0)
(s621 2.0)
(s623 4.0)
(s624 5.0)
(s625 5.0)
(s626 2.0)
(s628 4.0)
(s629 5.0)
(s630 5.0)
(s631 2.0)
(s633 4.0)
(s634 5.0)
(s635 5.0)
(s636 2.0)
(s638 4.0)
(s639 5.0)
(s640 5.0)
(s641 2.0)
(s643 4.0)
(s644 5.0)
(s645 5.0)
(s646 2.0)
(s648 4.0)
(s649 5.0)
(s650 5.0)
(s651 2.0)
(s653 4.0)
(s654 5.0)
(s655 5.0)
(s656 2.0)
(s658 4.0)
(s659 5.0)
(s660 5.0)
(s661 2.0)
(s663 4.0)
(s664 5.0)
(s665 5.0)
(s666 2.0)
(s668 4.0)
(s669 5.0)
(s670 5.0)
(s671 2.0)
(s673 4.0)
(s674 5.0)
(s675 5.0)
(s676 2.0)
(s678 4.0)
(s679 5.0)
(s680 5.0)
(s681 2.0)
(s683 4.0)
(s684 5.0)
(s685 5.0)
(s686 2.0)
(s688 4.0)
(s689 5.0)
(s690 5.0)
(s691 2.0)
(s693 4.0)
(s694 5.0)
(s695 5.0)
(s696 2.0)
(s698 4.0)
(s699 5.0)
(s700 5.0)
(s701 2.0)
(s703 4.0)
(s704 5.0)
(s705 5.0)
(s706 2.0)
(s708 4.0)
(s709 5.0)
(s710 5.0)
(s711 2.0)
(s713 4.0)
(s714 5.0)
(s715 5.0)
(s716 2.0)
(s718 4.0)
(s719 5.0)
(s720 5.0)
(s721 2.0)
(s723 4.0)
(s724 5.0)
(s725 5.0)
(s726 2.0)
(s728 4.0)
(s729 5.0)
(s730 5.0)
(s731 2.0)
(s733 4.0)
(s734 5.0)
(s735 5.0)
(s736 2.0)
(s738 4.0)
(s739 5.0)
(s740 5.0)
(s741 2.0)
(s743 4.0)
(s744 5.0)
(s745 5.0)
(s746 2.0)
(s748 4.0)
(s749 5.0)
(s750 5.0)
(s751 2.0)
(s753 4.0)
(s754 5.0)
(s755 5.0)
(s756 2.0)
(s758 4.0)
(s759 5.0)
(s760 5.0)
(s761 2.0)
(s763 4.0)
(s764 5.0)
(s765 5.0)
(s766 2.0)
(s768 4.0)
(s769 5.0)
(s770 5.0)
(s771 2.0)
(s773 4.0)
(s774 5.0)
(s775 5.0)
(s776 2.0)
(s778 4.0)
(s779 5.0)
(s780 5.0)
(s781 2.0)
(s783 4.0)
(s784 5.0)
(s785 5.0)
(s786 2.0)
(s788 4.0)
(s789 5.0)
(s790 5.0)
(s791 2.0)
(s793 4.0)
(s794 5.0)
(s795 5.0)
(s796 2.0)
(s798 4.0)
(s799 5.0)
(s800 5.0)
(s801 2.0)
(s803 4.0)
(s804 5.0)
(s805 5.0)
(s806 2.0)
(s808 4.0)
(s809 5.0)
(s810 5.0)
(s811 2.0)
(s813 4.0)
(s814 5.0)
(s815 5.0)
(s816 2.0)
(s818 4.0)
(s819 5.0)
(s820 5.0)
(s821 2.0)
(s823 4.0)
(s824 5.0)
(s825 5.0)
(s826 2.0)
(s828 4.0)
(s829 5.0)
(s830 5.0)
(s831 2.0)
(s833 4.0)
(s834 5.0)
(s835 5.0)
(s836 2.0)
(s838 4.0)
(s839 5.0)
(s840 5.0)
(s841 2.0)
(s843 4.0)
(s844 5.0)
(s845 5.0)
(s846 2.0)
(s848 4.0)
(s849 5.0)
(s850 5.0)
(s851 2.0)
(s853 4.0)
(s854 5.0)
(s855 5.0)
(s856 2.0)
(s858 4.0)
(s859 5.0)
(s860 5.0)
(s861 2.0)
(s863 4.0)
(s864 5.0)
(s865 5.0)
(s866 2.0)
(s868 4.0)
(s869 5.0)
(s870 5.0)
(s871 2.0)
(s873 4.0)
(s874 5.0)
(s875 5.0)
(s876 2.0)
(s878 4.0)
(s879 5.0)
(s880 5.0)
(s881 2.0)
(s883 4.0)
(s884 5.0)
(s885 5.0)
(s886 2.0)
(s888 4.0)
(s889 5.0)
(s890 5.0)
(s891 2.0)
(s893 4.0)
(s894 5.0)
(s895 5.0)
(s896 2.0)
(s898 4.0)
(s899 5.0)
(s900 5.0)
(s901 2.0)
(s903 4.0)
(s904 5.0)
(s905 5.0)
(s906 2.0)
(s908 4.0)
(s909 5.0)
(s910 5.0)
(s911 2.0)
(s913 4.0)
(s914 5.0)
(s915 5.0)
(s916 2.0)
(s918 4.0)
(s919 5.0)
(s920 5.0)
(s921 2.0)
(s923 4.0)
(s924 5.0)
(s925 5.0)
(s926 2.0)
(s928 4.0)
(s929 5.0)
(s930 5.0)
(s931 2.0)
(s933 4.0)
(s934 5.0)
(s935 5.0)
(s936 2.0)
(s938 4.0)
(s939 5.0)
(s940 5.0)
(s941 2.0)
(s943 4.0)
(s944 5.0)
(s945 5.0)
(s946 2.0)
(s948 4.0)
(s949 5.0)
(s950 5.0)
(s951 2.0)
(s953 4.0)
(s954 5.0)
(s955 5.0)
(s956 2.0)
(s958 4.0)
(s959 5.0)
(s960 5.0)
(s961 2.0)
(s963 4.0)
(s964 5.0)
(s965 5.0)
(s966 2.0)
(s968 4.0)
(s969 5.0)
(s970 5.0)
(s971 2.0)
(s973 4.0)
(s974 5.0)
(s975 5.0)
(s976 2.0)
(s978 4.0)
(s979 5.0)
(s980 5.0)
(s981 2.0)
(s983 4.0)
(s984 5.0)
(s985 5.0)
(s986 2.0)
(s988 4.0)
(s989 5.0)
(s990 5.0)
(s991 2.0)
(s993 4.0)
(s994 5.0)
(s995 5.0)
(s996 2.0)
(s998 4.0)
(s999 5.0)
(s1000 5.0)
(s1001 2.0)
(s1003 4.0)
(s1004 5.0)
(s1005 5.0)
(s1006 2.0)
(s1008 4.0)
(s1009 5.0)
(s1010 5.0)
(s1011 2.0)
(s1013 4.0)
(s1014 5.0)
(s1015 5.0)
(s1016 2.0)
(s1018 4.0)
(s1019 5.0)
(s1020 5.0)
(s1021 2.0)
(s1023 4.0)
(s1024 5.0)
(s1025 5.0)
(s1026 2.0)
(s1028 4.0)
(s1029 5.0)
(s1030 5.0)
(s1031 2.0)
(s1033 4.0)
(s1034 5.0)
(s1035 5.0)
(s1036 2.0)
(s1038 4.0)
(s1039 5.0)
(s1040 5.0)
(s1041 2.0)
(s1043 4.0)
(s1044 5.0)
(s1045 5.0)
(s1046 2.0)
(s1048 4.0)
(s1049 5.0)
(s1050 5.0)
(s1051 2.0)
(s1053 4.0)
(s1054 5.0)
(s1055 5.0)
(s1056 2.0)
(s1058 4.0)
(s1059 5.0)
(s1060 5.0)
(s1061 2.0)
(s1063 4.0)
(s1064 5.0)
(s1065 5.0)
(s1066 2.0)
(s1068 4.0)
(s1069 5.0)
(s1070 5.0)
(s1071 2.0)
(s1073 4.0)
(s1074 5.0)
(s1075 5.0)
(s1076 2.0)
(s1078 4.0)
(s1079 5.0)
(s1080 5.0)
(s1081 2.0)
(s1083 4.0)
(s1084 5.0)
(s1085 5.0)
(s1086 2.0)
(s1088 4.0)
(s1089 5.0)
(s1090 5.0)
(s1091 2.0)
(s1093 4.0)
(s1094 5.0)
(s1095 5.0)
(s1096 2.0)
(s1098 4.0)
(s1099 5.0)
(s1100 5.0)
(s1101 2.0)
(s1103 4.0)
(s1104 5.0)
(s1105 5.0)
(s1106 2.0)
(s1108 4.0)
(s1109 5.0)
(s1110 5.0)
(s1111 2.0)
(s1113 4.0)
(s1114 5.0)
(s1115 5.0)
(s1116 2.0)
(s1118 4.0)
(s1119 5.0)
(s1120 5.0)
(s1121 2.0)
(s1123 4.0)
(s1124 5.0)
(s1125 5.0)
(s1126 2.0)
(s1128 4.0)
(s1129 5.0)
(s1130 5.0)
(s1131 2.0)
(s1133 4.0)
(s1134 5.0)
(s1135 5.0)
(s1136 2.0)
(s1138 4.0)
(s1139 5.0)
(s1140 5.0)
(s1141 2.0)
(s1143 4.0)
(s1144 5.0)
(s1145 5.0)
(s1146 2.0)
(s1148 4.0)
(s1149 5.0)
(s1150 5.0)
(s1151 2.0)
(s1153 4.0)
(s1154 5.0)
(s1155 5.0)
(s1156 2.0)
(s1158 4.0)
(s1159 5.0)
(s1160 5.0)
(s1161 2.0)
(s1163 4.0)
(s1164 5.0)
(s1165 5.0)
(s1166 2.0)
(s1168 4.0)
(s1169 5.0)
(s1170 5.0)
(s1171 2.0)
(s1173 4.0)
(s1174 5.0)
(s1175 5.0)
(s1176 2.0)
(s1178 4.0)
(s1179 5.0)
(s1180 5.0)
(s1181 2.0)
(s1183 4.0)
(s1184 5.0)
(s1185 5.0)
(s1186 2.0)
(s1188 4.0)
(s1189 5.0)
(s1190 5.0)
(s1191 2.0)
(s1193 4.0)
(s1194 5.0)
(s1195 5.0)
(s1196 2.0)
(s1198 4.0)
(s1199 5.0)
(s1200 5.0)
(s1201 2.0)
(s1203 4.0)
(s1204 5.0)
(s1205 5.0)
(s1206 2.0)
(s1208 4.0)
(s1209 5.0)
(s1210 5.0)
(s1211 2.0)
(s1213 4.0)
(s1214 5.0)
(s1215 5.0)
(s1216 2.0)
(s1218 4.0)
(s1219 5.0)
(s1220 5.0)
(s1221 2.0)
(s1223 4.0)
(s1224 5.0)
(s1225 5.0)
(s1226 2.0)
(s1228 4.0)
(s1229 5.0)
(s1230 5.0)
(s1231 2.0)
(s1233 4.0)
(s1234 5.0)
(s1235 5.0)
(s1236 2.0)
(s1238 4.0)
(s1239 5.0)
(s1240 5.0)
(s1241 2.0)
(s1243 4.0)
(s1244 5.0)
(s1245 5.0)
(s1246 2.0)
(s1248 4.0)
(s1249 5.0)
(s1250 5.0)
(s1251 2.0)
(s1253 4.0)
(s1254 5.0)
(s1255 5.0)
(s1256 2.0)
(s1258 4.0)
(s1259 5.0)
(s1260 5.0)
(s1261 2.0)
(s1263 4.0)
(s1264 5.0)
(s1265 5.0)
(s1266 2.0)
(s1268 4.0)
(s1269 5.0)
(s1270 5.0)
(s1271 2.0)
(s1273 4.0)
(s1274 5.0)
(s1275 5.0)
(s1276 2.0)
(s1278 4.0)
(s1279 5.0)
(s1280 5.0)
(s1281 2.0)
(s1283 4.0)
(s1284 5.0)
(s1285 5.0)
(s1286 2.0)
(s1288 4.0)
(s1289 5.0)
(s1290 5.0)
(s1291 2.0)
(s1293 4.0)
(s1294 5.0)
(s1295 5.0)
(s1296 2.0)
(s1298 4.0)
(s1299 5.0)
(s1300 5.0)
(s1301 2.0)
(s1303 4.0)
(s1304 5.0)
(s1305 5.0)
(s1306 2.0)
(s1308 4.0)
(s1309 5.0)
(s1310 5.0)
(s1311 2.0)
(s1313 4.0)
(s1314 5.0)
(s1315 5.0)
(s1316 2.0)
(s1318 4.0)
(s1319 5.0)
(s1320 5.0)
(s1321 2.0)
(s1323 4.0)
(s1324 5.0)
(s1325 5.0)
(s1326 2.0)
(s1328 4.0)
(s1329 5.0)
(s1330 5.0)
(s1331 2.0)
(s1333 4.0)
(s1334 5.0)
(s1335 5.0)
(s1336 2.0)
(s1338 4.0)
(s1339 5.0)
(s1340 5.0)
(s1341 2.0)
(s1343 4.0)
(s1344 5.0)
(s1345 5.0)
(s1346 2.0)
(s1348 4.0)
(s1349 5.0)
(s1350 5.0)
(s1351 2.0)
(s1353 4.0)
(s1354 5.0)
(s1355 5.0)
(s1356 2.0)
(s1358 4.0)
(s1359 5.0)
(s1360 5.0)
(s1361 2.0)
(s1363 4.0)
(s1364 5.0)
(s1365 5.0)
(s1366 2.0)
(s1368 4.0)
(s1369 5.0)
(s1370 5.0)
(s1371 2.0)
(s1373 4.0)
(s1374 5.0)
(s1375 5.0)
(s1376 2.0)
(s1378 4.0)
(s1379 5.0)
(s1380 5.0)
(s1381 2.0)
(s1383 4.0)
(s1384 5.0)
(s1385 5.0)
(s1386 2.0)
(s1388 4.0)
(s1389 5.0)
(s1390 5.0)
(s1391 2.0)
(s1393 4.0)
(s1394 5.0)
(s1395 5.0)
(s1396 2.0)
(s1398 4.0)
(s1399 5.0)
(s1400 5.0)
(s1401 2.0)
(s1403 4.0)
(s1404 5.0)
(s1405 5.0)
(s1406 2.0)
(s1408 4.0)
(s1409 5.0)
(s1410 5.0)
(s1411 2.0)
(s1413 4.0)
(s1414 5.0)
(s1415 5.0)
(s1416 2.0)
(s1418 4.0)
(s1419 5.0)
(s1420 5.0)
(s1421 2.0)
(s1423 4.0)
(s1424 5.0)
(s1425 5.0)
(s1426 2.0)
(s1428 4.0)
(s1429 5.0)
(s1430 5.0)
(s1431 2.0)
(s1433 4.0)
(s1434 5.0)
(s1435 5.0)
(s1436 2.0)
(s1438 4.0)
(s1439 5.0)
(s1440 5.0)
(s1441 2.0)
(s1443 4.0)
(s1444 5.0)
(s1445 5.0)
(s1446 2.0)
(s1448 4.0)
(s1449 5.0)
(s1450 5.0)
(s1451 2.0)
(s1453 4.0)
(s1454 5.0)
(s1455 5.0)
(s1456 2.0)
(s1458 4.0)
(s1459 5.0)
(s1460 5.0)
(s1461 2.0)
(s1463 4.0)
(s1464 5.0)
(s1465 5.0)
(s1466 2.0)
(s1468 4.0)
(s1469 5.0)
(s1470 5.0)
(s1471 2.0)
(s1473 4.0)
(s1474 5.0)
(s1475 5.0)
(s1476 2.0)
(s1478 4.0)
(s1479 5.0)
(s1480 5.0)
(s1481 2.0)
(s1483 4.0)
(s1484 5.0)
(s1485 5.0)
(s1486 2.0)
(s1488 4.0)
(s1489 5.0)
(s1490 5.0)
(s1491 2.0)
(s1493 4.0)
(s1494 5.0)
(s1495 5.0)
(s1496 2.0)
(s1498 4.0)
(s1499 5.0)
(s1500 5.0)
(s1501 2.0)
(s1503 4.0)
(s1504 5.0)
(s1505 5.0)
(s1506 2.0)
(s1508 4.0)
(s1509 5.0)
(s1510 5.0)
(s1511 2.0)
(s1513 4.0)
(s1514 5.0)
(s1515 5.0)
(s1516 2.0)
(s1518 4.0)
(s1519 5.0)
(s1520 5.0)
(s1521 2.0)
(s1523 4.0)
(s1524 5.0)
(s1525 5.0)
(s1526 2.0)
(s1528 4.0)
(s1529 5.0)
(s1530 5.0)
(s1531 2.0)
(s1533 4.0)
(s1534 5.0)
(s1535 5.0)
(s1536 2.0)
(s1538 4.0)
(s1539 5.0)
(s1540 5.0)
(s1541 2.0)
(s1543 4.0)
(s1544 5.0)
(s1545 5.0)
(s1546 2.0)
(s1548 4.0)
(s1549 5.0)
(s1550 5.0)
(s1551 2.0)
(s1553 4.0)
(s1554 5.0)
(s1555 5.0)
(s1556 2.0)
(s1558 4.0)
(s1559 5.0)
(s1560 5.0)
(s1561 2.0)
(s1563 4.0)
(s1564 5.0)
(s1565 5.0)
(s1566 2.0)
(s1568 4.0)
(s1569 5.0)
(s1570 5.0)
(s1571 2.0)
(s1573 4.0)
(s1574 5.0)
(s1575 5.0)
(s1576 2.0)
(s1578 4.0)
(s1579 5.0)
(s1580 5.0)
(s1581 2.0)
(s1583 4.0)
(s1584 5.0)
(s1585 5.0)
(s1586 2.0)
(s1588 4.0)
(s1589 5.0)
(s1590 5.0)
(s1591 2.0)
(s1593 4.0)
(s1594 5.0)
(s1595 5.0)
(s1596 2.0)
(s1598 4.0)
(s1599 5.0)
(s1600 5.0)
(s1601 2.0)
(s1603 4.0)
(s1604 5.0)
(s1605 5.0)
(s1606 2.0)
(s1608 4.0)
(s1609 5.0)
(s1610 5.0)
(s1611 2.0)
(s1613 4.0)
(s1614 5.0)
(s1615 5.0)
(s1616 2.0)
(s1618 4.0)
(s1619 5.0)
(s1620 5.0)
(s1621 2.0)
(s1623 4.0)
(s1624 5.0)
(s1625 5.0)
(s1626 2.0)
(s1628 4.0)
(s1629 5.0)
(s1630 5.0)
(s1631 2.0)
(s1633 4.0)
(s1634 5.0)
(s1635 5.0)
(s1636 2.0)
(s1638 4.0)
(s1639 5.0)
(s1640 5.0)
(s1641 2.0)
(s1643 4.0)
(s1644 5.0)
(s1645 5.0)
(s1646 2.0)
(s1648 4.0)
(s1649 5.0)
(s1650 5.0)
(s1651 2.0)
(s1653 4.0)
(s1654 5.0)
(s1655 5.0)
(s1656 2.0)
(s1658 4.0)
(s1659 5.0)
(s1660 5.0)
(s1661 2.0)
(s1663 4.0)
(s1664 5.0)
(s1665 5.0)
(s1666 2.0)
(s1668 4.0)
(s1669 5.0)
(s1670 5.0)
(s1671 2.0)
(s1673 4.0)
(s1674 5.0)
(s1675 5.0)
(s1676 2.0)
(s1678 4.0)
(s1679 5.0)
(s1680 5.0)
(s1681 2.0)
(s1683 4.0)
(s1684 5.0)
(s1685 5.0)
(s1686 2.0)
(s1688 4.0)
(s1689 5.0)
(s1690 5.0)
(s1691 2.0)
(s1693 4.0)
(s1694 5.0)
(s1695 5.0)
(s1696 2.0)
(s1698 4.0)
(s1699 5.0)
(s1700 5.0)
(s1701 2.0)
(s1703 4.0)
(s1704 5.0)
(s1705 5.0)
(s1706 2.0)
(s1708 4.0)
(s1709 5.0)
(s1710 5.0)
(s1711 2.0)
(s1713 4.0)
(s1714 5.0)
(s1715 5.0)
(s1716 2.0)
(s1718 4.0)
(s1719 5.0)
(s1720 5.0)
(s1721 2.0)
(s1723 4.0)
(s1724 5.0)
(s1725 5.0)
(s1726 2.0)
(s1728 4.0)
(s1729 5.0)
(s1730 5.0)
(s1731 2.0)
(s1733 4.0)
(s1734 5.0)
(s1735 5.0)
(s1736 2.0)
(s1738 4.0)
(s1739 5.0)
(s1740 5.0)
(s1741 2.0)
(s1743 4.0)
(s1744 5.0)
(s1745 5.0)
(s1746 2.0)
(s1748 4.0)
(s1749 5.0)
(s1750 5.0)
(s1751 2.0)
(s1753 4.0)
(s1754 5.0)
(s1755 5.0)
(s1756 2.0)
(s1758 4.0)
(s1759 5.0)
(s1760 5.0)
(s1761 2.0)
(s1763 4.0)
(s1764 5.0)
(s1765 5.0)
(s1766 2.0)
(s1768 4.0)
(s1769 5.0)
(s1770 5.0)
(s1771 2.0)
(s1773 4.0)
(s1774 5.0)
(s1775 5.0)
(s1776 2.0)
(s1778 4.0)
(s1779 5.0)
(s1780 5.0)
(s1781 2.0)
(s1783 4.0)
(s1784 5.0)
(s1785 5.0)
(s1786 2.0)
(s1788 4.0)
(s1789 5.0)
(s1790 5.0)
(s1791 2.0)
(s1793 4.0)
(s1794 5.0)
(s1795 5.0)
(s1796 2.0)
(s1798 4.0)
(s1799 5.0)
(s1800 5.0)
(s1801 2.0)
(s1803 4.0)
(s1804 5.0)
(s1805 5.0)
(s1806 2.0)
(s1808 4.0)
(s1809 5.0)
(s1810 5.0)
(s1811 2.0)
(s1813 4.0)
(s1814 5.0)
(s1815 5.0)
(s1816 2.0)
(s1818 4.0)
(s1819 5.0)
(s1820 5.0)
(s1821 2.0)
(s1823 4.0)
(s1824 5.0)
(s1825 5.0)
(s1826 2.0)
(s1828 4.0)
(s1829 5.0)
(s1830 5.0)
(s1831 2.0)
(s1833 4.0)
(s1834 5.0)
(s1835 5.0)
(s1836 2.0)
(s1838 4.0)
(s1839 5.0)
(s1840 5.0)
(s1841 2.0)
(s1843 4.0)
(s1844 5.0)
(s1845 5.0)
(s1846 2.0)
(s1848 4.0)
(s1849 5.0)
(s1850 5.0)
(s1851 2.0)
(s1853 4.0)
(s1854 5.0)
(s1855 5.0)
(s1856 2.0)
(s1858 4.0)
(s1859 5.0)
(s1860 5.0)
(s1861 2.0)
(s1863 4.0)
(s1864 5.0)
(s1865 5.0)
(s1866 2.0)
(s1868 4.0)
(s1869 5.0)
(s1870 5.0)
(s1871 2.0)
(s1873 4.0)
(s1874 5.0)
(s1875 5.0)
(s1876 2.0)
(s1878 4.0)
(s1879 5.0)
(s1880 5.0)
(s1881 2.0)
(s1883 4.0)
(s1884 5.0)
(s1885 5.0)
(s1886 2.0)
(s1888 4.0)
(s1889 5.0)
(s1890 5.0)
(s1891 2.0)
(s1893 4.0)
(s1894 5.0)
(s1895 5.0)
(s1896 2.0)
(s1898 4.0)
(s1899 5.0)
(s1900 5.0)
(s1901 2.0)
(s1903 4.0)
(s1904 5.0)
(s1905 5.0)
(s1906 2.0)
(s1908 4.0)
(s1909 5.0)
(s1910 5.0)
(s1911 2.0)
(s1913 4.0)
(s1914 5.0)
(s1915 5.0)
(s1916 2.0)
(s1918 4.0)
(s1919 5.0)
(s1920 5.0)
(s1921 2.0)
(s1923 4.0)
(s1924 5.0)
(s1925 5.0)
(s1926 2.0)
(s1928 4.0)
(s1929 5.0)
(s1930 5.0)
(s1931 2.0)
(s1933 4.0)
(s1934 5.0)
(s1935 5.0)
(s1936 2.0)
(s1938 4.0)
(s1939 5.0)
(s1940 5.0)
(s1941 2.0)
(s1943 4.0)
(s1944 5.0)
(s1945 5.0)
(s1946 2.0)
(s1948 4.0)
(s1949 5.0)
(s1950 5.0)
(s1951 2.0)
(s1953 4.0)
(s1954 5.0)
(s1955 5.0)
(s1956 2.0)
(s1958 4.0)
(s1959 5.0)
(s1960 5.0)
(s1961 2.0)
(s1963 4.0)
(s1964 5.0)
(s1965 5.0)
(s1966 2.0)
(s1968 4.0)
(s1969 5.0)
(s1970 5.0)
(s1971 2.0)
(s1973 4.0)
(s1974 5.0)
(s1975 5.0)
(s1976 2.0)
(s1978 4.0)
(s1979 5.0)
(s1980 5.0)
(s1981 2.0)
(s1983 4.0)
(s1984 5.0)
(s1985 5.0)
(s1986 2.0)
(s1988 4.0)
(s1989 5.0)
(s1990 5.0)
(s1991 2.0)
(s1993 4.0)
(s1994 5.0)
(s1995 5.0)
(s1996 2.0)
(s1998 4.0)
(s1999 5.0)
(s2000 5.0)
(s2001 2.0)
(s2003 4.0)
(s2004 5.0)
(s2005 5.0)
(s2006 2.0)
(s2008 4.0)
(s2009 5.0)
(s2010 5.0)
(s2011 2.0)
(s2013 4.0)
(s2014 5.0)
(s2015 5.0)
(s2016 2.0)
(s2018 4.0)
(s2019 5.0)
(s2020 5.0)
(s2021 2.0)
(s2023 4.0)
(s2024 5.0)
(s2025 5.0)
(s2026 2.0)
(s2028 4.0)
(s2029 5.0)
(s2030 5.0)
(s2031 2.0)
(s2033 4.0)
(s2034 5.0)
(s2035 5.0)
(s2036 2.0)
(s2038 4.0)
(s2039 5.0)
(s2040 5.0)
(s2041 2.0)
(s2043 4.0)
(s2044 5.0)
(s2045 5.0)
(s2046 2.0)
(s2048 4.0)
(s2049 5.0)
(s2050 5.0)
(s2051 2.0)
(s2053 4.0)
(s2054 5.0)
(s2055 5.0)
(s2056 2.0)
(s2058 4.0)
(s2059 5.0)
(s2060 5.0)
(s2061 2.0)
(s2063 4.0)
(s2064 5.0)
(s2065 5.0)
(s2066 2.0)
(s2068 4.0)
(s2069 5.0)
(s2070 5.0)
(s2071 2.0)
(s2073 4.0)
(s2074 5.0)
(s2075 5.0)
(s2076 2.0)
(s2078 4.0)
(s2079 5.0)
(s2080 5.0)
(s2081 2.0)
(s2083 4.0)
(s2084 5.0)
(s2085 5.0)
(s2086 2.0)
(s2088 4.0)
(s2089 5.0)
(s2090 5.0)
(s2091 2.0)
(s2093 4.0)
(s2094 5.0)
(s2095 5.0)
(s2096 2.0)
(s2098 4.0)
(s2099 5.0)
(s2100 5.0)
(s2101 2.0)
(s2103 4.0)
(s2104 5.0)
(s2105 5.0)
(s2106 2.0)
(s2108 4.0)
(s2109 5.0)
(s2110 5.0)
(s2111 2.0)
(s2113 4.0)
(s2114 5.0)
(s2115 5.0)
(s2116 2.0)
(s2118 4.0)
(s2119 5.0)
(s2120 5.0)
(s2121 2.0)
(s2123 4.0)
(s2124 5.0)
(s2125 5.0)
(s2126 2.0)
(s2128 4.0)
(s2129 5.0)
(s2130 5.0)
(s2131 2.0)
(s2133 4.0)
(s2134 5.0)
(s2135 5.0)
(s2136 2.0)
(s2138 4.0)
(s2139 5.0)
(s2140 5.0)
(s2141 2.0)
(s2143 4.0)
(s2144 5.0)
(s2145 5.0)
(s2146 2.0)
(s2148 4.0)
(s2149 5.0)
(s2150 5.0)
(s2151 2.0)
(s2153 4.0)
(s2154 5.0)
(s2155 5.0)
(s2156 2.0)
(s2158 4.0)
(s2159 5.0)
(s2160 5.0)
(s2161 2.0)
(s2163 4.0)
(s2164 5.0)
(s2165 5.0)
(s2166 2.0)
(s2168 4.0)
(s2169 5.0)
(s2170 5.0)
(s2171 2.0)
(s2173 4.0)
(s2174 5.0)
(s2175 5.0)
(s2176 2.0)
(s2178 4.0)
(s2179 5.0)
(s2180 5.0)
(s2181 2.0)
(s2183 4.0)
(s2184 5.0)
(s2185 5.0)
(s2186 2.0)
(s2188 4.0)
(s2189 5.0)
(s2190 5.0)
(s2191 2.0)
(s2193 4.0)
(s2194 5.0)
(s2195 5.0)
(s2196 2.0)
(s2198 4.0)
(s2199 5.0)
(s2200 5.0)
(s2201 2.0)
(s2203 4.0)
(s2204 5.0)
(s2205 5.0)
(s2206 2.0)
(s2208 4.0)
(s2209 5.0)
(s2210 5.0)
(s2211 2.0)
(s2213 4.0)
(s2214 5.0)
(s2215 5.0)
(s2216 2.0)
(s2218 4.0)
(s2219 5.0)
(s2220 5.0)
(s2221 2.0)
(s2223 4.0)
(s2224 5.0)
(s2225 5.0)
(s2226 2.0)
(s2228 4.0)
(s2229 5.0)
(s2230 5.0)
(s2231 2.0)
(s2233 4.0)
(s2234 5.0)
(s2235 5.0)
(s2236 2.0)
(s2238 4.0)
(s2239 5.0)
(s2240 5.0)
(s2241 2.0)
(s2243 4.0)
(s2244 5.0)
(s2245 5.0)
(s2246 2.0)
(s2248 4.0)
(s2249 5.0)
(s2250 5.0)
(s2251 2.0)
(s2253 4.0)
(s2254 5.0)
(s2255 5.0)
(s2256 2.0)
(s2258 4.0)
(s2259 5.0)
(s2260 5.0)
(s2261 2.0)
(s2263 4.0)
(s2264 5.0)
(s2265 5.0)
(s2266 2.0)
(s2268 4.0)
(s2269 5.0)
(s2270 5.0)
(s2271 2.0)
(s2273 4.0)
(s2274 5.0)
(s2275 5.0)
(s2276 2.0)
(s2278 4.0)
(s2279 5.0)
(s2280 5.0)
(s2281 2.0)
(s2283 4.0)
(s2284 5.0)
(s2285 5.0)
(s2286 2.0)
(s2288 4.0)
(s2289 5.0)
(s2290 5.0)
(s2291 2.0)
(s2293 4.0)
(s2294 5.0)
(s2295 5.0)
(s2296 2.0)
(s2298 4.0)
(s2299 5.0)
(s2300 5.0)
(s2301 2.0)
(s2303 4.0)
(s2304 5.0)
(s2305 5.0)
(s2306 2.0)
(s2308 4.0)
(s2309 5.0)
(s2310 5.0)
(s2311 2.0)
(s2313 4.0)
(s2314 5.0)
(s2315 5.0)
(s2316 2.0)
(s2318 4.0)
(s2319 5.0)
(s2320 5.0)
(s2321 2.0)
(s2323 4.0)
(s2324 5.0)
(s2325 5.0)
(s2326 2.0)
(s2328 4.0)
(s2329 5.0)
(s2330 5.0)
(s2331 2.0)
(s2333 4.0)
(s2334 5.0)
(s2335 5.0)
(s2336 2.0)
(s2338 4.0)
(s2339 5.0)
(s2340 5.0)
(s2341 2.0)
(s2343 4.0)
(s2344 5.0)
(s2345 5.0)
(s2346 2.0)
(s2348 4.0)
(s2349 5.0)
(s2350 5.0)
(s2351 2.0)
(s2353 4.0)
(s2354 5.0)
(s2355 5.0)
(s2356 2.0)
(s2358 4.0)
(s2359 5.0)
(s2360 5.0)
(s2361 2.0)
(s2363 4.0)
(s2364 5.0)
(s2365 5.0)
(s2366 2.0)
(s2368 4.0)
(s2369 5.0)
(s2370 5.0)
(s2371 2.0)
(s2373 4.0)
(s2374 5.0)
(s2375 5.0)
(s2376 2.0)
(s2378 4.0)
(s2379 5.0)
(s2380 5.0)
(s2381 2.0)
(s2383 4.0)
(s2384 5.0)
(s2385 5.0)
(s2386 2.0)
(s2388 4.0)
(s2389 5.0)
(s2390 5.0)
(s2391 2.0)
(s2393 4.0)
(s2394 5.0)
(s2395 5.0)
(s2396 2.0)
(s2398 4.0)
(s2399 5.0)
(s2400 5.0)
(s2401 2.0)
(s2403 4.0)
(s2404 5.0)
(s2405 5.0)
(s2406 2.0)
(s2408 4.0)
(s2409 5.0)
(s2410 5.0)
(s2411 2.0)
(s2413 4.0)
(s2414 5.0)
(s2415 5.0)
(s2416 2.0)
(s2418 4.0)
(s2419 5.0)
(s2420 5.0)
(s2421 2.0)
(s2423 4.0)
(s2424 5.0)
(s2425 5.0)
(s2426 2.0)
(s2428 4.0)
(s2429 5.0)
(s2430 5.0)
(s2431 2.0)
(s2433 4.0)
(s2434 5.0)
(s2435 5.0)
(s2436 2.0)
(s2438 4.0)
(s2439 5.0)
(s2440 5.0)
(s2441 2.0)
(s2443 4.0)
(s2444 5.0)
(s2445 5.0)
(s2446 2.0)
(s2448 4.0)
(s2449 5.0)
(s2450 5.0)
(s2451 2.0)
(s2453 4.0)
(s2454 5.0)
(s2455 5.0)
(s2456 2.0)
(s2458 4.0)
(s2459 5.0)
(s2460 5.0)
(s2461 2.0)
(s2463 4.0)
(s2464 5.0)
(s2465 5.0)
(s2466 2.0)
(s2468 4.0)
(s2469 5.0)
(s2470 5.0)
(s2471 2.0)
(s2473 4.0)
(s2474 5.0)
(s2475 5.0)
(s2476 2.0)
(s2478 4.0)
(s2479 5.0)
(s2480 5.0)
(s2481 2.0)
(s2483 4.0)
(s2484 5.0)
(s2485 5.0)
(s2486 2.0)
(s2488 4.0)
(s2489 5.0)
(s2490 5.0)
(s2491 2.0)
(s2493 4.0)
(s2494 5.0)
(s2495 5.0)
(s2496 2.0)
(s2498 4.0)
(s2499 5.0)
(s2500 5.0)
(s2501 2.0)
(s2503 4.0)
(s2504 5.0)
(s2505 5.0)
(s2506 2.0)
(s2508 4.0)
(s2509 5.0)
(s2510 5.0)
(s2511 2.0)
(s2513 4.0)
(s2514 5.0)
(s2515 5.0)
(s2516 2.0)
(s2518 4.0)
(s2519 5.0)
(s2520 5.0)
(s2521 2.0)
(s2523 4.0)
(s2524 5.0)
(s2525 5.0)
(s2526 2.0)
(s2528 4.0)
(s2529 5.0)
(s2530 5.0)
(s2531 2.0)
(s2533 4.0)
(s2534 5.0)
(s2535 5.0)
(s2536 2.0)
(s2538 4.0)
(s2539 5.0)
(s2540 5.0)
(s2541 2.0)
(s2543 4.0)
(s2544 5.0)
(s2545 5.0)
(s2546 2.0)
(s2548 4.0)
(s2549 5.0)
(s2550 5.0)
(s2551 2.0)
(s2553 4.0)
(s2554 5.0)
(s2555 5.0)
(s2556 2.0)
(s2558 4.0)
(s2559 5.0)
(s2560 5.0)
(s2561 2.0)
(s2563 4.0)
(s2564 5.0)
(s2565 5.0)
(s2566 2.0)
(s2568 4.0)
(s2569 5.0)
(s2570 5.0)
(s2571 2.0)
(s2573 4.0)
(s2574 5.0)
(s2575 5.0)
(s2576 2.0)
(s2578 4.0)
(s2579 5.0)
(s2580 5.0)
(s2581 2.0)
(s2583 4.0)
(s2584 5.0)
(s2585 5.0)
(s2586 2.0)
(s2588 4.0)
(s2589 5.0)
(s2590 5.0)
(s2591 2.0)
(s2593 4.0)
(s2594 5.0)
(s2595 5.0)
(s2596 2.0)
(s2598 4.0)
(s2599 5.0)
(s2600 5.0)
(s2601 2.0)
(s2603 4.0)
(s2604 5.0)
(s2605 5.0)
(s2606 2.0)
(s2608 4.0)
(s2609 5.0)
(s2610 5.0)
(s2611 2.0)
(s2613 4.0)
(s2614 5.0)
(s2615 5.0)
(s2616 2.0)
(s2618 4.0)
(s2619 5.0)
(s2620 5.0)
(s2621 2.0)
(s2623 4.0)
(s2624 5.0)
(s2625 5.0)
(s2626 2.0)
(s2628 4.0)
(s2629 5.0)
(s2630 5.0)
(s2631 2.0)
(s2633 4.0)
(s2634 5.0)
(s2635 5.0)
(s2636 2.0)
(s2638 4.0)
(s2639 5.0)
(s2640 5.0)
(s2641 2.0)
(s2643 4.0)
(s2644 5.0)
(s2645 5.0)
(s2646 2.0)
(s2648 4.0)
(s2649 5.0)
(s2650 5.0)
(s2651 2.0)
(s2653 4.0)
(s2654 5.0)
(s2655 5.0)
(s2656 2.0)
(s2658 4.0)
(s2659 5.0)
(s2660 5.0)
(s2661 2.0)
(s2663 4.0)
(s2664 5.0)
(s2665 5.0)
(s2666 2.0)
(s2668 4.0)
(s2669 5.0)
(s2670 5.0)
(s2671 2.0)
(s2673 4.0)
(s2674 5.0)
(s2675 5.0)
(s2676 2.0)
(s2678 4.0)
(s2679 5.0)
(s2680 5.0)
(s2681 2.0)
(s2683 4.0)
(s2684 5.0)
(s2685 5.0)
(s2686 2.0)
(s2688 4.0)
(s2689 5.0)
(s2690 5.0)
(s2691 2.0)
(s2693 4.0)
(s2694 5.0)
(s2695 5.0)
(s2696 2.0)
(s2698 4.0)
(s2699 5.0)
(s2700 5.0)
(s2701 2.0)
(s2703 4.0)
(s2704 5.0)
(s2705 5.0)
(s2706 2.0)
(s2708 4.0)
(s2709 5.0)
(s2710 5.0)
(s2711 2.0)
(s2713 4.0)
(s2714 5.0)
(s2715 5.0)
(s2716 2.0)
(s2718 4.0)
(s2719 5.0)
(s2720 5.0)
(s2721 2.0)
(s2723 4.0)
(s2724 5.0)
(s2725 5.0)
(s2726 2.0)
(s2728 4.0)
(s2729 5.0)
(s2730 5.0)
(s2731 2.0)
(s2733 4.0)
(s2734 5.0)
(s2735 5.0)
(s2736 2.0)
(s2738 4.0)
(s2739 5.0)
(s2740 5.0)
(s2741 2.0)
(s2743 4.0)
(s2744 5.0)
(s2745 5.0)
(s2746 2.0)
(s2748 4.0)
(s2749 5.0)
(s2750 5.0)
(s2751 2.0)
(s2753 4.0)
(s2754 5.0)
(s2755 5.0)
(s2756 2.0)
(s2758 4.0)
(s2759 5.0)
(s2760 5.0)
(s2761 2.0)
(s2763 4.0)
(s2764 5.0)
(s2765 5.0)
(s2766 2.0)
(s2768 4.0)
(s2769 5.0)
(s2770 5.0)
(s2771 2.0)
(s2773 4.0)
(s2774 5.0)
(s2775 5.0)
(s2776 2.0)
(s2778 4.0)
(s2779 5.0)
(s2780 5.0)
(s2781 2.0)
(s2783 4.0)
(s2784 5.0)
(s2785 5.0)
(s2786 2.0)
(s2788 4.0)
(s2789 5.0)
(s2790 5.0)
(s2791 2.0)
(s2793 4.0)
(s2794 5.0)
(s2795 5.0)
(s2796 2.0)
(s2798 4.0)
(s2799 5.0)
(s2800 5.0)
(s2801 2.0)
(s2803 4.0)
(s2804 5.0)
(s2805 5.0)
(s2806 2.0)
(s2808 4.0)
(s2809 5.0)
(s2810 5.0)
(s2811 2.0)
(s2813 4.0)
(s2814 5.0)
(s2815 5.0)
(s2816 2.0)
(s2818 4.0)
(s2819 5.0)
(s2820 5.0)
(s2821 2.0)
(s2823 4.0)
(s2824 5.0)
(s2825 5.0)
(s2826 2.0)
(s2828 4.0)
(s2829 5.0)
(s2830 5.0)
(s2831 2.0)
(s2833 4.0)
(s2834 5.0)
(s2835 5.0)
(s2836 2.0)
(s2838 4.0)
(s2839 5.0)
(s2840 5.0)
(s2841 2.0)
(s2843 4.0)
(s2844 5.0)
(s2845 5.0)
(s2846 2.0)
(s2848 4.0)
(s2849 5.0)
(s2850 5.0)
(s2851 2.0)
(s2853 4.0)
(s2854 5.0)
(s2855 5.0)
(s2856 2.0)
(s2858 4.0)
(s2859 5.0)
(s2860 5.0)
(s2861 2.0)
(s2863 4.0)
(s2864 5.0)
(s2865 5.0)
(s2866 2.0)
(s2868 4.0)
(s2869 5.0)
(s2870 5.0)
(s2871 2.0)
(s2873 4.0)
(s2874 5.0)
(s2875 5.0)
(s2876 2.0)
(s2878 4.0)
(s2879 5.0)
(s2880 5.0)
(s2881 2.0)
(s2883 4.0)
(s2884 5.0)
(s2885 5.0)
(s2886 2.0)
(s2888 timeout
4.0)
(s2889 org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20088 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Error getting values : (error "ParserException while parsing response: ((s0 5)
(s1 2)
(s3 4)
(s4 5)
(s5 5)
(s6 2)
(s8 4)
(s9 5)
(s10 5)
(s11 2)
(s13 4)
(s14 5)
(s15 5)
(s16 2)
(s18 4)
(s19 5)
(s20 5)
(s21 2)
(s23 4)
(s24 5)
(s25 5)
(s26 2)
(s28 4)
(s29 5)
(s30 5)
(s31 2)
(s33 4)
(s34 5)
(s35 5)
(s36 2)
(s38 4)
(s39 5)
(s40 5)
(s41 2)
(s43 4)
(s44 5)
(s45 5)
(s46 2)
(s48 4)
(s49 5)
(s50 5)
(s51 2)
(s53 4)
(s54 5)
(s55 5)
(s56 2)
(s58 4)
(s59 5)
(s60 5)
(s61 2)
(s63 4)
(s64 5)
(s65 5)
(s66 2)
(s68 4)
(s69 5)
(s70 5)
(s71 2)
(s73 4)
(s74 5)
(s75 5)
(s76 2)
(s78 4)
(s79 5)
(s80 5)
(s81 2)
(s83 4)
(s84 5)
(s85 5)
(s86 2)
(s88 4)
(s89 5)
(s90 5)
(s91 2)
(s93 4)
(s94 5)
(s95 5)
(s96 2)
(s98 4)
(s99 5)
(s100 5)
(s101 2)
(s103 4)
(s104 5)
(s105 5)
(s106 2)
(s108 4)
(s109 5)
(s110 5)
(s111 2)
(s113 4)
(s114 5)
(s115 5)
(s116 2)
(s118 4)
(s119 5)
(s120 5)
(s121 2)
(s123 4)
(s124 5)
(s125 5)
(s126 2)
(s128 4)
(s129 5)
(s130 5)
(s131 2)
(s133 4)
(s134 5)
(s135 5)
(s136 2)
(s138 4)
(s139 5)
(s140 5)
(s141 2)
(s143 4)
(s144 5)
(s145 5)
(s146 2)
(s148 4)
(s149 5)
(s150 5)
(s151 2)
(s153 4)
(s154 5)
(s155 5)
(s156 2)
(s158 4)
(s159 5)
(s160 5)
(s161 2)
(s163 4)
(s164 5)
(s165 5)
(s166 2)
(s168 4)
(s169 5)
(s170 5)
(s171 2)
(s173 4)
(s174 5)
(s175 5)
(s176 2)
(s178 4)
(s179 5)
(s180 5)
(s181 2)
(s183 4)
(s184 5)
(s185 5)
(s186 2)
(s188 4)
(s189 5)
(s190 5)
(s191 2)
(s193 4)
(s194 5)
(s195 5)
(s196 2)
(s198 4)
(s199 5)
(s200 5)
(s201 2)
(s203 4)
(s204 5)
(s205 5)
(s206 2)
(s208 4)
(s209 5)
(s210 5)
(s211 2)
(s213 4)
(s214 5)
(s215 5)
(s216 2)
(s218 4)
(s219 5)
(s220 5)
(s221 2)
(s223 4)
(s224 5)
(s225 5)
(s226 2)
(s228 4)
(s229 5)
(s230 5)
(s231 2)
(s233 4)
(s234 5)
(s235 5)
(s236 2)
(s238 4)
(s239 5)
(s240 5)
(s241 2)
(s243 4)
(s244 5)
(s245 5)
(s246 2)
(s248 4)
(s249 5)
(s250 5)
(s251 2)
(s253 4)
(s254 5)
(s255 5)
(s256 2)
(s258 4)
(s259 5)
(s260 5)
(s261 2)
(s263 4)
(s264 5)
(s265 5)
(s266 2)
(s268 4)
(s269 5)
(s270 5)
(s271 2)
(s273 4)
(s274 5)
(s275 5)
(s276 2)
(s278 4)
(s279 5)
(s280 5)
(s281 2)
(s283 4)
(s284 5)
(s285 5)
(s286 2)
(s288 4)
(s289 5)
(s290 5)
(s291 2)
(s293 4)
(s294 5)
(s295 5)
(s296 2)
(s298 4)
(s299 5)
(s300 5)
(s301 2)
(s303 4)
(s304 5)
(s305 5)
(s306 2)
(s308 4)
(s309 5)
(s310 5)
(s311 2)
(s313 4)
(s314 5)
(s315 5)
(s316 2)
(s318 4)
(s319 5)
(s320 5)
(s321 2)
(s323 4)
(s324 5)
(s325 5)
(s326 2)
(s328 4)
(s329 5)
(s330 5)
(s331 2)
(s333 4)
(s334 5)
(s335 5)
(s336 2)
(s338 4)
(s339 5)
(s340 5)
(s341 2)
(s343 4)
(s344 5)
(s345 5)
(s346 2)
(s348 4)
(s349 5)
(s350 5)
(s351 2)
(s353 4)
(s354 5)
(s355 5)
(s356 2)
(s358 4)
(s359 5)
(s360 5)
(s361 2)
(s363 4)
(s364 5)
(s365 5)
(s366 2)
(s368 4)
(s369 5)
(s370 5)
(s371 2)
(s373 4)
(s374 5)
(s375 5)
(s376 2)
(s378 4)
(s379 5)
(s380 5)
(s381 2)
(s383 4)
(s384 5)
(s385 5)
(s386 2)
(s388 4)
(s389 5)
(s390 5)
(s391 2)
(s393 4)
(s394 5)
(s395 5)
(s396 2)
(s398 4)
(s399 5)
(s400 5)
(s401 2)
(s403 4)
(s404 5)
(s405 5)
(s406 2)
(s408 4)
(s409 5)
(s410 5)
(s411 2)
(s413 4)
(s414 5)
(s415 5)
(s416 2)
(s418 4)
(s419 5)
(s420 5)
(s421 2)
(s423 4)
(s424 5)
(s425 5)
(s426 2)
(s428 4)
(s429 5)
(s430 5)
(s431 2)
(s433 4)
(s434 5)
(s435 5)
(s436 2)
(s438 4)
(s439 5)
(s440 5)
(s441 2)
(s443 4)
(s444 5)
(s445 5)
(s446 2)
(s448 4)
(s449 5)
(s450 5)
(s451 2)
(s453 4)
(s454 5)
(s455 5)
(s456 2)
(s458 4)
(s459 5)
(s460 5)
(s461 2)
(s463 4)
(s464 5)
(s465 5)
(s466 2)
(s468 4)
(s469 5)
(s470 5)
(s471 2)
(s473 4)
(s474 5)
(s475 5)
(s476 2)
(s478 4)
(s479 5)
(s480 5)
(s481 2)
(s483 4)
(s484 5)
(s485 5)
(s486 2)
(s488 4)
(s489 5)
(s490 5)
(s491 2)
(s493 4)
(s494 5)
(s495 5)
(s496 2)
(s498 4)
(s499 5)
(s500 5)
(s501 2)
(s503 4)
(s504 5)
(s505 5)
(s506 2)
(s508 4)
(s509 5)
(s510 5)
(s511 2)
(s513 4)
(s514 5)
(s515 5)
(s516 2)
(s518 4)
(s519 5)
(s520 5)
(s521 2)
(s523 4)
(s524 5)
(s525 5)
(s526 2)
(s528 4)
(s529 5)
(s530 5)
(s531 2)
(s533 4)
(s534 5)
(s535 5)
(s536 2)
(s538 4)
(s539 5)
(s540 5)
(s541 2)
(s543 4)
(s544 5)
(s545 5)
(s546 2)
(s548 4)
(s549 5)
(s550 5)
(s551 2)
(s553 4)
(s554 5)
(s555 5)
(s556 2)
(s558 4)
(s559 5)
(s560 5)
(s561 2)
(s563 4)
(s564 5)
(s565 5)
(s566 2)
(s568 4)
(s569 5)
(s570 5)
(s571 2)
(s573 4)
(s574 5)
(s575 5)
(s576 2)
(s578 4)
(s579 5)
(s580 5)
(s581 2)
(s583 4)
(s584 5)
(s585 5)
(s586 2)
(s588 4)
(s589 5)
(s590 5)
(s591 2)
(s593 4)
(s594 5)
(s595 5)
(s596 2)
(s598 4)
(s599 5)
(s600 5)
(s601 2)
(s603 4)
(s604 5)
(s605 5)
(s606 2)
(s608 4)
(s609 5)
(s610 5)
(s611 2)
(s613 4)
(s614 5)
(s615 5)
(s616 2)
(s618 4)
(s619 5)
(s620 5)
(s621 2)
(s623 4)
(s624 5)
(s625 5)
(s626 2)
(s628 4)
(s629 5)
(s630 5)
(s631 2)
(s633 4)
(s634 5)
(s635 5)
(s636 2)
(s638 4)
(s639 5)
(s640 5)
(s641 2)
(s643 4)
(s644 5)
(s645 5)
(s646 2)
(s648 4)
(s649 5)
(s650 5)
(s651 2)
(s653 4)
(s654 5)
(s655 5)
(s656 2)
(s658 4)
(s659 5)
(s660 5)
(s661 2)
(s663 4)
(s664 5)
(s665 5)
(s666 2)
(s668 4)
(s669 5)
(s670 5)
(s671 2)
(s673 4)
(s674 5)
(s675 5)
(s676 2)
(s678 4)
(s679 5)
(s680 5)
(s681 2)
(s683 4)
(s684 5)
(s685 5)
(s686 2)
(s688 4)
(s689 5)
(s690 5)
(s691 2)
(s693 4)
(s694 5)
(s695 5)
(s696 2)
(s698 4)
(s699 5)
(s700 5)
(s701 2)
(s703 4)
(s704 5)
(s705 5)
(s706 2)
(s708 4)
(s709 5)
(s710 5)
(s711 2)
(s713 4)
(s714 5)
(s715 5)
(s716 2)
(s718 4)
(s719 5)
(s720 5)
(s721 2)
(s723 4)
(s724 5)
(s725 5)
(s726 2)
(s728 4)
(s729 5)
(s730 5)
(s731 2)
(s733 4)
(s734 5)
(s735 5)
(s736 2)
(s738 4)
(s739 5)
(s740 5)
(s741 2)
(s743 4)
(s744 5)
(s745 5)
(s746 2)
(s748 4)
(s749 5)
(s750 5)
(s751 2)
(s753 4)
(s754 5)
(s755 5)
(s756 2)
(s758 4)
(s759 5)
(s760 5)
(s761 2)
(s763 4)
(s764 5)
(s765 5)
(s766 2)
(s768 4)
(s769 5)
(s770 5)
(s771 2)
(s773 4)
(s774 5)
(s775 5)
(s776 2)
(s778 4)
(s779 5)
(s780 5)
(s781 2)
(s783 4)
(s784 5)
(s785 5)
(s786 2)
(s788 4)
(s789 5)
(s790 5)
(s791 2)
(s793 4)
(s794 5)
(s795 5)
(s796 2)
(s798 4)
(s799 5)
(s800 5)
(s801 2)
(s803 4)
(s804 5)
(s805 5)
(s806 2)
(s808 4)
(s809 5)
(s810 5)
(s811 2)
(s813 4)
(s814 5)
(s815 5)
(s816 2)
(s818 4)
(s819 5)
(s820 5)
(s821 2)
(s823 4)
(s824 5)
(s825 5)
(s826 2)
(s828 4)
(s829 5)
(s830 5)
(s831 2)
(s833 4)
(s834 5)
(s835 5)
(s836 2)
(s838 4)
(s839 5)
(s840 5)
(s841 2)
(s843 4)
(s844 5)
(s845 5)
(s846 2)
(s848 4)
(s849 5)
(s850 5)
(s851 2)
(s853 4)
(s854 5)
(s855 5)
(s856 2)
(s858 4)
(s859 5)
(s860 5)
(s861 2)
(s863 4)
(s864 5)
(s865 5)
(s866 2)
(s868 4)
(s869 5)
(s870 5)
(s871 2)
(s873 4)
(s874 5)
(s875 5)
(s876 2)
(s878 4)
(s879 5)
(s880 5)
(s881 2)
(s883 4)
(s884 5)
(s885 5)
(s886 2)
(s888 4)
(s889 5)
(s890 5)
(s891 2)
(s893 4)
(s894 5)
(s895 5)
(s896 2)
(s898 4)
(s899 5)
(s900 5)
(s901 2)
(s903 4)
(s904 5)
(s905 5)
(s906 2)
(s908 4)
(s909 5)
(s910 5)
(s911 2)
(s913 4)
(s914 5)
(s915 5)
(s916 2)
(s918 4)
(s919 5)
(s920 5)
(s921 2)
(s923 4)
(s924 5)
(s925 5)
(s926 2)
(s928 4)
(s929 5)
(s930 5)
(s931 2)
(s933 4)
(s934 5)
(s935 5)
(s936 2)
(s938 4)
(s939 5)
(s940 5)
(s941 2)
(s943 4)
(s944 5)
(s945 5)
(s946 2)
(s948 4)
(s949 5)
(s950 5)
(s951 2)
(s953 4)
(s954 5)
(s955 5)
(s956 2)
(s958 4)
(s959 5)
(s960 5)
(s961 2)
(s963 4)
(s964 5)
(s965 5)
(s966 2)
(s968 4)
(s969 5)
(s970 5)
(s971 2)
(s973 4)
(s974 5)
(s975 5)
(s976 2)
(s978 4)
(s979 5)
(s980 5)
(s981 2)
(s983 4)
(s984 5)
(s985 5)
(s986 2)
(s988 4)
(s989 5)
(s990 5)
(s991 2)
(s993 4)
(s994 5)
(s995 5)
(s996 2)
(s998 4)
(s999 5)
(s1000 5)
(s1001 2)
(s1003 4)
(s1004 5)
(s1005 5)
(s1006 2)
(s1008 4)
(s1009 5)
(s1010 5)
(s1011 2)
(s1013 4)
(s1014 5)
(s1015 5)
(s1016 2)
(s1018 4)
(s1019 5)
(s1020 5)
(s1021 2)
(s1023 4)
(s1024 5)
(s1025 5)
(s1026 2)
(s1028 4)
(s1029 5)
(s1030 5)
(s1031 2)
(s1033 4)
(s1034 5)
(s1035 5)
(s1036 2)
(s1038 4)
(s1039 5)
(s1040 5)
(s1041 2)
(s1043 4)
(s1044 5)
(s1045 5)
(s1046 2)
(s1048 4)
(s1049 5)
(s1050 5)
(s1051 2)
(s1053 4)
(s1054 5)
(s1055 5)
(s1056 2)
(s1058 4)
(s1059 5)
(s1060 5)
(s1061 2)
(s1063 4)
(s1064 5)
(s1065 5)
(s1066 2)
(s1068 4)
(s1069 5)
(s1070 5)
(s1071 2)
(s1073 4)
(s1074 5)
(s1075 5)
(s1076 2)
(s1078 4)
(s1079 5)
(s1080 5)
(s1081 2)
(s1083 4)
(s1084 5)
(s1085 5)
(s1086 2)
(s1088 4)
(s1089 5)
(s1090 5)
(s1091 2)
(s1093 4)
(s1094 5)
(s1095 5)
(s1096 2)
(s1098 4)
(s1099 5)
(s1100 5)
(s1101 2)
(s1103 4)
(s1104 5)
(s1105 5)
(s1106 2)
(s1108 4)
(s1109 5)
(s1110 5)
(s1111 2)
(s1113 4)
(s1114 5)
(s1115 5)
(s1116 2)
(s1118 4)
(s1119 5)
(s1120 5)
(s1121 2)
(s1123 4)
(s1124 5)
(s1125 5)
(s1126 2)
(s1128 4)
(s1129 5)
(s1130 5)
(s1131 2)
(s1133 4)
(s1134 5)
(s1135 5)
(s1136 2)
(s1138 4)
(s1139 5)
(s1140 5)
(s1141 2)
(s1143 4)
(s1144 5)
(s1145 5)
(s1146 2)
(s1148 4)
(s1149 5)
(s1150 5)
(s1151 2)
(s1153 4)
(s1154 5)
(s1155 5)
(s1156 2)
(s1158 4)
(s1159 5)
(s1160 5)
(s1161 2)
(s1163 4)
(s1164 5)
(s1165 5)
(s1166 2)
(s1168 4)
(s1169 5)
(s1170 5)
(s1171 2)
(s1173 4)
(s1174 5)
(s1175 5)
(s1176 2)
(s1178 4)
(s1179 5)
(s1180 5)
(s1181 2)
(s1183 4)
(s1184 5)
(s1185 5)
(s1186 2)
(s1188 4)
(s1189 5)
(s1190 5)
(s1191 2)
(s1193 4)
(s1194 5)
(s1195 5)
(s1196 2)
(s1198 4)
(s1199 5)
(s1200 5)
(s1201 2)
(s1203 4)
(s1204 5)
(s1205 5)
(s1206 2)
(s1208 4)
(s1209 5)
(s1210 5)
(s1211 2)
(s1213 4)
(s1214 5)
(s1215 5)
(s1216 2)
(s1218 4)
(s1219 5)
(s1220 5)
(s1221 2)
(s1223 4)
(s1224 5)
(s1225 5)
(s1226 2)
(s1228 4)
(s1229 5)
(s1230 5)
(s1231 2)
(s1233 4)
(s1234 5)
(s1235 5)
(s1236 2)
(s1238 4)
(s1239 5)
(s1240 5)
(s1241 2)
(s1243 4)
(s1244 5)
(s1245 5)
(s1246 2)
(s1248 4)
(s1249 5)
(s1250 5)
(s1251 2)
(s1253 4)
(s1254 5)
(s1255 5)
(s1256 2)
(s1258 4)
(s1259 5)
(s1260 5)
(s1261 2)
(s1263 4)
(s1264 5)
(s1265 5)
(s1266 2)
(s1268 4)
(s1269 5)
(s1270 5)
(s1271 2)
(s1273 4)
(s1274 5)
(s1275 5)
(s1276 2)
(s1278 4)
(s1279 5)
(s1280 5)
(s1281 2)
(s1283 4)
(s1284 5)
(s1285 5)
(s1286 2)
(s1288 4)
(s1289 5)
(s1290 5)
(s1291 2)
(s1293 4)
(s1294 5)
(s1295 5)
(s1296 2)
(s1298 4)
(s1299 5)
(s1300 5)
(s1301 2)
(s1303 4)
(s1304 5)
(s1305 5)
(s1306 2)
(s1308 4)
(s1309 5)
(s1310 5)
(s1311 2)
(s1313 4)
(s1314 5)
(s1315 5)
(s1316 2)
(s1318 4)
(s1319 5)
(s1320 5)
(s1321 2)
(s1323 4)
(s1324 5)
(s1325 5)
(s1326 2)
(s1328 4)
(s1329 5)
(s1330 5)
(s1331 2)
(s1333 4)
(s1334 5)
(s1335 5)
(s1336 2)
(s1338 4)
(s1339 5)
(s1340 5)
(s1341 2)
(s1343 4)
(s1344 5)
(s1345 5)
(s1346 2)
(s1348 4)
(s1349 5)
(s1350 5)
(s1351 2)
(s1353 4)
(s1354 5)
(s1355 5)
(s1356 2)
(s1358 4)
(s1359 5)
(s1360 5)
(s1361 2)
(s1363 4)
(s1364 5)
(s1365 5)
(s1366 2)
(s1368 4)
(s1369 5)
(s1370 5)
(s1371 2)
(s1373 4)
(s1374 5)
(s1375 5)
(s1376 2)
(s1378 4)
(s1379 5)
(s1380 5)
(s1381 2)
(s1383 4)
(s1384 5)
(s1385 5)
(s1386 2)
(s1388 4)
(s1389 5)
(s1390 5)
(s1391 2)
(s1393 4)
(s1394 5)
(s1395 5)
(s1396 2)
(s1398 4)
(s1399 5)
(s1400 5)
(s1401 2)
(s1403 4)
(s1404 5)
(s1405 5)
(s1406 2)
(s1408 4)
(s1409 5)
(s1410 5)
(s1411 2)
(s1413 4)
(s1414 5)
(s1415 5)
(s1416 2)
(s1418 4)
(s1419 5)
(s1420 5)
(s1421 2)
(s1423 4)
(s1424 5)
(s1425 5)
(s1426 2)
(s1428 4)
(s1429 5)
(s1430 5)
(s1431 2)
(s1433 4)
(s1434 5)
(s1435 5)
(s1436 2)
(s1438 4)
(s1439 5)
(s1440 5)
(s1441 2)
(s1443 4)
(s1444 5)
(s1445 5)
(s1446 2)
(s1448 4)
(s1449 5)
(s1450 5)
(s1451 2)
(s1453 4)
(s1454 5)
(s1455 5)
(s1456 2)
(s1458 4)
(s1459 5)
(s1460 5)
(s1461 2)
(s1463 4)
(s1464 5)
(s1465 5)
(s1466 2)
(s1468 4)
(s1469 5)
(s1470 5)
(s1471 2)
(s1473 4)
(s1474 5)
(s1475 5)
(s1476 2)
(s1478 4)
(s1479 5)
(s1480 5)
(s1481 2)
(s1483 4)
(s1484 5)
(s1485 5)
(s1486 2)
(s1488 4)
(s1489 5)
(s1490 5)
(s1491 2)
(s1493 4)
(s1494 5)
(s1495 5)
(s1496 2)
(s1498 4)
(s1499 5)
(s1500 5)
(s1501 2)
(s1503 4)
(s1504 5)
(s1505 5)
(s1506 2)
(s1508 4)
(s1509 5)
(s1510 5)
(s1511 2)
(s1513 4)
(s1514 5)
(s1515 5)
(s1516 2)
(s1518 4)
(s1519 5)
(s1520 5)
(s1521 2)
(s1523 4)
(s1524 5)
(s1525 5)
(s1526 2)
(s1528 4)
(s1529 5)
(s1530 5)
(s1531 2)
(s1533 4)
(s1534 5)
(s1535 5)
(s1536 2)
(s1538 4)
(s1539 5)
(s1540 5)
(s1541 2)
(s1543 4)
(s1544 5)
(s1545 5)
(s1546 2)
(s1548 4)
(s1549 5)
(s1550 5)
(s1551 2)
(s1553 4)
(s1554 5)
(s1555 5)
(s1556 2)
(s1558 4)
(s1559 5)
(s1560 5)
(s1561 2)
(s1563 4)
(s1564 5)
(s1565 5)
(s1566 2)
(s1568 4)
(s1569 5)
(s1570 5)
(s1571 2)
(s1573 4)
(s1574 5)
(s1575 5)
(s1576 2)
(s1578 4)
(s1579 5)
(s1580 5)
(s1581 2)
(s1583 4)
(s1584 5)
(s1585 5)
(s1586 2)
(s1588 4)
(s1589 5)
(s1590 5)
(s1591 2)
(s1593 4)
(s1594 5)
(s1595 5)
(s1596 2)
(s1598 4)
(s1599 5)
(s1600 5)
(s1601 2)
(s1603 4)
(s1604 5)
(s1605 5)
(s1606 2)
(s1608 4)
(s1609 5)
(s1610 5)
(s1611 2)
(s1613 4)
(s1614 5)
(s1615 5)
(s1616 2)
(s1618 4)
(s1619 5)
(s1620 5)
(s1621 2)
(s1623 4)
(s1624 5)
(s1625 5)
(s1626 2)
(s1628 4)
(s1629 5)
(s1630 5)
(s1631 2)
(s1633 4)
(s1634 5)
(s1635 5)
(s1636 2)
(s1638 4)
(s1639 5)
(s1640 5)
(s1641 2)
(s1643 4)
(s1644 5)
(s1645 5)
(s1646 2)
(s1648 4)
(s1649 5)
(s1650 5)
(s1651 2)
(s1653 4)
(s1654 5)
(s1655 5)
(s1656 2)
(s1658 4)
(s1659 5)
(s1660 5)
(s1661 2)
(s1663 4)
(s1664 5)
(s1665 5)
(s1666 2)
(s1668 4)
(s1669 5)
(s1670 5)
(s1671 2)
(s1673 4)
(s1674 5)
(s1675 5)
(s1676 2)
(s1678 4)
(s1679 5)
(s1680 5)
(s1681 2)
(s1683 4)
(s1684 5)
(s1685 5)
(s1686 2)
(s1688 4)
(s1689 5)
(s1690 5)
(s1691 2)
(s1693 4)
(s1694 5)
(s1695 5)
(s1696 2)
(s1698 4)
(s1699 5)
(s1700 5)
(s1701 2)
(s1703 4)
(s1704 5)
(s1705 5)
(s1706 2)
(s1708 4)
(s1709 5)
(s1710 5)
(s1711 2)
(s1713 4)
(s1714 5)
(s1715 5)
(s1716 2)
(s1718 4)
(s1719 5)
(s1720 5)
(s1721 2)
(s1723 4)
(s1724 5)
(s1725 5)
(s1726 2)
(s1728 4)
(s1729 5)
(s1730 5)
(s1731 2)
(s1733 4)
(s1734 5)
(s1735 5)
(s1736 2)
(s1738 4)
(s1739 5)
(s1740 5)
(s1741 2)
(s1743 4)
(s1744 5)
(s1745 5)
(s1746 2)
(s1748 4)
(s1749 5)
(s1750 5)
(s1751 2)
(s1753 4)
(s1754 5)
(s1755 5)
(s1756 2)
(s1758 4)
(s1759 5)
(s1760 5)
(s1761 2)
(s1763 4)
(s1764 5)
(s1765 5)
(s1766 2)
(s1768 4)
(s1769 5)
(s1770 5)
(s1771 2)
(s1773 4)
(s1774 5)
(s1775 5)
(s1776 2)
(s1778 4)
(s1779 5)
(s1780 5)
(s1781 2)
(s1783 4)
(s1784 5)
(s1785 5)
(s1786 2)
(s1788 4)
(s1789 5)
(s1790 5)
(s1791 2)
(s1793 4)
(s1794 5)
(s1795 5)
(s1796 2)
(s1798 4)
(s1799 5)
(s1800 5)
(s1801 2)
(s1803 4)
(s1804 5)
(s1805 5)
(s1806 2)
(s1808 4)
(s1809 5)
(s1810 5)
(s1811 2)
(s1813 4)
(s1814 5)
(s1815 5)
(s1816 2)
(s1818 4)
(s1819 5)
(s1820 5)
(s1821 2)
(s1823 4)
(s1824 5)
(s1825 5)
(s1826 2)
(s1828 4)
(s1829 5)
(s1830 5)
(s1831 2)
(s1833 4)
(s1834 5)
(s1835 5)
(s1836 2)
(s1838 4)
(s1839 5)
(s1840 5)
(s1841 2)
(s1843 4)
(s1844 5)
(s1845 5)
(s1846 2)
(s1848 4)
(s1849 5)
(s1850 5)
(s1851 2)
(s1853 4)
(s1854 5)
(s1855 5)
(s1856 2)
(s1858 4)
(s1859 5)
(s1860 5)
(s1861 2)
(s1863 4)
(s1864 5)
(s1865 5)
(s1866 2)
(s1868 4)
(s1869 5)
(s1870 5)
(s1871 2)
(s1873 4)
(s1874 5)
(s1875 5)
(s1876 2)
(s1878 4)
(s1879 5)
(s1880 5)
(s1881 2)
(s1883 4)
(s1884 5)
(s1885 5)
(s1886 2)
(s1888 4)
(s1889 5)
(s1890 5)
(s1891 2)
(s1893 4)
(s1894 5)
(s1895 5)
(s1896 2)
(s1898 4)
(s1899 5)
(s1900 5)
(s1901 2)
(s1903 4)
(s1904 5)
(s1905 5)
(s1906 2)
(s1908 4)
(s1909 5)
(s1910 5)
(s1911 2)
(s1913 4)
(s1914 5)
(s1915 5)
(s1916 2)
(s1918 4)
(s1919 5)
(s1920 5)
(s1921 2)
(s1923 4)
(s1924 5)
(s1925 5)
(s1926 2)
(s1928 4)
(s1929 5)
(s1930 5)
(s1931 2)
(s1933 4)
(s1934 5)
(s1935 5)
(s1936 2)
(s1938 4)
(s1939 5)
(s1940 5)
(s1941 2)
(s1943 4)
(s1944 5)
(s1945 5)
(s1946 2)
(s1948 4)
(s1949 5)
(s1950 5)
(s1951 2)
(s1953 4)
(s1954 5)
(s1955 5)
(s1956 2)
(s1958 4)
(s1959 5)
(s1960 5)
(s1961 2)
(s1963 4)
(s1964 5)
(s1965 5)
(s1966 2)
(s1968 4)
(s1969 5)
(s1970 5)
(s1971 2)
(s1973 4)
(s1974 5)
(s1975 5)
(s1976 2)
(s1978 4)
(s1979 5)
(s1980 5)
(s1981 2)
(s1983 4)
(s1984 5)
(s1985 5)
(s1986 2)
(s1988 4)
(s1989 5)
(s1990 5)
(s1991 2)
(s1993 4)
(s1994 5)
(s1995 5)
(s1996 2)
(s1998 4)
(s1999 5)
(s2000 5)
(s2001 2)
(s2003 4)
(s2004 5)
(s2005 5)
(s2006 2)
(s2008 4)
(s2009 5)
(s2010 5)
(s2011 2)
(s2013 4)
(s2014 5)
(s2015 5)
(s2016 2)
(s2018 4)
(s2019 5)
(s2020 5)
(s2021 2)
(s2023 4)
(s2024 5)
(s2025 5)
(s2026 2)
(s2028 4)
(s2029 5)
(s2030 5)
(s2031 2)
(s2033 4)
(s2034 5)
(s2035 5)
(s2036 2)
(s2038 4)
(s2039 5)
(s2040 5)
(s2041 2)
(s2043 4)
(s2044 5)
(s2045 5)
(s2046 2)
(s2048 4)
(s2049 5)
(s2050 5)
(s2051 2)
(s2053 4)
(s2054 5)
(s2055 5)
(s2056 2)
(s2058 4)
(s2059 5)
(s2060 5)
(s2061 2)
(s2063 4)
(s2064 5)
(s2065 5)
(s2066 2)
(s2068 4)
(s2069 5)
(s2070 5)
(s2071 2)
(s2073 4)
(s2074 5)
(s2075 5)
(s2076 2)
(s2078 4)
(s2079 5)
(s2080 5)
(s2081 2)
(s2083 4)
(s2084 5)
(s2085 5)
(s2086 2)
(s2088 4)
(s2089 5)
(s2090 5)
(s2091 2)
(s2093 4)
(s2094 5)
(s2095 5)
(s2096 2)
(s2098 4)
(s2099 5)
(s2100 5)
(s2101 2)
(s2103 4)
(s2104 5)
(s2105 5)
(s2106 2)
(s2108 4)
(s2109 5)
(s2110 5)
(s2111 2)
(s2113 4)
(s2114 5)
(s2115 5)
(s2116 2)
(s2118 4)
(s2119 5)
(s2120 5)
(s2121 2)
(s2123 4)
(s2124 5)
(s2125 5)
(s2126 2)
(s2128 4)
(s2129 5)
(s2130 5)
(s2131 2)
(s2133 4)
(s2134 5)
(s2135 5)
(s2136 2)
(s2138 4)
(s2139 5)
(s2140 5)
(s2141 2)
(s2143 4)
(s2144 5)
(s2145 5)
(s2146 2)
(s2148 4)
(s2149 5)
(s2150 5)
(s2151 2)
(s2153 4)
(s2154 5)
(s2155 5)
(s2156 2)
(s2158 4)
(s2159 5)
(s2160 5)
(s2161 2)
(s2163 4)
(s2164 5)
(s2165 5)
(s2166 2)
(s2168 4)
(s2169 5)
(s2170 5)
(s2171 2)
(s2173 4)
(s2174 5)
(s2175 5)
(s2176 2)
(s2178 4)
(s2179 5)
(s2180 5)
(s2181 2)
(s2183 4)
(s2184 5)
(s2185 5)
(s2186 2)
(s2188 4)
(s2189 5)
(s2190 5)
(s2191 2)
(s2193 4)
(s2194 5)
(s2195 5)
(s2196 2)
(s2198 4)
(s2199 5)
(s2200 5)
(s2201 2)
(s2203 4)
(s2204 5)
(s2205 5)
(s2206 2)
(s2208 4)
(s2209 5)
(s2210 5)
(s2211 2)
(s2213 4)
(s2214 5)
(s2215 5)
(s2216 2)
(s2218 4)
(s2219 5)
(s2220 5)
(s2221 2)
(s2223 4)
(s2224 5)
(s2225 5)
(s2226 2)
(s2228 4)
(s2229 5)
(s2230 5)
(s2231 2)
(s2233 4)
(s2234 5)
(s2235 5)
(s2236 2)
(s2238 4)
(s2239 5)
(s2240 5)
(s2241 2)
(s2243 4)
(s2244 5)
(s2245 5)
(s2246 2)
(s2248 4)
(s2249 5)
(s2250 5)
(s2251 2)
(s2253 4)
(s2254 5)
(s2255 5)
(s2256 2)
(s2258 4)
(s2259 5)
(s2260 5)
(s2261 2)
(s2263 4)
(s2264 5)
(s2265 5)
(s2266 2)
(s2268 4)
(s2269 5)
(s2270 5)
(s2271 2)
(s2273 4)
(s2274 5)
(s2275 5)
(s2276 2)
(s2278 4)
(s2279 5)
(s2280 5)
(s2281 2)
(s2283 4)
(s2284 5)
(s2285 5)
(s2286 2)
(s2288 4)
(s2289 5)
(s2290 5)
(s2291 2)
(s2293 4)
(s2294 5)
(s2295 5)
(s2296 2)
(s2298 4)
(s2299 5)
(s2300 5)
(s2301 2)
(s2303 4)
(s2304 5)
(s2305 5)
(s2306 2)
(s2308 4)
(s2309 5)
(s2310 5)
(s2311 2)
(s2313 4)
(s2314 5)
(s2315 5)
(s2316 2)
(s2318 4)
(s2319 5)
(s2320 5)
(s2321 2)
(s2323 4)
(s2324 5)
(s2325 5)
(s2326 2)
(s2328 4)
(s2329 5)
(s2330 5)
(s2331 2)
(s2333 4)
(s2334 5)
(s2335 5)
(s2336 2)
(s2338 4)
(s2339 5)
(s2340 5)
(s2341 2)
(s2343 4)
(s2344 5)
(s2345 5)
(s2346 2)
(s2348 4)
(s2349 5)
(s2350 5)
(s2351 2)
(s2353 4)
(s2354 5)
(s2355 5)
(s2356 2)
(s2358 4)
(s2359 5)
(s2360 5)
(s2361 2)
(s2363 4)
(s2364 5)
(s2365 5)
(s2366 2)
(s2368 4)
(s2369 5)
(s2370 5)
(s2371 2)
(s2373 4)
(s2374 5)
(s2375 5)
(s2376 2)
(s2378 4)
(s2379 5)
(s2380 5)
(s2381 2)
(s2383 4)
(s2384 5)
(s2385 5)
(s2386 2)
(s2388 4)
(s2389 5)
(s2390 5)
(s2391 2)
(s2393 4)
(s2394 5)
(s2395 5)
(s2396 2)
(s2398 4)
(s2399 5)
(s2400 5)
(s2401 2)
(s2403 4)
(s2404 5)
(s2405 5)
(s2406 2)
(s2408 4)
(s2409 5)
(s2410 5)
(s2411 2)
(s2413 4)
(s2414 5)
(s2415 5)
(s2416 2)
(s2418 4)
(s2419 5)
(s2420 5)
(s2421 2)
(s2423 4)
(s2424 5)
(s2425 5)
(s2426 2)
(s2428 4)
(s2429 5)
(s2430 5)
(s2431 2)
(s2433 4)
(s2434 5)
(s2435 5)
(s2436 2)
(s2438 4)
(s2439 5)
(s2440 5)
(s2441 2)
(s2443 4)
(s2444 5)
(s2445 5)
(s2446 2)
(s2448 4)
(s2449 5)
(s2450 5)
(s2451 2)
(s2453 4)
(s2454 5)
(s2455 5)
(s2456 2)
(s2458 4)
(s2459 5)
(s2460 5)
(s2461 2)
(s2463 4)
(s2464 5)
(s2465 5)
(s2466 2)
(s2468 4)
(s2469 5)
(s2470 5)
(s2471 2)
(s2473 4)
(s2474 5)
(s2475 5)
(s2476 2)
(s2478 4)
(s2479 5)
(s2480 5)
(s2481 2)
(s2483 4)
(s2484 5)
(s2485 5)
(s2486 2)
(s2488 4)
(s2489 5)
(s2490 5)
(s2491 2)
(s2493 4)
(s2494 5)
(s2495 5)
(s2496 2)
(s2498 4)
(s2499 5)
(s2500 5)
(s2501 2)
(s2503 4)
(s2504 5)
(s2505 5)
(s2506 2)
(s2508 4)
(s2509 5)
(s2510 5)
(s2511 2)
(s2513 4)
(s2514 5)
(s2515 5)
(s2516 2)
(s2518 4)
(s2519 5)
(s2520 5)
(s2521 2)
(s2523 4)
(s2524 5)
(s2525 5)
(s2526 2)
(s2528 4)
(s2529 5)
(s2530 5)
(s2531 2)
(s2533 4)
(s2534 5)
(s2535 5)
(s2536 2)
(s2538 4)
(s2539 5)
(s2540 5)
(s2541 2)
(s2543 4)
(s2544 5)
(s2545 5)
(s2546 2)
(s2548 4)
(s2549 5)
(s2550 5)
(s2551 2)
(s2553 4)
(s2554 5)
(s2555 5)
(s2556 2)
(s2558 4)
(s2559 5)
(s2560 5)
(s2561 2)
(s2563 4)
(s2564 5)
(s2565 5)
(s2566 2)
(s2568 4)
(s2569 5)
(s2570 5)
(s2571 2)
(s2573 4)
(s2574 5)
(s2575 5)
(s2576 2)
(s2578 4)
(s2579 5)
(s2580 5)
(s2581 2)
(s2583 4)
(s2584 5)
(s2585 5)
(s2586 2)
(s2588 4)
(s2589 5)
(s2590 5)
(s2591 2)
(s2593 4)
(s2594 5)
(s2595 5)
(s2596 2)
(s2598 4)
(s2599 5)
(s2600 5)
(s2601 2)
(s2603 4)
(s2604 5)
(s2605 5)
(s2606 2)
(s2608 4)
(s2609 5)
(s2610 5)
(s2611 2)
(s2613 4)
(s2614 5)
(s2615 5)
(s2616 2)
(s2618 4)
(s2619 5)
(s2620 5)
(s2621 2)
(s2623 4)
(s2624 5)
(s2625 5)
(s2626 2)
(s2628 4)
(s2629 5)
(s2630 5)
(s2631 2)
(s2633 4)
(s2634 5)
(s2635 5)
(s2636 2)
(s2638 4)
(s2639 5)
(s2640 5)
(s2641 2)
(s2643 4)
(s2644 5)
(s2645 5)
(s2646 2)
(s2648 4)
(s2649 5)
(s2650 5)
(s2651 2)
(s2653 4)
(s2654 5)
(s2655 5)
(s2656 2)
(s2658 4)
(s2659 5)
(s2660 5)
(s2661 2)
(s2663 4)
(s2664 5)
(s2665 5)
(s2666 2)
(s2668 4)
(s2669 5)
(s2670 5)
(s2671 2)
(s2673 4)
(s2674 5)
(s2675 5)
(s2676 2)
(s2678 4)
(s2679 5)
(s2680 5)
(s2681 2)
(s2683 4)
(s2684 5)
(s2685 5)
(s2686 2)
(s2688 4)
(s2689 5)
(s2690 5)
(s2691 2)
(s2693 4)
(s2694 5)
(s2695 5)
(s2696 2)
(s2698 4)
(s2699 5)
(s2700 5)
(s2701 2)
(s2703 4)
(s2704 5)
(s2705 5)
(s2706 2)
(s2708 4)
(s2709 5)
(s2710 5)
(s2711 2)
(s2713 4)
(s2714 5)
(s2715 5)
(s2716 2)
(s2718 4)
(s2719 5)
(s2720 5)
(s2721 2)
(s2723 4)
(s2724 5)
(s2725 5)
(s2726 2)
(s2728 4)
(s2729 5)
(s2730 5)
(s2731 2)
(s2733 4)
(s2734 5)
(s2735 5)
(s2736 2)
(s2738 4)
(s2739 5)
(s2740 5)
(s2741 2)
(s2743 4)
(s2744 5)
(s2745 5)
(s2746 2)
(s2748 4)
(s2749 5)
(s2750 5)
(s2751 2)
(s2753 4)
(s2754 5)
(s2755 5)
(s2756 2)
(s2758 4)
(s2759 5)
(s2760 5)
(s2761 2)
(s2763 4)
(s2764 5)
(s2765 5)
(s2766 2)
(s2768 4)
(s2769 5)
(s2770 5)
(s2771 2)
(s2773 4)
(s2774 5)
(s2775 5)
(s2776 2)
(s2778 4)
(s2779 5)
(s2780 5)
(s2781 2)
(s2783 4)
(s2784 5)
(s2785 5)
(s2786 2)
(s2788 4)
(s2789 5)
(s2790 5)
(s2791 2)
(s2793 4)
(s2794 5)
(s2795 5)
(s2796 2)
(s2798 4)
(s2799 5)
(s2800 5)
(s2801 2)
(s2803 4)
(s2804 5)
(s2805 5)
(s2806 2)
(s2808 4)
(s2809 5)
(s2810 5)
(s2811 2)
(s2813 4)
(s2814 5)
(s2815 5)
(s2816 2)
(s2818 4)
(s2819 5)
(s2820 5)
(s2821 2)
(s2823 4)
(s2824 5)
(s2825 5)
(s2826 2)
(s2828 4)
(s2829 5)
(s2830 5)
(s2831 2)
(s2833 4)
(s2834 5)
(s2835 5)
(s2836 2)
(s2838 4)
(s2839 5)
(s2840 5)
(s2841 2)
(s2843 4)
(s2844 5)
(s2845 5)
(s2846 2)
(s2848 4)
(s2849 5)
(s2850 5)
(s2851 2)
(s2853 4)
(s2854 5)
(s2855 5)
(s2856 2)
(s2858 4)
(s2859 5)
(s2860 5)
(s2861 2)
(s2863 4)
(s2864 5)
(s2865 5)
(s2866 2)
(s2868 4)
(s2869 5)
(s2870 5)
(s2871 2)
(s2873 4)
(s2874 5)
(s2875 5)
(s2876 2)
(s2878 4)
(s2879 5)
(s2880 5)
(s2881 2)
(s2883 4)
(s2884 5)
(s2885 5)
(s2886 2)
(s2888 4)
(s2889 5)
(s2890 5)
(s2891 2)
(s2893 4)
(s2894 5)
(s2895 5)
(s2896 2)
(s2898 4)
(s2899 5)
(s2900 5)
(s2901 2)
(s2903 4)
(s2904 5)
(s2905 5)
(s2906 2)
(s2908 4)
(s2909 5)
(s2910 5)
(s2911 2)
(s2913 4)
(s2914 5)
(s2915 5)
(s2916 2)
(s2918 4)
(s2919 5)
(s2920 5)
(s2921 2)
(s2923 4)
(s2924 5)
(s2925 5)
(s2926 2)
(s2928 4)
(s2929 5)
(s2930 5)
(s2931 2)
(s2933 4)
(s2934 5)
(s2935 5)
(s2936 2)
(s2938 4)
(s2939 5)
(s2940 5)
(s2941 2)
(s2943 4)
(s2944 5)
(s2945 5)
(s2946 2)
(s2948 4)
(s2949 5)
(s2950 5)
(s2951 2)
(s2953 4)
(s2954 5)
(s2955 5)
(s2956 2)
(s2958 4)
(s2959 5)
(s2960 5)
(s2961 2)
(s2963 4)
(s2964 5)
(s2965 5)
(s2966 2)
(s2968 4)
(s2969 5)
(s2970 5)
(s2971 2)
(s2973 4)
(s2974 5)
(s2975 5)
(s2976 2)
(s2978 4)
(s2979 5)
(s2980 5)
(s2981 2)
(s2983 4)
(s2984 5)
(s2985 5)
(s2986 2)
(s2988 4)
(s2989 5)
(s2990 5)
(s2991 2)
(s2993 4)
(s2994 5)
(s2995 5)
(s2996 2)
(s2998 4)
(s2999 5)
(s3000 5)
(s3001 2)
(s3003 4)
(s3004 5)
(s3005 5)
(s3006 2)
(s3008 4)
(s3009 5)
(s3010 5)
(s3011 2)
(s3013 4)
(s3014 5)
(s3015 5)
(s3016 2)
(s3018 4)
(s3019 5)
(s3020 5)
(s3021 2)
(s3023 4)
(s3024 5)
(s3025 5)
(s3026 2)
(s3028 4)
(s3029 5)
(s3030 5)
(s3031 2)
(s3033 4)
(s3034 5)
(s3035 5)
(s3036 2)
(s3038 4)
(s3039 5)
(s3040 5)
(s3041 2)
(s3043 4)
(s3044 5)
(s3045 5)
(s3046 2)
(s3048 4)
(s3049 5)
(s3050 5)
(s3051 2)
(s3053 4)
(s3054 5)
(s3055 5)
(s3056 2)
(s3058 4)
(s3059 5)
(s3060 5)
(s3061 2)
(s3063 4)
(s3064 5)
(s3065 5)
(s3066 2)
(s3068 4)
(s3069 5)
(s3070 5)
(s3071 2)
(s3073 4)
(s3074 5)
(s3075 5)
(s3076 2)
(s3078 4)
(s3079 5)
(s3080 5)
(s3081 2)
(s3083 4)
(s3084 5)
(s3085 5)
(s3086 2)
(s3088 4)
(s3089 5)
(s3090 5)
(s3091 2)
(s3093 4)
(s3094 5)
(s3095 5)
(s3096 2)
(s3098 4)
(s3099 5)
(s3100 5)
(s3101 2)
(s3103 4)
(s3104 5)
(s3105 5)
(s3106 2)
(s3108 4)
(s3109 5)
(s3110 5)
(s3111 2)
(s3113 4)
(s3114 5)
(s3115 5)
(s3116 2)
(s3118 4)
(s3119 5)
(s3120 5)
(s3121 2)
(s3123 4)
(s3124 5)
(s3125 5)
(s3126 2)
(s3128 4)
(s3129 5)
(s3130 5)
(s3131 2)
(s3133 4)
(s3134 5)
(s3135 5)
(s3136 2)
(s3138 4)
(s3139 5)
(s3140 5)
(s3141 2)
(s3143 4)
(s3144 5)
(s3145 5)
(s3146 2)
(s3148 4)
(s3149 5)
(s3150 5)
(s3151 2)
(s3153 4)
(s3154 5)
(s3155 5)
(s3156 2)
(s3158 4)
(s3159 5)
(s3160 5)
(s3161 2)
(s3163 4)
(s3164 5)
(s3165 5)
(s3166 2)
(s3168 4)
(s3169 5)
(s3170 5)
(s3171 2)
(s3173 4)
(s3174 5)
(s3175 5)
(s3176 2)
(s3178 4)
(s3179 5)
(s3180 5)
(s3181 2)
(s3183 4)
(s3184 5)
(s3185 5)
(s3186 2)
(s3188 4)
(s3189 5)
(s3190 5)
(s3191 2)
(s3193 4)
(s3194 5)
(s3195 5)
(s3196 2)
(s3198 4)
(s3199 5)
(s3200 5)
(s3201 2)
(s3203 4)
(s3204 5)
(s3205 5)
(s3206 2)
(s3208 4)
(s3209 5)
(s3210 5)
(s3211 2)
(s3213 4)
(s3214 5)
(s3215 5)
(s3216 2)
(s3218 4)
(s3219 5)
(s3220 5)
(s3221 2)
(s3223 4)
(s3224 5)
(s3225 5)
(s3226 2)
(s3228 4)
(s3229 5)
(s3230 5)
(s3231 2)
(s3233 4)
(s3234 5)
(s3235 5)
(s3236 2)
(s3238 4)
(s3239 5)
(s3240 5)
(s3241 2)
(s3243 4)
(s3244 5)
(s3245 5)
(s3246 2)
(s3248 4)
(s3249 5)
(s3250 5)
(s3251 2)
(s3253 4)
(s3254 5)
(s3255 5)
(s3256 2)
(s3258 4)
(s3259 5)
(s3260 5)
(s3261 2)
(s3263 4)
(s3264 5)
(s3265 5)
(s3266 2)
(s3268 4)
(s3269 5)
(s3270 5)
(s3271 2)
(s3273 4)
(s3274 5)
(s3275 5)
(s3276 2)
(s3278 4)
(s3279 5)
(s3280 5)
(s3281 2)
(s3283 4)
(s3284 5)
(s3285 5)
(s3286 2)
(s3288 4)
(s3289 5)
(s3290 5)
(s3291 2)
(s3293 4)
(s3294 5)
(s3295 5)
(s3296 2)
(s3298 4)
(s3299 5)
(s3300 5)
(s3301 2)
(s3303 4)
(s3304 5)
(s3305 5)
(s3306 2)
(s3308 4)
(s3309 5)
(s3310 5)
(s3311 2)
(s3313 4)
(s3314 5)
(s3315 5)
(s3316 2)
(s3318 4)
(s3319 5)
(s3320 5)
(s3321 2)
(s3323 4)
(s3324 5)
(s3325 5)
(s3326 2)
(s3328 4)
(s3329 5)
(s3330 5)
(s3331 2)
(s3333 4)
(s3334 5)
(s3335 5)
(s3336 timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20079 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 44889ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 44945ms
[2024-05-23 23:03:09] [INFO ] Invariant cache hit.
[2024-05-23 23:03:10] [INFO ] Implicit Places using invariants in 861 ms returned []
[2024-05-23 23:03:10] [INFO ] Invariant cache hit.
[2024-05-23 23:03:13] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2024-05-23 23:03:13] [INFO ] Implicit Places using invariants and state equation in 3695 ms returned []
Implicit Place search using SMT with State Equation took 4562 ms to find 0 implicit places.
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:03:13] [INFO ] Invariant cache hit.
[2024-05-23 23:03:13] [INFO ] State equation strengthened by 1000 read => feed constraints.
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30074 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30083 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 64140ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 64184ms
Finished structural reductions in LTL mode , in 1 iterations and 113923 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Computed a total of 0 stabilizing places and 0 stable transitions
Computed a total of 0 stabilizing places and 0 stable transitions
Knowledge obtained : [(AND p0 p1)]
False Knowledge obtained : []
Knowledge based reduction with 1 factoid took 82 ms. Reduced automaton from 4 states, 4 edges and 2 AP (stutter sensitive) to 4 states, 4 edges and 2 AP (stutter sensitive).
Stuttering acceptance computed with spot in 117 ms :[(AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1))]
RANDOM walk for 41067 steps (8 resets) in 1897 ms. (21 steps per ms) remains 3/3 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1931 ms. (20 steps per ms) remains 3/3 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1935 ms. (20 steps per ms) remains 2/3 properties
[2024-05-23 23:04:20] [INFO ] Invariant cache hit.
[2024-05-23 23:04:20] [INFO ] State equation strengthened by 1000 read => feed constraints.
At refinement iteration 0 (INCLUDED_ONLY) 0/3 variables, 0/0 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 1 (OVERLAPS) 12/15 variables, 3/3 constraints. Problems are: Problem set: 0 solved, 2 unsolved
[2024-05-23 23:04:20] [INFO ] Deduced a trap composed of 3 places in 23 ms of which 0 ms to minimize.
At refinement iteration 2 (INCLUDED_ONLY) 0/15 variables, 1/4 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 3 (INCLUDED_ONLY) 0/15 variables, 0/4 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 4 (OVERLAPS) 24/39 variables, 15/19 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 5 (INCLUDED_ONLY) 0/39 variables, 3/22 constraints. Problems are: Problem set: 0 solved, 2 unsolved
All remaining problems are real, not stopping.
At refinement iteration 6 (INCLUDED_ONLY) 0/39 variables, 0/22 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 7 (OVERLAPS) 0/39 variables, 0/22 constraints. Problems are: Problem set: 0 solved, 2 unsolved
No progress, stopping.
After SMT solving in domain Real declared 39/13001 variables, and 22 constraints, problems are : Problem set: 0 solved, 2 unsolved in 111 ms.
Refiners :[Positive P Invariants (semi-flows): 3/1000 constraints, State Equation: 15/5000 constraints, ReadFeed: 3/1000 constraints, PredecessorRefiner: 2/2 constraints, Known Traps: 1/1 constraints]
Escalating to Integer solving :Problem set: 0 solved, 2 unsolved
At refinement iteration 0 (INCLUDED_ONLY) 0/3 variables, 0/0 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 1 (OVERLAPS) 12/15 variables, 3/3 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 2 (INCLUDED_ONLY) 0/15 variables, 1/4 constraints. Problems are: Problem set: 0 solved, 2 unsolved
[2024-05-23 23:04:20] [INFO ] Deduced a trap composed of 3 places in 22 ms of which 1 ms to minimize.
At refinement iteration 3 (INCLUDED_ONLY) 0/15 variables, 1/5 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 4 (INCLUDED_ONLY) 0/15 variables, 0/5 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 5 (OVERLAPS) 24/39 variables, 15/20 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 6 (INCLUDED_ONLY) 0/39 variables, 3/23 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 7 (INCLUDED_ONLY) 0/39 variables, 2/25 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 8 (INCLUDED_ONLY) 0/39 variables, 0/25 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 9 (OVERLAPS) 0/39 variables, 0/25 constraints. Problems are: Problem set: 0 solved, 2 unsolved
No progress, stopping.
After SMT solving in domain Int declared 39/13001 variables, and 25 constraints, problems are : Problem set: 0 solved, 2 unsolved in 138 ms.
Refiners :[Positive P Invariants (semi-flows): 3/1000 constraints, State Equation: 15/5000 constraints, ReadFeed: 3/1000 constraints, PredecessorRefiner: 2/2 constraints, Known Traps: 2/2 constraints]
After SMT, in 279ms problems are : Problem set: 0 solved, 2 unsolved
Finished Parikh walk after 22 steps, including 0 resets, run visited all 2 properties in 3 ms. (steps per millisecond=7 )
Finished Parikh walk after 0 steps, including 0 resets, run visited all 0 properties in 1 ms. (steps per millisecond=0 )
Parikh walk visited 2 properties in 6 ms.
Knowledge obtained : [(AND p0 p1)]
False Knowledge obtained : [(F (NOT p0)), (F (NOT p1)), (F (NOT (OR p0 p1)))]
Knowledge based reduction with 1 factoid took 231 ms. Reduced automaton from 4 states, 4 edges and 2 AP (stutter sensitive) to 4 states, 4 edges and 2 AP (stutter sensitive).
Stuttering acceptance computed with spot in 153 ms :[(AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1))]
Stuttering acceptance computed with spot in 137 ms :[(AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1))]
Stuttering acceptance computed with spot in 168 ms :[(AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1))]
Product exploration timeout after 61320 steps with 20440 reset in 10002 ms.
Product exploration timeout after 57730 steps with 19243 reset in 10002 ms.
Applying partial POR strategy [false, true, false, false]
Stuttering acceptance computed with spot in 146 ms :[(AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1))]
Support contains 3 out of 5000 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 883 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:04:42] [INFO ] Invariant cache hit.
[2024-05-23 23:04:42] [INFO ] State equation strengthened by 1000 read => feed constraints.
Error getting values : (error "ParserException while parsing response: ((s0 5.0)
(s1 2.0)
(s3 4.0)
(s4 5.0)
(s5 5.0)
(s6 2.0)
(s8 4.0)
(s9 5.0)
(s10 5.0)
(s11 2.0)
(s13 4.0)
(s14 5.0)
(s15 5.0)
(s16 2.0)
(s18 4.0)
(s19 5.0)
(s20 5.0)
(s21 2.0)
(s23 4.0)
(s24 5.0)
(s25 5.0)
(s26 2.0)
(s28 4.0)
(s29 5.0)
(s30 5.0)
(s31 2.0)
(s33 4.0)
(s34 5.0)
(s35 5.0)
(s36 2.0)
(s38 4.0)
(s39 5.0)
(s40 5.0)
(s41 2.0)
(s43 4.0)
(s44 5.0)
(s45 5.0)
(s46 2.0)
(s48 4.0)
(s49 5.0)
(s50 5.0)
(s51 2.0)
(s53 4.0)
(s54 5.0)
(s55 5.0)
(s56 2.0)
(s58 4.0)
(s59 5.0)
(s60 5.0)
(s61 2.0)
(s63 4.0)
(s64 5.0)
(s65 5.0)
(s66 2.0)
(s68 4.0)
(s69 5.0)
(s70 5.0)
(s71 2.0)
(s73 4.0)
(s74 5.0)
(s75 5.0)
(s76 2.0)
(s78 4.0)
(s79 5.0)
(s80 5.0)
(s81 2.0)
(s83 4.0)
(s84 5.0)
(s85 5.0)
(s86 2.0)
(s88 4.0)
(s89 5.0)
(s90 5.0)
(s91 2.0)
(s93 4.0)
(s94 5.0)
(s95 5.0)
(s96 2.0)
(s98 4.0)
(s99 5.0)
(s100 5.0)
(s101 2.0)
(s103 4.0)
(s104 5.0)
(s105 5.0)
(s106 2.0)
(s108 4.0)
(s109 5.0)
(s110 5.0)
(s111 2.0)
(s113 4.0)
(s114 5.0)
(s115 5.0)
(s116 2.0)
(s118 4.0)
(s119 5.0)
(s120 5.0)
(s121 2.0)
(s123 4.0)
(s124 5.0)
(s125 5.0)
(s126 2.0)
(s128 4.0)
(s129 5.0)
(s130 5.0)
(s131 2.0)
(s133 4.0)
(s134 5.0)
(s135 5.0)
(s136 2.0)
(s138 4.0)
(s139 5.0)
(s140 5.0)
(s141 2.0)
(s143 4.0)
(s144 5.0)
(s145 5.0)
(s146 2.0)
(s148 4.0)
(s149 5.0)
(s150 5.0)
(s151 2.0)
(s153 4.0)
(s154 5.0)
(s155 5.0)
(s156 2.0)
(s158 4.0)
(s159 5.0)
(s160 5.0)
(s161 2.0)
(s163 4.0)
(s164 5.0)
(s165 5.0)
(s166 2.0)
(s168 4.0)
(s169 5.0)
(s170 5.0)
(s171 2.0)
(s173 4.0)
(s174 5.0)
(s175 5.0)
(s176 2.0)
(s178 4.0)
(s179 5.0)
(s180 5.0)
(s181 2.0)
(s183 4.0)
(s184 5.0)
(s185 5.0)
(s186 2.0)
(s188 4.0)
(s189 5.0)
(s190 5.0)
(s191 2.0)
(s193 4.0)
(s194 5.0)
(s195 5.0)
(s196 2.0)
(s198 4.0)
(s199 5.0)
(s200 5.0)
(s201 2.0)
(s203 4.0)
(s204 5.0)
(s205 5.0)
(s206 2.0)
(s208 4.0)
(s209 5.0)
(s210 5.0)
(s211 2.0)
(s213 4.0)
(s214 5.0)
(s215 5.0)
(s216 2.0)
(s218 4.0)
(s219 5.0)
(s220 5.0)
(s221 2.0)
(s223 4.0)
(s224 5.0)
(s225 5.0)
(s226 2.0)
(s228 4.0)
(s229 5.0)
(s230 5.0)
(s231 2.0)
(s233 4.0)
(s234 5.0)
(s235 5.0)
(s236 2.0)
(s238 4.0)
(s239 5.0)
(s240 5.0)
(s241 2.0)
(s243 4.0)
(s244 5.0)
(s245 5.0)
(s246 2.0)
(s248 4.0)
(s249 5.0)
(s250 5.0)
(s251 2.0)
(s253 4.0)
(s254 5.0)
(s255 5.0)
(s256 2.0)
(s258 4.0)
(s259 5.0)
(s260 5.0)
(s261 2.0)
(s263 4.0)
(s264 5.0)
(s265 5.0)
(s266 2.0)
(s268 4.0)
(s269 5.0)
(s270 5.0)
(s271 2.0)
(s273 4.0)
(s274 5.0)
(s275 5.0)
(s276 2.0)
(s278 4.0)
(s279 5.0)
(s280 5.0)
(s281 2.0)
(s283 4.0)
(s284 5.0)
(s285 5.0)
(s286 2.0)
(s288 4.0)
(s289 5.0)
(s290 5.0)
(s291 2.0)
(s293 4.0)
(s294 5.0)
(s295 5.0)
(s296 2.0)
(s298 4.0)
(s299 5.0)
(s300 5.0)
(s301 2.0)
(s303 4.0)
(s304 5.0)
(s305 5.0)
(s306 2.0)
(s308 4.0)
(s309 5.0)
(s310 5.0)
(s311 2.0)
(s313 4.0)
(s314 5.0)
(s315 5.0)
(s316 2.0)
(s318 4.0)
(s319 5.0)
(s320 5.0)
(s321 2.0)
(s323 4.0)
(s324 5.0)
(s325 5.0)
(s326 2.0)
(s328 4.0)
(s329 5.0)
(s330 5.0)
(s331 2.0)
(s333 4.0)
(s334 5.0)
(s335 5.0)
(s336 2.0)
(s338 4.0)
(s339 5.0)
(s340 5.0)
(s341 2.0)
(s343 4.0)
(s344 5.0)
(s345 5.0)
(s346 2.0)
(s348 4.0)
(s349 5.0)
(s350 5.0)
(s351 2.0)
(s353 4.0)
(s354 5.0)
(s355 5.0)
(s356 2.0)
(s358 4.0)
(s359 5.0)
(s360 5.0)
(s361 2.0)
(s363 4.0)
(s364 5.0)
(s365 5.0)
(s366 2.0)
(s368 4.0)
(s369 5.0)
(s370 5.0)
(s371 2.0)
(s373 4.0)
(s374 5.0)
(s375 5.0)
(s376 2.0)
(s378 4.0)
(s379 5.0)
(s380 5.0)
(s381 2.0)
(s383 4.0)
(s384 5.0)
(s385 5.0)
(s386 2.0)
(s388 4.0)
(s389 5.0)
(s390 5.0)
(s391 2.0)
(s393 4.0)
(s394 5.0)
(s395 5.0)
(s396 2.0)
(s398 4.0)
(s399 5.0)
(s400 5.0)
(s401 2.0)
(s403 4.0)
(s404 5.0)
(s405 5.0)
(s406 2.0)
(s408 4.0)
(s409 5.0)
(s410 5.0)
(s411 2.0)
(s413 4.0)
(s414 5.0)
(s415 5.0)
(s416 2.0)
(s418 4.0)
(s419 5.0)
(s420 5.0)
(s421 2.0)
(s423 4.0)
(s424 5.0)
(s425 5.0)
(s426 2.0)
(s428 4.0)
(s429 5.0)
(s430 5.0)
(s431 2.0)
(s433 4.0)
(s434 5.0)
(s435 5.0)
(s436 2.0)
(s438 4.0)
(s439 5.0)
(s440 5.0)
(s441 2.0)
(s443 4.0)
(s444 5.0)
(s445 5.0)
(s446 2.0)
(s448 4.0)
(s449 5.0)
(s450 5.0)
(s451 2.0)
(s453 4.0)
(s454 5.0)
(s455 5.0)
(s456 2.0)
(s458 4.0)
(s459 5.0)
(s460 5.0)
(s461 2.0)
(s463 4.0)
(s464 5.0)
(s465 5.0)
(s466 2.0)
(s468 4.0)
(s469 5.0)
(s470 5.0)
(s471 2.0)
(s473 4.0)
(s474 5.0)
(s475 5.0)
(s476 2.0)
(s478 4.0)
(s479 5.0)
(s480 5.0)
(s481 2.0)
(s483 4.0)
(s484 5.0)
(s485 5.0)
(s486 2.0)
(s488 4.0)
(s489 5.0)
(s490 5.0)
(s491 2.0)
(s493 4.0)
(s494 5.0)
(s495 5.0)
(s496 2.0)
(s498 4.0)
(s499 5.0)
(s500 5.0)
(s501 2.0)
(s503 4.0)
(s504 5.0)
(s505 5.0)
(s506 2.0)
(s508 4.0)
(s509 5.0)
(s510 5.0)
(s511 2.0)
(s513 4.0)
(s514 5.0)
(s515 5.0)
(s516 2.0)
(s518 4.0)
(s519 5.0)
(s520 5.0)
(s521 2.0)
(s523 4.0)
(s524 5.0)
(s525 5.0)
(s526 2.0)
(s528 4.0)
(s529 5.0)
(s530 5.0)
(s531 2.0)
(s533 4.0)
(s534 5.0)
(s535 5.0)
(s536 2.0)
(s538 4.0)
(s539 5.0)
(s540 5.0)
(s541 2.0)
(s543 4.0)
(s544 5.0)
(s545 5.0)
(s546 2.0)
(s548 4.0)
(s549 5.0)
(s550 5.0)
(s551 2.0)
(s553 4.0)
(s554 5.0)
(s555 5.0)
(s556 2.0)
(s558 4.0)
(s559 5.0)
(s560 5.0)
(s561 2.0)
(s563 4.0)
(s564 5.0)
(s565 5.0)
(s566 2.0)
(s568 4.0)
(s569 5.0)
(s570 5.0)
(s571 2.0)
(s573 4.0)
(s574 5.0)
(s575 5.0)
(s576 2.0)
(s578 4.0)
(s579 5.0)
(s580 5.0)
(s581 2.0)
(s583 4.0)
(s584 5.0)
(s585 5.0)
(s586 2.0)
(s588 4.0)
(s589 5.0)
(s590 5.0)
(s591 2.0)
(s593 4.0)
(s594 5.0)
(s595 5.0)
(s596 2.0)
(s598 4.0)
(s599 5.0)
(s600 5.0)
(s601 2.0)
(s603 4.0)
(s604 5.0)
(s605 5.0)
(s606 2.0)
(s608 4.0)
(s609 5.0)
(s610 5.0)
(s611 2.0)
(s613 4.0)
(s614 5.0)
(s615 5.0)
(s616 2.0)
(s618 4.0)
(s619 5.0)
(s620 5.0)
(s621 2.0)
(s623 4.0)
(s624 5.0)
(s625 5.0)
(s626 2.0)
(s628 4.0)
(s629 5.0)
(s630 5.0)
(s631 2.0)
(s633 4.0)
(s634 5.0)
(s635 5.0)
(s636 2.0)
(s638 4.0)
(s639 5.0)
(s640 5.0)
(s641 2.0)
(s643 4.0)
(s644 5.0)
(s645 5.0)
(s646 2.0)
(s648 4.0)
(s649 5.0)
(s650 5.0)
(s651 2.0)
(s653 4.0)
(s654 5.0)
(s655 5.0)
(s656 2.0)
(s658 4.0)
(s659 5.0)
(s660 5.0)
(s661 2.0)
(s663 4.0)
(s664 5.0)
(s665 5.0)
(s666 2.0)
(s668 4.0)
(s669 5.0)
(s670 5.0)
(s671 2.0)
(s673 4.0)
(s674 5.0)
(s675 5.0)
(s676 2.0)
(s678 4.0)
(s679 5.0)
(s680 5.0)
(s681 2.0)
(s683 4.0)
(s684 5.0)
(s685 5.0)
(s686 2.0)
(s688 4.0)
(s689 5.0)
(s690 5.0)
(s691 2.0)
(s693 4.0)
(s694 5.0)
(s695 5.0)
(s696 2.0)
(s698 4.0)
(s699 5.0)
(s700 5.0)
(s701 2.0)
(s703 4.0)
(s704 5.0)
(s705 5.0)
(s706 2.0)
(s708 4.0)
(s709 5.0)
(s710 5.0)
(s711 2.0)
(s713 4.0)
(s714 5.0)
(s715 5.0)
(s716 2.0)
(s718 4.0)
(s719 5.0)
(s720 5.0)
(s721 2.0)
(s723 4.0)
(s724 5.0)
(s725 5.0)
(s726 2.0)
(s728 4.0)
(s729 5.0)
(s730 5.0)
(s731 2.0)
(s733 4.0)
(s734 5.0)
(s735 5.0)
(s736 2.0)
(s738 4.0)
(s739 5.0)
(s740 5.0)
(s741 2.0)
(s743 4.0)
(s744 5.0)
(s745 5.0)
(s746 2.0)
(s748 4.0)
(s749 5.0)
(s750 5.0)
(s751 2.0)
(s753 4.0)
(s754 5.0)
(s755 5.0)
(s756 2.0)
(s758 4.0)
(s759 5.0)
(s760 5.0)
(s761 2.0)
(s763 4.0)
(s764 5.0)
(s765 5.0)
(s766 2.0)
(s768 4.0)
(s769 5.0)
(s770 5.0)
(s771 2.0)
(s773 4.0)
(s774 5.0)
(s775 5.0)
(s776 2.0)
(s778 4.0)
(s779 5.0)
(s780 5.0)
(s781 2.0)
(s783 4.0)
(s784 5.0)
(s785 5.0)
(s786 2.0)
(s788 4.0)
(s789 5.0)
(s790 5.0)
(s791 2.0)
(s793 4.0)
(s794 5.0)
(s795 5.0)
(s796 2.0)
(s798 4.0)
(s799 5.0)
(s800 5.0)
(s801 2.0)
(s803 4.0)
(s804 5.0)
(s805 5.0)
(s806 2.0)
(s808 4.0)
(s809 5.0)
(s810 5.0)
(s811 2.0)
(s813 4.0)
(s814 5.0)
(s815 5.0)
(s816 2.0)
(s818 4.0)
(s819 5.0)
(s820 5.0)
(s821 2.0)
(s823 4.0)
(s824 5.0)
(s825 5.0)
(s826 2.0)
(s828 4.0)
(s829 5.0)
(s830 5.0)
(s831 2.0)
(s833 4.0)
(s834 5.0)
(s835 5.0)
(s836 2.0)
(s838 4.0)
(s839 5.0)
(s840 5.0)
(s841 2.0)
(s843 4.0)
(s844 5.0)
(s845 5.0)
(s846 2.0)
(s848 4.0)
(s849 5.0)
(s850 5.0)
(s851 2.0)
(s853 4.0)
(s854 5.0)
(s855 5.0)
(s856 2.0)
(s858 4.0)
(s859 5.0)
(s860 5.0)
(s861 2.0)
(s863 4.0)
(s864 5.0)
(s865 5.0)
(s866 2.0)
(s868 4.0)
(s869 5.0)
(s870 5.0)
(s871 2.0)
(s873 4.0)
(s874 5.0)
(s875 5.0)
(s876 2.0)
(s878 4.0)
(s879 5.0)
(s880 5.0)
(s881 2.0)
(s883 4.0)
(s884 5.0)
(s885 5.0)
(s886 2.0)
(s888 4.0)
(s889 5.0)
(s890 5.0)
(s891 2.0)
(s893 4.0)
(s894 5.0)
(s895 5.0)
(s896 2.0)
(s898 4.0)
(s899 5.0)
(s900 5.0)
(s901 2.0)
(s903 4.0)
(s904 5.0)
(s905 5.0)
(s906 2.0)
(s908 4.0)
(s909 5.0)
(s910 5.0)
(s911 2.0)
(s913 4.0)
(s914 5.0)
(s915 5.0)
(s916 2.0)
(s918 4.0)
(s919 5.0)
(s920 5.0)
(s921 2.0)
(s923 4.0)
(s924 5.0)
(s925 5.0)
(s926 2.0)
(s928 4.0)
(s929 5.0)
(s930 5.0)
(s931 2.0)
(s933 4.0)
(s934 5.0)
(s935 5.0)
(s936 2.0)
(s938 4.0)
(s939 5.0)
(s940 5.0)
(s941 2.0)
(s943 4.0)
(s944 5.0)
(s945 5.0)
(s946 2.0)
(s948 4.0)
(s949 5.0)
(s950 5.0)
(s951 2.0)
(s953 4.0)
(s954 5.0)
(s955 5.0)
(s956 2.0)
(s958 4.0)
(s959 5.0)
(s960 5.0)
(s961 2.0)
(s963 4.0)
(s964 5.0)
(s965 5.0)
(s966 2.0)
(s968 4.0)
(s969 5.0)
(s970 5.0)
(s971 2.0)
(s973 4.0)
(s974 5.0)
(s975 5.0)
(s976 2.0)
(s978 4.0)
(s979 5.0)
(s980 5.0)
(s981 2.0)
(s983 4.0)
(s984 5.0)
(s985 5.0)
(s986 2.0)
(s988 4.0)
(s989 5.0)
(s990 5.0)
(s991 2.0)
(s993 4.0)
(s994 5.0)
(s995 5.0)
(s996 2.0)
(s998 4.0)
(s999 5.0)
(s1000 5.0)
(s1001 2.0)
(s1003 4.0)
(s1004 5.0)
(s1005 5.0)
(s1006 2.0)
(s1008 4.0)
(s1009 5.0)
(s1010 5.0)
(s1011 2.0)
(s1013 4.0)
(s1014 5.0)
(s1015 5.0)
(s1016 2.0)
(s1018 4.0)
(s1019 5.0)
(s1020 5.0)
(s1021 2.0)
(s1023 4.0)
(s1024 5.0)
(s1025 5.0)
(s1026 2.0)
(s1028 4.0)
(s1029 5.0)
(s1030 5.0)
(s1031 2.0)
(s1033 4.0)
(s1034 5.0)
(s1035 5.0)
(s1036 2.0)
(s1038 4.0)
(s1039 5.0)
(s1040 5.0)
(s1041 2.0)
(s1043 4.0)
(s1044 5.0)
(s1045 5.0)
(s1046 2.0)
(s1048 4.0)
(s1049 5.0)
(s1050 5.0)
(s1051 2.0)
(s1053 4.0)
(s1054 5.0)
(s1055 5.0)
(s1056 2.0)
(s1058 4.0)
(s1059 5.0)
(s1060 5.0)
(s1061 2.0)
(s1063 4.0)
(s1064 5.0)
(s1065 5.0)
(s1066 2.0)
(s1068 4.0)
(s1069 5.0)
(s1070 5.0)
(s1071 2.0)
(s1073 4.0)
(s1074 5.0)
(s1075 5.0)
(s1076 2.0)
(s1078 4.0)
(s1079 5.0)
(s1080 5.0)
(s1081 2.0)
(s1083 4.0)
(s1084 5.0)
(s1085 5.0)
(s1086 2.0)
(s1088 4.0)
(s1089 5.0)
(s1090 5.0)
(s1091 2.0)
(s1093 4.0)
(s1094 5.0)
(s1095 5.0)
(s1096 2.0)
(s1098 4.0)
(s1099 5.0)
(s1100 5.0)
(s1101 2.0)
(s1103 4.0)
(s1104 5.0)
(s1105 5.0)
(s1106 2.0)
(s1108 4.0)
(s1109 5.0)
(s1110 5.0)
(s1111 2.0)
(s1113 4.0)
(s1114 5.0)
(s1115 5.0)
(s1116 2.0)
(s1118 4.0)
(s1119 5.0)
(s1120 5.0)
(s1121 2.0)
(s1123 4.0)
(s1124 5.0)
(s1125 5.0)
(s1126 2.0)
(s1128 4.0)
(s1129 5.0)
(s1130 5.0)
(s1131 2.0)
(s1133 4.0)
(s1134 5.0)
(s1135 5.0)
(s1136 2.0)
(s1138 4.0)
(s1139 5.0)
(s1140 5.0)
(s1141 2.0)
(s1143 4.0)
(s1144 5.0)
(s1145 5.0)
(s1146 2.0)
(s1148 4.0)
(s1149 5.0)
(s1150 5.0)
(s1151 2.0)
(s1153 4.0)
(s1154 5.0)
(s1155 5.0)
(s1156 2.0)
(s1158 4.0)
(s1159 5.0)
(s1160 5.0)
(s1161 2.0)
(s1163 4.0)
(s1164 5.0)
(s1165 5.0)
(s1166 2.0)
(s1168 4.0)
(s1169 5.0)
(s1170 5.0)
(s1171 2.0)
(s1173 4.0)
(s1174 5.0)
(s1175 5.0)
(s1176 2.0)
(s1178 4.0)
(s1179 5.0)
(s1180 5.0)
(s1181 2.0)
(s1183 4.0)
(s1184 5.0)
(s1185 5.0)
(s1186 2.0)
(s1188 4.0)
(s1189 5.0)
(s1190 5.0)
(s1191 2.0)
(s1193 4.0)
(s1194 5.0)
(s1195 5.0)
(s1196 2.0)
(s1198 4.0)
(s1199 5.0)
(s1200 5.0)
(s1201 2.0)
(s1203 4.0)
(s1204 5.0)
(s1205 5.0)
(s1206 2.0)
(s1208 4.0)
(s1209 5.0)
(s1210 5.0)
(s1211 2.0)
(s1213 4.0)
(s1214 5.0)
(s1215 5.0)
(s1216 2.0)
(s1218 4.0)
(s1219 5.0)
(s1220 5.0)
(s1221 2.0)
(s1223 4.0)
(s1224 5.0)
(s1225 5.0)
(s1226 2.0)
(s1228 4.0)
(s1229 5.0)
(s1230 5.0)
(s1231 2.0)
(s1233 4.0)
(s1234 5.0)
(s1235 5.0)
(s1236 2.0)
(s1238 4.0)
(s1239 5.0)
(s1240 5.0)
(s1241 2.0)
(s1243 4.0)
(s1244 5.0)
(s1245 5.0)
(s1246 2.0)
(s1248 4.0)
(s1249 5.0)
(s1250 5.0)
(s1251 2.0)
(s1253 4.0)
(s1254 5.0)
(s1255 5.0)
(s1256 2.0)
(s1258 4.0)
(s1259 5.0)
(s1260 5.0)
(s1261 2.0)
(s1263 4.0)
(s1264 5.0)
(s1265 5.0)
(s1266 2.0)
(s1268 4.0)
(s1269 5.0)
(s1270 5.0)
(s1271 2.0)
(s1273 4.0)
(s1274 5.0)
(s1275 5.0)
(s1276 2.0)
(s1278 4.0)
(s1279 5.0)
(s1280 5.0)
(s1281 2.0)
(s1283 4.0)
(s1284 5.0)
(s1285 5.0)
(s1286 2.0)
(s1288 4.0)
(s1289 5.0)
(s1290 5.0)
(s1291 2.0)
(s1293 4.0)
(s1294 5.0)
(s1295 5.0)
(s1296 2.0)
(s1298 4.0)
(s1299 5.0)
(s1300 5.0)
(s1301 2.0)
(s1303 4.0)
(s1304 5.0)
(s1305 5.0)
(s1306 2.0)
(s1308 4.0)
(s1309 5.0)
(s1310 5.0)
(s1311 2.0)
(s1313 4.0)
(s1314 5.0)
(s1315 5.0)
(s1316 2.0)
(s1318 4.0)
(s1319 5.0)
(s1320 5.0)
(s1321 2.0)
(s1323 4.0)
(s1324 5.0)
(s1325 5.0)
(s1326 2.0)
(s1328 4.0)
(s1329 5.0)
(s1330 5.0)
(s1331 2.0)
(s1333 4.0)
(s1334 5.0)
(s1335 5.0)
(s1336 2.0)
(s1338 4.0)
(s1339 5.0)
(s1340 5.0)
(s1341 2.0)
(s1343 4.0)
(s1344 5.0)
(s1345 5.0)
(s1346 2.0)
(s1348 4.0)
(s1349 5.0)
(s1350 5.0)
(s1351 2.0)
(s1353 4.0)
(s1354 5.0)
(s1355 5.0)
(s1356 2.0)
(s1358 4.0)
(s1359 5.0)
(s1360 5.0)
(s1361 2.0)
(s1363 4.0)
(s1364 5.0)
(s1365 5.0)
(s1366 2.0)
(s1368 4.0)
(s1369 5.0)
(s1370 5.0)
(s1371 2.0)
(s1373 4.0)
(s1374 5.0)
(s1375 5.0)
(s1376 2.0)
(s1378 4.0)
(s1379 5.0)
(s1380 5.0)
(s1381 2.0)
(s1383 4.0)
(s1384 5.0)
(s1385 5.0)
(s1386 2.0)
(s1388 4.0)
(s1389 5.0)
(s1390 5.0)
(s1391 2.0)
(s1393 4.0)
(s1394 5.0)
(s1395 5.0)
(s1396 2.0)
(s1398 4.0)
(s1399 5.0)
(s1400 5.0)
(s1401 2.0)
(s1403 4.0)
(s1404 5.0)
(s1405 5.0)
(s1406 2.0)
(s1408 4.0)
(s1409 5.0)
(s1410 5.0)
(s1411 2.0)
(s1413 4.0)
(s1414 5.0)
(s1415 5.0)
(s1416 2.0)
(s1418 4.0)
(s1419 5.0)
(s1420 5.0)
(s1421 2.0)
(s1423 4.0)
(s1424 5.0)
(s1425 5.0)
(s1426 2.0)
(s1428 4.0)
(s1429 5.0)
(s1430 5.0)
(s1431 2.0)
(s1433 4.0)
(s1434 5.0)
(s1435 5.0)
(s1436 2.0)
(s1438 4.0)
(s1439 5.0)
(s1440 5.0)
(s1441 2.0)
(s1443 4.0)
(s1444 5.0)
(s1445 5.0)
(s1446 2.0)
(s1448 4.0)
(s1449 5.0)
(s1450 5.0)
(s1451 2.0)
(s1453 4.0)
(s1454 5.0)
(s1455 5.0)
(s1456 2.0)
(s1458 4.0)
(s1459 5.0)
(s1460 5.0)
(s1461 2.0)
(s1463 4.0)
(s1464 5.0)
(s1465 5.0)
(s1466 2.0)
(s1468 4.0)
(s1469 5.0)
(s1470 5.0)
(s1471 2.0)
(s1473 4.0)
(s1474 5.0)
(s1475 5.0)
(s1476 2.0)
(s1478 4.0)
(s1479 5.0)
(s1480 5.0)
(s1481 2.0)
(s1483 4.0)
(s1484 5.0)
(s1485 5.0)
(s1486 2.0)
(s1488 4.0)
(s1489 5.0)
(s1490 5.0)
(s1491 2.0)
(s1493 4.0)
(s1494 5.0)
(s1495 5.0)
(s1496 2.0)
(s1498 4.0)
(s1499 5.0)
(s1500 5.0)
(s1501 2.0)
(s1503 4.0)
(s1504 5.0)
(s1505 5.0)
(s1506 2.0)
(s1508 4.0)
(s1509 5.0)
(s1510 5.0)
(s1511 2.0)
(s1513 4.0)
(s1514 5.0)
(s1515 5.0)
(s1516 2.0)
(s1518 4.0)
(s1519 5.0)
(s1520 5.0)
(s1521 2.0)
(s1523 4.0)
(s1524 5.0)
(s1525 5.0)
(s1526 2.0)
(s1528 4.0)
(s1529 5.0)
(s1530 5.0)
(s1531 2.0)
(s1533 4.0)
(s1534 5.0)
(s1535 5.0)
(s1536 2.0)
(s1538 4.0)
(s1539 5.0)
(s1540 5.0)
(s1541 2.0)
(s1543 4.0)
(s1544 5.0)
(s1545 5.0)
(s1546 2.0)
(s1548 4.0)
(s1549 5.0)
(s1550 5.0)
(s1551 2.0)
(s1553 4.0)
(s1554 5.0)
(s1555 5.0)
(s1556 2.0)
(s1558 4.0)
(s1559 5.0)
(s1560 5.0)
(s1561 2.0)
(s1563 4.0)
(s1564 5.0)
(s1565 5.0)
(s1566 2.0)
(s1568 4.0)
(s1569 5.0)
(s1570 5.0)
(s1571 2.0)
(s1573 4.0)
(s1574 5.0)
(s1575 5.0)
(s1576 2.0)
(s1578 4.0)
(s1579 5.0)
(s1580 5.0)
(s1581 2.0)
(s1583 4.0)
(s1584 5.0)
(s1585 5.0)
(s1586 2.0)
(s1588 4.0)
(s1589 5.0)
(s1590 5.0)
(s1591 2.0)
(s1593 4.0)
(s1594 5.0)
(s1595 5.0)
(s1596 2.0)
(s1598 4.0)
(s1599 5.0)
(s1600 5.0)
(s1601 2.0)
(s1603 4.0)
(s1604 5.0)
(s1605 5.0)
(s1606 2.0)
(s1608 4.0)
(s1609 5.0)
(s1610 5.0)
(s1611 2.0)
(s1613 4.0)
(s1614 5.0)
(s1615 5.0)
(s1616 2.0)
(s1618 4.0)
(s1619 5.0)
(s1620 5.0)
(s1621 2.0)
(s1623 4.0)
(s1624 5.0)
(s1625 5.0)
(s1626 2.0)
(s1628 4.0)
(s1629 5.0)
(s1630 5.0)
(s1631 2.0)
(s1633 4.0)
(s1634 5.0)
(s1635 5.0)
(s1636 2.0)
(s1638 4.0)
(s1639 5.0)
(s1640 5.0)
(s1641 2.0)
(s1643 4.0)
(s1644 5.0)
(s1645 5.0)
(s1646 2.0)
(s1648 4.0)
(s1649 5.0)
(s1650 5.0)
(s1651 2.0)
(s1653 4.0)
(s1654 5.0)
(s1655 5.0)
(s1656 2.0)
(s1658 4.0)
(s1659 5.0)
(s1660 5.0)
(s1661 2.0)
(s1663 4.0)
(s1664 5.0)
(s1665 5.0)
(s1666 2.0)
(s1668 4.0)
(s1669 5.0)
(s1670 5.0)
(s1671 2.0)
(s1673 4.0)
(s1674 5.0)
(s1675 5.0)
(s1676 2.0)
(s1678 4.0)
(s1679 5.0)
(s1680 5.0)
(s1681 2.0)
(s1683 4.0)
(s1684 5.0)
(s1685 5.0)
(s1686 2.0)
(s1688 4.0)
(s1689 5.0)
(s1690 5.0)
(s1691 2.0)
(s1693 4.0)
(s1694 5.0)
(s1695 5.0)
(s1696 2.0)
(s1698 4.0)
(s1699 5.0)
(s1700 5.0)
(s1701 2.0)
(s1703 4.0)
(s1704 5.0)
(s1705 5.0)
(s1706 2.0)
(s1708 4.0)
(s1709 5.0)
(s1710 5.0)
(s1711 2.0)
(s1713 4.0)
(s1714 5.0)
(s1715 5.0)
(s1716 2.0)
(s1718 4.0)
(s1719 5.0)
(s1720 5.0)
(s1721 2.0)
(s1723 4.0)
(s1724 5.0)
(s1725 5.0)
(s1726 2.0)
(s1728 4.0)
(s1729 5.0)
(s1730 5.0)
(s1731 2.0)
(s1733 4.0)
(s1734 5.0)
(s1735 5.0)
(s1736 2.0)
(s1738 4.0)
(s1739 5.0)
(s1740 5.0)
(s1741 2.0)
(s1743 4.0)
(s1744 5.0)
(s1745 5.0)
(s1746 2.0)
(s1748 4.0)
(s1749 5.0)
(s1750 5.0)
(s1751 2.0)
(s1753 4.0)
(s1754 5.0)
(s1755 5.0)
(s1756 2.0)
(s1758 4.0)
(s1759 5.0)
(s1760 5.0)
(s1761 2.0)
(s1763 4.0)
(s1764 5.0)
(s1765 5.0)
(s1766 2.0)
(s1768 4.0)
(s1769 5.0)
(s1770 5.0)
(s1771 2.0)
(s1773 4.0)
(s1774 5.0)
(s1775 5.0)
(s1776 2.0)
(s1778 4.0)
(s1779 5.0)
(s1780 5.0)
(s1781 2.0)
(s1783 4.0)
(s1784 5.0)
(s1785 5.0)
(s1786 2.0)
(s1788 4.0)
(s1789 5.0)
(s1790 5.0)
(s1791 2.0)
(s1793 4.0)
(s1794 5.0)
(s1795 5.0)
(s1796 2.0)
(s1798 4.0)
(s1799 5.0)
(s1800 5.0)
(s1801 2.0)
(s1803 4.0)
(s1804 5.0)
(s1805 5.0)
(s1806 2.0)
(s1808 4.0)
(s1809 5.0)
(s1810 5.0)
(s1811 2.0)
(s1813 4.0)
(s1814 5.0)
(s1815 5.0)
(s1816 2.0)
(s1818 4.0)
(s1819 5.0)
(s1820 5.0)
(s1821 2.0)
(s1823 4.0)
(s1824 5.0)
(s1825 5.0)
(s1826 2.0)
(s1828 4.0)
(s1829 5.0)
(s1830 5.0)
(s1831 2.0)
(s1833 4.0)
(s1834 5.0)
(s1835 5.0)
(s1836 2.0)
(s1838 4.0)
(s1839 5.0)
(s1840 5.0)
(s1841 2.0)
(s1843 4.0)
(s1844 5.0)
(s1845 5.0)
(s1846 2.0)
(s1848 4.0)
(s1849 5.0)
(s1850 5.0)
(s1851 2.0)
(s1853 4.0)
(s1854 5.0)
(s1855 5.0)
(s1856 2.0)
(s1858 4.0)
(s1859 5.0)
(s1860 5.0)
(s1861 2.0)
(s1863 4.0)
(s1864 5.0)
(s1865 5.0)
(s1866 2.0)
(s1868 4.0)
(s1869 5.0)
(s1870 5.0)
(s1871 2.0)
(s1873 4.0)
(s1874 5.0)
(s1875 5.0)
(s1876 2.0)
(s1878 4.0)
(s1879 5.0)
(s1880 5.0)
(s1881 2.0)
(s1883 4.0)
(s1884 5.0)
(s1885 5.0)
(s1886 2.0)
(s1888 4.0)
(s1889 5.0)
(s1890 5.0)
(s1891 2.0)
(s1893 4.0)
(s1894 5.0)
(s1895 5.0)
(s1896 2.0)
(s1898 4.0)
(s1899 5.0)
(s1900 5.0)
(s1901 2.0)
(s1903 4.0)
(s1904 5.0)
(s1905 5.0)
(s1906 2.0)
(s1908 4.0)
(s1909 5.0)
(s1910 5.0)
(s1911 2.0)
(s1913 4.0)
(s1914 5.0)
(s1915 5.0)
(s1916 2.0)
(s1918 4.0)
(s1919 5.0)
(s1920 5.0)
(s1921 2.0)
(s1923 4.0)
(s1924 5.0)
(s1925 5.0)
(s1926 2.0)
(s1928 4.0)
(s1929 5.0)
(s1930 5.0)
(s1931 2.0)
(s1933 4.0)
(s1934 5.0)
(s1935 5.0)
(s1936 2.0)
(s1938 4.0)
(s1939 5.0)
(s1940 5.0)
(s1941 2.0)
(s1943 4.0)
(s1944 5.0)
(s1945 5.0)
(s1946 2.0)
(s1948 4.0)
(s1949 5.0)
(s1950 5.0)
(s1951 2.0)
(s1953 4.0)
(s1954 5.0)
(s1955 5.0)
(s1956 2.0)
(s1958 4.0)
(s1959 5.0)
(s1960 5.0)
(s1961 2.0)
(s1963 4.0)
(s1964 5.0)
(s1965 5.0)
(s1966 2.0)
(s1968 4.0)
(s1969 5.0)
(s1970 5.0)
(s1971 2.0)
(s1973 4.0)
(s1974 5.0)
(s1975 5.0)
(s1976 2.0)
(s1978 4.0)
(s1979 5.0)
(s1980 5.0)
(s1981 2.0)
(s1983 4.0)
(s1984 5.0)
(s1985 5.0)
(s1986 2.0)
(s1988 4.0)
(s1989 5.0)
(s1990 5.0)
(s1991 2.0)
(s1993 4.0)
(s1994 5.0)
(s1995 5.0)
(s1996 2.0)
(s1998 4.0)
(s1999 5.0)
(s2000 5.0)
(s2001 2.0)
(s2003 4.0)
(s2004 5.0)
(s2005 5.0)
(s2006 2.0)
(s2008 4.0)
(s2009 5.0)
(s2010 5.0)
(s2011 2.0)
(s2013 4.0)
(s2014 5.0)
(s2015 5.0)
(s2016 2.0)
(s2018 4.0)
(s2019 5.0)
(s2020 5.0)
(s2021 2.0)
(s2023 4.0)
(s2024 5.0)
(s2025 5.0)
(s2026 2.0)
(s2028 4.0)
(s2029 5.0)
(s2030 5.0)
(s2031 2.0)
(s2033 4.0)
(s2034 5.0)
(s2035 5.0)
(s2036 2.0)
(s2038 4.0)
(s2039 5.0)
(s2040 5.0)
(s2041 2.0)
(s2043 4.0)
(s2044 5.0)
(s2045 5.0)
(s2046 2.0)
(s2048 4.0)
(s2049 5.0)
(s2050 5.0)
(s2051 2.0)
(s2053 4.0)
(s2054 5.0)
(s2055 5.0)
(s2056 2.0)
(s2058 4.0)
(s2059 5.0)
(s2060 5.0)
(s2061 2.0)
(s2063 4.0)
(s2064 5.0)
(s2065 5.0)
(s2066 2.0)
(s2068 4.0)
(s2069 5.0)
(s2070 5.0)
(s2071 2.0)
(s2073 4.0)
(s2074 5.0)
(s2075 5.0)
(s2076 2.0)
(s2078 4.0)
(s2079 5.0)
(s2080 5.0)
(s2081 2.0)
(s2083 4.0)
(s2084 5.0)
(s2085 5.0)
(s2086 2.0)
(s2088 4.0)
(s2089 5.0)
(s2090 5.0)
(s2091 2.0)
(s2093 4.0)
(s2094 5.0)
(s2095 5.0)
(s2096 2.0)
(s2098 4.0)
(s2099 5.0)
(s2100 5.0)
(s2101 2.0)
(s2103 4.0)
(s2104 5.0)
(s2105 5.0)
(s2106 2.0)
(s2108 4.0)
(s2109 5.0)
(s2110 5.0)
(s2111 2.0)
(s2113 4.0)
(s2114 5.0)
(s2115 5.0)
(s2116 2.0)
(s2118 4.0)
(s2119 5.0)
(s2120 5.0)
(s2121 2.0)
(s2123 4.0)
(s2124 5.0)
(s2125 5.0)
(s2126 2.0)
(s2128 4.0)
(s2129 5.0)
(s2130 5.0)
(s2131 2.0)
(s2133 4.0)
(s2134 5.0)
(s2135 5.0)
(s2136 2.0)
(s2138 4.0)
(s2139 5.0)
(s2140 5.0)
(s2141 2.0)
(s2143 4.0)
(s2144 5.0)
(s2145 5.0)
(s2146 2.0)
(s2148 4.0)
(s2149 5.0)
(s2150 5.0)
(s2151 2.0)
(s2153 4.0)
(s2154 5.0)
(s2155 5.0)
(s2156 2.0)
(s2158 4.0)
(s2159 5.0)
(s2160 5.0)
(s2161 2.0)
(s2163 4.0)
(s2164 5.0)
(s2165 5.0)
(s2166 2.0)
(s2168 4.0)
(s2169 5.0)
(s2170 5.0)
(s2171 2.0)
(s2173 4.0)
(s2174 5.0)
(s2175 5.0)
(s2176 2.0)
(s2178 4.0)
(s2179 5.0)
(s2180 5.0)
(s2181 2.0)
(s2183 4.0)
(s2184 5.0)
(s2185 5.0)
(s2186 2.0)
(s2188 4.0)
(s2189 5.0)
(s2190 5.0)
(s2191 2.0)
(s2193 4.0)
(s2194 5.0)
(s2195 5.0)
(s2196 2.0)
(s2198 4.0)
(s2199 5.0)
(s2200 5.0)
(s2201 2.0)
(s2203 4.0)
(s2204 5.0)
(s2205 5.0)
(s2206 2.0)
(s2208 4.0)
(s2209 5.0)
(s2210 5.0)
(s2211 2.0)
(s2213 4.0)
(s2214 5.0)
(s2215 5.0)
(s2216 2.0)
(s2218 4.0)
(s2219 5.0)
(s2220 5.0)
(s2221 2.0)
(s2223 4.0)
(s2224 5.0)
(s2225 5.0)
(s2226 2.0)
(s2228 4.0)
(s2229 5.0)
(s2230 5.0)
(s2231 2.0)
(s2233 4.0)
(s2234 5.0)
(s2235 5.0)
(s2236 2.0)
(s2238 4.0)
(s2239 5.0)
(s2240 5.0)
(s2241 2.0)
(s2243 4.0)
(s2244 5.0)
(s2245 5.0)
(s2246 2.0)
(s2248 4.0)
(s2249 5.0)
(s2250 5.0)
(s2251 2.0)
(s2253 4.0)
(s2254 5.0)
(s2255 5.0)
(s2256 2.0)
(s2258 4.0)
(s2259 5.0)
(s2260 5.0)
(s2261 2.0)
(s2263 4.0)
(s2264 5.0)
(s2265 5.0)
(s2266 2.0)
(s2268 4.0)
(s2269 5.0)
(s2270 5.0)
(s2271 2.0)
(s2273 4.0)
(s2274 5.0)
(s2275 5.0)
(s2276 2.0)
(s2278 4.0)
(s2279 5.0)
(s2280 5.0)
(s2281 2.0)
(s2283 4.0)
(s2284 5.0)
(s2285 5.0)
(s2286 2.0)
(s2288 4.0)
(s2289 5.0)
(s2290 5.0)
(s2291 2.0)
(s2293 4.0)
(s2294 5.0)
(s2295 5.0)
(s2296 2.0)
(s2298 4.0)
(s2299 5.0)
(s2300 5.0)
(s2301 2.0)
(s2303 4.0)
(s2304 5.0)
(s2305 5.0)
(s2306 2.0)
(s2308 4.0)
(s2309 5.0)
(s2310 5.0)
(s2311 2.0)
(s2313 4.0)
(s2314 5.0)
(s2315 5.0)
(s2316 2.0)
(s2318 4.0)
(s2319 5.0)
(s2320 5.0)
(s2321 2.0)
(s2323 4.0)
(s2324 5.0)
(s2325 5.0)
(s2326 2.0)
(s2328 4.0)
(s2329 5.0)
(s2330 5.0)
(s2331 2.0)
(s2333 4.0)
(s2334 5.0)
(s2335 5.0)
(s2336 2.0)
(s2338 4.0)
(s2339 5.0)
(s2340 5.0)
(s2341 2.0)
(s2343 4.0)
(s2344 5.0)
(s2345 5.0)
(s2346 2.0)
(s2348 4.0)
(s2349 5.0)
(s2350 5.0)
(s2351 2.0)
(s2353 4.0)
(s2354 5.0)
(s2355 5.0)
(s2356 2.0)
(s2358 4.0)
(s2359 5.0)
(s2360 5.0)
(s2361 2.0)
(s2363 4.0)
(s2364 5.0)
(s2365 5.0)
(s2366 2.0)
(s2368 4.0)
(s2369 5.0)
(s2370 5.0)
(s2371 2.0)
(s2373 4.0)
(s2374 5.0)
(s2375 5.0)
(s2376 2.0)
(s2378 4.0)
(s2379 5.0)
(s2380 5.0)
(s2381 2.0)
(s2383 4.0)
(s2384 5.0)
(s2385 5.0)
(s2386 2.0)
(s2388 4.0)
(s2389 5.0)
(s2390 5.0)
(s2391 2.0)
(s2393 4.0)
(s2394 5.0)
(s2395 5.0)
(s2396 2.0)
(s2398 4.0)
(s2399 5.0)
(s2400 5.0)
(s2401 2.0)
(s2403 4.0)
(s2404 5.0)
(s2405 5.0)
(s2406 2.0)
(s2408 4.0)
(s2409 5.0)
(s2410 5.0)
(s2411 2.0)
(s2413 4.0)
(s2414 5.0)
(s2415 5.0)
(s2416 2.0)
(s2418 4.0)
(s2419 5.0)
(s2420 5.0)
(s2421 2.0)
(s2423 4.0)
(s2424 5.0)
(s2425 5.0)
(s2426 2.0)
(s2428 4.0)
(s2429 5.0)
(s2430 5.0)
(s2431 2.0)
(s2433 4.0)
(s2434 5.0)
(s2435 5.0)
(s2436 2.0)
(s2438 4.0)
(s2439 5.0)
(s2440 5.0)
(s2441 2.0)
(s2443 4.0)
(s2444 5.0)
(s2445 5.0)
(s2446 2.0)
(s2448 4.0)
(s2449 5.0)
(s2450 5.0)
(s2451 2.0)
(s2453 4.0)
(s2454 5.0)
(s2455 5.0)
(s2456 2.0)
(s2458 4.0)
(s2459 5.0)
(s2460 5.0)
(s2461 2.0)
(s2463 4.0)
(s2464 5.0)
(s2465 5.0)
(s2466 2.0)
(s2468 4.0)
(s2469 5.0)
(s2470 5.0)
(s2471 2.0)
(s2473 4.0)
(s2474 5.0)
(s2475 5.0)
(s2476 2.0)
(s2478 4.0)
(s2479 5.0)
(s2480 5.0)
(s2481 2.0)
(s2483 4.0)
(s2484 5.0)
(s2485 5.0)
(s2486 2.0)
(s2488 4.0)
(s2489 5.0)
(s2490 5.0)
(s2491 2.0)
(s2493 4.0)
(s2494 5.0)
(s2495 5.0)
(s2496 2.0)
(s2498 4.0)
(s2499 5.0)
(s2500 5.0)
(s2501 2.0)
(s2503 4.0)
(s2504 5.0)
(s2505 5.0)
(s2506 2.0)
(s2508 4.0)
(s2509 5.0)
(s2510 5.0)
(s2511 2.0)
(s2513 4.0)
(s2514 5.0)
(s2515 5.0)
(s2516 2.0)
(s2518 4.0)
(s2519 5.0)
(s2520 5.0)
(s2521 2.0)
(s2523 4.0)
(s2524 5.0)
(s2525 5.0)
(s2526 2.0)
(s2528 4.0)
(s2529 5.0)
(s2530 5.0)
(s2531 2.0)
(s2533 4.0)
(s2534 5.0)
(s2535 5.0)
(s2536 2.0)
(s2538 4.0)
(s2539 5.0)
(s2540 5.0)
(s2541 2.0)
(s2543 4.0)
(s2544 5.0)
(s2545 5.0)
(s2546 2.0)
(s2548 4.0)
(s2549 5.0)
(s2550 5.0)
(s2551 2.0)
(s2553 4.0)
(s2554 5.0)
(s2555 5.0)
(s2556 2.0)
(s2558 4.0)
(s2559 5.0)
(s2560 5.0)
(s2561 2.0)
(s2563 4.0)
(s2564 5.0)
(s2565 5.0)
(s2566 2.0)
(s2568 4.0)
(s2569 5.0)
(s2570 5.0)
(s2571 2.0)
(s2573 4.0)
(s2574 5.0)
(s2575 5.0)
(s2576 2.0)
(s2578 4.0)
(s2579 5.0)
(s2580 5.0)
(s2581 2.0)
(s2583 4.0)
(s2584 5.0)
(s2585 5.0)
(s2586 2.0)
(s2588 4.0)
(s2589 5.0)
(s2590 5.0)
(s2591 2.0)
(s2593 4.0)
(s2594 5.0)
(s2595 5.0)
(s2596 2.0)
(s2598 4.0)
(s2599 5.0)
(s2600 5.0)
(s2601 2.0)
(s2603 4.0)
(s2604 5.0)
(s2605 5.0)
(s2606 2.0)
(s2608 4.0)
(s2609 5.0)
(s2610 5.0)
(s2611 2.0)
(s2613 4.0)
(s2614 5.0)
(s2615 5.0)
(s2616 2.0)
(s2618 4.0)
(s2619 5.0)
(s2620 5.0)
(s2621 2.0)
(s2623 4.0)
(s2624 5.0)
(s2625 5.0)
(s2626 2.0)
(s2628 4.0)
(s2629 5.0)
(s2630 5.0)
(s2631 2.0)
(s2633 4.0)
(s2634 5.0)
(s2635 5.0)
(s2636 2.0)
(s2638 4.0)
(s2639 5.0)
(s2640 5.0)
(s2641 2.0)
(s2643 4.0)
(s2644 5.0)
(s2645 5.0)
(s2646 2.0)
(s2648 4.0)
(s2649 5.0)
(s2650 5.0)
(s2651 2.0)
(s2653 4.0)
(s2654 5.0)
(s2655 5.0)
(s2656 2.0)
(s2658 4.0)
(s2659 5.0)
(s2660 5.0)
(s2661 2.0)
(s2663 4.0)
(s2664 5.0)
(s2665 5.0)
(s2666 2.0)
(s2668 4.0)
(s2669 5.0)
(s2670 5.0)
(s2671 2.0)
(s2673 4.0)
(s2674 5.0)
(s2675 5.0)
(s2676 2.0)
(s2678 4.0)
(s2679 5.0)
(s2680 5.0)
(s2681 2.0)
(s2683 4.0)
(s2684 5.0)
(s2685 5.0)
(s2686 2.0)
(s2688 4.0)
(s2689 5.0)
(s2690 5.0)
(s2691 2.0)
(s2693 4.0)
(s2694 5.0)
(s2695 5.0)
(s2696 2.0)
(s2698 4.0)
(s2699 5.0)
(s2700 5.0)
(s2701 2.0)
(s2703 4.0)
(s2704 5.0)
(s2705 5.0)
(s2706 2.0)
(s2708 4.0)
(s2709 5.0)
(s2710 5.0)
(s2711 2.0)
(s2713 4.0)
(s2714 5.0)
(s2715 5.0)
(s2716 2.0)
(s2718 4.0)
(s2719 5.0)
(s2720 5.0)
(s2721 2.0)
(s2723 4.0)
(s2724 5.0)
(s2725 5.0)
(s2726 2.0)
(s2728 4.0)
(s2729 5.0)
(s2730 5.0)
(s2731 2.0)
(s2733 4.0)
(s2734 5.0)
(s2735 5.0)
(s2736 2.0)
(s2738 4.0)
(s2739 5.0)
(s2740 5.0)
(s2741 2.0)
(s2743 4.0)
(s2744 5.0)
(s2745 5.0)
(s2746 2.0)
(s2748 4.0)
(s2749 5.0)
(s2750 5.0)
(s2751 2.0)
(s2753 4.0)
(s2754 5.0)
(s2755 5.0)
(s2756 2.0)
(s2758 4.0)
(s2759 5.0)
(s2760 5.0)
(s2761 2.0)
(s2763 4.0)
(s2764 5.0)
(s2765 5.0)
(s2766 2.0)
(s2768 4.0)
(s2769 5.0)
(s2770 5.0)
(s2771 2.0)
(s2773 4.0)
(s2774 5.0)
(s2775 5.0)
(s2776 2.0)
(s2778 4.0)
(s2779 5.0)
(s2780 5.0)
(s2781 2.0)
(s2783 4.0)
(s2784 5.0)
(s2785 5.0)
(s2786 2.0)
(s2788 4.0)
(s2789 5.0)
(s2790 5.0)
(s2791 2.0)
(s2793 4.0)
(s2794 5.0)
(s2795 5.0)
(s2796 2.0)
(s2798 4.0)
(s2799 5.0)
(s2800 5.0)
(s2801 2.0)
(s2803 4.0)
(s2804 5.0)
(s2805 5.0)
(s2806 2.0)
(s2808 4.0)
(s2809 5.0)
(s2810 5.0)
(s2811 2.0)
(s2813 4.0)
(s2814 5.0)
(s2815 5.0)
(s2816 2.0)
(s2818 4.0)
(s2819 5.0)
(s2820 5.0)
(s2821 2.0)
(s2823 4.0)
(s2824 5.0)
(s2825 5.0)
(s2826 2.0)
(s2828 4.0)
(s2829 5.0)
(s2830 5.0)
(s2831 2.0)
(s2833 4.0)
(s2834 5.0)
(s2835 5.0)
(s2836 2.0)
(s2838 4.0)
(s2839 5.0)
(s2840 5.0)
(s2841 2.0)
(s2843 4.0)
(s2844 5.0)
(s2845 5.0)
(s2846 2.0)
(s2848 4.0)
(s2849 5.0)
(s2850 5.0)
(s2851 2.0)
(s2853 4.0)
(s2854 5.0)
(s2855 5.0)
(s2856 2.0)
(s2858 4.0)
(s2859 5.0)
(s2860 5.0)
(s2861 2.0)
(s2863 4.0)
(s2864 5.0)
(s2865 5.0)
(s2866 2.0)
(s2868 4.0)
(s2869 5.0)
(s2870 5.0)
(s2871 2.0)
(s2873 4.0)
(s2874 5.0)
(s2875 5.0)
(s2876 2.0)
(s2878 4.0)
(s2879 5.0)
(s2880 5.0)
(s2881 2.0)
(s2883 4.0)
(s2884 5.0)
(s2885 5.0)
(s2886 2.0)
(s2888 4.0)
(s2889 5.0)
(s2890 5.0)
(s2891 2.0)
(s2893 4.0)
(s2894 5.0)
(s2895 5.0)
(s2896 2.0)
(s2898 4.0)
(s2899 5.0)
(s2900 5.0)
(s2901 2.0)
(s2903 4.0)
(s2904 5.0)
(s2905 5.0)
(s2906 2.0)
(s2908 4.0)
(s2909 5.0)
(s2910 5.0)
(s2911 2.0)
(s2913 4.0)
(s2914 5.0)
(s2915 5.0)
(s2916 2.0)
(s2918 4.0)
(s2919 5.0)
(s2920 5.0)
(s2921 2.0)
(s2923 4.0)
(s2924 5.0)
(s2925 5.0)
(s2926 2.0)
(s2928 4.0)
(s2929 5.0)
(s2930 5.0)
(s2931 2.0)
(s2933 4.0)
(s2934 5.0)
(s2935 5.0)
(s2936 2.0)
(s2938 4.0)
(s2939 5.0)
(s2940 5.0)
(s2941 2.0)
(s2943 4.0)
(s2944 5.0)
(s2945 5.0)
(s2946 2.0)
(s2948 4.0)
(s2949 5.0)
(s2950 5.0)
(s2951 2.0)
(s2953 4.0)
(s2954 5.0)
(s2955 5.0)
(s2956 2.0)
(s2958 4.0)
(s2959 5.0)
(s2960 5.0)
(s2961 2.0)
(s2963 4.0)
(s2964 5.0)
(s2965 5.0)
(s2966 2.0)
(s2968 4.0)
(s2969 5.0)
(s2970 5.0)
(s2971 2.0)
(s2973 4.0)
(s2974 5.0)
(s2975 5.0)
(s2976 2.0)
(s2978 4.0)
(s2979 5.0)
(s2980 5.0)
(s2981 2.0)
(s2983 4.0)
(s2984 5.0)
(s2985 5.0)
(s2986 2.0)
(s2988 4.0)
(s2989 5.0)
(s2990 5.0)
(s2991 2.0)
(s2993 4.0)
(s2994 5.0)
(s2995 5.0)
(s2996 2.0)
(s2998 4.0)
(s2999 5.0)
(s3000 5.0)
(s3001 2.0)
(s3003 4.0)
(s3004 5.0)
(s3005 5.0)
(s3006 2.0)
(s3008 4.0)
(s3009 5.0)
(s3010 5.0)
(s3011 2.0)
(s3013 4.0)
(s3014 5.0)
(s3015 5.0)
(s3016 2.0)
(s3018 4.0)
(s3019 5.0)
(s3020 5.0)
(s3021 2.0)
(s3023 4.0)
(s3024 5.0)
(s3025 5.0)
(s3026 2.0)
(s3028 4.0)
(s3029 5.0)
(s3030 5.0)
(s3031 2.0)
(s3033 4.0)
(s3034 5.0)
(s3035 5.0)
(s3036 2.0)
(s3038 4.0)
(s3039 5.0)
(s3040 5.0)
(s3041 2.0)
(s3043 4.0)
(s3044 5.0)
(s3045 5.0)
(s3046 2.0)
(s3048 4.0)
(s3049 5.0)
(s3050 5.0)
(s3051 2.0)
(s3053 4.0)
(s3054 5.0)
(s3055 5.0)
(s3056 2.0)
(s3058 4.0)
(s3059 5.0)
(s3060 5.0)
(s3061 2.0)
(s3063 4.0)
(s3064 5.0)
(s3065 5.0)
(s3066 2.0)
(s3068 4.0)
(s3069 5.0)
(s3070 5.0)
(s3071 2.0)
(s3073 4.0)
(s3074 5.0)
(s3075 5.0)
(s3076 2.0)
(s3078 4.0)
(s3079 5.0)
(s3080 5.0)
(s3081 2.0)
(s3083 4.0)
(s3084 5.0)
(s3085 5.0)
(s3086 2.0)
(s3088 4.0)
(s3089 5.0)
(s3090 5.0)
(s3091 2.0)
(s3093 4.0)
(s3094 5.0)
(s3095 5.0)
(s3096 2.0)
(s3098 4.0)
(s3099 5.0)
(s3100 5.0)
(s3101 2.0)
(s3103 4.0)
(s3104 5.0)
(s3105 5.0)
(s3106 2.0)
(s3108 4.0)
(s3109 5.0)
(s3110 5.0)
(s3111 2.0)
(s3113 4.0)
(s3114 5.0)
(s3115 5.0)
(s3116 2.0)
(s3118 4.0)
(s3119 5.0)
(s3120 5.0)
(s3121 2.0)
(s3123 4.0)
(s3124 5.0)
(s3125 5.0)
(s3126 2.0)
(s3128 4.0)
(s3129 5.0)
(s3130 5.0)
(s3131 2.0)
(s3133 4.0)
(s3134 5.0)
(s3135 5.0)
(s3136 2.0)
(s3138 4.0)
(s3139 5.0)
(s3140 5.0)
(s3141 2.0)
(s3143 4.0)
(s3144 5.0)
(s3145 5.0)
(s3146 2.0)
(s3148 4.0)
(s3149 5.0)
(s3150 5.0)
(s3151 2.0)
(s3153 4.0)
(s3154 5.0)
(s3155 5.0)
(s3156 2.0)
(s3158 4.0)
(s3159 5.0)
(s3160 5.0)
(s3161 2.0)
(s3163 4.0)
(s3164 5.0)
(s3165 5.0)
(s3166 2.0)
(s3168 4.0)
(s3169 5.0)
(s3170 5.0)
(s3171 2.0)
(s3173 4.0)
(s3174 5.0)
(s3175 5.0)
(s3176 2.0)
(s3178 4.0)
(s3179 5.0)
(s3180 5.0)
(s3181 2.0)
(s3183 4.0)
(s3184 5.0)
(s3185 5.0)
(s3186 2.0)
(s3188 4.0)
(s3189 5.0)
(s3190 5.0)
(s3191 2.0)
(s3193 4.0)
(s3194 5.0)
(s3195 5.0)
(s3196 2.0)
(s3198 4.0)
(s3199 5.0)
(s3200 5.0)
(s3201 2.0)
(s3203 4.0)
(s3204 5.0)
(s3205 5.0)
(s3206 2.0)
(s3208 4.0)
(s3209 5.0)
(s3210 5.0)
(s3211 2.0)
(s3213 4.0)
(s3214 5.0)
(s3215 5.0)
(s3216 2.0)
(s3218 4.0)
(s3219 5.0)
(s3220 5.0)
(s3221 2.0)
(s3223 4.0)
(s3224 5.0)
(s3225 5.0)
(s3226 2.0)
(s3228 4.0)
(s3229 5.0)
(s3230 5.0)
(s3231 2.0)
(s3233 4.0)
(s3234 5.0)
(s3235 5.0)
(s3236 2.0)
(s3238 4.0)
(s3239 5.0)
(s3240 5.0)
(s3241 2.0)
(s3243 4.0)
(s3244 5.0)
(s3245 5.0)
(s3246 2.0)
(s3248 4.0)
(s3249 5.0)
(s3250 5.0)
(s3251 2.0)
(s3253 4.0)
(s3254 5.0)
(s3255 5.0)
(s3256 2.0)
(s3258 4.0)
(s3259 5.0)
(s3260 5.0)
(s3261 2.0)
(s3263 4.0)
(s3264 5.0)
(s3265 5.0)
(s3266 2.0)
(s3268 4.0)
(s3269 5.0)
(s3270 5.0)
(s3271 2.0)
(s3273 4.0)
(s3274 5.0)
(s3275 5.0)
(s3276 2.0)
(s3278 4.0)
(s3279 5.0)
(s3280 5.0)
(s3281 2.0)
(s3283 4.0)
(s3284 5.0)
(s3285 5.0)
(s3286 2.0)
(s3288 4.0)
(s3289 5.0)
(s3290 5.0)
(s3291 2.0)
(s3293 4.0)
(s3294 5.0)
(s3295 5.0)
(s3296 2.0)
(s3298 4.0)
(s3299 5.0)
(s3300 5.0)
(s3301 2.0)
(s3303 4.0)
(s3304 5.0)
(s3305 5.0)
(s3306 2.0)
(s3308 4.0)
(s3309 5.0)
(s3310 5.0)
(s3311 2.0)
(s3313 4.0)
(s3314 5.0)
(s3315 5.0)
(s3316 2.0)
(s3318 4.0)
(s3319 5.0)
(s3320 5.0)
(s3321 2.0)
(s3323 4.0)
(s3324 5.0)
(s3325 5.0)
(s3326 2.0)
(s3328 4.0)
(s3329 5.0)
(s3330 5.0)
(s3331 2.0)
(s3333 4.0)
(s3334 5.0)
(s3335 5.0)
(s3336 2.0)
(s3338 4.0)
(s3339 5.0)
(s3340 5.0)
(s3341 2.0)
(s3343 4.0)
(s3344 5.0)
(s3345 5.0)
(s3346 2.0)
(s3348 4.0)
(s3349 5.0)
(s3350 5.0)
(s3351 2.0)
(s3353 4.0)
(s3354 5.0)
(s3355 5.0)
(s3356 2.0)
(s3358 4.0)
(s3359 5.0)
(s3360 5.0)
(s3361 2.0)
(s3363 4.0)
(s3364 5.0)
(s3365 5.0)
(s3366 2.0)
(s3368 4.0)
(s3369 5.0)
(s3370 5.0)
(s3371 2.0)
(s3373 4.0)
(s3374 5.0)
(s3375 5.0)
(s3376 2.0)
(s3378 4.0)
(s3379 5.0)
(s3380 5.0)
(s3381 2.0)
(s3383 4.0)
(s3384 5.0)
(s3385 5.0)
(s3386 2.0)
(s3388 4.0)
(s3389 5.0)
(s3390 5.0)
(s3391 2.0)
(s3393 4.0)
(s3394 5.0)
(s3395 5.0)
(s3396 2.0)
(s3398 4.0)
(s3399 5.0)
(s3400 5.0)
(s3401 2.0)
(s3403 4.0)
(s3404 5.0)
(s3405 5.0)
(s3406 2.0)
(s3408 4.0)
(s3409 5.0)
(s3410 5.0)
(s3411 2.0)
(s3413 4.0)
(s3414 5.0)
(s3415 5.0)
(s3416 2.0)
(s3418 4.0)
(s3419 5.0)
(s3420 5.0)
(s3421 2.0)
(s3423 4.0)
(s3424 5.0)
(s3425 5.0)
(s3426 2.0)
(s3428 4.0)
(s3429 5.0)
(s3430 5.0)
(s3431 2.0)
(s3433 4.0)
(s3434 5.0)
(s3435 5.0)
(s3436 2.0)
(s3438 4.0)
(s3439 5.0)
(s3440 5.0)
(s3441 2.0)
(s3443 4.0)
(s3444 5.0)
(s3445 5.0)
(s3446 2.0)
(s3448 4.0)
(s3449 5.0)
(s3450 5.0)
(s3451 2.0)
(s3453 4.0)
(s3454 5.0)
(s3455 5.0)
(s3456 2.0)
(s3458 4.0)
(s3459 5.0)
(s3460 5.0)
(s3461 2.0)
(s3463 4.0)
(s3464 5.0)
(s3465 5.0)
(s3466 2.0)
(s3468 4.0)
(s3469 5.0)
(s3470 5.0)
(s3471 2.0)
(s3473 4.0)
(s3474 5.0)
(s3475 5.0)
(s3476 2.0)
(s3478 4.0)
(s3479 5.0)
(s3480 5.0)
(s3481 2.0)
(s3483 4.0)
(s3484 5.0)
(s3485 5.0)
(s3486 2.0)
(s3488 4.0)
(s3489 5.0)
(s3490 5.0)
(s3491 2.0)
(s3493 4.0)
(s3494 5.0)
(s3495 5.0)
(s3496 2.0)
(s3498 4.0)
(s3499 5.0)
(s3500 5.0)
(s3501 2.0)
(s3503 4.0)
(s3504 5.0)
(s3505 5.0)
(s3506 2.0)
(s3508 4.0)
(s3509 5.0)
(s3510 5.0)
(s3511 2.0)
(s3513 4.0)
(s3514 5.0)
(s3515 5.0)
(s3516 2.0)
(s3518 4.0)
(s3519 5.0)
(s3520 5.0)
(s3521 2.0)
(s3523 4.0)
(s3524 5.0)
(s3525 5.0)
(s3526 2.0)
(s3528 4.0)
(s3529 5.0)
(s3530 5.0)
(s3531 2.0)
(s3533 4.0)
(s3534 5.0)
(s3535 5.0)
(s3536 2.0)
(s3538 4.0)
(s3539 5.0)
(s3540 5.0)
(s3541 2.0)
(s3543 4.0)
(s3544 5.0)
(s3545 5.0)
(s3546 2.0)
(s3548 4.0)
(s3549 5.0)
(s3550 5.0)
(s3551 2.0)
(s3553 4.0)
(s3554 5.0)
(s3555 5.0)
(s3556 2.0)
(s3558 4.0)
(s3559 5.0)
(s3560 5.0)
(s3561 2.0)
(s3563 4.0)
(s3564 5.0)
(s3565 5.0)
(s3566 2.0)
(s3568 4.0)
(s3569 5.0)
(s3570 5.0)
(s3571 2.0)
(s3573 4.0)
(s3574 5.0)
(s3575 5.0)
(s3576 2.0)
(s3578 4.0)
(s3579 5.0)
(s3580 5.0)
(s3581 2.0)
(s3583 4.0)
(s3584 5.0)
(s3585 5.0)
(s3586 2.0)
(s3588 4.0)
(s3589 5.0)
(s3590 5.0)
(s3591 2.0)
(s3593 4.0)
(s3594 5.0)
(s3595 5.0)
(s3596 2.0)
(s3598 4.0)
(s3599 5.0)
(s3600 5.0)
(s3601 2.0)
(s3603 4.0)
(s3604 5.0)
(s3605 5.0)
(s3606 2.0)
(s3608 4.0)
(s3609 5.0)
(s3610 5.0)
(s3611 2.0)
(s3613 4.0)
(s3614 5.0)
(s3615 5.0)
(s3616 2.0)
(s3618 4.0)
(s3619 5.0)
(s3620 5.0)
(s3621 2.0)
(s3623 4.0)
(s3624 5.0)
(s3625 5.0)
(s3626 2.0)
(s3628 4.0)
(s3629 5.0)
(s3630 5.0)
(s3631 2.0)
(s3633 4.0)
(s3634 5.0)
(s3635 5.0)
(s3636 2.0)
(s3638 4.0)
(s3639 5.0)
(s3640 5.0)
(s3641 2.0)
(s3643 4.0)
(s3644 5.0)
(s3645 5.0)
(s3646 2.0)
(s3648 4.0)
(s3649 5.0)
(s3650 5.0)
(s3651 2.0)
(s3653 4.0)
(s3654 5.0)
(s3655 5.0)
(s3656 2.0)
(s3658 4.0)
(s3659 5.0)
(s3660 5.0)
(s3661 2.0)
(s3663 4.0)
(s3664 5.0)
(s3665 5.0)
(s3666 2.0)
(s3668 4.0)
(s3669 5.0)
(s3670 5.0)
(s3671 2.0)
(s3673 4.0)
(s3674 5.0)
(s3675 5.0)
(s3676 2.0)
(s3678 4.0)
(s3679 5.0)
(s3680 5.0)
(s3681 2.0)
(s3683 4.0)
(s3684 5.0)
(s3685 5.0)
(s3686 2.0)
(s3688 4.0)
(s3689 5.0)
(s3690 5.0)
(s3691 2.0)
(s3693 4.0)
(s3694 5.0)
(s3695 5.0)
(s3696 2.0)
(s3698 4.0)
(s3699 5.0)
(s3700 5.0)
(s3701 2.0)
(s3703 4.0)
(s3704 5.0)
(s3705 5.0)
(s3706 2.0)
(s3708 4.0)
(s3709 5.0)
(s3710 5.0)
(s3711 2.0)
(s3713 4.0)
(s3714 5.0)
(s3715 5.0)
(s3716 2.0)
(s3718 4.0)
(s3719 5.0)
(s3720 5.0)
(s3721 2.0)
(s3723 4.0)
(s3724 5.0)
(s3725 5.0)
(s3726 2.0)
(s3728 4.0)
(s3729 5.0)
(s3730 5.0)
(s3731 2.0)
(s3733 4.0)
(s3734 5.0)
(s3735 5.0)
(s3736 2.0)
(s3738 4.0)
(s3739 5.0)
(s3740 5.0)
(s3741 2.0)
(s3743 4.0)
(s3744 5.0)
(s3745 5.0)
(s3746 2.0)
(s3748 4.0)
(s3749 5.0)
(s3750 5.0)
(s3751 2.0)
(s3753 4.0)
(s3754 5.0)
(s3755 5.0)
(s3756 2.0)
(s3758 4.0)
(s3759 5.0)
(s3760 5.0)
(s3761 2.0)
(s3763 4.0)
(s3764 5.0)
(s3765 5.0)
(s3766 2.0)
(s3768 4.0)
(s3769 5.0)
(s3770 5.0)
(s3771 2.0)
(s3773 4.0)
(s3774 5.0)
(s3775 5.0)
(s3776 2.0)
(s3778 4.0)
(s3779 5.0)
(s3780 5.0)
(s3781 2.0)
(s3783 4.0)
(s3784 5.0)
(s3785 5.0)
(s3786 2.0)
(s3788 4.0)
(s3789 5.0)
(s3790 5.0)
(s3791 2.0)
(s3793 4.0)
(s3794 5.0)
(s3795 5.0)
(s3796 2.0)
(s3798 4.0)
(s3799 5.0)
(s3800 5.0)
(s3801 2.0)
(s3803 4.0)
(s3804 5.0)
(s3805 5.0)
(s3806 2.0)
(s3808 4.0)
(s3809 5.0)
(s3810 5.0)
(s3811 2.0)
(s3813 4.0)
(s3814 5.0)
(s3815 5.0)
(s3816 2.0)
(s3818 4.0)
(s3819 5.0)
(s3820 5.0)
(s3821 2.0)
(s3823 4.0)
(s3824 5.0)
(s3825 5.0)
(s3826 2.0)
(s3828 4.0)
(s3829 5.0)
(s3830 5.0)
(s3831 2.0)
(s3833 4.0)
(s3834 5.0)
(s3835 5.0)
(s3836 2.0)
(s3838 4.0)
(s3839 5.0)
(s3840 5.0)
(s3841 2.0)
(s3843 4.0)
(s3844 5.0)
(s3845 5.0)
(s3846 2.0)
(s3848 4.0)
(s3849 5.0)
(s3850 5.0)
(s3851 2.0)
(s3853 4.0)
(s3854 5.0)
(s3855 5.0)
(s3856 2.0)
(s3858 4.0)
(s3859 5.0)
(s3860 5.0)
(s3861 2.0)
(s3863 4.0)
(s3864 5.0)
(s3865 5.0)
(s3866 2.0)
(s3868 4.0)
(s3869 5.0)
(s3870 5.0)
(s3871 2.0)
(s3873 4.0)
(s3874 5.0)
(s3875 5.0)
(s3876 2.0)
(s3878 4.0)
(s3879 5.0)
(s3880 5.0)
(s3881 2.0)
(s3883 4.0)
(s3884 5.0)
(s3885 5.0)
(s3886 2.0)
(s3888 4.0)
(s3889 5.0)
(s3890 5.0)
(s3891 2.0)
(s3893 4.0)
(s3894 5.0)
(s3895 5.0)
(s3896 2.0)
(s3898 4.0)
(s3899 5.0)
(s3900 5.0)
(s3901 2.0)
(s3903 4.0)
(s3904 5.0)
(s3905 5.0)
(s3906 2.0)
(s3908 4.0)
(s3909 5.0)
(s3910 5.0)
(s3911 2.0)
(s3913 4.0)
(s3914 5.0)
(s3915 5.0)
(s3916 2.0)
(s3918 4.0)
(s3919 5.0)
(s3920 5.0)
(s3921 2.0)
(s3923 4.0)
(s3924 5.0)
(s3925 5.0)
(s3926 2.0)
(s3928 4.0)
(s3929 5.0)
(s3930 5.0)
(s3931 2.0)
(s3933 4.0)
(s3934 5.0)
(s3935 5.0)
(s3936 2.0)
(s3938 4.0)
(s3939 5.0)
(s3940 5.0)
(s3941 2.0)
(s3943 4.0)
(s3944 5.0)
(s3945 5.0)
(s3946 2.0)
(s3948 4.0)
(s3949 5.0)
(s3950 5.0)
(s3951 2.0)
(s3953 4.0)
(s3954 5.0)
(s3955 5.0)
(s3956 2.0)
(s3958 4.0)
(s3959 5.0)
(s3960 5.0)
(s3961 2.0)
(s3963 4.0)
(s3964 5.0)
(s3965 5.0)
(s3966 2.0)
(s3968 4.0)
(s3969 5.0)
(s3970 5.0)
(s3971 2.0)
(s3973 4.0)
(s3974 5.0)
(s3975 5.0)
(s3976 2.0)
(s3978 4.0)
(s3979 5.0)
(s3980 5.0)
(s3981 2.0)
(s3983 4.0)
(s3984 5.0)
(s3985 5.0)
(s3986 2.0)
(s3988 4.0)
(s3989 5.0)
(s3990 5.0)
(s3991 2.0)
(s3993 4.0)
(s3994 5.0)
(s3995 5.0)
(s3996 2.0)
(s3998 4.0)
(s3999 5.0)
(s4000 5.0)
(s4001 2.0)
(s4003 4.0)
(s4004 5.0)
(s4005 5.0)
(s4006 2.0)
(s4008 4.0)
(s4009 5.0)
(s4010 5.0)
(s4011 2.0)
(s4013 4.0)
(s4014 5.0)
(s4015 5.0)
(s4016 2.0)
(s4018 4.0)
(s4019 5.0)
(s4020 5.0)
(s4021 2.0)
(s4023 4.0)
(s4024 5.0)
(s4025 5.0)
(s4026 2.0)
(s4028 4.0)
(s4029 5.0)
(s4030 5.0)
(s4031 2.0)
(s4033 4.0)
(s4034 5.0)
(s4035 5.0)
(s4036 2.0)
(s4038 4.0)
(s4039 5.0)
(s4040 5.0)
(s4041 2.0)
(s4043 4.0)
(s4044 5.0)
(s4045 5.0)
(s4046 2.0)
(s4048 4.0)
(s4049 5.0)
(s4050 5.0)
(s4051 2.0)
(s4053 4.0)
(s4054 5.0)
(s4055 5.0)
(s4056 2.0)
(s4058 4.0)
(s4059 5.0)
(s4060 5.0)
(s4061 2.0)
(s4063 4.0)
(s4064 5.0)
(s4065 5.0)
(s4066 2.0)
(s4068 4.0)
(s4069 5.0)
(s4070 5.0)
(s4071 2.0)
(s4073 4.0)
(s4074 5.0)
(s4075 5.0)
(s4076 2.0)
(s4078 4.0)
(s4079 5.0)
(s4080 5.0)
(s4081 2.0)
(s4083 4.0)
(s4084 5.0)
(s4085 5.0)
(s4086 2.0)
(s4088 4.0)
(s4089 5.0)
(s4090 5.0)
(s4091 2.0)
(s4093 4.0)
(s4094 5.0)
(s4095 5.0)
(s4096 2.0)
(s4098 4.0)
(s4099 5.0)
(s4100 5.0)
(s4101 2.0)
(s4103 4.0)
(s4104 5.0)
(s4105 5.0)
(s4106 2.0)
(s4108 4.0)
(s4109 5.0)
(s4110 5.0)
(s4111 2.0)
(s4113 4.0)
(s4114 5.0)
(s4115 5.0)
(s4116 2.0)
(s4118 4.0)
(s4119 5.0)
(s4120 5.0)
(s4121 2.0)
(s4123 4.0)
(s4124 5.0)
(s4125 5.0)
(s4126 2.0)
(s4128 4.0)
(s4129 5.0)
(s4130 5.0)
(s4131 2.0)
(s4133 4.0)
(s4134 5.0)
(s4135 5.0)
(s4136 2.0)
(s4138 4.0)
(s4139 5.0)
(s4140 5.0)
(s4141 2.0)
(s4143 4.0)
(s4144 5.0)
(s4145 5.0)
(s4146 2.0)
(s4148 4.0)
(s4149 5.0)
(s4150 5.0)
(s4151 2.0)
(s4153 4.0)
(s4154 5.0)
(s4155 5.0)
(s4156 2.0)
(s4158 4.0)
(s4159 5.0)
(s4160 5.0)
(s4161 2.0)
(s4163 4.0)
(s4164 5.0)
(s4165 5.0)
(s4166 2.0)
(s4168 4.0)
(s4169 5.0)
(s4170 5.0)
(s4171 2.0)
(s4173 4.0)
(s4174 5.0)
(s4175 5.0)
(s4176 2.0)
(s4178 4.0)
(s4179 5.0)
(s4180 5.0)
(s4181 2.0)
(s4183 4.0)
(s4184 5.0)
(s4185 5.0)
(s4186 2.0)
(s4188 4.0)
(s4189 5.0)
(s4190 5.0)
(s4191 2.0)
(s4193 4.0)
(s4194 5.0)
(s4195 5.0)
(s4196 2.0)
(s4198 4.0)
(s4199 5.0)
(s4200 5.0)
(s4201 2.0)
(s4203 4.0)
(s4204 5.0)
(s4205 5.0)
(s4206 2.0)
(s4208 4.0)
(s4209 5.0)
(s4210 5.0)
(s4211 2.0)
(s4213 4.0)
(s4214 5.0)
(s4215 5.0)
(s4216 2.0)
(s4218 4.0)
(s4219 5.0)
(s4220 5.0)
(s4221 2.0)
(s4223 4.0)
(s4224 5.0)
(s4225 5.0)
(s4226 2.0)
(s4228 4.0)
(s4229 5.0)
(s4230 5.0)
(s4231 2.0)
(s4233 4.0)
(s4234 5.0)
(s4235 5.0)
(s4236 2.0)
(s4238 4.0)
(s4239 5.0)
(s4240 5.0)
(s4241 2.0)
(s4243 4.0)
(s4244 5.0)
(s4245 5.0)
(s4246 2.0)
(s4248 4.0)
(s4249 5.0)
(s4250 5.0)
(s4251 2.0)
(s4253 4.0)
(s4254 5.0)
(s4255 5.0)
(s4256 2.0)
(s4258 4.0)
(s4259 5.0)
(s4260 5.0)
(s4261 2.0)
(s4263 4.0)
(s4264 5.0)
(s4265 5.0)
(s4266 2.0)
(s4268 4.0)
(s4269 5.0)
(s4270 5.0)
(s4271 2.0)
(s4273 4.0)
(s4274 5.0)
(s4275 5.0)
(s4276 2.0)
(s4278 4.0)
(s4279 timeout
5.0) org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20088 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20080 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 44225ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 44269ms
[2024-05-23 23:05:27] [INFO ] Redundant transitions in 1009 ms returned []
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:05:27] [INFO ] Invariant cache hit.
[2024-05-23 23:05:27] [INFO ] State equation strengthened by 1000 read => feed constraints.
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30077 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30081 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 64165ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 64210ms
Finished structural reductions in SI_LTL mode , in 1 iterations and 110401 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Support contains 3 out of 5000 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 189 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:06:32] [INFO ] Invariant cache hit.
[2024-05-23 23:06:32] [INFO ] State equation strengthened by 1000 read => feed constraints.
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20085 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20074 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 44088ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 44133ms
[2024-05-23 23:07:16] [INFO ] Invariant cache hit.
[2024-05-23 23:07:17] [INFO ] Implicit Places using invariants in 959 ms returned []
[2024-05-23 23:07:17] [INFO ] Invariant cache hit.
[2024-05-23 23:07:20] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2024-05-23 23:07:21] [INFO ] Implicit Places using invariants and state equation in 3971 ms returned []
Implicit Place search using SMT with State Equation took 4932 ms to find 0 implicit places.
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:07:21] [INFO ] Invariant cache hit.
[2024-05-23 23:07:21] [INFO ] State equation strengthened by 1000 read => feed constraints.
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30077 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30076 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 64310ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 64365ms
Finished structural reductions in LTL mode , in 1 iterations and 113634 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Treatment of property JoinFreeModules-PT-1000-LTLCardinality-04 finished in 499271 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202405141337/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!((X(X(X(F(p0)))) U ((p1 U p2) U p0)))'
Support contains 4 out of 5000 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 207 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:08:26] [INFO ] Invariant cache hit.
[2024-05-23 23:08:26] [INFO ] State equation strengthened by 1000 read => feed constraints.
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20074 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20073 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 44091ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 44137ms
[2024-05-23 23:09:10] [INFO ] Invariant cache hit.
[2024-05-23 23:09:11] [INFO ] Implicit Places using invariants in 829 ms returned []
[2024-05-23 23:09:11] [INFO ] Invariant cache hit.
[2024-05-23 23:09:14] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2024-05-23 23:09:14] [INFO ] Implicit Places using invariants and state equation in 3720 ms returned []
Implicit Place search using SMT with State Equation took 4551 ms to find 0 implicit places.
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:09:14] [INFO ] Invariant cache hit.
[2024-05-23 23:09:14] [INFO ] State equation strengthened by 1000 read => feed constraints.
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30104 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Error getting values : (error "ParserException while parsing response: ((s0 5)
(s1 2)
(s3 4)
(s4 5)
(s5 5)
(s6 2)
(s8 4)
(s9 5)
(s10 5)
(s11 2)
(s13 4)
(s14 5)
(s15 5)
(s16 2)
(s18 4)
(s19 5)
(s20 5)
(s21 2)
(s23 4)
(s24 5)
(s25 5)
(s26 2)
(s28 4)
(s29 5)
(s30 5)
(s31 2)
(s33 4)
(s34 5)
(s35 5)
(s36 2)
(s38 4)
(s39 5)
(s40 5)
(s41 2)
(s43 4)
(s44 5)
(s45 5)
(s46 2)
(s48 4)
(s49 5)
(s50 5)
(s51 2)
(s53 4)
(s54 5)
(s55 5)
(s56 2)
(s58 4)
(s59 5)
(s60 5)
(s61 2)
(s63 4)
(s64 5)
(s65 5)
(s66 2)
(s68 4)
(s69 5)
(s70 5)
(s71 2)
(s73 4)
(s74 5)
(s75 5)
(s76 2)
(s78 4)
(s79 5)
(s80 5)
(s81 2)
(s83 4)
(s84 5)
(s85 5)
(s86 2)
(s88 4)
(s89 5)
(s90 5)
(s91 2)
(s93 4)
(s94 5)
(s95 5)
(s96 2)
(s98 4)
(s99 5)
(s100 5)
(s101 2)
(s103 4)
(s104 5)
(s105 5)
(s106 2)
(s108 4)
(s109 5)
(s110 5)
(s111 2)
(s113 4)
(s114 5)
(s115 5)
(s116 2)
(s118 4)
(s119 5)
(s120 5)
(s121 2)
(s123 4)
(s124 5)
(s125 5)
(s126 2)
(s128 4)
(s129 5)
(s130 5)
(s131 2)
(s133 4)
(s134 5)
(s135 5)
(s136 2)
(s138 4)
(s139 5)
(s140 5)
(s141 2)
(s143 4)
(s144 5)
(s145 5)
(s146 2)
(s148 4)
(s149 5)
(s150 5)
(s151 2)
(s153 4)
(s154 5)
(s155 5)
(s156 2)
(s158 4)
(s159 5)
(s160 5)
(s161 2)
(s163 4)
(s164 5)
(s165 5)
(s166 2)
(s168 4)
(s169 5)
(s170 5)
(s171 2)
(s173 4)
(s174 5)
(s175 5)
(s176 2)
(s178 4)
(s179 5)
(s180 5)
(s181 2)
(s183 4)
(s184 5)
(s185 5)
(s186 2)
(s188 4)
(s189 5)
(s190 5)
(s191 2)
(s193 4)
(s194 5)
(s195 5)
(s196 2)
(s198 4)
(s199 5)
(s200 5)
(s201 2)
(s203 4)
(s204 5)
(s205 5)
(s206 2)
(s208 4)
(s209 5)
(s210 5)
(s211 2)
(s213 4)
(s214 5)
(s215 5)
(s216 2)
(s218 4)
(s219 5)
(s220 5)
(s221 2)
(s223 4)
(s224 5)
(s225 5)
(s226 2)
(s228 4)
(s229 5)
(s230 5)
(s231 2)
(s233 4)
(s234 5)
(s235 5)
(s236 2)
(s238 4)
(s239 5)
(s240 5)
(s241 2)
(s243 4)
(s244 5)
(s245 5)
(s246 2)
(s248 4)
(s249 5)
(s250 5)
(s251 2)
(s253 4)
(s254 5)
(s255 5)
(s256 2)
(s258 4)
(s259 5)
(s260 5)
(s261 2)
(s263 4)
(s264 5)
(s265 5)
(s266 2)
(s268 4)
(s269 5)
(s270 5)
(s271 2)
(s273 4)
(s274 5)
(s275 5)
(s276 2)
(s278 4)
(s279 5)
(s280 5)
(s281 2)
(s283 4)
(s284 5)
(s285 5)
(s286 2)
(s288 4)
(s289 5)
(s290 5)
(s291 2)
(s293 4)
(s294 5)
(s295 5)
(s296 2)
(s298 4)
(s299 5)
(s300 5)
(s301 2)
(s303 4)
(s304 5)
(s305 5)
(s306 2)
(s308 4)
(s309 5)
(s310 5)
(s311 2)
(s313 4)
(s314 5)
(s315 5)
(s316 2)
(s318 4)
(s319 5)
(s320 5)
(s321 2)
(s323 4)
(s324 5)
(s325 5)
(s326 2)
(s328 4)
(s329 5)
(s330 5)
(s331 2)
(s333 4)
(s334 5)
(s335 5)
(s336 2)
(s338 4)
(s339 5)
(s340 5)
(s341 2)
(s343 4)
(s344 5)
(s345 5)
(s346 2)
(s348 4)
(s349 5)
(s350 5)
(s351 2)
(s353 4)
(s354 5)
(s355 5)
(s356 2)
(s358 4)
(s359 5)
(s360 5)
(s361 2)
(s363 4)
(s364 5)
(s365 5)
(s366 2)
(s368 4)
(s369 5)
(s370 5)
(s371 2)
(s373 4)
(s374 5)
(s375 5)
(s376 2)
(s378 4)
(s379 5)
(s380 5)
(s381 2)
(s383 4)
(s384 5)
(s385 5)
(s386 2)
(s388 4)
(s389 5)
(s390 5)
(s391 2)
(s393 4)
(s394 5)
(s395 5)
(s396 2)
(s398 4)
(s399 5)
(s400 5)
(s401 2)
(s403 4)
(s404 5)
(s405 5)
(s406 2)
(s408 4)
(s409 5)
(s410 5)
(s411 2)
(s413 4)
(s414 5)
(s415 5)
(s416 2)
(s418 4)
(s419 5)
(s420 5)
(s421 2)
(s423 4)
(s424 5)
(s425 5)
(s426 2)
(s428 4)
(s429 5)
(s430 5)
(s431 2)
(s433 4)
(s434 5)
(s435 5)
(s436 2)
(s438 4)
(s439 5)
(s440 5)
(s441 2)
(s443 4)
(s444 5)
(s445 5)
(s446 2)
(s448 4)
(s449 5)
(s450 5)
(s451 2)
(s453 4)
(s454 5)
(s455 5)
(s456 2)
(s458 4)
(s459 5)
(s460 5)
(s461 2)
(s463 4)
(s464 5)
(s465 5)
(s466 2)
(s468 4)
(s469 5)
(s470 5)
(s471 2)
(s473 4)
(s474 5)
(s475 5)
(s476 2)
(s478 4)
(s479 5)
(s480 5)
(s481 2)
(s483 4)
(s484 5)
(s485 5)
(s486 2)
(s488 4)
(s489 5)
(s490 5)
(s491 2)
(s493 4)
(s494 5)
(s495 5)
(s496 2)
(s498 4)
(s499 5)
(s500 5)
(s501 2)
(s503 4)
(s504 5)
(s505 5)
(s506 2)
(s508 4)
(s509 5)
(s510 5)
(s511 2)
(s513 4)
(s514 5)
(s515 5)
(s516 2)
(s518 4)
(s519 5)
(s520 5)
(s521 2)
(s523 4)
(s524 5)
(s525 5)
(s526 2)
(s528 4)
(s529 5)
(s530 5)
(s531 2)
(s533 4)
(s534 5)
(s535 5)
(s536 2)
(s538 4)
(s539 5)
(s540 5)
(s541 2)
(s543 4)
(s544 5)
(s545 5)
(s546 2)
(s548 4)
(s549 5)
(s550 5)
(s551 2)
(s553 4)
(s554 5)
(s555 5)
(s556 2)
(s558 4)
(s559 5)
(s560 5)
(s561 2)
(s563 4)
(s564 5)
(s565 5)
(s566 2)
(s568 4)
(s569 5)
(s570 5)
(s571 2)
(s573 4)
(s574 5)
(s575 5)
(s576 2)
(s578 4)
(s579 5)
(s580 5)
(s581 2)
(s583 4)
(s584 5)
(s585 5)
(s586 2)
(s588 4)
(s589 5)
(s590 5)
(s591 2)
(s593 4)
(s594 5)
(s595 5)
(s596 2)
(s598 4)
(s599 5)
(s600 5)
(s601 2)
(s603 4)
(s604 5)
(s605 5)
(s606 2)
(s608 4)
(s609 5)
(s610 5)
(s611 2)
(s613 4)
(s614 5)
(s615 5)
(s616 2)
(s618 4)
(s619 5)
(s620 5)
(s621 2)
(s623 4)
(s624 5)
(s625 5)
(s626 2)
(s628 4)
(s629 5)
(s630 5)
(s631 2)
(s633 4)
(s634 5)
(s635 5)
(s636 2)
(s638 4)
(s639 5)
(s640 5)
(s641 2)
(s643 4)
(s644 5)
(s645 5)
(s646 2)
(s648 4)
(s649 5)
(s650 5)
(s651 2)
(s653 4)
(s654 5)
(s655 5)
(s656 2)
(s658 4)
(s659 5)
(s660 5)
(s661 2)
(s663 4)
(s664 5)
(s665 5)
(s666 2)
(s668 4)
(s669 5)
(s670 5)
(s671 2)
(s673 4)
(s674 5)
(s675 5)
(s676 2)
(s678 4)
(s679 5)
(s680 5)
(s681 2)
(s683 4)
(s684 5)
(s685 5)
(s686 2)
(s688 4)
(s689 5)
(s690 5)
(s691 2)
(s693 4)
(s694 5)
(s695 5)
(s696 2)
(s698 4)
(s699 5)
(s700 5)
(s701 2)
(s703 4)
(s704 5)
(s705 5)
(s706 2)
(s708 4)
(s709 5)
(s710 5)
(s711 2)
(s713 4)
(s714 5)
(s715 5)
(s716 2)
(s718 4)
(s719 5)
(s720 5)
(s721 2)
(s723 4)
(s724 5)
(s725 5)
(s726 2)
(s728 4)
(s729 5)
(s730 5)
(s731 2)
(s733 4)
(s734 5)
(s735 5)
(s736 2)
(s738 4)
(s739 5)
(s740 5)
(s741 2)
(s743 4)
(s744 5)
(s745 5)
(s746 2)
(s748 4)
(s749 5)
(s750 5)
(s751 2)
(s753 4)
(s754 5)
(s755 5)
(s756 2)
(s758 4)
(s759 5)
(s760 5)
(s761 2)
(s763 4)
(s764 5)
(s765 5)
(s766 2)
(s768 4)
(s769 5)
(s770 5)
(s771 2)
(s773 4)
(s774 5)
(s775 5)
(s776 2)
(s778 4)
(s779 5)
(s780 5)
(s781 2)
(s783 4)
(s784 5)
(s785 5)
(s786 2)
(s788 4)
(s789 5)
(s790 5)
(s791 2)
(s793 4)
(s794 5)
(s795 5)
(s796 2)
(s798 4)
(s799 5)
(s800 5)
(s801 2)
(s803 4)
(s804 5)
(s805 5)
(s806 2)
(s808 4)
(s809 5)
(s810 5)
(s811 2)
(s813 4)
(s814 5)
(s815 5)
(s816 2)
(s818 4)
(s819 5)
(s820 5)
(s821 2)
(s823 4)
(s824 5)
(s825 5)
(s826 2)
(s828 4)
(s829 5)
(s830 5)
(s831 2)
(s833 4)
(s834 5)
(s835 5)
(s836 2)
(s838 4)
(s839 5)
(s840 5)
(s841 2)
(s843 4)
(s844 5)
(s845 5)
(s846 2)
(s848 4)
(s849 5)
(s850 5)
(s851 2)
(s853 4)
(s854 5)
(s855 5)
(s856 2)
(s858 4)
(s859 5)
(s860 5)
(s861 2)
(s863 4)
(s864 5)
(s865 5)
(s866 2)
(s868 4)
(s869 5)
(s870 5)
(s871 2)
(s873 4)
(s874 5)
(s875 5)
(s876 2)
(s878 4)
(s879 5)
(s880 5)
(s881 2)
(s883 4)
(s884 5)
(s885 5)
(s886 2)
(s888 4)
(s889 5)
(s890 5)
(s891 2)
(s893 4)
(s894 5)
(s895 5)
(s896 2)
(s898 4)
(s899 5)
(s900 5)
(s901 2)
(s903 4)
(s904 5)
(s905 5)
(s906 2)
(s908 4)
(s909 5)
(s910 5)
(s911 2)
(s913 4)
(s914 5)
(s915 5)
(s916 2)
(s918 4)
(s919 5)
(s920 5)
(s921 2)
(s923 4)
(s924 5)
(s925 5)
(s926 2)
(s928 4)
(s929 5)
(s930 5)
(s931 2)
(s933 4)
(s934 5)
(s935 5)
(s936 2)
(s938 4)
(s939 5)
(s940 5)
(s941 2)
(s943 4)
(s944 5)
(s945 5)
(s946 2)
(s948 4)
(s949 5)
(s950 5)
(s951 2)
(s953 4)
(s954 5)
(s955 5)
(s956 2)
(s958 4)
(s959 5)
(s960 5)
(s961 2)
(s963 4)
(s964 5)
(s965 5)
(s966 2)
(s968 4)
(s969 5)
(s970 5)
(s971 2)
(s973 4)
(s974 5)
(s975 5)
(s976 2)
(s978 4)
(s979 5)
(s980 5)
(s981 2)
(s983 4)
(s984 5)
(s985 5)
(s986 2)
(s988 4)
(s989 5)
(s990 5)
(s991 2)
(s993 4)
(s994 5)
(s995 5)
(s996 2)
(s998 4)
(s999 5)
(s1000 5)
(s1001 2)
(s1003 4)
(s1004 5)
(s1005 5)
(s1006 2)
(s1008 4)
(s1009 5)
(s1010 5)
(s1011 2)
(s1013 4)
(s1014 5)
(s1015 5)
(s1016 2)
(s1018 4)
(s1019 5)
(s1020 5)
(s1021 2)
(s1023 4)
(s1024 5)
(s1025 5)
(s1026 2)
(s1028 4)
(s1029 5)
(s1030 5)
(s1031 2)
(s1033 4)
(s1034 5)
(s1035 5)
(s1036 2)
(s1038 4)
(s1039 5)
(s1040 5)
(s1041 2)
(s1043 4)
(s1044 5)
(s1045 5)
(s1046 2)
(s1048 4)
(s1049 5)
(s1050 5)
(s1051 2)
(s1053 4)
(s1054 5)
(s1055 5)
(s1056 2)
(s1058 4)
(s1059 5)
(s1060 5)
(s1061 2)
(s1063 4)
(s1064 5)
(s1065 5)
(s1066 2)
(s1068 4)
(s1069 5)
(s1070 5)
(s1071 2)
(s1073 4)
(s1074 5)
(s1075 5)
(s1076 2)
(s1078 4)
(s1079 5)
(s1080 5)
(s1081 2)
(s1083 4)
(s1084 5)
(s1085 5)
(s1086 2)
(s1088 4)
(s1089 5)
(s1090 5)
(s1091 2)
(s1093 4)
(s1094 5)
(s1095 5)
(s1096 2)
(s1098 4)
(s1099 5)
(s1100 5)
(s1101 2)
(s1103 4)
(s1104 5)
(s1105 5)
(s1106 2)
(s1108 4)
(s1109 5)
(s1110 5)
(s1111 2)
(s1113 4)
(s1114 5)
(s1115 5)
(s1116 2)
(s1118 4)
(s1119 5)
(s1120 5)
(s1121 2)
(s1123 4)
(s1124 5)
(s1125 5)
(s1126 2)
(s1128 4)
(s1129 5)
(s1130 5)
(s1131 2)
(s1133 4)
(s1134 5)
(s1135 5)
(s1136 2)
(s1138 4)
(s1139 5)
(s1140 5)
(s1141 2)
(s1143 4)
(s1144 5)
(s1145 5)
(s1146 2)
(s1148 4)
(s1149 5)
(s1150 5)
(s1151 2)
(s1153 4)
(s1154 5)
(s1155 5)
(s1156 2)
(s1158 4)
(s1159 5)
(s1160 5)
(s1161 2)
(s1163 4)
(s1164 5)
(s1165 5)
(s1166 2)
(s1168 4)
(s1169 5)
(s1170 5)
(s1171 2)
(s1173 4)
(s1174 5)
(s1175 5)
(s1176 2)
(s1178 4)
(s1179 5)
(s1180 5)
(s1181 2)
(s1183 4)
(s1184 5)
(s1185 5)
(s1186 2)
(s1188 4)
(s1189 5)
(s1190 5)
(s1191 2)
(s1193 4)
(s1194 5)
(s1195 5)
(s1196 2)
(s1198 4)
(s1199 5)
(s1200 5)
(s1201 2)
(s1203 4)
(s1204 5)
(s1205 5)
(s1206 2)
(s1208 4)
(s1209 5)
(s1210 5)
(s1211 2)
(s1213 4)
(s1214 5)
(s1215 5)
(s1216 2)
(s1218 4)
(s1219 5)
(s1220 5)
(s1221 2)
(s1223 4)
(s1224 5)
(s1225 5)
(s1226 2)
(s1228 4)
(s1229 5)
(s1230 5)
(s1231 2)
(s1233 4)
(s1234 5)
(s1235 5)
(s1236 2)
(s1238 4)
(s1239 5)
(s1240 5)
(s1241 2)
(s1243 4)
(s1244 5)
(s1245 5)
(s1246 2)
(s1248 4)
(s1249 5)
(s1250 5)
(s1251 2)
(s1253 4)
(s1254 5)
(s1255 5)
(s1256 2)
(s1258 4)
(s1259 5)
(s1260 5)
(s1261 2)
(s1263 4)
(s1264 5)
(s1265 5)
(s1266 2)
(s1268 4)
(s1269 5)
(s1270 5)
(s1271 2)
(s1273 4)
(s1274 5)
(s1275 5)
(s1276 2)
(s1278 4)
(s1279 5)
(s1280 5)
(s1281 2)
(s1283 4)
(s1284 5)
(s1285 5)
(s1286 2)
(s1288 4)
(s1289 5)
(s1290 5)
(s1291 2)
(s1293 4)
(s1294 5)
(s1295 5)
(s1296 2)
(s1298 4)
(s1299 5)
(s1300 5)
(s1301 2)
(s1303 4)
(s1304 5)
(s1305 5)
(s1306 2)
(s1308 4)
(s1309 5)
(s1310 5)
(s1311 2)
(s1313 4)
(s1314 5)
(s1315 5)
(s1316 2)
(s1318 4)
(s1319 5)
(s1320 5)
(s1321 2)
(s1323 4)
(s1324 5)
(s1325 5)
(s1326 2)
(s1328 4)
(s1329 5)
(s1330 5)
(s1331 2)
(s1333 4)
(s1334 5)
(s1335 5)
(s1336 2)
(s1338 4)
(s1339 5)
(s1340 5)
(s1341 2)
(s1343 4)
(s1344 5)
(s1345 5)
(s1346 2)
(s1348 4)
(s1349 5)
(s1350 5)
(s1351 2)
(s1353 4)
(s1354 5)
(s1355 5)
(s1356 2)
(s1358 4)
(s1359 5)
(s1360 5)
(s1361 2)
(s1363 4)
(s1364 5)
(s1365 5)
(s1366 2)
(s1368 4)
(s1369 5)
(s1370 5)
(s1371 2)
(s1373 4)
(s1374 5)
(s1375 5)
(s1376 2)
(s1378 4)
(s1379 5)
(s1380 5)
(s1381 2)
(s1383 4)
(s1384 5)
(s1385 5)
(s1386 2)
(s1388 4)
(s1389 5)
(s1390 5)
(s1391 2)
(s1393 4)
(s1394 5)
(s1395 5)
(s1396 2)
(s1398 4)
(s1399 5)
(s1400 5)
(s1401 2)
(s1403 4)
(s1404 5)
(s1405 5)
(s1406 2)
(s1408 4)
(s1409 5)
(s1410 5)
(s1411 2)
(s1413 4)
(s1414 5)
(s1415 5)
(s1416 2)
(s1418 4)
(s1419 5)
(s1420 5)
(s1421 2)
(s1423 4)
(s1424 5)
(s1425 5)
(s1426 2)
(s1428 4)
(s1429 5)
(s1430 5)
(s1431 2)
(s1433 4)
(s1434 5)
(s1435 5)
(s1436 2)
(s1438 4)
(s1439 5)
(s1440 5)
(s1441 2)
(s1443 4)
(s1444 5)
(s1445 5)
(s1446 2)
(s1448 4)
(s1449 5)
(s1450 5)
(s1451 2)
(s1453 4)
(s1454 5)
(s1455 5)
(s1456 2)
(s1458 4)
(s1459 5)
(s1460 5)
(s1461 2)
(s1463 4)
(s1464 5)
(s1465 5)
(s1466 2)
(s1468 4)
(s1469 5)
(s1470 5)
(s1471 2)
(s1473 4)
(s1474 5)
(s1475 5)
(s1476 2)
(s1478 4)
(s1479 5)
(s1480 5)
(s1481 2)
(s1483 4)
(s1484 5)
(s1485 5)
(s1486 2)
(s1488 4)
(s1489 5)
(s1490 5)
(s1491 2)
(s1493 4)
(s1494 5)
(s1495 5)
(s1496 2)
(s1498 4)
(s1499 5)
(s1500 5)
(s1501 2)
(s1503 4)
(s1504 5)
(s1505 5)
(s1506 2)
(s1508 4)
(s1509 5)
(s1510 5)
(s1511 2)
(s1513 4)
(s1514 5)
(s1515 5)
(s1516 2)
(s1518 4)
(s1519 5)
(s1520 5)
(s1521 2)
(s1523 4)
(s1524 5)
(s1525 5)
(s1526 2)
(s1528 4)
(s1529 5)
(s1530 5)
(s1531 2)
(s1533 4)
(s1534 5)
(s1535 5)
(s1536 2)
(s1538 4)
(s1539 5)
(s1540 5)
(s1541 2)
(s1543 4)
(s1544 5)
(s1545 5)
(s1546 2)
(s1548 4)
(s1549 5)
(s1550 5)
(s1551 2)
(s1553 4)
(s1554 5)
(s1555 5)
(s1556 2)
(s1558 4)
(s1559 5)
(s1560 5)
(s1561 2)
(s1563 4)
(s1564 5)
(s1565 5)
(s1566 2)
(s1568 4)
(s1569 5)
(s1570 5)
(s1571 2)
(s1573 4)
(s1574 5)
(s1575 5)
(s1576 2)
(s1578 4)
(s1579 5)
(s1580 5)
(s1581 2)
(s1583 4)
(s1584 5)
(s1585 5)
(s1586 2)
(s1588 4)
(s1589 5)
(s1590 5)
(s1591 2)
(s1593 4)
(s1594 5)
(s1595 5)
(s1596 2)
(s1598 4)
(s1599 5)
(s1600 5)
(s1601 2)
(s1603 4)
(s1604 5)
(s1605 5)
(s1606 2)
(s1608 4)
(s1609 5)
(s1610 5)
(s1611 2)
(s1613 4)
(s1614 5)
(s1615 5)
(s1616 2)
(s1618 4)
(s1619 5)
(s1620 5)
(s1621 2)
(s1623 4)
(s1624 5)
(s1625 5)
(s1626 2)
(s1628 4)
(s1629 5)
(s1630 5)
(s1631 2)
(s1633 4)
(s1634 5)
(s1635 5)
(s1636 2)
(s1638 4)
(s1639 5)
(s1640 5)
(s1641 2)
(s1643 4)
(s1644 5)
(s1645 5)
(s1646 2)
(s1648 4)
(s1649 5)
(s1650 5)
(s1651 2)
(s1653 4)
(s1654 5)
(s1655 5)
(s1656 2)
(s1658 4)
(s1659 5)
(s1660 5)
(s1661 2)
(s1663 4)
(s1664 5)
(s1665 5)
(s1666 2)
(s1668 4)
(s1669 5)
(s1670 5)
(s1671 2)
(s1673 4)
(s1674 5)
(s1675 5)
(s1676 2)
(s1678 4)
(s1679 5)
(s1680 5)
(s1681 2)
(s1683 4)
(s1684 5)
(s1685 5)
(s1686 2)
(s1688 4)
(s1689 5)
(s1690 5)
(s1691 2)
(s1693 4)
(s1694 5)
(s1695 5)
(s1696 2)
(s1698 4)
(s1699 5)
(s1700 5)
(s1701 2)
(s1703 4)
(s1704 5)
(s1705 5)
(s1706 2)
(s1708 4)
(s1709 5)
(s1710 5)
(s1711 2)
(s1713 4)
(s1714 5)
(s1715 5)
(s1716 2)
(s1718 4)
(s1719 5)
(s1720 5)
(s1721 2)
(s1723 4)
(s1724 5)
(s1725 5)
(s1726 2)
(s1728 4)
(s1729 5)
(s1730 5)
(s1731 2)
(s1733 4)
(s1734 5)
(s1735 5)
(s1736 2)
(s1738 4)
(s1739 5)
(s1740 5)
(s1741 2)
(s1743 4)
(s1744 5)
(s1745 5)
(s1746 2)
(s1748 4)
(s1749 5)
(s1750 5)
(s1751 2)
(s1753 4)
(s1754 5)
(s1755 5)
(s1756 2)
(s1758 4)
(s1759 5)
(s1760 5)
(s1761 2)
(s1763 4)
(s1764 5)
(s1765 5)
(s1766 2)
(s1768 4)
(s1769 5)
(s1770 5)
(s1771 2)
(s1773 4)
(s1774 5)
(s1775 5)
(s1776 2)
(s1778 4)
(s1779 5)
(s1780 5)
(s1781 2)
(s1783 4)
(s1784 5)
(s1785 5)
(s1786 2)
(s1788 4)
(s1789 5)
(s1790 5)
(s1791 2)
(s1793 4)
(s1794 5)
(s1795 5)
(s1796 2)
(s1798 4)
(s1799 5)
(s1800 5)
(s1801 2)
(s1803 4)
(s1804 5)
(s1805 5)
(s1806 2)
(s1808 4)
(s1809 5)
(s1810 5)
(s1811 2)
(s1813 4)
(s1814 5)
(s1815 5)
(s1816 2)
(s1818 4)
(s1819 5)
(s1820 5)
(s1821 2)
(s1823 4)
(s1824 5)
(s1825 5)
(s1826 2)
(s1828 4)
(s1829 5)
(s1830 5)
(s1831 2)
(s1833 4)
(s1834 5)
(s1835 5)
(s1836 2)
(s1838 4)
(s1839 5)
(s1840 5)
(s1841 2)
(s1843 4)
(s1844 5)
(s1845 5)
(s1846 2)
(s1848 4)
(s1849 5)
(s1850 5)
(s1851 2)
(s1853 4)
(s1854 5)
(s1855 5)
(s1856 2)
(s1858 4)
(s1859 5)
(s1860 5)
(s1861 2)
(s1863 4)
(s1864 5)
(s1865 5)
(s1866 2)
(s1868 4)
(s1869 5)
(s1870 5)
(s1871 2)
(s1873 4)
(s1874 5)
(s1875 5)
(s1876 2)
(s1878 4)
(s1879 5)
(s1880 5)
(s1881 2)
(s1883 4)
(s1884 5)
(s1885 5)
(s1886 2)
(s1888 4)
(s1889 5)
(s1890 5)
(s1891 2)
(s1893 4)
(s1894 5)
(s1895 5)
(s1896 2)
(s1898 4)
(s1899 5)
(s1900 5)
(s1901 2)
(s1903 4)
(s1904 5)
(s1905 5)
(s1906 2)
(s1908 4)
(s1909 5)
(s1910 5)
(s1911 2)
(s1913 4)
(s1914 5)
(s1915 5)
(s1916 2)
(s1918 4)
(s1919 5)
(s1920 5)
(s1921 2)
(s1923 4)
(s1924 5)
(s1925 5)
(s1926 2)
(s1928 4)
(s1929 5)
(s1930 5)
(s1931 2)
(s1933 4)
(s1934 5)
(s1935 5)
(s1936 2)
(s1938 4)
(s1939 5)
(s1940 5)
(s1941 2)
(s1943 4)
(s1944 5)
(s1945 5)
(s1946 2)
(s1948 4)
(s1949 5)
(s1950 5)
(s1951 2)
(s1953 4)
(s1954 5)
(s1955 5)
(s1956 2)
(s1958 4)
(s1959 5)
(s1960 5)
(s1961 2)
(s1963 4)
(s1964 5)
(s1965 5)
(s1966 2)
(s1968 4)
(s1969 5)
(s1970 5)
(s1971 2)
(s1973 4)
(s1974 5)
(s1975 5)
(s1976 2)
(s1978 4)
(s1979 5)
(s1980 5)
(s1981 2)
(s1983 4)
(s1984 5)
(s1985 5)
(s1986 2)
(s1988 4)
(s1989 5)
(s1990 5)
(s1991 2)
(s1993 4)
(s1994 5)
(s1995 5)
(s1996 2)
(s1998 4)
(s1999 5)
(s2000 5)
(s2001 2)
(s2003 4)
(s2004 5)
(s2005 5)
(s2006 2)
(s2008 4)
(s2009 5)
(s2010 5)
(s2011 2)
(s2013 4)
(s2014 5)
(s2015 5)
(s2016 2)
(s2018 4)
(s2019 5)
(s2020 5)
(s2021 2)
(s2023 4)
(s2024 5)
(s2025 5)
(s2026 2)
(s2028 4)
(s2029 5)
(s2030 5)
(s2031 2)
(s2033 4)
(s2034 5)
(s2035 5)
(s2036 2)
(s2038 4)
(s2039 5)
(s2040 5)
(s2041 2)
(s2043 4)
(s2044 5)
(s2045 5)
(s2046 2)
(s2048 4)
(s2049 5)
(s2050 5)
(s2051 2)
(s2053 4)
(s2054 5)
(s2055 5)
(s2056 2)
(s2058 4)
(s2059 5)
(s2060 5)
(s2061 2)
(s2063 4)
(s2064 5)
(s2065 5)
(s2066 2)
(s2068 4)
(s2069 5)
(s2070 5)
(s2071 2)
(s2073 4)
(s2074 5)
(s2075 5)
(s2076 2)
(s2078 4)
(s2079 5)
(s2080 5)
(s2081 2)
(s2083 4)
(s2084 5)
(s2085 5)
(s2086 2)
(s2088 4)
(s2089 5)
(s2090 5)
(s2091 2)
(s2093 4)
(s2094 5)
(s2095 5)
(s2096 2)
(s2098 4)
(s2099 5)
(s2100 5)
(s2101 2)
(s2103 4)
(s2104 5)
(s2105 5)
(s2106 2)
(s2108 4)
(s2109 5)
(s2110 5)
(s2111 2)
(s2113 4)
(s2114 5)
(s2115 5)
(s2116 2)
(s2118 4)
(s2119 5)
(s2120 5)
(s2121 2)
(s2123 4)
(s2124 5)
(s2125 5)
(s2126 2)
(s2128 4)
(s2129 5)
(s2130 5)
(s2131 2)
(s2133 4)
(s2134 5)
(s2135 5)
(s2136 2)
(s2138 4)
(s2139 5)
(s2140 5)
(s2141 2)
(s2143 4)
(s2144 5)
(s2145 5)
(s2146 2)
(s2148 4)
(s2149 5)
(s2150 5)
(s2151 2)
(s2153 4)
(s2154 5)
(s2155 5)
(s2156 2)
(s2158 4)
(s2159 5)
(s2160 5)
(s2161 2)
(s2163 4)
(s2164 5)
(s2165 5)
(s2166 2)
(s2168 4)
(s2169 5)
(s2170 5)
(s2171 2)
(s2173 4)
(s2174 5)
(s2175 5)
(s2176 2)
(s2178 4)
(s2179 5)
(s2180 5)
(s2181 2)
(s2183 4)
(s2184 5)
(s2185 5)
(s2186 2)
(s2188 4)
(s2189 5)
(s2190 5)
(s2191 2)
(s2193 4)
(s2194 5)
(s2195 5)
(s2196 2)
(s2198 4)
(s2199 5)
(s2200 5)
(s2201 2)
(s2203 4)
(s2204 5)
(s2205 5)
(s2206 2)
(s2208 4)
(s2209 5)
(s2210 5)
(s2211 2)
(s2213 4)
(s2214 5)
(s2215 5)
(s2216 2)
(s2218 4)
(s2219 5)
(s2220 5)
(s2221 2)
(s2223 4)
(s2224 5)
(s2225 5)
(s2226 2)
(s2228 4)
(s2229 5)
(s2230 5)
(s2231 2)
(s2233 4)
(s2234 5)
(s2235 5)
(s2236 2)
(s2238 4)
(s2239 5)
(s2240 5)
(s2241 2)
(s2243 4)
(s2244 5)
(s2245 5)
(s2246 2)
(s2248 4)
(s2249 5)
(s2250 5)
(s2251 2)
(s2253 4)
(s2254 5)
(s2255 5)
(s2256 2)
(s2258 4)
(s2259 5)
(s2260 5)
(s2261 2)
(s2263 4)
(s2264 5)
(s2265 5)
(s2266 2)
(s2268 4)
(s2269 5)
(s2270 5)
(s2271 2)
(s2273 4)
(s2274 5)
(s2275 5)
(s2276 2)
(s2278 4)
(s2279 5)
(s2280 5)
(s2281 2)
(s2283 4)
(s2284 5)
(s2285 5)
(s2286 2)
(s2288 4)
(s2289 5)
(s2290 5)
(s2291 2)
(s2293 4)
(s2294 5)
(s2295 5)
(s2296 2)
(s2298 4)
(s2299 5)
(s2300 5)
(s2301 2)
(s2303 4)
(s2304 5)
(s2305 5)
(s2306 2)
(s2308 4)
(s2309 5)
(s2310 5)
(s2311 2)
(s2313 4)
(s2314 5)
(s2315 5)
(s2316 2)
(s2318 4)
(s2319 5)
(s2320 5)
(s2321 2)
(s2323 4)
(s2324 5)
(s2325 5)
(s2326 2)
(s2328 4)
(s2329 5)
(s2330 5)
(s2331 2)
(s2333 4)
(s2334 5)
(s2335 5)
(s2336 2)
(s2338 4)
(s2339 5)
(s2340 5)
(s2341 2)
(s2343 4)
(s2344 5)
(s2345 5)
(s2346 2)
(s2348 4)
(s2349 5)
(s2350 5)
(s2351 2)
(s2353 4)
(s2354 5)
(s2355 5)
(s2356 2)
(s2358 4)
(s2359 5)
(s2360 5)
(s2361 2)
(s2363 4)
(s2364 5)
(s2365 5)
(s2366 2)
(s2368 4)
(s2369 5)
(s2370 5)
(s2371 2)
(s2373 4)
(s2374 5)
(s2375 5)
(s2376 2)
(s2378 4)
(s2379 5)
(s2380 5)
(s2381 2)
(s2383 4)
(s2384 5)
(s2385 5)
(s2386 2)
(s2388 4)
(s2389 5)
(s2390 5)
(s2391 2)
(s2393 4)
(s2394 5)
(s2395 5)
(s2396 2)
(s2398 4)
(s2399 5)
(s2400 5)
(s2401 2)
(s2403 4)
(s2404 5)
(s2405 5)
(s2406 2)
(s2408 4)
(s2409 5)
(s2410 5)
(s2411 2)
(s2413 4)
(s2414 5)
(s2415 5)
(s2416 2)
(s2418 4)
(s2419 5)
(s2420 5)
(s2421 2)
(s2423 4)
(s2424 5)
(s2425 5)
(s2426 2)
(s2428 4)
(s2429 5)
(s2430 5)
(s2431 2)
(s2433 4)
(s2434 5)
(s2435 5)
(s2436 2)
(s2438 4)
(s2439 5)
(s2440 5)
(s2441 2)
(s2443 4)
(s2444 5)
(s2445 5)
(s2446 2)
(s2448 4)
(s2449 5)
(s2450 5)
(s2451 2)
(s2453 4)
(s2454 5)
(s2455 5)
(s2456 2)
(s2458 4)
(s2459 5)
(s2460 5)
(s2461 2)
(s2463 4)
(s2464 5)
(s2465 5)
(s2466 2)
(s2468 4)
(s2469 5)
(s2470 5)
(s2471 2)
(s2473 4)
(s2474 5)
(s2475 5)
(s2476 2)
(s2478 4)
(s2479 5)
(s2480 5)
(s2481 2)
(s2483 4)
(s2484 5)
(s2485 5)
(s2486 2)
(s2488 4)
(s2489 5)
(s2490 5)
(s2491 2)
(s2493 4)
(s2494 5)
(s2495 5)
(s2496 2)
(s2498 4)
(s2499 5)
(s2500 5)
(s2501 2)
(s2503 4)
(s2504 5)
(s2505 5)
(s2506 2)
(s2508 4)
(s2509 5)
(s2510 5)
(s2511 2)
(s2513 4)
(s2514 5)
(s2515 5)
(s2516 2)
(s2518 4)
(s2519 5)
(s2520 5)
(s2521 2)
(s2523 4)
(s2524 5)
(s2525 5)
(s2526 2)
(s2528 4)
(s2529 5)
(s2530 5)
(s2531 2)
(s2533 4)
(s2534 5)
(s2535 5)
(s2536 2)
(s2538 4)
(s2539 5)
(s2540 5)
(s2541 2)
(s2543 4)
(s2544 5)
(s2545 5)
(s2546 2)
(s2548 4)
(s2549 5)
(s2550 5)
(s2551 2)
(s2553 4)
(s2554 5)
(s2555 5)
(s2556 2)
(s2558 4)
(s2559 5)
(s2560 5)
(s2561 2)
(s2563 4)
(s2564 5)
(s2565 5)
(s2566 2)
(s2568 4)
(s2569 5)
(s2570 5)
(s2571 2)
(s2573 4)
(s2574 5)
(s2575 5)
(s2576 2)
(s2578 4)
(s2579 5)
(s2580 5)
(s2581 2)
(s2583 4)
(s2584 5)
(s2585 5)
(s2586 2)
(s2588 4)
(s2589 5)
(s2590 5)
(s2591 2)
(s2593 4)
(s2594 5)
(s2595 5)
(s2596 2)
(s2598 4)
(s2599 5)
(s2600 5)
(s2601 2)
(s2603 4)
(s2604 5)
(s2605 5)
(s2606 2)
(s2608 4)
(s2609 5)
(s2610 5)
(s2611 2)
(s2613 4)
(s2614 5)
(s2615 5)
(s2616 2)
(s2618 4)
(s2619 5)
(s2620 5)
(s2621 2)
(s2623 4)
(s2624 5)
(s2625 5)
(s2626 2)
(s2628 4)
(s2629 5)
(s2630 5)
(s2631 2)
(s2633 4)
(s2634 5)
(s2635 5)
(s2636 2)
(s2638 4)
(s2639 5)
(s2640 5)
(s2641 2)
(s2643 4)
(s2644 5)
(s2645 5)
(s2646 2)
(s2648 4)
(s2649 5)
(s2650 5)
(s2651 2)
(s2653 4)
(s2654 5)
(s2655 5)
(s2656 2)
(s2658 4)
(s2659 5)
(s2660 5)
(s2661 2)
(s2663 4)
(s2664 5)
(s2665 5)
(s2666 2)
(s2668 4)
(s2669 5)
(s2670 5)
(s2671 2)
(s2673 4)
(s2674 5)
(s2675 5)
(s2676 2)
(s2678 4)
(s2679 5)
(s2680 5)
(s2681 2)
(s2683 4)
(s2684 5)
(s2685 5)
(s2686 2)
(s2688 4)
(s2689 5)
(s2690 5)
(s2691 2)
(s2693 4)
(s2694 5)
(s2695 5)
(s2696 2)
(s2698 4)
(s2699 5)
(s2700 5)
(s2701 2)
(s2703 4)
(s2704 5)
(s2705 5)
(s2706 2)
(s2708 4)
(s2709 5)
(s2710 5)
(s2711 2)
(s2713 4)
(s2714 5)
(s2715 5)
(s2716 2)
(s2718 4)
(s2719 5)
(s2720 5)
(s2721 2)
(s2723 4)
(s2724 5)
(s2725 5)
(s2726 2)
(s2728 4)
(s2729 5)
(s2730 5)
(s2731 2)
(s2733 4)
(s2734 5)
(s2735 5)
(s2736 2)
(s2738 4)
(s2739 5)
(s2740 5)
(s2741 2)
(s2743 4)
(s2744 5)
(s2745 5)
(s2746 2)
(s2748 4)
(s2749 5)
(s2750 5)
(s2751 2)
(s2753 4)
(s2754 5)
(s2755 5)
(s2756 2)
(s2758 4)
(s2759 5)
(s2760 5)
(s2761 2)
(s2763 4)
(s2764 5)
(s2765 5)
(s2766 timeout
2)
(s2768 org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30075 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 64175ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 64220ms
Finished structural reductions in LTL mode , in 1 iterations and 113129 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Stuttering acceptance computed with spot in 278 ms :[(NOT p0), (NOT p0), (AND (NOT p0) (NOT p2)), (NOT p0), (NOT p0), (AND (NOT p0) (NOT p2)), (AND (NOT p0) (NOT p2))]
Running random walk in product with property : JoinFreeModules-PT-1000-LTLCardinality-05
Stuttering criterion allowed to conclude after 0 steps with 0 reset in 2 ms.
FORMULA JoinFreeModules-PT-1000-LTLCardinality-05 FALSE TECHNIQUES STUTTER_TEST
Treatment of property JoinFreeModules-PT-1000-LTLCardinality-05 finished in 113451 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202405141337/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(G((F(p0)&&F((G(p1)||G(p2))))))'
Support contains 6 out of 5000 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 683 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:10:20] [INFO ] Invariant cache hit.
[2024-05-23 23:10:20] [INFO ] State equation strengthened by 1000 read => feed constraints.
Error getting values : (error "Error writing to Z3 solver: java.io.IOException: Broken pipe")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20071 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20068 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 44055ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 44099ms
[2024-05-23 23:11:04] [INFO ] Invariant cache hit.
[2024-05-23 23:11:04] [INFO ] Implicit Places using invariants in 847 ms returned []
[2024-05-23 23:11:04] [INFO ] Invariant cache hit.
[2024-05-23 23:11:08] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2024-05-23 23:11:08] [INFO ] Implicit Places using invariants and state equation in 3608 ms returned []
Implicit Place search using SMT with State Equation took 4456 ms to find 0 implicit places.
[2024-05-23 23:11:09] [INFO ] Redundant transitions in 817 ms returned []
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:11:09] [INFO ] Invariant cache hit.
[2024-05-23 23:11:09] [INFO ] State equation strengthened by 1000 read => feed constraints.
Error getting values : (error "ParserException while parsing response: ((s0 5.0)
(s1 2.0)
(s3 4.0)
(s4 5.0)
(s5 5.0)
(s6 2.0)
(s8 4.0)
(s9 5.0)
(s10 5.0)
(s11 2.0)
(s13 4.0)
(s14 5.0)
(s15 5.0)
(s16 2.0)
(s18 4.0)
(s19 5.0)
(s20 5.0)
(s21 2.0)
(s23 4.0)
(s24 5.0)
(s25 5.0)
(s26 2.0)
(s28 4.0)
(s29 5.0)
(s30 5.0)
(s31 2.0)
(s33 4.0)
(s34 5.0)
(s35 5.0)
(s36 2.0)
(s38 4.0)
(s39 5.0)
(s40 5.0)
(s41 2.0)
(s43 4.0)
(s44 5.0)
(s45 5.0)
(s46 2.0)
(s48 4.0)
(s49 5.0)
(s50 5.0)
(s51 2.0)
(s53 4.0)
(s54 5.0)
(s55 5.0)
(s56 2.0)
(s58 4.0)
(s59 5.0)
(s60 5.0)
(s61 2.0)
(s63 4.0)
(s64 5.0)
(s65 5.0)
(s66 2.0)
(s68 4.0)
(s69 5.0)
(s70 5.0)
(s71 2.0)
(s73 4.0)
(s74 5.0)
(s75 5.0)
(s76 2.0)
(s78 4.0)
(s79 5.0)
(s80 5.0)
(s81 2.0)
(s83 4.0)
(s84 5.0)
(s85 5.0)
(s86 2.0)
(s88 4.0)
(s89 5.0)
(s90 5.0)
(s91 2.0)
(s93 4.0)
(s94 5.0)
(s95 5.0)
(s96 2.0)
(s98 4.0)
(s99 5.0)
(s100 5.0)
(s101 2.0)
(s103 4.0)
(s104 5.0)
(s105 5.0)
(s106 2.0)
(s108 4.0)
(s109 5.0)
(s110 5.0)
(s111 2.0)
(s113 4.0)
(s114 5.0)
(s115 5.0)
(s116 2.0)
(s118 4.0)
(s119 5.0)
(s120 5.0)
(s121 2.0)
(s123 4.0)
(s124 5.0)
(s125 5.0)
(s126 2.0)
(s128 4.0)
(s129 5.0)
(s130 5.0)
(s131 2.0)
(s133 4.0)
(s134 5.0)
(s135 5.0)
(s136 2.0)
(s138 4.0)
(s139 5.0)
(s140 5.0)
(s141 2.0)
(s143 4.0)
(s144 5.0)
(s145 5.0)
(s146 2.0)
(s148 4.0)
(s149 5.0)
(s150 5.0)
(s151 2.0)
(s153 4.0)
(s154 5.0)
(s155 5.0)
(s156 2.0)
(s158 4.0)
(s159 5.0)
(s160 5.0)
(s161 2.0)
(s163 4.0)
(s164 5.0)
(s165 5.0)
(s166 2.0)
(s168 4.0)
(s169 5.0)
(s170 5.0)
(s171 2.0)
(s173 4.0)
(s174 5.0)
(s175 5.0)
(s176 2.0)
(s178 4.0)
(s179 5.0)
(s180 5.0)
(s181 2.0)
(s183 4.0)
(s184 5.0)
(s185 5.0)
(s186 2.0)
(s188 4.0)
(s189 5.0)
(s190 5.0)
(s191 2.0)
(s193 4.0)
(s194 5.0)
(s195 5.0)
(s196 2.0)
(s198 4.0)
(s199 5.0)
(s200 5.0)
(s201 2.0)
(s203 4.0)
(s204 5.0)
(s205 5.0)
(s206 2.0)
(s208 4.0)
(s209 5.0)
(s210 5.0)
(s211 2.0)
(s213 4.0)
(s214 5.0)
(s215 5.0)
(s216 2.0)
(s218 4.0)
(s219 5.0)
(s220 5.0)
(s221 2.0)
(s223 4.0)
(s224 5.0)
(s225 5.0)
(s226 2.0)
(s228 4.0)
(s229 5.0)
(s230 5.0)
(s231 2.0)
(s233 4.0)
(s234 5.0)
(s235 5.0)
(s236 2.0)
(s238 4.0)
(s239 5.0)
(s240 5.0)
(s241 2.0)
(s243 4.0)
(s244 5.0)
(s245 5.0)
(s246 2.0)
(s248 4.0)
(s249 5.0)
(s250 5.0)
(s251 2.0)
(s253 4.0)
(s254 5.0)
(s255 5.0)
(s256 2.0)
(s258 4.0)
(s259 5.0)
(s260 5.0)
(s261 2.0)
(s263 4.0)
(s264 5.0)
(s265 5.0)
(s266 2.0)
(s268 4.0)
(s269 5.0)
(s270 5.0)
(s271 2.0)
(s273 4.0)
(s274 5.0)
(s275 5.0)
(s276 2.0)
(s278 4.0)
(s279 5.0)
(s280 5.0)
(s281 2.0)
(s283 4.0)
(s284 5.0)
(s285 5.0)
(s286 2.0)
(s288 4.0)
(s289 5.0)
(s290 5.0)
(s291 2.0)
(s293 4.0)
(s294 5.0)
(s295 5.0)
(s296 2.0)
(s298 4.0)
(s299 5.0)
(s300 5.0)
(s301 2.0)
(s303 4.0)
(s304 5.0)
(s305 5.0)
(s306 2.0)
(s308 4.0)
(s309 5.0)
(s310 5.0)
(s311 2.0)
(s313 4.0)
(s314 5.0)
(s315 5.0)
(s316 2.0)
(s318 4.0)
(s319 5.0)
(s320 5.0)
(s321 2.0)
(s323 4.0)
(s324 5.0)
(s325 5.0)
(s326 2.0)
(s328 4.0)
(s329 5.0)
(s330 5.0)
(s331 2.0)
(s333 4.0)
(s334 5.0)
(s335 5.0)
(s336 2.0)
(s338 4.0)
(s339 5.0)
(s340 5.0)
(s341 2.0)
(s343 4.0)
(s344 5.0)
(s345 5.0)
(s346 2.0)
(s348 4.0)
(s349 5.0)
(s350 5.0)
(s351 2.0)
(s353 4.0)
(s354 5.0)
(s355 5.0)
(s356 2.0)
(s358 4.0)
(s359 5.0)
(s360 5.0)
(s361 2.0)
(s363 4.0)
(s364 5.0)
(s365 5.0)
(s366 2.0)
(s368 4.0)
(s369 5.0)
(s370 5.0)
(s371 2.0)
(s373 4.0)
(s374 5.0)
(s375 5.0)
(s376 2.0)
(s378 4.0)
(s379 5.0)
(s380 5.0)
(s381 2.0)
(s383 4.0)
(s384 5.0)
(s385 5.0)
(s386 2.0)
(s388 4.0)
(s389 5.0)
(s390 5.0)
(s391 2.0)
(s393 4.0)
(s394 5.0)
(s395 5.0)
(s396 2.0)
(s398 4.0)
(s399 5.0)
(s400 5.0)
(s401 2.0)
(s403 4.0)
(s404 5.0)
(s405 5.0)
(s406 2.0)
(s408 4.0)
(s409 5.0)
(s410 5.0)
(s411 2.0)
(s413 4.0)
(s414 5.0)
(s415 5.0)
(s416 2.0)
(s418 4.0)
(s419 5.0)
(s420 5.0)
(s421 2.0)
(s423 4.0)
(s424 5.0)
(s425 5.0)
(s426 2.0)
(s428 4.0)
(s429 5.0)
(s430 5.0)
(s431 2.0)
(s433 4.0)
(s434 5.0)
(s435 5.0)
(s436 2.0)
(s438 4.0)
(s439 5.0)
(s440 5.0)
(s441 2.0)
(s443 4.0)
(s444 5.0)
(s445 5.0)
(s446 2.0)
(s448 4.0)
(s449 5.0)
(s450 5.0)
(s451 2.0)
(s453 4.0)
(s454 5.0)
(s455 5.0)
(s456 2.0)
(s458 4.0)
(s459 5.0)
(s460 5.0)
(s461 2.0)
(s463 4.0)
(s464 5.0)
(s465 5.0)
(s466 2.0)
(s468 4.0)
(s469 5.0)
(s470 5.0)
(s471 2.0)
(s473 4.0)
(s474 5.0)
(s475 5.0)
(s476 2.0)
(s478 4.0)
(s479 5.0)
(s480 5.0)
(s481 2.0)
(s483 4.0)
(s484 5.0)
(s485 5.0)
(s486 2.0)
(s488 4.0)
(s489 5.0)
(s490 5.0)
(s491 2.0)
(s493 4.0)
(s494 5.0)
(s495 5.0)
(s496 2.0)
(s498 4.0)
(s499 5.0)
(s500 5.0)
(s501 2.0)
(s503 4.0)
(s504 5.0)
(s505 5.0)
(s506 2.0)
(s508 4.0)
(s509 5.0)
(s510 5.0)
(s511 2.0)
(s513 4.0)
(s514 5.0)
(s515 5.0)
(s516 2.0)
(s518 4.0)
(s519 5.0)
(s520 5.0)
(s521 2.0)
(s523 4.0)
(s524 5.0)
(s525 5.0)
(s526 2.0)
(s528 4.0)
(s529 5.0)
(s530 5.0)
(s531 2.0)
(s533 4.0)
(s534 5.0)
(s535 5.0)
(s536 2.0)
(s538 4.0)
(s539 5.0)
(s540 5.0)
(s541 2.0)
(s543 4.0)
(s544 5.0)
(s545 5.0)
(s546 2.0)
(s548 4.0)
(s549 5.0)
(s550 5.0)
(s551 2.0)
(s553 4.0)
(s554 5.0)
(s555 5.0)
(s556 2.0)
(s558 4.0)
(s559 5.0)
(s560 5.0)
(s561 2.0)
(s563 4.0)
(s564 5.0)
(s565 5.0)
(s566 2.0)
(s568 4.0)
(s569 5.0)
(s570 5.0)
(s571 2.0)
(s573 4.0)
(s574 5.0)
(s575 5.0)
(s576 2.0)
(s578 4.0)
(s579 5.0)
(s580 5.0)
(s581 2.0)
(s583 4.0)
(s584 5.0)
(s585 5.0)
(s586 2.0)
(s588 4.0)
(s589 5.0)
(s590 5.0)
(s591 2.0)
(s593 4.0)
(s594 5.0)
(s595 5.0)
(s596 2.0)
(s598 4.0)
(s599 5.0)
(s600 5.0)
(s601 2.0)
(s603 4.0)
(s604 5.0)
(s605 5.0)
(s606 2.0)
(s608 4.0)
(s609 5.0)
(s610 5.0)
(s611 2.0)
(s613 4.0)
(s614 5.0)
(s615 5.0)
(s616 2.0)
(s618 4.0)
(s619 5.0)
(s620 5.0)
(s621 2.0)
(s623 4.0)
(s624 5.0)
(s625 5.0)
(s626 2.0)
(s628 4.0)
(s629 5.0)
(s630 5.0)
(s631 2.0)
(s633 4.0)
(s634 5.0)
(s635 5.0)
(s636 2.0)
(s638 4.0)
(s639 5.0)
(s640 5.0)
(s641 2.0)
(s643 4.0)
(s644 5.0)
(s645 5.0)
(s646 2.0)
(s648 4.0)
(s649 5.0)
(s650 5.0)
(s651 2.0)
(s653 4.0)
(s654 5.0)
(s655 5.0)
(s656 2.0)
(s658 4.0)
(s659 5.0)
(s660 5.0)
(s661 2.0)
(s663 4.0)
(s664 5.0)
(s665 5.0)
(s666 2.0)
(s668 4.0)
(s669 5.0)
(s670 5.0)
(s671 2.0)
(s673 4.0)
(s674 5.0)
(s675 5.0)
(s676 2.0)
(s678 4.0)
(s679 5.0)
(s680 5.0)
(s681 2.0)
(s683 4.0)
(s684 5.0)
(s685 5.0)
(s686 2.0)
(s688 4.0)
(s689 5.0)
(s690 5.0)
(s691 2.0)
(s693 4.0)
(s694 5.0)
(s695 5.0)
(s696 2.0)
(s698 4.0)
(s699 5.0)
(s700 5.0)
(s701 2.0)
(s703 4.0)
(s704 5.0)
(s705 5.0)
(s706 2.0)
(s708 4.0)
(s709 5.0)
(s710 5.0)
(s711 2.0)
(s713 4.0)
(s714 5.0)
(s715 5.0)
(s716 2.0)
(s718 4.0)
(s719 5.0)
(s720 5.0)
(s721 2.0)
(s723 4.0)
(s724 5.0)
(s725 5.0)
(s726 2.0)
(s728 4.0)
(s729 5.0)
(s730 5.0)
(s731 2.0)
(s733 4.0)
(s734 5.0)
(s735 5.0)
(s736 2.0)
(s738 4.0)
(s739 5.0)
(s740 5.0)
(s741 2.0)
(s743 4.0)
(s744 5.0)
(s745 5.0)
(s746 2.0)
(s748 4.0)
(s749 5.0)
(s750 5.0)
(s751 2.0)
(s753 4.0)
(s754 5.0)
(s755 5.0)
(s756 2.0)
(s758 4.0)
(s759 5.0)
(s760 5.0)
(s761 2.0)
(s763 4.0)
(s764 5.0)
(s765 5.0)
(s766 2.0)
(s768 4.0)
(s769 5.0)
(s770 5.0)
(s771 2.0)
(s773 4.0)
(s774 5.0)
(s775 5.0)
(s776 2.0)
(s778 4.0)
(s779 5.0)
(s780 5.0)
(s781 2.0)
(s783 4.0)
(s784 5.0)
(s785 5.0)
(s786 2.0)
(s788 4.0)
(s789 5.0)
(s790 5.0)
(s791 2.0)
(s793 4.0)
(s794 5.0)
(s795 5.0)
(s796 2.0)
(s798 4.0)
(s799 5.0)
(s800 5.0)
(s801 2.0)
(s803 4.0)
(s804 5.0)
(s805 5.0)
(s806 2.0)
(s808 4.0)
(s809 5.0)
(s810 5.0)
(s811 2.0)
(s813 4.0)
(s814 5.0)
(s815 5.0)
(s816 2.0)
(s818 4.0)
(s819 5.0)
(s820 5.0)
(s821 2.0)
(s823 4.0)
(s824 5.0)
(s825 5.0)
(s826 2.0)
(s828 4.0)
(s829 5.0)
(s830 5.0)
(s831 2.0)
(s833 4.0)
(s834 5.0)
(s835 5.0)
(s836 2.0)
(s838 4.0)
(s839 5.0)
(s840 5.0)
(s841 2.0)
(s843 4.0)
(s844 5.0)
(s845 5.0)
(s846 2.0)
(s848 4.0)
(s849 5.0)
(s850 5.0)
(s851 2.0)
(s853 4.0)
(s854 5.0)
(s855 5.0)
(s856 2.0)
(s858 4.0)
(s859 5.0)
(s860 5.0)
(s861 2.0)
(s863 4.0)
(s864 5.0)
(s865 5.0)
(s866 2.0)
(s868 4.0)
(s869 5.0)
(s870 5.0)
(s871 2.0)
(s873 4.0)
(s874 5.0)
(s875 5.0)
(s876 2.0)
(s878 4.0)
(s879 5.0)
(s880 5.0)
(s881 2.0)
(s883 4.0)
(s884 5.0)
(s885 5.0)
(s886 2.0)
(s888 4.0)
(s889 5.0)
(s890 5.0)
(s891 2.0)
(s893 4.0)
(s894 5.0)
(s895 5.0)
(s896 2.0)
(s898 4.0)
(s899 5.0)
(s900 5.0)
(s901 2.0)
(s903 4.0)
(s904 5.0)
(s905 5.0)
(s906 2.0)
(s908 4.0)
(s909 5.0)
(s910 5.0)
(s911 2.0)
(s913 4.0)
(s914 5.0)
(s915 5.0)
(s916 2.0)
(s918 4.0)
(s919 5.0)
(s920 5.0)
(s921 2.0)
(s923 4.0)
(s924 5.0)
(s925 5.0)
(s926 2.0)
(s928 4.0)
(s929 5.0)
(s930 5.0)
(s931 2.0)
(s933 4.0)
(s934 5.0)
(s935 5.0)
(s936 2.0)
(s938 4.0)
(s939 5.0)
(s940 5.0)
(s941 2.0)
(s943 4.0)
(s944 5.0)
(s945 5.0)
(s946 2.0)
(s948 4.0)
(s949 5.0)
(s950 5.0)
(s951 2.0)
(s953 4.0)
(s954 5.0)
(s955 5.0)
(s956 2.0)
(s958 4.0)
(s959 5.0)
(s960 5.0)
(s961 2.0)
(s963 4.0)
(s964 5.0)
(s965 5.0)
(s966 2.0)
(s968 4.0)
(s969 5.0)
(s970 5.0)
(s971 2.0)
(s973 4.0)
(s974 5.0)
(s975 5.0)
(s976 2.0)
(s978 4.0)
(s979 5.0)
(s980 5.0)
(s981 2.0)
(s983 4.0)
(s984 5.0)
(s985 5.0)
(s986 2.0)
(s988 4.0)
(s989 5.0)
(s990 5.0)
(s991 2.0)
(s993 4.0)
(s994 5.0)
(s995 5.0)
(s996 2.0)
(s998 4.0)
(s999 5.0)
(s1000 5.0)
(s1001 2.0)
(s1003 4.0)
(s1004 5.0)
(s1005 5.0)
(s1006 2.0)
(s1008 4.0)
(s1009 5.0)
(s1010 5.0)
(s1011 2.0)
(s1013 4.0)
(s1014 5.0)
(s1015 5.0)
(s1016 2.0)
(s1018 4.0)
(s1019 5.0)
(s1020 5.0)
(s1021 2.0)
(s1023 4.0)
(s1024 5.0)
(s1025 5.0)
(s1026 2.0)
(s1028 4.0)
(s1029 5.0)
(s1030 5.0)
(s1031 2.0)
(s1033 4.0)
(s1034 5.0)
(s1035 5.0)
(s1036 2.0)
(s1038 4.0)
(s1039 5.0)
(s1040 5.0)
(s1041 2.0)
(s1043 4.0)
(s1044 5.0)
(s1045 5.0)
(s1046 2.0)
(s1048 4.0)
(s1049 5.0)
(s1050 5.0)
(s1051 2.0)
(s1053 4.0)
(s1054 5.0)
(s1055 5.0)
(s1056 2.0)
(s1058 4.0)
(s1059 5.0)
(s1060 5.0)
(s1061 2.0)
(s1063 4.0)
(s1064 5.0)
(s1065 5.0)
(s1066 2.0)
(s1068 4.0)
(s1069 5.0)
(s1070 5.0)
(s1071 2.0)
(s1073 4.0)
(s1074 5.0)
(s1075 5.0)
(s1076 2.0)
(s1078 4.0)
(s1079 5.0)
(s1080 5.0)
(s1081 2.0)
(s1083 4.0)
(s1084 5.0)
(s1085 5.0)
(s1086 2.0)
(s1088 4.0)
(s1089 5.0)
(s1090 5.0)
(s1091 2.0)
(s1093 4.0)
(s1094 5.0)
(s1095 5.0)
(s1096 2.0)
(s1098 4.0)
(s1099 5.0)
(s1100 5.0)
(s1101 2.0)
(s1103 4.0)
(s1104 5.0)
(s1105 5.0)
(s1106 2.0)
(s1108 4.0)
(s1109 5.0)
(s1110 5.0)
(s1111 2.0)
(s1113 4.0)
(s1114 5.0)
(s1115 5.0)
(s1116 2.0)
(s1118 4.0)
(s1119 5.0)
(s1120 5.0)
(s1121 2.0)
(s1123 4.0)
(s1124 5.0)
(s1125 5.0)
(s1126 2.0)
(s1128 4.0)
(s1129 5.0)
(s1130 5.0)
(s1131 2.0)
(s1133 4.0)
(s1134 5.0)
(s1135 5.0)
(s1136 2.0)
(s1138 4.0)
(s1139 5.0)
(s1140 5.0)
(s1141 2.0)
(s1143 4.0)
(s1144 5.0)
(s1145 5.0)
(s1146 2.0)
(s1148 4.0)
(s1149 5.0)
(s1150 5.0)
(s1151 2.0)
(s1153 4.0)
(s1154 5.0)
(s1155 5.0)
(s1156 2.0)
(s1158 4.0)
(s1159 5.0)
(s1160 5.0)
(s1161 2.0)
(s1163 4.0)
(s1164 5.0)
(s1165 5.0)
(s1166 2.0)
(s1168 4.0)
(s1169 5.0)
(s1170 5.0)
(s1171 2.0)
(s1173 4.0)
(s1174 5.0)
(s1175 5.0)
(s1176 2.0)
(s1178 4.0)
(s1179 5.0)
(s1180 5.0)
(s1181 2.0)
(s1183 4.0)
(s1184 5.0)
(s1185 5.0)
(s1186 2.0)
(s1188 4.0)
(s1189 5.0)
(s1190 5.0)
(s1191 2.0)
(s1193 4.0)
(s1194 5.0)
(s1195 5.0)
(s1196 2.0)
(s1198 4.0)
(s1199 5.0)
(s1200 5.0)
(s1201 2.0)
(s1203 4.0)
(s1204 5.0)
(s1205 5.0)
(s1206 2.0)
(s1208 4.0)
(s1209 5.0)
(s1210 5.0)
(s1211 2.0)
(s1213 4.0)
(s1214 5.0)
(s1215 5.0)
(s1216 2.0)
(s1218 4.0)
(s1219 5.0)
(s1220 5.0)
(s1221 2.0)
(s1223 4.0)
(s1224 5.0)
(s1225 5.0)
(s1226 2.0)
(s1228 4.0)
(s1229 5.0)
(s1230 5.0)
(s1231 2.0)
(s1233 4.0)
(s1234 5.0)
(s1235 5.0)
(s1236 2.0)
(s1238 4.0)
(s1239 5.0)
(s1240 5.0)
(s1241 2.0)
(s1243 4.0)
(s1244 5.0)
(s1245 5.0)
(s1246 2.0)
(s1248 4.0)
(s1249 5.0)
(s1250 5.0)
(s1251 2.0)
(s1253 4.0)
(s1254 5.0)
(s1255 5.0)
(s1256 2.0)
(s1258 4.0)
(s1259 5.0)
(s1260 5.0)
(s1261 2.0)
(s1263 4.0)
(s1264 5.0)
(s1265 5.0)
(s1266 2.0)
(s1268 4.0)
(s1269 5.0)
(s1270 5.0)
(s1271 2.0)
(s1273 4.0)
(s1274 5.0)
(s1275 5.0)
(s1276 2.0)
(s1278 4.0)
(s1279 5.0)
(s1280 5.0)
(s1281 2.0)
(s1283 4.0)
(s1284 5.0)
(s1285 5.0)
(s1286 2.0)
(s1288 4.0)
(s1289 5.0)
(s1290 5.0)
(s1291 2.0)
(s1293 4.0)
(s1294 5.0)
(s1295 5.0)
(s1296 2.0)
(s1298 4.0)
(s1299 5.0)
(s1300 5.0)
(s1301 2.0)
(s1303 4.0)
(s1304 5.0)
(s1305 5.0)
(s1306 2.0)
(s1308 4.0)
(s1309 5.0)
(s1310 5.0)
(s1311 2.0)
(s1313 4.0)
(s1314 5.0)
(s1315 5.0)
(s1316 2.0)
(s1318 4.0)
(s1319 5.0)
(s1320 5.0)
(s1321 2.0)
(s1323 4.0)
(s1324 5.0)
(s1325 5.0)
(s1326 2.0)
(s1328 4.0)
(s1329 5.0)
(s1330 5.0)
(s1331 2.0)
(s1333 4.0)
(s1334 5.0)
(s1335 5.0)
(s1336 2.0)
(s1338 4.0)
(s1339 5.0)
(s1340 5.0)
(s1341 2.0)
(s1343 4.0)
(s1344 5.0)
(s1345 5.0)
(s1346 2.0)
(s1348 4.0)
(s1349 5.0)
(s1350 5.0)
(s1351 2.0)
(s1353 4.0)
(s1354 5.0)
(s1355 5.0)
(s1356 2.0)
(s1358 4.0)
(s1359 5.0)
(s1360 5.0)
(s1361 2.0)
(s1363 4.0)
(s1364 5.0)
(s1365 5.0)
(s1366 2.0)
(s1368 4.0)
(s1369 5.0)
(s1370 5.0)
(s1371 2.0)
(s1373 4.0)
(s1374 5.0)
(s1375 5.0)
(s1376 2.0)
(s1378 4.0)
(s1379 5.0)
(s1380 5.0)
(s1381 2.0)
(s1383 4.0)
(s1384 5.0)
(s1385 5.0)
(s1386 2.0)
(s1388 4.0)
(s1389 5.0)
(s1390 5.0)
(s1391 2.0)
(s1393 4.0)
(s1394 5.0)
(s1395 5.0)
(s1396 2.0)
(s1398 4.0)
(s1399 5.0)
(s1400 5.0)
(s1401 2.0)
(s1403 4.0)
(s1404 5.0)
(s1405 5.0)
(s1406 2.0)
(s1408 4.0)
(s1409 5.0)
(s1410 5.0)
(s1411 2.0)
(s1413 4.0)
(s1414 5.0)
(s1415 5.0)
(s1416 2.0)
(s1418 4.0)
(s1419 5.0)
(s1420 5.0)
(s1421 2.0)
(s1423 4.0)
(s1424 5.0)
(s1425 5.0)
(s1426 2.0)
(s1428 4.0)
(s1429 5.0)
(s1430 5.0)
(s1431 2.0)
(s1433 4.0)
(s1434 5.0)
(s1435 5.0)
(s1436 2.0)
(s1438 4.0)
(s1439 5.0)
(s1440 5.0)
(s1441 2.0)
(s1443 4.0)
(s1444 5.0)
(s1445 5.0)
(s1446 2.0)
(s1448 4.0)
(s1449 5.0)
(s1450 5.0)
(s1451 2.0)
(s1453 4.0)
(s1454 5.0)
(s1455 5.0)
(s1456 2.0)
(s1458 4.0)
(s1459 5.0)
(s1460 5.0)
(s1461 2.0)
(s1463 4.0)
(s1464 5.0)
(s1465 5.0)
(s1466 2.0)
(s1468 4.0)
(s1469 5.0)
(s1470 5.0)
(s1471 2.0)
(s1473 4.0)
(s1474 5.0)
(s1475 5.0)
(s1476 2.0)
(s1478 4.0)
(s1479 5.0)
(s1480 5.0)
(s1481 2.0)
(s1483 4.0)
(s1484 5.0)
(s1485 5.0)
(s1486 2.0)
(s1488 4.0)
(s1489 5.0)
(s1490 5.0)
(s1491 2.0)
(s1493 4.0)
(s1494 5.0)
(s1495 5.0)
(s1496 2.0)
(s1498 4.0)
(s1499 5.0)
(s1500 5.0)
(s1501 2.0)
(s1503 4.0)
(s1504 5.0)
(s1505 5.0)
(s1506 2.0)
(s1508 4.0)
(s1509 5.0)
(s1510 5.0)
(s1511 2.0)
(s1513 4.0)
(s1514 5.0)
(s1515 5.0)
(s1516 2.0)
(s1518 4.0)
(s1519 5.0)
(s1520 5.0)
(s1521 2.0)
(s1523 4.0)
(s1524 5.0)
(s1525 5.0)
(s1526 2.0)
(s1528 4.0)
(s1529 5.0)
(s1530 5.0)
(s1531 2.0)
(s1533 4.0)
(s1534 5.0)
(s1535 5.0)
(s1536 2.0)
(s1538 4.0)
(s1539 5.0)
(s1540 5.0)
(s1541 2.0)
(s1543 4.0)
(s1544 5.0)
(s1545 5.0)
(s1546 2.0)
(s1548 4.0)
(s1549 5.0)
(s1550 5.0)
(s1551 2.0)
(s1553 4.0)
(s1554 5.0)
(s1555 5.0)
(s1556 2.0)
(s1558 4.0)
(s1559 5.0)
(s1560 5.0)
(s1561 2.0)
(s1563 4.0)
(s1564 5.0)
(s1565 5.0)
(s1566 2.0)
(s1568 4.0)
(s1569 5.0)
(s1570 5.0)
(s1571 2.0)
(s1573 4.0)
(s1574 5.0)
(s1575 5.0)
(s1576 2.0)
(s1578 4.0)
(s1579 5.0)
(s1580 5.0)
(s1581 2.0)
(s1583 4.0)
(s1584 5.0)
(s1585 5.0)
(s1586 2.0)
(s1588 4.0)
(s1589 5.0)
(s1590 5.0)
(s1591 2.0)
(s1593 4.0)
(s1594 5.0)
(s1595 5.0)
(s1596 2.0)
(s1598 4.0)
(s1599 5.0)
(s1600 5.0)
(s1601 2.0)
(s1603 4.0)
(s1604 5.0)
(s1605 5.0)
(s1606 2.0)
(s1608 4.0)
(s1609 5.0)
(s1610 5.0)
(s1611 2.0)
(s1613 4.0)
(s1614 5.0)
(s1615 5.0)
(s1616 2.0)
(s1618 4.0)
(s1619 5.0)
(s1620 5.0)
(s1621 2.0)
(s1623 4.0)
(s1624 5.0)
(s1625 5.0)
(s1626 2.0)
(s1628 4.0)
(s1629 5.0)
(s1630 5.0)
(s1631 2.0)
(s1633 4.0)
(s1634 5.0)
(s1635 5.0)
(s1636 2.0)
(s1638 4.0)
(s1639 5.0)
(s1640 5.0)
(s1641 2.0)
(s1643 4.0)
(s1644 5.0)
(s1645 5.0)
(s1646 2.0)
(s1648 4.0)
(s1649 5.0)
(s1650 5.0)
(s1651 2.0)
(s1653 4.0)
(s1654 5.0)
(s1655 5.0)
(s1656 2.0)
(s1658 4.0)
(s1659 5.0)
(s1660 5.0)
(s1661 2.0)
(s1663 4.0)
(s1664 5.0)
(s1665 5.0)
(s1666 2.0)
(s1668 4.0)
(s1669 5.0)
(s1670 5.0)
(s1671 2.0)
(s1673 4.0)
(s1674 5.0)
(s1675 5.0)
(s1676 2.0)
(s1678 4.0)
(s1679 5.0)
(s1680 5.0)
(s1681 2.0)
(s1683 4.0)
(s1684 5.0)
(s1685 5.0)
(s1686 2.0)
(s1688 4.0)
(s1689 5.0)
(s1690 5.0)
(s1691 2.0)
(s1693 4.0)
(s1694 5.0)
(s1695 5.0)
(s1696 2.0)
(s1698 4.0)
(s1699 5.0)
(s1700 5.0)
(s1701 2.0)
(s1703 4.0)
(s1704 5.0)
(s1705 5.0)
(s1706 2.0)
(s1708 4.0)
(s1709 5.0)
(s1710 5.0)
(s1711 2.0)
(s1713 4.0)
(s1714 5.0)
(s1715 5.0)
(s1716 2.0)
(s1718 4.0)
(s1719 5.0)
(s1720 5.0)
(s1721 2.0)
(s1723 4.0)
(s1724 5.0)
(s1725 5.0)
(s1726 2.0)
(s1728 4.0)
(s1729 5.0)
(s1730 5.0)
(s1731 2.0)
(s1733 4.0)
(s1734 5.0)
(s1735 5.0)
(s1736 2.0)
(s1738 4.0)
(s1739 5.0)
(s1740 5.0)
(s1741 2.0)
(s1743 4.0)
(s1744 5.0)
(s1745 5.0)
(s1746 2.0)
(s1748 4.0)
(s1749 5.0)
(s1750 5.0)
(s1751 2.0)
(s1753 4.0)
(s1754 5.0)
(s1755 5.0)
(s1756 2.0)
(s1758 4.0)
(s1759 5.0)
(s1760 5.0)
(s1761 2.0)
(s1763 4.0)
(s1764 5.0)
(s1765 5.0)
(s1766 2.0)
(s1768 4.0)
(s1769 5.0)
(s1770 5.0)
(s1771 2.0)
(s1773 4.0)
(s1774 5.0)
(s1775 5.0)
(s1776 2.0)
(s1778 4.0)
(s1779 5.0)
(s1780 5.0)
(s1781 2.0)
(s1783 4.0)
(s1784 5.0)
(s1785 5.0)
(s1786 2.0)
(s1788 4.0)
(s1789 5.0)
(s1790 5.0)
(s1791 2.0)
(s1793 4.0)
(s1794 5.0)
(s1795 5.0)
(s1796 2.0)
(s1798 4.0)
(s1799 5.0)
(s1800 5.0)
(s1801 2.0)
(s1803 4.0)
(s1804 5.0)
(s1805 5.0)
(s1806 2.0)
(s1808 4.0)
(s1809 5.0)
(s1810 5.0)
(s1811 2.0)
(s1813 4.0)
(s1814 5.0)
(s1815 5.0)
(s1816 2.0)
(s1818 4.0)
(s1819 5.0)
(s1820 5.0)
(s1821 2.0)
(s1823 4.0)
(s1824 5.0)
(s1825 5.0)
(s1826 2.0)
(s1828 4.0)
(s1829 5.0)
(s1830 5.0)
(s1831 2.0)
(s1833 4.0)
(s1834 5.0)
(s1835 5.0)
(s1836 2.0)
(s1838 4.0)
(s1839 5.0)
(s1840 5.0)
(s1841 2.0)
(s1843 4.0)
(s1844 5.0)
(s1845 5.0)
(s1846 2.0)
(s1848 4.0)
(s1849 5.0)
(s1850 5.0)
(s1851 2.0)
(s1853 4.0)
(s1854 5.0)
(s1855 5.0)
(s1856 2.0)
(s1858 4.0)
(s1859 5.0)
(s1860 5.0)
(s1861 2.0)
(s1863 4.0)
(s1864 5.0)
(s1865 5.0)
(s1866 2.0)
(s1868 4.0)
(s1869 5.0)
(s1870 5.0)
(s1871 2.0)
(s1873 4.0)
(s1874 5.0)
(s1875 5.0)
(s1876 2.0)
(s1878 4.0)
(s1879 5.0)
(s1880 5.0)
(s1881 2.0)
(s1883 4.0)
(s1884 5.0)
(s1885 5.0)
(s1886 2.0)
(s1888 4.0)
(s1889 5.0)
(s1890 5.0)
(s1891 2.0)
(s1893 4.0)
(s1894 5.0)
(s1895 5.0)
(s1896 2.0)
(s1898 4.0)
(s1899 5.0)
(s1900 5.0)
(s1901 2.0)
(s1903 4.0)
(s1904 5.0)
(s1905 5.0)
(s1906 2.0)
(s1908 4.0)
(s1909 5.0)
(s1910 5.0)
(s1911 2.0)
(s1913 4.0)
(s1914 5.0)
(s1915 5.0)
(s1916 2.0)
(s1918 4.0)
(s1919 5.0)
(s1920 5.0)
(s1921 2.0)
(s1923 4.0)
(s1924 5.0)
(s1925 5.0)
(s1926 2.0)
(s1928 4.0)
(s1929 5.0)
(s1930 5.0)
(s1931 2.0)
(s1933 4.0)
(s1934 5.0)
(s1935 5.0)
(s1936 2.0)
(s1938 4.0)
(s1939 5.0)
(s1940 5.0)
(s1941 2.0)
(s1943 4.0)
(s1944 5.0)
(s1945 5.0)
(s1946 2.0)
(s1948 4.0)
(s1949 5.0)
(s1950 5.0)
(s1951 2.0)
(s1953 4.0)
(s1954 5.0)
(s1955 5.0)
(s1956 2.0)
(s1958 4.0)
(s1959 5.0)
(s1960 5.0)
(s1961 2.0)
(s1963 4.0)
(s1964 5.0)
(s1965 5.0)
(s1966 2.0)
(s1968 4.0)
(s1969 5.0)
(s1970 5.0)
(s1971 2.0)
(s1973 4.0)
(s1974 5.0)
(s1975 5.0)
(s1976 2.0)
(s1978 4.0)
(s1979 5.0)
(s1980 5.0)
(s1981 2.0)
(s1983 4.0)
(s1984 5.0)
(s1985 5.0)
(s1986 2.0)
(s1988 4.0)
(s1989 5.0)
(s1990 5.0)
(s1991 2.0)
(s1993 4.0)
(s1994 5.0)
(s1995 5.0)
(s1996 2.0)
(s1998 4.0)
(s1999 5.0)
(s2000 5.0)
(s2001 2.0)
(s2003 4.0)
(s2004 5.0)
(s2005 5.0)
(s2006 2.0)
(s2008 4.0)
(s2009 5.0)
(s2010 5.0)
(s2011 2.0)
(s2013 4.0)
(s2014 5.0)
(s2015 5.0)
(s2016 2.0)
(s2018 4.0)
(s2019 5.0)
(s2020 5.0)
(s2021 2.0)
(s2023 4.0)
(s2024 5.0)
(s2025 5.0)
(s2026 2.0)
(s2028 4.0)
(s2029 5.0)
(s2030 5.0)
(s2031 2.0)
(s2033 4.0)
(s2034 5.0)
(s2035 5.0)
(s2036 2.0)
(s2038 4.0)
(s2039 5.0)
(s2040 5.0)
(s2041 2.0)
(s2043 4.0)
(s2044 5.0)
(s2045 5.0)
(s2046 2.0)
(s2048 4.0)
(s2049 5.0)
(s2050 5.0)
(s2051 2.0)
(s2053 4.0)
(s2054 5.0)
(s2055 5.0)
(s2056 2.0)
(s2058 4.0)
(s2059 5.0)
(s2060 5.0)
(s2061 2.0)
(s2063 4.0)
(s2064 5.0)
(s2065 5.0)
(s2066 2.0)
(s2068 4.0)
(s2069 5.0)
(s2070 5.0)
(s2071 2.0)
(s2073 4.0)
(s2074 5.0)
(s2075 5.0)
(s2076 2.0)
(s2078 4.0)
(s2079 5.0)
(s2080 5.0)
(s2081 2.0)
(s2083 4.0)
(s2084 5.0)
(s2085 5.0)
(s2086 2.0)
(s2088 4.0)
(s2089 5.0)
(s2090 5.0)
(s2091 2.0)
(s2093 4.0)
(s2094 5.0)
(s2095 5.0)
(s2096 2.0)
(s2098 4.0)
(s2099 5.0)
(s2100 5.0)
(s2101 2.0)
(s2103 4.0)
(s2104 5.0)
(s2105 5.0)
(s2106 2.0)
(s2108 4.0)
(s2109 5.0)
(s2110 5.0)
(s2111 2.0)
(s2113 4.0)
(s2114 5.0)
(s2115 5.0)
(s2116 2.0)
(s2118 4.0)
(s2119 5.0)
(s2120 5.0)
(s2121 2.0)
(s2123 4.0)
(s2124 5.0)
(s2125 5.0)
(s2126 2.0)
(s2128 4.0)
(s2129 5.0)
(s2130 5.0)
(s2131 2.0)
(s2133 4.0)
(s2134 5.0)
(s2135 5.0)
(s2136 2.0)
(s2138 4.0)
(s2139 5.0)
(s2140 5.0)
(s2141 2.0)
(s2143 4.0)
(s2144 5.0)
(s2145 5.0)
(s2146 2.0)
(s2148 4.0)
(s2149 5.0)
(s2150 5.0)
(s2151 2.0)
(s2153 4.0)
(s2154 5.0)
(s2155 5.0)
(s2156 2.0)
(s2158 4.0)
(s2159 5.0)
(s2160 5.0)
(s2161 2.0)
(s2163 4.0)
(s2164 5.0)
(s2165 5.0)
(s2166 2.0)
(s2168 4.0)
(s2169 5.0)
(s2170 5.0)
(s2171 2.0)
(s2173 4.0)
(s2174 5.0)
(s2175 5.0)
(s2176 2.0)
(s2178 4.0)
(s2179 5.0)
(s2180 5.0)
(s2181 2.0)
(s2183 4.0)
(s2184 5.0)
(s2185 5.0)
(s2186 2.0)
(s2188 4.0)
(s2189 5.0)
(s2190 5.0)
(s2191 2.0)
(s2193 4.0)
(s2194 5.0)
(s2195 5.0)
(s2196 2.0)
(s2198 4.0)
(s2199 5.0)
(s2200 5.0)
(s2201 2.0)
(s2203 4.0)
(s2204 5.0)
(s2205 5.0)
(s2206 2.0)
(s2208 4.0)
(s2209 5.0)
(s2210 5.0)
(s2211 2.0)
(s2213 4.0)
(s2214 5.0)
(s2215 5.0)
(s2216 2.0)
(s2218 4.0)
(s2219 5.0)
(s2220 5.0)
(s2221 2.0)
(s2223 4.0)
(s2224 5.0)
(s2225 5.0)
(s2226 2.0)
(s2228 4.0)
(s2229 5.0)
(s2230 5.0)
(s2231 2.0)
(s2233 4.0)
(s2234 5.0)
(s2235 5.0)
(s2236 2.0)
(s2238 4.0)
(s2239 5.0)
(s2240 5.0)
(s2241 2.0)
(s2243 4.0)
(s2244 5.0)
(s2245 5.0)
(s2246 2.0)
(s2248 4.0)
(s2249 5.0)
(s2250 5.0)
(s2251 2.0)
(s2253 4.0)
(s2254 5.0)
(s2255 5.0)
(s2256 2.0)
(s2258 4.0)
(s2259 5.0)
(s2260 5.0)
(s2261 2.0)
(s2263 4.0)
(s2264 5.0)
(s2265 5.0)
(s2266 2.0)
(s2268 4.0)
(s2269 5.0)
(s2270 5.0)
(s2271 2.0)
(s2273 4.0)
(s2274 5.0)
(s2275 5.0)
(s2276 2.0)
(s2278 4.0)
(s2279 5.0)
(s2280 5.0)
(s2281 2.0)
(s2283 4.0)
(s2284 5.0)
(s2285 5.0)
(s2286 2.0)
(s2288 4.0)
(s2289 5.0)
(s2290 5.0)
(s2291 2.0)
(s2293 4.0)
(s2294 5.0)
(s2295 5.0)
(s2296 2.0)
(s2298 4.0)
(s2299 5.0)
(s2300 5.0)
(s2301 2.0)
(s2303 4.0)
(s2304 5.0)
(s2305 5.0)
(s2306 2.0)
(s2308 4.0)
(s2309 5.0)
(s2310 5.0)
(s2311 2.0)
(s2313 4.0)
(s2314 5.0)
(s2315 5.0)
(s2316 2.0)
(s2318 4.0)
(s2319 5.0)
(s2320 5.0)
(s2321 2.0)
(s2323 4.0)
(s2324 5.0)
(s2325 5.0)
(s2326 2.0)
(s2328 4.0)
(s2329 5.0)
(s2330 5.0)
(s2331 2.0)
(s2333 4.0)
(s2334 5.0)
(s2335 5.0)
(s2336 2.0)
(s2338 4.0)
(s2339 5.0)
(s2340 5.0)
(s2341 2.0)
(s2343 4.0)
(s2344 5.0)
(s2345 5.0)
(s2346 2.0)
(s2348 4.0)
(s2349 5.0)
(s2350 5.0)
(s2351 2.0)
(s2353 4.0)
(s2354 5.0)
(s2355 5.0)
(s2356 2.0)
(s2358 4.0)
(s2359 5.0)
(s2360 5.0)
(s2361 2.0)
(s2363 4.0)
(s2364 5.0)
(s2365 5.0)
(s2366 2.0)
(s2368 4.0)
(s2369 5.0)
(s2370 5.0)
(s2371 2.0)
(s2373 4.0)
(s2374 5.0)
(s2375 5.0)
(s2376 2.0)
(s2378 4.0)
(s2379 5.0)
(s2380 5.0)
(s2381 2.0)
(s2383 4.0)
(s2384 5.0)
(s2385 5.0)
(s2386 2.0)
(s2388 4.0)
(s2389 5.0)
(s2390 5.0)
(s2391 2.0)
(s2393 4.0)
(s2394 5.0)
(s2395 5.0)
(s2396 2.0)
(s2398 4.0)
(s2399 5.0)
(s2400 5.0)
(s2401 2.0)
(s2403 4.0)
(s2404 5.0)
(s2405 5.0)
(s2406 2.0)
(s2408 4.0)
(s2409 5.0)
(s2410 5.0)
(s2411 2.0)
(s2413 4.0)
(s2414 5.0)
(s2415 5.0)
(s2416 2.0)
(s2418 4.0)
(s2419 5.0)
(s2420 5.0)
(s2421 2.0)
(s2423 4.0)
(s2424 5.0)
(s2425 5.0)
(s2426 2.0)
(s2428 4.0)
(s2429 5.0)
(s2430 5.0)
(s2431 2.0)
(s2433 4.0)
(s2434 5.0)
(s2435 5.0)
(s2436 2.0)
(s2438 4.0)
(s2439 5.0)
(s2440 5.0)
(s2441 2.0)
(s2443 4.0)
(s2444 5.0)
(s2445 5.0)
(s2446 2.0)
(s2448 4.0)
(s2449 5.0)
(s2450 5.0)
(s2451 2.0)
(s2453 4.0)
(s2454 5.0)
(s2455 5.0)
(s2456 2.0)
(s2458 4.0)
(s2459 5.0)
(s2460 5.0)
(s2461 2.0)
(s2463 4.0)
(s2464 5.0)
(s2465 5.0)
(s2466 2.0)
(s2468 4.0)
(s2469 5.0)
(s2470 5.0)
(s2471 2.0)
(s2473 4.0)
(s2474 5.0)
(s2475 5.0)
(s2476 2.0)
(s2478 4.0)
(s2479 5.0)
(s2480 5.0)
(s2481 2.0)
(s2483 4.0)
(s2484 5.0)
(s2485 5.0)
(s2486 2.0)
(s2488 4.0)
(s2489 5.0)
(s2490 5.0)
(s2491 2.0)
(s2493 4.0)
(s2494 5.0)
(s2495 5.0)
(s2496 2.0)
(s2498 4.0)
(s2499 5.0)
(s2500 5.0)
(s2501 2.0)
(s2503 4.0)
(s2504 5.0)
(s2505 5.0)
(s2506 2.0)
(s2508 4.0)
(s2509 5.0)
(s2510 5.0)
(s2511 2.0)
(s2513 4.0)
(s2514 5.0)
(s2515 5.0)
(s2516 2.0)
(s2518 4.0)
(s2519 5.0)
(s2520 5.0)
(s2521 2.0)
(s2523 4.0)
(s2524 5.0)
(s2525 5.0)
(s2526 2.0)
(s2528 4.0)
(s2529 5.0)
(s2530 5.0)
(s2531 2.0)
(s2533 4.0)
(s2534 5.0)
(s2535 5.0)
(s2536 2.0)
(s2538 4.0)
(s2539 5.0)
(s2540 5.0)
(s2541 2.0)
(s2543 4.0)
(s2544 5.0)
(s2545 5.0)
(s2546 2.0)
(s2548 4.0)
(s2549 5.0)
(s2550 5.0)
(s2551 2.0)
(s2553 4.0)
(s2554 5.0)
(s2555 5.0)
(s2556 2.0)
(s2558 4.0)
(s2559 5.0)
(s2560 5.0)
(s2561 2.0)
(s2563 4.0)
(s2564 5.0)
(s2565 5.0)
(s2566 2.0)
(s2568 4.0)
(s2569 5.0)
(s2570 5.0)
(s2571 2.0)
(s2573 4.0)
(s2574 5.0)
(s2575 5.0)
(s2576 2.0)
(s2578 4.0)
(s2579 5.0)
(s2580 5.0)
(s2581 2.0)
(s2583 4.0)
(s2584 5.0)
(s2585 5.0)
(s2586 2.0)
(s2588 4.0)
(s2589 5.0)
(s2590 5.0)
(s2591 2.0)
(s2593 4.0)
(s2594 5.0)
(s2595 5.0)
(s2596 2.0)
(s2598 4.0)
(s2599 5.0)
(s2600 5.0)
(s2601 2.0)
(s2603 4.0)
(s2604 5.0)
(s2605 5.0)
(s2606 2.0)
(s2608 4.0)
(s2609 5.0)
(s2610 5.0)
(s2611 2.0)
(s2613 4.0)
(s2614 5.0)
(s2615 5.0)
(s2616 2.0)
(s2618 4.0)
(s2619 5.0)
(s2620 5.0)
(s2621 2.0)
(s2623 4.0)
(s2624 5.0)
(s2625 5.0)
(s2626 2.0)
(s2628 4.0)
(s2629 5.0)
(s2630 5.0)
(s2631 2.0)
(s2633 4.0)
(s2634 5.0)
(s2635 5.0)
(s2636 2.0)
(s2638 4.0)
(s2639 5.0)
(s2640 5.0)
(s2641 2.0)
(s2643 4.0)
(s2644 5.0)
(s2645 5.0)
(s2646 2.0)
(s2648 4.0)
(s2649 5.0)
(s2650 5.0)
(s2651 2.0)
(s2653 4.0)
(s2654 5.0)
(s2655 5.0)
(s2656 2.0)
(s2658 4.0)
(s2659 5.0)
(s2660 5.0)
(s2661 2.0)
(s2663 4.0)
(s2664 5.0)
(s2665 5.0)
(s2666 2.0)
(s2668 4.0)
(s2669 5.0)
(s2670 5.0)
(s2671 2.0)
(s2673 4.0)
(s2674 5.0)
(s2675 5.0)
(s2676 2.0)
(s2678 4.0)
(s2679 5.0)
(s2680 5.0)
(s2681 2.0)
(s2683 4.0)
(s2684 5.0)
(s2685 5.0)
(s2686 2.0)
(s2688 4.0)
(s2689 5.0)
(s2690 5.0)
(s2691 2.0)
(s2693 4.0)
(s2694 5.0)
(s2695 5.0)
(s2696 2.0)
(s2698 4.0)
(s2699 5.0)
(s2700 5.0)
(s2701 2.0)
(s2703 4.0)
(s2704 5.0)
(s2705 5.0)
(s2706 2.0)
(s2708 4.0)
(s2709 5.0)
(s2710 5.0)
(s2711 2.0)
(s2713 4.0)
(s2714 5.0)
(s2715 5.0)
(s2716 2.0)
(s2718 4.0)
(s2719 5.0)
(s2720 5.0)
(s2721 2.0)
(s2723 4.0)
(s2724 5.0)
(s2725 5.0)
(s2726 2.0)
(s2728 4.0)
(s2729 5.0)
(s2730 5.0)
(s2731 2.0)
(s2733 4.0)
(s2734 5.0)
(s2735 5.0)
(s2736 2.0)
(s2738 4.0)
(s2739 5.0)
(s2740 5.0)
(s2741 2.0)
(s2743 4.0)
(s2744 5.0)
(s2745 5.0)
(s2746 2.0)
(s2748 4.0)
(s2749 5.0)
(s2750 5.0)
(s2751 2.0)
(s2753 4.0)
(s2754 5.0)
(s2755 5.0)
(s2756 2.0)
(s2758 4.0)
(s2759 5.0)
(s2760 5.0)
(s2761 2.0)
(s2763 4.0)
(s2764 5.0)
(s2765 5.0)
(s2766 2.0)
(s2768 4.0)
(s2769 5.0)
(s2770 5.0)
(s2771 2.0)
(s2773 4.0)
(s2774 5.0)
(s2775 5.0)
(s2776 2.0)
(s2778 4.0)
(s2779 5.0)
(s2780 5.0)
(s2781 2.0)
(s2783 4.0)
(s2784 5.0)
(s2785 5.0)
(s2786 2.0)
(s2788 4.0)
(s2789 5.0)
(s2790 5.0)
(s2791 2.0)
(s2793 4.0)
(s2794 5.0)
(s2795 5.0)
(s2796 2.0)
(s2798 4.0)
(s2799 5.0)
(s2800 5.0)
(s2801 2.0)
(s2803 4.0)
(s2804 5.0)
(s2805 5.0)
(s2806 2.0)
(s2808 4.0)
(s2809 5.0)
(s2810 5.0)
(s2811 2.0)
(s2813 4.0)
(s2814 5.0)
(s2815 5.0)
(s2816 2.0)
(s2818 4.0)
(s2819 5.0)
(s2820 5.0)
(s2821 2.0)
(s2823 4.0)
(s2824 5.0)
(s2825 5.0)
(s2826 2.0)
(s2828 4.0)
(s2829 5.0)
(s2830 5.0)
(s2831 2.0)
(s2833 4.0)
(s2834 5.0)
(s2835 5.0)
(s2836 2.0)
(s2838 4.0)
(s2839 5.0)
(s2840 5.0)
(s2841 2.0)
(s2843 4.0)
(s2844 5.0)
(s2845 5.0)
(s2846 2.0)
(s2848 4.0)
(s2849 5.0)
(s2850 5.0)
(s2851 2.0)
(s2853 4.0)
(s2854 5.0)
(s2855 5.0)
(s2856 2.0)
(s2858 4.0)
(s2859 5.0)
(s2860 5.0)
(s2861 2.0)
(s2863 4.0)
(s2864 5.0)
(s2865 5.0)
(s2866 2.0)
(s2868 4.0)
(s2869 5.0)
(s2870 5.0)
(s2871 2.0)
(s2873 4.0)
(s2874 5.0)
(s2875 5.0)
(s2876 2.0)
(s2878 4.0)
(s2879 5.0)
(s2880 5.0)
(s2881 2.0)
(s2883 4.0)
(s2884 5.0)
(s2885 5.0)
(s2886 2.0)
(s2888 4.0)
(s2889 5.0)
(s2890 5.0)
(s2891 2.0)
(s2893 4.0)
(s2894 5.0)
(s2895 5.0)
(s2896 2.0)
(s2898 4.0)
(s2899 5.0)
(s2900 5.0)
(s2901 2.0)
(s2903 4.0)
(s2904 5.0)
(s2905 5.0)
(s2906 2.0)
(s2908 4.0)
(s2909 5.0)
(s2910 5.0)
(s2911 2.0)
(s2913 4.0)
(s2914 5.0)
(s2915 5.0)
(s2916 2.0)
(s2918 4.0)
(s2919 5.0)
(s2920 5.0)
(s2921 2.0)
(s2923 4.0)
(s2924 5.0)
(s2925 5.0)
(s2926 2.0)
(s2928 4.0)
(s2929 5.0)
(s2930 5.0)
(s2931 2.0)
(s2933 4.0)
(s2934 5.0)
(s2935 5.0)
(s2936 2.0)
(s2938 4.0)
(s2939 5.0)
(s2940 5.0)
(s2941 2.0)
(s2943 4.0)
(s2944 5.0)
(s2945 5.0)
(s2946 2.0)
(s2948 4.0)
(s2949 5.0)
(s2950 5.0)
(s2951 2.0)
(s2953 4.0)
(s2954 5.0)
(s2955 5.0)
(s2956 2.0)
(s2958 4.0)
(s2959 5.0)
(s2960 5.0)
(s2961 2.0)
(s2963 4.0)
(s2964 5.0)
(s2965 5.0)
(s2966 2.0)
(s2968 4.0)
(s2969 5.0)
(s2970 5.0)
(s2971 2.0)
(s2973 4.0)
(s2974 5.0)
(s2975 5.0)
(s2976 2.0)
(s2978 4.0)
(s2979 5.0)
(s2980 5.0)
(s2981 2.0)
(s2983 4.0)
(s2984 5.0)
(s2985 5.0)
(s2986 2.0)
(s2988 4.0)
(s2989 5.0)
(s2990 5.0)
(s2991 2.0)
(s2993 4.0)
(s2994 5.0)
(s2995 5.0)
(s2996 2.0)
(s2998 4.0)
(s2999 5.0)
(s3000 5.0)
(s3001 2.0)
(s3003 4.0)
(s3004 5.0)
(s3005 5.0)
(s3006 2.0)
(s3008 4.0)
(s3009 5.0)
(s3010 5.0)
(s3011 2.0)
(s3013 4.0)
(s3014 5.0)
(s3015 5.0)
(s3016 2.0)
(s3018 4.0)
(s3019 5.0)
(s3020 5.0)
(s3021 2.0)
(s3023 4.0)
(s3024 5.0)
(s3025 5.0)
(s3026 2.0)
(s3028 4.0)
(s3029 5.0)
(s3030 5.0)
(s3031 2.0)
(s3033 4.0)
(s3034 5.0)
(s3035 5.0)
(s3036 2.0)
(s3038 4.0)
(s3039 5.0)
(s3040 5.0)
(s3041 2.0)
(s3043 4.0)
(s3044 5.0)
(s3045 5.0)
(s3046 2.0)
(s3048 4.0)
(s3049 5.0)
(s3050 5.0)
(s3051 2.0)
(s3053 4.0)
(s3054 5.0)
(s3055 5.0)
(s3056 2.0)
(s3058 4.0)
(s3059 5.0)
(s3060 5.0)
(s3061 2.0)
(s3063 4.0)
(s3064 5.0)
(s3065 5.0)
(s3066 2.0)
(s3068 4.0)
(s3069 5.0)
(s3070 5.0)
(s3071 2.0)
(s3073 4.0)
(s3074 5.0)
(s3075 5.0)
(s3076 2.0)
(s3078 4.0)
(s3079 5.0)
(s3080 5.0)
(s3081 2.0)
(s3083 4.0)
(s3084 5.0)
(s3085 5.0)
(s3086 2.0)
(s3088 4.0)
(s3089 5.0)
(s3090 5.0)
(s3091 2.0)
(s3093 4.0)
(s3094 5.0)
(s3095 5.0)
(s3096 2.0)
(s3098 4.0)
(s3099 5.0)
(s3100 5.0)
(s3101 2.0)
(s3103 4.0)
(s3104 5.0)
(s3105 5.0)
(s3106 2.0)
(s3108 4.0)
(s3109 5.0)
(s3110 5.0)
(s3111 2.0)
(s3113 4.0)
(s3114 5.0)
(s3115 5.0)
(s3116 2.0)
(s3118 4.0)
(s3119 5.0)
(s3120 5.0)
(s3121 2.0)
(s3123 4.0)
(s3124 5.0)
(s3125 5.0)
(s3126 2.0)
(s3128 4.0)
(s3129 5.0)
(s3130 5.0)
(s3131 2.0)
(s3133 4.0)
(s3134 5.0)
(s3135 5.0)
(s3136 2.0)
(s3138 4.0)
(s3139 5.0)
(s3140 5.0)
(s3141 2.0)
(s3143 4.0)
(s3144 5.0)
(s3145 5.0)
(s3146 2.0)
(s3148 4.0)
(s3149 5.0)
(s3150 5.0)
(s3151 2.0)
(s3153 4.0)
(s3154 5.0)
(s3155 5.0)
(s3156 2.0)
(s3158 4.0)
(s3159 5.0)
(s3160 5.0)
(s3161 2.0)
(s3163 4.0)
(s3164 5.0)
(s3165 5.0)
(s3166 2.0)
(s3168 4.0)
(s3169 5.0)
(s3170 5.0)
(s3171 2.0)
(s3173 4.0)
(s3174 5.0)
(s3175 5.0)
(s3176 2.0)
(s3178 4.0)
(s3179 5.0)
(s3180 5.0)
(s3181 2.0)
(s3183 4.0)
(s3184 5.0)
(s3185 5.0)
(s3186 2.0)
(s3188 4.0)
(s3189 5.0)
(s3190 5.0)
(s3191 2.0)
(s3193 4.0)
(s3194 5.0)
(s3195 5.0)
(s3196 2.0)
(s3198 4.0)
(s3199 5.0)
(s3200 5.0)
(s3201 2.0)
(s3203 4.0)
(s3204 5.0)
(s3205 5.0)
(s3206 2.0)
(s3208 4.0)
(s3209 5.0)
(s3210 5.0)
(s3211 2.0)
(s3213 4.0)
(s3214 5.0)
(s3215 5.0)
(s3216 2.0)
(s3218 4.0)
(s3219 5.0)
(s3220 5.0)
(s3221 2.0)
(s3223 4.0)
(s3224 5.0)
(s3225 5.0)
(s3226 2.0)
(s3228 4.0)
(s3229 5.0)
(s3230 5.0)
(s3231 2.0)
(s3233 4.0)
(s3234 5.0)
(s3235 5.0)
(s3236 2.0)
(s3238 4.0)
(s3239 5.0)
(s3240 5.0)
(s3241 2.0)
(s3243 4.0)
(s3244 5.0)
(s3245 5.0)
(s3246 2.0)
(s3248 4.0)
(s3249 5.0)
(s3250 5.0)
(s3251 2.0)
(s3253 4.0)
(s3254 5.0)
(s3255 5.0)
(s3256 2.0)
(s3258 4.0)
(s3259 5.0)
(s3260 5.0)
(s3261 2.0)
(s3263 4.0)
(s3264 5.0)
(s3265 5.0)
(s3266 2.0)
(s3268 4.0)
(s3269 5.0)
(s3270 5.0)
(s3271 2.0)
(s3273 4.0)
(s3274 5.0)
(s3275 5.0)
(s3276 2.0)
(s3278 4.0)
(s3279 5.0)
(s3280 5.0)
(s3281 2.0)
(s3283 4.0)
(s3284 5.0)
(s3285 5.0)
(s3286 2.0)
(s3288 4.0)
(s3289 5.0)
(s3290 5.0)
(s3291 2.0)
(s3293 4.0)
(s3294 5.0)
(s3295 5.0)
(s3296 2.0)
(s3298 4.0)
(s3299 5.0)
(s3300 5.0)
(s3301 2.0)
(s3303 4.0)
(s3304 5.0)
(s3305 5.0)
(s3306 2.0)
(s3308 4.0)
(s3309 5.0)
(s3310 5.0)
(s3311 2.0)
(s3313 4.0)
(s3314 5.0)
(s3315 5.0)
(s3316 2.0)
(s3318 4.0)
(s3319 5.0)
(s3320 5.0)
(s3321 2.0)
(s3323 4.0)
(s3324 5.0)
(s3325 5.0)
(s3326 2.0)
(s3328 4.0)
(s3329 5.0)
(s3330 5.0)
(s3331 2.0)
(s3333 4.0)
(s3334 5.0)
(s3335 5.0)
(s3336 2.0)
(s3338 4.0)
(s3339 5.0)
(s3340 5.0)
(s3341 2.0)
(s3343 4.0)
(s3344 5.0)
(s3345 5.0)
(s3346 2.0)
(s3348 4.0)
(s3349 5.0)
(s3350 5.0)
(s3351 2.0)
(s3353 4.0)
(s3354 5.0)
(s3355 5.0)
(s3356 2.0)
(s3358 4.0)
(s3359 5.0)
(s3360 5.0)
(s3361 2.0)
(s3363 4.0)
(s3364 5.0)
(s3365 5.0)
(s3366 2.0)
(s3368 4.0)
(s3369 5.0)
(s3370 5.0)
(s3371 2.0)
(s3373 4.0)
(s3374 5.0)
(s3375 5.0)
(s3376 2.0)
(s3378 4.0)
(s3379 5.0)
(s3380 5.0)
(s3381 2.0)
(s3383 4.0)
(s3384 5.0)
(s3385 5.0)
(s3386 2.0)
(s3388 4.0)
(s3389 5.0)
(s3390 5.0)
(s3391 2.0)
(s3393 4.0)
(s3394 5.0)
(s3395 5.0)
(s3396 2.0)
(s3398 4.0)
(s3399 5.0)
(s3400 5.0)
(s3401 2.0)
(s3403 4.0)
(s3404 5.0)
(s3405 5.0)
(s3406 2.0)
(s3408 4.0)
(s3409 5.0)
(s3410 5.0)
(s3411 2.0)
(s3413 4.0)
(s3414 5.0)
(s3415 5.0)
(s3416 2.0)
(s3418 4.0)
(s3419 5.0)
(s3420 5.0)
(s3421 2.0)
(s3423 4.0)
(s3424 5.0)
(s3425 5.0)
(s3426 2.0)
(s3428 4.0)
(s3429 5.0)
(s3430 5.0)
(s3431 2.0)
(s3433 4.0)
(s3434 5.0)
(s3435 5.0)
(s3436 2.0)
(s3438 4.0)
(s3439 5.0)
(s3440 5.0)
(s3441 2.0)
(s3443 4.0)
(s3444 5.0)
(s3445 5.0)
(s3446 2.0)
(s3448 4.0)
(s3449 5.0)
(s3450 5.0)
(s3451 2.0)
(s3453 4.0)
(s3454 5.0)
(s3455 5.0)
(s3456 2.0)
(s3458 4.0)
(s3459 5.0)
(s3460 5.0)
(s3461 2.0)
(s3463 4.0)
(s3464 5.0)
(s3465 5.0)
(s3466 2.0)
(s3468 4.0)
(s3469 5.0)
(s3470 5.0)
(s3471 2.0)
(s3473 4.0)
(s3474 5.0)
(s3475 5.0)
(s3476 2.0)
(s3478 4.0)
(s3479 5.0)
(s3480 5.0)
(s3481 2.0)
(s3483 4.0)
(s3484 5.0)
(s3485 5.0)
(s3486 2.0)
(s3488 4.0)
(s3489 5.0)
(s3490 5.0)
(s3491 2.0)
(s3493 4.0)
(s3494 5.0)
(s3495 5.0)
(s3496 2.0)
(s3498 4.0)
(s3499 5.0)
(s3500 5.0)
(s3501 2.0)
(s3503 4.0)
(s3504 5.0)
(s3505 5.0)
(s3506 2.0)
(s3508 4.0)
(s3509 5.0)
(s3510 5.0)
(s3511 2.0)
(s3513 4.0)
(s3514 5.0)
(s3515 5.0)
(s3516 2.0)
(s3518 4.0)
(s3519 5.0)
(s3520 5.0)
(s3521 2.0)
(s3523 4.0)
(s3524 5.0)
(s3525 5.0)
(s3526 2.0)
(s3528 4.0)
(s3529 5.0)
(s3530 5.0)
(s3531 2.0)
(s3533 4.0)
(s3534 5.0)
(s3535 5.0)
(s3536 2.0)
(s3538 4.0)
(s3539 5.0)
(s3540 5.0)
(s3541 2.0)
(s3543 4.0)
(s3544 5.0)
(s3545 5.0)
(s3546 2.0)
(s3548 4.0)
(s3549 5.0)
(s3550 5.0)
(s3551 2.0)
(s3553 4.0)
(s3554 5.0)
(s3555 5.0)
(s3556 2.0)
(s3558 4.0)
(s3559 5.0)
(s3560 5.0)
(s3561 2.0)
(s3563 4.0)
(s3564 5.0)
(s3565 5.0)
(s3566 2.0)
(s3568 4.0)
(s3569 5.0)
(s3570 5.0)
(s3571 2.0)
(s3573 4.0)
(s3574 5.0)
(s3575 5.0)
(s3576 2.0)
(s3578 4.0)
(s3579 5.0)
(s3580 5.0)
(s3581 2.0)
(s3583 4.0)
(s3584 5.0)
(s3585 5.0)
(s3586 2.0)
(s3588 4.0)
(s3589 5.0)
(s3590 5.0)
(s3591 2.0)
(s3593 4.0)
(s3594 5.0)
(s3595 5.0)
(s3596 2.0)
(s3598 4.0)
(s3599 5.0)
(s3600 5.0)
(s3601 2.0)
(s3603 4.0)
(s3604 5.0)
(s3605 5.0)
(s3606 2.0)
(s3608 4.0)
(s3609 5.0)
(s3610 5.0)
(s3611 2.0)
(s3613 4.0)
(s3614 5.0)
(s3615 5.0)
(s3616 2.0)
(s3618 4.0)
(s3619 5.0)
(s3620 5.0)
(s3621 2.0)
(s3623 4.0)
(s3624 5.0)
(s3625 5.0)
(s3626 2.0)
(s3628 4.0)
(s3629 5.0)
(s3630 5.0)
(s3631 2.0)
(s3633 4.0)
(s3634 5.0)
(s3635 5.0)
(s3636 2.0)
(s3638 4.0)
(s3639 5.0)
(s3640 5.0)
(s3641 2.0)
(s3643 4.0)
(s3644 5.0)
(s3645 5.0)
(s3646 2.0)
(s3648 4.0)
(s3649 5.0)
(s3650 5.0)
(s3651 2.0)
(s3653 4.0)
(s3654 5.0)
(s3655 5.0)
(s3656 2.0)
(s3658 4.0)
(s3659 5.0)
(s3660 5.0)
(s3661 2.0)
(s3663 4.0)
(s3664 5.0)
(s3665 5.0)
(s3666 2.0)
(s3668 4.0)
(s3669 5.0)
(s3670 5.0)
(s3671 2.0)
(s3673 4.0)
(s3674 5.0)
(s3675 5.0)
(s3676 2.0)
(s3678 4.0)
(s3679 5.0)
(s3680 5.0)
(s3681 2.0)
(s3683 4.0)
(s3684 5.0)
(s3685 5.0)
(s3686 2.0)
(s3688 4.0)
(s3689 5.0)
(s3690 5.0)
(s3691 2.0)
(s3693 4.0)
(s3694 5.0)
(s3695 5.0)
(s3696 2.0)
(s3698 4.0)
(s3699 5.0)
(s3700 5.0)
(s3701 2.0)
(s3703 4.0)
(s3704 5.0)
(s3705 5.0)
(s3706 2.0)
(s3708 4.0)
(s3709 5.0)
(s3710 5.0)
(s3711 2.0)
(s3713 4.0)
(s3714 5.0)
(s3715 5.0)
(s3716 2.0)
(s3718 4.0)
(s3719 5.0)
(s3720 5.0)
(s3721 2.0)
(s3723 4.0)
(s3724 5.0)
(s3725 5.0)
(s3726 2.0)
(s3728 4.0)
(s3729 5.0)
(s3730 5.0)
(s3731 2.0)
(s3733 4.0)
(s3734 5.0)
(s3735 5.0)
(s3736 2.0)
(s3738 4.0)
(s3739 5.0)
(s3740 5.0)
(s3741 2.0)
(s3743 4.0)
(s3744 5.0)
(s3745 5.0)
(s3746 2.0)
(s3748 4.0)
(s3749 5.0)
(s3750 5.0)
(s3751 2.0)
(s3753 4.0)
(s3754 5.0)
(s3755 5.0)
(s3756 2.0)
(s3758 4.0)
(s3759 5.0)
(s3760 5.0)
(s3761 2.0)
(s3763 4.0)
(s3764 5.0)
(s3765 5.0)
(s3766 2.0)
(s3768 4.0)
(s3769 5.0)
(s3770 5.0)
(s3771 2.0)
(s3773 4.0)
(s3774 5.0)
(s3775 5.0)
(s3776 2.0)
(s3778 4.0)
(s3779 5.0)
(s3780 5.0)
(s3781 2.0)
(s3783 4.0)
(s3784 5.0)
(s3785 5.0)
(s3786 2.0)
(s3788 4.0)
(s3789 5.0)
(s3790 5.0)
(s3791 2.0)
(s3793 4.0)
(s3794 5.0)
(s3795 5.0)
(s3796 2.0)
(s3798 4.0)
(s3799 5.0)
(s3800 5.0)
(s3801 2.0)
(s3803 4.0)
(s3804 5.0)
(s3805 5.0)
(s3806 2.0)
(s3808 4.0)
(s3809 5.0)
(s3810 5.0)
(s3811 2.0)
(s3813 4.0)
(s3814 5.0)
(s3815 5.0)
(s3816 2.0)
(s3818 4.0)
(s3819 5.0)
(s3820 5.0)
(s3821 2.0)
(s3823 4.0)
(s3824 5.0)
(s3825 5.0)
(s3826 2.0)
(s3828 4.0)
(s3829 5.0)
(s3830 5.0)
(s3831 2.0)
(s3833 4.0)
(s3834 5.0)
(s3835 5.0)
(s3836 2.0)
(s3838 4.0)
(s3839 5.0)
(s3840 5.0)
(s3841 2.0)
(s3843 4.0)
(s3844 5.0)
(s3845 5.0)
(s3846 2.0)
(s3848 4.0)
(s3849 5.0)
(s3850 5.0)
(s3851 2.0)
(s3853 4.0)
(s3854 5.0)
(s3855 5.0)
(s3856 2.0)
(s3858 4.0)
(s3859 5.0)
(s3860 5.0)
(s3861 2.0)
(s3863 4.0)
(s3864 5.0)
(s3865 5.0)
(s3866 2.0)
(s3868 4.0)
(s3869 5.0)
(s3870 5.0)
(s3871 2.0)
(s3873 4.0)
(s3874 5.0)
(s3875 5.0)
(s3876 2.0)
(s3878 4.0)
(s3879 5.0)
(s3880 5.0)
(s3881 2.0)
(s3883 4.0)
(s3884 5.0)
(s3885 5.0)
(s3886 2.0)
(s3888 4.0)
(s3889 5.0)
(s3890 5.0)
(s3891 2.0)
(s3893 4.0)
(s3894 5.0)
(s3895 5.0)
(s3896 2.0)
(s3898 4.0)
(s3899 5.0)
(s3900 5.0)
(s3901 2.0)
(s3903 4.0)
(s3904 5.0)
(s3905 5.0)
(s3906 2.0)
(s3908 4.0)
(s3909 5.0)
(s3910 5.0)
(s3911 2.0)
(s3913 4.0)
(s3914 5.0)
(s3915 5.0)
(s3916 2.0)
(s3918 4.0)
(s3919 5.0)
(s3920 5.0)
(s3921 2.0)
(s3923 4.0)
(s3924 5.0)
(s3925 5.0)
(s3926 2.0)
(s3928 4.0)
(s3929 5.0)
(s3930 5.0)
(s3931 2.0)
(s3933 4.0)
(s3934 5.0)
(s3935 5.0)
(s3936 2.0)
(s3938 4.0)
(s3939 5.0)
(s3940 5.0)
(s3941 2.0)
(s3943 4.0)
(s3944 5.0)
(s3945 5.0)
(s3946 2.0)
(s3948 4.0)
(s3949 5.0)
(s3950 5.0)
(s3951 2.0)
(s3953 4.0)
(s3954 5.0)
(s3955 5.0)
(s3956 2.0)
(s3958 4.0)
(s3959 5.0)
(s3960 5.0)
(s3961 2.0)
(s3963 4.0)
(s3964 5.0)
(s3965 5.0)
(s3966 2.0)
(s3968 4.0)
(s3969 5.0)
(s3970 5.0)
(s3971 2.0)
(s3973 4.0)
(s3974 5.0)
(s3975 5.0)
(s3976 2.0)
(s3978 4.0)
(s3979 5.0)
(s3980 5.0)
(s3981 2.0)
(s3983 4.0)
(s3984 5.0)
(s3985 5.0)
(s3986 2.0)
(s3988 4.0)
(s3989 5.0)
(s3990 5.0)
(s3991 2.0)
(s3993 4.0)
(s3994 5.0)
(s3995 5.0)
(s3996 2.0)
(s3998 4.0)
(s3999 5.0)
(s4000 5.0)
(s4001 2.0)
(s4003 4.0)
(s4004 5.0)
(s4005 5.0)
(s4006 2.0)
(s4008 4.0)
(s4009 5.0)
(s4010 5.0)
(s4011 2.0)
(s4013 4.0)
(s4014 5.0)
(s4015 5.0)
(s4016 2.0)
(s4018 4.0)
(s4019 5.0)
(s4020 5.0)
(s4021 2.0)
(s4023 4.0)
(s4024 5.0)
(s4025 5.0)
(s4026 2.0)
(s4028 4.0)
(s4029 5.0)
(s4030 5.0)
(s4031 2.0)
(s4033 4.0)
(s4034 5.0)
(s4035 5.0)
(s4036 2.0)
(s4038 4.0)
(s4039 5.0)
(s4040 5.0)
(s4041 2.0)
(s4043 4.0)
(s4044 5.0)
(s4045 5.0)
(s4046 2.0)
(s4048 4.0)
(s4049 5.0)
(s4050 5.0)
(s4051 2.0)
(s4053 4.0)
(s4054 5.0)
(s4055 5.0)
(s4056 2.0)
(s4058 4.0)
(s4059 5.0)
(s4060 5.0)
(s4061 2.0)
(s4063 4.0)
(s4064 5.0)
(s4065 5.0)
(s4066 2.0)
(s4068 4.0)
(s4069 5.0)
(s4070 5.0)
(s4071 2.0)
(s4073 4.0)
(s4074 5.0)
(s4075 5.0)
(s4076 2.0)
(s4078 4.0)
(s4079 5.0)
(s4080 5.0)
(s4081 2.0)
(s4083 4.0)
(s4084 5.0)
(s4085 5.0)
(s4086 2.0)
(s4088 4.0)
(s4089 5.0)
(s4090 5.0)
(s4091 2.0)
(s4093 4.0)
(s4094 5.0)
(s4095 5.0)
(s4096 2.0)
(s4098 4.0)
(s4099 5.0)
(s4100 5.0)
(s4101 2.0)
(s4103 4.0)
(s4104 5.0)
(s4105 5.0)
(s4106 2.0)
(s4108 4.0)
(s4109 5.0)
(s4110 5.0)
(s4111 2.0)
(s4113 4.0)
(s4114 5.0)
(s4115 5.0)
(s4116 2.0)
(s4118 4.0)
(s4119 5.0)
(s4120 5.0)
(s4121 2.0)
(s4123 4.0)
(s4124 5.0)
(s4125 5.0)
(s4126 2.0)
(s4128 4.0)
(s4129 5.0)
(s4130 5.0)
(s4131 2.0)
(s4133 4.0)
(s4134 5.0)
(s4135 5.0)
(s4136 2.0)
(s4138 4.0)
(s4139 5.0)
(s4140 5.0)
(s4141 2.0)
(s4143 4.0)
(s4144 5.0)
(s4145 5.0)
(s4146 2.0)
(s4148 4.0)
(s4149 5.0)
(s4150 5.0)
(s4151 2.0)
(s4153 4.0)
(s4154 5.0)
(s4155 5.0)
(s4156 2.0)
(s4158 4.0)
(s4159 5.0)
(s4160 5.0)
(s4161 2.0)
(s4163 4.0)
(s4164 5.0)
(s4165 5.0)
(s4166 2.0)
(s4168 4.0)
(s4169 5.0)
(s4170 5.0)
(s4171 2.0)
(s4173 4.0)
(s4174 5.0)
(s4175 5.0)
(s4176 2.0)
(s4178 4.0)
(s4179 5.0)
(s4180 5.0)
(s4181 2.0)
(s4183 4.0)
(s4184 5.0)
(s4185 5.0)
(s4186 2.0)
(s4188 4.0)
(s4189 5.0)
(s4190 5.0)
(s4191 2.0)
(s4193 4.0)
(s4194 5.0)
(s4195 5.0)
(s4196 2.0)
(s4198 4.0)
(s4199 5.0)
(s4200 5.0)
(s4201 2.0)
(s4203 4.0)
(s4204 5.0)
(s4205 5.0)
(s4206 2.0)
(s4208 4.0)
(s4209 5.0)
(s4210 5.0)
(s4211 2.0)
(s4213 4.0)
(s4214 5.0)
(s4215 5.0)
(s4216 2.0)
(s4218 4.0)
(s4219 5.0)
(s4220 5.0)
(s4221 2.0)
(s4223 4.0)
(s4224 5.0)
(s4225 5.0)
(s4226 2.0)
(s4228 4.0)
(s4229 5.0)
(s4230 5.0)
(s4231 2.0)
(s4233 4.0)
(s4234 5.0)
(s4235 5.0)
(s4236 2.0)
(s4238 4.0)
(s4239 5.0)
(s4240 timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30082 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Error getting values : (error "ParserException while parsing response: ((s0 5)
(s1 2)
(s3 4)
(s4 5)
(s5 5)
(s6 2)
(s8 4)
(s9 5)
(s10 5)
(s11 2)
(s13 4)
(s14 5)
(s15 5)
(s16 2)
(s18 4)
(s19 5)
(s20 5)
(s21 2)
(s23 4)
(s24 5)
(s25 5)
(s26 2)
(s28 4)
(s29 5)
(s30 5)
(s31 2)
(s33 4)
(s34 5)
(s35 5)
(s36 2)
(s38 4)
(s39 5)
(s40 5)
(s41 2)
(s43 4)
(s44 5)
(s45 5)
(s46 2)
(s48 4)
(s49 5)
(s50 5)
(s51 2)
(s53 4)
(s54 5)
(s55 5)
(s56 2)
(s58 4)
(s59 5)
(s60 5)
(s61 2)
(s63 4)
(s64 5)
(s65 5)
(s66 2)
(s68 4)
(s69 5)
(s70 5)
(s71 2)
(s73 4)
(s74 5)
(s75 5)
(s76 2)
(s78 4)
(s79 5)
(s80 5)
(s81 2)
(s83 4)
(s84 5)
(s85 5)
(s86 2)
(s88 4)
(s89 5)
(s90 5)
(s91 2)
(s93 4)
(s94 5)
(s95 5)
(s96 2)
(s98 4)
(s99 5)
(s100 5)
(s101 2)
(s103 4)
(s104 5)
(s105 5)
(s106 2)
(s108 4)
(s109 5)
(s110 5)
(s111 2)
(s113 4)
(s114 5)
(s115 5)
(s116 2)
(s118 4)
(s119 5)
(s120 5)
(s121 2)
(s123 4)
(s124 5)
(s125 5)
(s126 2)
(s128 4)
(s129 5)
(s130 5)
(s131 2)
(s133 4)
(s134 5)
(s135 5)
(s136 2)
(s138 4)
(s139 5)
(s140 5)
(s141 2)
(s143 4)
(s144 5)
(s145 5)
(s146 2)
(s148 4)
(s149 5)
(s150 5)
(s151 2)
(s153 4)
(s154 5)
(s155 5)
(s156 2)
(s158 4)
(s159 5)
(s160 5)
(s161 2)
(s163 4)
(s164 5)
(s165 5)
(s166 2)
(s168 4)
(s169 5)
(s170 5)
(s171 2)
(s173 4)
(s174 5)
(s175 5)
(s176 2)
(s178 4)
(s179 5)
(s180 5)
(s181 2)
(s183 4)
(s184 5)
(s185 5)
(s186 2)
(s188 4)
(s189 5)
(s190 5)
(s191 2)
(s193 4)
(s194 5)
(s195 5)
(s196 2)
(s198 4)
(s199 5)
(s200 5)
(s201 2)
(s203 4)
(s204 5)
(s205 5)
(s206 2)
(s208 4)
(s209 5)
(s210 5)
(s211 2)
(s213 4)
(s214 5)
(s215 5)
(s216 2)
(s218 4)
(s219 5)
(s220 5)
(s221 2)
(s223 4)
(s224 5)
(s225 5)
(s226 2)
(s228 4)
(s229 5)
(s230 5)
(s231 2)
(s233 4)
(s234 5)
(s235 5)
(s236 2)
(s238 4)
(s239 5)
(s240 5)
(s241 2)
(s243 4)
(s244 5)
(s245 5)
(s246 2)
(s248 4)
(s249 5)
(s250 5)
(s251 2)
(s253 4)
(s254 5)
(s255 5)
(s256 2)
(s258 4)
(s259 5)
(s260 5)
(s261 2)
(s263 4)
(s264 5)
(s265 5)
(s266 2)
(s268 4)
(s269 5)
(s270 5)
(s271 2)
(s273 4)
(s274 5)
(s275 5)
(s276 2)
(s278 4)
(s279 5)
(s280 5)
(s281 2)
(s283 4)
(s284 5)
(s285 5)
(s286 2)
(s288 4)
(s289 5)
(s290 5)
(s291 2)
(s293 4)
(s294 5)
(s295 5)
(s296 2)
(s298 4)
(s299 5)
(s300 5)
(s301 2)
(s303 4)
(s304 5)
(s305 5)
(s306 2)
(s308 4)
(s309 5)
(s310 5)
(s311 2)
(s313 4)
(s314 5)
(s315 5)
(s316 2)
(s318 4)
(s319 5)
(s320 5)
(s321 2)
(s323 4)
(s324 5)
(s325 5)
(s326 2)
(s328 4)
(s329 5)
(s330 5)
(s331 2)
(s333 4)
(s334 5)
(s335 5)
(s336 2)
(s338 4)
(s339 5)
(s340 5)
(s341 2)
(s343 4)
(s344 5)
(s345 5)
(s346 2)
(s348 4)
(s349 5)
(s350 5)
(s351 2)
(s353 4)
(s354 5)
(s355 5)
(s356 2)
(s358 4)
(s359 5)
(s360 5)
(s361 2)
(s363 4)
(s364 5)
(s365 5)
(s366 2)
(s368 4)
(s369 5)
(s370 5)
(s371 2)
(s373 4)
(s374 5)
(s375 5)
(s376 2)
(s378 4)
(s379 5)
(s380 5)
(s381 2)
(s383 4)
(s384 5)
(s385 5)
(s386 2)
(s388 4)
(s389 5)
(s390 5)
(s391 2)
(s393 4)
(s394 5)
(s395 5)
(s396 2)
(s398 4)
(s399 5)
(s400 5)
(s401 2)
(s403 4)
(s404 5)
(s405 5)
(s406 2)
(s408 4)
(s409 5)
(s410 5)
(s411 2)
(s413 4)
(s414 5)
(s415 5)
(s416 2)
(s418 4)
(s419 5)
(s420 5)
(s421 2)
(s423 4)
(s424 5)
(s425 5)
(s426 2)
(s428 4)
(s429 5)
(s430 5)
(s431 2)
(s433 4)
(s434 5)
(s435 5)
(s436 2)
(s438 4)
(s439 5)
(s440 5)
(s441 2)
(s443 4)
(s444 5)
(s445 5)
(s446 2)
(s448 4)
(s449 5)
(s450 5)
(s451 2)
(s453 4)
(s454 5)
(s455 5)
(s456 2)
(s458 4)
(s459 5)
(s460 5)
(s461 2)
(s463 4)
(s464 5)
(s465 5)
(s466 2)
(s468 4)
(s469 5)
(s470 5)
(s471 2)
(s473 4)
(s474 5)
(s475 5)
(s476 2)
(s478 4)
(s479 5)
(s480 5)
(s481 2)
(s483 4)
(s484 5)
(s485 5)
(s486 2)
(s488 4)
(s489 5)
(s490 5)
(s491 2)
(s493 4)
(s494 5)
(s495 5)
(s496 2)
(s498 4)
(s499 5)
(s500 5)
(s501 2)
(s503 4)
(s504 5)
(s505 5)
(s506 2)
(s508 4)
(s509 5)
(s510 5)
(s511 2)
(s513 4)
(s514 5)
(s515 5)
(s516 2)
(s518 4)
(s519 5)
(s520 5)
(s521 2)
(s523 4)
(s524 5)
(s525 5)
(s526 2)
(s528 4)
(s529 5)
(s530 5)
(s531 2)
(s533 4)
(s534 5)
(s535 5)
(s536 2)
(s538 4)
(s539 5)
(s540 5)
(s541 2)
(s543 4)
(s544 5)
(s545 5)
(s546 2)
(s548 4)
(s549 5)
(s550 5)
(s551 2)
(s553 4)
(s554 5)
(s555 5)
(s556 2)
(s558 4)
(s559 5)
(s560 5)
(s561 2)
(s563 4)
(s564 5)
(s565 5)
(s566 2)
(s568 4)
(s569 5)
(s570 5)
(s571 2)
(s573 4)
(s574 5)
(s575 5)
(s576 2)
(s578 4)
(s579 5)
(s580 5)
(s581 2)
(s583 4)
(s584 5)
(s585 5)
(s586 2)
(s588 4)
(s589 5)
(s590 5)
(s591 2)
(s593 4)
(s594 5)
(s595 5)
(s596 2)
(s598 4)
(s599 5)
(s600 5)
(s601 2)
(s603 4)
(s604 5)
(s605 5)
(s606 2)
(s608 4)
(s609 5)
(s610 5)
(s611 2)
(s613 4)
(s614 5)
(s615 5)
(s616 2)
(s618 4)
(s619 5)
(s620 5)
(s621 2)
(s623 4)
(s624 5)
(s625 5)
(s626 2)
(s628 4)
(s629 5)
(s630 5)
(s631 2)
(s633 4)
(s634 5)
(s635 5)
(s636 2)
(s638 4)
(s639 5)
(s640 5)
(s641 2)
(s643 4)
(s644 5)
(s645 5)
(s646 2)
(s648 4)
(s649 5)
(s650 5)
(s651 2)
(s653 4)
(s654 5)
(s655 5)
(s656 2)
(s658 4)
(s659 5)
(s660 5)
(s661 2)
(s663 4)
(s664 5)
(s665 5)
(s666 2)
(s668 4)
(s669 5)
(s670 5)
(s671 2)
(s673 4)
(s674 5)
(s675 5)
(s676 2)
(s678 4)
(s679 5)
(s680 5)
(s681 2)
(s683 4)
(s684 5)
(s685 5)
(s686 2)
(s688 4)
(s689 5)
(s690 5)
(s691 2)
(s693 4)
(s694 5)
(s695 5)
(s696 2)
(s698 4)
(s699 5)
(s700 5)
(s701 2)
(s703 4)
(s704 5)
(s705 5)
(s706 2)
(s708 4)
(s709 5)
(s710 5)
(s711 2)
(s713 4)
(s714 5)
(s715 5)
(s716 2)
(s718 4)
(s719 5)
(s720 5)
(s721 2)
(s723 4)
(s724 5)
(s725 5)
(s726 2)
(s728 4)
(s729 5)
(s730 5)
(s731 2)
(s733 4)
(s734 5)
(s735 5)
(s736 2)
(s738 4)
(s739 5)
(s740 5)
(s741 2)
(s743 4)
(s744 5)
(s745 5)
(s746 2)
(s748 4)
(s749 5)
(s750 5)
(s751 2)
(s753 4)
(s754 5)
(s755 5)
(s756 2)
(s758 4)
(s759 5)
(s760 5)
(s761 2)
(s763 4)
(s764 5)
(s765 5)
(s766 2)
(s768 4)
(s769 5)
(s770 5)
(s771 2)
(s773 4)
(s774 5)
(s775 5)
(s776 2)
(s778 4)
(s779 5)
(s780 5)
(s781 2)
(s783 4)
(s784 5)
(s785 5)
(s786 2)
(s788 4)
(s789 5)
(s790 5)
(s791 2)
(s793 4)
(s794 5)
(s795 5)
(s796 2)
(s798 4)
(s799 5)
(s800 5)
(s801 2)
(s803 4)
(s804 5)
(s805 5)
(s806 2)
(s808 4)
(s809 5)
(s810 5)
(s811 2)
(s813 4)
(s814 5)
(s815 5)
(s816 2)
(s818 4)
(s819 5)
(s820 5)
(s821 2)
(s823 4)
(s824 5)
(s825 5)
(s826 2)
(s828 4)
(s829 5)
(s830 5)
(s831 2)
(s833 4)
(s834 5)
(s835 5)
(s836 2)
(s838 4)
(s839 5)
(s840 5)
(s841 2)
(s843 4)
(s844 5)
(s845 5)
(s846 2)
(s848 4)
(s849 5)
(s850 5)
(s851 2)
(s853 4)
(s854 5)
(s855 5)
(s856 2)
(s858 4)
(s859 5)
(s860 5)
(s861 2)
(s863 4)
(s864 5)
(s865 5)
(s866 2)
(s868 4)
(s869 5)
(s870 5)
(s871 2)
(s873 4)
(s874 5)
(s875 5)
(s876 2)
(s878 4)
(s879 5)
(s880 5)
(s881 2)
(s883 4)
(s884 5)
(s885 5)
(s886 2)
(s888 4)
(s889 5)
(s890 5)
(s891 2)
(s893 4)
(s894 5)
(s895 5)
(s896 2)
(s898 4)
(s899 5)
(s900 5)
(s901 2)
(s903 4)
(s904 5)
(s905 5)
(s906 2)
(s908 4)
(s909 5)
(s910 5)
(s911 2)
(s913 4)
(s914 5)
(s915 5)
(s916 2)
(s918 4)
(s919 5)
(s920 5)
(s921 2)
(s923 4)
(s924 5)
(s925 5)
(s926 2)
(s928 4)
(s929 5)
(s930 5)
(s931 2)
(s933 4)
(s934 5)
(s935 5)
(s936 2)
(s938 4)
(s939 5)
(s940 5)
(s941 2)
(s943 4)
(s944 5)
(s945 5)
(s946 2)
(s948 4)
(s949 5)
(s950 5)
(s951 2)
(s953 4)
(s954 5)
(s955 5)
(s956 2)
(s958 4)
(s959 5)
(s960 5)
(s961 2)
(s963 4)
(s964 5)
(s965 5)
(s966 2)
(s968 4)
(s969 5)
(s970 5)
(s971 2)
(s973 4)
(s974 5)
(s975 5)
(s976 2)
(s978 4)
(s979 5)
(s980 5)
(s981 2)
(s983 4)
(s984 5)
(s985 5)
(s986 2)
(s988 4)
(s989 5)
(s990 5)
(s991 2)
(s993 4)
(s994 5)
(s995 5)
(s996 2)
(s998 4)
(s999 5)
(s1000 5)
(s1001 2)
(s1003 4)
(s1004 5)
(s1005 5)
(s1006 2)
(s1008 4)
(s1009 5)
(s1010 5)
(s1011 2)
(s1013 4)
(s1014 5)
(s1015 5)
(s1016 2)
(s1018 4)
(s1019 5)
(s1020 5)
(s1021 2)
(s1023 4)
(s1024 5)
(s1025 5)
(s1026 2)
(s1028 4)
(s1029 5)
(s1030 5)
(s1031 2)
(s1033 4)
(s1034 5)
(s1035 5)
(s1036 2)
(s1038 4)
(s1039 5)
(s1040 5)
(s1041 2)
(s1043 4)
(s1044 5)
(s1045 5)
(s1046 2)
(s1048 4)
(s1049 5)
(s1050 5)
(s1051 2)
(s1053 4)
(s1054 5)
(s1055 5)
(s1056 2)
(s1058 4)
(s1059 5)
(s1060 5)
(s1061 2)
(s1063 4)
(s1064 5)
(s1065 5)
(s1066 2)
(s1068 4)
(s1069 5)
(s1070 5)
(s1071 2)
(s1073 4)
(s1074 5)
(s1075 5)
(s1076 2)
(s1078 4)
(s1079 5)
(s1080 5)
(s1081 2)
(s1083 4)
(s1084 5)
(s1085 5)
(s1086 2)
(s1088 4)
(s1089 5)
(s1090 5)
(s1091 2)
(s1093 4)
(s1094 5)
(s1095 5)
(s1096 2)
(s1098 4)
(s1099 5)
(s1100 5)
(s1101 2)
(s1103 4)
(s1104 5)
(s1105 5)
(s1106 2)
(s1108 4)
(s1109 5)
(s1110 5)
(s1111 2)
(s1113 4)
(s1114 5)
(s1115 5)
(s1116 2)
(s1118 4)
(s1119 5)
(s1120 5)
(s1121 2)
(s1123 4)
(s1124 5)
(s1125 5)
(s1126 2)
(s1128 4)
(s1129 5)
(s1130 5)
(s1131 2)
(s1133 4)
(s1134 5)
(s1135 5)
(s1136 2)
(s1138 4)
(s1139 5)
(s1140 5)
(s1141 2)
(s1143 4)
(s1144 5)
(s1145 5)
(s1146 2)
(s1148 4)
(s1149 5)
(s1150 5)
(s1151 2)
(s1153 4)
(s1154 5)
(s1155 5)
(s1156 2)
(s1158 4)
(s1159 5)
(s1160 5)
(s1161 2)
(s1163 4)
(s1164 5)
(s1165 5)
(s1166 2)
(s1168 4)
(s1169 5)
(s1170 5)
(s1171 2)
(s1173 4)
(s1174 5)
(s1175 5)
(s1176 2)
(s1178 4)
(s1179 5)
(s1180 5)
(s1181 2)
(s1183 4)
(s1184 5)
(s1185 5)
(s1186 2)
(s1188 4)
(s1189 5)
(s1190 5)
(s1191 2)
(s1193 4)
(s1194 5)
(s1195 5)
(s1196 2)
(s1198 4)
(s1199 5)
(s1200 5)
(s1201 2)
(s1203 4)
(s1204 5)
(s1205 5)
(s1206 2)
(s1208 4)
(s1209 5)
(s1210 5)
(s1211 2)
(s1213 4)
(s1214 5)
(s1215 5)
(s1216 2)
(s1218 4)
(s1219 5)
(s1220 5)
(s1221 2)
(s1223 4)
(s1224 5)
(s1225 5)
(s1226 2)
(s1228 4)
(s1229 5)
(s1230 5)
(s1231 2)
(s1233 4)
(s1234 5)
(s1235 5)
(s1236 2)
(s1238 4)
(s1239 5)
(s1240 5)
(s1241 2)
(s1243 4)
(s1244 5)
(s1245 5)
(s1246 2)
(s1248 4)
(s1249 5)
(s1250 5)
(s1251 2)
(s1253 4)
(s1254 5)
(s1255 5)
(s1256 2)
(s1258 4)
(s1259 5)
(s1260 5)
(s1261 2)
(s1263 4)
(s1264 5)
(s1265 5)
(s1266 2)
(s1268 4)
(s1269 5)
(s1270 5)
(s1271 2)
(s1273 4)
(s1274 5)
(s1275 5)
(s1276 2)
(s1278 4)
(s1279 5)
(s1280 5)
(s1281 2)
(s1283 4)
(s1284 5)
(s1285 5)
(s1286 2)
(s1288 4)
(s1289 5)
(s1290 5)
(s1291 2)
(s1293 4)
(s1294 5)
(s1295 5)
(s1296 2)
(s1298 4)
(s1299 5)
(s1300 5)
(s1301 2)
(s1303 4)
(s1304 5)
(s1305 5)
(s1306 2)
(s1308 4)
(s1309 5)
(s1310 5)
(s1311 2)
(s1313 4)
(s1314 5)
(s1315 5)
(s1316 2)
(s1318 4)
(s1319 5)
(s1320 5)
(s1321 2)
(s1323 4)
(s1324 5)
(s1325 5)
(s1326 2)
(s1328 4)
(s1329 5)
(s1330 5)
(s1331 2)
(s1333 4)
(s1334 5)
(s1335 5)
(s1336 2)
(s1338 4)
(s1339 5)
(s1340 5)
(s1341 2)
(s1343 4)
(s1344 5)
(s1345 5)
(s1346 2)
(s1348 4)
(s1349 5)
(s1350 5)
(s1351 2)
(s1353 4)
(s1354 5)
(s1355 5)
(s1356 2)
(s1358 4)
(s1359 5)
(s1360 5)
(s1361 2)
(s1363 4)
(s1364 5)
(s1365 5)
(s1366 2)
(s1368 4)
(s1369 5)
(s1370 5)
(s1371 2)
(s1373 4)
(s1374 5)
(s1375 5)
(s1376 2)
(s1378 4)
(s1379 5)
(s1380 5)
(s1381 2)
(s1383 4)
(s1384 5)
(s1385 5)
(s1386 2)
(s1388 4)
(s1389 5)
(s1390 5)
(s1391 2)
(s1393 4)
(s1394 5)
(s1395 5)
(s1396 2)
(s1398 4)
(s1399 5)
(s1400 5)
(s1401 2)
(s1403 4)
(s1404 5)
(s1405 5)
(s1406 2)
(s1408 4)
(s1409 5)
(s1410 5)
(s1411 2)
(s1413 4)
(s1414 5)
(s1415 5)
(s1416 2)
(s1418 4)
(s1419 5)
(s1420 5)
(s1421 2)
(s1423 4)
(s1424 5)
(s1425 5)
(s1426 2)
(s1428 4)
(s1429 5)
(s1430 5)
(s1431 2)
(s1433 4)
(s1434 5)
(s1435 5)
(s1436 2)
(s1438 4)
(s1439 5)
(s1440 5)
(s1441 2)
(s1443 4)
(s1444 5)
(s1445 5)
(s1446 2)
(s1448 4)
(s1449 5)
(s1450 5)
(s1451 2)
(s1453 4)
(s1454 5)
(s1455 5)
(s1456 2)
(s1458 4)
(s1459 5)
(s1460 5)
(s1461 2)
(s1463 4)
(s1464 5)
(s1465 5)
(s1466 2)
(s1468 4)
(s1469 5)
(s1470 5)
(s1471 2)
(s1473 4)
(s1474 5)
(s1475 5)
(s1476 2)
(s1478 4)
(s1479 5)
(s1480 5)
(s1481 2)
(s1483 4)
(s1484 5)
(s1485 5)
(s1486 2)
(s1488 4)
(s1489 5)
(s1490 5)
(s1491 2)
(s1493 4)
(s1494 5)
(s1495 5)
(s1496 2)
(s1498 4)
(s1499 5)
(s1500 5)
(s1501 2)
(s1503 4)
(s1504 5)
(s1505 5)
(s1506 2)
(s1508 4)
(s1509 5)
(s1510 5)
(s1511 2)
(s1513 4)
(s1514 5)
(s1515 5)
(s1516 2)
(s1518 4)
(s1519 5)
(s1520 5)
(s1521 2)
(s1523 4)
(s1524 5)
(s1525 5)
(s1526 2)
(s1528 4)
(s1529 5)
(s1530 5)
(s1531 2)
(s1533 4)
(s1534 5)
(s1535 5)
(s1536 2)
(s1538 4)
(s1539 5)
(s1540 5)
(s1541 2)
(s1543 4)
(s1544 5)
(s1545 5)
(s1546 2)
(s1548 4)
(s1549 5)
(s1550 5)
(s1551 2)
(s1553 4)
(s1554 5)
(s1555 5)
(s1556 2)
(s1558 4)
(s1559 5)
(s1560 5)
(s1561 2)
(s1563 4)
(s1564 5)
(s1565 5)
(s1566 2)
(s1568 4)
(s1569 5)
(s1570 5)
(s1571 2)
(s1573 4)
(s1574 5)
(s1575 5)
(s1576 2)
(s1578 4)
(s1579 5)
(s1580 5)
(s1581 2)
(s1583 4)
(s1584 5)
(s1585 5)
(s1586 2)
(s1588 4)
(s1589 5)
(s1590 5)
(s1591 2)
(s1593 4)
(s1594 5)
(s1595 5)
(s1596 2)
(s1598 4)
(s1599 5)
(s1600 5)
(s1601 2)
(s1603 4)
(s1604 5)
(s1605 5)
(s1606 2)
(s1608 4)
(s1609 5)
(s1610 5)
(s1611 2)
(s1613 4)
(s1614 5)
(s1615 5)
(s1616 2)
(s1618 4)
(s1619 5)
(s1620 5)
(s1621 2)
(s1623 4)
(s1624 5)
(s1625 5)
(s1626 2)
(s1628 4)
(s1629 5)
(s1630 5)
(s1631 2)
(s1633 4)
(s1634 5)
(s1635 5)
(s1636 2)
(s1638 4)
(s1639 5)
(s1640 5)
(s1641 2)
(s1643 4)
(s1644 5)
(s1645 5)
(s1646 2)
(s1648 4)
(s1649 5)
(s1650 5)
(s1651 2)
(s1653 4)
(s1654 5)
(s1655 5)
(s1656 2)
(s1658 4)
(s1659 5)
(s1660 5)
(s1661 2)
(s1663 4)
(s1664 5)
(s1665 5)
(s1666 2)
(s1668 4)
(s1669 5)
(s1670 5)
(s1671 2)
(s1673 4)
(s1674 5)
(s1675 5)
(s1676 2)
(s1678 4)
(s1679 5)
(s1680 5)
(s1681 2)
(s1683 4)
(s1684 5)
(s1685 5)
(s1686 2)
(s1688 4)
(s1689 5)
(s1690 5)
(s1691 2)
(s1693 4)
(s1694 5)
(s1695 5)
(s1696 2)
(s1698 4)
(s1699 5)
(s1700 5)
(s1701 2)
(s1703 4)
(s1704 5)
(s1705 5)
(s1706 2)
(s1708 4)
(s1709 5)
(s1710 5)
(s1711 2)
(s1713 4)
(s1714 5)
(s1715 5)
(s1716 2)
(s1718 4)
(s1719 5)
(s1720 5)
(s1721 2)
(s1723 4)
(s1724 5)
(s1725 5)
(s1726 2)
(s1728 4)
(s1729 5)
(s1730 5)
(s1731 2)
(s1733 4)
(s1734 5)
(s1735 5)
(s1736 2)
(s1738 4)
(s1739 5)
(s1740 5)
(s1741 2)
(s1743 4)
(s1744 5)
(s1745 5)
(s1746 2)
(s1748 4)
(s1749 5)
(s1750 5)
(s1751 2)
(s1753 4)
(s1754 5)
(s1755 5)
(s1756 2)
(s1758 4)
(s1759 5)
(s1760 5)
(s1761 2)
(s1763 4)
(s1764 5)
(s1765 5)
(s1766 2)
(s1768 4)
(s1769 5)
(s1770 5)
(s1771 2)
(s1773 4)
(s1774 5)
(s1775 5)
(s1776 2)
(s1778 4)
(s1779 5)
(s1780 5)
(s1781 2)
(s1783 4)
(s1784 5)
(s1785 5)
(s1786 2)
(s1788 4)
(s1789 5)
(s1790 5)
(s1791 2)
(s1793 4)
(s1794 5)
(s1795 5)
(s1796 2)
(s1798 4)
(s1799 5)
(s1800 5)
(s1801 2)
(s1803 4)
(s1804 5)
(s1805 5)
(s1806 2)
(s1808 4)
(s1809 5)
(s1810 5)
(s1811 2)
(s1813 4)
(s1814 5)
(s1815 5)
(s1816 2)
(s1818 4)
(s1819 5)
(s1820 5)
(s1821 2)
(s1823 4)
(s1824 5)
(s1825 5)
(s1826 2)
(s1828 4)
(s1829 5)
(s1830 5)
(s1831 2)
(s1833 4)
(s1834 5)
(s1835 5)
(s1836 2)
(s1838 4)
(s1839 5)
(s1840 5)
(s1841 2)
(s1843 4)
(s1844 5)
(s1845 5)
(s1846 2)
(s1848 4)
(s1849 5)
(s1850 5)
(s1851 2)
(s1853 4)
(s1854 5)
(s1855 5)
(s1856 2)
(s1858 4)
(s1859 5)
(s1860 5)
(s1861 2)
(s1863 4)
(s1864 5)
(s1865 5)
(s1866 2)
(s1868 4)
(s1869 5)
(s1870 5)
(s1871 2)
(s1873 4)
(s1874 5)
(s1875 5)
(s1876 2)
(s1878 4)
(s1879 5)
(s1880 5)
(s1881 2)
(s1883 4)
(s1884 5)
(s1885 5)
(s1886 2)
(s1888 4)
(s1889 5)
(s1890 5)
(s1891 2)
(s1893 4)
(s1894 5)
(s1895 5)
(s1896 2)
(s1898 4)
(s1899 5)
(s1900 5)
(s1901 2)
(s1903 4)
(s1904 5)
(s1905 5)
(s1906 2)
(s1908 4)
(s1909 5)
(s1910 5)
(s1911 2)
(s1913 4)
(s1914 5)
(s1915 5)
(s1916 2)
(s1918 4)
(s1919 5)
(s1920 5)
(s1921 2)
(s1923 4)
(s1924 5)
(s1925 5)
(s1926 2)
(s1928 4)
(s1929 5)
(s1930 5)
(s1931 2)
(s1933 4)
(s1934 5)
(s1935 5)
(s1936 2)
(s1938 4)
(s1939 5)
(s1940 5)
(s1941 2)
(s1943 4)
(s1944 5)
(s1945 5)
(s1946 2)
(s1948 4)
(s1949 5)
(s1950 5)
(s1951 2)
(s1953 4)
(s1954 5)
(s1955 5)
(s1956 2)
(s1958 4)
(s1959 5)
(s1960 5)
(s1961 2)
(s1963 4)
(s1964 5)
(s1965 5)
(s1966 2)
(s1968 4)
(s1969 5)
(s1970 5)
(s1971 2)
(s1973 4)
(s1974 5)
(s1975 5)
(s1976 2)
(s1978 4)
(s1979 5)
(s1980 5)
(s1981 2)
(s1983 4)
(s1984 5)
(s1985 5)
(s1986 2)
(s1988 4)
(s1989 5)
(s1990 5)
(s1991 2)
(s1993 4)
(s1994 5)
(s1995 5)
(s1996 2)
(s1998 4)
(s1999 5)
(s2000 5)
(s2001 2)
(s2003 4)
(s2004 5)
(s2005 5)
(s2006 2)
(s2008 4)
(s2009 5)
(s2010 5)
(s2011 2)
(s2013 4)
(s2014 5)
(s2015 5)
(s2016 2)
(s2018 4)
(s2019 5)
(s2020 5)
(s2021 2)
(s2023 4)
(s2024 5)
(s2025 5)
(s2026 2)
(s2028 4)
(s2029 5)
(s2030 5)
(s2031 2)
(s2033 4)
(s2034 5)
(s2035 5)
(s2036 2)
(s2038 4)
(s2039 5)
(s2040 5)
(s2041 2)
(s2043 4)
(s2044 5)
(s2045 5)
(s2046 2)
(s2048 4)
(s2049 5)
(s2050 5)
(s2051 2)
(s2053 4)
(s2054 5)
(s2055 5)
(s2056 2)
(s2058 4)
(s2059 5)
(s2060 5)
(s2061 2)
(s2063 4)
(s2064 5)
(s2065 5)
(s2066 2)
(s2068 4)
(s2069 5)
(s2070 5)
(s2071 2)
(s2073 4)
(s2074 5)
(s2075 5)
(s2076 2)
(s2078 4)
(s2079 5)
(s2080 5)
(s2081 2)
(s2083 4)
(s2084 5)
(s2085 5)
(s2086 2)
(s2088 4)
(s2089 5)
(s2090 5)
(s2091 2)
(s2093 4)
(s2094 5)
(s2095 5)
(s2096 2)
(s2098 4)
(s2099 5)
(s2100 5)
(s2101 2)
(s2103 4)
(s2104 5)
(s2105 5)
(s2106 2)
(s2108 4)
(s2109 5)
(s2110 5)
(s2111 2)
(s2113 4)
(s2114 5)
(s2115 5)
(s2116 2)
(s2118 4)
(s2119 5)
(s2120 5)
(s2121 2)
(s2123 4)
(s2124 5)
(s2125 5)
(s2126 2)
(s2128 4)
(s2129 5)
(s2130 5)
(s2131 2)
(s2133 4)
(s2134 5)
(s2135 5)
(s2136 2)
(s2138 4)
(s2139 5)
(s2140 5)
(s2141 2)
(s2143 4)
(s2144 5)
(s2145 5)
(s2146 2)
(s2148 4)
(s2149 5)
(s2150 5)
(s2151 2)
(s2153 4)
(s2154 5)
(s2155 5)
(s2156 2)
(s2158 4)
(s2159 5)
(s2160 5)
(s2161 2)
(s2163 4)
(s2164 5)
(s2165 5)
(s2166 2)
(s2168 4)
(s2169 5)
(s2170 5)
(s2171 2)
(s2173 4)
(s2174 5)
(s2175 5)
(s2176 2)
(s2178 4)
(s2179 5)
(s2180 5)
(s2181 2)
(s2183 4)
(s2184 5)
(s2185 5)
(s2186 2)
(s2188 4)
(s2189 5)
(s2190 5)
(s2191 2)
(s2193 4)
(s2194 5)
(s2195 5)
(s2196 2)
(s2198 4)
(s2199 5)
(s2200 5)
(s2201 2)
(s2203 4)
(s2204 5)
(s2205 5)
(s2206 2)
(s2208 4)
(s2209 5)
(s2210 5)
(s2211 2)
(s2213 4)
(s2214 5)
(s2215 5)
(s2216 2)
(s2218 4)
(s2219 5)
(s2220 5)
(s2221 2)
(s2223 4)
(s2224 5)
(s2225 5)
(s2226 2)
(s2228 4)
(s2229 5)
(s2230 5)
(s2231 2)
(s2233 4)
(s2234 5)
(s2235 5)
(s2236 2)
(s2238 4)
(s2239 5)
(s2240 5)
(s2241 2)
(s2243 4)
(s2244 5)
(s2245 5)
(s2246 2)
(s2248 4)
(s2249 5)
(s2250 5)
(s2251 2)
(s2253 4)
(s2254 5)
(s2255 5)
(s2256 2)
(s2258 4)
(s2259 5)
(s2260 5)
(s2261 2)
(s2263 4)
(s2264 5)
(s2265 5)
(s2266 2)
(s2268 4)
(s2269 5)
(s2270 5)
(s2271 2)
(s2273 4)
(s2274 5)
(s2275 5)
(s2276 2)
(s2278 4)
(s2279 5)
(s2280 5)
(s2281 2)
(s2283 4)
(s2284 5)
(s2285 5)
(s2286 2)
(s2288 4)
(s2289 5)
(s2290 5)
(s2291 2)
(s2293 4)
(s2294 5)
(s2295 5)
(s2296 2)
(s2298 4)
(s2299 5)
(s2300 5)
(s2301 2)
(s2303 4)
(s2304 5)
(s2305 5)
(s2306 2)
(s2308 4)
(s2309 5)
(s2310 5)
(s2311 2)
(s2313 4)
(s2314 5)
(s2315 5)
(s2316 2)
(s2318 4)
(s2319 5)
(s2320 5)
(s2321 2)
(s2323 4)
(s2324 5)
(s2325 5)
(s2326 2)
(s2328 4)
(s2329 5)
(s2330 5)
(s2331 2)
(s2333 4)
(s2334 5)
(s2335 5)
(s2336 2)
(s2338 4)
(s2339 5)
(s2340 5)
(s2341 2)
(s2343 4)
(s2344 5)
(s2345 5)
(s2346 2)
(s2348 4)
(s2349 5)
(s2350 5)
(s2351 2)
(s2353 4)
(s2354 5)
(s2355 5)
(s2356 2)
(s2358 4)
(s2359 5)
(s2360 5)
(s2361 2)
(s2363 4)
(s2364 5)
(s2365 5)
(s2366 2)
(s2368 4)
(s2369 5)
(s2370 5)
(s2371 2)
(s2373 4)
(s2374 5)
(s2375 5)
(s2376 2)
(s2378 4)
(s2379 5)
(s2380 5)
(s2381 2)
(s2383 4)
(s2384 5)
(s2385 5)
(s2386 2)
(s2388 4)
(s2389 5)
(s2390 5)
(s2391 2)
(s2393 4)
(s2394 5)
(s2395 5)
(s2396 2)
(s2398 4)
(s2399 5)
(s2400 5)
(s2401 2)
(s2403 4)
(s2404 5)
(s2405 5)
(s2406 2)
(s2408 4)
(s2409 5)
(s2410 5)
(s2411 2)
(s2413 4)
(s2414 5)
(s2415 5)
(s2416 2)
(s2418 4)
(s2419 5)
(s2420 5)
(s2421 2)
(s2423 4)
(s2424 5)
(s2425 5)
(s2426 2)
(s2428 4)
(s2429 5)
(s2430 5)
(s2431 2)
(s2433 4)
(s2434 5)
(s2435 5)
(s2436 2)
(s2438 4)
(s2439 5)
(s2440 5)
(s2441 2)
(s2443 4)
(s2444 5)
(s2445 5)
(s2446 2)
(s2448 4)
(s2449 5)
(s2450 5)
(s2451 2)
(s2453 4)
(s2454 5)
(s2455 5)
(s2456 2)
(s2458 4)
(s2459 5)
(s2460 5)
(s2461 2)
(s2463 4)
(s2464 5)
(s2465 5)
(s2466 2)
(s2468 4)
(s2469 5)
(s2470 5)
(s2471 2)
(s2473 4)
(s2474 5)
(s2475 5)
(s2476 2)
(s2478 4)
(s2479 5)
(s2480 5)
(s2481 2)
(s2483 4)
(s2484 5)
(s2485 5)
(s2486 2)
(s2488 4)
(s2489 5)
(s2490 5)
(s2491 2)
(s2493 4)
(s2494 5)
(s2495 5)
(s2496 2)
(s2498 4)
(s2499 5)
(s2500 5)
(s2501 2)
(s2503 4)
(s2504 5)
(s2505 5)
(s2506 2)
(s2508 4)
(s2509 5)
(s2510 5)
(s2511 2)
(s2513 4)
(s2514 5)
(s2515 5)
(s2516 2)
(s2518 4)
(s2519 5)
(s2520 5)
(s2521 2)
(s2523 4)
(s2524 5)
(s2525 5)
(s2526 2)
(s2528 4)
(s2529 5)
(s2530 5)
(s2531 2)
(s2533 4)
(s2534 5)
(s2535 5)
(s2536 2)
(s2538 4)
(s2539 5)
(s2540 5)
(s2541 2)
(s2543 4)
(s2544 5)
(s2545 5)
(s2546 2)
(s2548 4)
(s2549 5)
(s2550 5)
(s2551 2)
(s2553 4)
(s2554 5)
(s2555 5)
(s2556 2)
(s2558 4)
(s2559 5)
(s2560 5)
(s2561 2)
(s2563 4)
(s2564 5)
(s2565 5)
(s2566 2)
(s2568 4)
(s2569 5)
(s2570 5)
(s2571 2)
(s2573 4)
(s2574 5)
(s2575 5)
(s2576 2)
(s2578 4)
(s2579 5)
(s2580 5)
(s2581 2)
(s2583 4)
(s2584 5)
(s2585 5)
(s2586 2)
(s2588 4)
(s2589 5)
(s2590 5)
(s2591 2)
(s2593 4)
(s2594 5)
(s2595 5)
(s2596 2)
(s2598 4)
(s2599 5)
(s2600 5)
(s2601 2)
(s2603 4)
(s2604 5)
(s2605 5)
(s2606 2)
(s2608 4)
(s2609 5)
(s2610 5)
(s2611 2)
(s2613 4)
(s2614 5)
(s2615 5)
(s2616 2)
(s2618 4)
(s2619 5)
(s2620 5)
(s2621 2)
(s2623 4)
(s2624 5)
(s2625 5)
(s2626 2)
(s2628 4)
(s2629 5)
(s2630 5)
(s2631 2)
(s2633 4)
(s2634 5)
(s2635 5)
(s2636 2)
(s2638 4)
(s2639 5)
(s2640 5)
(s2641 2)
(s2643 4)
(s2644 5)
(s2645 5)
(s2646 2)
(s2648 4)
(s2649 5)
(s2650 5)
(s2651 2)
(s2653 4)
(s2654 5)
(s2655 5)
(s2656 2)
(s2658 4)
(s2659 5)
(s2660 5)
(s2661 2)
(s2663 4)
(s2664 5)
(s2665 5)
(s2666 2)
(s2668 4)
(s2669 5)
(s2670 5)
(s2671 2)
(s2673 4)
(s2674 5)
(s2675 5)
(s2676 2)
(s2678 4)
(s2679 5)
(s2680 5)
(s2681 2)
(s2683 4)
(s2684 5)
(s2685 5)
(s2686 2)
(s2688 4)
(s2689 5)
(s2690 5)
(s2691 2)
(s2693 4)
(s2694 5)
(s2695 5)
(s2696 2)
(s2698 4)
(s2699 5)
(s2700 5)
(s2701 2)
(s2703 4)
(s2704 5)
(s2705 5)
(s2706 2)
(s2708 4)
(s2709 5)
(s2710 5)
(s2711 2)
(s2713 4)
(s2714 5)
(s2715 5)
(s2716 2)
(s2718 4)
(s2719 5)
(s2720 5)
(s2721 2)
(s2723 4)
(s2724 5)
(s2725 5)
(s2726 2)
(s2728 4)
(s2729 5)
(s2730 5)
(s2731 2)
(s2733 4)
(s2734 5)
(s2735 5)
(s2736 2)
(s2738 timeout
4)
(s2739 org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30079 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 64087ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 64131ms
Finished structural reductions in SI_LTL mode , in 1 iterations and 114211 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Stuttering acceptance computed with spot in 176 ms :[(OR (NOT p0) (AND (NOT p1) (NOT p2))), (NOT p0), (AND (NOT p1) (NOT p2))]
Running random walk in product with property : JoinFreeModules-PT-1000-LTLCardinality-06
Product exploration timeout after 22330 steps with 0 reset in 10002 ms.
Product exploration timeout after 21490 steps with 0 reset in 10005 ms.
Computed a total of 0 stabilizing places and 0 stable transitions
Computed a total of 0 stabilizing places and 0 stable transitions
Knowledge obtained : [(AND p0 p1 p2), (X p2), (X (NOT (AND (NOT p1) (NOT p2)))), (X (NOT (AND (NOT p1) p2))), (X p0), (X (AND p1 p2)), (X p1), (X (NOT (AND p1 (NOT p2))))]
False Knowledge obtained : []
Knowledge based reduction with 8 factoid took 95 ms. Reduced automaton from 3 states, 8 edges and 3 AP (stutter insensitive) to 3 states, 8 edges and 3 AP (stutter insensitive).
Stuttering acceptance computed with spot in 103 ms :[(OR (NOT p0) (AND (NOT p1) (NOT p2))), (NOT p0), (AND (NOT p1) (NOT p2))]
Reduction of identical properties reduced properties to check from 8 to 5
RANDOM walk for 40563 steps (8 resets) in 1747 ms. (23 steps per ms) remains 5/5 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1933 ms. (20 steps per ms) remains 3/5 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1924 ms. (20 steps per ms) remains 3/3 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1932 ms. (20 steps per ms) remains 3/3 properties
[2024-05-23 23:12:36] [INFO ] Invariant cache hit.
[2024-05-23 23:12:36] [INFO ] State equation strengthened by 1000 read => feed constraints.
Problem apf7 is UNSAT
All remaining problems are real, not stopping.
At refinement iteration 0 (INCLUDED_ONLY) 0/6 variables, 0/0 constraints. Problems are: Problem set: 1 solved, 2 unsolved
At refinement iteration 1 (OVERLAPS) 24/30 variables, 6/6 constraints. Problems are: Problem set: 1 solved, 2 unsolved
At refinement iteration 2 (INCLUDED_ONLY) 0/30 variables, 0/6 constraints. Problems are: Problem set: 1 solved, 2 unsolved
At refinement iteration 3 (OVERLAPS) 48/78 variables, 30/36 constraints. Problems are: Problem set: 1 solved, 2 unsolved
At refinement iteration 4 (INCLUDED_ONLY) 0/78 variables, 6/42 constraints. Problems are: Problem set: 1 solved, 2 unsolved
At refinement iteration 5 (INCLUDED_ONLY) 0/78 variables, 0/42 constraints. Problems are: Problem set: 1 solved, 2 unsolved
At refinement iteration 6 (OVERLAPS) 0/78 variables, 0/42 constraints. Problems are: Problem set: 1 solved, 2 unsolved
No progress, stopping.
After SMT solving in domain Real declared 78/13001 variables, and 42 constraints, problems are : Problem set: 1 solved, 2 unsolved in 54 ms.
Refiners :[Positive P Invariants (semi-flows): 6/1000 constraints, State Equation: 30/5000 constraints, ReadFeed: 6/1000 constraints, PredecessorRefiner: 3/3 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 1 solved, 2 unsolved
At refinement iteration 0 (INCLUDED_ONLY) 0/6 variables, 0/0 constraints. Problems are: Problem set: 1 solved, 2 unsolved
At refinement iteration 1 (OVERLAPS) 24/30 variables, 6/6 constraints. Problems are: Problem set: 1 solved, 2 unsolved
[2024-05-23 23:12:36] [INFO ] Deduced a trap composed of 3 places in 21 ms of which 0 ms to minimize.
[2024-05-23 23:12:36] [INFO ] Deduced a trap composed of 3 places in 20 ms of which 0 ms to minimize.
[2024-05-23 23:12:36] [INFO ] Deduced a trap composed of 3 places in 21 ms of which 1 ms to minimize.
[2024-05-23 23:12:36] [INFO ] Deduced a trap composed of 3 places in 21 ms of which 0 ms to minimize.
At refinement iteration 2 (INCLUDED_ONLY) 0/30 variables, 4/10 constraints. Problems are: Problem set: 1 solved, 2 unsolved
At refinement iteration 3 (INCLUDED_ONLY) 0/30 variables, 0/10 constraints. Problems are: Problem set: 1 solved, 2 unsolved
At refinement iteration 4 (OVERLAPS) 48/78 variables, 30/40 constraints. Problems are: Problem set: 1 solved, 2 unsolved
At refinement iteration 5 (INCLUDED_ONLY) 0/78 variables, 6/46 constraints. Problems are: Problem set: 1 solved, 2 unsolved
At refinement iteration 6 (INCLUDED_ONLY) 0/78 variables, 2/48 constraints. Problems are: Problem set: 1 solved, 2 unsolved
At refinement iteration 7 (INCLUDED_ONLY) 0/78 variables, 0/48 constraints. Problems are: Problem set: 1 solved, 2 unsolved
At refinement iteration 8 (OVERLAPS) 0/78 variables, 0/48 constraints. Problems are: Problem set: 1 solved, 2 unsolved
No progress, stopping.
After SMT solving in domain Int declared 78/13001 variables, and 48 constraints, problems are : Problem set: 1 solved, 2 unsolved in 291 ms.
Refiners :[Positive P Invariants (semi-flows): 6/1000 constraints, State Equation: 30/5000 constraints, ReadFeed: 6/1000 constraints, PredecessorRefiner: 2/3 constraints, Known Traps: 4/4 constraints]
After SMT, in 374ms problems are : Problem set: 1 solved, 2 unsolved
Fused 2 Parikh solutions to 1 different solutions.
Finished Parikh walk after 3820 steps, including 0 resets, run visited all 2 properties in 176 ms. (steps per millisecond=21 )
Parikh walk visited 2 properties in 177 ms.
Found 1 invariant AP formulas.
Knowledge obtained : [(AND p0 p1 p2), (X p2), (X (NOT (AND (NOT p1) (NOT p2)))), (X (NOT (AND (NOT p1) p2))), (X p0), (X (AND p1 p2)), (X p1), (X (NOT (AND p1 (NOT p2)))), (G (OR (NOT p1) p2))]
False Knowledge obtained : [(F (NOT p0)), (F (NOT (OR p1 (NOT p2)))), (F (NOT p1)), (F (NOT (AND p1 p2))), (F (NOT p2)), (F (NOT (OR p1 p2))), (F (NOT (AND p1 p2)))]
Knowledge based reduction with 9 factoid took 291 ms. Reduced automaton from 3 states, 8 edges and 3 AP (stutter insensitive) to 3 states, 6 edges and 3 AP (stutter insensitive).
Stuttering acceptance computed with spot in 98 ms :[(OR (NOT p0) (AND (NOT p1) (NOT p2))), (NOT p0), (NOT p2)]
Stuttering acceptance computed with spot in 120 ms :[(OR (NOT p0) (AND (NOT p1) (NOT p2))), (NOT p0), (NOT p2)]
Support contains 6 out of 5000 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 526 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:12:37] [INFO ] Invariant cache hit.
[2024-05-23 23:12:37] [INFO ] State equation strengthened by 1000 read => feed constraints.
Error getting values : (error "ParserException while parsing response: ((s0 5.0)
(s1 2.0)
(s3 4.0)
(s4 5.0)
(s5 5.0)
(s6 2.0)
(s8 4.0)
(s9 5.0)
(s10 5.0)
(s11 2.0)
(s13 4.0)
(s14 5.0)
(s15 5.0)
(s16 2.0)
(s18 4.0)
(s19 5.0)
(s20 5.0)
(s21 2.0)
(s23 4.0)
(s24 5.0)
(s25 5.0)
(s26 2.0)
(s28 4.0)
(s29 5.0)
(s30 5.0)
(s31 2.0)
(s33 4.0)
(s34 5.0)
(s35 5.0)
(s36 2.0)
(s38 4.0)
(s39 5.0)
(s40 5.0)
(s41 2.0)
(s43 4.0)
(s44 5.0)
(s45 5.0)
(s46 2.0)
(s48 4.0)
(s49 5.0)
(s50 5.0)
(s51 2.0)
(s53 4.0)
(s54 5.0)
(s55 5.0)
(s56 2.0)
(s58 4.0)
(s59 5.0)
(s60 5.0)
(s61 2.0)
(s63 4.0)
(s64 5.0)
(s65 5.0)
(s66 2.0)
(s68 4.0)
(s69 5.0)
(s70 5.0)
(s71 2.0)
(s73 4.0)
(s74 5.0)
(s75 5.0)
(s76 2.0)
(s78 4.0)
(s79 5.0)
(s80 5.0)
(s81 2.0)
(s83 4.0)
(s84 5.0)
(s85 5.0)
(s86 2.0)
(s88 4.0)
(s89 5.0)
(s90 5.0)
(s91 2.0)
(s93 4.0)
(s94 5.0)
(s95 5.0)
(s96 2.0)
(s98 4.0)
(s99 5.0)
(s100 5.0)
(s101 2.0)
(s103 4.0)
(s104 5.0)
(s105 5.0)
(s106 2.0)
(s108 4.0)
(s109 5.0)
(s110 5.0)
(s111 2.0)
(s113 4.0)
(s114 5.0)
(s115 5.0)
(s116 2.0)
(s118 4.0)
(s119 5.0)
(s120 5.0)
(s121 2.0)
(s123 4.0)
(s124 5.0)
(s125 5.0)
(s126 2.0)
(s128 4.0)
(s129 5.0)
(s130 5.0)
(s131 2.0)
(s133 4.0)
(s134 5.0)
(s135 5.0)
(s136 2.0)
(s138 4.0)
(s139 5.0)
(s140 5.0)
(s141 2.0)
(s143 4.0)
(s144 5.0)
(s145 5.0)
(s146 2.0)
(s148 4.0)
(s149 5.0)
(s150 5.0)
(s151 2.0)
(s153 4.0)
(s154 5.0)
(s155 5.0)
(s156 2.0)
(s158 4.0)
(s159 5.0)
(s160 5.0)
(s161 2.0)
(s163 4.0)
(s164 5.0)
(s165 5.0)
(s166 2.0)
(s168 4.0)
(s169 5.0)
(s170 5.0)
(s171 2.0)
(s173 4.0)
(s174 5.0)
(s175 5.0)
(s176 2.0)
(s178 4.0)
(s179 5.0)
(s180 5.0)
(s181 2.0)
(s183 4.0)
(s184 5.0)
(s185 5.0)
(s186 2.0)
(s188 4.0)
(s189 5.0)
(s190 5.0)
(s191 2.0)
(s193 4.0)
(s194 5.0)
(s195 5.0)
(s196 2.0)
(s198 4.0)
(s199 5.0)
(s200 5.0)
(s201 2.0)
(s203 4.0)
(s204 5.0)
(s205 5.0)
(s206 2.0)
(s208 4.0)
(s209 5.0)
(s210 5.0)
(s211 2.0)
(s213 4.0)
(s214 5.0)
(s215 5.0)
(s216 2.0)
(s218 4.0)
(s219 5.0)
(s220 5.0)
(s221 2.0)
(s223 4.0)
(s224 5.0)
(s225 5.0)
(s226 2.0)
(s228 4.0)
(s229 5.0)
(s230 5.0)
(s231 2.0)
(s233 4.0)
(s234 5.0)
(s235 5.0)
(s236 2.0)
(s238 4.0)
(s239 5.0)
(s240 5.0)
(s241 2.0)
(s243 4.0)
(s244 5.0)
(s245 5.0)
(s246 2.0)
(s248 4.0)
(s249 5.0)
(s250 5.0)
(s251 2.0)
(s253 4.0)
(s254 5.0)
(s255 5.0)
(s256 2.0)
(s258 4.0)
(s259 5.0)
(s260 5.0)
(s261 2.0)
(s263 4.0)
(s264 5.0)
(s265 5.0)
(s266 2.0)
(s268 4.0)
(s269 5.0)
(s270 5.0)
(s271 2.0)
(s273 4.0)
(s274 5.0)
(s275 5.0)
(s276 2.0)
(s278 4.0)
(s279 5.0)
(s280 5.0)
(s281 2.0)
(s283 4.0)
(s284 5.0)
(s285 5.0)
(s286 2.0)
(s288 4.0)
(s289 5.0)
(s290 5.0)
(s291 2.0)
(s293 4.0)
(s294 5.0)
(s295 5.0)
(s296 2.0)
(s298 4.0)
(s299 5.0)
(s300 5.0)
(s301 2.0)
(s303 4.0)
(s304 5.0)
(s305 5.0)
(s306 2.0)
(s308 4.0)
(s309 5.0)
(s310 5.0)
(s311 2.0)
(s313 4.0)
(s314 5.0)
(s315 5.0)
(s316 2.0)
(s318 4.0)
(s319 5.0)
(s320 5.0)
(s321 2.0)
(s323 4.0)
(s324 5.0)
(s325 5.0)
(s326 2.0)
(s328 4.0)
(s329 5.0)
(s330 5.0)
(s331 2.0)
(s333 4.0)
(s334 5.0)
(s335 5.0)
(s336 2.0)
(s338 4.0)
(s339 5.0)
(s340 5.0)
(s341 2.0)
(s343 4.0)
(s344 5.0)
(s345 5.0)
(s346 2.0)
(s348 4.0)
(s349 5.0)
(s350 5.0)
(s351 2.0)
(s353 4.0)
(s354 5.0)
(s355 5.0)
(s356 2.0)
(s358 4.0)
(s359 5.0)
(s360 5.0)
(s361 2.0)
(s363 4.0)
(s364 5.0)
(s365 5.0)
(s366 2.0)
(s368 4.0)
(s369 5.0)
(s370 5.0)
(s371 2.0)
(s373 4.0)
(s374 5.0)
(s375 5.0)
(s376 2.0)
(s378 4.0)
(s379 5.0)
(s380 5.0)
(s381 2.0)
(s383 4.0)
(s384 5.0)
(s385 5.0)
(s386 2.0)
(s388 4.0)
(s389 5.0)
(s390 5.0)
(s391 2.0)
(s393 4.0)
(s394 5.0)
(s395 5.0)
(s396 2.0)
(s398 4.0)
(s399 5.0)
(s400 5.0)
(s401 2.0)
(s403 4.0)
(s404 5.0)
(s405 5.0)
(s406 2.0)
(s408 4.0)
(s409 5.0)
(s410 5.0)
(s411 2.0)
(s413 4.0)
(s414 5.0)
(s415 5.0)
(s416 2.0)
(s418 4.0)
(s419 5.0)
(s420 5.0)
(s421 2.0)
(s423 4.0)
(s424 5.0)
(s425 5.0)
(s426 2.0)
(s428 4.0)
(s429 5.0)
(s430 5.0)
(s431 2.0)
(s433 4.0)
(s434 5.0)
(s435 5.0)
(s436 2.0)
(s438 4.0)
(s439 5.0)
(s440 5.0)
(s441 2.0)
(s443 4.0)
(s444 5.0)
(s445 5.0)
(s446 2.0)
(s448 4.0)
(s449 5.0)
(s450 5.0)
(s451 2.0)
(s453 4.0)
(s454 5.0)
(s455 5.0)
(s456 2.0)
(s458 4.0)
(s459 5.0)
(s460 5.0)
(s461 2.0)
(s463 4.0)
(s464 5.0)
(s465 5.0)
(s466 2.0)
(s468 4.0)
(s469 5.0)
(s470 5.0)
(s471 2.0)
(s473 4.0)
(s474 5.0)
(s475 5.0)
(s476 2.0)
(s478 4.0)
(s479 5.0)
(s480 5.0)
(s481 2.0)
(s483 4.0)
(s484 5.0)
(s485 5.0)
(s486 2.0)
(s488 4.0)
(s489 5.0)
(s490 5.0)
(s491 2.0)
(s493 4.0)
(s494 5.0)
(s495 5.0)
(s496 2.0)
(s498 4.0)
(s499 5.0)
(s500 5.0)
(s501 2.0)
(s503 4.0)
(s504 5.0)
(s505 5.0)
(s506 2.0)
(s508 4.0)
(s509 5.0)
(s510 5.0)
(s511 2.0)
(s513 4.0)
(s514 5.0)
(s515 5.0)
(s516 2.0)
(s518 4.0)
(s519 5.0)
(s520 5.0)
(s521 2.0)
(s523 4.0)
(s524 5.0)
(s525 5.0)
(s526 2.0)
(s528 4.0)
(s529 5.0)
(s530 5.0)
(s531 2.0)
(s533 4.0)
(s534 5.0)
(s535 5.0)
(s536 2.0)
(s538 4.0)
(s539 5.0)
(s540 5.0)
(s541 2.0)
(s543 4.0)
(s544 5.0)
(s545 5.0)
(s546 2.0)
(s548 4.0)
(s549 5.0)
(s550 5.0)
(s551 2.0)
(s553 4.0)
(s554 5.0)
(s555 5.0)
(s556 2.0)
(s558 4.0)
(s559 5.0)
(s560 5.0)
(s561 2.0)
(s563 4.0)
(s564 5.0)
(s565 5.0)
(s566 2.0)
(s568 4.0)
(s569 5.0)
(s570 5.0)
(s571 2.0)
(s573 4.0)
(s574 5.0)
(s575 5.0)
(s576 2.0)
(s578 4.0)
(s579 5.0)
(s580 5.0)
(s581 2.0)
(s583 4.0)
(s584 5.0)
(s585 5.0)
(s586 2.0)
(s588 4.0)
(s589 5.0)
(s590 5.0)
(s591 2.0)
(s593 4.0)
(s594 5.0)
(s595 5.0)
(s596 2.0)
(s598 4.0)
(s599 5.0)
(s600 5.0)
(s601 2.0)
(s603 4.0)
(s604 5.0)
(s605 5.0)
(s606 2.0)
(s608 4.0)
(s609 5.0)
(s610 5.0)
(s611 2.0)
(s613 4.0)
(s614 5.0)
(s615 5.0)
(s616 2.0)
(s618 4.0)
(s619 5.0)
(s620 5.0)
(s621 2.0)
(s623 4.0)
(s624 5.0)
(s625 5.0)
(s626 2.0)
(s628 4.0)
(s629 5.0)
(s630 5.0)
(s631 2.0)
(s633 4.0)
(s634 5.0)
(s635 5.0)
(s636 2.0)
(s638 4.0)
(s639 5.0)
(s640 5.0)
(s641 2.0)
(s643 4.0)
(s644 5.0)
(s645 5.0)
(s646 2.0)
(s648 4.0)
(s649 5.0)
(s650 5.0)
(s651 2.0)
(s653 4.0)
(s654 5.0)
(s655 5.0)
(s656 2.0)
(s658 4.0)
(s659 5.0)
(s660 5.0)
(s661 2.0)
(s663 4.0)
(s664 5.0)
(s665 5.0)
(s666 2.0)
(s668 4.0)
(s669 5.0)
(s670 5.0)
(s671 2.0)
(s673 4.0)
(s674 5.0)
(s675 5.0)
(s676 2.0)
(s678 4.0)
(s679 5.0)
(s680 5.0)
(s681 2.0)
(s683 4.0)
(s684 5.0)
(s685 5.0)
(s686 2.0)
(s688 4.0)
(s689 5.0)
(s690 5.0)
(s691 2.0)
(s693 4.0)
(s694 5.0)
(s695 5.0)
(s696 2.0)
(s698 4.0)
(s699 5.0)
(s700 5.0)
(s701 2.0)
(s703 4.0)
(s704 5.0)
(s705 5.0)
(s706 2.0)
(s708 4.0)
(s709 5.0)
(s710 5.0)
(s711 2.0)
(s713 4.0)
(s714 5.0)
(s715 5.0)
(s716 2.0)
(s718 4.0)
(s719 5.0)
(s720 5.0)
(s721 2.0)
(s723 4.0)
(s724 5.0)
(s725 5.0)
(s726 2.0)
(s728 4.0)
(s729 5.0)
(s730 5.0)
(s731 2.0)
(s733 4.0)
(s734 5.0)
(s735 5.0)
(s736 2.0)
(s738 4.0)
(s739 5.0)
(s740 5.0)
(s741 2.0)
(s743 4.0)
(s744 5.0)
(s745 5.0)
(s746 2.0)
(s748 4.0)
(s749 5.0)
(s750 5.0)
(s751 2.0)
(s753 4.0)
(s754 5.0)
(s755 5.0)
(s756 2.0)
(s758 4.0)
(s759 5.0)
(s760 5.0)
(s761 2.0)
(s763 4.0)
(s764 5.0)
(s765 5.0)
(s766 2.0)
(s768 4.0)
(s769 5.0)
(s770 5.0)
(s771 2.0)
(s773 4.0)
(s774 5.0)
(s775 5.0)
(s776 2.0)
(s778 4.0)
(s779 5.0)
(s780 5.0)
(s781 2.0)
(s783 4.0)
(s784 5.0)
(s785 5.0)
(s786 2.0)
(s788 4.0)
(s789 5.0)
(s790 5.0)
(s791 2.0)
(s793 4.0)
(s794 5.0)
(s795 5.0)
(s796 2.0)
(s798 4.0)
(s799 5.0)
(s800 5.0)
(s801 2.0)
(s803 4.0)
(s804 5.0)
(s805 5.0)
(s806 2.0)
(s808 4.0)
(s809 5.0)
(s810 5.0)
(s811 2.0)
(s813 4.0)
(s814 5.0)
(s815 5.0)
(s816 2.0)
(s818 4.0)
(s819 5.0)
(s820 5.0)
(s821 2.0)
(s823 4.0)
(s824 5.0)
(s825 5.0)
(s826 2.0)
(s828 4.0)
(s829 5.0)
(s830 5.0)
(s831 2.0)
(s833 4.0)
(s834 5.0)
(s835 5.0)
(s836 2.0)
(s838 4.0)
(s839 5.0)
(s840 5.0)
(s841 2.0)
(s843 4.0)
(s844 5.0)
(s845 5.0)
(s846 2.0)
(s848 4.0)
(s849 5.0)
(s850 5.0)
(s851 2.0)
(s853 4.0)
(s854 5.0)
(s855 5.0)
(s856 2.0)
(s858 4.0)
(s859 5.0)
(s860 5.0)
(s861 2.0)
(s863 4.0)
(s864 5.0)
(s865 5.0)
(s866 2.0)
(s868 4.0)
(s869 5.0)
(s870 5.0)
(s871 2.0)
(s873 4.0)
(s874 5.0)
(s875 5.0)
(s876 2.0)
(s878 4.0)
(s879 5.0)
(s880 5.0)
(s881 2.0)
(s883 4.0)
(s884 5.0)
(s885 5.0)
(s886 2.0)
(s888 4.0)
(s889 5.0)
(s890 5.0)
(s891 2.0)
(s893 4.0)
(s894 5.0)
(s895 5.0)
(s896 2.0)
(s898 4.0)
(s899 5.0)
(s900 5.0)
(s901 2.0)
(s903 4.0)
(s904 5.0)
(s905 5.0)
(s906 2.0)
(s908 4.0)
(s909 5.0)
(s910 5.0)
(s911 2.0)
(s913 4.0)
(s914 5.0)
(s915 5.0)
(s916 2.0)
(s918 4.0)
(s919 5.0)
(s920 5.0)
(s921 2.0)
(s923 4.0)
(s924 5.0)
(s925 5.0)
(s926 2.0)
(s928 4.0)
(s929 5.0)
(s930 5.0)
(s931 2.0)
(s933 4.0)
(s934 5.0)
(s935 5.0)
(s936 2.0)
(s938 4.0)
(s939 5.0)
(s940 5.0)
(s941 2.0)
(s943 4.0)
(s944 5.0)
(s945 5.0)
(s946 2.0)
(s948 4.0)
(s949 5.0)
(s950 5.0)
(s951 2.0)
(s953 4.0)
(s954 5.0)
(s955 5.0)
(s956 2.0)
(s958 4.0)
(s959 5.0)
(s960 5.0)
(s961 2.0)
(s963 4.0)
(s964 5.0)
(s965 5.0)
(s966 2.0)
(s968 4.0)
(s969 5.0)
(s970 5.0)
(s971 2.0)
(s973 4.0)
(s974 5.0)
(s975 5.0)
(s976 2.0)
(s978 4.0)
(s979 5.0)
(s980 5.0)
(s981 2.0)
(s983 4.0)
(s984 5.0)
(s985 5.0)
(s986 2.0)
(s988 4.0)
(s989 5.0)
(s990 5.0)
(s991 2.0)
(s993 4.0)
(s994 5.0)
(s995 5.0)
(s996 2.0)
(s998 4.0)
(s999 5.0)
(s1000 5.0)
(s1001 2.0)
(s1003 4.0)
(s1004 5.0)
(s1005 5.0)
(s1006 2.0)
(s1008 4.0)
(s1009 5.0)
(s1010 5.0)
(s1011 2.0)
(s1013 4.0)
(s1014 5.0)
(s1015 5.0)
(s1016 2.0)
(s1018 4.0)
(s1019 5.0)
(s1020 5.0)
(s1021 2.0)
(s1023 4.0)
(s1024 5.0)
(s1025 5.0)
(s1026 2.0)
(s1028 4.0)
(s1029 5.0)
(s1030 5.0)
(s1031 2.0)
(s1033 4.0)
(s1034 5.0)
(s1035 5.0)
(s1036 2.0)
(s1038 4.0)
(s1039 5.0)
(s1040 5.0)
(s1041 2.0)
(s1043 4.0)
(s1044 5.0)
(s1045 5.0)
(s1046 2.0)
(s1048 4.0)
(s1049 5.0)
(s1050 5.0)
(s1051 2.0)
(s1053 4.0)
(s1054 5.0)
(s1055 5.0)
(s1056 2.0)
(s1058 4.0)
(s1059 5.0)
(s1060 5.0)
(s1061 2.0)
(s1063 4.0)
(s1064 5.0)
(s1065 5.0)
(s1066 2.0)
(s1068 4.0)
(s1069 5.0)
(s1070 5.0)
(s1071 2.0)
(s1073 4.0)
(s1074 5.0)
(s1075 5.0)
(s1076 2.0)
(s1078 4.0)
(s1079 5.0)
(s1080 5.0)
(s1081 2.0)
(s1083 4.0)
(s1084 5.0)
(s1085 5.0)
(s1086 2.0)
(s1088 4.0)
(s1089 5.0)
(s1090 5.0)
(s1091 2.0)
(s1093 4.0)
(s1094 5.0)
(s1095 5.0)
(s1096 2.0)
(s1098 4.0)
(s1099 5.0)
(s1100 5.0)
(s1101 2.0)
(s1103 4.0)
(s1104 5.0)
(s1105 5.0)
(s1106 2.0)
(s1108 4.0)
(s1109 5.0)
(s1110 5.0)
(s1111 2.0)
(s1113 4.0)
(s1114 5.0)
(s1115 5.0)
(s1116 2.0)
(s1118 4.0)
(s1119 5.0)
(s1120 5.0)
(s1121 2.0)
(s1123 4.0)
(s1124 5.0)
(s1125 5.0)
(s1126 2.0)
(s1128 4.0)
(s1129 5.0)
(s1130 5.0)
(s1131 2.0)
(s1133 4.0)
(s1134 5.0)
(s1135 5.0)
(s1136 2.0)
(s1138 4.0)
(s1139 5.0)
(s1140 5.0)
(s1141 2.0)
(s1143 4.0)
(s1144 5.0)
(s1145 5.0)
(s1146 2.0)
(s1148 4.0)
(s1149 5.0)
(s1150 5.0)
(s1151 2.0)
(s1153 4.0)
(s1154 5.0)
(s1155 5.0)
(s1156 2.0)
(s1158 4.0)
(s1159 5.0)
(s1160 5.0)
(s1161 2.0)
(s1163 4.0)
(s1164 5.0)
(s1165 5.0)
(s1166 2.0)
(s1168 4.0)
(s1169 5.0)
(s1170 5.0)
(s1171 2.0)
(s1173 4.0)
(s1174 5.0)
(s1175 5.0)
(s1176 2.0)
(s1178 4.0)
(s1179 5.0)
(s1180 5.0)
(s1181 2.0)
(s1183 4.0)
(s1184 5.0)
(s1185 5.0)
(s1186 2.0)
(s1188 4.0)
(s1189 5.0)
(s1190 5.0)
(s1191 2.0)
(s1193 4.0)
(s1194 5.0)
(s1195 5.0)
(s1196 2.0)
(s1198 4.0)
(s1199 5.0)
(s1200 5.0)
(s1201 2.0)
(s1203 4.0)
(s1204 5.0)
(s1205 5.0)
(s1206 2.0)
(s1208 4.0)
(s1209 5.0)
(s1210 5.0)
(s1211 2.0)
(s1213 4.0)
(s1214 5.0)
(s1215 5.0)
(s1216 2.0)
(s1218 4.0)
(s1219 5.0)
(s1220 5.0)
(s1221 2.0)
(s1223 4.0)
(s1224 5.0)
(s1225 5.0)
(s1226 2.0)
(s1228 4.0)
(s1229 5.0)
(s1230 5.0)
(s1231 2.0)
(s1233 4.0)
(s1234 5.0)
(s1235 5.0)
(s1236 2.0)
(s1238 4.0)
(s1239 5.0)
(s1240 5.0)
(s1241 2.0)
(s1243 4.0)
(s1244 5.0)
(s1245 5.0)
(s1246 2.0)
(s1248 4.0)
(s1249 5.0)
(s1250 5.0)
(s1251 2.0)
(s1253 4.0)
(s1254 5.0)
(s1255 5.0)
(s1256 2.0)
(s1258 4.0)
(s1259 5.0)
(s1260 5.0)
(s1261 2.0)
(s1263 4.0)
(s1264 5.0)
(s1265 5.0)
(s1266 2.0)
(s1268 4.0)
(s1269 5.0)
(s1270 5.0)
(s1271 2.0)
(s1273 4.0)
(s1274 5.0)
(s1275 5.0)
(s1276 2.0)
(s1278 4.0)
(s1279 5.0)
(s1280 5.0)
(s1281 2.0)
(s1283 4.0)
(s1284 5.0)
(s1285 5.0)
(s1286 2.0)
(s1288 4.0)
(s1289 5.0)
(s1290 5.0)
(s1291 2.0)
(s1293 4.0)
(s1294 5.0)
(s1295 5.0)
(s1296 2.0)
(s1298 4.0)
(s1299 5.0)
(s1300 5.0)
(s1301 2.0)
(s1303 4.0)
(s1304 5.0)
(s1305 5.0)
(s1306 2.0)
(s1308 4.0)
(s1309 5.0)
(s1310 5.0)
(s1311 2.0)
(s1313 4.0)
(s1314 5.0)
(s1315 5.0)
(s1316 2.0)
(s1318 4.0)
(s1319 5.0)
(s1320 5.0)
(s1321 2.0)
(s1323 4.0)
(s1324 5.0)
(s1325 5.0)
(s1326 2.0)
(s1328 4.0)
(s1329 5.0)
(s1330 5.0)
(s1331 2.0)
(s1333 4.0)
(s1334 5.0)
(s1335 5.0)
(s1336 2.0)
(s1338 4.0)
(s1339 5.0)
(s1340 5.0)
(s1341 2.0)
(s1343 4.0)
(s1344 5.0)
(s1345 5.0)
(s1346 2.0)
(s1348 4.0)
(s1349 5.0)
(s1350 5.0)
(s1351 2.0)
(s1353 4.0)
(s1354 5.0)
(s1355 5.0)
(s1356 2.0)
(s1358 4.0)
(s1359 5.0)
(s1360 5.0)
(s1361 2.0)
(s1363 4.0)
(s1364 5.0)
(s1365 5.0)
(s1366 2.0)
(s1368 4.0)
(s1369 5.0)
(s1370 5.0)
(s1371 2.0)
(s1373 4.0)
(s1374 5.0)
(s1375 5.0)
(s1376 2.0)
(s1378 4.0)
(s1379 5.0)
(s1380 5.0)
(s1381 2.0)
(s1383 4.0)
(s1384 5.0)
(s1385 5.0)
(s1386 2.0)
(s1388 4.0)
(s1389 5.0)
(s1390 5.0)
(s1391 2.0)
(s1393 4.0)
(s1394 5.0)
(s1395 5.0)
(s1396 2.0)
(s1398 4.0)
(s1399 5.0)
(s1400 5.0)
(s1401 2.0)
(s1403 4.0)
(s1404 5.0)
(s1405 5.0)
(s1406 2.0)
(s1408 4.0)
(s1409 5.0)
(s1410 5.0)
(s1411 2.0)
(s1413 4.0)
(s1414 5.0)
(s1415 5.0)
(s1416 2.0)
(s1418 4.0)
(s1419 5.0)
(s1420 5.0)
(s1421 2.0)
(s1423 4.0)
(s1424 5.0)
(s1425 5.0)
(s1426 2.0)
(s1428 4.0)
(s1429 5.0)
(s1430 5.0)
(s1431 2.0)
(s1433 4.0)
(s1434 5.0)
(s1435 5.0)
(s1436 2.0)
(s1438 4.0)
(s1439 5.0)
(s1440 5.0)
(s1441 2.0)
(s1443 4.0)
(s1444 5.0)
(s1445 5.0)
(s1446 2.0)
(s1448 4.0)
(s1449 5.0)
(s1450 5.0)
(s1451 2.0)
(s1453 4.0)
(s1454 5.0)
(s1455 5.0)
(s1456 2.0)
(s1458 4.0)
(s1459 5.0)
(s1460 5.0)
(s1461 2.0)
(s1463 4.0)
(s1464 5.0)
(s1465 5.0)
(s1466 2.0)
(s1468 4.0)
(s1469 5.0)
(s1470 5.0)
(s1471 2.0)
(s1473 4.0)
(s1474 5.0)
(s1475 5.0)
(s1476 2.0)
(s1478 4.0)
(s1479 5.0)
(s1480 5.0)
(s1481 2.0)
(s1483 4.0)
(s1484 5.0)
(s1485 5.0)
(s1486 2.0)
(s1488 4.0)
(s1489 5.0)
(s1490 5.0)
(s1491 2.0)
(s1493 4.0)
(s1494 5.0)
(s1495 5.0)
(s1496 2.0)
(s1498 4.0)
(s1499 5.0)
(s1500 5.0)
(s1501 2.0)
(s1503 4.0)
(s1504 5.0)
(s1505 5.0)
(s1506 2.0)
(s1508 4.0)
(s1509 5.0)
(s1510 5.0)
(s1511 2.0)
(s1513 4.0)
(s1514 5.0)
(s1515 5.0)
(s1516 2.0)
(s1518 4.0)
(s1519 5.0)
(s1520 5.0)
(s1521 2.0)
(s1523 4.0)
(s1524 5.0)
(s1525 5.0)
(s1526 2.0)
(s1528 4.0)
(s1529 5.0)
(s1530 5.0)
(s1531 2.0)
(s1533 4.0)
(s1534 5.0)
(s1535 5.0)
(s1536 2.0)
(s1538 4.0)
(s1539 5.0)
(s1540 5.0)
(s1541 2.0)
(s1543 4.0)
(s1544 5.0)
(s1545 5.0)
(s1546 2.0)
(s1548 4.0)
(s1549 5.0)
(s1550 5.0)
(s1551 2.0)
(s1553 4.0)
(s1554 5.0)
(s1555 5.0)
(s1556 2.0)
(s1558 4.0)
(s1559 5.0)
(s1560 5.0)
(s1561 2.0)
(s1563 4.0)
(s1564 5.0)
(s1565 5.0)
(s1566 2.0)
(s1568 4.0)
(s1569 5.0)
(s1570 5.0)
(s1571 2.0)
(s1573 4.0)
(s1574 5.0)
(s1575 5.0)
(s1576 2.0)
(s1578 4.0)
(s1579 5.0)
(s1580 5.0)
(s1581 2.0)
(s1583 4.0)
(s1584 5.0)
(s1585 5.0)
(s1586 2.0)
(s1588 4.0)
(s1589 5.0)
(s1590 5.0)
(s1591 2.0)
(s1593 4.0)
(s1594 5.0)
(s1595 5.0)
(s1596 2.0)
(s1598 4.0)
(s1599 5.0)
(s1600 5.0)
(s1601 2.0)
(s1603 4.0)
(s1604 5.0)
(s1605 5.0)
(s1606 2.0)
(s1608 4.0)
(s1609 5.0)
(s1610 5.0)
(s1611 2.0)
(s1613 4.0)
(s1614 5.0)
(s1615 5.0)
(s1616 2.0)
(s1618 4.0)
(s1619 5.0)
(s1620 5.0)
(s1621 2.0)
(s1623 4.0)
(s1624 5.0)
(s1625 5.0)
(s1626 2.0)
(s1628 4.0)
(s1629 5.0)
(s1630 5.0)
(s1631 2.0)
(s1633 4.0)
(s1634 5.0)
(s1635 5.0)
(s1636 2.0)
(s1638 4.0)
(s1639 5.0)
(s1640 5.0)
(s1641 2.0)
(s1643 4.0)
(s1644 5.0)
(s1645 5.0)
(s1646 2.0)
(s1648 4.0)
(s1649 5.0)
(s1650 5.0)
(s1651 2.0)
(s1653 4.0)
(s1654 5.0)
(s1655 5.0)
(s1656 2.0)
(s1658 4.0)
(s1659 5.0)
(s1660 5.0)
(s1661 2.0)
(s1663 4.0)
(s1664 5.0)
(s1665 5.0)
(s1666 2.0)
(s1668 4.0)
(s1669 5.0)
(s1670 5.0)
(s1671 2.0)
(s1673 4.0)
(s1674 5.0)
(s1675 5.0)
(s1676 2.0)
(s1678 4.0)
(s1679 5.0)
(s1680 5.0)
(s1681 2.0)
(s1683 4.0)
(s1684 5.0)
(s1685 5.0)
(s1686 2.0)
(s1688 4.0)
(s1689 5.0)
(s1690 5.0)
(s1691 2.0)
(s1693 4.0)
(s1694 5.0)
(s1695 5.0)
(s1696 2.0)
(s1698 4.0)
(s1699 5.0)
(s1700 5.0)
(s1701 2.0)
(s1703 4.0)
(s1704 5.0)
(s1705 5.0)
(s1706 2.0)
(s1708 4.0)
(s1709 5.0)
(s1710 5.0)
(s1711 2.0)
(s1713 4.0)
(s1714 5.0)
(s1715 5.0)
(s1716 2.0)
(s1718 4.0)
(s1719 5.0)
(s1720 5.0)
(s1721 2.0)
(s1723 4.0)
(s1724 5.0)
(s1725 5.0)
(s1726 2.0)
(s1728 4.0)
(s1729 5.0)
(s1730 5.0)
(s1731 2.0)
(s1733 4.0)
(s1734 5.0)
(s1735 5.0)
(s1736 2.0)
(s1738 4.0)
(s1739 5.0)
(s1740 5.0)
(s1741 2.0)
(s1743 4.0)
(s1744 5.0)
(s1745 5.0)
(s1746 2.0)
(s1748 4.0)
(s1749 5.0)
(s1750 5.0)
(s1751 2.0)
(s1753 4.0)
(s1754 5.0)
(s1755 5.0)
(s1756 2.0)
(s1758 4.0)
(s1759 5.0)
(s1760 5.0)
(s1761 2.0)
(s1763 4.0)
(s1764 5.0)
(s1765 5.0)
(s1766 2.0)
(s1768 4.0)
(s1769 5.0)
(s1770 5.0)
(s1771 2.0)
(s1773 4.0)
(s1774 5.0)
(s1775 5.0)
(s1776 2.0)
(s1778 4.0)
(s1779 5.0)
(s1780 5.0)
(s1781 2.0)
(s1783 4.0)
(s1784 5.0)
(s1785 5.0)
(s1786 2.0)
(s1788 4.0)
(s1789 5.0)
(s1790 5.0)
(s1791 2.0)
(s1793 4.0)
(s1794 5.0)
(s1795 5.0)
(s1796 2.0)
(s1798 4.0)
(s1799 5.0)
(s1800 5.0)
(s1801 2.0)
(s1803 4.0)
(s1804 5.0)
(s1805 5.0)
(s1806 2.0)
(s1808 4.0)
(s1809 5.0)
(s1810 5.0)
(s1811 2.0)
(s1813 4.0)
(s1814 5.0)
(s1815 5.0)
(s1816 2.0)
(s1818 4.0)
(s1819 5.0)
(s1820 5.0)
(s1821 2.0)
(s1823 4.0)
(s1824 5.0)
(s1825 5.0)
(s1826 2.0)
(s1828 4.0)
(s1829 5.0)
(s1830 5.0)
(s1831 2.0)
(s1833 4.0)
(s1834 5.0)
(s1835 5.0)
(s1836 2.0)
(s1838 4.0)
(s1839 5.0)
(s1840 5.0)
(s1841 2.0)
(s1843 4.0)
(s1844 5.0)
(s1845 5.0)
(s1846 2.0)
(s1848 4.0)
(s1849 5.0)
(s1850 5.0)
(s1851 2.0)
(s1853 4.0)
(s1854 5.0)
(s1855 5.0)
(s1856 2.0)
(s1858 4.0)
(s1859 5.0)
(s1860 5.0)
(s1861 2.0)
(s1863 4.0)
(s1864 5.0)
(s1865 5.0)
(s1866 2.0)
(s1868 4.0)
(s1869 5.0)
(s1870 5.0)
(s1871 2.0)
(s1873 4.0)
(s1874 5.0)
(s1875 5.0)
(s1876 2.0)
(s1878 4.0)
(s1879 5.0)
(s1880 5.0)
(s1881 2.0)
(s1883 4.0)
(s1884 5.0)
(s1885 5.0)
(s1886 2.0)
(s1888 4.0)
(s1889 5.0)
(s1890 5.0)
(s1891 2.0)
(s1893 4.0)
(s1894 5.0)
(s1895 5.0)
(s1896 2.0)
(s1898 4.0)
(s1899 5.0)
(s1900 5.0)
(s1901 2.0)
(s1903 4.0)
(s1904 5.0)
(s1905 5.0)
(s1906 2.0)
(s1908 4.0)
(s1909 5.0)
(s1910 5.0)
(s1911 2.0)
(s1913 4.0)
(s1914 5.0)
(s1915 5.0)
(s1916 2.0)
(s1918 4.0)
(s1919 5.0)
(s1920 5.0)
(s1921 2.0)
(s1923 4.0)
(s1924 5.0)
(s1925 5.0)
(s1926 2.0)
(s1928 4.0)
(s1929 5.0)
(s1930 5.0)
(s1931 2.0)
(s1933 4.0)
(s1934 5.0)
(s1935 5.0)
(s1936 2.0)
(s1938 4.0)
(s1939 5.0)
(s1940 5.0)
(s1941 2.0)
(s1943 4.0)
(s1944 5.0)
(s1945 5.0)
(s1946 2.0)
(s1948 4.0)
(s1949 5.0)
(s1950 5.0)
(s1951 2.0)
(s1953 4.0)
(s1954 5.0)
(s1955 5.0)
(s1956 2.0)
(s1958 4.0)
(s1959 5.0)
(s1960 5.0)
(s1961 2.0)
(s1963 4.0)
(s1964 5.0)
(s1965 5.0)
(s1966 2.0)
(s1968 4.0)
(s1969 5.0)
(s1970 5.0)
(s1971 2.0)
(s1973 4.0)
(s1974 5.0)
(s1975 5.0)
(s1976 2.0)
(s1978 4.0)
(s1979 5.0)
(s1980 5.0)
(s1981 2.0)
(s1983 4.0)
(s1984 5.0)
(s1985 5.0)
(s1986 2.0)
(s1988 4.0)
(s1989 5.0)
(s1990 5.0)
(s1991 2.0)
(s1993 4.0)
(s1994 5.0)
(s1995 5.0)
(s1996 2.0)
(s1998 4.0)
(s1999 5.0)
(s2000 5.0)
(s2001 2.0)
(s2003 4.0)
(s2004 5.0)
(s2005 5.0)
(s2006 2.0)
(s2008 4.0)
(s2009 5.0)
(s2010 5.0)
(s2011 2.0)
(s2013 4.0)
(s2014 5.0)
(s2015 5.0)
(s2016 2.0)
(s2018 4.0)
(s2019 5.0)
(s2020 5.0)
(s2021 2.0)
(s2023 4.0)
(s2024 5.0)
(s2025 5.0)
(s2026 2.0)
(s2028 4.0)
(s2029 5.0)
(s2030 5.0)
(s2031 2.0)
(s2033 4.0)
(s2034 5.0)
(s2035 5.0)
(s2036 2.0)
(s2038 4.0)
(s2039 5.0)
(s2040 5.0)
(s2041 2.0)
(s2043 4.0)
(s2044 5.0)
(s2045 5.0)
(s2046 2.0)
(s2048 4.0)
(s2049 5.0)
(s2050 5.0)
(s2051 2.0)
(s2053 4.0)
(s2054 5.0)
(s2055 5.0)
(s2056 2.0)
(s2058 4.0)
(s2059 5.0)
(s2060 5.0)
(s2061 2.0)
(s2063 4.0)
(s2064 5.0)
(s2065 5.0)
(s2066 2.0)
(s2068 4.0)
(s2069 5.0)
(s2070 5.0)
(s2071 2.0)
(s2073 4.0)
(s2074 5.0)
(s2075 5.0)
(s2076 2.0)
(s2078 4.0)
(s2079 5.0)
(s2080 5.0)
(s2081 2.0)
(s2083 4.0)
(s2084 5.0)
(s2085 5.0)
(s2086 2.0)
(s2088 4.0)
(s2089 5.0)
(s2090 5.0)
(s2091 2.0)
(s2093 4.0)
(s2094 5.0)
(s2095 5.0)
(s2096 2.0)
(s2098 4.0)
(s2099 5.0)
(s2100 5.0)
(s2101 2.0)
(s2103 4.0)
(s2104 5.0)
(s2105 5.0)
(s2106 2.0)
(s2108 4.0)
(s2109 5.0)
(s2110 5.0)
(s2111 2.0)
(s2113 4.0)
(s2114 5.0)
(s2115 5.0)
(s2116 2.0)
(s2118 4.0)
(s2119 5.0)
(s2120 5.0)
(s2121 2.0)
(s2123 4.0)
(s2124 5.0)
(s2125 5.0)
(s2126 2.0)
(s2128 4.0)
(s2129 5.0)
(s2130 5.0)
(s2131 2.0)
(s2133 4.0)
(s2134 5.0)
(s2135 5.0)
(s2136 2.0)
(s2138 4.0)
(s2139 5.0)
(s2140 5.0)
(s2141 2.0)
(s2143 4.0)
(s2144 5.0)
(s2145 5.0)
(s2146 2.0)
(s2148 4.0)
(s2149 5.0)
(s2150 5.0)
(s2151 2.0)
(s2153 4.0)
(s2154 5.0)
(s2155 5.0)
(s2156 2.0)
(s2158 4.0)
(s2159 5.0)
(s2160 5.0)
(s2161 2.0)
(s2163 4.0)
(s2164 5.0)
(s2165 5.0)
(s2166 2.0)
(s2168 4.0)
(s2169 5.0)
(s2170 5.0)
(s2171 2.0)
(s2173 4.0)
(s2174 5.0)
(s2175 5.0)
(s2176 2.0)
(s2178 4.0)
(s2179 5.0)
(s2180 5.0)
(s2181 2.0)
(s2183 4.0)
(s2184 5.0)
(s2185 5.0)
(s2186 2.0)
(s2188 4.0)
(s2189 5.0)
(s2190 5.0)
(s2191 2.0)
(s2193 4.0)
(s2194 5.0)
(s2195 5.0)
(s2196 2.0)
(s2198 4.0)
(s2199 5.0)
(s2200 5.0)
(s2201 2.0)
(s2203 4.0)
(s2204 5.0)
(s2205 5.0)
(s2206 2.0)
(s2208 4.0)
(s2209 5.0)
(s2210 5.0)
(s2211 2.0)
(s2213 4.0)
(s2214 5.0)
(s2215 5.0)
(s2216 2.0)
(s2218 4.0)
(s2219 5.0)
(s2220 5.0)
(s2221 2.0)
(s2223 4.0)
(s2224 5.0)
(s2225 5.0)
(s2226 2.0)
(s2228 4.0)
(s2229 5.0)
(s2230 5.0)
(s2231 2.0)
(s2233 4.0)
(s2234 5.0)
(s2235 5.0)
(s2236 2.0)
(s2238 4.0)
(s2239 5.0)
(s2240 5.0)
(s2241 2.0)
(s2243 4.0)
(s2244 5.0)
(s2245 5.0)
(s2246 2.0)
(s2248 4.0)
(s2249 5.0)
(s2250 5.0)
(s2251 2.0)
(s2253 4.0)
(s2254 5.0)
(s2255 5.0)
(s2256 2.0)
(s2258 4.0)
(s2259 5.0)
(s2260 5.0)
(s2261 2.0)
(s2263 4.0)
(s2264 5.0)
(s2265 5.0)
(s2266 2.0)
(s2268 4.0)
(s2269 5.0)
(s2270 5.0)
(s2271 2.0)
(s2273 4.0)
(s2274 5.0)
(s2275 5.0)
(s2276 2.0)
(s2278 4.0)
(s2279 5.0)
(s2280 5.0)
(s2281 2.0)
(s2283 4.0)
(s2284 5.0)
(s2285 5.0)
(s2286 2.0)
(s2288 4.0)
(s2289 5.0)
(s2290 5.0)
(s2291 2.0)
(s2293 4.0)
(s2294 5.0)
(s2295 5.0)
(s2296 2.0)
(s2298 4.0)
(s2299 5.0)
(s2300 5.0)
(s2301 2.0)
(s2303 4.0)
(s2304 5.0)
(s2305 5.0)
(s2306 2.0)
(s2308 4.0)
(s2309 5.0)
(s2310 5.0)
(s2311 2.0)
(s2313 4.0)
(s2314 5.0)
(s2315 5.0)
(s2316 2.0)
(s2318 4.0)
(s2319 5.0)
(s2320 5.0)
(s2321 2.0)
(s2323 4.0)
(s2324 5.0)
(s2325 5.0)
(s2326 2.0)
(s2328 4.0)
(s2329 5.0)
(s2330 5.0)
(s2331 2.0)
(s2333 4.0)
(s2334 5.0)
(s2335 5.0)
(s2336 2.0)
(s2338 4.0)
(s2339 5.0)
(s2340 5.0)
(s2341 2.0)
(s2343 4.0)
(s2344 5.0)
(s2345 5.0)
(s2346 2.0)
(s2348 4.0)
(s2349 5.0)
(s2350 5.0)
(s2351 2.0)
(s2353 4.0)
(s2354 5.0)
(s2355 5.0)
(s2356 2.0)
(s2358 4.0)
(s2359 5.0)
(s2360 5.0)
(s2361 2.0)
(s2363 4.0)
(s2364 5.0)
(s2365 5.0)
(s2366 2.0)
(s2368 4.0)
(s2369 5.0)
(s2370 5.0)
(s2371 2.0)
(s2373 4.0)
(s2374 5.0)
(s2375 5.0)
(s2376 2.0)
(s2378 4.0)
(s2379 5.0)
(s2380 5.0)
(s2381 2.0)
(s2383 4.0)
(s2384 5.0)
(s2385 5.0)
(s2386 2.0)
(s2388 4.0)
(s2389 5.0)
(s2390 5.0)
(s2391 2.0)
(s2393 4.0)
(s2394 5.0)
(s2395 5.0)
(s2396 2.0)
(s2398 4.0)
(s2399 5.0)
(s2400 5.0)
(s2401 2.0)
(s2403 4.0)
(s2404 5.0)
(s2405 5.0)
(s2406 2.0)
(s2408 4.0)
(s2409 5.0)
(s2410 5.0)
(s2411 2.0)
(s2413 4.0)
(s2414 5.0)
(s2415 5.0)
(s2416 2.0)
(s2418 4.0)
(s2419 5.0)
(s2420 5.0)
(s2421 2.0)
(s2423 4.0)
(s2424 5.0)
(s2425 5.0)
(s2426 2.0)
(s2428 4.0)
(s2429 5.0)
(s2430 5.0)
(s2431 2.0)
(s2433 4.0)
(s2434 5.0)
(s2435 5.0)
(s2436 2.0)
(s2438 4.0)
(s2439 5.0)
(s2440 5.0)
(s2441 2.0)
(s2443 4.0)
(s2444 5.0)
(s2445 5.0)
(s2446 2.0)
(s2448 4.0)
(s2449 5.0)
(s2450 5.0)
(s2451 2.0)
(s2453 4.0)
(s2454 5.0)
(s2455 5.0)
(s2456 2.0)
(s2458 4.0)
(s2459 5.0)
(s2460 5.0)
(s2461 2.0)
(s2463 4.0)
(s2464 5.0)
(s2465 5.0)
(s2466 2.0)
(s2468 4.0)
(s2469 5.0)
(s2470 5.0)
(s2471 2.0)
(s2473 4.0)
(s2474 5.0)
(s2475 5.0)
(s2476 2.0)
(s2478 4.0)
(s2479 5.0)
(s2480 5.0)
(s2481 2.0)
(s2483 4.0)
(s2484 5.0)
(s2485 5.0)
(s2486 2.0)
(s2488 4.0)
(s2489 5.0)
(s2490 5.0)
(s2491 2.0)
(s2493 4.0)
(s2494 5.0)
(s2495 5.0)
(s2496 2.0)
(s2498 4.0)
(s2499 5.0)
(s2500 5.0)
(s2501 2.0)
(s2503 4.0)
(s2504 5.0)
(s2505 5.0)
(s2506 2.0)
(s2508 4.0)
(s2509 5.0)
(s2510 5.0)
(s2511 2.0)
(s2513 4.0)
(s2514 5.0)
(s2515 5.0)
(s2516 2.0)
(s2518 4.0)
(s2519 5.0)
(s2520 5.0)
(s2521 2.0)
(s2523 4.0)
(s2524 5.0)
(s2525 5.0)
(s2526 2.0)
(s2528 4.0)
(s2529 5.0)
(s2530 5.0)
(s2531 2.0)
(s2533 4.0)
(s2534 5.0)
(s2535 5.0)
(s2536 2.0)
(s2538 4.0)
(s2539 5.0)
(s2540 5.0)
(s2541 2.0)
(s2543 4.0)
(s2544 5.0)
(s2545 5.0)
(s2546 2.0)
(s2548 4.0)
(s2549 5.0)
(s2550 5.0)
(s2551 2.0)
(s2553 4.0)
(s2554 5.0)
(s2555 5.0)
(s2556 2.0)
(s2558 4.0)
(s2559 5.0)
(s2560 5.0)
(s2561 2.0)
(s2563 4.0)
(s2564 5.0)
(s2565 5.0)
(s2566 2.0)
(s2568 4.0)
(s2569 5.0)
(s2570 5.0)
(s2571 2.0)
(s2573 4.0)
(s2574 5.0)
(s2575 5.0)
(s2576 2.0)
(s2578 4.0)
(s2579 5.0)
(s2580 5.0)
(s2581 2.0)
(s2583 4.0)
(s2584 5.0)
(s2585 5.0)
(s2586 2.0)
(s2588 4.0)
(s2589 5.0)
(s2590 5.0)
(s2591 2.0)
(s2593 4.0)
(s2594 5.0)
(s2595 5.0)
(s2596 2.0)
(s2598 4.0)
(s2599 5.0)
(s2600 5.0)
(s2601 2.0)
(s2603 4.0)
(s2604 5.0)
(s2605 5.0)
(s2606 2.0)
(s2608 4.0)
(s2609 5.0)
(s2610 5.0)
(s2611 2.0)
(s2613 4.0)
(s2614 5.0)
(s2615 5.0)
(s2616 2.0)
(s2618 4.0)
(s2619 5.0)
(s2620 5.0)
(s2621 2.0)
(s2623 4.0)
(s2624 5.0)
(s2625 5.0)
(s2626 2.0)
(s2628 4.0)
(s2629 5.0)
(s2630 5.0)
(s2631 2.0)
(s2633 4.0)
(s2634 5.0)
(s2635 5.0)
(s2636 2.0)
(s2638 4.0)
(s2639 5.0)
(s2640 5.0)
(s2641 2.0)
(s2643 4.0)
(s2644 5.0)
(s2645 5.0)
(s2646 2.0)
(s2648 4.0)
(s2649 5.0)
(s2650 5.0)
(s2651 2.0)
(s2653 4.0)
(s2654 5.0)
(s2655 5.0)
(s2656 2.0)
(s2658 4.0)
(s2659 5.0)
(s2660 5.0)
(s2661 2.0)
(s2663 4.0)
(s2664 5.0)
(s2665 5.0)
(s2666 2.0)
(s2668 4.0)
(s2669 5.0)
(s2670 5.0)
(s2671 2.0)
(s2673 4.0)
(s2674 5.0)
(s2675 5.0)
(s2676 2.0)
(s2678 4.0)
(s2679 5.0)
(s2680 5.0)
(s2681 2.0)
(s2683 4.0)
(s2684 5.0)
(s2685 5.0)
(s2686 2.0)
(s2688 4.0)
(s2689 5.0)
(s2690 5.0)
(s2691 2.0)
(s2693 4.0)
(s2694 5.0)
(s2695 5.0)
(s2696 2.0)
(s2698 4.0)
(s2699 5.0)
(s2700 5.0)
(s2701 2.0)
(s2703 4.0)
(s2704 5.0)
(s2705 5.0)
(s2706 2.0)
(s2708 4.0)
(s2709 5.0)
(s2710 5.0)
(s2711 2.0)
(s2713 4.0)
(s2714 5.0)
(s2715 5.0)
(s2716 2.0)
(s2718 4.0)
(s2719 5.0)
(s2720 5.0)
(s2721 2.0)
(s2723 4.0)
(s2724 5.0)
(s2725 5.0)
(s2726 2.0)
(s2728 4.0)
(s2729 5.0)
(s2730 5.0)
(s2731 2.0)
(s2733 4.0)
(s2734 5.0)
(s2735 5.0)
(s2736 2.0)
(s2738 4.0)
(s2739 5.0)
(s2740 5.0)
(s2741 2.0)
(s2743 4.0)
(s2744 5.0)
(s2745 5.0)
(s2746 2.0)
(s2748 4.0)
(s2749 5.0)
(s2750 5.0)
(s2751 2.0)
(s2753 4.0)
(s2754 5.0)
(s2755 5.0)
(s2756 2.0)
(s2758 4.0)
(s2759 5.0)
(s2760 5.0)
(s2761 2.0)
(s2763 4.0)
(s2764 5.0)
(s2765 5.0)
(s2766 2.0)
(s2768 4.0)
(s2769 5.0)
(s2770 5.0)
(s2771 2.0)
(s2773 4.0)
(s2774 5.0)
(s2775 5.0)
(s2776 2.0)
(s2778 4.0)
(s2779 5.0)
(s2780 5.0)
(s2781 2.0)
(s2783 4.0)
(s2784 5.0)
(s2785 5.0)
(s2786 2.0)
(s2788 4.0)
(s2789 5.0)
(s2790 5.0)
(s2791 2.0)
(s2793 4.0)
(s2794 5.0)
(s2795 5.0)
(s2796 2.0)
(s2798 4.0)
(s2799 5.0)
(s2800 5.0)
(s2801 2.0)
(s2803 4.0)
(s2804 5.0)
(s2805 5.0)
(s2806 2.0)
(s2808 4.0)
(s2809 5.0)
(s2810 5.0)
(s2811 2.0)
(s2813 4.0)
(s2814 5.0)
(s2815 5.0)
(s2816 2.0)
(s2818 4.0)
(s2819 5.0)
(s2820 5.0)
(s2821 2.0)
(s2823 4.0)
(s2824 5.0)
(s2825 5.0)
(s2826 2.0)
(s2828 4.0)
(s2829 5.0)
(s2830 5.0)
(s2831 2.0)
(s2833 4.0)
(s2834 5.0)
(s2835 5.0)
(s2836 2.0)
(s2838 4.0)
(s2839 5.0)
(s2840 5.0)
(s2841 2.0)
(s2843 4.0)
(s2844 5.0)
(s2845 5.0)
(s2846 2.0)
(s2848 4.0)
(s2849 5.0)
(s2850 5.0)
(s2851 2.0)
(s2853 4.0)
(s2854 5.0)
(s2855 5.0)
(s2856 2.0)
(s2858 4.0)
(s2859 5.0)
(s2860 5.0)
(s2861 2.0)
(s2863 4.0)
(s2864 5.0)
(s2865 5.0)
(s2866 2.0)
(s2868 4.0)
(s2869 5.0)
(s2870 5.0)
(s2871 2.0)
(s2873 4.0)
(s2874 5.0)
(s2875 5.0)
(s2876 2.0)
(s2878 4.0)
(s2879 5.0)
(s2880 5.0)
(s2881 2.0)
(s2883 4.0)
(s2884 5.0)
(s2885 5.0)
(s2886 2.0)
(s2888 4.0)
(s2889 5.0)
(s2890 5.0)
(s2891 2.0)
(s2893 4.0)
(s2894 5.0)
(s2895 5.0)
(s2896 2.0)
(s2898 4.0)
(s2899 5.0)
(s2900 5.0)
(s2901 2.0)
(s2903 4.0)
(s2904 5.0)
(s2905 5.0)
(s2906 2.0)
(s2908 4.0)
(s2909 5.0)
(s2910 5.0)
(s2911 2.0)
(s2913 4.0)
(s2914 5.0)
(s2915 5.0)
(s2916 2.0)
(s2918 4.0)
(s2919 5.0)
(s2920 5.0)
(s2921 2.0)
(s2923 4.0)
(s2924 5.0)
(s2925 5.0)
(s2926 2.0)
(s2928 4.0)
(s2929 5.0)
(s2930 5.0)
(s2931 2.0)
(s2933 4.0)
(s2934 5.0)
(s2935 5.0)
(s2936 2.0)
(s2938 4.0)
(s2939 5.0)
(s2940 5.0)
(s2941 2.0)
(s2943 4.0)
(s2944 5.0)
(s2945 5.0)
(s2946 2.0)
(s2948 4.0)
(s2949 5.0)
(s2950 5.0)
(s2951 2.0)
(s2953 4.0)
(s2954 5.0)
(s2955 5.0)
(s2956 2.0)
(s2958 4.0)
(s2959 5.0)
(s2960 5.0)
(s2961 2.0)
(s2963 4.0)
(s2964 5.0)
(s2965 5.0)
(s2966 2.0)
(s2968 4.0)
(s2969 5.0)
(s2970 5.0)
(s2971 2.0)
(s2973 4.0)
(s2974 5.0)
(s2975 5.0)
(s2976 2.0)
(s2978 4.0)
(s2979 5.0)
(s2980 5.0)
(s2981 2.0)
(s2983 4.0)
(s2984 5.0)
(s2985 5.0)
(s2986 2.0)
(s2988 4.0)
(s2989 5.0)
(s2990 5.0)
(s2991 2.0)
(s2993 4.0)
(s2994 5.0)
(s2995 5.0)
(s2996 2.0)
(s2998 4.0)
(s2999 5.0)
(s3000 5.0)
(s3001 2.0)
(s3003 4.0)
(s3004 5.0)
(s3005 5.0)
(s3006 2.0)
(s3008 4.0)
(s3009 5.0)
(s3010 5.0)
(s3011 2.0)
(s3013 4.0)
(s3014 5.0)
(s3015 5.0)
(s3016 2.0)
(s3018 4.0)
(s3019 5.0)
(s3020 5.0)
(s3021 2.0)
(s3023 4.0)
(s3024 5.0)
(s3025 5.0)
(s3026 2.0)
(s3028 4.0)
(s3029 5.0)
(s3030 5.0)
(s3031 2.0)
(s3033 4.0)
(s3034 5.0)
(s3035 5.0)
(s3036 2.0)
(s3038 4.0)
(s3039 5.0)
(s3040 5.0)
(s3041 2.0)
(s3043 4.0)
(s3044 5.0)
(s3045 5.0)
(s3046 2.0)
(s3048 4.0)
(s3049 5.0)
(s3050 5.0)
(s3051 2.0)
(s3053 4.0)
(s3054 5.0)
(s3055 5.0)
(s3056 2.0)
(s3058 4.0)
(s3059 5.0)
(s3060 5.0)
(s3061 2.0)
(s3063 4.0)
(s3064 5.0)
(s3065 5.0)
(s3066 2.0)
(s3068 4.0)
(s3069 5.0)
(s3070 5.0)
(s3071 2.0)
(s3073 4.0)
(s3074 5.0)
(s3075 5.0)
(s3076 2.0)
(s3078 4.0)
(s3079 5.0)
(s3080 5.0)
(s3081 2.0)
(s3083 4.0)
(s3084 5.0)
(s3085 5.0)
(s3086 2.0)
(s3088 4.0)
(s3089 5.0)
(s3090 5.0)
(s3091 2.0)
(s3093 4.0)
(s3094 5.0)
(s3095 5.0)
(s3096 2.0)
(s3098 4.0)
(s3099 5.0)
(s3100 5.0)
(s3101 2.0)
(s3103 4.0)
(s3104 5.0)
(s3105 5.0)
(s3106 2.0)
(s3108 4.0)
(s3109 5.0)
(s3110 5.0)
(s3111 2.0)
(s3113 4.0)
(s3114 5.0)
(s3115 5.0)
(s3116 2.0)
(s3118 4.0)
(s3119 5.0)
(s3120 5.0)
(s3121 2.0)
(s3123 4.0)
(s3124 5.0)
(s3125 5.0)
(s3126 2.0)
(s3128 4.0)
(s3129 5.0)
(s3130 5.0)
(s3131 2.0)
(s3133 4.0)
(s3134 5.0)
(s3135 5.0)
(s3136 2.0)
(s3138 4.0)
(s3139 5.0)
(s3140 5.0)
(s3141 2.0)
(s3143 4.0)
(s3144 5.0)
(s3145 5.0)
(s3146 2.0)
(s3148 4.0)
(s3149 5.0)
(s3150 5.0)
(s3151 2.0)
(s3153 4.0)
(s3154 5.0)
(s3155 5.0)
(s3156 2.0)
(s3158 4.0)
(s3159 5.0)
(s3160 5.0)
(s3161 2.0)
(s3163 4.0)
(s3164 5.0)
(s3165 5.0)
(s3166 2.0)
(s3168 4.0)
(s3169 5.0)
(s3170 5.0)
(s3171 2.0)
(s3173 4.0)
(s3174 5.0)
(s3175 5.0)
(s3176 2.0)
(s3178 4.0)
(s3179 5.0)
(s3180 5.0)
(s3181 2.0)
(s3183 4.0)
(s3184 5.0)
(s3185 5.0)
(s3186 2.0)
(s3188 4.0)
(s3189 5.0)
(s3190 5.0)
(s3191 2.0)
(s3193 4.0)
(s3194 5.0)
(s3195 5.0)
(s3196 2.0)
(s3198 4.0)
(s3199 5.0)
(s3200 5.0)
(s3201 2.0)
(s3203 4.0)
(s3204 5.0)
(s3205 5.0)
(s3206 2.0)
(s3208 4.0)
(s3209 5.0)
(s3210 5.0)
(s3211 2.0)
(s3213 4.0)
(s3214 5.0)
(s3215 5.0)
(s3216 2.0)
(s3218 4.0)
(s3219 5.0)
(s3220 5.0)
(s3221 2.0)
(s3223 4.0)
(s3224 5.0)
(s3225 5.0)
(s3226 2.0)
(s3228 4.0)
(s3229 5.0)
(s3230 5.0)
(s3231 2.0)
(s3233 4.0)
(s3234 5.0)
(s3235 5.0)
(s3236 2.0)
(s3238 4.0)
(s3239 5.0)
(s3240 5.0)
(s3241 2.0)
(s3243 4.0)
(s3244 5.0)
(s3245 5.0)
(s3246 2.0)
(s3248 4.0)
(s3249 5.0)
(s3250 5.0)
(s3251 2.0)
(s3253 4.0)
(s3254 5.0)
(s3255 5.0)
(s3256 2.0)
(s3258 4.0)
(s3259 5.0)
(s3260 5.0)
(s3261 2.0)
(s3263 4.0)
(s3264 5.0)
(s3265 5.0)
(s3266 2.0)
(s3268 4.0)
(s3269 5.0)
(s3270 5.0)
(s3271 2.0)
(s3273 4.0)
(s3274 5.0)
(s3275 5.0)
(s3276 2.0)
(s3278 4.0)
(s3279 5.0)
(s3280 5.0)
(s3281 2.0)
(s3283 4.0)
(s3284 5.0)
(s3285 5.0)
(s3286 2.0)
(s3288 4.0)
(s3289 5.0)
(s3290 5.0)
(s3291 2.0)
(s3293 4.0)
(s3294 5.0)
(s3295 5.0)
(s3296 2.0)
(s3298 4.0)
(s3299 5.0)
(s3300 5.0)
(s3301 2.0)
(s3303 4.0)
(s3304 5.0)
(s3305 5.0)
(s3306 2.0)
(s3308 4.0)
(s3309 5.0)
(s3310 5.0)
(s3311 2.0)
(s3313 4.0)
(s3314 5.0)
(s3315 5.0)
(s3316 2.0)
(s3318 4.0)
(s3319 5.0)
(s3320 5.0)
(s3321 2.0)
(s3323 4.0)
(s3324 5.0)
(s3325 5.0)
(s3326 2.0)
(s3328 4.0)
(s3329 5.0)
(s3330 5.0)
(s3331 2.0)
(s3333 4.0)
(s3334 5.0)
(s3335 5.0)
(s3336 2.0)
(s3338 4.0)
(s3339 5.0)
(s3340 5.0)
(s3341 2.0)
(s3343 4.0)
(s3344 5.0)
(s3345 5.0)
(s3346 2.0)
(s3348 4.0)
(s3349 5.0)
(s3350 5.0)
(s3351 2.0)
(s3353 4.0)
(s3354 5.0)
(s3355 5.0)
(s3356 2.0)
(s3358 4.0)
(s3359 5.0)
(s3360 5.0)
(s3361 2.0)
(s3363 4.0)
(s3364 5.0)
(s3365 5.0)
(s3366 2.0)
(s3368 4.0)
(s3369 5.0)
(s3370 5.0)
(s3371 2.0)
(s3373 4.0)
(s3374 5.0)
(s3375 5.0)
(s3376 2.0)
(s3378 4.0)
(s3379 5.0)
(s3380 5.0)
(s3381 2.0)
(s3383 4.0)
(s3384 5.0)
(s3385 5.0)
(s3386 2.0)
(s3388 4.0)
(s3389 5.0)
(s3390 5.0)
(s3391 2.0)
(s3393 4.0)
(s3394 5.0)
(s3395 5.0)
(s3396 2.0)
(s3398 4.0)
(s3399 5.0)
(s3400 5.0)
(s3401 2.0)
(s3403 4.0)
(s3404 5.0)
(s3405 5.0)
(s3406 2.0)
(s3408 4.0)
(s3409 5.0)
(s3410 5.0)
(s3411 2.0)
(s3413 4.0)
(s3414 5.0)
(s3415 5.0)
(s3416 2.0)
(s3418 4.0)
(s3419 5.0)
(s3420 5.0)
(s3421 2.0)
(s3423 4.0)
(s3424 5.0)
(s3425 5.0)
(s3426 2.0)
(s3428 4.0)
(s3429 5.0)
(s3430 5.0)
(s3431 2.0)
(s3433 4.0)
(s3434 5.0)
(s3435 5.0)
(s3436 2.0)
(s3438 4.0)
(s3439 5.0)
(s3440 5.0)
(s3441 2.0)
(s3443 4.0)
(s3444 5.0)
(s3445 5.0)
(s3446 2.0)
(s3448 4.0)
(s3449 5.0)
(s3450 5.0)
(s3451 2.0)
(s3453 4.0)
(s3454 5.0)
(s3455 5.0)
(s3456 2.0)
(s3458 4.0)
(s3459 5.0)
(s3460 5.0)
(s3461 2.0)
(s3463 4.0)
(s3464 5.0)
(s3465 5.0)
(s3466 2.0)
(s3468 4.0)
(s3469 5.0)
(s3470 5.0)
(s3471 2.0)
(s3473 4.0)
(s3474 5.0)
(s3475 5.0)
(s3476 2.0)
(s3478 4.0)
(s3479 5.0)
(s3480 5.0)
(s3481 2.0)
(s3483 4.0)
(s3484 5.0)
(s3485 5.0)
(s3486 2.0)
(s3488 4.0)
(s3489 5.0)
(s3490 5.0)
(s3491 2.0)
(s3493 4.0)
(s3494 5.0)
(s3495 5.0)
(s3496 2.0)
(s3498 4.0)
(s3499 5.0)
(s3500 5.0)
(s3501 2.0)
(s3503 4.0)
(s3504 5.0)
(s3505 5.0)
(s3506 2.0)
(s3508 4.0)
(s3509 5.0)
(s3510 5.0)
(s3511 2.0)
(s3513 4.0)
(s3514 5.0)
(s3515 5.0)
(s3516 2.0)
(s3518 4.0)
(s3519 5.0)
(s3520 5.0)
(s3521 2.0)
(s3523 4.0)
(s3524 5.0)
(s3525 5.0)
(s3526 2.0)
(s3528 4.0)
(s3529 5.0)
(s3530 5.0)
(s3531 2.0)
(s3533 4.0)
(s3534 5.0)
(s3535 5.0)
(s3536 2.0)
(s3538 4.0)
(s3539 5.0)
(s3540 5.0)
(s3541 2.0)
(s3543 4.0)
(s3544 5.0)
(s3545 5.0)
(s3546 2.0)
(s3548 4.0)
(s3549 5.0)
(s3550 5.0)
(s3551 2.0)
(s3553 4.0)
(s3554 5.0)
(s3555 5.0)
(s3556 2.0)
(s3558 4.0)
(s3559 5.0)
(s3560 5.0)
(s3561 2.0)
(s3563 4.0)
(s3564 5.0)
(s3565 5.0)
(s3566 2.0)
(s3568 4.0)
(s3569 5.0)
(s3570 5.0)
(s3571 2.0)
(s3573 4.0)
(s3574 5.0)
(s3575 5.0)
(s3576 2.0)
(s3578 4.0)
(s3579 5.0)
(s3580 5.0)
(s3581 2.0)
(s3583 4.0)
(s3584 5.0)
(s3585 5.0)
(s3586 2.0)
(s3588 4.0)
(s3589 5.0)
(s3590 5.0)
(s3591 2.0)
(s3593 4.0)
(s3594 5.0)
(s3595 5.0)
(s3596 2.0)
(s3598 4.0)
(s3599 5.0)
(s3600 5.0)
(s3601 2.0)
(s3603 4.0)
(s3604 5.0)
(s3605 5.0)
(s3606 2.0)
(s3608 4.0)
(s3609 5.0)
(s3610 5.0)
(s3611 2.0)
(s3613 4.0)
(s3614 5.0)
(s3615 5.0)
(s3616 2.0)
(s3618 4.0)
(s3619 5.0)
(s3620 5.0)
(s3621 2.0)
(s3623 4.0)
(s3624 5.0)
(s3625 5.0)
(s3626 2.0)
(s3628 4.0)
(s3629 5.0)
(s3630 5.0)
(s3631 2.0)
(s3633 4.0)
(s3634 5.0)
(s3635 5.0)
(s3636 2.0)
(s3638 4.0)
(s3639 5.0)
(s3640 5.0)
(s3641 2.0)
(s3643 4.0)
(s3644 5.0)
(s3645 5.0)
(s3646 2.0)
(s3648 4.0)
(s3649 5.0)
(s3650 5.0)
(s3651 2.0)
(s3653 4.0)
(s3654 5.0)
(s3655 5.0)
(s3656 2.0)
(s3658 4.0)
(s3659 5.0)
(s3660 5.0)
(s3661 2.0)
(s3663 4.0)
(s3664 5.0)
(s3665 5.0)
(s3666 2.0)
(s3668 4.0)
(s3669 5.0)
(s3670 5.0)
(s3671 2.0)
(s3673 4.0)
(s3674 5.0)
(s3675 5.0)
(s3676 2.0)
(s3678 4.0)
(s3679 5.0)
(s3680 5.0)
(s3681 2.0)
(s3683 4.0)
(s3684 5.0)
(s3685 5.0)
(s3686 2.0)
(s3688 4.0)
(s3689 5.0)
(s3690 5.0)
(s3691 2.0)
(s3693 4.0)
(s3694 5.0)
(s3695 5.0)
(s3696 2.0)
(s3698 4.0)
(s3699 5.0)
(s3700 5.0)
(s3701 2.0)
(s3703 4.0)
(s3704 5.0)
(s3705 5.0)
(s3706 2.0)
(s3708 4.0)
(s3709 5.0)
(s3710 5.0)
(s3711 2.0)
(s3713 4.0)
(s3714 5.0)
(s3715 5.0)
(s3716 2.0)
(s3718 4.0)
(s3719 5.0)
(s3720 5.0)
(s3721 2.0)
(s3723 4.0)
(s3724 5.0)
(s3725 5.0)
(s3726 2.0)
(s3728 4.0)
(s3729 5.0)
(s3730 5.0)
(s3731 2.0)
(s3733 4.0)
(s3734 5.0)
(s3735 5.0)
(s3736 2.0)
(s3738 4.0)
(s3739 5.0)
(s3740 5.0)
(s3741 2.0)
(s3743 4.0)
(s3744 5.0)
(s3745 5.0)
(s3746 2.0)
(s3748 4.0)
(s3749 5.0)
(s3750 5.0)
(s3751 2.0)
(s3753 4.0)
(s3754 5.0)
(s3755 5.0)
(s3756 2.0)
(s3758 4.0)
(s3759 5.0)
(s3760 5.0)
(s3761 2.0)
(s3763 4.0)
(s3764 5.0)
(s3765 5.0)
(s3766 2.0)
(s3768 4.0)
(s3769 5.0)
(s3770 5.0)
(s3771 2.0)
(s3773 4.0)
(s3774 5.0)
(s3775 5.0)
(s3776 2.0)
(s3778 4.0)
(s3779 5.0)
(s3780 5.0)
(s3781 2.0)
(s3783 4.0)
(s3784 5.0)
(s3785 5.0)
(s3786 2.0)
(s3788 4.0)
(s3789 5.0)
(s3790 5.0)
(s3791 2.0)
(s3793 4.0)
(s3794 5.0)
(s3795 5.0)
(s3796 2.0)
(s3798 4.0)
(s3799 5.0)
(s3800 5.0)
(s3801 2.0)
(s3803 4.0)
(s3804 5.0)
(s3805 5.0)
(s3806 2.0)
(s3808 4.0)
(s3809 5.0)
(s3810 5.0)
(s3811 2.0)
(s3813 4.0)
(s3814 5.0)
(s3815 5.0)
(s3816 2.0)
(s3818 4.0)
(s3819 5.0)
(s3820 5.0)
(s3821 2.0)
(s3823 4.0)
(s3824 5.0)
(s3825 5.0)
(s3826 2.0)
(s3828 4.0)
(s3829 5.0)
(s3830 5.0)
(s3831 2.0)
(s3833 4.0)
(s3834 5.0)
(s3835 5.0)
(s3836 2.0)
(s3838 4.0)
(s3839 5.0)
(s3840 5.0)
(s3841 2.0)
(s3843 4.0)
(s3844 5.0)
(s3845 5.0)
(s3846 2.0)
(s3848 4.0)
(s3849 5.0)
(s3850 5.0)
(s3851 2.0)
(s3853 4.0)
(s3854 5.0)
(s3855 5.0)
(s3856 2.0)
(s3858 4.0)
(s3859 5.0)
(s3860 5.0)
(s3861 2.0)
(s3863 4.0)
(s3864 5.0)
(s3865 5.0)
(s3866 2.0)
(s3868 4.0)
(s3869 5.0)
(s3870 5.0)
(s3871 2.0)
(s3873 4.0)
(s3874 5.0)
(s3875 5.0)
(s3876 2.0)
(s3878 4.0)
(s3879 5.0)
(s3880 5.0)
(s3881 2.0)
(s3883 4.0)
(s3884 5.0)
(s3885 5.0)
(s3886 2.0)
(s3888 4.0)
(s3889 5.0)
(s3890 5.0)
(s3891 2.0)
(s3893 4.0)
(s3894 5.0)
(s3895 5.0)
(s3896 2.0)
(s3898 4.0)
(s3899 5.0)
(s3900 5.0)
(s3901 2.0)
(s3903 4.0)
(s3904 5.0)
(s3905 5.0)
(s3906 2.0)
(s3908 4.0)
(s3909 5.0)
(s3910 5.0)
(s3911 2.0)
(s3913 4.0)
(s3914 5.0)
(s3915 5.0)
(s3916 2.0)
(s3918 4.0)
(s3919 5.0)
(s3920 5.0)
(s3921 2.0)
(s3923 4.0)
(s3924 5.0)
(s3925 5.0)
(s3926 2.0)
(s3928 4.0)
(s3929 5.0)
(s3930 5.0)
(s3931 2.0)
(s3933 4.0)
(s3934 5.0)
(s3935 5.0)
(s3936 2.0)
(s3938 4.0)
(s3939 5.0)
(s3940 5.0)
(s3941 2.0)
(s3943 4.0)
(s3944 5.0)
(s3945 5.0)
(s3946 2.0)
(s3948 4.0)
(s3949 5.0)
(s3950 5.0)
(s3951 2.0)
(s3953 4.0)
(s3954 5.0)
(s3955 5.0)
(s3956 2.0)
(s3958 4.0)
(s3959 5.0)
(s3960 5.0)
(s3961 2.0)
(s3963 4.0)
(s3964 5.0)
(s3965 5.0)
(s3966 2.0)
(s3968 4.0)
(s3969 5.0)
(s3970 5.0)
(s3971 2.0)
(s3973 4.0)
(s3974 5.0)
(s3975 5.0)
(s3976 2.0)
(s3978 4.0)
(s3979 5.0)
(s3980 5.0)
(s3981 2.0)
(s3983 4.0)
(s3984 5.0)
(s3985 5.0)
(s3986 2.0)
(s3988 4.0)
(s3989 5.0)
(s3990 5.0)
(s3991 2.0)
(s3993 4.0)
(s3994 5.0)
(s3995 5.0)
(s3996 2.0)
(s3998 4.0)
(s3999 5.0)
(s4000 5.0)
(s4001 2.0)
(s4003 4.0)
(s4004 5.0)
(s4005 5.0)
(s4006 2.0)
(s4008 4.0)
(s4009 5.0)
(s4010 5.0)
(s4011 2.0)
(s4013 4.0)
(s4014 5.0)
(s4015 5.0)
(s4016 2.0)
(s4018 4.0)
(s4019 5.0)
(s4020 5.0)
(s4021 2.0)
(s4023 4.0)
(s4024 5.0)
(s4025 5.0)
(s4026 2.0)
(s4028 4.0)
(s4029 5.0)
(s4030 5.0)
(s4031 2.0)
(s4033 4.0)
(s4034 5.0)
(s4035 5.0)
(s4036 2.0)
(s4038 4.0)
(s4039 5.0)
(s4040 5.0)
(s4041 2.0)
(s4043 4.0)
(s4044 5.0)
(s4045 5.0)
(s4046 2.0)
(s4048 4.0)
(s4049 5.0)
(s4050 5.0)
(s4051 2.0)
(s4053 4.0)
(s4054 5.0)
(s4055 5.0)
(s4056 2.0)
(s4058 4.0)
(s4059 5.0)
(s4060 5.0)
(s4061 2.0)
(s4063 4.0)
(s4064 5.0)
(s4065 5.0)
(s4066 2.0)
(s4068 4.0)
(s4069 5.0)
(s4070 5.0)
(s4071 2.0)
(s4073 4.0)
(s4074 5.0)
(s4075 5.0)
(s4076 2.0)
(s4078 4.0)
(s4079 5.0)
(s4080 5.0)
(s4081 2.0)
(s4083 4.0)
(s4084 5.0)
(s4085 5.0)
(s4086 2.0)
(s4088 4.0)
(s4089 5.0)
(s4090 5.0)
(s4091 2.0)
(s4093 4.0)
(s4094 5.0)
(s4095 5.0)
(s4096 2.0)
(s4098 4.0)
(s4099 5.0)
(s4100 5.0)
(s4101 2.0)
(s4103 4.0)
(s4104 5.0)
(s4105 5.0)
(s4106 2.0)
(s4108 4.0)
(s4109 5.0)
(s4110 5.0)
(s4111 2.0)
(s4113 4.0)
(s4114 5.0)
(s4115 5.0)
(s4116 2.0)
(s4118 4.0)
(s4119 5.0)
(s4120 5.0)
(s4121 2.0)
(s4123 4.0)
(s4124 5.0)
(s4125 5.0)
(s4126 2.0)
(s4128 4.0)
(s4129 5.0)
(s4130 5.0)
(s4131 2.0)
(s4133 4.0)
(s4134 5.0)
(s4135 5.0)
(s4136 2.0)
(s4138 4.0)
(s4139 5.0)
(s4140 5.0)
(s4141 2.0)
(s4143 4.0)
(s4144 5.0)
(s4145 5.0)
(s4146 2.0)
(s4148 4.0)
(s4149 5.0)
(s4150 5.0)
(s4151 2.0)
(s4153 4.0)
(s4154 5.0)
(s4155 5.0)
(s4156 2.0)
(s4158 4.0)
(s4159 5.0)
(s4160 5.0)
(s4161 2.0)
(s4163 4.0)
(s4164 5.0)
(s4165 5.0)
(s4166 2.0)
(s4168 4.0)
(s4169 5.0)
(s4170 5.0)
(s4171 2.0)
(s4173 4.0)
(s4174 5.0)
(s4175 5.0)
(s4176 2.0)
(s4178 4.0)
(s4179 5.0)
(s4180 5.0)
(s4181 2.0)
(s4183 4.0)
(s4184 5.0)
(s4185 5.0)
(s4186 2.0)
(s4188 4.0)
(s4189 5.0)
(s4190 5.0)
(s4191 2.0)
(s4193 4.0)
(s4194 5.0)
(s4195 5.0)
(s4196 2.0)
(s4198 4.0)
(s4199 5.0)
(s4200 5.0)
(s4201 2.0)
(s4203 4.0)
(s4204 5.0)
(s4205 5.0)
(s4206 2.0)
(s4208 4.0)
(s4209 5.0)
(s4210 5.0)
(s4211 2.0)
(s4213 4.0)
(s4214 5.0)
(s4215 5.0)
(s4216 2.0)
(s4218 4.0)
(s4219 5.0)
(s4220 5.0)
(s4221 2.0)
(s4223 4.0)
(s4224 5.0)
(s4225 5.0)
(s4226 2.0)
(s4228 4.0)
(s4229 5.0)
(s4230 5.0)
(s4231 2.0)
(s4233 4.0)
(s4234 5.0)
(s4235 5.0)
(s4236 2.0)
(s4238 4.0)
(s4239 5.0)
(s4240 5.0)
(s4241 2.0)
(s4243 4.0)
(s4244 5.0)
(s4245 5.0)
(s4246 2.0)
(s4248 4.0)
(s4249 5.0)
(s4250 5.0)
(s4251 2.0)
(s4253 4.0)
(s4254 5.0)
(s4255 5.0)
(s4256 2.0)
(s4258 4.0)
(s4259 5.0)
(s4260 5.0)
(s4261 2.0)
(s4263 4.0)
(s4264 5.0)
(s4265 5.0)
(s4266 2.0)
(s4268 4.0)
(s4269 5.0)
(s4270 5.0)
(s4271 2.0)
(s4273 4.0)
(s4274 5.0)
(s4275 5.0)
(s4276 2.0)
(s4278 4.0)
(s4279 5.0)
(s4280 5.0)
(s4281 2.0)
(s4283 4.0)
(s4284 5.0)
(s4285 5.0)
(s4286 2.0)
(s4288 4.0)
(s4289 5.0)
(s4290 5.0)
(s4291 2.0)
(s4293 4.0)
(s4294 5.0)
(s4295 5.0)
(s4296 2.0)
(s4298 4.0)
(s4299 5.0)
(s4300 5.0)
(s4301 2.0)
(s4303 4.0)
(s4304 5.0)
(s4305 5.0)
(s4306 2.0)
(s4308 4.0)
(s4309 5.0)
(s4310 5.0)
(s4311 2.0)
(s4313 4.0)
(s4314 5.0)
(s4315 5.0)
(s4316 2.0)
(s4318 4.0)
(s4319 5.0)
(s4320 5.0)
(s4321 2.0)
(s4323 4.0)
(s4324 5.0)
(s4325 5.0)
(s4326 2.0)
(s4328 4.0)
(s4329 5.0)
(s4330 5.0)
(s4331 2.0)
(s4333 4.0)
(s4334 5.0)
(s4335 5.0)
(s4336 2.0)
(s4338 4.0)
(s4339 5.0)
(s4340 5.0)
(s4341 2.0)
(s4343 4.0)
(s4344 5.0)
(s4345 5.0)
(s4346 2.0)
(s4348 4.0)
(s4349 5.0)
(s4350 5.0)
(s4351 2.0)
(s4353 4.0)
(s4354 5.0)
(s4355 5.0)
(s4356 2.0)
(s4358 4.0)
(s4359 5.0)
(s4360 5.0)
(s4361 2.0)
(s4363 4.0)
(s4364 5.0)
(s4365 5.0)
(s4366 2.0)
(s4368 4.0)
(s4369 5.0)
(s4370 5.0)
(s4371 2.0)
(s4373 4.0)
(s4374 5.0)
(s4375 5.0)
(s4376 2.0)
(s4378 4.0)
(s4379 5.0)
(s4380 5.0)
(s4381 2.0)
(s4383 4.0)
(s4384 5.0)
(s4385 5.0)
(s4386 2.0)
(s4388 4.0)
(s4389 5.0)
(s4390 5.0)
(s4391 2.0)
(s4393 4.0)
(s4394 5.0)
(s4395 5.0)
(s4396 2.0)
(s4398 4.0)
(s4399 5.0)
(s4400 5.0)
(s4401 2.0)
(s4403 4.0)
(s4404 5.0)
(s4405 5.0)
(s4406 2.0)
(s4408 4.0)
(s4409 timeout
5.0 org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20083 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20084 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 44055ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 44099ms
[2024-05-23 23:13:21] [INFO ] Invariant cache hit.
[2024-05-23 23:13:22] [INFO ] Implicit Places using invariants in 865 ms returned []
[2024-05-23 23:13:22] [INFO ] Invariant cache hit.
[2024-05-23 23:13:26] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2024-05-23 23:13:26] [INFO ] Implicit Places using invariants and state equation in 3738 ms returned []
Implicit Place search using SMT with State Equation took 4605 ms to find 0 implicit places.
[2024-05-23 23:13:27] [INFO ] Redundant transitions in 627 ms returned []
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:13:27] [INFO ] Invariant cache hit.
[2024-05-23 23:13:27] [INFO ] State equation strengthened by 1000 read => feed constraints.
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30075 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30076 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 64049ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 64094ms
Finished structural reductions in SI_LTL mode , in 1 iterations and 113973 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Computed a total of 0 stabilizing places and 0 stable transitions
Computed a total of 0 stabilizing places and 0 stable transitions
Knowledge obtained : [(AND p0 p1 p2), (X p2), (X p0)]
False Knowledge obtained : []
Knowledge based reduction with 3 factoid took 100 ms. Reduced automaton from 3 states, 6 edges and 3 AP (stutter insensitive) to 3 states, 6 edges and 3 AP (stutter insensitive).
Stuttering acceptance computed with spot in 112 ms :[(OR (NOT p0) (AND (NOT p1) (NOT p2))), (NOT p0), (NOT p2)]
RANDOM walk for 41064 steps (8 resets) in 1774 ms. (23 steps per ms) remains 3/3 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1898 ms. (21 steps per ms) remains 2/3 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1908 ms. (20 steps per ms) remains 2/2 properties
[2024-05-23 23:14:33] [INFO ] Invariant cache hit.
[2024-05-23 23:14:33] [INFO ] State equation strengthened by 1000 read => feed constraints.
All remaining problems are real, not stopping.
At refinement iteration 0 (INCLUDED_ONLY) 0/6 variables, 0/0 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 1 (OVERLAPS) 24/30 variables, 6/6 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 2 (INCLUDED_ONLY) 0/30 variables, 0/6 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 3 (OVERLAPS) 48/78 variables, 30/36 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 4 (INCLUDED_ONLY) 0/78 variables, 6/42 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 5 (INCLUDED_ONLY) 0/78 variables, 0/42 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 6 (OVERLAPS) 0/78 variables, 0/42 constraints. Problems are: Problem set: 0 solved, 2 unsolved
No progress, stopping.
After SMT solving in domain Real declared 78/13001 variables, and 42 constraints, problems are : Problem set: 0 solved, 2 unsolved in 61 ms.
Refiners :[Positive P Invariants (semi-flows): 6/1000 constraints, State Equation: 30/5000 constraints, ReadFeed: 6/1000 constraints, PredecessorRefiner: 2/2 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 2 unsolved
At refinement iteration 0 (INCLUDED_ONLY) 0/6 variables, 0/0 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 1 (OVERLAPS) 24/30 variables, 6/6 constraints. Problems are: Problem set: 0 solved, 2 unsolved
[2024-05-23 23:14:33] [INFO ] Deduced a trap composed of 3 places in 22 ms of which 0 ms to minimize.
[2024-05-23 23:14:33] [INFO ] Deduced a trap composed of 3 places in 22 ms of which 0 ms to minimize.
[2024-05-23 23:14:33] [INFO ] Deduced a trap composed of 3 places in 20 ms of which 1 ms to minimize.
[2024-05-23 23:14:33] [INFO ] Deduced a trap composed of 3 places in 20 ms of which 0 ms to minimize.
At refinement iteration 2 (INCLUDED_ONLY) 0/30 variables, 4/10 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 3 (INCLUDED_ONLY) 0/30 variables, 0/10 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 4 (OVERLAPS) 48/78 variables, 30/40 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 5 (INCLUDED_ONLY) 0/78 variables, 6/46 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 6 (INCLUDED_ONLY) 0/78 variables, 2/48 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 7 (INCLUDED_ONLY) 0/78 variables, 0/48 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 8 (OVERLAPS) 0/78 variables, 0/48 constraints. Problems are: Problem set: 0 solved, 2 unsolved
No progress, stopping.
After SMT solving in domain Int declared 78/13001 variables, and 48 constraints, problems are : Problem set: 0 solved, 2 unsolved in 307 ms.
Refiners :[Positive P Invariants (semi-flows): 6/1000 constraints, State Equation: 30/5000 constraints, ReadFeed: 6/1000 constraints, PredecessorRefiner: 2/2 constraints, Known Traps: 4/4 constraints]
After SMT, in 396ms problems are : Problem set: 0 solved, 2 unsolved
Fused 2 Parikh solutions to 1 different solutions.
Finished Parikh walk after 3875 steps, including 0 resets, run visited all 2 properties in 185 ms. (steps per millisecond=20 )
Parikh walk visited 2 properties in 185 ms.
Knowledge obtained : [(AND p0 p1 p2), (X p2), (X p0)]
False Knowledge obtained : [(F (NOT p2)), (F (NOT p1)), (F (NOT p0))]
Knowledge based reduction with 3 factoid took 135 ms. Reduced automaton from 3 states, 6 edges and 3 AP (stutter insensitive) to 3 states, 6 edges and 3 AP (stutter insensitive).
Stuttering acceptance computed with spot in 115 ms :[(OR (NOT p0) (AND (NOT p1) (NOT p2))), (NOT p0), (NOT p2)]
Stuttering acceptance computed with spot in 120 ms :[(OR (NOT p0) (AND (NOT p1) (NOT p2))), (NOT p0), (NOT p2)]
Stuttering acceptance computed with spot in 139 ms :[(OR (NOT p0) (AND (NOT p1) (NOT p2))), (NOT p0), (NOT p2)]
Product exploration timeout after 22270 steps with 0 reset in 10004 ms.
Product exploration timeout after 21440 steps with 0 reset in 10005 ms.
Support contains 6 out of 5000 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 539 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:14:55] [INFO ] Invariant cache hit.
[2024-05-23 23:14:55] [INFO ] State equation strengthened by 1000 read => feed constraints.
Error getting values : (error "Error writing to Z3 solver: java.io.IOException: Broken pipe")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20082 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20084 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 44095ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 44139ms
[2024-05-23 23:15:39] [INFO ] Invariant cache hit.
[2024-05-23 23:15:39] [INFO ] Implicit Places using invariants in 836 ms returned []
[2024-05-23 23:15:39] [INFO ] Invariant cache hit.
[2024-05-23 23:15:43] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2024-05-23 23:15:43] [INFO ] Implicit Places using invariants and state equation in 3634 ms returned []
Implicit Place search using SMT with State Equation took 4472 ms to find 0 implicit places.
[2024-05-23 23:15:44] [INFO ] Redundant transitions in 871 ms returned []
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:15:44] [INFO ] Invariant cache hit.
[2024-05-23 23:15:44] [INFO ] State equation strengthened by 1000 read => feed constraints.
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30076 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Error getting values : (error "Error writing to Z3 solver: java.io.IOException: Broken pipe")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30069 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 64087ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 64131ms
Finished structural reductions in SI_LTL mode , in 1 iterations and 114173 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Treatment of property JoinFreeModules-PT-1000-LTLCardinality-06 finished in 389490 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202405141337/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(X(F((p0||G((p1||F(p0)))||G(p2)))))'
Support contains 4 out of 5000 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 194 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:16:49] [INFO ] Invariant cache hit.
[2024-05-23 23:16:49] [INFO ] State equation strengthened by 1000 read => feed constraints.
Error getting values : (error "ParserException while parsing response: ((s0 5.0)
(s1 2.0)
(s3 4.0)
(s4 5.0)
(s5 5.0)
(s6 2.0)
(s8 4.0)
(s9 5.0)
(s10 5.0)
(s11 2.0)
(s13 4.0)
(s14 5.0)
(s15 5.0)
(s16 2.0)
(s18 4.0)
(s19 5.0)
(s20 5.0)
(s21 2.0)
(s23 4.0)
(s24 5.0)
(s25 5.0)
(s26 2.0)
(s28 4.0)
(s29 5.0)
(s30 5.0)
(s31 2.0)
(s33 4.0)
(s34 5.0)
(s35 5.0)
(s36 2.0)
(s38 4.0)
(s39 5.0)
(s40 5.0)
(s41 2.0)
(s43 4.0)
(s44 5.0)
(s45 5.0)
(s46 2.0)
(s48 4.0)
(s49 5.0)
(s50 5.0)
(s51 2.0)
(s53 4.0)
(s54 5.0)
(s55 5.0)
(s56 2.0)
(s58 4.0)
(s59 5.0)
(s60 5.0)
(s61 2.0)
(s63 4.0)
(s64 5.0)
(s65 5.0)
(s66 2.0)
(s68 4.0)
(s69 5.0)
(s70 5.0)
(s71 2.0)
(s73 4.0)
(s74 5.0)
(s75 5.0)
(s76 2.0)
(s78 4.0)
(s79 5.0)
(s80 5.0)
(s81 2.0)
(s83 4.0)
(s84 5.0)
(s85 5.0)
(s86 2.0)
(s88 4.0)
(s89 5.0)
(s90 5.0)
(s91 2.0)
(s93 4.0)
(s94 5.0)
(s95 5.0)
(s96 2.0)
(s98 4.0)
(s99 5.0)
(s100 5.0)
(s101 2.0)
(s103 4.0)
(s104 5.0)
(s105 5.0)
(s106 2.0)
(s108 4.0)
(s109 5.0)
(s110 5.0)
(s111 2.0)
(s113 4.0)
(s114 5.0)
(s115 5.0)
(s116 2.0)
(s118 4.0)
(s119 5.0)
(s120 5.0)
(s121 2.0)
(s123 4.0)
(s124 5.0)
(s125 5.0)
(s126 2.0)
(s128 4.0)
(s129 5.0)
(s130 5.0)
(s131 2.0)
(s133 4.0)
(s134 5.0)
(s135 5.0)
(s136 2.0)
(s138 4.0)
(s139 5.0)
(s140 5.0)
(s141 2.0)
(s143 4.0)
(s144 5.0)
(s145 5.0)
(s146 2.0)
(s148 4.0)
(s149 5.0)
(s150 5.0)
(s151 2.0)
(s153 4.0)
(s154 5.0)
(s155 5.0)
(s156 2.0)
(s158 4.0)
(s159 5.0)
(s160 5.0)
(s161 2.0)
(s163 4.0)
(s164 5.0)
(s165 5.0)
(s166 2.0)
(s168 4.0)
(s169 5.0)
(s170 5.0)
(s171 2.0)
(s173 4.0)
(s174 5.0)
(s175 5.0)
(s176 2.0)
(s178 4.0)
(s179 5.0)
(s180 5.0)
(s181 2.0)
(s183 4.0)
(s184 5.0)
(s185 5.0)
(s186 2.0)
(s188 4.0)
(s189 5.0)
(s190 5.0)
(s191 2.0)
(s193 4.0)
(s194 5.0)
(s195 5.0)
(s196 2.0)
(s198 4.0)
(s199 5.0)
(s200 5.0)
(s201 2.0)
(s203 4.0)
(s204 5.0)
(s205 5.0)
(s206 2.0)
(s208 4.0)
(s209 5.0)
(s210 5.0)
(s211 2.0)
(s213 4.0)
(s214 5.0)
(s215 5.0)
(s216 2.0)
(s218 4.0)
(s219 5.0)
(s220 5.0)
(s221 2.0)
(s223 4.0)
(s224 5.0)
(s225 5.0)
(s226 2.0)
(s228 4.0)
(s229 5.0)
(s230 5.0)
(s231 2.0)
(s233 4.0)
(s234 5.0)
(s235 5.0)
(s236 2.0)
(s238 4.0)
(s239 5.0)
(s240 5.0)
(s241 2.0)
(s243 4.0)
(s244 5.0)
(s245 5.0)
(s246 2.0)
(s248 4.0)
(s249 5.0)
(s250 5.0)
(s251 2.0)
(s253 4.0)
(s254 5.0)
(s255 5.0)
(s256 2.0)
(s258 4.0)
(s259 5.0)
(s260 5.0)
(s261 2.0)
(s263 4.0)
(s264 5.0)
(s265 5.0)
(s266 2.0)
(s268 4.0)
(s269 5.0)
(s270 5.0)
(s271 2.0)
(s273 4.0)
(s274 5.0)
(s275 5.0)
(s276 2.0)
(s278 4.0)
(s279 5.0)
(s280 5.0)
(s281 2.0)
(s283 4.0)
(s284 5.0)
(s285 5.0)
(s286 2.0)
(s288 4.0)
(s289 5.0)
(s290 5.0)
(s291 2.0)
(s293 4.0)
(s294 5.0)
(s295 5.0)
(s296 2.0)
(s298 4.0)
(s299 5.0)
(s300 5.0)
(s301 2.0)
(s303 4.0)
(s304 5.0)
(s305 5.0)
(s306 2.0)
(s308 4.0)
(s309 5.0)
(s310 5.0)
(s311 2.0)
(s313 4.0)
(s314 5.0)
(s315 5.0)
(s316 2.0)
(s318 4.0)
(s319 5.0)
(s320 5.0)
(s321 2.0)
(s323 4.0)
(s324 5.0)
(s325 5.0)
(s326 2.0)
(s328 4.0)
(s329 5.0)
(s330 5.0)
(s331 2.0)
(s333 4.0)
(s334 5.0)
(s335 5.0)
(s336 2.0)
(s338 4.0)
(s339 5.0)
(s340 5.0)
(s341 2.0)
(s343 4.0)
(s344 5.0)
(s345 5.0)
(s346 2.0)
(s348 4.0)
(s349 5.0)
(s350 5.0)
(s351 2.0)
(s353 4.0)
(s354 5.0)
(s355 5.0)
(s356 2.0)
(s358 4.0)
(s359 5.0)
(s360 5.0)
(s361 2.0)
(s363 4.0)
(s364 5.0)
(s365 5.0)
(s366 2.0)
(s368 4.0)
(s369 5.0)
(s370 5.0)
(s371 2.0)
(s373 4.0)
(s374 5.0)
(s375 5.0)
(s376 2.0)
(s378 4.0)
(s379 5.0)
(s380 5.0)
(s381 2.0)
(s383 4.0)
(s384 5.0)
(s385 5.0)
(s386 2.0)
(s388 4.0)
(s389 5.0)
(s390 5.0)
(s391 2.0)
(s393 4.0)
(s394 5.0)
(s395 5.0)
(s396 2.0)
(s398 4.0)
(s399 5.0)
(s400 5.0)
(s401 2.0)
(s403 4.0)
(s404 5.0)
(s405 5.0)
(s406 2.0)
(s408 4.0)
(s409 5.0)
(s410 5.0)
(s411 2.0)
(s413 4.0)
(s414 5.0)
(s415 5.0)
(s416 2.0)
(s418 4.0)
(s419 5.0)
(s420 5.0)
(s421 2.0)
(s423 4.0)
(s424 5.0)
(s425 5.0)
(s426 2.0)
(s428 4.0)
(s429 5.0)
(s430 5.0)
(s431 2.0)
(s433 4.0)
(s434 5.0)
(s435 5.0)
(s436 2.0)
(s438 4.0)
(s439 5.0)
(s440 5.0)
(s441 2.0)
(s443 4.0)
(s444 5.0)
(s445 5.0)
(s446 2.0)
(s448 4.0)
(s449 5.0)
(s450 5.0)
(s451 2.0)
(s453 4.0)
(s454 5.0)
(s455 5.0)
(s456 2.0)
(s458 4.0)
(s459 5.0)
(s460 5.0)
(s461 2.0)
(s463 4.0)
(s464 5.0)
(s465 5.0)
(s466 2.0)
(s468 4.0)
(s469 5.0)
(s470 5.0)
(s471 2.0)
(s473 4.0)
(s474 5.0)
(s475 5.0)
(s476 2.0)
(s478 4.0)
(s479 5.0)
(s480 5.0)
(s481 2.0)
(s483 4.0)
(s484 5.0)
(s485 5.0)
(s486 2.0)
(s488 4.0)
(s489 5.0)
(s490 5.0)
(s491 2.0)
(s493 4.0)
(s494 5.0)
(s495 5.0)
(s496 2.0)
(s498 4.0)
(s499 5.0)
(s500 5.0)
(s501 2.0)
(s503 4.0)
(s504 5.0)
(s505 5.0)
(s506 2.0)
(s508 4.0)
(s509 5.0)
(s510 5.0)
(s511 2.0)
(s513 4.0)
(s514 5.0)
(s515 5.0)
(s516 2.0)
(s518 4.0)
(s519 5.0)
(s520 5.0)
(s521 2.0)
(s523 4.0)
(s524 5.0)
(s525 5.0)
(s526 2.0)
(s528 4.0)
(s529 5.0)
(s530 5.0)
(s531 2.0)
(s533 4.0)
(s534 5.0)
(s535 5.0)
(s536 2.0)
(s538 4.0)
(s539 5.0)
(s540 5.0)
(s541 2.0)
(s543 4.0)
(s544 5.0)
(s545 5.0)
(s546 2.0)
(s548 4.0)
(s549 5.0)
(s550 5.0)
(s551 2.0)
(s553 4.0)
(s554 5.0)
(s555 5.0)
(s556 2.0)
(s558 4.0)
(s559 5.0)
(s560 5.0)
(s561 2.0)
(s563 4.0)
(s564 5.0)
(s565 5.0)
(s566 2.0)
(s568 4.0)
(s569 5.0)
(s570 5.0)
(s571 2.0)
(s573 4.0)
(s574 5.0)
(s575 5.0)
(s576 2.0)
(s578 4.0)
(s579 5.0)
(s580 5.0)
(s581 2.0)
(s583 4.0)
(s584 5.0)
(s585 5.0)
(s586 2.0)
(s588 4.0)
(s589 5.0)
(s590 5.0)
(s591 2.0)
(s593 4.0)
(s594 5.0)
(s595 5.0)
(s596 2.0)
(s598 4.0)
(s599 5.0)
(s600 5.0)
(s601 2.0)
(s603 4.0)
(s604 5.0)
(s605 5.0)
(s606 2.0)
(s608 4.0)
(s609 5.0)
(s610 5.0)
(s611 2.0)
(s613 4.0)
(s614 5.0)
(s615 5.0)
(s616 2.0)
(s618 4.0)
(s619 5.0)
(s620 5.0)
(s621 2.0)
(s623 4.0)
(s624 5.0)
(s625 5.0)
(s626 2.0)
(s628 4.0)
(s629 5.0)
(s630 5.0)
(s631 2.0)
(s633 4.0)
(s634 5.0)
(s635 5.0)
(s636 2.0)
(s638 4.0)
(s639 5.0)
(s640 5.0)
(s641 2.0)
(s643 4.0)
(s644 5.0)
(s645 5.0)
(s646 2.0)
(s648 4.0)
(s649 5.0)
(s650 5.0)
(s651 2.0)
(s653 4.0)
(s654 5.0)
(s655 5.0)
(s656 2.0)
(s658 4.0)
(s659 5.0)
(s660 5.0)
(s661 2.0)
(s663 4.0)
(s664 5.0)
(s665 5.0)
(s666 2.0)
(s668 4.0)
(s669 5.0)
(s670 5.0)
(s671 2.0)
(s673 4.0)
(s674 5.0)
(s675 5.0)
(s676 2.0)
(s678 4.0)
(s679 5.0)
(s680 5.0)
(s681 2.0)
(s683 4.0)
(s684 5.0)
(s685 5.0)
(s686 2.0)
(s688 4.0)
(s689 5.0)
(s690 5.0)
(s691 2.0)
(s693 4.0)
(s694 5.0)
(s695 5.0)
(s696 2.0)
(s698 4.0)
(s699 5.0)
(s700 5.0)
(s701 2.0)
(s703 4.0)
(s704 5.0)
(s705 5.0)
(s706 2.0)
(s708 4.0)
(s709 5.0)
(s710 5.0)
(s711 2.0)
(s713 4.0)
(s714 5.0)
(s715 5.0)
(s716 2.0)
(s718 4.0)
(s719 5.0)
(s720 5.0)
(s721 2.0)
(s723 4.0)
(s724 5.0)
(s725 5.0)
(s726 2.0)
(s728 4.0)
(s729 5.0)
(s730 5.0)
(s731 2.0)
(s733 4.0)
(s734 5.0)
(s735 5.0)
(s736 2.0)
(s738 4.0)
(s739 5.0)
(s740 5.0)
(s741 2.0)
(s743 4.0)
(s744 5.0)
(s745 5.0)
(s746 2.0)
(s748 4.0)
(s749 5.0)
(s750 5.0)
(s751 2.0)
(s753 4.0)
(s754 5.0)
(s755 5.0)
(s756 2.0)
(s758 4.0)
(s759 5.0)
(s760 5.0)
(s761 2.0)
(s763 4.0)
(s764 5.0)
(s765 5.0)
(s766 2.0)
(s768 4.0)
(s769 5.0)
(s770 5.0)
(s771 2.0)
(s773 4.0)
(s774 5.0)
(s775 5.0)
(s776 2.0)
(s778 4.0)
(s779 5.0)
(s780 5.0)
(s781 2.0)
(s783 4.0)
(s784 5.0)
(s785 5.0)
(s786 2.0)
(s788 4.0)
(s789 5.0)
(s790 5.0)
(s791 2.0)
(s793 4.0)
(s794 5.0)
(s795 5.0)
(s796 2.0)
(s798 4.0)
(s799 5.0)
(s800 5.0)
(s801 2.0)
(s803 4.0)
(s804 5.0)
(s805 5.0)
(s806 2.0)
(s808 4.0)
(s809 5.0)
(s810 5.0)
(s811 2.0)
(s813 4.0)
(s814 5.0)
(s815 5.0)
(s816 2.0)
(s818 4.0)
(s819 5.0)
(s820 5.0)
(s821 2.0)
(s823 4.0)
(s824 5.0)
(s825 5.0)
(s826 2.0)
(s828 4.0)
(s829 5.0)
(s830 5.0)
(s831 2.0)
(s833 4.0)
(s834 5.0)
(s835 5.0)
(s836 2.0)
(s838 4.0)
(s839 5.0)
(s840 5.0)
(s841 2.0)
(s843 4.0)
(s844 5.0)
(s845 5.0)
(s846 2.0)
(s848 4.0)
(s849 5.0)
(s850 5.0)
(s851 2.0)
(s853 4.0)
(s854 5.0)
(s855 5.0)
(s856 2.0)
(s858 4.0)
(s859 5.0)
(s860 5.0)
(s861 2.0)
(s863 4.0)
(s864 5.0)
(s865 5.0)
(s866 2.0)
(s868 4.0)
(s869 5.0)
(s870 5.0)
(s871 2.0)
(s873 4.0)
(s874 5.0)
(s875 5.0)
(s876 2.0)
(s878 4.0)
(s879 5.0)
(s880 5.0)
(s881 2.0)
(s883 4.0)
(s884 5.0)
(s885 5.0)
(s886 2.0)
(s888 4.0)
(s889 5.0)
(s890 5.0)
(s891 2.0)
(s893 4.0)
(s894 5.0)
(s895 5.0)
(s896 2.0)
(s898 4.0)
(s899 5.0)
(s900 5.0)
(s901 2.0)
(s903 4.0)
(s904 5.0)
(s905 5.0)
(s906 2.0)
(s908 4.0)
(s909 5.0)
(s910 5.0)
(s911 2.0)
(s913 4.0)
(s914 5.0)
(s915 5.0)
(s916 2.0)
(s918 4.0)
(s919 5.0)
(s920 5.0)
(s921 2.0)
(s923 4.0)
(s924 5.0)
(s925 5.0)
(s926 2.0)
(s928 4.0)
(s929 5.0)
(s930 5.0)
(s931 2.0)
(s933 4.0)
(s934 5.0)
(s935 5.0)
(s936 2.0)
(s938 4.0)
(s939 5.0)
(s940 5.0)
(s941 2.0)
(s943 4.0)
(s944 5.0)
(s945 5.0)
(s946 2.0)
(s948 4.0)
(s949 5.0)
(s950 5.0)
(s951 2.0)
(s953 4.0)
(s954 5.0)
(s955 5.0)
(s956 2.0)
(s958 4.0)
(s959 5.0)
(s960 5.0)
(s961 2.0)
(s963 4.0)
(s964 5.0)
(s965 5.0)
(s966 2.0)
(s968 4.0)
(s969 5.0)
(s970 5.0)
(s971 2.0)
(s973 4.0)
(s974 5.0)
(s975 5.0)
(s976 2.0)
(s978 4.0)
(s979 5.0)
(s980 5.0)
(s981 2.0)
(s983 4.0)
(s984 5.0)
(s985 5.0)
(s986 2.0)
(s988 4.0)
(s989 5.0)
(s990 5.0)
(s991 2.0)
(s993 4.0)
(s994 5.0)
(s995 5.0)
(s996 2.0)
(s998 4.0)
(s999 5.0)
(s1000 5.0)
(s1001 2.0)
(s1003 4.0)
(s1004 5.0)
(s1005 5.0)
(s1006 2.0)
(s1008 4.0)
(s1009 5.0)
(s1010 5.0)
(s1011 2.0)
(s1013 4.0)
(s1014 5.0)
(s1015 5.0)
(s1016 2.0)
(s1018 4.0)
(s1019 5.0)
(s1020 5.0)
(s1021 2.0)
(s1023 4.0)
(s1024 5.0)
(s1025 5.0)
(s1026 2.0)
(s1028 4.0)
(s1029 5.0)
(s1030 5.0)
(s1031 2.0)
(s1033 4.0)
(s1034 5.0)
(s1035 5.0)
(s1036 2.0)
(s1038 4.0)
(s1039 5.0)
(s1040 5.0)
(s1041 2.0)
(s1043 4.0)
(s1044 5.0)
(s1045 5.0)
(s1046 2.0)
(s1048 4.0)
(s1049 5.0)
(s1050 5.0)
(s1051 2.0)
(s1053 4.0)
(s1054 5.0)
(s1055 5.0)
(s1056 2.0)
(s1058 4.0)
(s1059 5.0)
(s1060 5.0)
(s1061 2.0)
(s1063 4.0)
(s1064 5.0)
(s1065 5.0)
(s1066 2.0)
(s1068 4.0)
(s1069 5.0)
(s1070 5.0)
(s1071 2.0)
(s1073 4.0)
(s1074 5.0)
(s1075 5.0)
(s1076 2.0)
(s1078 4.0)
(s1079 5.0)
(s1080 5.0)
(s1081 2.0)
(s1083 4.0)
(s1084 5.0)
(s1085 5.0)
(s1086 2.0)
(s1088 4.0)
(s1089 5.0)
(s1090 5.0)
(s1091 2.0)
(s1093 4.0)
(s1094 5.0)
(s1095 5.0)
(s1096 2.0)
(s1098 4.0)
(s1099 5.0)
(s1100 5.0)
(s1101 2.0)
(s1103 4.0)
(s1104 5.0)
(s1105 5.0)
(s1106 2.0)
(s1108 4.0)
(s1109 5.0)
(s1110 5.0)
(s1111 2.0)
(s1113 4.0)
(s1114 5.0)
(s1115 5.0)
(s1116 2.0)
(s1118 4.0)
(s1119 5.0)
(s1120 5.0)
(s1121 2.0)
(s1123 4.0)
(s1124 5.0)
(s1125 5.0)
(s1126 2.0)
(s1128 4.0)
(s1129 5.0)
(s1130 5.0)
(s1131 2.0)
(s1133 4.0)
(s1134 5.0)
(s1135 5.0)
(s1136 2.0)
(s1138 4.0)
(s1139 5.0)
(s1140 5.0)
(s1141 2.0)
(s1143 4.0)
(s1144 5.0)
(s1145 5.0)
(s1146 2.0)
(s1148 4.0)
(s1149 5.0)
(s1150 5.0)
(s1151 2.0)
(s1153 4.0)
(s1154 5.0)
(s1155 5.0)
(s1156 2.0)
(s1158 4.0)
(s1159 5.0)
(s1160 5.0)
(s1161 2.0)
(s1163 4.0)
(s1164 5.0)
(s1165 5.0)
(s1166 2.0)
(s1168 4.0)
(s1169 5.0)
(s1170 5.0)
(s1171 2.0)
(s1173 4.0)
(s1174 5.0)
(s1175 5.0)
(s1176 2.0)
(s1178 4.0)
(s1179 5.0)
(s1180 5.0)
(s1181 2.0)
(s1183 4.0)
(s1184 5.0)
(s1185 5.0)
(s1186 2.0)
(s1188 4.0)
(s1189 5.0)
(s1190 5.0)
(s1191 2.0)
(s1193 4.0)
(s1194 5.0)
(s1195 5.0)
(s1196 2.0)
(s1198 4.0)
(s1199 5.0)
(s1200 5.0)
(s1201 2.0)
(s1203 4.0)
(s1204 5.0)
(s1205 5.0)
(s1206 2.0)
(s1208 4.0)
(s1209 5.0)
(s1210 5.0)
(s1211 2.0)
(s1213 4.0)
(s1214 5.0)
(s1215 5.0)
(s1216 2.0)
(s1218 4.0)
(s1219 5.0)
(s1220 5.0)
(s1221 2.0)
(s1223 4.0)
(s1224 5.0)
(s1225 5.0)
(s1226 2.0)
(s1228 4.0)
(s1229 5.0)
(s1230 5.0)
(s1231 2.0)
(s1233 4.0)
(s1234 5.0)
(s1235 5.0)
(s1236 2.0)
(s1238 4.0)
(s1239 5.0)
(s1240 5.0)
(s1241 2.0)
(s1243 4.0)
(s1244 5.0)
(s1245 5.0)
(s1246 2.0)
(s1248 4.0)
(s1249 5.0)
(s1250 5.0)
(s1251 2.0)
(s1253 4.0)
(s1254 5.0)
(s1255 5.0)
(s1256 2.0)
(s1258 4.0)
(s1259 5.0)
(s1260 5.0)
(s1261 2.0)
(s1263 4.0)
(s1264 5.0)
(s1265 5.0)
(s1266 2.0)
(s1268 4.0)
(s1269 5.0)
(s1270 5.0)
(s1271 2.0)
(s1273 4.0)
(s1274 5.0)
(s1275 5.0)
(s1276 2.0)
(s1278 4.0)
(s1279 5.0)
(s1280 5.0)
(s1281 2.0)
(s1283 4.0)
(s1284 5.0)
(s1285 5.0)
(s1286 2.0)
(s1288 4.0)
(s1289 5.0)
(s1290 5.0)
(s1291 2.0)
(s1293 4.0)
(s1294 5.0)
(s1295 5.0)
(s1296 2.0)
(s1298 4.0)
(s1299 5.0)
(s1300 5.0)
(s1301 2.0)
(s1303 4.0)
(s1304 5.0)
(s1305 5.0)
(s1306 2.0)
(s1308 4.0)
(s1309 5.0)
(s1310 5.0)
(s1311 2.0)
(s1313 4.0)
(s1314 5.0)
(s1315 5.0)
(s1316 2.0)
(s1318 4.0)
(s1319 5.0)
(s1320 5.0)
(s1321 2.0)
(s1323 4.0)
(s1324 5.0)
(s1325 5.0)
(s1326 2.0)
(s1328 4.0)
(s1329 5.0)
(s1330 5.0)
(s1331 2.0)
(s1333 4.0)
(s1334 5.0)
(s1335 5.0)
(s1336 2.0)
(s1338 4.0)
(s1339 5.0)
(s1340 5.0)
(s1341 2.0)
(s1343 4.0)
(s1344 5.0)
(s1345 5.0)
(s1346 2.0)
(s1348 4.0)
(s1349 5.0)
(s1350 5.0)
(s1351 2.0)
(s1353 4.0)
(s1354 5.0)
(s1355 5.0)
(s1356 2.0)
(s1358 4.0)
(s1359 5.0)
(s1360 5.0)
(s1361 2.0)
(s1363 4.0)
(s1364 5.0)
(s1365 5.0)
(s1366 2.0)
(s1368 4.0)
(s1369 5.0)
(s1370 5.0)
(s1371 2.0)
(s1373 4.0)
(s1374 5.0)
(s1375 5.0)
(s1376 2.0)
(s1378 4.0)
(s1379 5.0)
(s1380 5.0)
(s1381 2.0)
(s1383 4.0)
(s1384 5.0)
(s1385 5.0)
(s1386 2.0)
(s1388 4.0)
(s1389 5.0)
(s1390 5.0)
(s1391 2.0)
(s1393 4.0)
(s1394 5.0)
(s1395 5.0)
(s1396 2.0)
(s1398 4.0)
(s1399 5.0)
(s1400 5.0)
(s1401 2.0)
(s1403 4.0)
(s1404 5.0)
(s1405 5.0)
(s1406 2.0)
(s1408 4.0)
(s1409 5.0)
(s1410 5.0)
(s1411 2.0)
(s1413 4.0)
(s1414 5.0)
(s1415 5.0)
(s1416 2.0)
(s1418 4.0)
(s1419 5.0)
(s1420 5.0)
(s1421 2.0)
(s1423 4.0)
(s1424 5.0)
(s1425 5.0)
(s1426 2.0)
(s1428 4.0)
(s1429 5.0)
(s1430 5.0)
(s1431 2.0)
(s1433 4.0)
(s1434 5.0)
(s1435 5.0)
(s1436 2.0)
(s1438 4.0)
(s1439 5.0)
(s1440 5.0)
(s1441 2.0)
(s1443 4.0)
(s1444 5.0)
(s1445 5.0)
(s1446 2.0)
(s1448 4.0)
(s1449 5.0)
(s1450 5.0)
(s1451 2.0)
(s1453 4.0)
(s1454 5.0)
(s1455 5.0)
(s1456 2.0)
(s1458 4.0)
(s1459 5.0)
(s1460 5.0)
(s1461 2.0)
(s1463 4.0)
(s1464 5.0)
(s1465 5.0)
(s1466 2.0)
(s1468 4.0)
(s1469 5.0)
(s1470 5.0)
(s1471 2.0)
(s1473 4.0)
(s1474 5.0)
(s1475 5.0)
(s1476 2.0)
(s1478 4.0)
(s1479 5.0)
(s1480 5.0)
(s1481 2.0)
(s1483 4.0)
(s1484 5.0)
(s1485 5.0)
(s1486 2.0)
(s1488 4.0)
(s1489 5.0)
(s1490 5.0)
(s1491 2.0)
(s1493 4.0)
(s1494 5.0)
(s1495 5.0)
(s1496 2.0)
(s1498 4.0)
(s1499 5.0)
(s1500 5.0)
(s1501 2.0)
(s1503 4.0)
(s1504 5.0)
(s1505 5.0)
(s1506 2.0)
(s1508 4.0)
(s1509 5.0)
(s1510 5.0)
(s1511 2.0)
(s1513 4.0)
(s1514 5.0)
(s1515 5.0)
(s1516 2.0)
(s1518 4.0)
(s1519 5.0)
(s1520 5.0)
(s1521 2.0)
(s1523 4.0)
(s1524 5.0)
(s1525 5.0)
(s1526 2.0)
(s1528 4.0)
(s1529 5.0)
(s1530 5.0)
(s1531 2.0)
(s1533 4.0)
(s1534 5.0)
(s1535 5.0)
(s1536 2.0)
(s1538 4.0)
(s1539 5.0)
(s1540 5.0)
(s1541 2.0)
(s1543 4.0)
(s1544 5.0)
(s1545 5.0)
(s1546 2.0)
(s1548 4.0)
(s1549 5.0)
(s1550 5.0)
(s1551 2.0)
(s1553 4.0)
(s1554 5.0)
(s1555 5.0)
(s1556 2.0)
(s1558 4.0)
(s1559 5.0)
(s1560 5.0)
(s1561 2.0)
(s1563 4.0)
(s1564 5.0)
(s1565 5.0)
(s1566 2.0)
(s1568 4.0)
(s1569 5.0)
(s1570 5.0)
(s1571 2.0)
(s1573 4.0)
(s1574 5.0)
(s1575 5.0)
(s1576 2.0)
(s1578 4.0)
(s1579 5.0)
(s1580 5.0)
(s1581 2.0)
(s1583 4.0)
(s1584 5.0)
(s1585 5.0)
(s1586 2.0)
(s1588 4.0)
(s1589 5.0)
(s1590 5.0)
(s1591 2.0)
(s1593 4.0)
(s1594 5.0)
(s1595 5.0)
(s1596 2.0)
(s1598 4.0)
(s1599 5.0)
(s1600 5.0)
(s1601 2.0)
(s1603 4.0)
(s1604 5.0)
(s1605 5.0)
(s1606 2.0)
(s1608 4.0)
(s1609 5.0)
(s1610 5.0)
(s1611 2.0)
(s1613 4.0)
(s1614 5.0)
(s1615 5.0)
(s1616 2.0)
(s1618 4.0)
(s1619 5.0)
(s1620 5.0)
(s1621 2.0)
(s1623 4.0)
(s1624 5.0)
(s1625 5.0)
(s1626 2.0)
(s1628 4.0)
(s1629 5.0)
(s1630 5.0)
(s1631 2.0)
(s1633 4.0)
(s1634 5.0)
(s1635 5.0)
(s1636 2.0)
(s1638 4.0)
(s1639 5.0)
(s1640 5.0)
(s1641 2.0)
(s1643 4.0)
(s1644 5.0)
(s1645 5.0)
(s1646 2.0)
(s1648 4.0)
(s1649 5.0)
(s1650 5.0)
(s1651 2.0)
(s1653 4.0)
(s1654 5.0)
(s1655 5.0)
(s1656 2.0)
(s1658 4.0)
(s1659 5.0)
(s1660 5.0)
(s1661 2.0)
(s1663 4.0)
(s1664 5.0)
(s1665 5.0)
(s1666 2.0)
(s1668 4.0)
(s1669 5.0)
(s1670 5.0)
(s1671 2.0)
(s1673 4.0)
(s1674 5.0)
(s1675 5.0)
(s1676 2.0)
(s1678 4.0)
(s1679 5.0)
(s1680 5.0)
(s1681 2.0)
(s1683 4.0)
(s1684 5.0)
(s1685 5.0)
(s1686 2.0)
(s1688 4.0)
(s1689 5.0)
(s1690 5.0)
(s1691 2.0)
(s1693 4.0)
(s1694 5.0)
(s1695 5.0)
(s1696 2.0)
(s1698 4.0)
(s1699 5.0)
(s1700 5.0)
(s1701 2.0)
(s1703 4.0)
(s1704 5.0)
(s1705 5.0)
(s1706 2.0)
(s1708 4.0)
(s1709 5.0)
(s1710 5.0)
(s1711 2.0)
(s1713 4.0)
(s1714 5.0)
(s1715 5.0)
(s1716 2.0)
(s1718 4.0)
(s1719 5.0)
(s1720 5.0)
(s1721 2.0)
(s1723 4.0)
(s1724 5.0)
(s1725 5.0)
(s1726 2.0)
(s1728 4.0)
(s1729 5.0)
(s1730 5.0)
(s1731 2.0)
(s1733 4.0)
(s1734 5.0)
(s1735 5.0)
(s1736 2.0)
(s1738 4.0)
(s1739 5.0)
(s1740 5.0)
(s1741 2.0)
(s1743 4.0)
(s1744 5.0)
(s1745 5.0)
(s1746 2.0)
(s1748 4.0)
(s1749 5.0)
(s1750 5.0)
(s1751 2.0)
(s1753 4.0)
(s1754 5.0)
(s1755 5.0)
(s1756 2.0)
(s1758 4.0)
(s1759 5.0)
(s1760 5.0)
(s1761 2.0)
(s1763 4.0)
(s1764 5.0)
(s1765 5.0)
(s1766 2.0)
(s1768 4.0)
(s1769 5.0)
(s1770 5.0)
(s1771 2.0)
(s1773 4.0)
(s1774 5.0)
(s1775 5.0)
(s1776 2.0)
(s1778 4.0)
(s1779 5.0)
(s1780 5.0)
(s1781 2.0)
(s1783 4.0)
(s1784 5.0)
(s1785 5.0)
(s1786 2.0)
(s1788 4.0)
(s1789 5.0)
(s1790 5.0)
(s1791 2.0)
(s1793 4.0)
(s1794 5.0)
(s1795 5.0)
(s1796 2.0)
(s1798 4.0)
(s1799 5.0)
(s1800 5.0)
(s1801 2.0)
(s1803 timeout
4.0) org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20076 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20070 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 44032ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 44073ms
[2024-05-23 23:17:33] [INFO ] Invariant cache hit.
[2024-05-23 23:17:33] [INFO ] Implicit Places using invariants in 835 ms returned []
[2024-05-23 23:17:33] [INFO ] Invariant cache hit.
[2024-05-23 23:17:37] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2024-05-23 23:17:37] [INFO ] Implicit Places using invariants and state equation in 3486 ms returned []
Implicit Place search using SMT with State Equation took 4328 ms to find 0 implicit places.
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:17:37] [INFO ] Invariant cache hit.
[2024-05-23 23:17:37] [INFO ] State equation strengthened by 1000 read => feed constraints.
Error getting values : (error "Error writing to Z3 solver: java.io.IOException: Broken pipe")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30069 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30080 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 64060ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 64103ms
Finished structural reductions in LTL mode , in 1 iterations and 112711 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Stuttering acceptance computed with spot in 130 ms :[(AND (NOT p1) (NOT p0) (NOT p2)), (AND (NOT p1) (NOT p0) (NOT p2)), (AND (NOT p1) (NOT p0) (NOT p2))]
Running random walk in product with property : JoinFreeModules-PT-1000-LTLCardinality-07
Stuttering criterion allowed to conclude after 0 steps with 0 reset in 0 ms.
FORMULA JoinFreeModules-PT-1000-LTLCardinality-07 FALSE TECHNIQUES STUTTER_TEST
Treatment of property JoinFreeModules-PT-1000-LTLCardinality-07 finished in 112877 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202405141337/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!((G(p0)||F(p1)||(F(p2)&&X(!p2))))'
Support contains 5 out of 5000 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 191 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:18:41] [INFO ] Invariant cache hit.
[2024-05-23 23:18:41] [INFO ] State equation strengthened by 1000 read => feed constraints.
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20073 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20077 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 44047ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 44091ms
[2024-05-23 23:19:25] [INFO ] Invariant cache hit.
[2024-05-23 23:19:26] [INFO ] Implicit Places using invariants in 867 ms returned []
[2024-05-23 23:19:26] [INFO ] Invariant cache hit.
[2024-05-23 23:19:30] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2024-05-23 23:19:30] [INFO ] Implicit Places using invariants and state equation in 3892 ms returned []
Implicit Place search using SMT with State Equation took 4773 ms to find 0 implicit places.
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:19:30] [INFO ] Invariant cache hit.
[2024-05-23 23:19:30] [INFO ] State equation strengthened by 1000 read => feed constraints.
Error getting values : (error "Error writing to Z3 solver: java.io.IOException: Broken pipe")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30065 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30084 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 64070ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 64113ms
Finished structural reductions in LTL mode , in 1 iterations and 113182 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Stuttering acceptance computed with spot in 246 ms :[(AND (NOT p0) (NOT p1)), (AND (NOT p1) (NOT p2)), (AND (NOT p1) p2), (AND (NOT p1) (NOT p2) (NOT p0)), (AND (NOT p1) (NOT p0) p2), (NOT p1), (AND (NOT p1) (NOT p0))]
Running random walk in product with property : JoinFreeModules-PT-1000-LTLCardinality-08
Stuttering criterion allowed to conclude after 0 steps with 0 reset in 2 ms.
FORMULA JoinFreeModules-PT-1000-LTLCardinality-08 FALSE TECHNIQUES STUTTER_TEST
Treatment of property JoinFreeModules-PT-1000-LTLCardinality-08 finished in 113462 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202405141337/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(X(X(G((p0||X(p1))))))'
Support contains 3 out of 5000 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 205 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:20:35] [INFO ] Invariant cache hit.
[2024-05-23 23:20:35] [INFO ] State equation strengthened by 1000 read => feed constraints.
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20075 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Error getting values : (error "ParserException while parsing response: ((s0 5)
(s1 2)
(s3 4)
(s4 5)
(s5 5)
(s6 2)
(s8 4)
(s9 5)
(s10 5)
(s11 2)
(s13 4)
(s14 5)
(s15 5)
(s16 2)
(s18 4)
(s19 5)
(s20 5)
(s21 2)
(s23 4)
(s24 5)
(s25 5)
(s26 2)
(s28 4)timeout

(s29 org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20116 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 44108ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 44150ms
[2024-05-23 23:21:19] [INFO ] Invariant cache hit.
[2024-05-23 23:21:20] [INFO ] Implicit Places using invariants in 889 ms returned []
[2024-05-23 23:21:20] [INFO ] Invariant cache hit.
[2024-05-23 23:21:23] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2024-05-23 23:21:24] [INFO ] Implicit Places using invariants and state equation in 3818 ms returned []
Implicit Place search using SMT with State Equation took 4709 ms to find 0 implicit places.
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:21:24] [INFO ] Invariant cache hit.
[2024-05-23 23:21:24] [INFO ] State equation strengthened by 1000 read => feed constraints.
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30079 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Error getting values : (error "ParserException while parsing response: ((s0 5)
(s1 2)
(s3 4)
(s4 5)
(s5 5)
(s6 2)
(s8 4)
(s9 5)
(s10 5)
(s11 2)
(s13 4)
(s14 5)
(s15 5)
(s16 2)
(s18 4)
(s19 5)
(s20 5)
(s21 2)
(s23 4)
(s24 5)
(s25 5)
(s26 2)
(s28 4)
(s29 5)
(s30 5)
(s31 2)
(s33 4)
(s34 5)
(s35 5)
(s36 2)
(s38 4)
(s39 5)
(s40 5)
(s41 2)
(s43 4)
(s44 5)
(s45 5)
(s46 2)
(s48 4)
(s49 5)
(s50 5)
(s51 2)
(s53 4)
(s54 5)
(s55 5)
(s56 2)
(s58 4)
(s59 5)
(s60 5)
(s61 2)
(s63 4)
(s64 5)
(s65 5)
(s66 2)
(s68 4)
(s69 5)
(s70 5)
(s71 2)
(s73 4)
(s74 5)
(s75 5)
(s76 2)
(s78 4)
(s79 5)
(s80 5)
(s81 2)
(s83 4)
(s84 5)
(s85 5)
(s86 2)
(s88 4)
(s89 5)
(s90 5)
(s91 2)
(s93 4)
(s94 5)
(s95 5)
(s96 2)
(s98 4)
(s99 5)
(s100 5)
(s101 2)
(s103 4)
(s104 5)
(s105 5)
(s106 2)
(s108 4)
(s109 5)
(s110 5)
(s111 2)
(s113 4)
(s114 5)
(s115 5)
(s116 2)
(s118 4)
(s119 5)
(s120 5)
(s121 2)
(s123 4)
(s124 5)
(s125 5)
(s126 2)
(s128 4)
(s129 5)
(s130 5)
(s131 2)
(s133 4)
(s134 5)
(s135 5)
(s136 2)
(s138 4)
(s139 5)
(s140 5)
(s141 2)
(s143 4)
(s144 5)
(s145 5)
(s146 2)
(s148 4)
(s149 5)
(s150 5)
(s151 2)
(s153 4)
(s154 5)
(s155 5)
(s156 2)
(s158 4)
(s159 5)
(s160 5)
(s161 2)
(s163 4)
(s164 5)
(s165 5)
(s166 2)
(s168 4)
(s169 5)
(s170 5)
(s171 2)
(s173 4)
(s174 5)
(s175 5)
(s176 2)
(s178 4)
(s179 5)
(s180 5)
(s181 2)
(s183 4)
(s184 5)
(s185 5)
(s186 2)
(s188 4)
(s189 5)
(s190 5)
(s191 2)
(s193 4)
(s194 5)
(s195 5)
(s196 2)
(s198 4)
(s199 5)
(s200 5)
(s201 2)
(s203 4)
(s204 5)
(s205 5)
(s206 2)
(s208 4)
(s209 5)
(s210 5)
(s211 2)
(s213 4)
(s214 5)
(s215 5)
(s216 2)
(s218 4)
(s219 5)
(s220 5)
(s221 2)
(s223 4)
(s224 5)
(s225 5)
(s226 2)
(s228 4)
(s229 5)
(s230 5)
(s231 2)
(s233 4)
(s234 5)
(s235 5)
(s236 2)
(s238 4)
(s239 5)
(s240 5)
(s241 2)
(s243 4)
(s244 5)
(s245 5)
(s246 2)
(s248 4)
(s249 5)
(s250 5)
(s251 2)
(s253 4)
(s254 5)
(s255 5)
(s256 2)
(s258 4)
(s259 5)
(s260 5)
(s261 2)
(s263 4)
(s264 5)
(s265 5)
(s266 2)
(s268 4)
(s269 5)
(s270 5)
(s271 2)
(s273 4)
(s274 5)
(s275 5)
(s276 2)
(s278 4)
(s279 5)
(s280 5)
(s281 2)
(s283 4)
(s284 5)
(s285 5)
(s286 2)
(s288 4)
(s289 5)
(s290 5)
(s291 2)
(s293 4)
(s294 5)
(s295 5)
(s296 2)
(s298 4)
(s299 5)
(s300 5)
(s301 2)
(s303 4)
(s304 5)
(s305 5)
(s306 2)
(s308 4)
(s309 5)
(s310 5)
(s311 2)
(s313 4)
(s314 5)
(s315 5)
(s316 2)
(s318 4)
(s319 5)
(s320 5)
(s321 2)
(s323 4)
(s324 5)
(s325 5)
(s326 2)
(s328 4)
(s329 5)
(s330 5)
(s331 2)
(s333 4)
(s334 5)
(s335 5)
(s336 2)
(s338 4)
(s339 5)
(s340 5)
(s341 2)
(s343 4)
(s344 5)
(s345 5)
(s346 2)
(s348 4)
(s349 5)
(s350 5)
(s351 2)
(s353 4)
(s354 5)
(s355 5)
(s356 2)
(s358 4)
(s359 5)
(s360 5)
(s361 2)
(s363 4)
(s364 5)
(s365 5)
(s366 2)
(s368 4)
(s369 5)
(s370 5)
(s371 2)
(s373 4)
(s374 5)
(s375 5)
(s376 2)
(s378 4)
(s379 5)
(s380 5)
(s381 2)
(s383 4)
(s384 5)
(s385 5)
(s386 2)
(s388 4)
(s389 5)
(s390 5)
(s391 2)
(s393 4)
(s394 5)
(s395 5)
(s396 2)
(s398 4)
(s399 5)
(s400 5)
(s401 2)
(s403 4)
(s404 5)
(s405 5)
(s406 2)
(s408 4)
(s409 5)
(s410 5)
(s411 2)
(s413 4)
(s414 5)
(s415 5)
(s416 2)
(s418 4)
(s419 5)
(s420 5)
(s421 2)
(s423 4)
(s424 5)
(s425 5)
(s426 2)
(s428 4)
(s429 5)
(s430 5)
(s431 2)
(s433 4)
(s434 5)
(s435 5)
(s436 2)
(s438 4)
(s439 5)
(s440 5)
(s441 2)
(s443 4)
(s444 5)
(s445 5)
(s446 2)
(s448 4)
(s449 5)
(s450 5)
(s451 2)
(s453 4)
(s454 5)
(s455 5)
(s456 2)
(s458 4)
(s459 5)
(s460 5)
(s461 2)
(s463 4)
(s464 5)
(s465 5)
(s466 2)
(s468 4)
(s469 5)
(s470 5)
(s471 2)
(s473 4)
(s474 5)
(s475 5)
(s476 2)
(s478 4)
(s479 5)
(s480 5)
(s481 2)
(s483 4)
(s484 5)
(s485 5)
(s486 2)
(s488 4)
(s489 5)
(s490 5)
(s491 2)
(s493 4)
(s494 5)
(s495 5)
(s496 2)
(s498 4)
(s499 5)
(s500 5)
(s501 2)
(s503 4)
(s504 5)
(s505 5)
(s506 2)
(s508 4)
(s509 5)
(s510 5)
(s511 2)
(s513 4)
(s514 5)
(s515 5)
(s516 2)
(s518 4)
(s519 5)
(s520 5)
(s521 2)
(s523 4)
(s524 5)
(s525 5)
(s526 2)
(s528 4)
(s529 5)
(s530 5)
(s531 2)
(s533 4)
(s534 5)
(s535 5)
(s536 2)
(s538 4)
(s539 5)
(s540 5)
(s541 2)
(s543 4)
(s544 5)
(s545 5)
(s546 2)
(s548 4)
(s549 5)
(s550 5)
(s551 2)
(s553 4)
(s554 5)
(s555 5)
(s556 2)
(s558 4)
(s559 5)
(s560 5)
(s561 2)
(s563 4)
(s564 5)
(s565 5)
(s566 2)
(s568 4)
(s569 5)
(s570 5)
(s571 2)
(s573 4)
(s574 5)
(s575 5)
(s576 2)
(s578 4)
(s579 5)
(s580 5)
(s581 2)
(s583 4)
(s584 5)
(s585 5)
(s586 2)
(s588 4)
(s589 5)
(s590 5)
(s591 2)
(s593 4)
(s594 5)
(s595 5)
(s596 2)
(s598 4)
(s599 5)
(s600 5)
(s601 2)
(s603 4)
(s604 5)
(s605 5)
(s606 2)
(s608 4)
(s609 5)
(s610 5)
(s611 2)
(s613 4)
(s614 5)
(s615 5)
(s616 2)
(s618 4)
(s619 5)
(s620 5)
(s621 2)
(s623 4)
(s624 5)
(s625 5)
(s626 2)
(s628 4)
(s629 5)
(s630 5)
(s631 2)
(s633 4)
(s634 5)
(s635 5)
(s636 2)
(s638 4)
(s639 5)
(s640 5)
(s641 2)
(s643 4)
(s644 5)
(s645 5)
(s646 2)
(s648 4)
(s649 5)
(s650 5)
(s651 2)
(s653 4)
(s654 5)
(s655 5)
(s656 2)
(s658 4)
(s659 5)
(s660 5)
(s661 2)
(s663 4)
(s664 5)
(s665 5)
(s666 2)
(s668 4)
(s669 5)
(s670 5)
(s671 2)
(s673 4)
(s674 5)
(s675 5)
(s676 2)
(s678 4)
(s679 5)
(s680 5)
(s681 2)
(s683 4)
(s684 5)
(s685 5)
(s686 2)
(s688 4)
(s689 5)
(s690 5)
(s691 2)
(s693 4)
(s694 5)
(s695 5)
(s696 2)
(s698 4)
(s699 5)
(s700 5)
(s701 2)
(s703 4)
(s704 5)
(s705 5)
(s706 2)
(s708 4)
(s709 5)
(s710 5)
(s711 2)
(s713 4)
(s714 5)
(s715 5)
(s716 2)
(s718 4)
(s719 5)
(s720 5)
(s721 2)
(s723 4)
(s724 5)
(s725 5)
(s726 2)
(s728 4)
(s729 5)
(s730 5)
(s731 2)
(s733 4)
(s734 5)
(s735 5)
(s736 2)
(s738 4)
(s739 5)
(s740 5)
(s741 2)
(s743 4)
(s744 5)
(s745 5)
(s746 2)
(s748 4)
(s749 5)
(s750 5)
(s751 2)
(s753 4)
(s754 5)
(s755 5)
(s756 2)
(s758 4)
(s759 5)
(s760 5)
(s761 2)
(s763 4)
(s764 5)
(s765 5)
(s766 2)
(s768 4)
(s769 5)
(s770 5)
(s771 2)
(s773 4)
(s774 5)
(s775 5)
(s776 2)
(s778 4)
(s779 5)
(s780 5)
(s781 2)
(s783 4)
(s784 5)
(s785 5)
(s786 2)
(s788 4)
(s789 5)
(s790 5)
(s791 2)
(s793 4)
(s794 5)
(s795 5)
(s796 2)
(s798 4)
(s799 5)
(s800 5)
(s801 2)
(s803 4)
(s804 5)
(s805 5)
(s806 2)
(s808 4)
(s809 5)
(s810 5)
(s811 2)
(s813 4)
(s814 5)
(s815 5)
(s816 2)
(s818 4)
(s819 5)
(s820 5)
(s821 2)
(s823 4)
(s824 5)
(s825 5)
(s826 2)
(s828 4)
(s829 5)
(s830 5)
(s831 2)
(s833 4)
(s834 5)
(s835 5)
(s836 2)
(s838 4)
(s839 5)
(s840 5)
(s841 2)
(s843 4)
(s844 5)
(s845 5)
(s846 2)
(s848 4)timeout

(s849 5) org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30076 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 64085ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 64129ms
Finished structural reductions in LTL mode , in 1 iterations and 113206 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Stuttering acceptance computed with spot in 178 ms :[true, (NOT p1), (AND (NOT p0) (NOT p1)), (AND (NOT p1) (NOT p0)), (AND (NOT p1) (NOT p0))]
Running random walk in product with property : JoinFreeModules-PT-1000-LTLCardinality-09
Product exploration timeout after 22020 steps with 0 reset in 10004 ms.
Product exploration timeout after 21300 steps with 0 reset in 10005 ms.
Computed a total of 0 stabilizing places and 0 stable transitions
Computed a total of 0 stabilizing places and 0 stable transitions
Knowledge obtained : [(AND p1 p0)]
False Knowledge obtained : []
Knowledge based reduction with 1 factoid took 100 ms. Reduced automaton from 5 states, 8 edges and 2 AP (stutter sensitive) to 5 states, 8 edges and 2 AP (stutter sensitive).
Stuttering acceptance computed with spot in 180 ms :[true, (NOT p1), (AND (NOT p0) (NOT p1)), (AND (NOT p1) (NOT p0)), (AND (NOT p1) (NOT p0))]
RANDOM walk for 40563 steps (8 resets) in 1725 ms. (23 steps per ms) remains 4/4 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1977 ms. (20 steps per ms) remains 1/4 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1960 ms. (20 steps per ms) remains 1/1 properties
[2024-05-23 23:22:50] [INFO ] Invariant cache hit.
[2024-05-23 23:22:50] [INFO ] State equation strengthened by 1000 read => feed constraints.
At refinement iteration 0 (INCLUDED_ONLY) 0/1 variables, 0/0 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 1 (OVERLAPS) 4/5 variables, 1/1 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 2 (INCLUDED_ONLY) 0/5 variables, 0/1 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 3 (OVERLAPS) 8/13 variables, 5/6 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 4 (INCLUDED_ONLY) 0/13 variables, 1/7 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 5 (INCLUDED_ONLY) 0/13 variables, 0/7 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 6 (OVERLAPS) 0/13 variables, 0/7 constraints. Problems are: Problem set: 0 solved, 1 unsolved
No progress, stopping.
After SMT solving in domain Real declared 13/13001 variables, and 7 constraints, problems are : Problem set: 0 solved, 1 unsolved in 72 ms.
Refiners :[Positive P Invariants (semi-flows): 1/1000 constraints, State Equation: 5/5000 constraints, ReadFeed: 1/1000 constraints, PredecessorRefiner: 1/1 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 1 unsolved
At refinement iteration 0 (INCLUDED_ONLY) 0/1 variables, 0/0 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 1 (OVERLAPS) 4/5 variables, 1/1 constraints. Problems are: Problem set: 0 solved, 1 unsolved
[2024-05-23 23:22:50] [INFO ] Deduced a trap composed of 3 places in 27 ms of which 3 ms to minimize.
At refinement iteration 2 (INCLUDED_ONLY) 0/5 variables, 1/2 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 3 (INCLUDED_ONLY) 0/5 variables, 0/2 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 4 (OVERLAPS) 8/13 variables, 5/7 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 5 (INCLUDED_ONLY) 0/13 variables, 1/8 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 6 (INCLUDED_ONLY) 0/13 variables, 1/9 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 7 (INCLUDED_ONLY) 0/13 variables, 0/9 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 8 (OVERLAPS) 0/13 variables, 0/9 constraints. Problems are: Problem set: 0 solved, 1 unsolved
No progress, stopping.
After SMT solving in domain Int declared 13/13001 variables, and 9 constraints, problems are : Problem set: 0 solved, 1 unsolved in 111 ms.
Refiners :[Positive P Invariants (semi-flows): 1/1000 constraints, State Equation: 5/5000 constraints, ReadFeed: 1/1000 constraints, PredecessorRefiner: 1/1 constraints, Known Traps: 1/1 constraints]
After SMT, in 227ms problems are : Problem set: 0 solved, 1 unsolved
Finished Parikh walk after 1001 steps, including 0 resets, run visited all 1 properties in 50 ms. (steps per millisecond=20 )
Parikh walk visited 1 properties in 50 ms.
Knowledge obtained : [(AND p1 p0)]
False Knowledge obtained : [(F (NOT p0)), (F (NOT (AND p0 p1))), (F (NOT p1)), (F (NOT (OR p0 (NOT p1))))]
Knowledge based reduction with 1 factoid took 150 ms. Reduced automaton from 5 states, 8 edges and 2 AP (stutter sensitive) to 5 states, 8 edges and 2 AP (stutter sensitive).
Stuttering acceptance computed with spot in 157 ms :[true, (NOT p1), (AND (NOT p0) (NOT p1)), (AND (NOT p1) (NOT p0)), (AND (NOT p1) (NOT p0))]
Stuttering acceptance computed with spot in 170 ms :[true, (NOT p1), (AND (NOT p0) (NOT p1)), (AND (NOT p1) (NOT p0)), (AND (NOT p1) (NOT p0))]
Support contains 3 out of 5000 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 201 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:22:51] [INFO ] Invariant cache hit.
[2024-05-23 23:22:51] [INFO ] State equation strengthened by 1000 read => feed constraints.
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20075 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20078 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 44062ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 44105ms
[2024-05-23 23:23:35] [INFO ] Invariant cache hit.
[2024-05-23 23:23:36] [INFO ] Implicit Places using invariants in 844 ms returned []
[2024-05-23 23:23:36] [INFO ] Invariant cache hit.
[2024-05-23 23:23:39] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2024-05-23 23:23:40] [INFO ] Implicit Places using invariants and state equation in 3607 ms returned []
Implicit Place search using SMT with State Equation took 4453 ms to find 0 implicit places.
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:23:40] [INFO ] Invariant cache hit.
[2024-05-23 23:23:40] [INFO ] State equation strengthened by 1000 read => feed constraints.
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30072 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Error getting values : (error "ParserException while parsing response: ((s0 5)
(s1 2)
(s3 4)
(s4 5)
(s5 5)
(s6 2)
(s8 4)
(s9 5)
(s10 5)
(s11 2)
(s13 4)
(s14 5)
(s15 5)
(s16 2)
(s18 4)
(s19 5)
(s20 5)
(s21 2)
(s23 4)
(s24 5)
(s25 5)
(s26 2)
(s28 4)
(s29 5)
(s30 5)
(s31 2)
(s33 4)
(s34 5)
(s35 5)
(s36 2)
(s38 4)
(s39 5)
(s40 5)
(s41 2)
(s43 4)
(s44 5)
(s45 5)
(s46 2)
(s48 4)
(s49 5)
(s50 5)
(s51 2)
(s53 4)
(s54 5)
(s55 5)
(s56 2)
(s58 4)
(s59 5)
(s60 5)
(s61 2)
(s63 4)
(s64 5)
(s65 5)
(s66 2)
(s68 4)
(s69 5)
(s70 5)
(s71 2)
(s73 4)
(s74 5)
(s75 5)
(s76 2)
(s78 4)
(s79 5)
(s80 5)
(s81 2)
(s83 4)
(s84 5)
(s85 5)
(s86 2)
(s88 4)
(s89 5)
(s90 5)
(s91 2)
(s93 4)
(s94 5)
(s95 5)
(s96 2)
(s98 4)
(s99 5)
(s100 5)
(s101 2)
(s103 4)
(s104 5)
(s105 5)
(s106 2)
(s108 4)
(s109 5)
(s110 5)
(s111 2)
(s113 4)
(s114 5)
(s115 5)
(s116 2)
(s118 4)
(s119 5)
(s120 5)
(s121 2)
(s123 4)
(s124 5)
(s125 5)
(s126 2)
(s128 4)
(s129 5)
(s130 5)
(s131 2)
(s133 4)
(s134 5)
(s135 5)
(s136 2)
(s138 4)
(s139 5)
(s140 5)
(s141 2)
(s143 4)
(s144 5)
(s145 5)
(s146 2)
(s148 4)
(s149 5)
(s150 5)
(s151 2)
(s153 4)
(s154 5)
(s155 5)
(s156 2)
(s158 4)
(s159 5)
(s160 5)
(s161 2)
(s163 4)
(s164 5)
(s165 5)
(s166 2)
(s168 4)
(s169 5)
(s170 5)
(s171 2)
(s173 4)
(s174 5)
(s175 5)
(s176 2)
(s178 4)
(s179 5)
(s180 5)
(s181 2)
(s183 4)
(s184 5)
(s185 5)
(s186 2)
(s188 4)
(s189 5)
(s190 5)
(s191 2)
(s193 4)
(s194 5)
(s195 5)
(s196 2)
(s198 4)
(s199 5)
(s200 5)
(s201 2)
(s203 4)
(s204 5)
(s205 5)
(s206 2)
(s208 4)
(s209 5)
(s210 5)
(s211 2)
(s213 4)
(s214 5)
(s215 5)
(s216 2)
(s218 4)
(s219 5)
(s220 5)
(s221 2)
(s223 4)
(s224 5)
(s225 5)
(s226 2)
(s228 4)
(s229 5)
(s230 5)
(s231 2)
(s233 4)
(s234 5)
(s235 5)
(s236 2)
(s238 4)
(s239 5)
(s240 5)
(s241 2)
(s243 4)
(s244 5)
(s245 5)
(s246 2)
(s248 4)
(s249 5)
(s250 5)
(s251 2)
(s253 4)
(s254 5)
(s255 5)
(s256 2)
(s258 4)
(s259 5)
(s260 5)
(s261 2)
(s263 4)
(s264 5)
(s265 5)
(s266 2)
(s268 4)
(s269 5)
(s270 5)
(s271 2)
(s273 4)
(s274 5)
(s275 5)
(s276 2)
(s278 4)
(s279 5)
(s280 5)
(s281 2)
(s283 4)
(s284 5)
(s285 5)
(s286 2)
(s288 4)
(s289 5)
(s290 5)
(s291 2)
(s293 4)
(s294 5)
(s295 5)
(s296 2)
(s298 4)
(s299 5)
(s300 5)
(s301 2)
(s303 4)
(s304 5)
(s305 5)
(s306 2)
(s308 4)
(s309 5)
(s310 5)
(s311 2)
(s313 4)
(s314 5)
(s315 5)
(s316 2)
(s318 4)
(s319 5)
(s320 5)
(s321 2)
(s323 4)
(s324 5)
(s325 5)
(s326 2)
(s328 4)
(s329 5)
(s330 5)
(s331 2)
(s333 4)
(s334 5)
(s335 5)
(s336 2)
(s338 4)
(s339 5)
(s340 5)
(s341 2)
(s343 4)
(s344 5)
(s345 5)
(s346 2)
(s348 4)
(s349 5)
(s350 5)
(s351 2)
(s353 4)
(s354 5)
(s355 5)
(s356 2)
(s358 4)
(s359 5)
(s360 5)
(s361 2)
(s363 4)
(s364 5)
(s365 5)
(s366 2)
(s368 4)
(s369 5)
(s370 5)
(s371 2)
(s373 4)
(s374 5)
(s375 5)
(s376 2)
(s378 4)
(s379 5)
(s380 5)
(s381 2)
(s383 4)
(s384 5)
(s385 5)
(s386 2)
(s388 4)
(s389 5)
(s390 5)
(s391 2)
(s393 4)
(s394 5)
(s395 5)
(s396 2)
(s398 4)
(s399 5)
(s400 5)
(s401 2)
(s403 4)
(s404 5)
(s405 5)
(s406 2)
(s408 4)
(s409 5)
(s410 5)
(s411 2)
(s413 4)
(s414 5)
(s415 5)
(s416 2)
(s418 4)
(s419 5)
(s420 5)
(s421 2)
(s423 4)
(s424 5)
(s425 5)
(s426 2)
(s428 4)
(s429 5)
(s430 5)
(s431 2)
(s433 4)
(s434 5)
(s435 5)
(s436 2)
(s438 4)
(s439 5)
(s440 5)
(s441 2)
(s443 4)
(s444 5)
(s445 5)
(s446 2)
(s448 4)
(s449 5)
(s450 5)
(s451 2)
(s453 4)
(s454 5)
(s455 5)
(s456 2)
(s458 4)
(s459 5)
(s460 5)
(s461 2)
(s463 4)
(s464 5)
(s465 5)
(s466 2)
(s468 4)
(s469 5)
(s470 5)
(s471 2)
(s473 4)
(s474 5)
(s475 5)
(s476 2)
(s478 4)
(s479 5)
(s480 5)
(s481 2)
(s483 4)
(s484 5)
(s485 5)
(s486 2)
(s488 4)
(s489 5)
(s490 5)
(s491 2)
(s493 4)
(s494 5)
(s495 5)
(s496 2)
(s498 4)
(s499 5)
(s500 5)
(s501 2)
(s503 4)
(s504 5)
(s505 5)
(s506 2)
(s508 4)
(s509 5)
(s510 5)
(s511 2)
(s513 4)
(s514 5)
(s515 5)
(s516 2)
(s518 4)
(s519 5)
(s520 5)
(s521 2)
(s523 4)
(s524 5)
(s525 5)
(s526 2)
(s528 4)
(s529 5)
(s530 5)
(s531 2)
(s533 4)
(s534 5)
(s535 5)
(s536 2)
(s538 4)
(s539 5)
(s540 5)
(s541 2)
(s543 4)
(s544 5)
(s545 5)
(s546 2)
(s548 4)
(s549 5)
(s550 5)
(s551 2)
(s553 4)
(s554 5)
(s555 5)
(s556 2)
(s558 4)
(s559 5)
(s560 5)
(s561 2)
(s563 4)
(s564 5)
(s565 5)
(s566 2)
(s568 4)
(s569 5)
(s570 5)
(s571 2)
(s573 4)
(s574 5)
(s575 5)
(s576 2)
(s578 4)
(s579 5)
(s580 5)
(s581 2)
(s583 4)
(s584 5)
(s585 5)
(s586 2)
(s588 4)
(s589 5)
(s590 5)
(s591 2)
(s593 4)
(s594 5)
(s595 5)
(s596 2)
(s598 4)
(s599 5)
(s600 5)
(s601 2)
(s603 4)
(s604 5)
(s605 5)
(s606 2)
(s608 4)
(s609 5)
(s610 5)
(s611 2)
(s613 4)
(s614 5)
(s615 5)
(s616 2)
(s618 4)
(s619 5)
(s620 5)
(s621 2)
(s623 4)
(s624 5)
(s625 5)
(s626 2)
(s628 4)
(s629 5)
(s630 5)
(s631 2)
(s633 4)
(s634 5)
(s635 5)
(s636 2)
(s638 4)
(s639 5)
(s640 5)
(s641 2)
(s643 4)
(s644 5)
(s645 5)
(s646 2)
(s648 4)
(s649 5)
(s650 5)
(s651 2)
(s653 4)
(s654 5)
(s655 5)
(s656 2)
(s658 4)
(s659 5)
(s660 5)
(s661 2)
(s663 4)
(s664 5)
(s665 5)
(s666 2)
(s668 4)
(s669 5)
(s670 5)
(s671 2)
(s673 4)
(s674 5)
(s675 5)
(s676 2)
(s678 4)
(s679 5)
(s680 5)
(s681 2)
(s683 4)
(s684 5)
(s685 5)
(s686 2)
(s688 4)
(s689 5)
(s690 5)
(s691 2)
(s693 4)
(s694 5)
(s695 5)
(s696 2)
(s698 4)
(s699 5)
(s700 5)
(s701 2)
(s703 4)
(s704 5)
(s705 5)
(s706 2)
(s708 4)
(s709 5)
(s710 5)
(s711 2)
(s713 4)
(s714 5)
(s715 5)
(s716 2)
(s718 4)
(s719 5)
(s720 5)
(s721 2)
(s723 4)
(s724 5)
(s725 5)
(s726 2)
(s728 4)
(s729 5)
(s730 5)
(s731 2)
(s733 4)
(s734 5)
(s735 5)
(s736 2)
(s738 4)
(s739 5)
(s740 5)
(s741 2)
(s743 4)
(s744 5)
(s745 5)
(s746 2)
(s748 4)
(s749 5)
(s750 5)
(s751 2)
(s753 4)
(s754 5)
(s755 5)
(s756 2)
(s758 4)
(s759 5)
(s760 5)
(s761 2)
(s763 4)
(s764 5)
(s765 5)
(s766 2)
(s768 4)
(s769 5)
(s770 5)
(s771 2)
(s773 4)
(s774 5)
(s775 5)
(s776 2)
(s778 4)
(s779 5)
(s780 5)
(s781 2)
(s783 4)
(s784 5)
(s785 5)
(s786 2)
(s788 4)
(s789 5)
(s790 5)
(s791 2)
(s793 4)
(s794 5)
(s795 5)
(s796 2)
(s798 4)
(s799 5)
(s800 5)
(s801 2)
(s803 4)
(s804 5)
(s805 5)
(s806 2)
(s808 4)
(s809 5)
(s810 5)
(s811 2)
(s813 4)
(s814 5)
(s815 5)
(s816 2)
(s818 4)
(s819 5)
(s820 5)
(s821 2)
(s823 4)
(s824 5)
(s825 5)
(s826 2)
(s828 4)
(s829 5)
(s830 5)
(s831 2)
(s833 4)
(s834 5)
(s835 5)
(s836 2)
(s838 4)
(s839 5)
(s840 5)
(s841 2)
(s843 4)
(s844 5)
(s845 5)
(s846 2)
(s848 4)
(s849 5)
(s850 5)
(s851 2)
(s853 4)
(s854 5)
(s855 5)
(s856 2)
(s858 4)
(s859 5)
(s860 5)
(s861 2)
(s863 4)
(s864 5)
(s865 5)
(s866 2)
(s868 4)
(s869 5)
(s870 5)
(s871 2)
(s873 4)
(s874 5)
(s875 5)
(s876 2)
(s878 4)
(s879 5)
(s880 5)
(s881 2)
(s883 4)
(s884 5)
(s885 5)
(s886 2)
(s888 4)
(s889 5)
(s890 5)
(s891 2)
(s893 4)
(s894 5)
(s895 5)
(s896 2)
(s898 4)
(s899 5)
(s900 5)
(s901 2)
(s903 4)
(s904 5)
(s905 5)
(s906 2)
(s908 4)
(s909 5)
(s910 5)
(s911 2)
(s913 4)
(s914 5)
(s915 5)
(s916 2)
(s918 4)
(s919 5)
(s920 5)
(s921 2)
(s923 4)
(s924 5)
(s925 5)
(s926 2)
(s928 4)
(s929 5)
(s930 5)
(s931 2)
(s933 4)
(s934 5)
(s935 5)
(s936 2)
(s938 4)
(s939 5)
(s940 5)
(s941 2)
(s943 4)
(s944 5)
(s945 5)
(s946 2)
(s948 4)
(s949 5)
(s950 5)
(s951 2)
(s953 4)
(s954 5)
(s955 5)
(s956 2)
(s958 4)
(s959 5)
(s960 5)
(s961 2)
(s963 4)
(s964 5)
(s965 5)
(s966 2)
(s968 4)
(s969 5)
(s970 5)
(s971 2)
(s973 4)
(s974 5)
(s975 5)
(s976 2)
(s978 4)
(s979 5)
(s980 5)
(s981 2)
(s983 4)
(s984 5)
(s985 5)
(s986 2)
(s988 4)
(s989 5)
(s990 5)
(s991 2)
(s993 4)
(s994 5)
(s995 5)
(s996 2)
(s998 4)
(s999 5)
(s1000 5)
(s1001 2)
(s1003 4)
(s1004 5)
(s1005 5)
(s1006 2)
(s1008 4)
(s1009 5)
(s1010 5)
(s1011 2)
(s1013 4)
(s1014 5)
(s1015 5)
(s1016 2)
(s1018 4)
(s1019 5)
(s1020 5)
(s1021 2)
(s1023 4)
(s1024 5)
(s1025 5)
(s1026 2)
(s1028 4)
(s1029 5)
(s1030 5)
(s1031 2)
(s1033 4)
(s1034 5)
(s1035 5)
(s1036 2)
(s1038 4)
(s1039 5)
(s1040 5)
(s1041 2)
(s1043 4)
(s1044 5)
(s1045 5)
(s1046 2)
(s1048 4)
(s1049 5)
(s1050 5)
(s1051 2)
(s1053 4)
(s1054 5)
(s1055 5)
(s1056 2)
(s1058 4)
(s1059 5)
(s1060 5)
(s1061 2)
(s1063 4)
(s1064 5)
(s1065 5)
(s1066 2)
(s1068 4)
(s1069 5)
(s1070 5)
(s1071 2)
(s1073 4)
(s1074 5)
(s1075 5)
(s1076 2)
(s1078 4)
(s1079 5)
(s1080 5)
(s1081 2)
(s1083 4)
(s1084 5)
(s1085 5)
(s1086 2)
(s1088 4)
(s1089 5)
(s1090 5)
(s1091 2)
(s1093 4)
(s1094 5)
(s1095 5)
(s1096 2)
(s1098 4)
(s1099 5)
(s1100 5)
(s1101 2)
(s1103 4)
(s1104 5)
(s1105 5)
(s1106 2)
(s1108 4)
(s1109 5)
(s1110 5)
(s1111 2)
(s1113 4)
(s1114 5)
(s1115 5)
(s1116 2)
(s1118 4)
(s1119 5)
(s1120 5)
(s1121 2)
(s1123 4)
(s1124 5)
(s1125 5)
(s1126 2)
(s1128 4)
(s1129 5)
(s1130 5)
(s1131 2)
(s1133 4)
(s1134 5)
(s1135 5)
(s1136 2)
(s1138 4)
(s1139 5)
(s1140 5)
(s1141 2)
(s1143 4)
(s1144 5)
(s1145 5)
(s1146 2)
(s1148 4)
(s1149 5)
(s1150 5)
(s1151 2)
(s1153 4)
(s1154 5)
(s1155 5)
(s1156 2)
(s1158 4)
(s1159 5)
(s1160 5)
(s1161 2)
(s1163 4)
(s1164 5)
(s1165 5)
(s1166 2)
(s1168 4)
(s1169 5)
(s1170 5)
(s1171 2)
(s1173 4)
(s1174 5)
(s1175 5)
(s1176 2)
(s1178 4)
(s1179 5)
(s1180 5)
(s1181 2)
(s1183 4)
(s1184 5)
(s1185 5)
(s1186 2)
(s1188 4)
(s1189 5)
(s1190 5)
(s1191 2)
(s1193 4)
(s1194 5)
(s1195 5)
(s1196 2)
(s1198 4)
(s1199 5)
(s1200 5)
(s1201 2)
(s1203 4)
(s1204 5)
(s1205 5)
(s1206 2)
(s1208 4)
(s1209 5)
(s1210 5)
(s1211 2)
(s1213 4)
(s1214 5)
(s1215 5)
(s1216 2)
(s1218 4)
(s1219 5)
(s1220 5)
(s1221 2)
(s1223 4)
(s1224 5)
(s1225 5)
(s1226 2)
(s1228 4)
(s1229 5)
(s1230 5)
(s1231 2)
(s1233 4)
(s1234 5)
(s1235 5)
(s1236 2)
(s1238 4)
(s1239 5)
(s1240 5)
(s1241 2)
(s1243 4)
(s1244 5)
(s1245 5)
(s1246 2)
(s1248 4)
(s1249 5)
(s1250 5)
(s1251 2)
(s1253 4)
(s1254 5)
(s1255 5)
(s1256 2)
(s1258 4)
(s1259 5)
(s1260 5)
(s1261 2)
(s1263 4)
(s1264 5)
(s1265 5)
(s1266 2)
(s1268 4)
(s1269 5)
(s1270 5)
(s1271 2)
(s1273 4)
(s1274 5)
(s1275 5)
(s1276 2)
(s1278 4)
(s1279 5)
(s1280 5)
(s1281 2)
(s1283 4)
(s1284 5)
(s1285 5)
(s1286 2)
(s1288 4)
(s1289 5)
(s1290 5)
(s1291 2)
(s1293 4)
(s1294 5)
(s1295 5)
(s1296 2)
(s1298 4)
(s1299 5)
(s1300 5)
(s1301 2)
(s1303 4)
(s1304 5)
(s1305 5)
(s1306 2)
(s1308 4)
(s1309 5)
(s1310 5)
(s1311 2)
(s1313 4)
(s1314 5)
(s1315 5)
(s1316 2)
(s1318 4)
(s1319 5)
(s1320 5)
(s1321 2)
(s1323 4)
(s1324 5)
(s1325 5)
(s1326 2)
(s1328 4)
(s1329 5)
(s1330 5)
(s1331 2)
(s1333 4)
(s1334 5)
(s1335 5)
(s1336 2)
(s1338 4)
(s1339 5)
(s1340 5)
(s1341 2)
(s1343 4)
(s1344 5)
(s1345 5)
(s1346 2)
(s1348 4)
(s1349 5)
(s1350 5)
(s1351 2)
(s1353 4)
(s1354 5)
(s1355 5)
(s1356 2)
(s1358 4)
(s1359 5)
(s1360 5)
(s1361 2)
(s1363 4)
(s1364 5)
(s1365 5)
(s1366 2)
(s1368 4)
(s1369 5)
(s1370 5)
(s1371 2)
(s1373 4)
(s1374 5)
(s1375 5)
(s1376 2)
(s1378 4)
(s1379 5)
(s1380 5)
(s1381 2)
(s1383 4)
(s1384 5)
(s1385 5)
(s1386 2)
(s1388 4)
(s1389 5)
(s1390 5)
(s1391 2)
(s1393 4)
(s1394 5)
(s1395 5)
(s1396 2)
(s1398 4)
(s1399 5)
(s1400 5)
(s1401 2)
(s1403 4)
(s1404 5)
(s1405 5)
(s1406 2)
(s1408 4)
(s1409 5)
(s1410 5)
(s1411 2)
(s1413 4)
(s1414 5)
(s1415 5)
(s1416 2)
(s1418 4)
(s1419 5)
(s1420 5)
(s1421 2)
(s1423 4)
(s1424 5)
(s1425 5)
(s1426 2)
(s1428 4)
(s1429 5)
(s1430 5)
(s1431 2)
(s1433 4)
(s1434 5)
(s1435 5)
(s1436 2)
(s1438 4)
(s1439 5)
(s1440 5)
(s1441 2)
(s1443 4)
(s1444 5)
(s1445 5)
(s1446 2)
(s1448 4)
(s1449 5)
(s1450 5)
(s1451 2)
(s1453 4)
(s1454 5)
(s1455 5)
(s1456 2)
(s1458 4)
(s1459 5)
(s1460 5)
(s1461 2)
(s1463 4)
(s1464 5)
(s1465 5)
(s1466 2)
(s1468 4)
(s1469 5)
(s1470 5)
(s1471 2)
(s1473 4)
(s1474 5)
(s1475 5)
(s1476 2)
(s1478 4)
(s1479 5)
(s1480 5)
(s1481 2)
(s1483 4)
(s1484 5)
(s1485 5)
(s1486 2)
(s1488 4)
(s1489 5)
(s1490 5)
(s1491 2)
(s1493 4)
(s1494 5)
(s1495 5)
(s1496 2)
(s1498 4)
(s1499 5)
(s1500 5)
(s1501 2)
(s1503 4)
(s1504 5)
(s1505 5)
(s1506 2)
(s1508 4)
(s1509 5)
(s1510 5)
(s1511 2)
(s1513 4)
(s1514 5)
(s1515 5)
(s1516 2)
(s1518 4)
(s1519 5)
(s1520 5)
(s1521 2)
(s1523 4)
(s1524 5)
(s1525 5)
(s1526 2)
(s1528 4)
(s1529 5)
(s1530 5)
(s1531 2)
(s1533 4)
(s1534 5)
(s1535 5)
(s1536 2)
(s1538 4)
(s1539 5)
(s1540 5)
(s1541 2)
(s1543 4)
(s1544 5)
(s1545 5)
(s1546 2)
(s1548 4)
(s1549 5)
(s1550 5)
(s1551 2)
(s1553 4)
(s1554 5)
(s1555 5)
(s1556 2)
(s1558 4)
(s1559 5)
(s1560 5)
(s1561 2)
(s1563 4)
(s1564 5)
(s1565 5)
(s1566 2)
(s1568 4)
(s1569 5)
(s1570 5)
(s1571 2)
(s1573 4)
(s1574 5)
(s1575 5)
(s1576 2)
(s1578 4)
(s1579 5)
(s1580 5)
(s1581 2)
(s1583 4)
(s1584 5)
(s1585 5)
(s1586 2)
(s1588 4)
(s1589 5)
(s1590 5)
(s1591 2)
(s1593 4)
(s1594 5)
(s1595 5)
(s1596 2)
(s1598 4)
(s1599 5)
(s1600 5)
(s1601 2)
(s1603 4)
(s1604 5)
(s1605 5)
(s1606 2)
(s1608 4)
(s1609 5)
(s1610 5)
(s1611 2)
(s1613 4)
(s1614 5)
(s1615 5)
(s1616 2)
(s1618 4)
(s1619 5)
(s1620 5)
(s1621 2)
(s1623 4)
(s1624 5)
(s1625 5)
(s1626 2)
(s1628 4)
(s1629 5)
(s1630 5)
(s1631 2)
(s1633 4)
(s1634 5)
(s1635 5)
(s1636 2)
(s1638 4)
(s1639 5)
(s1640 5)
(s1641 2)
(s1643 4)
(s1644 5)
(s1645 5)
(s1646 2)
(s1648 4)
(s1649 5)
(s1650 5)
(s1651 2)
(s1653 4)
(s1654 5)
(s1655 5)
(s1656 2)
(s1658 4)
(s1659 5)
(s1660 5)
(s1661 2)
(s1663 4)
(s1664 5)
(s1665 5)
(s1666 2)
(s1668 4)
(s1669 5)
(s1670 5)
(s1671 2)
(s1673 4)
(s1674 5)
(s1675 5)
(s1676 2)
(s1678 4)
(s1679 5)
(s1680 5)
(s1681 2)
(s1683 4)
(s1684 5)
(s1685 5)
(s1686 2)
(s1688 4)
(s1689 5)
(s1690 5)
(s1691 2)
(s1693 4)
(s1694 5)
(s1695 5)
(s1696 2)
(s1698 4)
(s1699 5)
(s1700 5)
(s1701 2)
(s1703 4)
(s1704 5)
(s1705 5)
(s1706 2)
(s1708 4)
(s1709 5)
(s1710 5)
(s1711 2)
(s1713 4)
(s1714 5)
(s1715 5)
(s1716 2)
(s1718 4)
(s1719 5)
(s1720 5)
(s1721 2)
(s1723 4)
(s1724 5)
(s1725 5)
(s1726 2)
(s1728 4)
(s1729 5)
(s1730 5)
(s1731 2)
(s1733 4)
(s1734 5)
(s1735 5)
(s1736 2)
(s1738 4)
(s1739 5)
(s1740 5)
(s1741 2)
(s1743 4)
(s1744 5)
(s1745 5)
(s1746 2)
(s1748 4)
(s1749 5)
(s1750 5)
(s1751 2)
(s1753 4)
(s1754 5)
(s1755 5)
(s1756 2)
(s1758 4)
(s1759 5)
(s1760 5)
(s1761 2)
(s1763 4)
(s1764 5)
(s1765 5)
(s1766 2)
(s1768 4)
(s1769 5)
(s1770 5)
(s1771 2)
(s1773 4)
(s1774 5)
(s1775 5)
(s1776 2)
(s1778 4)
(s1779 5)
(s1780 5)
(s1781 2)
(s1783 4)
(s1784 5)
(s1785 5)
(s1786 2)
(s1788 4)
(s1789 5)
(s1790 5)
(s1791 2)
(s1793 4)
(s1794 5)
(s1795 5)
(s1796 2)
(s1798 4)
(s1799 5)
(s1800 5)
(s1801 2)
(s1803 4)
(s1804 5)
(s1805 5)
(s1806 2)
(s1808 4)
(s1809 5)
(s1810 5)
(s1811 2)
(s1813 4)
(s1814 5)
(s1815 5)
(s1816 2)
(s1818 4)
(s1819 5)
(s1820 5)
(s1821 2)
(s1823 4)
(s1824 5)
(s1825 5)
(s1826 2)
(s1828 4)
(s1829 5)
(s1830 5)
(s1831 2)
(s1833 4)
(s1834 5)
(s1835 5)
(s1836 2)
(s1838 4)
(s1839 5)
(s1840 5)
(s1841 2)
(s1843 4)
(s1844 5)
(s1845 5)
(s1846 2)
(s1848 4)
(s1849 5)
(s1850 5)timeout

(s1851 org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30074 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 64036ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 64080ms
Finished structural reductions in LTL mode , in 1 iterations and 112856 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Computed a total of 0 stabilizing places and 0 stable transitions
Computed a total of 0 stabilizing places and 0 stable transitions
Knowledge obtained : [(AND p1 p0)]
False Knowledge obtained : []
Knowledge based reduction with 1 factoid took 83 ms. Reduced automaton from 5 states, 8 edges and 2 AP (stutter sensitive) to 5 states, 8 edges and 2 AP (stutter sensitive).
Stuttering acceptance computed with spot in 141 ms :[true, (NOT p1), (AND (NOT p0) (NOT p1)), (AND (NOT p1) (NOT p0)), (AND (NOT p1) (NOT p0))]
RANDOM walk for 41563 steps (8 resets) in 1847 ms. (22 steps per ms) remains 4/4 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1912 ms. (20 steps per ms) remains 1/4 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1959 ms. (20 steps per ms) remains 1/1 properties
[2024-05-23 23:24:46] [INFO ] Invariant cache hit.
[2024-05-23 23:24:46] [INFO ] State equation strengthened by 1000 read => feed constraints.
At refinement iteration 0 (INCLUDED_ONLY) 0/1 variables, 0/0 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 1 (OVERLAPS) 4/5 variables, 1/1 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 2 (INCLUDED_ONLY) 0/5 variables, 0/1 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 3 (OVERLAPS) 8/13 variables, 5/6 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 4 (INCLUDED_ONLY) 0/13 variables, 1/7 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 5 (INCLUDED_ONLY) 0/13 variables, 0/7 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 6 (OVERLAPS) 0/13 variables, 0/7 constraints. Problems are: Problem set: 0 solved, 1 unsolved
No progress, stopping.
After SMT solving in domain Real declared 13/13001 variables, and 7 constraints, problems are : Problem set: 0 solved, 1 unsolved in 51 ms.
Refiners :[Positive P Invariants (semi-flows): 1/1000 constraints, State Equation: 5/5000 constraints, ReadFeed: 1/1000 constraints, PredecessorRefiner: 1/1 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 1 unsolved
At refinement iteration 0 (INCLUDED_ONLY) 0/1 variables, 0/0 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 1 (OVERLAPS) 4/5 variables, 1/1 constraints. Problems are: Problem set: 0 solved, 1 unsolved
[2024-05-23 23:24:46] [INFO ] Deduced a trap composed of 3 places in 30 ms of which 2 ms to minimize.
At refinement iteration 2 (INCLUDED_ONLY) 0/5 variables, 1/2 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 3 (INCLUDED_ONLY) 0/5 variables, 0/2 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 4 (OVERLAPS) 8/13 variables, 5/7 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 5 (INCLUDED_ONLY) 0/13 variables, 1/8 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 6 (INCLUDED_ONLY) 0/13 variables, 1/9 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 7 (INCLUDED_ONLY) 0/13 variables, 0/9 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 8 (OVERLAPS) 0/13 variables, 0/9 constraints. Problems are: Problem set: 0 solved, 1 unsolved
No progress, stopping.
After SMT solving in domain Int declared 13/13001 variables, and 9 constraints, problems are : Problem set: 0 solved, 1 unsolved in 93 ms.
Refiners :[Positive P Invariants (semi-flows): 1/1000 constraints, State Equation: 5/5000 constraints, ReadFeed: 1/1000 constraints, PredecessorRefiner: 1/1 constraints, Known Traps: 1/1 constraints]
After SMT, in 169ms problems are : Problem set: 0 solved, 1 unsolved
Finished Parikh walk after 1001 steps, including 0 resets, run visited all 1 properties in 44 ms. (steps per millisecond=22 )
Parikh walk visited 1 properties in 45 ms.
Knowledge obtained : [(AND p1 p0)]
False Knowledge obtained : [(F (NOT p0)), (F (NOT (AND p0 p1))), (F (NOT p1)), (F (NOT (OR p0 (NOT p1))))]
Knowledge based reduction with 1 factoid took 185 ms. Reduced automaton from 5 states, 8 edges and 2 AP (stutter sensitive) to 5 states, 8 edges and 2 AP (stutter sensitive).
Stuttering acceptance computed with spot in 174 ms :[true, (NOT p1), (AND (NOT p0) (NOT p1)), (AND (NOT p1) (NOT p0)), (AND (NOT p1) (NOT p0))]
Stuttering acceptance computed with spot in 169 ms :[true, (NOT p1), (AND (NOT p0) (NOT p1)), (AND (NOT p1) (NOT p0)), (AND (NOT p1) (NOT p0))]
Stuttering acceptance computed with spot in 176 ms :[true, (NOT p1), (AND (NOT p0) (NOT p1)), (AND (NOT p1) (NOT p0)), (AND (NOT p1) (NOT p0))]
Product exploration timeout after 22310 steps with 0 reset in 10002 ms.
Product exploration timeout after 21410 steps with 0 reset in 10003 ms.
Support contains 3 out of 5000 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 197 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:25:07] [INFO ] Invariant cache hit.
[2024-05-23 23:25:07] [INFO ] State equation strengthened by 1000 read => feed constraints.
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20076 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20076 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 44094ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 44137ms
[2024-05-23 23:25:51] [INFO ] Invariant cache hit.
[2024-05-23 23:25:52] [INFO ] Implicit Places using invariants in 818 ms returned []
[2024-05-23 23:25:52] [INFO ] Invariant cache hit.
[2024-05-23 23:25:55] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2024-05-23 23:25:56] [INFO ] Implicit Places using invariants and state equation in 3557 ms returned []
Implicit Place search using SMT with State Equation took 4376 ms to find 0 implicit places.
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:25:56] [INFO ] Invariant cache hit.
[2024-05-23 23:25:56] [INFO ] State equation strengthened by 1000 read => feed constraints.
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30074 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30086 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 64018ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 64062ms
Finished structural reductions in LTL mode , in 1 iterations and 112795 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Treatment of property JoinFreeModules-PT-1000-LTLCardinality-09 finished in 385129 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202405141337/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(G(F(p0)))'
Support contains 1 out of 5000 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 588 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:27:00] [INFO ] Invariant cache hit.
[2024-05-23 23:27:00] [INFO ] State equation strengthened by 1000 read => feed constraints.
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20074 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Error getting values : (error "ParserException while parsing response: ((s0 5)
(s1 2)
(s3 4)
(s4 5)
(s5 5)
(s6 2)
(s8 4)
(s9 5)
(s10 5)
(s11 2)
(s13 4)
(s14 5)
(s15 5)
(s16 2)
(s18 4)
(s19 5)
(s20 5)
(s21 2)
(s23 4)
(s24 5)
(s25 5)
(s26 2)
(s28 4)
(s29 5)
(s30 5)
(s31 2)
(s33 4)
(s34 5)
(s35 5)
(s36 2)
(s38 4)
(s39 5)
(s40 5)
(s41 2)
(s43 4)
(s44 5)
(s45 5)
(s46 2)
(s48 4)
(s49 5)
(s50 5)
(s51 2)
(s53 4)
(s54 5)
(s55 5)
(s56 2)
(s58 4)
(s59 5)
(s60 5)
(s61 2)
(s63 4)
(s64 5)
(s65 5)
(s66 2)
(s68 4)
(s69 5)
(s70 5)
(s71 2)
(s73 4)
(s74 5)
(s75 5)
(s76 2)
(s78 4)
(s79 5)
(s80 5)
(s81 2)
(s83 4)
(s84 5)
(s85 5)
(s86 2)
(s88 4)
(s89 5)
(s90 5)
(s91 2)
(s93 4)
(s94 5)
(s95 5)
(s96 2)
(s98 4)
(s99 5)
(s100 5)
(s101 2)
(s103 4)
(s104 5)
(s105 5)
(s106 2)
(s108 4)
(s109 5)
(s110 5)
(s111 2)
(s113 4)
(s114 5)
(s115 5)
(s116 2)
(s118 4)
(s119 5)
(s120 5)
(s121 2)
(s123 4)
(s124 5)
(s125 5)
(s126 2)
(s128 4)
(s129 5)
(s130 5)
(s131 2)
(s133 4)
(s134 5)
(s135 5)
(s136 2)
(s138 4)
(s139 5)
(s140 5)
(s141 2)
(s143 4)
(s144 5)
(s145 5)
(s146 2)
(s148 4)
(s149 5)
(s150 5)
(s151 2)
(s153 4)
(s154 5)
(s155 5)
(s156 2)
(s158 4)
(s159 5)
(s160 5)
(s161 2)
(s163 4)
(s164 5)
(s165 5)
(s166 2)
(s168 4)
(s169 5)
(s170 5)
(s171 2)
(s173 4)
(s174 5)
(s175 5)
(s176 2)
(s178 4)
(s179 5)
(s180 5)
(s181 2)
(s183 4)
(s184 5)
(s185 5)
(s186 2)
(s188 4)
(s189 5)
(s190 5)
(s191 2)
(s193 4)
(s194 5)
(s195 5)
(s196 2)
(s198 4)
(s199 5)
(s200 5)
(s201 2)
(s203 4)
(s204 5)
(s205 5)
(s206 2)
(s208 4)
(s209 5)
(s210 5)
(s211 2)
(s213 4)
(s214 5)
(s215 5)
(s216 2)
(s218 4)
(s219 5)
(s220 5)
(s221 2)
(s223 4)
(s224 5)
(s225 5)
(s226 2)
(s228 4)
(s229 5)
(s230 5)
(s231 2)
(s233 4)
(s234 5)
(s235 5)
(s236 2)
(s238 4)
(s239 5)
(s240 5)
(s241 2)
(s243 4)
(s244 5)
(s245 5)
(s246 2)
(s248 4)
(s249 5)
(s250 5)
(s251 2)
(s253 4)
(s254 5)
(s255 5)
(s256 2)
(s258 4)
(s259 5)
(s260 5)
(s261 2)
(s263 4)
(s264 5)
(s265 5)
(s266 2)
(s268 4)
(s269 5)
(s270 5)
(s271 2)
(s273 4)
(s274 5)
(s275 5)
(s276 2)
(s278 4)
(s279 5)
(s280 5)
(s281 2)
(s283 4)
(s284 5)
(s285 5)
(s286 2)
(s288 4)
(s289 5)
(s290 5)
(s291 2)
(s293 4)
(s294 5)
(s295 5)
(s296 2)
(s298 4)
(s299 5)
(s300 5)
(s301 2)
(s303 4)
(s304 5)
(s305 5)
(s306 2)
(s308 4)
(s309 5)
(s310 5)
(s311 2)
(s313 4)
(s314 5)
(s315 5)
(s316 2)
(s318 4)
(s319 5)
(s320 5)
(s321 2)
(s323 4)
(s324 5)
(s325 5)
(s326 2)
(s328 4)
(s329 5)
(s330 5)
(s331 2)
(s333 4)
(s334 5)
(s335 5)
(s336 2)
(s338 4)
(s339 5)
(s340 5)
(s341 2)
(s343 4)
(s344 5)
(s345 5)
(s346 2)
(s348 4)
(s349 5)
(s350 5)
(s351 2)
(s353 4)
(s354 5)
(s355 5)
(s356 2)
(s358 4)
(s359 5)
(s360 5)
(s361 2)
(s363 4)
(s364 5)
(s365 5)
(s366 2)
(s368 4)
(s369 5)
(s370 5)
(s371 2)
(s373 4)
(s374 5)
(s375 5)
(s376 2)
(s378 4)
(s379 5)
(s380 5)
(s381 2)
(s383 4)
(s384 5)
(s385 5)
(s386 2)
(s388 4)
(s389 5)
(s390 5)
(s391 2)
(s393 4)
(s394 5)
(s395 5)
(s396 2)
(s398 4)
(s399 5)
(s400 5)
(s401 2)
(s403 4)
(s404 5)
(s405 5)
(s406 2)
(s408 4)
(s409 5)
(s410 5)
(s411 2)
(s413 4)
(s414 5)
(s415 5)
(s416 2)
(s418 4)
(s419 5)
(s420 5)
(s421 2)
(s423 4)
(s424 5)
(s425 5)
(s426 2)
(s428 4)
(s429 5)
(s430 5)
(s431 2)
(s433 4)
(s434 5)
(s435 5)
(s436 2)
(s438 4)
(s439 5)
(s440 5)
(s441 2)
(s443 4)
(s444 5)
(s445 5)
(s446 2)
(s448 4)
(s449 5)
(s450 5)
(s451 2)
(s453 4)
(s454 5)
(s455 5)
(s456 2)
(s458 4)
(s459 5)
(s460 5)
(s461 2)
(s463 4)
(s464 5)
(s465 5)
(s466 2)
(s468 4)
(s469 5)
(s470 5)
(s471 2)
(s473 4)
(s474 5)
(s475 5)
(s476 2)
(s478 4)
(s479 5)
(s480 5)
(s481 2)
(s483 4)
(s484 5)
(s485 5)
(s486 2)
(s488 4)
(s489 5)
(s490 5)
(s491 2)
(s493 4)
(s494 5)
(s495 5)
(s496 2)
(s498 4)
(s499 5)
(s500 5)
(s501 2)
(s503 4)
(s504 5)
(s505 5)
(s506 2)
(s508 4)
(s509 5)
(s510 5)
(s511 2)
(s513 4)
(s514 5)
(s515 5)
(s516 2)
(s518 4)
(s519 5)
(s520 5)
(s521 2)
(s523 4)
(s524 5)
(s525 5)
(s526 2)
(s528 4)
(s529 5)
(s530 5)
(s531 2)
(s533 4)
(s534 5)
(s535 5)
(s536 2)
(s538 4)
(s539 5)
(s540 5)
(s541 2)
(s543 4)
(s544 5)
(s545 5)
(s546 2)
(s548 4)
(s549 5)
(s550 5)
(s551 2)
(s553 4)
(s554 5)
(s555 5)
(s556 2)
(s558 4)
(s559 5)
(s560 5)
(s561 2)
(s563 4)
(s564 5)
(s565 5)
(s566 2)
(s568 4)
(s569 5)
(s570 5)
(s571 2)
(s573 4)
(s574 5)
(s575 5)
(s576 2)
(s578 4)
(s579 5)
(s580 5)
(s581 2)
(s583 4)
(s584 5)
(s585 5)
(s586 2)
(s588 4)
(s589 5)
(s590 5)
(s591 2)
(s593 4)
(s594 5)
(s595 5)
(s596 2)
(s598 4)
(s599 5)
(s600 5)
(s601 2)
(s603 4)
(s604 5)
(s605 5)
(s606 2)
(s608 4)
(s609 5)
(s610 5)
(s611 2)
(s613 4)
(s614 5)
(s615 5)
(s616 2)
(s618 4)
(s619 5)
(s620 5)
(s621 2)
(s623 4)
(s624 5)
(s625 5)
(s626 2)
(s628 4)
(s629 5)
(s630 5)
(s631 2)
(s633 4)
(s634 5)
(s635 5)
(s636 2)
(s638 4)
(s639 5)
(s640 5)
(s641 2)
(s643 4)
(s644 5)
(s645 5)
(s646 2)
(s648 4)
(s649 5)
(s650 5)
(s651 2)
(s653 4)
(s654 5)
(s655 5)
(s656 2)
(s658 4)
(s659 5)
(s660 5)
(s661 2)
(s663 4)
(s664 5)
(s665 5)
(s666 2)
(s668 4)
(s669 5)
(s670 5)
(s671 2)
(s673 4)
(s674 5)
(s675 5)
(s676 2)
(s678 4)
(s679 5)
(s680 5)
(s681 2)
(s683 4)
(s684 5)
(s685 5)
(s686 2)
(s688 4)
(s689 5)
(s690 5)
(s691 2)
(s693 4)
(s694 5)
(s695 5)
(s696 2)
(s698 4)
(s699 5)
(s700 5)
(s701 2)
(s703 4)
(s704 5)
(s705 5)
(s706 2)
(s708 4)
(s709 5)
(s710 5)
(s711 2)
(s713 4)
(s714 5)
(s715 5)
(s716 2)
(s718 4)
(s719 5)
(s720 5)
(s721 2)
(s723 4)
(s724 5)
(s725 5)
(s726 2)
(s728 4)
(s729 5)
(s730 5)
(s731 2)
(s733 4)
(s734 5)
(s735 5)
(s736 2)
(s738 4)
(s739 5)
(s740 5)
(s741 2)
(s743 4)
(s744 5)
(s745 5)
(s746 2)
(s748 4)
(s749 5)
(s750 5)
(s751 2)
(s753 4)
(s754 5)
(s755 5)
(s756 2)
(s758 4)
(s759 5)
(s760 5)
(s761 2)
(s763 4)
(s764 5)
(s765 5)
(s766 2)
(s768 4)
(s769 5)
(s770 5)
(s771 2)
(s773 4)
(s774 5)
(s775 5)
(s776 2)
(s778 4)
(s779 5)
(s780 5)
(s781 2)
(s783 4)
(s784 5)
(s785 5)
(s786 2)
(s788 4)
(s789 5)
(s790 5)
(s791 2)
(s793 4)
(s794 5)
(s795 5)
(s796 2)
(s798 4)
(s799 5)
(s800 5)
(s801 2)
(s803 4)
(s804 5)
(s805 5)
(s806 2)
(s808 4)
(s809 5)
(s810 5)
(s811 2)
(s813 4)
(s814 5)
(s815 5)
(s816 2)
(s818 4)
(s819 5)
(s820 5)
(s821 2)
(s823 4)
(s824 5)
(s825 5)
(s826 2)
(s828 4)
(s829 5)
(s830 5)
(s831 2)
(s833 4)
(s834 5)
(s835 5)
(s836 2)
(s838 4)
(s839 5)
(s840 5)
(s841 2)
(s843 4)
(s844 5)
(s845 5)
(s846 2)
(s848 4)
(s849 5)
(s850 5)
(s851 2)
(s853 4)
(s854 5)
(s855 5)
(s856 2)
(s858 4)
(s859 5)
(s860 5)
(s861 2)
(s863 4)
(s864 5)
(s865 5)
(s866 2)
(s868 4)
(s869 5)
(s870 5)
(s871 2)
(s873 4)
(s874 5)
(s875 5)
(s876 2)
(s878 4)
(s879 5)
(s880 5)
(s881 2)
(s883 4)
(s884 5)
(s885 5)
(s886 2)
(s888 4)
(s889 5)
(s890 5)
(s891 2)
(s893 4)
(s894 5)
(s895 5)
(s896 2)
(s898 4)
(s899 5)
(s900 5)
(s901 2)
(s903 4)
(s904 5)
(s905 5)
(s906 2)
(s908 4)
(s909 5)
(s910 5)
(s911 2)
(s913 4)
(s914 5)
(s915 5)
(s916 2)
(s918 4)
(s919 5)
(s920 5)
(s921 2)
(s923 4)
(s924 5)
(s925 5)
(s926 2)
(s928 4)
(s929 5)
(s930 5)
(s931 2)
(s933 4)
(s934 5)
(s935 5)
(s936 2)
(s938 4)
(s939 5)
(s940 5)
(s941 2)
(s943 4)
(s944 5)
(s945 5)
(s946 2)
(s948 4)
(s949 5)
(s950 5)
(s951 2)
(s953 4)
(s954 5)
(s955 5)
(s956 2)
(s958 4)
(s959 5)
(s960 5)
(s961 2)
(s963 4)
(s964 5)
(s965 5)
(s966 2)
(s968 4)
(s969 5)
(s970 5)
(s971 2)
(s973 4)
(s974 5)
(s975 5)
(s976 2)
(s978 4)
(s979 5)
(s980 5)
(s981 2)
(s983 4)
(s984 5)
(s985 5)
(s986 2)
(s988 4)
(s989 5)
(s990 5)
(s991 2)
(s993 4)
(s994 5)
(s995 5)
(s996 2)
(s998 4)
(s999 5)
(s1000 5)
(s1001 2)
(s1003 4)
(s1004 5)
(s1005 5)
(s1006 2)
(s1008 4)
(s1009 5)
(s1010 5)
(s1011 2)
(s1013 4)
(s1014 5)
(s1015 5)
(s1016 2)
(s1018 4)
(s1019 5)
(s1020 5)
(s1021 2)
(s1023 4)
(s1024 5)
(s1025 5)
(s1026 2)
(s1028 4)
(s1029 5)
(s1030 5)
(s1031 2)
(s1033 4)
(s1034 5)
(s1035 5)
(s1036 2)
(s1038 4)
(s1039 5)
(s1040 5)
(s1041 2)
(s1043 4)
(s1044 5)
(s1045 5)
(s1046 2)
(s1048 4)
(s1049 5)
(s1050 5)
(s1051 2)
(s1053 4)
(s1054 5)
(s1055 5)
(s1056 2)
(s1058 4)
(s1059 5)
(s1060 5)
(s1061 2)
(s1063 4)
(s1064 5)
(s1065 5)
(s1066 2)
(s1068 4)
(s1069 5)
(s1070 5)
(s1071 2)
(s1073 4)
(s1074 5)
(s1075 5)
(s1076 2)
(s1078 4)
(s1079 5)
(s1080 5)
(s1081 2)
(s1083 4)
(s1084 5)
(s1085 5)
(s1086 2)
(s1088 4)
(s1089 5)
(s1090 5)
(s1091 2)
(s1093 4)
(s1094 5)
(s1095 5)
(s1096 2)
(s1098 4)
(s1099 5)
(s1100 5)
(s1101 2)
(s1103 4)
(s1104 5)
(s1105 5)
(s1106 2)
(s1108 4)
(s1109 5)
(s1110 5)
(s1111 2)
(s1113 4)
(s1114 5)
(s1115 5)
(s1116 2)
(s1118 4)
(s1119 5)
(s1120 5)
(s1121 2)
(s1123 4)
(s1124 5)
(s1125 5)
(s1126 2)
(s1128 4)
(s1129 5)
(s1130 5)
(s1131 2)
(s1133 4)
(s1134 5)
(s1135 5)
(s1136 2)
(s1138 4)
(s1139 5)
(s1140 5)
(s1141 2)
(s1143 4)
(s1144 5)
(s1145 5)
(s1146 2)
(s1148 4)
(s1149 5)
(s1150 5)
(s1151 2)
(s1153 4)
(s1154 5)
(s1155 5)
(s1156 2)
(s1158 4)
(s1159 5)
(s1160 5)
(s1161 2)
(s1163 4)
(s1164 5)
(s1165 5)
(s1166 2)
(s1168 4)
(s1169 5)
(s1170 5)
(s1171 2)
(s1173 4)
(s1174 5)
(s1175 5)
(s1176 2)
(s1178 4)
(s1179 5)
(s1180 5)
(s1181 2)
(s1183 4)
(s1184 5)
(s1185 5)
(s1186 2)
(s1188 4)
(s1189 5)
(s1190 5)
(s1191 2)
(s1193 4)
(s1194 5)
(s1195 5)
(s1196 2)
(s1198 4)
(s1199 5)
(s1200 5)
(s1201 2)
(s1203 4)
(s1204 5)
(s1205 5)
(s1206 2)
(s1208 4)
(s1209 5)
(s1210 5)
(s1211 2)
(s1213 4)
(s1214 5)
(s1215 5)
(s1216 2)
(s1218 4)
(s1219 5)
(s1220 5)
(s1221 2)
(s1223 4)
(s1224 5)
(s1225 5)
(s1226 2)
(s1228 4)
(s1229 5)
(s1230 5)
(s1231 2)
(s1233 4)
(s1234 5)
(s1235 5)
(s1236 2)
(s1238 4)
(s1239 5)
(s1240 5)
(s1241 2)
(s1243 4)
(s1244 5)
(s1245 5)
(s1246 2)
(s1248 4)
(s1249 5)
(s1250 5)
(s1251 2)
(s1253 4)
(s1254 5)
(s1255 5)
(s1256 2)
(s1258 4)
(s1259 5)
(s1260 5)
(s1261 2)
(s1263 4)
(s1264 5)
(s1265 5)
(s1266 2)
(s1268 4)
(s1269 5)
(s1270 5)
(s1271 2)
(s1273 4)
(s1274 5)
(s1275 5)
(s1276 2)
(s1278 4)
(s1279 5)
(s1280 5)
(s1281 2)
(s1283 4)
(s1284 5)
(s1285 5)
(s1286 2)
(s1288 4)
(s1289 5)
(s1290 5)
(s1291 2)
(s1293 4)
(s1294 5)
(s1295 5)
(s1296 2)
(s1298 4)
(s1299 5)
(s1300 5)
(s1301 2)
(s1303 4)
(s1304 5)
(s1305 5)
(s1306 2)
(s1308 4)
(s1309 5)
(s1310 5)
(s1311 2)
(s1313 4)
(s1314 5)
(s1315 5)
(s1316 2)
(s1318 4)
(s1319 5)
(s1320 5)
(s1321 2)
(s1323 4)
(s1324 5)
(s1325 5)
(s1326 2)
(s1328 4)
(s1329 5)
(s1330 5)
(s1331 2)
(s1333 4)
(s1334 5)
(s1335 5)
(s1336 2)
(s1338 4)
(s1339 5)
(s1340 5)
(s1341 2)
(s1343 4)
(s1344 5)
(s1345 5)
(s1346 2)
(s1348 4)
(s1349 5)
(s1350 5)
(s1351 2)
(s1353 4)
(s1354 5)
(s1355 5)
(s1356 2)
(s1358 4)
(s1359 5)
(s1360 5)
(s1361 2)
(s1363 4)
(s1364 5)
(s1365 5)
(s1366 2)
(s1368 4)
(s1369 5)
(s1370 5)
(s1371 2)
(s1373 4)
(s1374 5)
(s1375 5)
(s1376 2)
(s1378 4)
(s1379 5)
(s1380 5)
(s1381 2)
(s1383 4)
(s1384 5)
(s1385 5)
(s1386 2)
(s1388 4)
(s1389 5)
(s1390 5)
(s1391 2)
(s1393 4)
(s1394 5)
(s1395 5)
(s1396 2)
(s1398 4)
(s1399 5)
(s1400 5)
(s1401 2)
(s1403 4)
(s1404 5)
(s1405 5)
(s1406 2)
(s1408 4)
(s1409 5)
(s1410 5)
(s1411 2)
(s1413 4)
(s1414 5)
(s1415 5)
(s1416 2)
(s1418 4)
(s1419 5)
(s1420 5)
(s1421 2)
(s1423 4)
(s1424 5)
(s1425 5)
(s1426 2)
(s1428 4)
(s1429 5)
(s1430 5)
(s1431 2)
(s1433 4)
(s1434 5)
(s1435 5)
(s1436 2)
(s1438 4)
(s1439 5)
(s1440 5)
(s1441 2)
(s1443 4)
(s1444 5)
(s1445 5)
(s1446 2)
(s1448 4)
(s1449 5)
(s1450 5)
(s1451 2)
(s1453 4)
(s1454 5)
(s1455 5)
(s1456 2)
(s1458 4)
(s1459 5)
(s1460 5)
(s1461 2)
(s1463 4)
(s1464 5)
(s1465 5)
(s1466 2)
(s1468 4)
(s1469 5)
(s1470 5)
(s1471 2)
(s1473 4)
(s1474 5)
(s1475 5)
(s1476 2)
(s1478 4)
(s1479 5)
(s1480 5)
(s1481 2)
(s1483 4)
(s1484 5)
(s1485 5)
(s1486 2)
(s1488 4)
(s1489 5)
(s1490 5)
(s1491 2)
(s1493 4)
(s1494 5)
(s1495 5)
(s1496 2)
(s1498 4)
(s1499 5)
(s1500 5)
(s1501 2)
(s1503 4)
(s1504 5)
(s1505 5)
(s1506 2)
(s1508 4)
(s1509 5)
(s1510 5)
(s1511 2)
(s1513 4)
(s1514 5)
(s1515 5)
(s1516 2)
(s1518 4)
(s1519 5)
(s1520 5)
(s1521 2)
(s1523 4)
(s1524 5)
(s1525 5)
(s1526 2)
(s1528 4)
(s1529 5)
(s1530 5)
(s1531 2)
(s1533 4)
(s1534 5)
(s1535 5)
(s1536 2)
(s1538 4)
(s1539 5)
(s1540 5)
(s1541 2)
(s1543 4)
(s1544 5)
(s1545 5)
(s1546 2)
(s1548 4)
(s1549 5)
(s1550 5)
(s1551 2)
(s1553 4)
(s1554 5)
(s1555 5)
(s1556 2)
(s1558 4)
(s1559 5)
(s1560 5)
(s1561 2)
(s1563 4)
(s1564 5)
(s1565 5)
(s1566 2)
(s1568 4)
(s1569 5)
(s1570 5)
(s1571 2)
(s1573 4)
(s1574 5)
(s1575 5)
(s1576 2)
(s1578 4)
(s1579 5)
(s1580 5)
(s1581 2)
(s1583 4)
(s1584 5)
(s1585 5)
(s1586 2)
(s1588 4)
(s1589 5)
(s1590 5)
(s1591 2)
(s1593 4)
(s1594 5)
(s1595 5)
(s1596 2)
(s1598 4)
(s1599 5)
(s1600 5)
(s1601 2)
(s1603 4)
(s1604 5)
(s1605 5)
(s1606 2)
(s1608 4)
(s1609 5)
(s1610 5)
(s1611 2)
(s1613 4)
(s1614 5)
(s1615 5)
(s1616 2)
(s1618 4)
(s1619 5)
(s1620 5)
(s1621 2)
(s1623 4)
(s1624 5)
(s1625 5)
(s1626 2)
(s1628 4)
(s1629 5)
(s1630 5)
(s1631 2)
(s1633 4)
(s1634 5)
(s1635 5)
(s1636 2)
(s1638 4)
(s1639 5)
(s1640 5)
(s1641 2)
(s1643 4)
(s1644 5)
(s1645 5)
(s1646 2)
(s1648 4)
(s1649 5)
(s1650 5)
(s1651 2)
(s1653 4)
(s1654 5)
(s1655 5)
(s1656 2)
(s1658 4)
(s1659 5)
(s1660 5)
(s1661 2)
(s1663 4)
(s1664 5)
(s1665 5)
(s1666 2)
(s1668 4)
(s1669 5)
(s1670 5)
(s1671 2)
(s1673 4)
(s1674 5)
(s1675 5)
(s1676 2)
(s1678 4)
(s1679 5)
(s1680 5)
(s1681 2)
(s1683 4)
(s1684 5)
(s1685 5)
(s1686 2)
(s1688 4)
(s1689 5)
(s1690 5)
(s1691 2)
(s1693 4)
(s1694 5)
(s1695 5)
(s1696 2)
(s1698 4)
(s1699 5)
(s1700 5)
(s1701 2)
(s1703 4)
(s1704 5)
(s1705 5)
(s1706 2)
(s1708 4)
(s1709 5)
(s1710 5)
(s1711 2)
(s1713 4)
(s1714 5)
(s1715 5)
(s1716 2)
(s1718 4)
(s1719 5)
(s1720 5)
(s1721 2)
(s1723 4)
(s1724 5)
(s1725 5)
(s1726 2)
(s1728 4)
(s1729 5)
(s1730 5)
(s1731 2)
(s1733 4)
(s1734 5)
(s1735 5)
(s1736 2)
(s1738 4)
(s1739 5)
(s1740 5)
(s1741 2)
(s1743 4)
(s1744 5)
(s1745 5)
(s1746 2)
(s1748 4)
(s1749 5)
(s1750 5)
(s1751 2)
(s1753 4)
(s1754 5)
(s1755 5)
(s1756 2)
(s1758 4)
(s1759 5)
(s1760 5)
(s1761 2)
(s1763 4)
(s1764 5)
(s1765 5)
(s1766 2)
(s1768 4)
(s1769 5)
(s1770 5)
(s1771 2)
(s1773 4)
(s1774 5)
(s1775 5)
(s1776 2)
(s1778 4)
(s1779 5)
(s1780 5)
(s1781 2)
(s1783 4)
(s1784 5)
(s1785 5)
(s1786 2)
(s1788 4)
(s1789 5)
(s1790 5)
(s1791 2)
(s1793 4)
(s1794 5)
(s1795 5)
(s1796 2)
(s1798 4)
(s1799 5)
(s1800 5)
(s1801 2)
(s1803 4)
(s1804 5)
(s1805 5)
(s1806 2)
(s1808 4)
(s1809 5)
(s1810 5)
(s1811 2)
(s1813 4)
(s1814 5)
(s1815 5)
(s1816 2)
(s1818 4)
(s1819 5)
(s1820 5)
(s1821 2)
(s1823 4)
(s1824 5)
(s1825 5)
(s1826 2)
(s1828 4)
(s1829 5)
(s1830 5)
(s1831 2)
(s1833 4)
(s1834 5)
(s1835 5)
(s1836 2)
(s1838 4)
(s1839 5)
(s1840 5)
(s1841 2)
(s1843 4)
(s1844 5)
(s1845 5)
(s1846 2)
(s1848 4)
(s1849 5)
(s1850 5)
(s1851 2)
(s1853 4)
(s1854 5)
(s1855 5)
(s1856 2)
(s1858 4)
(s1859 5)
(s1860 5)
(s1861 2)
(s1863 4)
(s1864 5)
(s1865 5)
(s1866 2)
(s1868 4)
(s1869 5)
(s1870 5)
(s1871 2)
(s1873 4)
(s1874 5)
(s1875 5)
(s1876 2)
(s1878 4)
(s1879 5)
(s1880 5)
(s1881 2)
(s1883 4)
(s1884 5)
(s1885 5)
(s1886 2)
(s1888 4)
(s1889 5)
(s1890 5)
(s1891 2)
(s1893 4)
(s1894 5)
(s1895 5)
(s1896 2)
(s1898 4)
(s1899 5)
(s1900 5)
(s1901 2)
(s1903 4)
(s1904 5)
(s1905 5)
(s1906 2)
(s1908 4)
(s1909 5)
(s1910 5)
(s1911 2)
(s1913 4)
(s1914 5)
(s1915 5)
(s1916 2)
(s1918 4)
(s1919 5)
(s1920 5)
(s1921 2)
(s1923 4)
(s1924 5)
(s1925 5)
(s1926 2)
(s1928 4)
(s1929 5)
(s1930 5)
(s1931 2)
(s1933 4)
(s1934 5)
(s1935 5)
(s1936 2)
(s1938 4)
(s1939 5)
(s1940 5)
(s1941 2)
(s1943 4)
(s1944 5)
(s1945 5)
(s1946 2)
(s1948 4)
(s1949 5)
(s1950 5)
(s1951 2)
(s1953 4)
(s1954 5)
(s1955 5)
(s1956 2)
(s1958 4)
(s1959 5)
(s1960 5)
(s1961 2)
(s1963 4)
(s1964 5)
(s1965 5)
(s1966 2)
(s1968 4)
(s1969 5)
(s1970 5)
(s1971 2)
(s1973 4)
(s1974 5)
(s1975 5)
(s1976 2)
(s1978 4)
(s1979 5)
(s1980 5)
(s1981 2)
(s1983 4)
(s1984 5)
(s1985 5)
(s1986 2)
(s1988 4)
(s1989 5)
(s1990 5)
(s1991 2)
(s1993 4)
(s1994 5)
(s1995 5)
(s1996 2)
(s1998 4)
(s1999 5)
(s2000 5)
(s2001 2)
(s2003 4)
(s2004 5)
(s2005 5)
(s2006 2)
(s2008 4)
(s2009 5)
(s2010 5)
(s2011 2)
(s2013 4)
(s2014 5)
(s2015 5)
(s2016 2)
(s2018 4)
(s2019 5)
(s2020 5)
(s2021 2)
(s2023 4)
(s2024 5)
(s2025 5)
(s2026 2)
(s2028 4)
(s2029 5)
(s2030 5)
(s2031 2)
(s2033 4)
(s2034 5)
(s2035 5)
(s2036 2)
(s2038 4)
(s2039 5)
(s2040 5)
(s2041 2)
(s2043 4)
(s2044 5)
(s2045 5)
(s2046 2)
(s2048 4)
(s2049 5)
(s2050 5)
(s2051 2)
(s2053 4)
(s2054 5)
(s2055 5)
(s2056 2)
(s2058 4)
(s2059 5)
(s2060 5)
(s2061 2)
(s2063 4)
(s2064 5)
(s2065 5)
(s2066 2)
(s2068 4)
(s2069 5)
(s2070 5)
(s2071 2)
(s2073 4)
(s2074 5)
(s2075 5)
(s2076 2)
(s2078 4)
(s2079 5)
(s2080 5)
(s2081 2)
(s2083 4)
(s2084 5)
(s2085 5)
(s2086 2)
(s2088 4)
(s2089 5)
(s2090 5)
(s2091 2)
(s2093 4)
(s2094 5)
(s2095 5)
(s2096 2)
(s2098 4)
(s2099 5)
(s2100 5)
(s2101 2)
(s2103 4)
(s2104 5)
(s2105 5)
(s2106 2)
(s2108 4)
(s2109 5)
(s2110 5)
(s2111 2)
(s2113 4)
(s2114 5)
(s2115 5)
(s2116 2)
(s2118 4)
(s2119 5)
(s2120 5)
(s2121 2)
(s2123 4)
(s2124 5)
(s2125 5)
(s2126 2)
(s2128 4)
(s2129 5)
(s2130 5)
(s2131 2)
(s2133 4)
(s2134 5)
(s2135 5)
(s2136 2)
(s2138 4)
(s2139 5)
(s2140 5)
(s2141 2)
(s2143 4)
(s2144 5)
(s2145 5)
(s2146 2)
(s2148 4)
(s2149 5)
(s2150 5)
(s2151 2)
(s2153 4)
(s2154 5)
(s2155 5)
(s2156 2)
(s2158 4)
(s2159 5)
(s2160 5)
(s2161 2)
(s2163 4)
(s2164 5)
(s2165 5)
(s2166 2)
(s2168 4)
(s2169 5)
(s2170 5)
(s2171 2)
(s2173 4)
(s2174 5)
(s2175 5)
(s2176 2)
(s2178 4)
(s2179 5)
(s2180 5)
(s2181 2)
(s2183 4)
(s2184 5)
(s2185 5)
(s2186 2)
(s2188 4)
(s2189 5)
(s2190 5)
(s2191 2)
(s2193 4)
(s2194 5)
(s2195 5)
(s2196 2)
(s2198 4)
(s2199 5)
(s2200 5)
(s2201 2)
(s2203 4)
(s2204 5)
(s2205 5)
(s2206 2)
(s2208 4)
(s2209 5)
(s2210 5)
(s2211 2)
(s2213 4)
(s2214 5)
(s2215 5)
(s2216 2)
(s2218 4)
(s2219 5)
(s2220 5)
(s2221 2)
(s2223 4)
(s2224 5)
(s2225 5)
(s2226 2)
(s2228 4)
(s2229 5)
(s2230 5)
(s2231 2)
(s2233 4)
(s2234 5)
(s2235 5)
(s2236 2)
(s2238 4)
(s2239 5)
(s2240 5)
(s2241 2)
(s2243 4)
(s2244 5)
(s2245 5)
(s2246 2)
(s2248 4)
(s2249 5)
(s2250 5)
(s2251 2)
(s2253 4)
(s2254 5)
(s2255 5)
(s2256 2)
(s2258 4)
(s2259 5)
(s2260 5)
(s2261 2)
(s2263 4)
(s2264 5)
(s2265 5)
(s2266 2)
(s2268 4)
(s2269 5)
(s2270 5)
(s2271 2)
(s2273 4)
(s2274 5)
(s2275 5)
(s2276 2)
(s2278 4)
(s2279 5)
(s2280 5)
(s2281 2)
(s2283 4)
(s2284 5)
(s2285 5)
(s2286 2)
(s2288 4)
(s2289 5)
(s2290 5)
(s2291 timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20080 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 44768ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 44820ms
[2024-05-23 23:27:45] [INFO ] Invariant cache hit.
[2024-05-23 23:27:46] [INFO ] Implicit Places using invariants in 844 ms returned []
[2024-05-23 23:27:46] [INFO ] Invariant cache hit.
[2024-05-23 23:27:49] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2024-05-23 23:27:50] [INFO ] Implicit Places using invariants and state equation in 3709 ms returned []
Implicit Place search using SMT with State Equation took 4556 ms to find 0 implicit places.
[2024-05-23 23:27:50] [INFO ] Redundant transitions in 627 ms returned []
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:27:50] [INFO ] Invariant cache hit.
[2024-05-23 23:27:50] [INFO ] State equation strengthened by 1000 read => feed constraints.
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30080 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30067 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 64048ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 64093ms
Finished structural reductions in SI_LTL mode , in 1 iterations and 114707 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Stuttering acceptance computed with spot in 77 ms :[(NOT p0), (NOT p0)]
Running random walk in product with property : JoinFreeModules-PT-1000-LTLCardinality-10
Stuttering criterion allowed to conclude after 0 steps with 0 reset in 3 ms.
FORMULA JoinFreeModules-PT-1000-LTLCardinality-10 FALSE TECHNIQUES STUTTER_TEST
Treatment of property JoinFreeModules-PT-1000-LTLCardinality-10 finished in 114820 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202405141337/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(F(G((p0||X(X(X(F(p1))))))))'
Support contains 3 out of 5000 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 516 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:28:55] [INFO ] Invariant cache hit.
[2024-05-23 23:28:55] [INFO ] State equation strengthened by 1000 read => feed constraints.
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20086 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20084 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 44707ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 44750ms
[2024-05-23 23:29:40] [INFO ] Invariant cache hit.
[2024-05-23 23:29:41] [INFO ] Implicit Places using invariants in 927 ms returned []
[2024-05-23 23:29:41] [INFO ] Invariant cache hit.
[2024-05-23 23:29:44] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2024-05-23 23:29:45] [INFO ] Implicit Places using invariants and state equation in 3900 ms returned []
Implicit Place search using SMT with State Equation took 4829 ms to find 0 implicit places.
[2024-05-23 23:29:45] [INFO ] Redundant transitions in 632 ms returned []
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:29:45] [INFO ] Invariant cache hit.
[2024-05-23 23:29:45] [INFO ] State equation strengthened by 1000 read => feed constraints.
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30109 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Error getting values : (error "ParserException while parsing response: ((s0 5)
(s1 2)
(s3 4)
(s4 5)
(s5 5)
(s6 2)
(s8 4)
(s9 5)
(s10 5)
(s11 2)
(s13 4)
(s14 5)
(s15 5)
(s16 2)
(s18 4)
(s19 5)
(s20 5)
(s21 2)
(s23 4)
(s24 5)
(s25 5)
(s26 2)
(s28 4)
(s29 5)
(s30 5)
(s31 2)
(s33 4)
(s34 5)
(s35 5)
(s36 2)
(s38 4)
(s39 5)
(s40 5)
(s41 2)
(s43 4)
(s44 5)
(s45 5)
(s46 2)
(s48 4)
(s49 5)
(s50 5)
(s51 2)
(s53 4)
(s54 5)
(s55 5)
(s56 2)
(s58 4)
(s59 5)
(s60 5)
(s61 2)
(s63 4)
(s64 5)
(s65 5)
(s66 2)
(s68 4)
(s69 5)
(s70 5)
(s71 2)
(s73 4)
(s74 5)
(s75 5)
(s76 2)
(s78 4)
(s79 5)
(s80 5)
(s81 2)
(s83 4)
(s84 5)
(s85 5)
(s86 2)
(s88 4)
(s89 5)
(s90 5)
(s91 2)
(s93 4)
(s94 5)
(s95 5)
(s96 2)
(s98 4)
(s99 5)
(s100 5)
(s101 2)
(s103 4)
(s104 5)
(s105 5)
(s106 2)
(s108 4)
(s109 5)
(s110 5)
(s111 2)
(s113 4)
(s114 5)
(s115 5)
(s116 2)
(s118 4)
(s119 5)
(s120 5)
(s121 2)
(s123 4)
(s124 5)
(s125 5)
(s126 2)
(s128 4)
(s129 5)
(s130 5)
(s131 2)
(s133 4)
(s134 5)
(s135 5)
(s136 2)
(s138 4)
(s139 5)
(s140 5)
(s141 2)
(s143 4)
(s144 5)
(s145 5)
(s146 2)
(s148 4)
(s149 5)
(s150 5)
(s151 2)
(s153 4)
(s154 5)
(s155 5)
(s156 2)
(s158 4)
(s159 5)
(s160 5)
(s161 2)
(s163 4)
(s164 5)
(s165 5)
(s166 2)
(s168 4)
(s169 5)
(s170 5)
(s171 2)
(s173 4)
(s174 5)
(s175 5)
(s176 2)
(s178 4)
(s179 5)
(s180 5)
(s181 2)
(s183 4)
(s184 5)
(s185 5)
(s186 2)
(s188 4)
(s189 5)
(s190 5)
(s191 2)
(s193 4)
(s194 5)
(s195 5)
(s196 2)
(s198 4)
(s199 5)
(s200 5)
(s201 2)
(s203 4)
(s204 5)
(s205 5)
(s206 2)
(s208 4)
(s209 5)
(s210 5)
(s211 2)
(s213 4)
(s214 5)
(s215 5)
(s216 2)
(s218 4)
(s219 5)
(s220 5)
(s221 2)
(s223 4)
(s224 5)
(s225 5)
(s226 2)
(s228 4)
(s229 5)
(s230 5)
(s231 2)
(s233 4)
(s234 5)
(s235 5)
(s236 2)
(s238 4)
(s239 5)
(s240 5)
(s241 2)
(s243 4)
(s244 5)
(s245 5)
(s246 2)
(s248 4)
(s249 5)
(s250 5)
(s251 2)
(s253 4)
(s254 5)
(s255 5)
(s256 2)
(s258 4)
(s259 5)
(s260 5)
(s261 2)
(s263 4)
(s264 5)
(s265 5)
(s266 2)
(s268 4)
(s269 5)
(s270 5)
(s271 2)
(s273 4)
(s274 5)
(s275 5)
(s276 2)
(s278 4)
(s279 5)
(s280 5)
(s281 2)
(s283 4)
(s284 5)
(s285 5)
(s286 2)
(s288 4)
(s289 5)
(s290 5)
(s291 2)
(s293 4)
(s294 5)
(s295 5)
(s296 2)
(s298 4)
(s299 5)
(s300 5)
(s301 2)
(s303 4)
(s304 5)
(s305 5)
(s306 2)
(s308 4)
(s309 5)
(s310 5)
(s311 2)
(s313 4)
(s314 5)
(s315 5)
(s316 2)
(s318 4)
(s319 5)
(s320 5)
(s321 2)
(s323 4)
(s324 5)
(s325 5)
(s326 2)
(s328 4)
(s329 5)
(s330 5)
(s331 2)
(s333 4)
(s334 5)
(s335 5)
(s336 2)
(s338 4)
(s339 5)
(s340 5)
(s341 2)
(s343 4)
(s344 5)
(s345 5)
(s346 2)
(s348 4)
(s349 5)
(s350 5)
(s351 2)
(s353 4)
(s354 5)
(s355 5)
(s356 2)
(s358 4)
(s359 5)
(s360 5)
(s361 2)
(s363 4)
(s364 5)
(s365 5)
(s366 2)
(s368 4)
(s369 5)
(s370 5)
(s371 2)
(s373 4)
(s374 5)
(s375 5)
(s376 2)
(s378 4)
(s379 5)
(s380 5)
(s381 2)
(s383 4)
(s384 5)
(s385 5)
(s386 2)
(s388 4)
(s389 5)
(s390 5)
(s391 2)
(s393 4)
(s394 5)
(s395 5)
(s396 2)
(s398 4)
(s399 5)
(s400 5)
(s401 2)
(s403 4)
(s404 5)
(s405 5)
(s406 2)
(s408 4)
(s409 5)
(s410 5)
(s411 2)
(s413 4)
(s414 5)
(s415 5)
(s416 2)
(s418 4)
(s419 5)
(s420 5)
(s421 2)
(s423 4)
(s424 5)
(s425 5)
(s426 2)
(s428 4)
(s429 5)
(s430 5)
(s431 2)
(s433 4)
(s434 5)
(s435 5)
(s436 2)
(s438 4)
(s439 5)
(s440 5)
(s441 2)
(s443 4)
(s444 5)
(s445 5)
(s446 2)
(s448 4)
(s449 5)
(s450 5)
(s451 2)
(s453 4)
(s454 5)
(s455 5)
(s456 2)
(s458 4)
(s459 5)
(s460 5)
(s461 2)
(s463 4)
(s464 5)
(s465 5)
(s466 2)
(s468 4)
(s469 5)
(s470 5)
(s471 2)
(s473 4)
(s474 5)
(s475 5)
(s476 2)
(s478 4)
(s479 5)
(s480 5)
(s481 2)
(s483 4)
(s484 5)
(s485 5)
(s486 2)
(s488 4)
(s489 5)
(s490 5)
(s491 2)
(s493 4)
(s494 5)
(s495 5)
(s496 2)
(s498 4)
(s499 5)
(s500 5)
(s501 2)
(s503 4)
(s504 5)
(s505 5)
(s506 2)
(s508 4)
(s509 5)
(s510 5)
(s511 2)
(s513 4)
(s514 5)
(s515 5)
(s516 2)
(s518 4)
(s519 5)
(s520 5)
(s521 2)
(s523 4)
(s524 5)
(s525 5)
(s526 2)
(s528 4)
(s529 5)
(s530 5)
(s531 2)
(s533 4)
(s534 5)
(s535 5)
(s536 2)
(s538 4)
(s539 5)
(s540 5)
(s541 2)
(s543 4)
(s544 5)
(s545 5)
(s546 2)
(s548 4)
(s549 5)
(s550 5)
(s551 2)
(s553 4)
(s554 5)
(s555 5)
(s556 2)
(s558 4)
(s559 5)
(s560 5)
(s561 2)
(s563 4)
(s564 5)
(s565 5)
(s566 2)
(s568 4)
(s569 5)
(s570 5)
(s571 2)
(s573 4)
(s574 5)
(s575 5)
(s576 2)
(s578 4)
(s579 5)
(s580 5)
(s581 2)
(s583 4)
(s584 5)
(s585 5)
(s586 2)
(s588 4)
(s589 5)
(s590 5)
(s591 2)
(s593 4)
(s594 5)
(s595 5)
(s596 2)
(s598 4)
(s599 5)
(s600 5)
(s601 2)
(s603 4)
(s604 5)
(s605 5)
(s606 2)
(s608 4)
(s609 5)
(s610 5)
(s611 2)
(s613 4)
(s614 5)
(s615 5)
(s616 2)
(s618 4)
(s619 5)
(s620 5)
(s621 2)
(s623 4)
(s624 5)
(s625 5)
(s626 2)
(s628 4)
(s629 5)
(s630 5)
(s631 2)
(s633 4)
(s634 5)
(s635 5)
(s636 2)
(s638 4)
(s639 5)
(s640 5)
(s641 2)
(s643 4)
(s644 5)
(s645 5)
(s646 2)
(s648 4)
(s649 5)
(s650 5)
(s651 2)
(s653 4)
(s654 5)
(s655 5)
(s656 2)
(s658 4)
(s659 5)
(s660 5)
(s661 2)
(s663 4)
(s664 5)
(s665 5)
(s666 2)
(s668 4)
(s669 5)
(s670 5)
(s671 2)
(s673 4)
(s674 5)
(s675 5)
(s676 2)
(s678 4)
(s679 5)
(s680 5)
(s681 2)
(s683 4)
(s684 5)
(s685 5)
(s686 2)
(s688 4)
(s689 5)
(s690 5)
(s691 2)
(s693 4)
(s694 5)
(s695 5)
(s696 2)
(s698 4)
(s699 5)
(s700 5)
(s701 2)
(s703 4)
(s704 5)
(s705 5)
(s706 2)
(s708 4)
(s709 5)
(s710 5)
(s711 2)
(s713 4)
(s714 5)
(s715 5)
(s716 2)
(s718 4)
(s719 5)
(s720 5)
(s721 2)
(s723 4)
(s724 5)
(s725 5)
(s726 2)
(s728 4)
(s729 5)
(s730 5)
(s731 2)
(s733 4)
(s734 5)
(s735 5)
(s736 2)
(s738 4)
(s739 5)
(s740 5)
(s741 2)
(s743 4)
(s744 5)
(s745 5)
(s746 2)
(s748 4)
(s749 5)
(s750 5)
(s751 2)
(s753 4)
(s754 5)
(s755 5)
(s756 2)
(s758 4)
(s759 5)
(s760 5)
(s761 2)
(s763 4)
(s764 5)
(s765 5)
(s766 2)
(s768 4)
(s769 5)
(s770 5)
(s771 2)
(s773 4)
(s774 5)
(s775 5)
(s776 2)
(s778 4)
(s779 5)
(s780 5)
(s781 2)
(s783 4)
(s784 5)
(s785 5)
(s786 2)
(s788 4)
(s789 5)
(s790 5)
(s791 2)
(s793 4)
(s794 5)
(s795 5)
(s796 2)
(s798 4)
(s799 5)
(s800 5)
(s801 2)
(s803 4)
(s804 5)
(s805 5)
(s806 2)
(s808 4)
(s809 5)
(s810 5)
(s811 2)
(s813 4)
(s814 5)
(s815 5)
(s816 2)
(s818 4)
(s819 5)
(s820 5)
(s821 2)
(s823 4)
(s824 5)
(s825 5)
(s826 2)
(s828 4)
(s829 5)
(s830 5)
(s831 2)
(s833 4)
(s834 5)
(s835 5)
(s836 2)
(s838 4)
(s839 5)
(s840 5)
(s841 2)
(s843 4)
(s844 5)
(s845 5)
(s846 2)
(s848 4)
(s849 5)
(s850 5)
(s851 2)
(s853 4)
(s854 5)
(s855 5)
(s856 2)
(s858 4)
(s859 5)
(s860 5)
(s861 2)
(s863 4)
(s864 5)
(s865 5)
(s866 2)
(s868 4)
(s869 5)
(s870 5)
(s871 2)
(s873 4)
(s874 5)
(s875 5)
(s876 2)
(s878 4)
(s879 5)
(s880 5)
(s881 2)
(s883 4)
(s884 5)
(s885 5)
(s886 2)
(s888 4)
(s889 5)
(s890 5)
(s891 2)
(s893 4)
(s894 5)
(s895 5)
(s896 2)
(s898 4)
(s899 5)
(s900 5)
(s901 2)
(s903 4)
(s904 5)
(s905 5)
(s906 2)
(s908 4)
(s909 5)
(s910 5)
(s911 2)
(s913 4)
(s914 5)
(s915 5)
(s916 2)
(s918 4)
(s919 5)
(s920 5)
(s921 2)
(s923 4)
(s924 5)
(s925 5)
(s926 2)
(s928 4)
(s929 5)
(s930 5)
(s931 2)
(s933 4)
(s934 5)
(s935 5)
(s936 2)
(s938 4)
(s939 5)
(s940 5)
(s941 2)
(s943 4)
(s944 5)
(s945 5)
(s946 2)
(s948 4)
(s949 5)
(s950 5)
(s951 2)
(s953 4)
(s954 5)
(s955 5)
(s956 2)
(s958 4)
(s959 5)
(s960 5)
(s961 2)
(s963 4)
(s964 5)
(s965 5)
(s966 2)
(s968 4)
(s969 5)
(s970 5)
(s971 2)
(s973 4)
(s974 5)
(s975 5)
(s976 2)
(s978 4)
(s979 5)
(s980 5)
(s981 2)
(s983 4)
(s984 5)
(s985 5)
(s986 2)
(s988 4)
(s989 5)
(s990 5)
(s991 2)
(s993 4)
(s994 5)
(s995 5)
(s996 2)
(s998 4)
(s999 5)
(s1000 5)
(s1001 2)
(s1003 4)
(s1004 5)
(s1005 5)
(s1006 2)
(s1008 4)
(s1009 5)
(s1010 5)
(s1011 2)
(s1013 4)
(s1014 5)
(s1015 5)
(s1016 2)
(s1018 4)
(s1019 5)
(s1020 5)
(s1021 2)
(s1023 4)
(s1024 5)
(s1025 5)
(s1026 2)
(s1028 4)
(s1029 5)
(s1030 5)
(s1031 2)
(s1033 4)
(s1034 5)
(s1035 5)
(s1036 2)
(s1038 4)
(s1039 5)
(s1040 5)
(s1041 2)
(s1043 4)
(s1044 5)
(s1045 5)
(s1046 2)
(s1048 4)
(s1049 5)
(s1050 5)
(s1051 2)
(s1053 4)
(s1054 5)
(s1055 5)
(s1056 2)
(s1058 4)
(s1059 5)
(s1060 5)
(s1061 2)
(s1063 4)
(s1064 5)
(s1065 5)
(s1066 2)
(s1068 4)
(s1069 5)
(s1070 5)
(s1071 2)
(s1073 4)
(s1074 5)
(s1075 5)
(s1076 2)
(s1078 4)
(s1079 5)
(s1080 5)
(s1081 2)
(s1083 4)
(s1084 5)
(s1085 5)
(s1086 2)
(s1088 4)
(s1089 5)
(s1090 5)
(s1091 2)
(s1093 4)
(s1094 5)
(s1095 5)
(s1096 2)
(s1098 4)
(s1099 5)
(s1100 5)
(s1101 2)
(s1103 4)
(s1104 5)
(s1105 5)
(s1106 2)
(s1108 4)
(s1109 5)
(s1110 5)
(s1111 2)
(s1113 4)
(s1114 5)
(s1115 5)
(s1116 2)
(s1118 4)
(s1119 5)
(s1120 5)
(s1121 2)
(s1123 4)
(s1124 5)
(s1125 5)
(s1126 2)
(s1128 4)
(s1129 5)
(s1130 5)
(s1131 2)
(s1133 4)
(s1134 5)
(s1135 5)
(s1136 2)
(s1138 4)
(s1139 5)
(s1140 5)
(s1141 2)
(s1143 4)
(s1144 5)
(s1145 5)
(s1146 2)
(s1148 4)
(s1149 5)
(s1150 5)
(s1151 2)
(s1153 4)
(s1154 5)
(s1155 5)
(s1156 2)
(s1158 4)
(s1159 5)
(s1160 5)
(s1161 2)
(s1163 4)
(s1164 5)
(s1165 5)
(s1166 2)
(s1168 4)
(s1169 5)
(s1170 5)
(s1171 2)
(s1173 4)
(s1174 5)
(s1175 5)
(s1176 2)
(s1178 4)
(s1179 5)
(s1180 5)
(s1181 2)
(s1183 4)
(s1184 5)
(s1185 5)
(s1186 2)
(s1188 4)
(s1189 5)
(s1190 5)
(s1191 2)
(s1193 4)
(s1194 5)
(s1195 5)
(s1196 2)
(s1198 4)
(s1199 5)
(s1200 5)
(s1201 2)
(s1203 4)
(s1204 5)
(s1205 5)
(s1206 2)
(s1208 4)
(s1209 5)
(s1210 5)
(s1211 timeout
2)
(s1213 org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30078 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 64756ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 64810ms
Finished structural reductions in SI_LTL mode , in 1 iterations and 115559 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Stuttering acceptance computed with spot in 88 ms :[(AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1))]
Running random walk in product with property : JoinFreeModules-PT-1000-LTLCardinality-11
Product exploration timeout after 25300 steps with 1 reset in 10003 ms.
Product exploration timeout after 21200 steps with 0 reset in 10005 ms.
Computed a total of 0 stabilizing places and 0 stable transitions
Computed a total of 0 stabilizing places and 0 stable transitions
Knowledge obtained : [(AND p0 p1), (X (NOT (AND (NOT p0) (NOT p1)))), (X (NOT (AND p0 (NOT p1)))), (X p0), (X p1)]
False Knowledge obtained : []
Knowledge based reduction with 5 factoid took 84 ms. Reduced automaton from 2 states, 4 edges and 2 AP (stutter insensitive) to 2 states, 4 edges and 2 AP (stutter insensitive).
Stuttering acceptance computed with spot in 85 ms :[(AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1))]
RANDOM walk for 41728 steps (8 resets) in 2305 ms. (18 steps per ms) remains 4/4 properties
BEST_FIRST walk for 40004 steps (8 resets) in 2547 ms. (15 steps per ms) remains 3/4 properties
BEST_FIRST walk for 40004 steps (8 resets) in 2367 ms. (16 steps per ms) remains 3/3 properties
BEST_FIRST walk for 40004 steps (8 resets) in 2342 ms. (17 steps per ms) remains 3/3 properties
[2024-05-23 23:31:14] [INFO ] Invariant cache hit.
[2024-05-23 23:31:14] [INFO ] State equation strengthened by 1000 read => feed constraints.
All remaining problems are real, not stopping.
At refinement iteration 0 (INCLUDED_ONLY) 0/3 variables, 0/0 constraints. Problems are: Problem set: 0 solved, 3 unsolved
At refinement iteration 1 (OVERLAPS) 12/15 variables, 3/3 constraints. Problems are: Problem set: 0 solved, 3 unsolved
[2024-05-23 23:31:14] [INFO ] Deduced a trap composed of 3 places in 25 ms of which 1 ms to minimize.
At refinement iteration 2 (INCLUDED_ONLY) 0/15 variables, 1/4 constraints. Problems are: Problem set: 0 solved, 3 unsolved
At refinement iteration 3 (INCLUDED_ONLY) 0/15 variables, 0/4 constraints. Problems are: Problem set: 0 solved, 3 unsolved
At refinement iteration 4 (OVERLAPS) 24/39 variables, 15/19 constraints. Problems are: Problem set: 0 solved, 3 unsolved
At refinement iteration 5 (INCLUDED_ONLY) 0/39 variables, 3/22 constraints. Problems are: Problem set: 0 solved, 3 unsolved
At refinement iteration 6 (INCLUDED_ONLY) 0/39 variables, 0/22 constraints. Problems are: Problem set: 0 solved, 3 unsolved
At refinement iteration 7 (OVERLAPS) 0/39 variables, 0/22 constraints. Problems are: Problem set: 0 solved, 3 unsolved
No progress, stopping.
After SMT solving in domain Real declared 39/13001 variables, and 22 constraints, problems are : Problem set: 0 solved, 3 unsolved in 91 ms.
Refiners :[Positive P Invariants (semi-flows): 3/1000 constraints, State Equation: 15/5000 constraints, ReadFeed: 3/1000 constraints, PredecessorRefiner: 3/3 constraints, Known Traps: 1/1 constraints]
Escalating to Integer solving :Problem set: 0 solved, 3 unsolved
At refinement iteration 0 (INCLUDED_ONLY) 0/3 variables, 0/0 constraints. Problems are: Problem set: 0 solved, 3 unsolved
At refinement iteration 1 (OVERLAPS) 12/15 variables, 3/3 constraints. Problems are: Problem set: 0 solved, 3 unsolved
At refinement iteration 2 (INCLUDED_ONLY) 0/15 variables, 1/4 constraints. Problems are: Problem set: 0 solved, 3 unsolved
At refinement iteration 3 (INCLUDED_ONLY) 0/15 variables, 0/4 constraints. Problems are: Problem set: 0 solved, 3 unsolved
At refinement iteration 4 (OVERLAPS) 24/39 variables, 15/19 constraints. Problems are: Problem set: 0 solved, 3 unsolved
At refinement iteration 5 (INCLUDED_ONLY) 0/39 variables, 3/22 constraints. Problems are: Problem set: 0 solved, 3 unsolved
At refinement iteration 6 (INCLUDED_ONLY) 0/39 variables, 3/25 constraints. Problems are: Problem set: 0 solved, 3 unsolved
At refinement iteration 7 (INCLUDED_ONLY) 0/39 variables, 0/25 constraints. Problems are: Problem set: 0 solved, 3 unsolved
At refinement iteration 8 (OVERLAPS) 0/39 variables, 0/25 constraints. Problems are: Problem set: 0 solved, 3 unsolved
No progress, stopping.
After SMT solving in domain Int declared 39/13001 variables, and 25 constraints, problems are : Problem set: 0 solved, 3 unsolved in 137 ms.
Refiners :[Positive P Invariants (semi-flows): 3/1000 constraints, State Equation: 15/5000 constraints, ReadFeed: 3/1000 constraints, PredecessorRefiner: 3/3 constraints, Known Traps: 1/1 constraints]
After SMT, in 257ms problems are : Problem set: 0 solved, 3 unsolved
Fused 3 Parikh solutions to 2 different solutions.
Finished Parikh walk after 14 steps, including 0 resets, run visited all 3 properties in 2 ms. (steps per millisecond=7 )
Finished Parikh walk after 0 steps, including 0 resets, run visited all 0 properties in 1 ms. (steps per millisecond=0 )
Parikh walk visited 3 properties in 3 ms.
Knowledge obtained : [(AND p0 p1), (X (NOT (AND (NOT p0) (NOT p1)))), (X (NOT (AND p0 (NOT p1)))), (X p0), (X p1)]
False Knowledge obtained : [(F (NOT p1)), (F (NOT (OR p0 p1))), (F (NOT p0)), (F (NOT (OR (NOT p0) p1)))]
Knowledge based reduction with 5 factoid took 191 ms. Reduced automaton from 2 states, 4 edges and 2 AP (stutter insensitive) to 2 states, 4 edges and 2 AP (stutter insensitive).
Stuttering acceptance computed with spot in 61 ms :[(AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1))]
Stuttering acceptance computed with spot in 73 ms :[(AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1))]
Support contains 3 out of 5000 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 544 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:31:15] [INFO ] Invariant cache hit.
[2024-05-23 23:31:15] [INFO ] State equation strengthened by 1000 read => feed constraints.
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20088 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20084 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 44192ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 44237ms
[2024-05-23 23:31:59] [INFO ] Invariant cache hit.
[2024-05-23 23:32:00] [INFO ] Implicit Places using invariants in 859 ms returned []
[2024-05-23 23:32:00] [INFO ] Invariant cache hit.
[2024-05-23 23:32:03] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2024-05-23 23:32:04] [INFO ] Implicit Places using invariants and state equation in 3745 ms returned []
Implicit Place search using SMT with State Equation took 4614 ms to find 0 implicit places.
[2024-05-23 23:32:04] [INFO ] Redundant transitions in 629 ms returned []
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:32:04] [INFO ] Invariant cache hit.
[2024-05-23 23:32:04] [INFO ] State equation strengthened by 1000 read => feed constraints.
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30071 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Error getting values : (error "ParserException while parsing response: ((s0 5)
(s1 2)
(s3 4)
(s4 5)
(s5 5)
(s6 2)
(s8 4)
(s9 5)
(s10 5)
(s11 2)
(s13 4)
(s14 5)
(s15 5)
(s16 2)
(s18 4)
(s19 5)
(s20 5)
(s21 2)
(s23 4)
(s24 5)
(s25 5)
(s26 2)
(s28 4)
(s29 5)
(s30 5)
(s31 2)
(s33 4)
(s34 5)
(s35 5)
(s36 2)
(s38 4)
(s39 5)
(s40 5)
(s41 2)
(s43 4)
(s44 5)
(s45 5)
(s46 2)
(s48 4)
(s49 5)
(s50 5)
(s51 2)
(s53 4)
(s54 5)
(s55 5)
(s56 2)
(s58 4)
(s59 5)
(s60 5)
(s61 2)
(s63 4)
(s64 5)
(s65 5)
(s66 2)
(s68 4)
(s69 5)
(s70 5)
(s71 2)
(s73 4)
(s74 5)
(s75 5)
(s76 2)
(s78 4)
(s79 5)
(s80 5)
(s81 2)
(s83 4)
(s84 5)
(s85 5)
(s86 2)
(s88 4)
(s89 5)
(s90 5)
(s91 2)
(s93 4)
(s94 5)
(s95 5)
(s96 2)
(s98 4)
(s99 5)
(s100 5)
(s101 2)
(s103 4)
(s104 5)
(s105 5)
(s106 2)
(s108 4)
(s109 5)
(s110 5)
(s111 2)
(s113 4)
(s114 5)
(s115 5)
(s116 2)
(s118 4)
(s119 5)
(s120 5)
(s121 2)
(s123 4)
(s124 5)
(s125 5)
(s126 2)
(s128 4)
(s129 5)
(s130 5)
(s131 2)
(s133 4)
(s134 5)
(s135 5)
(s136 2)
(s138 4)
(s139 5)
(s140 5)
(s141 2)
(s143 4)
(s144 5)
(s145 5)
(s146 2)
(s148 4)
(s149 5)
(s150 5)
(s151 2)
(s153 4)
(s154 5)
(s155 5)
(s156 2)
(s158 4)
(s159 5)
(s160 5)
(s161 2)
(s163 4)
(s164 5)
(s165 5)
(s166 2)
(s168 4)
(s169 5)
(s170 5)
(s171 2)
(s173 4)
(s174 5)
(s175 5)
(s176 2)
(s178 4)
(s179 5)
(s180 5)
(s181 2)
(s183 4)
(s184 5)
(s185 5)
(s186 2)
(s188 4)
(s189 5)
(s190 5)
(s191 2)
(s193 4)
(s194 5)
(s195 5)
(s196 2)
(s198 4)
(s199 5)
(s200 5)
(s201 2)
(s203 4)
(s204 5)
(s205 5)
(s206 2)
(s208 4)
(s209 5)
(s210 5)
(s211 2)
(s213 4)
(s214 5)
(s215 5)
(s216 2)
(s218 4)
(s219 5)
(s220 5)
(s221 2)
(s223 4)
(s224 5)
(s225 5)
(s226 2)
(s228 4)
(s229 5)
(s230 5)
(s231 2)
(s233 4)
(s234 5)
(s235 5)
(s236 2)
(s238 4)
(s239 5)
(s240 5)
(s241 2)
(s243 4)
(s244 5)
(s245 5)
(s246 2)
(s248 4)
(s249 5)
(s250 5)
(s251 2)
(s253 4)
(s254 5)
(s255 5)
(s256 2)
(s258 4)
(s259 5)
(s260 5)
(s261 2)
(s263 4)
(s264 5)
(s265 5)
(s266 2)
(s268 4)
(s269 5)
(s270 5)
(s271 2)
(s273 4)
(s274 5)
(s275 5)
(s276 2)
(s278 4)
(s279 5)
(s280 5)
(s281 2)
(s283 4)
(s284 5)
(s285 5)
(s286 2)
(s288 4)
(s289 5)
(s290 5)
(s291 2)
(s293 4)
(s294 5)
(s295 5)
(s296 2)
(s298 4)
(s299 5)
(s300 5)
(s301 2)
(s303 4)
(s304 5)
(s305 5)
(s306 2)
(s308 4)
(s309 5)
(s310 5)
(s311 2)
(s313 4)
(s314 5)
(s315 5)
(s316 2)
(s318 4)
(s319 5)
(s320 5)
(s321 2)
(s323 4)
(s324 5)
(s325 5)
(s326 2)
(s328 4)
(s329 5)
(s330 5)
(s331 2)
(s333 4)
(s334 5)
(s335 5)
(s336 2)
(s338 4)
(s339 5)
(s340 5)
(s341 2)
(s343 4)
(s344 5)
(s345 5)
(s346 2)
(s348 4)
(s349 5)
(s350 5)
(s351 2)
(s353 4)
(s354 5)
(s355 5)
(s356 2)
(s358 4)
(s359 5)
(s360 5)
(s361 2)
(s363 4)
(s364 5)
(s365 5)
(s366 2)
(s368 4)
(s369 5)
(s370 5)
(s371 2)
(s373 4)
(s374 5)
(s375 5)
(s376 2)
(s378 4)
(s379 5)
(s380 5)
(s381 2)
(s383 4)
(s384 5)
(s385 5)
(s386 2)
(s388 4)
(s389 5)
(s390 5)
(s391 2)
(s393 4)
(s394 5)
(s395 5)
(s396 2)
(s398 4)
(s399 5)timeout

(s400 org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30077 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 64225ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 64269ms
Finished structural reductions in SI_LTL mode , in 1 iterations and 114312 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Computed a total of 0 stabilizing places and 0 stable transitions
Computed a total of 0 stabilizing places and 0 stable transitions
Knowledge obtained : [(AND p0 p1), (X (NOT (AND (NOT p0) (NOT p1)))), (X (NOT (AND p0 (NOT p1)))), (X p0), (X p1)]
False Knowledge obtained : []
Knowledge based reduction with 5 factoid took 101 ms. Reduced automaton from 2 states, 4 edges and 2 AP (stutter insensitive) to 2 states, 4 edges and 2 AP (stutter insensitive).
Stuttering acceptance computed with spot in 92 ms :[(AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1))]
RANDOM walk for 40563 steps (8 resets) in 1838 ms. (22 steps per ms) remains 4/4 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1975 ms. (20 steps per ms) remains 3/4 properties
BEST_FIRST walk for 40004 steps (8 resets) in 2049 ms. (19 steps per ms) remains 3/3 properties
BEST_FIRST walk for 40004 steps (8 resets) in 2424 ms. (16 steps per ms) remains 3/3 properties
[2024-05-23 23:33:11] [INFO ] Invariant cache hit.
[2024-05-23 23:33:11] [INFO ] State equation strengthened by 1000 read => feed constraints.
All remaining problems are real, not stopping.
At refinement iteration 0 (INCLUDED_ONLY) 0/3 variables, 0/0 constraints. Problems are: Problem set: 0 solved, 3 unsolved
At refinement iteration 1 (OVERLAPS) 12/15 variables, 3/3 constraints. Problems are: Problem set: 0 solved, 3 unsolved
[2024-05-23 23:33:11] [INFO ] Deduced a trap composed of 3 places in 25 ms of which 1 ms to minimize.
At refinement iteration 2 (INCLUDED_ONLY) 0/15 variables, 1/4 constraints. Problems are: Problem set: 0 solved, 3 unsolved
At refinement iteration 3 (INCLUDED_ONLY) 0/15 variables, 0/4 constraints. Problems are: Problem set: 0 solved, 3 unsolved
At refinement iteration 4 (OVERLAPS) 24/39 variables, 15/19 constraints. Problems are: Problem set: 0 solved, 3 unsolved
At refinement iteration 5 (INCLUDED_ONLY) 0/39 variables, 3/22 constraints. Problems are: Problem set: 0 solved, 3 unsolved
At refinement iteration 6 (INCLUDED_ONLY) 0/39 variables, 0/22 constraints. Problems are: Problem set: 0 solved, 3 unsolved
At refinement iteration 7 (OVERLAPS) 0/39 variables, 0/22 constraints. Problems are: Problem set: 0 solved, 3 unsolved
No progress, stopping.
After SMT solving in domain Real declared 39/13001 variables, and 22 constraints, problems are : Problem set: 0 solved, 3 unsolved in 96 ms.
Refiners :[Positive P Invariants (semi-flows): 3/1000 constraints, State Equation: 15/5000 constraints, ReadFeed: 3/1000 constraints, PredecessorRefiner: 3/3 constraints, Known Traps: 1/1 constraints]
Escalating to Integer solving :Problem set: 0 solved, 3 unsolved
At refinement iteration 0 (INCLUDED_ONLY) 0/3 variables, 0/0 constraints. Problems are: Problem set: 0 solved, 3 unsolved
At refinement iteration 1 (OVERLAPS) 12/15 variables, 3/3 constraints. Problems are: Problem set: 0 solved, 3 unsolved
At refinement iteration 2 (INCLUDED_ONLY) 0/15 variables, 1/4 constraints. Problems are: Problem set: 0 solved, 3 unsolved
At refinement iteration 3 (INCLUDED_ONLY) 0/15 variables, 0/4 constraints. Problems are: Problem set: 0 solved, 3 unsolved
At refinement iteration 4 (OVERLAPS) 24/39 variables, 15/19 constraints. Problems are: Problem set: 0 solved, 3 unsolved
At refinement iteration 5 (INCLUDED_ONLY) 0/39 variables, 3/22 constraints. Problems are: Problem set: 0 solved, 3 unsolved
At refinement iteration 6 (INCLUDED_ONLY) 0/39 variables, 3/25 constraints. Problems are: Problem set: 0 solved, 3 unsolved
At refinement iteration 7 (INCLUDED_ONLY) 0/39 variables, 0/25 constraints. Problems are: Problem set: 0 solved, 3 unsolved
At refinement iteration 8 (OVERLAPS) 0/39 variables, 0/25 constraints. Problems are: Problem set: 0 solved, 3 unsolved
No progress, stopping.
After SMT solving in domain Int declared 39/13001 variables, and 25 constraints, problems are : Problem set: 0 solved, 3 unsolved in 143 ms.
Refiners :[Positive P Invariants (semi-flows): 3/1000 constraints, State Equation: 15/5000 constraints, ReadFeed: 3/1000 constraints, PredecessorRefiner: 3/3 constraints, Known Traps: 1/1 constraints]
After SMT, in 263ms problems are : Problem set: 0 solved, 3 unsolved
Fused 3 Parikh solutions to 2 different solutions.
Finished Parikh walk after 4685 steps, including 3 resets, run visited all 3 properties in 218 ms. (steps per millisecond=21 )
Finished Parikh walk after 0 steps, including 0 resets, run visited all 0 properties in 1 ms. (steps per millisecond=0 )
Parikh walk visited 3 properties in 219 ms.
Knowledge obtained : [(AND p0 p1), (X (NOT (AND (NOT p0) (NOT p1)))), (X (NOT (AND p0 (NOT p1)))), (X p0), (X p1)]
False Knowledge obtained : [(F (NOT p1)), (F (NOT (OR p0 p1))), (F (NOT p0)), (F (NOT (OR (NOT p0) p1)))]
Knowledge based reduction with 5 factoid took 188 ms. Reduced automaton from 2 states, 4 edges and 2 AP (stutter insensitive) to 2 states, 4 edges and 2 AP (stutter insensitive).
Stuttering acceptance computed with spot in 65 ms :[(AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1))]
Stuttering acceptance computed with spot in 70 ms :[(AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1))]
Stuttering acceptance computed with spot in 77 ms :[(AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1))]
Product exploration timeout after 25980 steps with 1 reset in 10005 ms.
Product exploration timeout after 24810 steps with 1 reset in 10003 ms.
Support contains 3 out of 5000 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 531 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:33:33] [INFO ] Invariant cache hit.
[2024-05-23 23:33:33] [INFO ] State equation strengthened by 1000 read => feed constraints.
Error getting values : (error "ParserException while parsing response: ((s0 5.0)
(s1 2.0)
(s3 4.0)
(s4 5.0)
(s5 5.0)
(s6 2.0)
(s8 4.0)
(s9 5.0)
(s10 5.0)
(s11 2.0)
(s13 4.0)
(s14 5.0)
(s15 5.0)
(s16 2.0)
(s18 4.0)
(s19 5.0)
(s20 5.0)
(s21 2.0)
(s23 4.0)
(s24 5.0)
(s25 5.0)
(s26 2.0)
(s28 4.0)
(s29 5.0)
(s30 5.0)
(s31 2.0)
(s33 4.0)
(s34 5.0)
(s35 5.0)
(s36 2.0)
(s38 4.0)
(s39 5.0)
(s40 5.0)
(s41 2.0)
(s43 4.0)
(s44 5.0)
(s45 5.0)
(s46 2.0)
(s48 4.0)
(s49 5.0)
(s50 5.0)
(s51 2.0)
(s53 4.0)
(s54 5.0)
(s55 5.0)
(s56 2.0)
(s58 4.0)
(s59 5.0)
(s60 5.0)
(s61 2.0)
(s63 4.0)
(s64 5.0)
(s65 5.0)
(s66 2.0)
(s68 4.0)
(s69 5.0)
(s70 5.0)
(s71 2.0)
(s73 4.0)
(s74 5.0)
(s75 5.0)
(s76 2.0)
(s78 4.0)
(s79 5.0)
(s80 5.0)
(s81 2.0)
(s83 4.0)
(s84 5.0)
(s85 5.0)
(s86 2.0)
(s88 4.0)
(s89 5.0)
(s90 5.0)
(s91 2.0)
(s93 4.0)
(s94 5.0)
(s95 5.0)
(s96 2.0)
(s98 4.0)
(s99 5.0)
(s100 5.0)
(s101 2.0)
(s103 4.0)
(s104 5.0)
(s105 5.0)
(s106 2.0)
(s108 4.0)
(s109 5.0)
(s110 5.0)
(s111 2.0)
(s113 4.0)
(s114 5.0)
(s115 5.0)
(s116 2.0)
(s118 4.0)
(s119 5.0)
(s120 5.0)
(s121 2.0)
(s123 4.0)
(s124 5.0)
(s125 5.0)
(s126 2.0)
(s128 4.0)
(s129 5.0)
(s130 5.0)
(s131 2.0)
(s133 4.0)
(s134 5.0)
(s135 5.0)
(s136 2.0)
(s138 4.0)
(s139 5.0)
(s140 5.0)
(s141 2.0)
(s143 4.0)
(s144 5.0)
(s145 5.0)
(s146 2.0)
(s148 4.0)
(s149 5.0)
(s150 5.0)
(s151 2.0)
(s153 4.0)
(s154 5.0)
(s155 5.0)
(s156 2.0)
(s158 4.0)
(s159 5.0)
(s160 5.0)
(s161 2.0)
(s163 4.0)
(s164 5.0)
(s165 5.0)
(s166 2.0)
(s168 4.0)
(s169 5.0)
(s170 5.0)
(s171 2.0)
(s173 4.0)
(s174 5.0)
(s175 5.0)
(s176 2.0)
(s178 4.0)
(s179 5.0)
(s180 5.0)
(s181 2.0)
(s183 4.0)
(s184 5.0)
(s185 5.0)
(s186 2.0)
(s188 4.0)
(s189 5.0)
(s190 5.0)
(s191 2.0)
(s193 4.0)
(s194 5.0)
(s195 5.0)
(s196 2.0)
(s198 4.0)
(s199 5.0)
(s200 5.0)
(s201 2.0)
(s203 4.0)
(s204 5.0)
(s205 5.0)
(s206 2.0)
(s208 4.0)
(s209 5.0)
(s210 5.0)
(s211 2.0)
(s213 4.0)
(s214 5.0)
(s215 5.0)
(s216 2.0)
(s218 4.0)
(s219 5.0)
(s220 5.0)
(s221 2.0)
(s223 4.0)
(s224 5.0)
(s225 5.0)
(s226 2.0)
(s228 4.0)
(s229 5.0)
(s230 5.0)
(s231 2.0)
(s233 4.0)
(s234 5.0)
(s235 5.0)
(s236 2.0)
(s238 4.0)
(s239 5.0)
(s240 5.0)
(s241 2.0)
(s243 4.0)
(s244 5.0)
(s245 5.0)
(s246 2.0)
(s248 4.0)
(s249 5.0)
(s250 5.0)
(s251 2.0)
(s253 4.0)
(s254 5.0)
(s255 5.0)
(s256 2.0)
(s258 4.0)
(s259 5.0)
(s260 5.0)
(s261 2.0)
(s263 4.0)
(s264 5.0)
(s265 5.0)
(s266 2.0)
(s268 4.0)
(s269 5.0)
(s270 5.0)
(s271 2.0)
(s273 4.0)
(s274 5.0)
(s275 5.0)
(s276 2.0)
(s278 4.0)
(s279 5.0)
(s280 5.0)
(s281 2.0)
(s283 4.0)
(s284 5.0)
(s285 5.0)
(s286 2.0)
(s288 4.0)
(s289 5.0)
(s290 5.0)
(s291 2.0)
(s293 4.0)
(s294 5.0)
(s295 5.0)
(s296 2.0)
(s298 4.0)
(s299 5.0)
(s300 5.0)
(s301 2.0)
(s303 4.0)
(s304 5.0)
(s305 5.0)
(s306 2.0)
(s308 4.0)
(s309 5.0)
(s310 5.0)
(s311 2.0)
(s313 4.0)
(s314 5.0)
(s315 5.0)
(s316 2.0)
(s318 4.0)
(s319 5.0)
(s320 5.0)
(s321 2.0)
(s323 4.0)
(s324 5.0)
(s325 5.0)
(s326 2.0)
(s328 4.0)
(s329 5.0)
(s330 5.0)
(s331 2.0)
(s333 4.0)
(s334 5.0)
(s335 5.0)
(s336 2.0)
(s338 4.0)
(s339 5.0)
(s340 5.0)
(s341 2.0)
(s343 4.0)
(s344 5.0)
(s345 5.0)
(s346 2.0)
(s348 4.0)
(s349 5.0)
(s350 5.0)
(s351 2.0)
(s353 4.0)
(s354 5.0)
(s355 5.0)
(s356 2.0)
(s358 4.0)
(s359 5.0)
(s360 5.0)
(s361 2.0)
(s363 4.0)
(s364 5.0)
(s365 5.0)
(s366 2.0)
(s368 4.0)
(s369 5.0)
(s370 5.0)
(s371 2.0)
(s373 4.0)
(s374 5.0)
(s375 5.0)
(s376 2.0)
(s378 4.0)
(s379 5.0)
(s380 5.0)
(s381 2.0)
(s383 4.0)
(s384 5.0)
(s385 5.0)
(s386 2.0)
(s388 4.0)
(s389 5.0)
(s390 5.0)
(s391 2.0)
(s393 4.0)
(s394 5.0)
(s395 5.0)
(s396 2.0)
(s398 4.0)
(s399 5.0)
(s400 5.0)
(s401 2.0)
(s403 4.0)
(s404 5.0)
(s405 5.0)
(s406 2.0)
(s408 4.0)
(s409 5.0)
(s410 5.0)
(s411 2.0)
(s413 4.0)
(s414 5.0)
(s415 5.0)
(s416 2.0)
(s418 4.0)
(s419 5.0)
(s420 5.0)
(s421 2.0)
(s423 4.0)
(s424 5.0)
(s425 5.0)
(s426 2.0)
(s428 4.0)
(s429 5.0)
(s430 5.0)
(s431 2.0)
(s433 4.0)
(s434 5.0)
(s435 5.0)
(s436 2.0)
(s438 4.0)
(s439 5.0)
(s440 5.0)
(s441 2.0)
(s443 4.0)
(s444 5.0)
(s445 5.0)
(s446 2.0)
(s448 4.0)
(s449 5.0)
(s450 5.0)
(s451 2.0)
(s453 4.0)
(s454 5.0)
(s455 5.0)
(s456 2.0)
(s458 4.0)
(s459 5.0)
(s460 5.0)
(s461 2.0)
(s463 4.0)
(s464 5.0)
(s465 5.0)
(s466 2.0)
(s468 4.0)
(s469 5.0)
(s470 5.0)
(s471 2.0)
(s473 4.0)
(s474 5.0)
(s475 5.0)
(s476 2.0)
(s478 4.0)
(s479 5.0)
(s480 5.0)
(s481 2.0)
(s483 4.0)
(s484 5.0)
(s485 5.0)
(s486 2.0)
(s488 4.0)
(s489 5.0)
(s490 5.0)
(s491 2.0)
(s493 4.0)
(s494 5.0)
(s495 5.0)
(s496 2.0)
(s498 4.0)
(s499 5.0)
(s500 5.0)
(s501 2.0)
(s503 4.0)
(s504 5.0)
(s505 5.0)
(s506 2.0)
(s508 4.0)
(s509 5.0)
(s510 5.0)
(s511 2.0)
(s513 4.0)
(s514 5.0)
(s515 5.0)
(s516 2.0)
(s518 4.0)
(s519 5.0)
(s520 5.0)
(s521 2.0)
(s523 4.0)
(s524 5.0)
(s525 5.0)
(s526 2.0)
(s528 4.0)
(s529 5.0)
(s530 5.0)
(s531 2.0)
(s533 4.0)
(s534 5.0)
(s535 5.0)
(s536 2.0)
(s538 4.0)
(s539 5.0)
(s540 5.0)
(s541 2.0)
(s543 4.0)
(s544 5.0)
(s545 5.0)
(s546 2.0)
(s548 4.0)
(s549 5.0)
(s550 5.0)
(s551 2.0)
(s553 4.0)
(s554 5.0)
(s555 5.0)
(s556 2.0)
(s558 4.0)
(s559 5.0)
(s560 5.0)
(s561 2.0)
(s563 4.0)
(s564 5.0)
(s565 5.0)
(s566 2.0)
(s568 4.0)
(s569 5.0)
(s570 5.0)
(s571 2.0)
(s573 4.0)
(s574 5.0)
(s575 5.0)
(s576 2.0)
(s578 4.0)
(s579 5.0)
(s580 5.0)
(s581 2.0)
(s583 4.0)
(s584 5.0)
(s585 5.0)
(s586 2.0)
(s588 4.0)
(s589 5.0)
(s590 5.0)
(s591 2.0)
(s593 4.0)
(s594 5.0)
(s595 5.0)
(s596 2.0)
(s598 4.0)
(s599 5.0)
(s600 5.0)
(s601 2.0)
(s603 4.0)
(s604 5.0)
(s605 5.0)
(s606 2.0)
(s608 4.0)
(s609 5.0)
(s610 5.0)
(s611 2.0)
(s613 4.0)
(s614 5.0)
(s615 5.0)
(s616 2.0)
(s618 4.0)
(s619 5.0)
(s620 5.0)
(s621 2.0)
(s623 4.0)
(s624 5.0)
(s625 5.0)
(s626 2.0)
(s628 4.0)
(s629 5.0)
(s630 5.0)
(s631 2.0)
(s633 4.0)
(s634 5.0)
(s635 5.0)
(s636 2.0)
(s638 4.0)
(s639 5.0)
(s640 5.0)
(s641 2.0)
(s643 4.0)
(s644 5.0)
(s645 5.0)
(s646 2.0)
(s648 4.0)
(s649 5.0)
(s650 5.0)
(s651 2.0)
(s653 4.0)
(s654 5.0)
(s655 5.0)
(s656 2.0)
(s658 4.0)
(s659 5.0)
(s660 5.0)
(s661 2.0)
(s663 4.0)
(s664 5.0)
(s665 5.0)
(s666 2.0)
(s668 4.0)
(s669 5.0)
(s670 5.0)
(s671 2.0)
(s673 4.0)
(s674 5.0)
(s675 5.0)
(s676 2.0)
(s678 4.0)
(s679 5.0)
(s680 5.0)
(s681 2.0)
(s683 4.0)
(s684 5.0)
(s685 5.0)
(s686 2.0)
(s688 4.0)
(s689 5.0)
(s690 5.0)
(s691 2.0)
(s693 4.0)
(s694 5.0)
(s695 5.0)
(s696 2.0)
(s698 4.0)
(s699 5.0)
(s700 5.0)
(s701 2.0)
(s703 4.0)
(s704 5.0)
(s705 5.0)
(s706 2.0)
(s708 4.0)
(s709 5.0)
(s710 5.0)
(s711 2.0)
(s713 4.0)
(s714 5.0)
(s715 5.0)
(s716 2.0)
(s718 4.0)
(s719 5.0)
(s720 5.0)
(s721 2.0)
(s723 4.0)
(s724 5.0)
(s725 5.0)
(s726 2.0)
(s728 4.0)
(s729 5.0)
(s730 5.0)
(s731 2.0)
(s733 4.0)
(s734 5.0)
(s735 5.0)
(s736 2.0)
(s738 4.0)
(s739 5.0)
(s740 5.0)
(s741 2.0)
(s743 4.0)
(s744 5.0)
(s745 5.0)
(s746 2.0)
(s748 4.0)
(s749 5.0)
(s750 5.0)
(s751 2.0)
(s753 4.0)
(s754 5.0)
(s755 5.0)
(s756 2.0)
(s758 4.0)
(s759 5.0)
(s760 5.0)
(s761 2.0)
(s763 4.0)
(s764 5.0)
(s765 5.0)
(s766 2.0)
(s768 4.0)
(s769 5.0)
(s770 5.0)
(s771 2.0)
(s773 4.0)
(s774 5.0)
(s775 5.0)
(s776 2.0)
(s778 4.0)
(s779 5.0)
(s780 5.0)
(s781 2.0)
(s783 4.0)
(s784 5.0)
(s785 5.0)
(s786 2.0)
(s788 4.0)
(s789 5.0)
(s790 5.0)
(s791 2.0)
(s793 4.0)
(s794 5.0)
(s795 5.0)
(s796 2.0)
(s798 4.0)
(s799 5.0)
(s800 5.0)
(s801 2.0)
(s803 4.0)
(s804 5.0)
(s805 5.0)
(s806 2.0)
(s808 4.0)
(s809 5.0)
(s810 5.0)
(s811 2.0)
(s813 4.0)
(s814 5.0)
(s815 5.0)
(s816 2.0)
(s818 4.0)
(s819 5.0)
(s820 5.0)
(s821 2.0)
(s823 4.0)
(s824 5.0)
(s825 5.0)
(s826 2.0)
(s828 4.0)
(s829 5.0)
(s830 5.0)
(s831 2.0)
(s833 4.0)
(s834 5.0)
(s835 5.0)
(s836 2.0)
(s838 4.0)
(s839 5.0)
(s840 5.0)
(s841 2.0)
(s843 4.0)
(s844 5.0)
(s845 5.0)
(s846 2.0)
(s848 4.0)
(s849 5.0)
(s850 5.0)
(s851 2.0)
(s853 4.0)
(s854 5.0)
(s855 5.0)
(s856 2.0)
(s858 4.0)
(s859 5.0)
(s860 5.0)
(s861 2.0)
(s863 4.0)
(s864 5.0)
(s865 5.0)
(s866 2.0)
(s868 4.0)
(s869 5.0)
(s870 5.0)
(s871 2.0)
(s873 4.0)
(s874 5.0)
(s875 5.0)
(s876 2.0)
(s878 4.0)
(s879 5.0)
(s880 5.0)
(s881 2.0)
(s883 4.0)
(s884 5.0)
(s885 5.0)
(s886 2.0)
(s888 4.0)
(s889 5.0)
(s890 5.0)
(s891 2.0)
(s893 4.0)
(s894 5.0)
(s895 5.0)
(s896 2.0)
(s898 4.0)
(s899 5.0)
(s900 5.0)
(s901 2.0)
(s903 4.0)
(s904 5.0)
(s905 5.0)
(s906 2.0)
(s908 4.0)
(s909 5.0)
(s910 5.0)
(s911 2.0)
(s913 4.0)
(s914 5.0)
(s915 5.0)
(s916 2.0)
(s918 4.0)
(s919 5.0)
(s920 5.0)
(s921 2.0)
(s923 4.0)
(s924 5.0)
(s925 5.0)
(s926 2.0)
(s928 4.0)
(s929 5.0)
(s930 5.0)
(s931 2.0)
(s933 4.0)
(s934 5.0)
(s935 5.0)
(s936 2.0)
(s938 4.0)
(s939 5.0)
(s940 5.0)
(s941 2.0)
(s943 4.0)
(s944 5.0)
(s945 5.0)
(s946 2.0)
(s948 4.0)
(s949 5.0)
(s950 5.0)
(s951 2.0)
(s953 4.0)
(s954 5.0)
(s955 5.0)
(s956 2.0)
(s958 4.0)
(s959 5.0)
(s960 5.0)
(s961 2.0)
(s963 4.0)
(s964 5.0)
(s965 5.0)
(s966 2.0)
(s968 4.0)
(s969 5.0)
(s970 5.0)
(s971 2.0)
(s973 4.0)
(s974 5.0)
(s975 5.0)
(s976 2.0)
(s978 4.0)
(s979 5.0)
(s980 5.0)
(s981 2.0)
(s983 4.0)
(s984 5.0)
(s985 5.0)
(s986 2.0)
(s988 4.0)
(s989 5.0)
(s990 5.0)
(s991 2.0)
(s993 4.0)
(s994 5.0)
(s995 5.0)
(s996 2.0)
(s998 4.0)
(s999 5.0)
(s1000 5.0)
(s1001 2.0)
(s1003 4.0)
(s1004 5.0)
(s1005 5.0)
(s1006 2.0)
(s1008 4.0)
(s1009 5.0)
(s1010 5.0)
(s1011 2.0)
(s1013 4.0)
(s1014 5.0)
(s1015 5.0)
(s1016 2.0)
(s1018 4.0)
(s1019 5.0)
(s1020 5.0)
(s1021 2.0)
(s1023 4.0)
(s1024 5.0)
(s1025 5.0)
(s1026 2.0)
(s1028 4.0)
(s1029 5.0)
(s1030 5.0)
(s1031 2.0)
(s1033 4.0)
(s1034 5.0)
(s1035 5.0)
(s1036 2.0)
(s1038 4.0)
(s1039 5.0)
(s1040 5.0)
(s1041 2.0)
(s1043 4.0)
(s1044 5.0)
(s1045 5.0)
(s1046 2.0)
(s1048 4.0)
(s1049 5.0)
(s1050 5.0)
(s1051 2.0)
(s1053 4.0)
(s1054 5.0)
(s1055 5.0)
(s1056 2.0)
(s1058 4.0)
(s1059 5.0)
(s1060 5.0)
(s1061 2.0)
(s1063 4.0)
(s1064 5.0)
(s1065 5.0)
(s1066 2.0)
(s1068 4.0)
(s1069 5.0)
(s1070 5.0)
(s1071 2.0)
(s1073 4.0)
(s1074 5.0)
(s1075 5.0)
(s1076 2.0)
(s1078 4.0)
(s1079 5.0)
(s1080 5.0)
(s1081 2.0)
(s1083 4.0)
(s1084 5.0)
(s1085 5.0)
(s1086 2.0)
(s1088 4.0)
(s1089 5.0)
(s1090 5.0)
(s1091 2.0)
(s1093 4.0)
(s1094 5.0)
(s1095 5.0)
(s1096 2.0)
(s1098 4.0)
(s1099 5.0)
(s1100 5.0)
(s1101 2.0)
(s1103 4.0)
(s1104 5.0)
(s1105 5.0)
(s1106 2.0)
(s1108 4.0)
(s1109 5.0)
(s1110 5.0)
(s1111 2.0)
(s1113 4.0)
(s1114 5.0)
(s1115 5.0)
(s1116 2.0)
(s1118 4.0)
(s1119 5.0)
(s1120 5.0)
(s1121 2.0)
(s1123 4.0)
(s1124 5.0)
(s1125 5.0)
(s1126 2.0)
(s1128 4.0)
(s1129 5.0)
(s1130 5.0)
(s1131 2.0)
(s1133 4.0)
(s1134 5.0)
(s1135 5.0)
(s1136 2.0)
(s1138 4.0)
(s1139 5.0)
(s1140 5.0)
(s1141 2.0)
(s1143 4.0)
(s1144 5.0)
(s1145 5.0)
(s1146 2.0)
(s1148 4.0)
(s1149 5.0)
(s1150 5.0)
(s1151 2.0)
(s1153 4.0)
(s1154 5.0)
(s1155 5.0)
(s1156 2.0)
(s1158 4.0)
(s1159 5.0)
(s1160 5.0)
(s1161 2.0)
(s1163 4.0)
(s1164 5.0)
(s1165 5.0)
(s1166 2.0)
(s1168 4.0)
(s1169 5.0)
(s1170 5.0)
(s1171 2.0)
(s1173 4.0)
(s1174 5.0)
(s1175 5.0)
(s1176 2.0)
(s1178 4.0)
(s1179 5.0)
(s1180 5.0)
(s1181 2.0)
(s1183 4.0)
(s1184 5.0)
(s1185 5.0)
(s1186 2.0)
(s1188 4.0)
(s1189 5.0)
(s1190 5.0)
(s1191 2.0)
(s1193 4.0)
(s1194 5.0)
(s1195 5.0)
(s1196 2.0)
(s1198 4.0)
(s1199 5.0)
(s1200 5.0)
(s1201 2.0)
(s1203 4.0)
(s1204 5.0)
(s1205 5.0)
(s1206 2.0)
(s1208 4.0)
(s1209 5.0)
(s1210 5.0)
(s1211 2.0)
(s1213 4.0)
(s1214 5.0)
(s1215 5.0)
(s1216 2.0)
(s1218 4.0)
(s1219 5.0)
(s1220 5.0)
(s1221 2.0)
(s1223 4.0)
(s1224 5.0)
(s1225 5.0)
(s1226 2.0)
(s1228 4.0)
(s1229 5.0)
(s1230 5.0)
(s1231 2.0)
(s1233 4.0)
(s1234 5.0)
(s1235 5.0)
(s1236 2.0)
(s1238 4.0)
(s1239 5.0)
(s1240 5.0)
(s1241 2.0)
(s1243 4.0)
(s1244 5.0)
(s1245 5.0)
(s1246 2.0)
(s1248 4.0)
(s1249 5.0)
(s1250 5.0)
(s1251 2.0)
(s1253 4.0)
(s1254 5.0)
(s1255 5.0)
(s1256 2.0)
(s1258 4.0)
(s1259 5.0)
(s1260 5.0)
(s1261 2.0)
(s1263 4.0)
(s1264 5.0)
(s1265 5.0)
(s1266 2.0)
(s1268 4.0)
(s1269 5.0)
(s1270 5.0)
(s1271 2.0)
(s1273 4.0)
(s1274 5.0)
(s1275 5.0)
(s1276 2.0)
(s1278 4.0)
(s1279 5.0)
(s1280 5.0)
(s1281 2.0)
(s1283 4.0)
(s1284 5.0)
(s1285 5.0)
(s1286 2.0)
(s1288 4.0)
(s1289 5.0)
(s1290 5.0)
(s1291 2.0)
(s1293 4.0)
(s1294 5.0)
(s1295 5.0)
(s1296 2.0)
(s1298 4.0)
(s1299 5.0)
(s1300 5.0)
(s1301 2.0)
(s1303 4.0)
(s1304 5.0)
(s1305 5.0)
(s1306 2.0)
(s1308 4.0)
(s1309 5.0)
(s1310 5.0)
(s1311 2.0)
(s1313 4.0)
(s1314 5.0)
(s1315 5.0)
(s1316 2.0)
(s1318 4.0)
(s1319 5.0)
(s1320 5.0)
(s1321 2.0)
(s1323 4.0)
(s1324 5.0)
(s1325 5.0)
(s1326 2.0)
(s1328 4.0)
(s1329 5.0)
(s1330 5.0)
(s1331 2.0)
(s1333 4.0)
(s1334 5.0)
(s1335 5.0)
(s1336 2.0)
(s1338 4.0)
(s1339 5.0)
(s1340 5.0)
(s1341 2.0)
(s1343 4.0)
(s1344 5.0)
(s1345 5.0)
(s1346 2.0)
(s1348 4.0)
(s1349 5.0)
(s1350 5.0)
(s1351 2.0)
(s1353 4.0)
(s1354 5.0)
(s1355 5.0)
(s1356 2.0)
(s1358 4.0)
(s1359 5.0)
(s1360 5.0)
(s1361 2.0)
(s1363 4.0)
(s1364 5.0)
(s1365 5.0)
(s1366 2.0)
(s1368 4.0)
(s1369 5.0)
(s1370 5.0)
(s1371 2.0)
(s1373 4.0)
(s1374 5.0)
(s1375 5.0)
(s1376 2.0)
(s1378 4.0)
(s1379 5.0)
(s1380 5.0)
(s1381 2.0)
(s1383 4.0)
(s1384 5.0)
(s1385 5.0)
(s1386 2.0)
(s1388 4.0)
(s1389 5.0)
(s1390 5.0)
(s1391 2.0)
(s1393 4.0)
(s1394 5.0)
(s1395 5.0)
(s1396 2.0)
(s1398 4.0)
(s1399 5.0)
(s1400 5.0)
(s1401 2.0)
(s1403 4.0)
(s1404 5.0)
(s1405 5.0)
(s1406 2.0)
(s1408 4.0)
(s1409 5.0)
(s1410 5.0)
(s1411 2.0)
(s1413 4.0)
(s1414 5.0)
(s1415 5.0)
(s1416 2.0)
(s1418 4.0)
(s1419 5.0)
(s1420 5.0)
(s1421 2.0)
(s1423 4.0)
(s1424 5.0)
(s1425 5.0)
(s1426 2.0)
(s1428 4.0)
(s1429 5.0)
(s1430 5.0)
(s1431 2.0)
(s1433 4.0)
(s1434 5.0)
(s1435 5.0)
(s1436 2.0)
(s1438 4.0)
(s1439 5.0)
(s1440 5.0)
(s1441 2.0)
(s1443 4.0)
(s1444 5.0)
(s1445 5.0)
(s1446 2.0)
(s1448 4.0)
(s1449 5.0)
(s1450 5.0)
(s1451 2.0)
(s1453 4.0)
(s1454 5.0)
(s1455 5.0)
(s1456 2.0)
(s1458 4.0)
(s1459 5.0)
(s1460 5.0)
(s1461 2.0)
(s1463 4.0)
(s1464 5.0)
(s1465 5.0)
(s1466 2.0)
(s1468 4.0)
(s1469 5.0)
(s1470 5.0)
(s1471 2.0)
(s1473 4.0)
(s1474 5.0)
(s1475 5.0)
(s1476 2.0)
(s1478 4.0)
(s1479 5.0)
(s1480 5.0)
(s1481 2.0)
(s1483 4.0)
(s1484 5.0)
(s1485 5.0)
(s1486 2.0)
(s1488 4.0)
(s1489 5.0)
(s1490 5.0)
(s1491 2.0)
(s1493 4.0)
(s1494 5.0)
(s1495 5.0)
(s1496 2.0)
(s1498 4.0)
(s1499 5.0)
(s1500 5.0)
(s1501 2.0)
(s1503 4.0)
(s1504 5.0)
(s1505 5.0)
(s1506 2.0)
(s1508 4.0)
(s1509 5.0)
(s1510 5.0)
(s1511 2.0)
(s1513 4.0)
(s1514 5.0)
(s1515 5.0)
(s1516 2.0)
(s1518 4.0)
(s1519 5.0)
(s1520 5.0)
(s1521 2.0)
(s1523 4.0)
(s1524 5.0)
(s1525 5.0)
(s1526 2.0)
(s1528 4.0)
(s1529 5.0)
(s1530 5.0)
(s1531 2.0)
(s1533 4.0)
(s1534 5.0)
(s1535 5.0)
(s1536 2.0)
(s1538 4.0)
(s1539 5.0)
(s1540 5.0)
(s1541 2.0)
(s1543 4.0)
(s1544 5.0)
(s1545 5.0)
(s1546 2.0)
(s1548 4.0)
(s1549 5.0)
(s1550 5.0)
(s1551 2.0)
(s1553 4.0)
(s1554 5.0)
(s1555 5.0)
(s1556 2.0)
(s1558 4.0)
(s1559 5.0)
(s1560 5.0)
(s1561 2.0)
(s1563 4.0)
(s1564 5.0)
(s1565 5.0)
(s1566 2.0)
(s1568 4.0)
(s1569 5.0)
(s1570 5.0)
(s1571 2.0)
(s1573 4.0)
(s1574 5.0)
(s1575 5.0)
(s1576 2.0)
(s1578 4.0)
(s1579 5.0)
(s1580 5.0)
(s1581 2.0)
(s1583 4.0)
(s1584 5.0)
(s1585 5.0)
(s1586 2.0)
(s1588 4.0)
(s1589 5.0)
(s1590 5.0)
(s1591 2.0)
(s1593 4.0)
(s1594 5.0)
(s1595 5.0)
(s1596 2.0)
(s1598 4.0)
(s1599 5.0)
(s1600 5.0)
(s1601 2.0)
(s1603 4.0)
(s1604 5.0)
(s1605 5.0)
(s1606 2.0)
(s1608 4.0)
(s1609 5.0)
(s1610 5.0)
(s1611 2.0)
(s1613 4.0)
(s1614 5.0)
(s1615 5.0)
(s1616 2.0)
(s1618 4.0)
(s1619 5.0)
(s1620 5.0)
(s1621 2.0)
(s1623 4.0)
(s1624 5.0)
(s1625 5.0)
(s1626 2.0)
(s1628 4.0)
(s1629 5.0)
(s1630 5.0)
(s1631 2.0)
(s1633 4.0)
(s1634 5.0)
(s1635 5.0)
(s1636 2.0)
(s1638 4.0)
(s1639 5.0)
(s1640 5.0)
(s1641 2.0)
(s1643 4.0)
(s1644 5.0)
(s1645 5.0)
(s1646 2.0)
(s1648 4.0)
(s1649 5.0)
(s1650 5.0)
(s1651 2.0)
(s1653 4.0)
(s1654 5.0)
(s1655 5.0)
(s1656 2.0)
(s1658 4.0)
(s1659 5.0)
(s1660 5.0)
(s1661 2.0)
(s1663 4.0)
(s1664 5.0)
(s1665 5.0)
(s1666 2.0)
(s1668 4.0)
(s1669 5.0)
(s1670 5.0)
(s1671 2.0)
(s1673 4.0)
(s1674 5.0)
(s1675 5.0)
(s1676 2.0)
(s1678 4.0)
(s1679 5.0)
(s1680 5.0)
(s1681 2.0)
(s1683 4.0)
(s1684 5.0)
(s1685 5.0)
(s1686 2.0)
(s1688 4.0)
(s1689 5.0)
(s1690 5.0)
(s1691 2.0)
(s1693 4.0)
(s1694 5.0)
(s1695 5.0)
(s1696 2.0)
(s1698 4.0)
(s1699 5.0)
(s1700 5.0)
(s1701 2.0)
(s1703 4.0)
(s1704 5.0)
(s1705 5.0)
(s1706 2.0)
(s1708 4.0)
(s1709 5.0)
(s1710 5.0)
(s1711 2.0)
(s1713 4.0)
(s1714 5.0)
(s1715 5.0)
(s1716 2.0)
(s1718 4.0)
(s1719 5.0)
(s1720 5.0)
(s1721 2.0)
(s1723 4.0)
(s1724 5.0)
(s1725 5.0)
(s1726 2.0)
(s1728 4.0)
(s1729 5.0)
(s1730 5.0)
(s1731 2.0)
(s1733 4.0)
(s1734 5.0)
(s1735 5.0)
(s1736 2.0)
(s1738 4.0)
(s1739 5.0)
(s1740 5.0)
(s1741 2.0)
(s1743 4.0)
(s1744 5.0)
(s1745 5.0)
(s1746 2.0)
(s1748 4.0)
(s1749 5.0)
(s1750 5.0)
(s1751 2.0)
(s1753 4.0)
(s1754 5.0)
(s1755 5.0)
(s1756 2.0)
(s1758 4.0)
(s1759 5.0)
(s1760 5.0)
(s1761 2.0)
(s1763 4.0)
(s1764 5.0)
(s1765 5.0)
(s1766 2.0)
(s1768 4.0)
(s1769 5.0)
(s1770 5.0)
(s1771 2.0)
(s1773 4.0)
(s1774 5.0)
(s1775 5.0)
(s1776 2.0)
(s1778 4.0)
(s1779 5.0)
(s1780 5.0)
(s1781 2.0)
(s1783 4.0)
(s1784 5.0)
(s1785 5.0)
(s1786 2.0)
(s1788 4.0)
(s1789 5.0)
(s1790 5.0)
(s1791 2.0)
(s1793 4.0)
(s1794 5.0)
(s1795 5.0)
(s1796 2.0)
(s1798 4.0)
(s1799 5.0)
(s1800 5.0)
(s1801 2.0)
(s1803 4.0)
(s1804 5.0)
(s1805 5.0)
(s1806 2.0)
(s1808 4.0)
(s1809 5.0)
(s1810 5.0)
(s1811 2.0)
(s1813 4.0)
(s1814 5.0)
(s1815 5.0)
(s1816 2.0)
(s1818 4.0)
(s1819 5.0)
(s1820 5.0)
(s1821 2.0)
(s1823 4.0)
(s1824 5.0)
(s1825 5.0)
(s1826 2.0)
(s1828 4.0)
(s1829 5.0)
(s1830 5.0)
(s1831 2.0)
(s1833 4.0)
(s1834 5.0)
(s1835 5.0)
(s1836 2.0)
(s1838 4.0)
(s1839 5.0)
(s1840 5.0)
(s1841 2.0)
(s1843 4.0)
(s1844 5.0)
(s1845 5.0)
(s1846 2.0)
(s1848 4.0)
(s1849 5.0)
(s1850 5.0)
(s1851 2.0)
(s1853 4.0)
(s1854 5.0)
(s1855 5.0)
(s1856 2.0)
(s1858 4.0)
(s1859 5.0)
(s1860 5.0)
(s1861 2.0)
(s1863 4.0)
(s1864 5.0)
(s1865 5.0)
(s1866 2.0)
(s1868 4.0)
(s1869 5.0)
(s1870 5.0)
(s1871 2.0)
(s1873 4.0)
(s1874 5.0)
(s1875 5.0)
(s1876 2.0)
(s1878 4.0)
(s1879 5.0)
(s1880 5.0)
(s1881 2.0)
(s1883 4.0)
(s1884 5.0)
(s1885 5.0)
(s1886 2.0)
(s1888 4.0)
(s1889 5.0)
(s1890 5.0)
(s1891 2.0)
(s1893 4.0)
(s1894 5.0)
(s1895 5.0)
(s1896 2.0)
(s1898 4.0)
(s1899 5.0)
(s1900 5.0)
(s1901 2.0)
(s1903 4.0)
(s1904 5.0)
(s1905 5.0)
(s1906 2.0)
(s1908 4.0)
(s1909 5.0)
(s1910 5.0)
(s1911 2.0)
(s1913 4.0)
(s1914 5.0)
(s1915 5.0)
(s1916 2.0)
(s1918 4.0)
(s1919 5.0)
(s1920 5.0)
(s1921 2.0)
(s1923 4.0)
(s1924 5.0)
(s1925 5.0)
(s1926 2.0)
(s1928 4.0)
(s1929 5.0)
(s1930 5.0)
(s1931 2.0)
(s1933 4.0)
(s1934 5.0)
(s1935 5.0)
(s1936 2.0)
(s1938 4.0)
(s1939 5.0)
(s1940 5.0)
(s1941 2.0)
(s1943 4.0)
(s1944 5.0)
(s1945 5.0)
(s1946 2.0)
(s1948 4.0)
(s1949 5.0)
(s1950 5.0)
(s1951 2.0)
(s1953 4.0)
(s1954 5.0)
(s1955 5.0)
(s1956 2.0)
(s1958 4.0)
(s1959 5.0)
(s1960 5.0)
(s1961 2.0)
(s1963 4.0)
(s1964 5.0)
(s1965 5.0)
(s1966 2.0)
(s1968 4.0)
(s1969 5.0)
(s1970 5.0)
(s1971 2.0)
(s1973 4.0)
(s1974 5.0)
(s1975 5.0)
(s1976 2.0)
(s1978 4.0)
(s1979 5.0)
(s1980 5.0)
(s1981 2.0)
(s1983 4.0)
(s1984 5.0)
(s1985 5.0)
(s1986 2.0)
(s1988 4.0)
(s1989 5.0)
(s1990 5.0)
(s1991 2.0)
(s1993 4.0)
(s1994 5.0)
(s1995 5.0)
(s1996 2.0)
(s1998 4.0)
(s1999 5.0)
(s2000 5.0)
(s2001 2.0)
(s2003 4.0)
(s2004 5.0)
(s2005 5.0)
(s2006 2.0)
(s2008 4.0)
(s2009 5.0)
(s2010 5.0)
(s2011 2.0)
(s2013 4.0)
(s2014 5.0)
(s2015 5.0)
(s2016 2.0)
(s2018 4.0)
(s2019 5.0)
(s2020 5.0)
(s2021 2.0)
(s2023 4.0)
(s2024 5.0)
(s2025 5.0)
(s2026 2.0)
(s2028 4.0)
(s2029 5.0)
(s2030 5.0)
(s2031 2.0)
(s2033 4.0)
(s2034 5.0)
(s2035 5.0)
(s2036 2.0)
(s2038 4.0)
(s2039 5.0)
(s2040 5.0)
(s2041 2.0)
(s2043 4.0)
(s2044 5.0)
(s2045 5.0)
(s2046 2.0)
(s2048 4.0)
(s2049 5.0)
(s2050 5.0)
(s2051 2.0)
(s2053 4.0)
(s2054 5.0)
(s2055 5.0)
(s2056 2.0)
(s2058 4.0)
(s2059 5.0)
(s2060 5.0)
(s2061 2.0)
(s2063 4.0)
(s2064 5.0)
(s2065 5.0)
(s2066 2.0)
(s2068 4.0)
(s2069 5.0)
(s2070 5.0)
(s2071 2.0)
(s2073 4.0)
(s2074 5.0)
(s2075 5.0)
(s2076 2.0)
(s2078 4.0)
(s2079 5.0)
(s2080 5.0)
(s2081 2.0)
(s2083 4.0)
(s2084 5.0)
(s2085 5.0)
(s2086 2.0)
(s2088 4.0)
(s2089 5.0)
(s2090 5.0)
(s2091 2.0)
(s2093 4.0)
(s2094 5.0)
(s2095 5.0)
(s2096 2.0)
(s2098 4.0)
(s2099 5.0)
(s2100 5.0)
(s2101 2.0)
(s2103 4.0)
(s2104 5.0)
(s2105 5.0)
(s2106 2.0)
(s2108 4.0)
(s2109 5.0)
(s2110 5.0)
(s2111 2.0)
(s2113 4.0)
(s2114 5.0)
(s2115 5.0)
(s2116 2.0)
(s2118 4.0)
(s2119 5.0)
(s2120 5.0)
(s2121 2.0)
(s2123 4.0)
(s2124 5.0)
(s2125 5.0)
(s2126 2.0)
(s2128 4.0)
(s2129 5.0)
(s2130 5.0)
(s2131 2.0)
(s2133 4.0)
(s2134 5.0)
(s2135 5.0)
(s2136 2.0)
(s2138 4.0)
(s2139 5.0)
(s2140 5.0)
(s2141 2.0)
(s2143 4.0)
(s2144 5.0)
(s2145 5.0)
(s2146 2.0)
(s2148 4.0)
(s2149 5.0)
(s2150 5.0)
(s2151 2.0)
(s2153 4.0)
(s2154 5.0)
(s2155 5.0)
(s2156 2.0)
(s2158 4.0)
(s2159 5.0)
(s2160 5.0)
(s2161 2.0)
(s2163 4.0)
(s2164 5.0)
(s2165 5.0)
(s2166 2.0)
(s2168 4.0)
(s2169 5.0)
(s2170 5.0)
(s2171 2.0)
(s2173 4.0)
(s2174 5.0)
(s2175 5.0)
(s2176 2.0)
(s2178 4.0)
(s2179 5.0)
(s2180 5.0)
(s2181 2.0)
(s2183 4.0)
(s2184 5.0)
(s2185 5.0)
(s2186 2.0)
(s2188 4.0)
(s2189 5.0)
(s2190 5.0)
(s2191 2.0)
(s2193 4.0)
(s2194 5.0)
(s2195 5.0)
(s2196 2.0)
(s2198 4.0)
(s2199 5.0)
(s2200 5.0)
(s2201 2.0)
(s2203 4.0)
(s2204 5.0)
(s2205 5.0)
(s2206 2.0)
(s2208 4.0)
(s2209 5.0)
(s2210 5.0)
(s2211 2.0)
(s2213 4.0)
(s2214 5.0)
(s2215 5.0)
(s2216 2.0)
(s2218 4.0)
(s2219 5.0)
(s2220 5.0)
(s2221 2.0)
(s2223 4.0)
(s2224 5.0)
(s2225 5.0)
(s2226 2.0)
(s2228 4.0)
(s2229 5.0)
(s2230 5.0)
(s2231 2.0)
(s2233 4.0)
(s2234 5.0)
(s2235 5.0)
(s2236 2.0)
(s2238 4.0)
(s2239 5.0)
(s2240 5.0)
(s2241 2.0)
(s2243 4.0)
(s2244 5.0)
(s2245 5.0)
(s2246 2.0)
(s2248 4.0)
(s2249 5.0)
(s2250 5.0)
(s2251 2.0)
(s2253 4.0)
(s2254 5.0)
(s2255 5.0)
(s2256 2.0)
(s2258 4.0)
(s2259 5.0)
(s2260 5.0)
(s2261 2.0)
(s2263 4.0)
(s2264 5.0)
(s2265 5.0)
(s2266 2.0)
(s2268 4.0)
(s2269 5.0)
(s2270 5.0)
(s2271 2.0)
(s2273 4.0)
(s2274 5.0)
(s2275 5.0)
(s2276 2.0)
(s2278 4.0)
(s2279 5.0)
(s2280 5.0)
(s2281 2.0)
(s2283 4.0)
(s2284 5.0)
(s2285 5.0)
(s2286 2.0)
(s2288 4.0)
(s2289 5.0)
(s2290 5.0)
(s2291 2.0)
(s2293 4.0)
(s2294 5.0)
(s2295 5.0)
(s2296 2.0)
(s2298 4.0)
(s2299 5.0)
(s2300 5.0)
(s2301 2.0)
(s2303 4.0)
(s2304 5.0)
(s2305 5.0)
(s2306 2.0)
(s2308 4.0)
(s2309 5.0)
(s2310 5.0)
(s2311 2.0)
(s2313 4.0)
(s2314 5.0)
(s2315 5.0)
(s2316 2.0)
(s2318 4.0)
(s2319 5.0)
(s2320 5.0)
(s2321 2.0)
(s2323 4.0)
(s2324 5.0)
(s2325 5.0)
(s2326 2.0)
(s2328 4.0)
(s2329 5.0)
(s2330 5.0)
(s2331 2.0)
(s2333 4.0)
(s2334 5.0)
(s2335 5.0)
(s2336 2.0)
(s2338 4.0)
(s2339 5.0)
(s2340 5.0)
(s2341 2.0)
(s2343 4.0)
(s2344 5.0)
(s2345 5.0)
(s2346 2.0)
(s2348 4.0)
(s2349 5.0)
(s2350 5.0)
(s2351 2.0)
(s2353 4.0)
(s2354 5.0)
(s2355 5.0)
(s2356 2.0)
(s2358 4.0)
(s2359 5.0)
(s2360 5.0)
(s2361 2.0)
(s2363 4.0)
(s2364 5.0)
(s2365 5.0)
(s2366 2.0)
(s2368 4.0)
(s2369 5.0)
(s2370 5.0)
(s2371 2.0)
(s2373 4.0)
(s2374 5.0)
(s2375 5.0)
(s2376 2.0)
(s2378 4.0)
(s2379 5.0)
(s2380 5.0)
(s2381 2.0)
(s2383 4.0)
(s2384 5.0)
(s2385 5.0)
(s2386 2.0)
(s2388 4.0)
(s2389 5.0)
(s2390 5.0)
(s2391 2.0)
(s2393 4.0)
(s2394 5.0)
(s2395 5.0)
(s2396 2.0)
(s2398 4.0)
(s2399 5.0)
(s2400 5.0)
(s2401 2.0)
(s2403 4.0)
(s2404 5.0)
(s2405 5.0)
(s2406 2.0)
(s2408 4.0)
(s2409 5.0)
(s2410 5.0)
(s2411 2.0)
(s2413 4.0)
(s2414 5.0)
(s2415 5.0)
(s2416 2.0)
(s2418 4.0)
(s2419 5.0)
(s2420 5.0)
(s2421 2.0)
(s2423 4.0)
(s2424 5.0)
(s2425 5.0)
(s2426 2.0)
(s2428 4.0)
(s2429 5.0)
(s2430 5.0)
(s2431 2.0)
(s2433 4.0)
(s2434 5.0)
(s2435 5.0)
(s2436 2.0)
(s2438 4.0)
(s2439 5.0)
(s2440 5.0)
(s2441 2.0)
(s2443 4.0)
(s2444 5.0)
(s2445 5.0)
(s2446 2.0)
(s2448 4.0)
(s2449 5.0)
(s2450 5.0)
(s2451 2.0)
(s2453 4.0)
(s2454 5.0)
(s2455 5.0)
(s2456 2.0)
(s2458 4.0)
(s2459 5.0)
(s2460 5.0)
(s2461 2.0)
(s2463 4.0)
(s2464 5.0)
(s2465 5.0)
(s2466 2.0)
(s2468 4.0)
(s2469 5.0)
(s2470 5.0)
(s2471 2.0)
(s2473 4.0)
(s2474 5.0)
(s2475 5.0)
(s2476 2.0)
(s2478 4.0)
(s2479 5.0)
(s2480 5.0)
(s2481 2.0)
(s2483 4.0)
(s2484 5.0)
(s2485 5.0)
(s2486 2.0)
(s2488 4.0)
(s2489 5.0)
(s2490 5.0)
(s2491 2.0)
(s2493 4.0)
(s2494 5.0)
(s2495 5.0)
(s2496 2.0)
(s2498 4.0)
(s2499 5.0)
(s2500 5.0)
(s2501 2.0)
(s2503 4.0)
(s2504 5.0)
(s2505 5.0)
(s2506 2.0)
(s2508 4.0)
(s2509 5.0)
(s2510 5.0)
(s2511 2.0)
(s2513 4.0)
(s2514 5.0)
(s2515 5.0)
(s2516 2.0)
(s2518 4.0)
(s2519 5.0)
(s2520 5.0)
(s2521 2.0)
(s2523 4.0)
(s2524 5.0)
(s2525 5.0)
(s2526 2.0)
(s2528 4.0)
(s2529 5.0)
(s2530 5.0)
(s2531 2.0)
(s2533 4.0)
(s2534 5.0)
(s2535 5.0)
(s2536 2.0)
(s2538 4.0)
(s2539 5.0)
(s2540 5.0)
(s2541 2.0)
(s2543 4.0)
(s2544 5.0)
(s2545 5.0)
(s2546 2.0)
(s2548 4.0)
(s2549 5.0)
(s2550 5.0)
(s2551 2.0)
(s2553 4.0)
(s2554 5.0)
(s2555 5.0)
(s2556 2.0)
(s2558 4.0)
(s2559 5.0)
(s2560 5.0)
(s2561 2.0)
(s2563 4.0)
(s2564 5.0)
(s2565 5.0)
(s2566 2.0)
(s2568 4.0)
(s2569 5.0)
(s2570 5.0)
(s2571 2.0)
(s2573 4.0)
(s2574 5.0)
(s2575 5.0)
(s2576 2.0)
(s2578 4.0)
(s2579 5.0)
(s2580 5.0)
(s2581 2.0)
(s2583 4.0)
(s2584 5.0)
(s2585 5.0)
(s2586 2.0)
(s2588 4.0)
(s2589 5.0)
(s2590 5.0)
(s2591 2.0)
(s2593 4.0)
(s2594 5.0)
(s2595 5.0)
(s2596 2.0)
(s2598 4.0)
(s2599 5.0)
(s2600 5.0)
(s2601 2.0)
(s2603 4.0)
(s2604 5.0)
(s2605 5.0)
(s2606 2.0)
(s2608 4.0)
(s2609 5.0)
(s2610 5.0)
(s2611 2.0)
(s2613 4.0)
(s2614 5.0)
(s2615 5.0)
(s2616 2.0)
(s2618 4.0)
(s2619 5.0)
(s2620 5.0)
(s2621 2.0)
(s2623 4.0)
(s2624 5.0)
(s2625 5.0)
(s2626 2.0)
(s2628 4.0)
(s2629 5.0)
(s2630 5.0)
(s2631 2.0)
(s2633 4.0)
(s2634 5.0)
(s2635 5.0)
(s2636 2.0)
(s2638 4.0)
(s2639 5.0)
(s2640 5.0)
(s2641 2.0)
(s2643 4.0)
(s2644 5.0)
(s2645 5.0)
(s2646 2.0)
(s2648 4.0)
(s2649 5.0)
(s2650 5.0)
(s2651 2.0)
(s2653 4.0)
(s2654 5.0)
(s2655 5.0)
(s2656 2.0)
(s2658 4.0)
(s2659 5.0)
(s2660 5.0)
(s2661 2.0)
(s2663 4.0)
(s2664 5.0)
(s2665 5.0)
(s2666 2.0)
(s2668 4.0)
(s2669 5.0)
(s2670 5.0)
(s2671 2.0)
(s2673 4.0)
(s2674 5.0)
(s2675 5.0)
(s2676 2.0)
(s2678 4.0)
(s2679 5.0)
(s2680 5.0)
(s2681 2.0)
(s2683 4.0)
(s2684 5.0)
(s2685 5.0)
(s2686 2.0)
(s2688 4.0)
(s2689 5.0)
(s2690 5.0)
(s2691 2.0)
(s2693 4.0)
(s2694 5.0)
(s2695 5.0)
(s2696 2.0)
(s2698 4.0)
(s2699 5.0)
(s2700 5.0)
(s2701 2.0)
(s2703 4.0)
(s2704 5.0)
(s2705 5.0)
(s2706 2.0)
(s2708 4.0)
(s2709 5.0)
(s2710 5.0)
(s2711 2.0)
(s2713 4.0)
(s2714 5.0)
(s2715 5.0)
(s2716 2.0)
(s2718 4.0)
(s2719 5.0)
(s2720 5.0)
(s2721 2.0)
(s2723 4.0)
(s2724 5.0)
(s2725 5.0)
(s2726 2.0)
(s2728 4.0)
(s2729 5.0)
(s2730 5.0)
(s2731 2.0)
(s2733 4.0)
(s2734 5.0)
(s2735 5.0)
(s2736 2.0)
(s2738 4.0)
(s2739 5.0)
(s2740 5.0)
(s2741 2.0)
(s2743 4.0)
(s2744 5.0)
(s2745 5.0)
(s2746 2.0)
(s2748 4.0)
(s2749 5.0)
(s2750 5.0)
(s2751 2.0)
(s2753 4.0)
(s2754 5.0)
(s2755 5.0)
(s2756 2.0)
(s2758 4.0)
(s2759 5.0)
(s2760 5.0)
(s2761 2.0)
(s2763 4.0)
(s2764 5.0)
(s2765 5.0)
(s2766 2.0)
(s2768 4.0)
(s2769 5.0)
(s2770 5.0)
(s2771 2.0)
(s2773 4.0)
(s2774 5.0)
(s2775 5.0)
(s2776 2.0)
(s2778 4.0)
(s2779 5.0)
(s2780 5.0)
(s2781 2.0)
(s2783 4.0)
(s2784 5.0)
(s2785 5.0)
(s2786 2.0)
(s2788 4.0)
(s2789 5.0)
(s2790 5.0)
(s2791 2.0)
(s2793 4.0)
(s2794 5.0)
(s2795 5.0)
(s2796 2.0)
(s2798 4.0)
(s2799 5.0)
(s2800 5.0)
(s2801 2.0)
(s2803 4.0)
(s2804 5.0)
(s2805 5.0)
(s2806 2.0)
(s2808 4.0)
(s2809 5.0)
(s2810 5.0)
(s2811 2.0)
(s2813 4.0)
(s2814 5.0)
(s2815 5.0)
(s2816 2.0)
(s2818 4.0)
(s2819 5.0)
(s2820 5.0)
(s2821 2.0)
(s2823 4.0)
(s2824 5.0)
(s2825 5.0)
(s2826 2.0)
(s2828 4.0)
(s2829 5.0)
(s2830 5.0)
(s2831 2.0)
(s2833 4.0)
(s2834 5.0)
(s2835 5.0)
(s2836 2.0)
(s2838 4.0)
(s2839 5.0)
(s2840 5.0)
(s2841 2.0)
(s2843 4.0)
(s2844 5.0)
(s2845 5.0)
(s2846 2.0)
(s2848 4.0)
(s2849 5.0)
(s2850 5.0)
(s2851 2.0)
(s2853 4.0)
(s2854 5.0)
(s2855 5.0)
(s2856 2.0)
(s2858 4.0)
(s2859 5.0)
(s2860 5.0)
(s2861 2.0)
(s2863 4.0)
(s2864 5.0)
(s2865 5.0)
(s2866 2.0)
(s2868 4.0)
(s2869 5.0)
(s2870 5.0)
(s2871 2.0)
(s2873 4.0)
(s2874 5.0)
(s2875 5.0)
(s2876 2.0)
(s2878 4.0)
(s2879 5.0)
(s2880 5.0)
(s2881 2.0)
(s2883 4.0)
(s2884 5.0)
(s2885 5.0)
(s2886 2.0)
(s2888 4.0)
(s2889 5.0)
(s2890 5.0)
(s2891 2.0)
(s2893 4.0)
(s2894 5.0)
(s2895 5.0)
(s2896 2.0)
(s2898 4.0)
(s2899 5.0)
(s2900 5.0)
(s2901 2.0)
(s2903 4.0)
(s2904 5.0)
(s2905 5.0)
(s2906 2.0)
(s2908 4.0)
(s2909 5.0)
(s2910 5.0)
(s2911 2.0)
(s2913 4.0)
(s2914 5.0)
(s2915 5.0)
(s2916 2.0)
(s2918 4.0)
(s2919 5.0)
(s2920 5.0)
(s2921 2.0)
(s2923 4.0)
(s2924 5.0)
(s2925 5.0)
(s2926 2.0)
(s2928 4.0)
(s2929 5.0)
(s2930 5.0)
(s2931 2.0)
(s2933 4.0)
(s2934 5.0)
(s2935 5.0)
(s2936 2.0)
(s2938 4.0)
(s2939 5.0)
(s2940 5.0)
(s2941 2.0)
(s2943 4.0)
(s2944 5.0)
(s2945 5.0)
(s2946 2.0)
(s2948 4.0)
(s2949 5.0)
(s2950 5.0)
(s2951 2.0)
(s2953 4.0)
(s2954 5.0)
(s2955 5.0)
(s2956 2.0)
(s2958 4.0)
(s2959 5.0)
(s2960 5.0)
(s2961 2.0)
(s2963 4.0)
(s2964 5.0)
(s2965 5.0)
(s2966 2.0)
(s2968 4.0)
(s2969 5.0)
(s2970 5.0)
(s2971 2.0)
(s2973 4.0)
(s2974 5.0)
(s2975 5.0)
(s2976 2.0)
(s2978 4.0)
(s2979 5.0)
(s2980 5.0)
(s2981 2.0)
(s2983 4.0)
(s2984 5.0)
(s2985 5.0)
(s2986 2.0)
(s2988 4.0)
(s2989 5.0)
(s2990 5.0)
(s2991 2.0)
(s2993 4.0)
(s2994 5.0)
(s2995 5.0)
(s2996 2.0)
(s2998 4.0)
(s2999 5.0)
(s3000 5.0)
(s3001 2.0)
(s3003 4.0)
(s3004 5.0)
(s3005 5.0)
(s3006 2.0)
(s3008 4.0)
(s3009 5.0)
(s3010 5.0)
(s3011 2.0)
(s3013 4.0)
(s3014 5.0)
(s3015 5.0)
(s3016 2.0)
(s3018 4.0)
(s3019 5.0)
(s3020 5.0)
(s3021 2.0)
(s3023 4.0)
(s3024 5.0)
(s3025 5.0)
(s3026 2.0)
(s3028 4.0)
(s3029 5.0)
(s3030 5.0)
(s3031 2.0)
(s3033 4.0)
(s3034 5.0)
(s3035 5.0)
(s3036 2.0)
(s3038 4.0)
(s3039 5.0)
(s3040 5.0)
(s3041 2.0)
(s3043 4.0)
(s3044 5.0)
(s3045 5.0)
(s3046 2.0)
(s3048 4.0)
(s3049 5.0)
(s3050 5.0)
(s3051 2.0)
(s3053 4.0)
(s3054 5.0)
(s3055 5.0)
(s3056 2.0)
(s3058 4.0)
(s3059 5.0)
(s3060 5.0)
(s3061 2.0)
(s3063 4.0)
(s3064 5.0)
(s3065 5.0)
(s3066 2.0)
(s3068 4.0)
(s3069 5.0)
(s3070 5.0)
(s3071 2.0)
(s3073 4.0)
(s3074 5.0)
(s3075 5.0)
(s3076 2.0)
(s3078 4.0)
(s3079 5.0)
(s3080 5.0)
(s3081 2.0)
(s3083 4.0)
(s3084 5.0)
(s3085 5.0)
(s3086 2.0)
(s3088 4.0)
(s3089 5.0)
(s3090 5.0)
(s3091 2.0)
(s3093 4.0)
(s3094 5.0)
(s3095 5.0)
(s3096 2.0)
(s3098 4.0)
(s3099 5.0)
(s3100 5.0)
(s3101 2.0)
(s3103 4.0)
(s3104 5.0)
(s3105 5.0)
(s3106 2.0)
(s3108 4.0)
(s3109 5.0)
(s3110 5.0)
(s3111 2.0)
(s3113 4.0)
(s3114 5.0)
(s3115 5.0)
(s3116 2.0)
(s3118 4.0)
(s3119 5.0)
(s3120 5.0)
(s3121 2.0)
(s3123 4.0)
(s3124 5.0)
(s3125 5.0)
(s3126 2.0)
(s3128 4.0)
(s3129 5.0)
(s3130 5.0)
(s3131 2.0)
(s3133 4.0)
(s3134 5.0)
(s3135 5.0)
(s3136 2.0)
(s3138 4.0)
(s3139 5.0)
(s3140 5.0)
(s3141 2.0)
(s3143 4.0)
(s3144 5.0)
(s3145 5.0)
(s3146 2.0)
(s3148 4.0)
(s3149 5.0)
(s3150 5.0)
(s3151 2.0)
(s3153 4.0)
(s3154 5.0)
(s3155 5.0)
(s3156 2.0)
(s3158 4.0)
(s3159 5.0)
(s3160 5.0)
(s3161 2.0)
(s3163 4.0)
(s3164 5.0)
(s3165 5.0)
(s3166 2.0)
(s3168 4.0)
(s3169 5.0)
(s3170 5.0)
(s3171 2.0)
(s3173 4.0)
(s3174 5.0)
(s3175 5.0)
(s3176 2.0)
(s3178 4.0)
(s3179 5.0)
(s3180 5.0)
(s3181 2.0)
(s3183 4.0)
(s3184 5.0)
(s3185 5.0)
(s3186 2.0)
(s3188 4.0)
(s3189 5.0)
(s3190 5.0)
(s3191 2.0)
(s3193 4.0)
(s3194 5.0)
(s3195 5.0)
(s3196 2.0)
(s3198 4.0)
(s3199 5.0)
(s3200 5.0)
(s3201 2.0)
(s3203 4.0)
(s3204 5.0)
(s3205 5.0)
(s3206 2.0)
(s3208 4.0)
(s3209 5.0)
(s3210 5.0)
(s3211 2.0)
(s3213 4.0)
(s3214 5.0)
(s3215 5.0)
(s3216 2.0)
(s3218 4.0)
(s3219 5.0)
(s3220 5.0)
(s3221 2.0)
(s3223 4.0)
(s3224 5.0)
(s3225 5.0)
(s3226 2.0)
(s3228 4.0)
(s3229 5.0)
(s3230 5.0)
(s3231 2.0)
(s3233 4.0)
(s3234 5.0)
(s3235 5.0)
(s3236 2.0)
(s3238 4.0)
(s3239 5.0)
(s3240 5.0)
(s3241 2.0)
(s3243 4.0)
(s3244 5.0)
(s3245 5.0)
(s3246 timeout
2.0 org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20080 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20071 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 44162ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 44207ms
[2024-05-23 23:34:17] [INFO ] Invariant cache hit.
[2024-05-23 23:34:18] [INFO ] Implicit Places using invariants in 845 ms returned []
[2024-05-23 23:34:18] [INFO ] Invariant cache hit.
[2024-05-23 23:34:21] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2024-05-23 23:34:21] [INFO ] Implicit Places using invariants and state equation in 3596 ms returned []
Implicit Place search using SMT with State Equation took 4443 ms to find 0 implicit places.
[2024-05-23 23:34:22] [INFO ] Redundant transitions in 627 ms returned []
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:34:22] [INFO ] Invariant cache hit.
[2024-05-23 23:34:22] [INFO ] State equation strengthened by 1000 read => feed constraints.
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30084 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Error getting values : (error "Error writing to Z3 solver: java.io.IOException: Broken pipe")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30072 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 64052ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 64098ms
Finished structural reductions in SI_LTL mode , in 1 iterations and 113924 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Treatment of property JoinFreeModules-PT-1000-LTLCardinality-11 finished in 391497 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202405141337/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(X(F((p0||G(p1)))))'
Support contains 2 out of 5000 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 212 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:35:26] [INFO ] Invariant cache hit.
[2024-05-23 23:35:26] [INFO ] State equation strengthened by 1000 read => feed constraints.
Error getting values : (error "ParserException while parsing response: ((s0 5.0)
(s1 2.0)
(s3 4.0)
(s4 5.0)
(s5 5.0)
(s6 2.0)
(s8 4.0)
(s9 5.0)
(s10 5.0)
(s11 2.0)
(s13 4.0)
(s14 5.0)
(s15 5.0)
(s16 2.0)
(s18 4.0)
(s19 5.0)
(s20 5.0)
(s21 2.0)
(s23 4.0)
(s24 5.0)
(s25 5.0)
(s26 2.0)
(s28 4.0)
(s29 5.0)
(s30 5.0)
(s31 2.0)
(s33 4.0)
(s34 5.0)
(s35 5.0)
(s36 2.0)
(s38 4.0)
(s39 5.0)
(s40 5.0)
(s41 2.0)
(s43 4.0)
(s44 5.0)
(s45 5.0)
(s46 2.0)
(s48 4.0)
(s49 5.0)
(s50 5.0)
(s51 2.0)
(s53 4.0)
(s54 5.0)
(s55 5.0)
(s56 2.0)
(s58 4.0)
(s59 5.0)
(s60 5.0)
(s61 2.0)
(s63 4.0)
(s64 5.0)
(s65 5.0)
(s66 2.0)
(s68 4.0)
(s69 5.0)
(s70 5.0)
(s71 2.0)
(s73 4.0)
(s74 5.0)
(s75 5.0)
(s76 2.0)
(s78 4.0)
(s79 5.0)
(s80 5.0)
(s81 2.0)
(s83 4.0)
(s84 5.0)
(s85 5.0)
(s86 2.0)
(s88 4.0)
(s89 5.0)
(s90 5.0)
(s91 2.0)
(s93 4.0)
(s94 5.0)
(s95 5.0)
(s96 2.0)
(s98 4.0)
(s99 5.0)
(s100 5.0)
(s101 2.0)
(s103 4.0)
(s104 5.0)
(s105 5.0)
(s106 2.0)
(s108 4.0)
(s109 5.0)
(s110 5.0)
(s111 2.0)
(s113 4.0)
(s114 5.0)
(s115 5.0)
(s116 2.0)
(s118 4.0)
(s119 5.0)
(s120 5.0)
(s121 2.0)
(s123 4.0)
(s124 5.0)
(s125 5.0)
(s126 2.0)
(s128 4.0)
(s129 5.0)
(s130 5.0)
(s131 2.0)
(s133 4.0)
(s134 5.0)
(s135 5.0)
(s136 2.0)
(s138 4.0)
(s139 5.0)
(s140 5.0)
(s141 2.0)
(s143 4.0)
(s144 5.0)
(s145 5.0)
(s146 2.0)
(s148 4.0)
(s149 5.0)
(s150 5.0)
(s151 2.0)
(s153 4.0)
(s154 5.0)
(s155 5.0)
(s156 2.0)
(s158 4.0)
(s159 5.0)
(s160 5.0)
(s161 2.0)
(s163 4.0)
(s164 5.0)
(s165 5.0)
(s166 2.0)
(s168 4.0)
(s169 5.0)
(s170 5.0)
(s171 2.0)
(s173 4.0)
(s174 5.0)
(s175 5.0)
(s176 2.0)
(s178 4.0)
(s179 5.0)
(s180 5.0)
(s181 2.0)
(s183 4.0)
(s184 5.0)
(s185 5.0)
(s186 2.0)
(s188 4.0)
(s189 5.0)
(s190 5.0)
(s191 2.0)
(s193 4.0)
(s194 5.0)
(s195 5.0)
(s196 2.0)
(s198 4.0)
(s199 5.0)
(s200 5.0)
(s201 2.0)
(s203 4.0)
(s204 5.0)
(s205 5.0)
(s206 2.0)
(s208 4.0)
(s209 5.0)
(s210 5.0)
(s211 2.0)
(s213 4.0)
(s214 5.0)
(s215 5.0)
(s216 2.0)
(s218 4.0)
(s219 5.0)
(s220 5.0)
(s221 2.0)
(s223 4.0)
(s224 5.0)
(s225 5.0)
(s226 2.0)
(s228 4.0)
(s229 5.0)
(s230 5.0)
(s231 2.0)
(s233 4.0)
(s234 5.0)
(s235 5.0)
(s236 2.0)
(s238 4.0)
(s239 5.0)
(s240 5.0)
(s241 2.0)
(s243 4.0)
(s244 5.0)
(s245 5.0)
(s246 2.0)
(s248 4.0)
(s249 5.0)
(s250 5.0)
(s251 2.0)
(s253 4.0)
(s254 5.0)
(s255 5.0)
(s256 2.0)
(s258 4.0)
(s259 5.0)
(s260 5.0)
(s261 2.0)
(s263 4.0)
(s264 5.0)
(s265 5.0)
(s266 2.0)
(s268 4.0)
(s269 5.0)
(s270 5.0)
(s271 2.0)
(s273 4.0)
(s274 5.0)
(s275 5.0)
(s276 2.0)
(s278 4.0)
(s279 5.0)
(s280 5.0)
(s281 2.0)
(s283 4.0)
(s284 5.0)
(s285 5.0)
(s286 2.0)
(s288 4.0)
(s289 5.0)
(s290 5.0)
(s291 2.0)
(s293 4.0)
(s294 5.0)
(s295 5.0)
(s296 2.0)
(s298 4.0)
(s299 5.0)
(s300 5.0)
(s301 2.0)
(s303 4.0)
(s304 5.0)
(s305 5.0)
(s306 2.0)
(s308 4.0)
(s309 5.0)
(s310 5.0)
(s311 2.0)
(s313 4.0)
(s314 5.0)
(s315 5.0)
(s316 2.0)
(s318 4.0)
(s319 5.0)
(s320 5.0)
(s321 2.0)
(s323 4.0)
(s324 5.0)
(s325 5.0)
(s326 2.0)
(s328 4.0)
(s329 5.0)
(s330 5.0)
(s331 2.0)
(s333 4.0)
(s334 5.0)
(s335 5.0)
(s336 2.0)
(s338 4.0)
(s339 5.0)
(s340 5.0)
(s341 2.0)
(s343 4.0)
(s344 5.0)
(s345 5.0)
(s346 2.0)
(s348 4.0)
(s349 5.0)
(s350 5.0)
(s351 2.0)
(s353 4.0)
(s354 5.0)
(s355 5.0)
(s356 2.0)
(s358 4.0)
(s359 5.0)
(s360 5.0)
(s361 2.0)
(s363 4.0)
(s364 5.0)
(s365 5.0)
(s366 2.0)
(s368 4.0)
(s369 5.0)
(s370 5.0)
(s371 2.0)
(s373 4.0)
(s374 5.0)
(s375 5.0)
(s376 2.0)
(s378 4.0)
(s379 5.0)
(s380 5.0)
(s381 2.0)
(s383 4.0)
(s384 5.0)
(s385 5.0)
(s386 2.0)
(s388 4.0)
(s389 5.0)
(s390 5.0)
(s391 2.0)
(s393 4.0)
(s394 5.0)
(s395 5.0)
(s396 2.0)
(s398 4.0)
(s399 5.0)
(s400 5.0)
(s401 2.0)
(s403 4.0)
(s404 5.0)
(s405 5.0)
(s406 2.0)
(s408 4.0)
(s409 5.0)
(s410 5.0)
(s411 2.0)
(s413 4.0)
(s414 5.0)
(s415 5.0)
(s416 2.0)
(s418 4.0)
(s419 5.0)
(s420 5.0)
(s421 2.0)
(s423 4.0)
(s424 5.0)
(s425 5.0)
(s426 2.0)
(s428 4.0)
(s429 5.0)
(s430 5.0)
(s431 2.0)
(s433 4.0)
(s434 5.0)
(s435 5.0)
(s436 2.0)
(s438 4.0)
(s439 5.0)
(s440 5.0)
(s441 2.0)
(s443 4.0)
(s444 5.0)
(s445 5.0)
(s446 2.0)
(s448 4.0)
(s449 5.0)
(s450 5.0)
(s451 2.0)
(s453 4.0)
(s454 5.0)
(s455 5.0)
(s456 2.0)
(s458 4.0)
(s459 5.0)
(s460 5.0)
(s461 2.0)
(s463 4.0)
(s464 5.0)
(s465 5.0)
(s466 2.0)
(s468 4.0)
(s469 5.0)
(s470 5.0)
(s471 2.0)
(s473 4.0)
(s474 5.0)
(s475 5.0)
(s476 2.0)
(s478 4.0)
(s479 5.0)
(s480 5.0)
(s481 2.0)
(s483 4.0)
(s484 5.0)
(s485 5.0)
(s486 2.0)
(s488 4.0)
(s489 5.0)
(s490 5.0)
(s491 2.0)
(s493 4.0)
(s494 5.0)
(s495 5.0)
(s496 2.0)
(s498 4.0)
(s499 5.0)
(s500 5.0)
(s501 2.0)
(s503 4.0)
(s504 5.0)
(s505 5.0)
(s506 2.0)
(s508 4.0)
(s509 5.0)
(s510 5.0)
(s511 2.0)
(s513 4.0)
(s514 5.0)
(s515 5.0)
(s516 2.0)
(s518 4.0)
(s519 5.0)
(s520 5.0)
(s521 2.0)
(s523 4.0)
(s524 5.0)
(s525 5.0)
(s526 2.0)
(s528 4.0)
(s529 5.0)
(s530 5.0)
(s531 2.0)
(s533 4.0)
(s534 5.0)
(s535 5.0)
(s536 2.0)
(s538 4.0)
(s539 5.0)
(s540 5.0)
(s541 2.0)
(s543 4.0)
(s544 5.0)
(s545 5.0)
(s546 2.0)
(s548 4.0)
(s549 5.0)
(s550 5.0)
(s551 2.0)
(s553 4.0)
(s554 5.0)
(s555 5.0)
(s556 2.0)
(s558 4.0)
(s559 5.0)
(s560 5.0)
(s561 2.0)
(s563 4.0)
(s564 5.0)
(s565 5.0)
(s566 2.0)
(s568 4.0)
(s569 5.0)
(s570 5.0)
(s571 2.0)
(s573 4.0)
(s574 5.0)
(s575 5.0)
(s576 2.0)
(s578 4.0)
(s579 5.0)
(s580 5.0)
(s581 2.0)
(s583 4.0)
(s584 5.0)
(s585 5.0)
(s586 2.0)
(s588 4.0)
(s589 5.0)
(s590 5.0)
(s591 2.0)
(s593 4.0)
(s594 5.0)
(s595 5.0)
(s596 2.0)
(s598 4.0)
(s599 5.0)
(s600 5.0)
(s601 2.0)
(s603 4.0)
(s604 5.0)
(s605 5.0)
(s606 2.0)
(s608 4.0)
(s609 5.0)
(s610 5.0)
(s611 2.0)
(s613 4.0)
(s614 5.0)
(s615 5.0)
(s616 2.0)
(s618 4.0)
(s619 5.0)
(s620 5.0)
(s621 2.0)
(s623 4.0)
(s624 5.0)
(s625 5.0)
(s626 2.0)
(s628 4.0)
(s629 5.0)
(s630 5.0)
(s631 2.0)
(s633 4.0)
(s634 5.0)
(s635 5.0)
(s636 2.0)
(s638 4.0)
(s639 5.0)
(s640 5.0)
(s641 2.0)
(s643 4.0)
(s644 5.0)
(s645 5.0)
(s646 2.0)
(s648 4.0)
(s649 5.0)
(s650 5.0)
(s651 2.0)
(s653 4.0)
(s654 5.0)
(s655 5.0)
(s656 2.0)
(s658 4.0)
(s659 5.0)
(s660 5.0)
(s661 2.0)
(s663 4.0)
(s664 5.0)
(s665 5.0)
(s666 2.0)
(s668 4.0)
(s669 5.0)
(s670 5.0)
(s671 2.0)
(s673 4.0)
(s674 5.0)
(s675 5.0)
(s676 2.0)
(s678 4.0)
(s679 5.0)
(s680 5.0)
(s681 2.0)
(s683 4.0)
(s684 5.0)
(s685 5.0)
(s686 2.0)
(s688 4.0)
(s689 5.0)
(s690 5.0)
(s691 2.0)
(s693 4.0)
(s694 5.0)
(s695 5.0)
(s696 2.0)
(s698 4.0)
(s699 5.0)
(s700 5.0)
(s701 2.0)
(s703 4.0)
(s704 5.0)
(s705 5.0)
(s706 2.0)
(s708 4.0)
(s709 5.0)
(s710 5.0)
(s711 2.0)
(s713 4.0)
(s714 5.0)
(s715 5.0)
(s716 2.0)
(s718 4.0)
(s719 5.0)
(s720 5.0)
(s721 2.0)
(s723 4.0)
(s724 5.0)
(s725 5.0)
(s726 2.0)
(s728 4.0)
(s729 5.0)
(s730 5.0)
(s731 2.0)
(s733 4.0)
(s734 5.0)
(s735 5.0)
(s736 2.0)
(s738 4.0)
(s739 5.0)
(s740 5.0)
(s741 2.0)
(s743 4.0)
(s744 5.0)
(s745 5.0)
(s746 2.0)
(s748 4.0)
(s749 5.0)
(s750 5.0)
(s751 2.0)
(s753 4.0)
(s754 5.0)
(s755 5.0)
(s756 2.0)
(s758 4.0)
(s759 5.0)
(s760 5.0)
(s761 2.0)
(s763 4.0)
(s764 5.0)
(s765 5.0)
(s766 2.0)
(s768 4.0)
(s769 5.0)
(s770 5.0)
(s771 2.0)
(s773 4.0)
(s774 5.0)
(s775 5.0)
(s776 2.0)
(s778 4.0)
(s779 5.0)
(s780 5.0)
(s781 2.0)
(s783 4.0)
(s784 5.0)
(s785 5.0)
(s786 2.0)
(s788 4.0)
(s789 5.0)
(s790 5.0)
(s791 2.0)
(s793 4.0)
(s794 5.0)
(s795 5.0)
(s796 2.0)
(s798 4.0)
(s799 5.0)
(s800 5.0)
(s801 2.0)
(s803 4.0)
(s804 5.0)
(s805 5.0)
(s806 2.0)
(s808 4.0)
(s809 5.0)
(s810 5.0)
(s811 2.0)
(s813 4.0)
(s814 5.0)
(s815 5.0)
(s816 2.0)
(s818 4.0)
(s819 5.0)
(s820 5.0)
(s821 2.0)
(s823 4.0)
(s824 5.0)
(s825 5.0)
(s826 2.0)
(s828 4.0)
(s829 5.0)
(s830 5.0)
(s831 2.0)
(s833 4.0)
(s834 5.0)
(s835 5.0)
(s836 2.0)
(s838 4.0)
(s839 5.0)
(s840 5.0)
(s841 2.0)
(s843 4.0)
(s844 5.0)
(s845 5.0)
(s846 2.0)
(s848 4.0)
(s849 5.0)
(s850 5.0)
(s851 2.0)
(s853 4.0)
(s854 5.0)
(s855 5.0)
(s856 2.0)
(s858 4.0)
(s859 5.0)
(s860 5.0)
(s861 2.0)
(s863 4.0)
(s864 5.0)
(s865 5.0)
(s866 2.0)
(s868 4.0)
(s869 5.0)
(s870 5.0)
(s871 2.0)
(s873 4.0)
(s874 5.0)
(s875 5.0)
(s876 2.0)
(s878 4.0)
(s879 5.0)
(s880 5.0)
(s881 2.0)
(s883 4.0)
(s884 5.0)
(s885 5.0)
(s886 2.0)
(s888 4.0)
(s889 5.0)
(s890 5.0)
(s891 2.0)
(s893 4.0)
(s894 5.0)
(s895 5.0)
(s896 2.0)
(s898 4.0)
(s899 5.0)
(s900 5.0)
(s901 2.0)
(s903 4.0)
(s904 5.0)
(s905 5.0)
(s906 2.0)
(s908 4.0)
(s909 5.0)
(s910 5.0)
(s911 2.0)
(s913 4.0)
(s914 5.0)
(s915 5.0)
(s916 2.0)
(s918 4.0)
(s919 5.0)
(s920 5.0)
(s921 2.0)
(s923 4.0)
(s924 5.0)
(s925 5.0)
(s926 2.0)
(s928 4.0)
(s929 5.0)
(s930 5.0)
(s931 2.0)
(s933 4.0)
(s934 5.0)
(s935 5.0)
(s936 2.0)
(s938 4.0)
(s939 5.0)
(s940 5.0)
(s941 2.0)
(s943 4.0)
(s944 5.0)
(s945 5.0)
(s946 2.0)
(s948 4.0)
(s949 5.0)
(s950 5.0)
(s951 2.0)
(s953 4.0)
(s954 5.0)
(s955 5.0)
(s956 2.0)
(s958 4.0)
(s959 5.0)
(s960 5.0)
(s961 2.0)
(s963 4.0)
(s964 5.0)
(s965 5.0)
(s966 2.0)
(s968 4.0)
(s969 5.0)
(s970 5.0)
(s971 2.0)
(s973 4.0)
(s974 5.0)
(s975 5.0)
(s976 2.0)
(s978 4.0)
(s979 5.0)
(s980 5.0)
(s981 2.0)
(s983 4.0)
(s984 5.0)
(s985 5.0)
(s986 2.0)
(s988 4.0)
(s989 5.0)
(s990 5.0)
(s991 2.0)
(s993 4.0)
(s994 5.0)
(s995 5.0)
(s996 2.0)
(s998 4.0)
(s999 5.0)
(s1000 5.0)
(s1001 2.0)
(s1003 4.0)
(s1004 5.0)
(s1005 5.0)
(s1006 2.0)
(s1008 4.0)
(s1009 5.0)
(s1010 5.0)
(s1011 2.0)
(s1013 4.0)
(s1014 5.0)
(s1015 5.0)
(s1016 2.0)
(s1018 4.0)
(s1019 5.0)
(s1020 5.0)
(s1021 2.0)
(s1023 4.0)
(s1024 5.0)
(s1025 5.0)
(s1026 2.0)
(s1028 4.0)
(s1029 5.0)
(s1030 5.0)
(s1031 2.0)
(s1033 4.0)
(s1034 5.0)
(s1035 5.0)
(s1036 2.0)
(s1038 4.0)
(s1039 5.0)
(s1040 5.0)
(s1041 2.0)
(s1043 4.0)
(s1044 5.0)
(s1045 5.0)
(s1046 2.0)
(s1048 4.0)
(s1049 5.0)
(s1050 5.0)
(s1051 2.0)
(s1053 4.0)
(s1054 5.0)
(s1055 5.0)
(s1056 2.0)
(s1058 4.0)
(s1059 5.0)
(s1060 5.0)
(s1061 2.0)
(s1063 4.0)
(s1064 5.0)
(s1065 5.0)
(s1066 2.0)
(s1068 4.0)
(s1069 5.0)
(s1070 5.0)
(s1071 2.0)
(s1073 4.0)
(s1074 5.0)
(s1075 5.0)
(s1076 2.0)
(s1078 4.0)
(s1079 5.0)
(s1080 5.0)
(s1081 2.0)
(s1083 4.0)
(s1084 5.0)
(s1085 5.0)
(s1086 2.0)
(s1088 4.0)
(s1089 5.0)
(s1090 5.0)
(s1091 2.0)
(s1093 4.0)
(s1094 5.0)
(s1095 5.0)
(s1096 2.0)
(s1098 4.0)
(s1099 5.0)
(s1100 5.0)
(s1101 2.0)
(s1103 4.0)
(s1104 5.0)
(s1105 5.0)
(s1106 2.0)
(s1108 4.0)
(s1109 5.0)
(s1110 5.0)
(s1111 2.0)
(s1113 4.0)
(s1114 5.0)
(s1115 5.0)
(s1116 2.0)
(s1118 4.0)
(s1119 5.0)
(s1120 5.0)
(s1121 2.0)
(s1123 4.0)
(s1124 5.0)
(s1125 5.0)
(s1126 2.0)
(s1128 4.0)
(s1129 5.0)
(s1130 5.0)
(s1131 2.0)
(s1133 4.0)
(s1134 5.0)
(s1135 5.0)
(s1136 2.0)
(s1138 4.0)
(s1139 5.0)
(s1140 5.0)
(s1141 2.0)
(s1143 4.0)
(s1144 5.0)
(s1145 5.0)
(s1146 2.0)
(s1148 4.0)
(s1149 5.0)
(s1150 5.0)
(s1151 2.0)
(s1153 4.0)
(s1154 5.0)
(s1155 5.0)
(s1156 2.0)
(s1158 4.0)
(s1159 5.0)
(s1160 5.0)
(s1161 2.0)
(s1163 4.0)
(s1164 5.0)
(s1165 5.0)
(s1166 2.0)
(s1168 4.0)
(s1169 5.0)
(s1170 5.0)
(s1171 2.0)
(s1173 4.0)
(s1174 5.0)
(s1175 5.0)
(s1176 2.0)
(s1178 4.0)
(s1179 5.0)
(s1180 5.0)
(s1181 2.0)
(s1183 4.0)
(s1184 5.0)
(s1185 5.0)
(s1186 2.0)
(s1188 4.0)
(s1189 5.0)
(s1190 5.0)
(s1191 2.0)
(s1193 4.0)
(s1194 5.0)
(s1195 5.0)
(s1196 2.0)
(s1198 4.0)
(s1199 5.0)
(s1200 5.0)
(s1201 2.0)
(s1203 4.0)
(s1204 5.0)
(s1205 5.0)
(s1206 2.0)
(s1208 4.0)
(s1209 5.0)
(s1210 5.0)
(s1211 2.0)
(s1213 4.0)
(s1214 5.0)
(s1215 5.0)
(s1216 2.0)
(s1218 4.0)
(s1219 5.0)
(s1220 5.0)
(s1221 2.0)
(s1223 4.0)
(s1224 5.0)
(s1225 5.0)
(s1226 2.0)
(s1228 4.0)
(s1229 5.0)
(s1230 5.0)
(s1231 2.0)
(s1233 4.0)
(s1234 5.0)
(s1235 5.0)
(s1236 2.0)
(s1238 4.0)
(s1239 5.0)
(s1240 5.0)
(s1241 2.0)
(s1243 4.0)
(s1244 5.0)
(s1245 5.0)
(s1246 2.0)
(s1248 4.0)
(s1249 5.0)
(s1250 5.0)
(s1251 2.0)
(s1253 4.0)
(s1254 5.0)
(s1255 5.0)
(s1256 2.0)
(s1258 4.0)
(s1259 5.0)
(s1260 5.0)
(s1261 2.0)
(s1263 4.0)
(s1264 5.0)
(s1265 5.0)
(s1266 2.0)
(s1268 4.0)
(s1269 5.0)
(s1270 5.0)
(s1271 2.0)
(s1273 4.0)
(s1274 5.0)
(s1275 5.0)
(s1276 2.0)
(s1278 4.0)
(s1279 5.0)
(s1280 5.0)
(s1281 2.0)
(s1283 4.0)
(s1284 5.0)
(s1285 5.0)
(s1286 2.0)
(s1288 4.0)
(s1289 5.0)
(s1290 5.0)
(s1291 2.0)
(s1293 4.0)
(s1294 5.0)
(s1295 5.0)
(s1296 2.0)
(s1298 4.0)
(s1299 5.0)
(s1300 5.0)
(s1301 2.0)
(s1303 4.0)
(s1304 5.0)
(s1305 5.0)
(s1306 2.0)
(s1308 4.0)
(s1309 5.0)
(s1310 5.0)
(s1311 2.0)
(s1313 4.0)
(s1314 5.0)
(s1315 5.0)
(s1316 2.0)
(s1318 4.0)
(s1319 5.0)
(s1320 5.0)
(s1321 2.0)
(s1323 4.0)
(s1324 5.0)
(s1325 5.0)
(s1326 2.0)
(s1328 4.0)
(s1329 5.0)
(s1330 5.0)
(s1331 2.0)
(s1333 4.0)
(s1334 5.0)
(s1335 5.0)
(s1336 2.0)
(s1338 4.0)
(s1339 5.0)
(s1340 5.0)
(s1341 2.0)
(s1343 4.0)
(s1344 5.0)
(s1345 5.0)
(s1346 2.0)
(s1348 4.0)
(s1349 5.0)
(s1350 5.0)
(s1351 2.0)
(s1353 4.0)
(s1354 5.0)
(s1355 5.0)
(s1356 2.0)
(s1358 4.0)
(s1359 5.0)
(s1360 5.0)
(s1361 2.0)
(s1363 4.0)
(s1364 5.0)
(s1365 5.0)
(s1366 2.0)
(s1368 4.0)
(s1369 5.0)
(s1370 5.0)
(s1371 2.0)
(s1373 4.0)
(s1374 5.0)
(s1375 5.0)
(s1376 2.0)
(s1378 4.0)
(s1379 5.0)
(s1380 5.0)
(s1381 2.0)
(s1383 4.0)
(s1384 5.0)
(s1385 5.0)
(s1386 2.0)
(s1388 4.0)
(s1389 5.0)
(s1390 5.0)
(s1391 2.0)
(s1393 4.0)
(s1394 5.0)
(s1395 5.0)
(s1396 2.0)
(s1398 4.0)
(s1399 5.0)
(s1400 5.0)
(s1401 2.0)
(s1403 4.0)
(s1404 5.0)
(s1405 5.0)
(s1406 2.0)
(s1408 4.0)
(s1409 5.0)
(s1410 5.0)
(s1411 2.0)
(s1413 4.0)
(s1414 5.0)
(s1415 5.0)
(s1416 2.0)
(s1418 4.0)
(s1419 5.0)
(s1420 5.0)
(s1421 2.0)
(s1423 4.0)
(s1424 5.0)
(s1425 5.0)
(s1426 2.0)
(s1428 4.0)
(s1429 5.0)
(s1430 5.0)
(s1431 2.0)
(s1433 4.0)
(s1434 5.0)
(s1435 5.0)
(s1436 2.0)
(s1438 4.0)
(s1439 5.0)
(s1440 5.0)
(s1441 2.0)
(s1443 4.0)
(s1444 5.0)
(s1445 5.0)
(s1446 2.0)
(s1448 4.0)
(s1449 5.0)
(s1450 5.0)
(s1451 2.0)
(s1453 4.0)
(s1454 5.0)
(s1455 5.0)
(s1456 2.0)
(s1458 4.0)
(s1459 5.0)
(s1460 5.0)
(s1461 2.0)
(s1463 4.0)
(s1464 5.0)
(s1465 5.0)
(s1466 2.0)
(s1468 4.0)
(s1469 5.0)
(s1470 5.0)
(s1471 2.0)
(s1473 4.0)
(s1474 5.0)
(s1475 5.0)
(s1476 2.0)
(s1478 4.0)
(s1479 5.0)
(s1480 5.0)
(s1481 2.0)
(s1483 4.0)
(s1484 5.0)
(s1485 5.0)
(s1486 2.0)
(s1488 4.0)
(s1489 5.0)
(s1490 5.0)
(s1491 2.0)
(s1493 4.0)
(s1494 5.0)
(s1495 5.0)
(s1496 2.0)
(s1498 4.0)
(s1499 5.0)
(s1500 5.0)
(s1501 2.0)
(s1503 4.0)
(s1504 5.0)
(s1505 5.0)
(s1506 2.0)
(s1508 4.0)
(s1509 5.0)
(s1510 5.0)
(s1511 2.0)
(s1513 4.0)
(s1514 5.0)
(s1515 5.0)
(s1516 2.0)
(s1518 4.0)
(s1519 5.0)
(s1520 5.0)
(s1521 2.0)
(s1523 4.0)
(s1524 5.0)
(s1525 5.0)
(s1526 2.0)
(s1528 4.0)
(s1529 5.0)
(s1530 5.0)
(s1531 2.0)
(s1533 4.0)
(s1534 5.0)
(s1535 5.0)
(s1536 2.0)
(s1538 4.0)
(s1539 5.0)
(s1540 5.0)
(s1541 2.0)
(s1543 4.0)
(s1544 5.0)
(s1545 5.0)
(s1546 2.0)
(s1548 4.0)
(s1549 5.0)
(s1550 5.0)
(s1551 2.0)
(s1553 4.0)
(s1554 5.0)
(s1555 5.0)
(s1556 2.0)
(s1558 4.0)
(s1559 5.0)
(s1560 5.0)
(s1561 2.0)
(s1563 4.0)
(s1564 5.0)
(s1565 5.0)
(s1566 2.0)
(s1568 4.0)
(s1569 5.0)
(s1570 5.0)
(s1571 2.0)
(s1573 4.0)
(s1574 5.0)
(s1575 5.0)
(s1576 2.0)
(s1578 4.0)
(s1579 5.0)
(s1580 5.0)
(s1581 2.0)
(s1583 4.0)
(s1584 5.0)
(s1585 5.0)
(s1586 2.0)
(s1588 4.0)
(s1589 5.0)
(s1590 5.0)
(s1591 2.0)
(s1593 4.0)
(s1594 5.0)
(s1595 5.0)
(s1596 2.0)
(s1598 4.0)
(s1599 5.0)
(s1600 5.0)
(s1601 2.0)
(s1603 4.0)
(s1604 5.0)
(s1605 5.0)
(s1606 2.0)
(s1608 4.0)
(s1609 5.0)
(s1610 5.0)
(s1611 2.0)
(s1613 4.0)
(s1614 5.0)
(s1615 5.0)
(s1616 2.0)
(s1618 4.0)
(s1619 5.0)
(s1620 5.0)
(s1621 2.0)
(s1623 4.0)
(s1624 5.0)
(s1625 5.0)
(s1626 2.0)
(s1628 4.0)
(s1629 5.0)
(s1630 5.0)
(s1631 2.0)
(s1633 4.0)
(s1634 5.0)
(s1635 5.0)
(s1636 2.0)
(s1638 4.0)
(s1639 5.0)
(s1640 5.0)
(s1641 2.0)
(s1643 4.0)
(s1644 5.0)
(s1645 5.0)
(s1646 2.0)
(s1648 4.0)
(s1649 5.0)
(s1650 5.0)
(s1651 2.0)
(s1653 4.0)
(s1654 5.0)
(s1655 5.0)
(s1656 2.0)
(s1658 4.0)
(s1659 5.0)
(s1660 5.0)
(s1661 2.0)
(s1663 4.0)
(s1664 5.0)
(s1665 5.0)
(s1666 2.0)
(s1668 4.0)
(s1669 5.0)
(s1670 5.0)
(s1671 2.0)
(s1673 4.0)
(s1674 5.0)
(s1675 5.0)
(s1676 2.0)
(s1678 4.0)
(s1679 5.0)
(s1680 5.0)
(s1681 2.0)
(s1683 4.0)
(s1684 5.0)
(s1685 5.0)
(s1686 2.0)
(s1688 4.0)
(s1689 5.0)
(s1690 5.0)
(s1691 2.0)
(s1693 4.0)
(s1694 5.0)
(s1695 5.0)
(s1696 2.0)
(s1698 4.0)
(s1699 5.0)
(s1700 5.0)
(s1701 2.0)
(s1703 4.0)
(s1704 5.0)
(s1705 5.0)
(s1706 2.0)
(s1708 4.0)
(s1709 5.0)
(s1710 5.0)
(s1711 2.0)
(s1713 4.0)
(s1714 5.0)
(s1715 5.0)
(s1716 2.0)
(s1718 4.0)
(s1719 5.0)
(s1720 5.0)
(s1721 2.0)
(s1723 4.0)
(s1724 5.0)
(s1725 5.0)
(s1726 2.0)
(s1728 4.0)
(s1729 5.0)
(s1730 5.0)
(s1731 2.0)
(s1733 4.0)
(s1734 5.0)
(s1735 5.0)
(s1736 2.0)
(s1738 4.0)
(s1739 5.0)
(s1740 5.0)
(s1741 2.0)
(s1743 4.0)
(s1744 5.0)
(s1745 5.0)
(s1746 2.0)
(s1748 4.0)
(s1749 5.0)
(s1750 5.0)
(s1751 2.0)
(s1753 4.0)
(s1754 5.0)
(s1755 5.0)
(s1756 2.0)
(s1758 4.0)
(s1759 5.0)
(s1760 5.0)
(s1761 2.0)
(s1763 4.0)
(s1764 5.0)
(s1765 5.0)
(s1766 2.0)
(s1768 4.0)
(s1769 5.0)
(s1770 5.0)
(s1771 2.0)
(s1773 4.0)
(s1774 5.0)
(s1775 5.0)
(s1776 2.0)
(s1778 4.0)
(s1779 5.0)
(s1780 5.0)
(s1781 2.0)
(s1783 4.0)
(s1784 5.0)
(s1785 5.0)
(s1786 2.0)
(s1788 4.0)
(s1789 5.0)
(s1790 5.0)
(s1791 2.0)
(s1793 4.0)
(s1794 5.0)
(s1795 5.0)
(s1796 2.0)
(s1798 4.0)
(s1799 5.0)
(s1800 5.0)
(s1801 2.0)
(s1803 4.0)
(s1804 5.0)
(s1805 5.0)
(s1806 2.0)
(s1808 4.0)
(s1809 5.0)
(s1810 5.0)
(s1811 2.0)
(s1813 4.0)
(s1814 5.0)
(s1815 5.0)
(s1816 2.0)
(s1818 4.0)
(s1819 5.0)
(s1820 5.0)
(s1821 2.0)
(s1823 4.0)
(s1824 5.0)
(s1825 5.0)
(s1826 2.0)
(s1828 4.0)
(s1829 5.0)
(s1830 5.0)
(s1831 2.0)
(s1833 4.0)
(s1834 5.0)
(s1835 5.0)
(s1836 2.0)
(s1838 4.0)
(s1839 5.0)
(s1840 5.0)
(s1841 2.0)
(s1843 4.0)
(s1844 5.0)
(s1845 5.0)
(s1846 2.0)
(s1848 4.0)
(s1849 5.0)
(s1850 5.0)
(s1851 2.0)
(s1853 4.0)
(s1854 5.0)
(s1855 5.0)
(s1856 2.0)
(s1858 4.0)
(s1859 5.0)
(s1860 5.0)
(s1861 2.0)
(s1863 4.0)
(s1864 5.0)
(s1865 5.0)
(s1866 2.0)
(s1868 4.0)
(s1869 5.0)
(s1870 5.0)
(s1871 2.0)
(s1873 4.0)
(s1874 5.0)
(s1875 5.0)
(s1876 2.0)
(s1878 4.0)
(s1879 5.0)
(s1880 5.0)
(s1881 2.0)
(s1883 4.0)
(s1884 5.0)
(s1885 5.0)
(s1886 2.0)
(s1888 4.0)
(s1889 5.0)
(s1890 5.0)
(s1891 2.0)
(s1893 4.0)
(s1894 5.0)
(s1895 5.0)
(s1896 2.0)
(s1898 4.0)
(s1899 5.0)
(s1900 5.0)
(s1901 2.0)
(s1903 4.0)
(s1904 5.0)
(s1905 5.0)
(s1906 2.0)
(s1908 4.0)
(s1909 5.0)
(s1910 5.0)
(s1911 2.0)
(s1913 4.0)
(s1914 5.0)
(s1915 5.0)
(s1916 2.0)
(s1918 4.0)
(s1919 5.0)
(s1920 5.0)
(s1921 2.0)
(s1923 4.0)
(s1924 5.0)
(s1925 5.0)
(s1926 2.0)
(s1928 4.0)
(s1929 5.0)
(s1930 5.0)
(s1931 2.0)
(s1933 4.0)
(s1934 5.0)
(s1935 5.0)
(s1936 2.0)
(s1938 4.0)
(s1939 5.0)
(s1940 5.0)
(s1941 2.0)
(s1943 4.0)
(s1944 5.0)
(s1945 5.0)
(s1946 2.0)
(s1948 4.0)
(s1949 5.0)
(s1950 5.0)
(s1951 2.0)
(s1953 4.0)
(s1954 5.0)
(s1955 5.0)
(s1956 2.0)
(s1958 4.0)
(s1959 5.0)
(s1960 5.0)
(s1961 2.0)
(s1963 4.0)
(s1964 5.0)
(s1965 5.0)
(s1966 2.0)
(s1968 4.0)
(s1969 5.0)
(s1970 5.0)
(s1971 2.0)
(s1973 4.0)
(s1974 5.0)
(s1975 5.0)
(s1976 2.0)
(s1978 4.0)
(s1979 5.0)
(s1980 5.0)
(s1981 2.0)
(s1983 4.0)
(s1984 5.0)
(s1985 5.0)
(s1986 2.0)
(s1988 4.0)
(s1989 5.0)
(s1990 5.0)
(s1991 2.0)
(s1993 4.0)
(s1994 5.0)
(s1995 5.0)
(s1996 2.0)
(s1998 4.0)
(s1999 5.0)
(s2000 5.0)
(s2001 2.0)
(s2003 4.0)
(s2004 5.0)
(s2005 5.0)
(s2006 2.0)
(s2008 4.0)
(s2009 5.0)
(s2010 5.0)
(s2011 2.0)
(s2013 4.0)
(s2014 5.0)
(s2015 5.0)
(s2016 2.0)
(s2018 4.0)
(s2019 5.0)
(s2020 5.0)
(s2021 2.0)
(s2023 4.0)
(s2024 5.0)
(s2025 5.0)
(s2026 2.0)
(s2028 4.0)
(s2029 5.0)
(s2030 5.0)
(s2031 2.0)
(s2033 4.0)
(s2034 5.0)
(s2035 5.0)
(s2036 2.0)
(s2038 4.0)
(s2039 5.0)
(s2040 5.0)
(s2041 2.0)
(s2043 4.0)
(s2044 5.0)
(s2045 5.0)
(s2046 2.0)
(s2048 4.0)
(s2049 5.0)
(s2050 5.0)
(s2051 2.0)
(s2053 4.0)
(s2054 5.0)
(s2055 5.0)
(s2056 2.0)
(s2058 4.0)
(s2059 5.0)
(s2060 5.0)
(s2061 2.0)
(s2063 4.0)
(s2064 5.0)
(s2065 5.0)
(s2066 2.0)
(s2068 4.0)
(s2069 5.0)
(s2070 5.0)
(s2071 2.0)
(s2073 4.0)
(s2074 5.0)
(s2075 5.0)
(s2076 2.0)
(s2078 4.0)
(s2079 5.0)
(s2080 5.0)
(s2081 2.0)
(s2083 4.0)
(s2084 5.0)
(s2085 5.0)
(s2086 2.0)
(s2088 4.0)
(s2089 5.0)
(s2090 5.0)
(s2091 2.0)
(s2093 4.0)
(s2094 5.0)
(s2095 5.0)
(s2096 2.0)
(s2098 4.0)
(s2099 5.0)
(s2100 5.0)
(s2101 2.0)
(s2103 4.0)
(s2104 5.0)
(s2105 5.0)
(s2106 2.0)
(s2108 4.0)
(s2109 5.0)
(s2110 5.0)
(s2111 2.0)
(s2113 4.0)
(s2114 5.0)
(s2115 5.0)
(s2116 2.0)
(s2118 4.0)
(s2119 5.0)
(s2120 5.0)
(s2121 2.0)
(s2123 4.0)
(s2124 5.0)
(s2125 5.0)
(s2126 2.0)
(s2128 4.0)
(s2129 5.0)
(s2130 5.0)
(s2131 2.0)
(s2133 4.0)
(s2134 5.0)
(s2135 5.0)
(s2136 2.0)
(s2138 4.0)
(s2139 5.0)
(s2140 5.0)
(s2141 2.0)
(s2143 4.0)
(s2144 5.0)
(s2145 5.0)
(s2146 2.0)
(s2148 4.0)
(s2149 5.0)
(s2150 5.0)
(s2151 2.0)
(s2153 4.0)
(s2154 5.0)
(s2155 5.0)
(s2156 2.0)
(s2158 4.0)
(s2159 5.0)
(s2160 5.0)
(s2161 2.0)
(s2163 4.0)
(s2164 5.0)
(s2165 5.0)
(s2166 2.0)
(s2168 4.0)
(s2169 5.0)
(s2170 5.0)
(s2171 2.0)
(s2173 4.0)
(s2174 5.0)
(s2175 5.0)
(s2176 2.0)
(s2178 4.0)
(s2179 5.0)
(s2180 5.0)
(s2181 2.0)
(s2183 4.0)
(s2184 5.0)
(s2185 5.0)
(s2186 2.0)
(s2188 4.0)
(s2189 5.0)
(s2190 5.0)
(s2191 2.0)
(s2193 4.0)
(s2194 5.0)
(s2195 5.0)
(s2196 2.0)
(s2198 4.0)
(s2199 5.0)
(s2200 5.0)
(s2201 2.0)
(s2203 4.0)
(s2204 5.0)
(s2205 5.0)
(s2206 2.0)
(s2208 4.0)
(s2209 5.0)
(s2210 5.0)
(s2211 2.0)
(s2213 4.0)
(s2214 5.0)
(s2215 5.0)
(s2216 2.0)
(s2218 4.0)
(s2219 5.0)
(s2220 5.0)
(s2221 2.0)
(s2223 4.0)
(s2224 5.0)
(s2225 5.0)
(s2226 2.0)
(s2228 4.0)
(s2229 5.0)
(s2230 5.0)
(s2231 2.0)
(s2233 4.0)
(s2234 5.0)
(s2235 5.0)
(s2236 2.0)
(s2238 4.0)
(s2239 5.0)
(s2240 5.0)
(s2241 2.0)
(s2243 4.0)
(s2244 5.0)
(s2245 5.0)
(s2246 2.0)
(s2248 4.0)
(s2249 5.0)
(s2250 5.0)
(s2251 2.0)
(s2253 4.0)
(s2254 5.0)
(s2255 5.0)
(s2256 2.0)
(s2258 4.0)
(s2259 5.0)
(s2260 5.0)
(s2261 2.0)
(s2263 4.0)
(s2264 5.0)
(s2265 5.0)
(s2266 2.0)
(s2268 4.0)
(s2269 5.0)
(s2270 5.0)
(s2271 2.0)
(s2273 4.0)
(s2274 5.0)
(s2275 5.0)
(s2276 2.0)
(s2278 4.0)
(s2279 5.0)
(s2280 5.0)
(s2281 2.0)
(s2283 4.0)
(s2284 5.0)
(s2285 5.0)
(s2286 2.0)
(s2288 4.0)
(s2289 5.0)
(s2290 5.0)
(s2291 2.0)
(s2293 4.0)
(s2294 5.0)
(s2295 5.0)
(s2296 2.0)
(s2298 4.0)
(s2299 5.0)
(s2300 5.0)
(s2301 2.0)
(s2303 4.0)
(s2304 5.0)
(s2305 5.0)
(s2306 2.0)
(s2308 4.0)
(s2309 5.0)
(s2310 5.0)
(s2311 2.0)
(s2313 4.0)
(s2314 5.0)
(s2315 5.0)
(s2316 2.0)
(s2318 4.0)
(s2319 5.0)
(s2320 5.0)
(s2321 2.0)
(s2323 4.0)
(s2324 5.0)
(s2325 5.0)
(s2326 2.0)
(s2328 4.0)
(s2329 5.0)
(s2330 5.0)
(s2331 2.0)
(s2333 4.0)
(s2334 5.0)
(s2335 5.0)
(s2336 2.0)
(s2338 4.0)
(s2339 5.0)
(s2340 5.0)
(s2341 2.0)
(s2343 4.0)
(s2344 5.0)
(s2345 5.0)
(s2346 2.0)
(s2348 4.0)
(s2349 5.0)
(s2350 5.0)
(s2351 2.0)
(s2353 4.0)
(s2354 5.0)
(s2355 5.0)
(s2356 2.0)
(s2358 4.0)
(s2359 5.0)
(s2360 5.0)
(s2361 2.0)
(s2363 4.0)
(s2364 5.0)
(s2365 5.0)
(s2366 2.0)
(s2368 4.0)
(s2369 5.0)
(s2370 5.0)
(s2371 2.0)
(s2373 4.0)
(s2374 5.0)
(s2375 5.0)
(s2376 2.0)
(s2378 4.0)
(s2379 5.0)
(s2380 5.0)
(s2381 2.0)
(s2383 4.0)
(s2384 5.0)
(s2385 5.0)
(s2386 2.0)
(s2388 4.0)
(s2389 5.0)
(s2390 5.0)
(s2391 2.0)
(s2393 4.0)
(s2394 5.0)
(s2395 5.0)
(s2396 2.0)
(s2398 4.0)
(s2399 5.0)
(s2400 5.0)
(s2401 2.0)
(s2403 4.0)
(s2404 5.0)
(s2405 5.0)
(s2406 2.0)
(s2408 4.0)
(s2409 5.0)
(s2410 5.0)
(s2411 2.0)
(s2413 4.0)
(s2414 5.0)
(s2415 5.0)
(s2416 2.0)
(s2418 4.0)
(s2419 5.0)
(s2420 5.0)
(s2421 2.0)
(s2423 4.0)
(s2424 5.0)
(s2425 5.0)
(s2426 2.0)
(s2428 4.0)
(s2429 5.0)
(s2430 5.0)
(s2431 2.0)
(s2433 4.0)
(s2434 5.0)
(s2435 5.0)
(s2436 2.0)
(s2438 4.0)
(s2439 5.0)
(s2440 5.0)
(s2441 2.0)
(s2443 4.0)
(s2444 5.0)
(s2445 5.0)
(s2446 2.0)
(s2448 4.0)
(s2449 5.0)
(s2450 5.0)
(s2451 2.0)
(s2453 4.0)
(s2454 5.0)
(s2455 5.0)
(s2456 2.0)
(s2458 4.0)
(s2459 5.0)
(s2460 5.0)
(s2461 2.0)
(s2463 4.0)
(s2464 5.0)
(s2465 5.0)
(s2466 2.0)
(s2468 4.0)
(s2469 5.0)
(s2470 5.0)
(s2471 2.0)
(s2473 4.0)
(s2474 5.0)
(s2475 5.0)
(s2476 2.0)
(s2478 4.0)
(s2479 5.0)
(s2480 5.0)
(s2481 2.0)
(s2483 4.0)
(s2484 5.0)
(s2485 5.0)
(s2486 2.0)
(s2488 4.0)
(s2489 5.0)
(s2490 5.0)
(s2491 2.0)
(s2493 4.0)
(s2494 5.0)
(s2495 5.0)
(s2496 2.0)
(s2498 4.0)
(s2499 5.0)
(s2500 5.0)
(s2501 2.0)
(s2503 4.0)
(s2504 5.0)
(s2505 5.0)
(s2506 2.0)
(s2508 4.0)
(s2509 5.0)
(s2510 5.0)
(s2511 2.0)
(s2513 4.0)
(s2514 5.0)
(s2515 5.0)
(s2516 2.0)
(s2518 4.0)
(s2519 5.0)
(s2520 5.0)
(s2521 2.0)
(s2523 4.0)
(s2524 5.0)
(s2525 5.0)
(s2526 2.0)
(s2528 4.0)
(s2529 5.0)
(s2530 5.0)
(s2531 2.0)
(s2533 4.0)
(s2534 5.0)
(s2535 5.0)
(s2536 2.0)
(s2538 4.0)
(s2539 5.0)
(s2540 5.0)
(s2541 2.0)
(s2543 4.0)
(s2544 5.0)
(s2545 5.0)
(s2546 2.0)
(s2548 4.0)
(s2549 5.0)
(s2550 5.0)
(s2551 2.0)
(s2553 4.0)
(s2554 5.0)
(s2555 5.0)
(s2556 2.0)
(s2558 4.0)
(s2559 5.0)
(s2560 5.0)
(s2561 2.0)
(s2563 4.0)
(s2564 5.0)
(s2565 5.0)
(s2566 2.0)
(s2568 4.0)
(s2569 5.0)
(s2570 5.0)
(s2571 2.0)
(s2573 4.0)
(s2574 5.0)
(s2575 5.0)
(s2576 2.0)
(s2578 4.0)
(s2579 5.0)
(s2580 5.0)
(s2581 2.0)
(s2583 4.0)
(s2584 5.0)
(s2585 5.0)
(s2586 2.0)
(s2588 4.0)
(s2589 5.0)
(s2590 5.0)
(s2591 2.0)
(s2593 4.0)
(s2594 5.0)
(s2595 5.0)
(s2596 2.0)
(s2598 4.0)
(s2599 5.0)
(s2600 5.0)
(s2601 2.0)
(s2603 4.0)
(s2604 5.0)
(s2605 5.0)
(s2606 2.0)
(s2608 4.0)
(s2609 5.0)
(s2610 5.0)
(s2611 2.0)
(s2613 4.0)
(s2614 5.0)
(s2615 5.0)
(s2616 2.0)
(s2618 4.0)
(s2619 5.0)
(s2620 5.0)
(s2621 2.0)
(s2623 4.0)
(s2624 5.0)
(s2625 5.0)
(s2626 2.0)
(s2628 4.0)
(s2629 5.0)
(s2630 5.0)
(s2631 2.0)
(s2633 4.0)
(s2634 5.0)
(s2635 5.0)
(s2636 2.0)
(s2638 4.0)
(s2639 5.0)
(s2640 5.0)
(s2641 2.0)
(s2643 4.0)
(s2644 5.0)
(s2645 5.0)
(s2646 2.0)
(s2648 4.0)
(s2649 5.0)
(s2650 5.0)
(s2651 2.0)
(s2653 4.0)
(s2654 5.0)
(s2655 5.0)
(s2656 2.0)
(s2658 4.0)
(s2659 5.0)
(s2660 5.0)
(s2661 2.0)
(s2663 4.0)
(s2664 5.0)
(s2665 5.0)
(s2666 2.0)
(s2668 4.0)
(s2669 5.0)
(s2670 5.0)
(s2671 2.0)
(s2673 4.0)
(s2674 5.0)
(s2675 5.0)
(s2676 2.0)
(s2678 4.0)
(s2679 5.0)
(s2680 5.0)
(s2681 2.0)
(s2683 4.0)
(s2684 5.0)
(s2685 5.0)
(s2686 2.0)
(s2688 4.0)
(s2689 5.0)
(s2690 5.0)
(s2691 2.0)
(s2693 4.0)
(s2694 5.0)
(s2695 5.0)
(s2696 2.0)
(s2698 4.0)
(s2699 5.0)
(s2700 5.0)
(s2701 2.0)
(s2703 4.0)
(s2704 5.0)
(s2705 5.0)
(s2706 2.0)
(s2708 4.0)
(s2709 5.0)
(s2710 5.0)
(s2711 2.0)
(s2713 4.0)
(s2714 5.0)
(s2715 5.0)
(s2716 2.0)
(s2718 4.0)
(s2719 5.0)
(s2720 5.0)
(s2721 2.0)
(s2723 4.0)
(s2724 5.0)
(s2725 5.0)
(s2726 2.0)
(s2728 4.0)
(s2729 5.0)
(s2730 5.0)
(s2731 2.0)
(s2733 4.0)
(s2734 5.0)
(s2735 5.0)
(s2736 2.0)
(s2738 4.0)
(s2739 5.0)
(s2740 5.0)
(s2741 2.0)
(s2743 4.0)
(s2744 5.0)
(s2745 5.0)
(s2746 2.0)
(s2748 4.0)
(s2749 5.0)
(s2750 5.0)
(s2751 2.0)
(s2753 4.0)
(s2754 5.0)
(s2755 5.0)
(s2756 2.0)
(s2758 4.0)
(s2759 5.0)
(s2760 5.0)
(s2761 2.0)
(s2763 4.0)
(s2764 5.0)
(s2765 5.0)
(s2766 2.0)
(s2768 4.0)
(s2769 5.0)
(s2770 5.0)
(s2771 2.0)
(s2773 4.0)
(s2774 5.0)
(s2775 5.0)
(s2776 2.0)
(s2778 4.0)
(s2779 5.0)
(s2780 5.0)
(s2781 2.0)
(s2783 4.0)
(s2784 5.0)
(s2785 5.0)
(s2786 2.0)
(s2788 4.0)
(s2789 5.0)
(s2790 5.0)
(s2791 2.0)
(s2793 4.0)
(s2794 5.0)
(s2795 5.0)
(s2796 2.0)
(s2798 4.0)
(s2799 5.0)
(s2800 5.0)
(s2801 2.0)
(s2803 4.0)
(s2804 5.0)
(s2805 5.0)
(s2806 2.0)
(s2808 4.0)
(s2809 5.0)
(s2810 5.0)
(s2811 2.0)
(s2813 4.0)
(s2814 5.0)
(s2815 5.0)
(s2816 2.0)
(s2818 4.0)
(s2819 5.0)
(s2820 5.0)
(s2821 2.0)
(s2823 4.0)
(s2824 5.0)
(s2825 5.0)
(s2826 2.0)
(s2828 4.0)
(s2829 5.0)
(s2830 5.0)
(s2831 2.0)
(s2833 4.0)
(s2834 5.0)
(s2835 5.0)
(s2836 2.0)
(s2838 4.0)
(s2839 5.0)
(s2840 5.0)
(s2841 2.0)
(s2843 4.0)
(s2844 5.0)
(s2845 5.0)
(s2846 2.0)
(s2848 4.0)
(s2849 5.0)
(s2850 5.0)
(s2851 2.0)
(s2853 4.0)
(s2854 5.0)
(s2855 5.0)
(s2856 2.0)
(s2858 4.0)
(s2859 5.0)
(s2860 5.0)
(s2861 2.0)
(s2863 4.0)
(s2864 5.0)
(s2865 5.0)
(s2866 2.0)
(s2868 4.0)
(s2869 5.0)
(s2870 5.0)
(s2871 2.0)
(s2873 4.0)
(s2874 5.0)
(s2875 5.0)
(s2876 2.0)
(s2878 4.0)
(s2879 5.0)
(s2880 5.0)
(s2881 2.0)
(s2883 4.0)
(s2884 5.0)
(s2885 5.0)
(s2886 2.0)
(s2888 4.0)
(s2889 5.0)
(s2890 5.0)
(s2891 2.0)
(s2893 4.0)
(s2894 5.0)
(s2895 5.0)
(s2896 2.0)
(s2898 4.0)
(s2899 5.0)
(s2900 5.0)
(s2901 2.0)
(s2903 4.0)
(s2904 5.0)
(s2905 5.0)
(s2906 2.0)
(s2908 4.0)
(s2909 5.0)
(s2910 5.0)
(s2911 2.0)
(s2913 4.0)
(s2914 5.0)
(s2915 5.0)
(s2916 2.0)
(s2918 4.0)
(s2919 5.0)
(s2920 5.0)
(s2921 2.0)
(s2923 4.0)
(s2924 5.0)
(s2925 5.0)
(s2926 2.0)
(s2928 4.0)
(s2929 5.0)
(s2930 5.0)
(s2931 2.0)
(s2933 4.0)
(s2934 5.0)
(s2935 5.0)
(s2936 2.0)
(s2938 4.0)
(s2939 5.0)
(s2940 5.0)
(s2941 2.0)
(s2943 4.0)
(s2944 5.0)
(s2945 5.0)
(s2946 2.0)
(s2948 4.0)
(s2949 5.0)
(s2950 5.0)
(s2951 2.0)
(s2953 4.0)
(s2954 5.0)
(s2955 5.0)
(s2956 2.0)
(s2958 4.0)
(s2959 5.0)
(s2960 5.0)
(s2961 2.0)
(s2963 4.0)
(s2964 5.0)
(s2965 5.0)
(s2966 2.0)
(s2968 4.0)
(s2969 5.0)
(s2970 5.0)
(s2971 2.0)
(s2973 4.0)
(s2974 5.0)
(s2975 5.0)
(s2976 2.0)
(s2978 4.0)
(s2979 5.0)
(s2980 5.0)
(s2981 2.0)
(s2983 4.0)
(s2984 5.0)
(s2985 5.0)
(s2986 2.0)
(s2988 4.0)
(s2989 5.0)
(s2990 5.0)
(s2991 2.0)
(s2993 4.0)
(s2994 5.0)
(s2995 5.0)
(s2996 2.0)
(s2998 4.0)
(s2999 5.0)
(s3000 5.0)
(s3001 2.0)
(s3003 4.0)
(s3004 5.0)
(s3005 5.0)
(s3006 2.0)
(s3008 4.0)
(s3009 5.0)
(s3010 5.0)
(s3011 2.0)
(s3013 4.0)
(s3014 5.0)
(s3015 5.0)
(s3016 2.0)
(s3018 4.0)
(s3019 5.0)
(s3020 5.0)
(s3021 2.0)
(s3023 4.0)
(s3024 5.0)
(s3025 5.0)
(s3026 2.0)
(s3028 4.0)
(s3029 5.0)
(s3030 5.0)
(s3031 2.0)
(s3033 4.0)
(s3034 5.0)
(s3035 5.0)
(s3036 2.0)
(s3038 4.0)
(s3039 5.0)
(s3040 5.0)
(s3041 2.0)
(s3043 4.0)
(s3044 5.0)
(s3045 5.0)
(s3046 2.0)
(s3048 4.0)
(s3049 5.0)
(s3050 5.0)
(s3051 2.0)
(s3053 4.0)
(s3054 5.0)
(s3055 5.0)
(s3056 2.0)
(s3058 4.0)
(s3059 5.0)
(s3060 5.0)
(s3061 2.0)
(s3063 4.0)
(s3064 5.0)
(s3065 5.0)
(s3066 2.0)
(s3068 4.0)
(s3069 5.0)
(s3070 5.0)
(s3071 2.0)
(s3073 4.0)
(s3074 5.0)
(s3075 5.0)
(s3076 2.0)
(s3078 4.0)
(s3079 5.0)
(s3080 5.0)
(s3081 2.0)
(s3083 4.0)
(s3084 5.0)
(s3085 5.0)
(s3086 2.0)
(s3088 4.0)
(s3089 5.0)
(s3090 5.0)
(s3091 2.0)
(s3093 4.0)
(s3094 5.0)
(s3095 5.0)
(s3096 2.0)
(s3098 4.0)
(s3099 5.0)
(s3100 5.0)
(s3101 2.0)
(s3103 4.0)
(s3104 5.0)
(s3105 5.0)
(s3106 2.0)
(s3108 4.0)
(s3109 5.0)
(s3110 5.0)
(s3111 2.0)
(s3113 4.0)
(s3114 5.0)
(s3115 5.0)
(s3116 2.0)
(s3118 4.0)
(s3119 5.0)
(s3120 5.0)
(s3121 2.0)
(s3123 4.0)
(s3124 5.0)
(s3125 5.0)
(s3126 2.0)
(s3128 4.0)
(s3129 5.0)
(s3130 5.0)
(s3131 2.0)
(s3133 4.0)
(s3134 5.0)
(s3135 5.0)
(s3136 2.0)
(s3138 4.0)
(s3139 5.0)
(s3140 5.0)
(s3141 2.0)
(s3143 4.0)
(s3144 5.0)
(s3145 5.0)
(s3146 2.0)
(s3148 4.0)
(s3149 5.0)
(s3150 5.0)
(s3151 2.0)
(s3153 4.0)
(s3154 5.0)
(s3155 5.0)
(s3156 2.0)
(s3158 4.0)
(s3159 5.0)
(s3160 5.0)
(s3161 2.0)
(s3163 4.0)
(s3164 5.0)
(s3165 5.0)
(s3166 2.0)
(s3168 4.0)
(s3169 5.0)
(s3170 5.0)
(s3171 2.0)
(s3173 4.0)
(s3174 5.0)
(s3175 5.0)
(s3176 2.0)
(s3178 4.0)
(s3179 5.0)
(s3180 5.0)
(s3181 2.0)
(s3183 4.0)
(s3184 5.0)
(s3185 5.0)
(s3186 2.0)
(s3188 4.0)
(s3189 5.0)
(s3190 5.0)
(s3191 2.0)
(s3193 4.0)
(s3194 5.0)
(s3195 5.0)
(s3196 2.0)
(s3198 4.0)
(s3199 5.0)
(s3200 5.0)
(s3201 2.0)
(s3203 4.0)
(s3204 5.0)
(s3205 5.0)
(s3206 2.0)
(s3208 4.0)
(s3209 5.0)
(s3210 5.0)
(s3211 2.0)
(s3213 4.0)
(s3214 5.0)
(s3215 5.0)
(s3216 2.0)
(s3218 4.0)
(s3219 5.0)
(s3220 5.0)
(s3221 2.0)
(s3223 4.0)
(s3224 5.0)
(s3225 5.0)
(s3226 2.0)
(s3228 4.0)
(s3229 5.0)
(s3230 5.0)
(s3231 2.0)
(s3233 4.0)
(s3234 5.0)
(s3235 5.0)
(s3236 2.0)
(s3238 4.0)
(s3239 5.0)
(s3240 5.0)
(s3241 2.0)
(s3243 4.0)
(s3244 5.0)
(s3245 5.0)
(s3246 2.0)
(s3248 4.0)
(s3249 5.0)
(s3250 5.0)
(s3251 2.0)
(s3253 4.0)
(s3254 5.0)
(s3255 5.0)
(s3256 2.0)
(s3258 4.0)
(s3259 5.0)
(s3260 5.0)
(s3261 2.0)
(s3263 4.0)
(s3264 5.0)
(s3265 5.0)
(s3266 2.0)
(s3268 4.0)
(s3269 5.0)
(s3270 5.0)
(s3271 2.0)
(s3273 4.0)
(s3274 5.0)
(s3275 5.0)
(s3276 2.0)
(s3278 4.0)
(s3279 5.0)
(s3280 5.0)
(s3281 2.0)
(s3283 4.0)
(s3284 5.0)
(s3285 5.0)
(s3286 2.0)
(s3288 4.0)
(s3289 5.0)
(s3290 5.0)
(s3291 2.0)
(s3293 4.0)
(s3294 5.0)
(s3295 5.0)
(s3296 2.0)
(s3298 4.0)
(s3299 5.0)
(s3300 5.0)
(s3301 2.0)
(s3303 4.0)
(s3304 5.0)
(s3305 5.0)
(s3306 2.0)
(s3308 4.0)
(s3309 5.0)
(s3310 5.0)
(s3311 2.0)
(s3313 4.0)
(s3314 5.0)
(s3315 5.0)
(s3316 2.0)
(s3318 4.0)
(s3319 5.0)
(s3320 5.0)
(s3321 2.0)
(s3323 4.0)
(s3324 5.0)
(s3325 5.0)
(s3326 2.0)
(s3328 4.0)
(s3329 5.0)
(s3330 5.0)
(s3331 2.0)
(s3333 4.0)
(s3334 5.0)
(s3335 5.0)
(s3336 2.0)
(s3338 4.0)
(s3339 5.0)
(s3340 5.0)
(s3341 2.0)
(s3343 4.0)
(s3344 5.0)
(s3345 5.0)
(s3346 2.0)
(s3348 4.0)
(s3349 5.0)
(s3350 5.0)
(s3351 2.0)
(s3353 4.0)
(s3354 5.0)
(s3355 5.0)
(s3356 2.0)
(s3358 4.0)
(s3359 5.0)
(s3360 5.0)
(s3361 2.0)
(s3363 4.0)
(s3364 5.0)
(s3365 5.0)
(s3366 2.0)
(s3368 4.0)
(s3369 5.0)
(s3370 5.0)
(s3371 2.0)
(s3373 4.0)
(s3374 5.0)
(s3375 5.0)
(s3376 2.0)
(s3378 4.0)
(s3379 5.0)
(s3380 5.0)
(s3381 2.0)
(s3383 4.0)
(s3384 5.0)
(s3385 5.0)
(s3386 2.0)
(s3388 4.0)
(s3389 5.0)
(s3390 5.0)
(s3391 2.0)
(s3393 4.0)
(s3394 5.0)
(s3395 5.0)
(s3396 2.0)
(s3398 4.0)
(s3399 5.0)
(s3400 5.0)
(s3401 2.0)
(s3403 4.0)
(s3404 5.0)
(s3405 5.0)
(s3406 2.0)
(s3408 4.0)
(s3409 5.0)
(s3410 5.0)
(s3411 2.0)
(s3413 4.0)
(s3414 5.0)
(s3415 5.0)
(s3416 2.0)
(s3418 4.0)
(s3419 5.0)
(s3420 5.0)
(s3421 2.0)
(s3423 4.0)
(s3424 timeout
5.0)
(s3425 org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20115 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20076 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 44829ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 44885ms
[2024-05-23 23:36:11] [INFO ] Invariant cache hit.
[2024-05-23 23:36:12] [INFO ] Implicit Places using invariants in 904 ms returned []
[2024-05-23 23:36:12] [INFO ] Invariant cache hit.
[2024-05-23 23:36:15] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2024-05-23 23:36:16] [INFO ] Implicit Places using invariants and state equation in 3658 ms returned []
Implicit Place search using SMT with State Equation took 4563 ms to find 0 implicit places.
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:36:16] [INFO ] Invariant cache hit.
[2024-05-23 23:36:16] [INFO ] State equation strengthened by 1000 read => feed constraints.
Error getting values : (error "Error writing to Z3 solver: java.io.IOException: Broken pipe")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30072 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30089 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 64067ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 64118ms
Finished structural reductions in LTL mode , in 1 iterations and 113793 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Stuttering acceptance computed with spot in 81 ms :[(AND (NOT p1) (NOT p0)), (AND (NOT p1) (NOT p0))]
Running random walk in product with property : JoinFreeModules-PT-1000-LTLCardinality-13
Stuttering criterion allowed to conclude after 0 steps with 0 reset in 1 ms.
FORMULA JoinFreeModules-PT-1000-LTLCardinality-13 FALSE TECHNIQUES STUTTER_TEST
Treatment of property JoinFreeModules-PT-1000-LTLCardinality-13 finished in 113905 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202405141337/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(X((G(p0) U p1)))'
Support contains 3 out of 5000 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 199 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:37:20] [INFO ] Invariant cache hit.
[2024-05-23 23:37:20] [INFO ] State equation strengthened by 1000 read => feed constraints.
SMT process timed out in 23988ms, After SMT, problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 24045ms
[2024-05-23 23:37:44] [INFO ] Invariant cache hit.
[2024-05-23 23:37:45] [INFO ] Implicit Places using invariants in 820 ms returned []
[2024-05-23 23:37:45] [INFO ] Invariant cache hit.
[2024-05-23 23:37:48] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2024-05-23 23:37:49] [INFO ] Implicit Places using invariants and state equation in 3627 ms returned []
Implicit Place search using SMT with State Equation took 4451 ms to find 0 implicit places.
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:37:49] [INFO ] Invariant cache hit.
[2024-05-23 23:37:49] [INFO ] State equation strengthened by 1000 read => feed constraints.
Error getting values : (error "ParserException while parsing response: ((s0 5.0)
(s1 2.0)
(s3 4.0)
(s4 5.0)
(s5 5.0)
(s6 2.0)
(s8 4.0)
(s9 5.0)
(s10 5.0)
(s11 2.0)
(s13 4.0)
(s14 5.0)
(s15 5.0)
(s16 2.0)
(s18 4.0)
(s19 5.0)
(s20 5.0)
(s21 2.0)
(s23 4.0)
(s24 5.0)
(s25 5.0)
(s26 2.0)
(s28 4.0)
(s29 5.0)
(s30 5.0)
(s31 2.0)
(s33 4.0)
(s34 5.0)
(s35 5.0)
(s36 2.0)
(s38 4.0)
(s39 5.0)
(s40 5.0)
(s41 2.0)
(s43 4.0)
(s44 5.0)
(s45 5.0)
(s46 2.0)
(s48 4.0)
(s49 5.0)
(s50 5.0)
(s51 2.0)
(s53 4.0)
(s54 5.0)
(s55 5.0)
(s56 2.0)
(s58 4.0)
(s59 5.0)
(s60 5.0)
(s61 2.0)
(s63 4.0)
(s64 5.0)
(s65 5.0)
(s66 2.0)
(s68 4.0)
(s69 5.0)
(s70 5.0)
(s71 2.0)
(s73 4.0)
(s74 5.0)
(s75 5.0)
(s76 2.0)
(s78 4.0)
(s79 5.0)
(s80 5.0)
(s81 2.0)
(s83 4.0)
(s84 5.0)
(s85 5.0)
(s86 2.0)
(s88 4.0)
(s89 5.0)
(s90 5.0)
(s91 2.0)
(s93 4.0)
(s94 5.0)
(s95 5.0)
(s96 2.0)
(s98 4.0)
(s99 5.0)
(s100 5.0)
(s101 2.0)
(s103 4.0)
(s104 5.0)
(s105 5.0)
(s106 2.0)
(s108 4.0)
(s109 5.0)
(s110 5.0)
(s111 2.0)
(s113 4.0)
(s114 5.0)
(s115 5.0)
(s116 2.0)
(s118 4.0)
(s119 5.0)
(s120 5.0)
(s121 2.0)
(s123 4.0)
(s124 5.0)
(s125 5.0)
(s126 2.0)
(s128 4.0)
(s129 5.0)
(s130 5.0)
(s131 2.0)
(s133 4.0)
(s134 5.0)
(s135 5.0)
(s136 2.0)
(s138 4.0)
(s139 5.0)
(s140 5.0)
(s141 2.0)
(s143 4.0)
(s144 5.0)
(s145 5.0)
(s146 2.0)
(s148 4.0)
(s149 5.0)
(s150 5.0)
(s151 2.0)
(s153 4.0)
(s154 5.0)
(s155 5.0)
(s156 2.0)
(s158 4.0)
(s159 5.0)
(s160 5.0)
(s161 2.0)
(s163 4.0)
(s164 5.0)
(s165 5.0)
(s166 2.0)
(s168 4.0)
(s169 5.0)
(s170 5.0)
(s171 2.0)
(s173 4.0)
(s174 5.0)
(s175 5.0)
(s176 2.0)
(s178 4.0)
(s179 5.0)
(s180 5.0)
(s181 2.0)
(s183 4.0)
(s184 5.0)
(s185 5.0)
(s186 2.0)
(s188 4.0)
(s189 5.0)
(s190 5.0)
(s191 2.0)
(s193 4.0)
(s194 5.0)
(s195 5.0)
(s196 2.0)
(s198 4.0)
(s199 5.0)
(s200 5.0)
(s201 2.0)
(s203 4.0)
(s204 5.0)
(s205 5.0)
(s206 2.0)
(s208 4.0)
(s209 5.0)
(s210 5.0)
(s211 2.0)
(s213 4.0)
(s214 5.0)
(s215 5.0)
(s216 2.0)
(s218 4.0)
(s219 5.0)
(s220 5.0)
(s221 2.0)
(s223 4.0)
(s224 5.0)
(s225 5.0)
(s226 2.0)
(s228 4.0)
(s229 5.0)
(s230 5.0)
(s231 2.0)
(s233 4.0)
(s234 5.0)
(s235 5.0)
(s236 2.0)
(s238 4.0)
(s239 5.0)
(s240 5.0)
(s241 2.0)
(s243 4.0)
(s244 5.0)
(s245 5.0)
(s246 2.0)
(s248 4.0)
(s249 5.0)
(s250 5.0)
(s251 2.0)
(s253 4.0)
(s254 5.0)
(s255 5.0)
(s256 2.0)
(s258 4.0)
(s259 5.0)
(s260 5.0)
(s261 2.0)
(s263 4.0)
(s264 5.0)
(s265 5.0)
(s266 2.0)
(s268 4.0)
(s269 5.0)
(s270 5.0)
(s271 2.0)
(s273 4.0)
(s274 5.0)
(s275 5.0)
(s276 2.0)
(s278 4.0)
(s279 5.0)
(s280 5.0)
(s281 2.0)
(s283 4.0)
(s284 5.0)
(s285 5.0)
(s286 2.0)
(s288 4.0)
(s289 5.0)
(s290 5.0)
(s291 2.0)
(s293 4.0)
(s294 5.0)
(s295 5.0)
(s296 2.0)
(s298 4.0)
(s299 5.0)
(s300 5.0)
(s301 2.0)
(s303 4.0)
(s304 5.0)
(s305 5.0)
(s306 2.0)
(s308 4.0)
(s309 5.0)
(s310 5.0)
(s311 2.0)
(s313 4.0)
(s314 5.0)
(s315 5.0)
(s316 2.0)
(s318 4.0)
(s319 5.0)
(s320 5.0)
(s321 2.0)
(s323 4.0)
(s324 5.0)
(s325 5.0)
(s326 2.0)
(s328 4.0)
(s329 5.0)
(s330 5.0)
(s331 2.0)
(s333 4.0)
(s334 5.0)
(s335 5.0)
(s336 2.0)
(s338 4.0)
(s339 5.0)
(s340 5.0)
(s341 2.0)
(s343 4.0)
(s344 5.0)
(s345 5.0)
(s346 2.0)
(s348 4.0)
(s349 5.0)
(s350 5.0)
(s351 2.0)
(s353 4.0)
(s354 5.0)
(s355 5.0)
(s356 2.0)
(s358 4.0)
(s359 5.0)
(s360 5.0)
(s361 2.0)
(s363 4.0)
(s364 5.0)
(s365 5.0)
(s366 2.0)
(s368 4.0)
(s369 5.0)
(s370 5.0)
(s371 2.0)
(s373 4.0)
(s374 5.0)
(s375 5.0)
(s376 2.0)
(s378 4.0)
(s379 5.0)
(s380 5.0)
(s381 2.0)
(s383 4.0)
(s384 5.0)
(s385 5.0)
(s386 2.0)
(s388 4.0)
(s389 5.0)
(s390 5.0)
(s391 2.0)
(s393 4.0)
(s394 5.0)
(s395 5.0)
(s396 2.0)
(s398 4.0)
(s399 5.0)
(s400 5.0)
(s401 2.0)
(s403 4.0)
(s404 5.0)
(s405 5.0)
(s406 2.0)
(s408 4.0)
(s409 5.0)
(s410 5.0)
(s411 2.0)
(s413 4.0)
(s414 5.0)
(s415 5.0)
(s416 2.0)
(s418 4.0)
(s419 5.0)
(s420 5.0)
(s421 2.0)
(s423 4.0)
(s424 5.0)
(s425 5.0)
(s426 2.0)
(s428 4.0)
(s429 5.0)
(s430 5.0)
(s431 2.0)
(s433 4.0)
(s434 5.0)
(s435 5.0)
(s436 2.0)
(s438 4.0)
(s439 5.0)
(s440 5.0)
(s441 2.0)
(s443 4.0)
(s444 5.0)
(s445 5.0)
(s446 2.0)
(s448 4.0)
(s449 5.0)
(s450 5.0)
(s451 2.0)
(s453 4.0)
(s454 5.0)
(s455 5.0)
(s456 2.0)
(s458 4.0)
(s459 5.0)
(s460 5.0)
(s461 2.0)
(s463 4.0)
(s464 5.0)
(s465 5.0)
(s466 2.0)
(s468 4.0)
(s469 5.0)
(s470 5.0)
(s471 2.0)
(s473 4.0)
(s474 5.0)
(s475 5.0)
(s476 2.0)
(s478 4.0)
(s479 5.0)
(s480 5.0)
(s481 2.0)
(s483 4.0)
(s484 5.0)
(s485 5.0)
(s486 2.0)
(s488 4.0)
(s489 5.0)
(s490 5.0)
(s491 2.0)
(s493 4.0)
(s494 5.0)
(s495 5.0)
(s496 2.0)
(s498 4.0)
(s499 5.0)
(s500 5.0)
(s501 2.0)
(s503 4.0)
(s504 5.0)
(s505 5.0)
(s506 2.0)
(s508 4.0)
(s509 5.0)
(s510 5.0)
(s511 2.0)
(s513 4.0)
(s514 5.0)
(s515 5.0)
(s516 2.0)
(s518 4.0)
(s519 5.0)
(s520 5.0)
(s521 2.0)
(s523 4.0)
(s524 5.0)
(s525 5.0)
(s526 2.0)
(s528 4.0)
(s529 5.0)
(s530 5.0)
(s531 2.0)
(s533 4.0)
(s534 5.0)
(s535 5.0)
(s536 2.0)
(s538 4.0)
(s539 5.0)
(s540 5.0)
(s541 2.0)
(s543 4.0)
(s544 5.0)
(s545 5.0)
(s546 2.0)
(s548 4.0)
(s549 5.0)
(s550 5.0)
(s551 2.0)
(s553 4.0)
(s554 5.0)
(s555 5.0)
(s556 2.0)
(s558 4.0)
(s559 5.0)
(s560 5.0)
(s561 2.0)
(s563 4.0)
(s564 5.0)
(s565 5.0)
(s566 2.0)
(s568 4.0)
(s569 5.0)
(s570 5.0)
(s571 2.0)
(s573 4.0)
(s574 5.0)
(s575 5.0)
(s576 2.0)
(s578 4.0)
(s579 5.0)
(s580 5.0)
(s581 2.0)
(s583 4.0)
(s584 5.0)
(s585 5.0)
(s586 2.0)
(s588 4.0)
(s589 5.0)
(s590 5.0)
(s591 2.0)
(s593 4.0)
(s594 5.0)
(s595 5.0)
(s596 2.0)
(s598 4.0)
(s599 5.0)
(s600 5.0)
(s601 2.0)
(s603 4.0)
(s604 5.0)
(s605 5.0)
(s606 2.0)
(s608 4.0)
(s609 5.0)
(s610 5.0)
(s611 2.0)
(s613 4.0)
(s614 5.0)
(s615 5.0)
(s616 2.0)
(s618 4.0)
(s619 5.0)
(s620 5.0)
(s621 2.0)
(s623 4.0)
(s624 5.0)
(s625 5.0)
(s626 2.0)
(s628 4.0)
(s629 5.0)
(s630 5.0)
(s631 2.0)
(s633 4.0)
(s634 5.0)
(s635 5.0)
(s636 2.0)
(s638 4.0)
(s639 5.0)
(s640 5.0)
(s641 2.0)
(s643 4.0)
(s644 5.0)
(s645 5.0)
(s646 2.0)
(s648 4.0)
(s649 5.0)
(s650 5.0)
(s651 2.0)
(s653 4.0)
(s654 5.0)
(s655 5.0)
(s656 2.0)
(s658 4.0)
(s659 5.0)
(s660 5.0)
(s661 2.0)
(s663 4.0)
(s664 5.0)
(s665 5.0)
(s666 2.0)
(s668 4.0)
(s669 5.0)
(s670 5.0)
(s671 2.0)
(s673 4.0)
(s674 5.0)
(s675 5.0)
(s676 2.0)
(s678 4.0)
(s679 5.0)
(s680 5.0)
(s681 2.0)
(s683 4.0)
(s684 5.0)
(s685 5.0)
(s686 2.0)
(s688 4.0)
(s689 5.0)
(s690 5.0)
(s691 2.0)
(s693 4.0)
(s694 5.0)
(s695 5.0)
(s696 2.0)
(s698 4.0)
(s699 5.0)
(s700 5.0)
(s701 2.0)
(s703 4.0)
(s704 5.0)
(s705 5.0)
(s706 2.0)
(s708 4.0)
(s709 5.0)
(s710 5.0)
(s711 2.0)
(s713 4.0)
(s714 5.0)
(s715 5.0)
(s716 2.0)
(s718 4.0)
(s719 5.0)
(s720 5.0)
(s721 2.0)
(s723 4.0)
(s724 5.0)
(s725 5.0)
(s726 2.0)
(s728 4.0)
(s729 5.0)
(s730 5.0)
(s731 2.0)
(s733 4.0)
(s734 5.0)
(s735 5.0)
(s736 2.0)
(s738 4.0)
(s739 5.0)
(s740 5.0)
(s741 2.0)
(s743 4.0)
(s744 5.0)
(s745 5.0)
(s746 2.0)
(s748 4.0)
(s749 5.0)
(s750 5.0)
(s751 2.0)
(s753 4.0)
(s754 5.0)
(s755 5.0)
(s756 2.0)
(s758 4.0)
(s759 5.0)
(s760 5.0)
(s761 2.0)
(s763 4.0)
(s764 5.0)
(s765 5.0)
(s766 2.0)
(s768 4.0)
(s769 5.0)
(s770 5.0)
(s771 2.0)
(s773 4.0)
(s774 5.0)
(s775 5.0)
(s776 2.0)
(s778 4.0)
(s779 5.0)
(s780 5.0)
(s781 2.0)
(s783 4.0)
(s784 5.0)
(s785 5.0)
(s786 2.0)
(s788 4.0)
(s789 5.0)
(s790 5.0)
(s791 2.0)
(s793 4.0)
(s794 5.0)
(s795 5.0)
(s796 2.0)
(s798 4.0)
(s799 5.0)
(s800 5.0)
(s801 2.0)
(s803 4.0)
(s804 5.0)
(s805 5.0)
(s806 2.0)
(s808 4.0)
(s809 5.0)
(s810 5.0)
(s811 2.0)
(s813 4.0)
(s814 5.0)
(s815 5.0)
(s816 2.0)
(s818 4.0)
(s819 5.0)
(s820 5.0)
(s821 2.0)
(s823 4.0)
(s824 5.0)
(s825 5.0)
(s826 2.0)
(s828 4.0)
(s829 5.0)
(s830 5.0)
(s831 2.0)
(s833 4.0)
(s834 5.0)
(s835 5.0)
(s836 2.0)
(s838 4.0)
(s839 5.0)
(s840 5.0)
(s841 2.0)
(s843 4.0)
(s844 5.0)
(s845 5.0)
(s846 2.0)
(s848 4.0)
(s849 5.0)
(s850 5.0)
(s851 2.0)
(s853 4.0)
(s854 5.0)
(s855 5.0)
(s856 2.0)
(s858 4.0)
(s859 5.0)
(s860 5.0)
(s861 2.0)
(s863 4.0)
(s864 5.0)
(s865 5.0)
(s866 2.0)
(s868 4.0)
(s869 5.0)
(s870 5.0)
(s871 2.0)
(s873 4.0)
(s874 5.0)
(s875 5.0)
(s876 2.0)
(s878 4.0)
(s879 5.0)
(s880 5.0)
(s881 2.0)
(s883 4.0)
(s884 5.0)
(s885 5.0)
(s886 2.0)
(s888 4.0)
(s889 5.0)
(s890 5.0)
(s891 2.0)
(s893 4.0)
(s894 5.0)
(s895 5.0)
(s896 2.0)
(s898 4.0)
(s899 5.0)
(s900 5.0)
(s901 2.0)
(s903 4.0)
(s904 5.0)
(s905 5.0)
(s906 2.0)
(s908 4.0)
(s909 5.0)
(s910 5.0)
(s911 2.0)
(s913 4.0)
(s914 5.0)
(s915 5.0)
(s916 2.0)
(s918 4.0)
(s919 5.0)
(s920 5.0)
(s921 2.0)
(s923 4.0)
(s924 5.0)
(s925 5.0)
(s926 2.0)
(s928 4.0)
(s929 5.0)
(s930 5.0)
(s931 2.0)
(s933 4.0)
(s934 5.0)
(s935 5.0)
(s936 2.0)
(s938 4.0)
(s939 5.0)
(s940 5.0)
(s941 2.0)
(s943 4.0)
(s944 5.0)
(s945 5.0)
(s946 2.0)
(s948 4.0)
(s949 5.0)
(s950 5.0)
(s951 2.0)
(s953 4.0)
(s954 5.0)
(s955 5.0)
(s956 2.0)
(s958 4.0)
(s959 5.0)
(s960 5.0)
(s961 2.0)
(s963 4.0)
(s964 5.0)
(s965 5.0)
(s966 2.0)
(s968 4.0)
(s969 5.0)
(s970 5.0)
(s971 2.0)
(s973 4.0)
(s974 5.0)
(s975 5.0)
(s976 2.0)
(s978 4.0)
(s979 5.0)
(s980 5.0)
(s981 2.0)
(s983 4.0)
(s984 5.0)
(s985 5.0)
(s986 2.0)
(s988 4.0)
(s989 5.0)
(s990 5.0)
(s991 2.0)
(s993 4.0)
(s994 5.0)
(s995 5.0)
(s996 2.0)
(s998 4.0)
(s999 5.0)
(s1000 5.0)
(s1001 2.0)
(s1003 4.0)
(s1004 5.0)
(s1005 5.0)
(s1006 2.0)
(s1008 4.0)
(s1009 5.0)
(s1010 5.0)
(s1011 2.0)
(s1013 4.0)
(s1014 5.0)
(s1015 5.0)
(s1016 2.0)
(s1018 4.0)
(s1019 5.0)
(s1020 5.0)
(s1021 2.0)
(s1023 4.0)
(s1024 5.0)
(s1025 5.0)
(s1026 2.0)
(s1028 4.0)
(s1029 5.0)
(s1030 5.0)
(s1031 2.0)
(s1033 4.0)
(s1034 5.0)
(s1035 5.0)
(s1036 2.0)
(s1038 4.0)
(s1039 5.0)
(s1040 5.0)
(s1041 2.0)
(s1043 4.0)
(s1044 5.0)
(s1045 5.0)
(s1046 2.0)
(s1048 4.0)
(s1049 5.0)
(s1050 5.0)
(s1051 2.0)
(s1053 4.0)
(s1054 5.0)
(s1055 5.0)
(s1056 2.0)
(s1058 4.0)
(s1059 5.0)
(s1060 5.0)
(s1061 2.0)
(s1063 4.0)
(s1064 5.0)
(s1065 5.0)
(s1066 2.0)
(s1068 4.0)
(s1069 5.0)
(s1070 5.0)
(s1071 2.0)
(s1073 4.0)
(s1074 5.0)
(s1075 5.0)
(s1076 2.0)
(s1078 4.0)
(s1079 5.0)
(s1080 5.0)
(s1081 2.0)
(s1083 4.0)
(s1084 5.0)
(s1085 5.0)
(s1086 2.0)
(s1088 4.0)
(s1089 5.0)
(s1090 5.0)
(s1091 2.0)
(s1093 4.0)
(s1094 5.0)
(s1095 5.0)
(s1096 2.0)
(s1098 4.0)
(s1099 5.0)
(s1100 5.0)
(s1101 2.0)
(s1103 4.0)
(s1104 5.0)
(s1105 5.0)
(s1106 2.0)
(s1108 4.0)
(s1109 5.0)
(s1110 5.0)
(s1111 2.0)
(s1113 4.0)
(s1114 5.0)
(s1115 5.0)
(s1116 2.0)
(s1118 4.0)
(s1119 5.0)
(s1120 5.0)
(s1121 2.0)
(s1123 4.0)
(s1124 5.0)
(s1125 5.0)
(s1126 2.0)
(s1128 4.0)
(s1129 5.0)
(s1130 5.0)
(s1131 2.0)
(s1133 4.0)
(s1134 5.0)
(s1135 5.0)
(s1136 2.0)
(s1138 4.0)
(s1139 5.0)
(s1140 5.0)
(s1141 2.0)
(s1143 4.0)
(s1144 5.0)
(s1145 5.0)
(s1146 2.0)
(s1148 4.0)
(s1149 5.0)
(s1150 5.0)
(s1151 2.0)
(s1153 4.0)
(s1154 5.0)
(s1155 5.0)
(s1156 2.0)
(s1158 4.0)
(s1159 5.0)
(s1160 5.0)
(s1161 2.0)
(s1163 4.0)
(s1164 5.0)
(s1165 5.0)
(s1166 2.0)
(s1168 4.0)
(s1169 5.0)
(s1170 5.0)
(s1171 2.0)
(s1173 4.0)
(s1174 5.0)
(s1175 5.0)
(s1176 2.0)
(s1178 4.0)
(s1179 5.0)
(s1180 5.0)
(s1181 2.0)
(s1183 4.0)
(s1184 5.0)
(s1185 5.0)
(s1186 2.0)
(s1188 4.0)
(s1189 5.0)
(s1190 5.0)
(s1191 2.0)
(s1193 4.0)
(s1194 5.0)
(s1195 5.0)
(s1196 2.0)
(s1198 4.0)
(s1199 5.0)
(s1200 5.0)
(s1201 2.0)
(s1203 4.0)
(s1204 5.0)
(s1205 5.0)
(s1206 2.0)
(s1208 4.0)
(s1209 5.0)
(s1210 5.0)
(s1211 2.0)
(s1213 4.0)
(s1214 5.0)
(s1215 5.0)
(s1216 2.0)
(s1218 4.0)
(s1219 5.0)
(s1220 5.0)
(s1221 2.0)
(s1223 4.0)
(s1224 5.0)
(s1225 5.0)
(s1226 2.0)
(s1228 4.0)
(s1229 5.0)
(s1230 5.0)
(s1231 2.0)
(s1233 4.0)
(s1234 5.0)
(s1235 5.0)
(s1236 2.0)
(s1238 4.0)
(s1239 5.0)
(s1240 5.0)
(s1241 2.0)
(s1243 4.0)
(s1244 5.0)
(s1245 5.0)
(s1246 2.0)
(s1248 4.0)
(s1249 5.0)
(s1250 5.0)
(s1251 2.0)
(s1253 4.0)
(s1254 5.0)
(s1255 5.0)
(s1256 2.0)
(s1258 4.0)
(s1259 5.0)
(s1260 5.0)
(s1261 2.0)
(s1263 4.0)
(s1264 5.0)
(s1265 5.0)
(s1266 2.0)
(s1268 4.0)
(s1269 5.0)
(s1270 5.0)
(s1271 2.0)
(s1273 4.0)
(s1274 5.0)
(s1275 5.0)
(s1276 2.0)
(s1278 4.0)
(s1279 5.0)
(s1280 5.0)
(s1281 2.0)
(s1283 4.0)
(s1284 5.0)
(s1285 5.0)
(s1286 2.0)
(s1288 4.0)
(s1289 5.0)
(s1290 5.0)
(s1291 2.0)
(s1293 4.0)
(s1294 5.0)
(s1295 5.0)
(s1296 2.0)
(s1298 4.0)
(s1299 5.0)
(s1300 5.0)
(s1301 2.0)
(s1303 4.0)
(s1304 5.0)
(s1305 5.0)
(s1306 2.0)
(s1308 4.0)
(s1309 5.0)
(s1310 5.0)
(s1311 2.0)
(s1313 4.0)
(s1314 5.0)
(s1315 5.0)
(s1316 2.0)
(s1318 4.0)
(s1319 5.0)
(s1320 5.0)
(s1321 2.0)
(s1323 4.0)
(s1324 5.0)
(s1325 5.0)
(s1326 2.0)
(s1328 4.0)
(s1329 5.0)
(s1330 5.0)
(s1331 2.0)
(s1333 4.0)
(s1334 5.0)
(s1335 5.0)
(s1336 2.0)
(s1338 4.0)
(s1339 5.0)
(s1340 5.0)
(s1341 2.0)
(s1343 4.0)
(s1344 5.0)
(s1345 5.0)
(s1346 2.0)
(s1348 4.0)
(s1349 5.0)
(s1350 5.0)
(s1351 2.0)
(s1353 4.0)
(s1354 5.0)
(s1355 5.0)
(s1356 2.0)
(s1358 4.0)
(s1359 5.0)
(s1360 5.0)
(s1361 2.0)
(s1363 4.0)
(s1364 5.0)
(s1365 5.0)
(s1366 2.0)
(s1368 4.0)
(s1369 5.0)
(s1370 5.0)
(s1371 2.0)
(s1373 4.0)
(s1374 5.0)
(s1375 5.0)
(s1376 2.0)
(s1378 4.0)
(s1379 5.0)
(s1380 5.0)
(s1381 2.0)
(s1383 4.0)
(s1384 5.0)
(s1385 5.0)
(s1386 2.0)
(s1388 4.0)
(s1389 5.0)
(s1390 5.0)
(s1391 2.0)
(s1393 4.0)
(s1394 5.0)
(s1395 5.0)
(s1396 2.0)
(s1398 4.0)
(s1399 5.0)
(s1400 5.0)
(s1401 2.0)
(s1403 4.0)
(s1404 5.0)
(s1405 5.0)
(s1406 2.0)
(s1408 4.0)
(s1409 5.0)
(s1410 5.0)
(s1411 2.0)
(s1413 4.0)
(s1414 5.0)
(s1415 5.0)
(s1416 2.0)
(s1418 4.0)
(s1419 5.0)
(s1420 5.0)
(s1421 2.0)
(s1423 4.0)
(s1424 5.0)
(s1425 5.0)
(s1426 2.0)
(s1428 4.0)
(s1429 5.0)
(s1430 5.0)
(s1431 2.0)
(s1433 4.0)
(s1434 5.0)
(s1435 5.0)
(s1436 2.0)
(s1438 4.0)
(s1439 5.0)
(s1440 5.0)
(s1441 2.0)
(s1443 4.0)
(s1444 5.0)
(s1445 5.0)
(s1446 2.0)
(s1448 4.0)
(s1449 5.0)
(s1450 5.0)
(s1451 2.0)
(s1453 4.0)
(s1454 5.0)
(s1455 5.0)
(s1456 2.0)
(s1458 4.0)
(s1459 5.0)
(s1460 5.0)
(s1461 2.0)
(s1463 4.0)
(s1464 5.0)
(s1465 5.0)
(s1466 2.0)
(s1468 4.0)
(s1469 5.0)
(s1470 5.0)
(s1471 2.0)
(s1473 4.0)
(s1474 5.0)
(s1475 5.0)
(s1476 2.0)
(s1478 4.0)
(s1479 5.0)
(s1480 5.0)
(s1481 2.0)
(s1483 4.0)
(s1484 5.0)
(s1485 5.0)
(s1486 2.0)
(s1488 4.0)
(s1489 5.0)
(s1490 5.0)
(s1491 2.0)
(s1493 4.0)
(s1494 5.0)
(s1495 5.0)
(s1496 2.0)
(s1498 4.0)
(s1499 5.0)
(s1500 5.0)
(s1501 2.0)
(s1503 4.0)
(s1504 5.0)
(s1505 5.0)
(s1506 2.0)
(s1508 4.0)
(s1509 5.0)
(s1510 5.0)
(s1511 2.0)
(s1513 4.0)
(s1514 5.0)
(s1515 5.0)
(s1516 2.0)
(s1518 4.0)
(s1519 5.0)
(s1520 5.0)
(s1521 2.0)
(s1523 4.0)
(s1524 5.0)
(s1525 5.0)
(s1526 2.0)
(s1528 4.0)
(s1529 5.0)
(s1530 5.0)
(s1531 2.0)
(s1533 4.0)
(s1534 5.0)
(s1535 5.0)
(s1536 2.0)
(s1538 4.0)
(s1539 5.0)
(s1540 5.0)
(s1541 2.0)
(s1543 4.0)
(s1544 5.0)
(s1545 5.0)
(s1546 2.0)
(s1548 4.0)
(s1549 5.0)
(s1550 5.0)
(s1551 2.0)
(s1553 4.0)
(s1554 5.0)
(s1555 5.0)
(s1556 2.0)
(s1558 4.0)
(s1559 5.0)
(s1560 5.0)
(s1561 2.0)
(s1563 4.0)
(s1564 5.0)
(s1565 5.0)
(s1566 2.0)
(s1568 4.0)
(s1569 5.0)
(s1570 5.0)
(s1571 2.0)
(s1573 4.0)
(s1574 5.0)
(s1575 5.0)
(s1576 2.0)
(s1578 4.0)
(s1579 5.0)
(s1580 5.0)
(s1581 2.0)
(s1583 4.0)
(s1584 5.0)
(s1585 5.0)
(s1586 2.0)
(s1588 4.0)
(s1589 5.0)
(s1590 5.0)
(s1591 2.0)
(s1593 4.0)
(s1594 5.0)
(s1595 5.0)
(s1596 2.0)
(s1598 4.0)
(s1599 5.0)
(s1600 5.0)
(s1601 2.0)
(s1603 4.0)
(s1604 5.0)
(s1605 5.0)
(s1606 2.0)
(s1608 4.0)
(s1609 5.0)
(s1610 5.0)
(s1611 2.0)
(s1613 4.0)
(s1614 5.0)
(s1615 5.0)
(s1616 2.0)
(s1618 4.0)
(s1619 5.0)
(s1620 5.0)
(s1621 2.0)
(s1623 4.0)
(s1624 5.0)
(s1625 5.0)
(s1626 2.0)
(s1628 4.0)
(s1629 5.0)
(s1630 5.0)
(s1631 2.0)
(s1633 4.0)
(s1634 5.0)
(s1635 5.0)
(s1636 2.0)
(s1638 4.0)
(s1639 5.0)
(s1640 5.0)
(s1641 2.0)
(s1643 4.0)
(s1644 5.0)
(s1645 5.0)
(s1646 2.0)
(s1648 4.0)
(s1649 5.0)
(s1650 5.0)
(s1651 2.0)
(s1653 4.0)
(s1654 5.0)
(s1655 5.0)
(s1656 2.0)
(s1658 4.0)
(s1659 5.0)
(s1660 5.0)
(s1661 2.0)
(s1663 4.0)
(s1664 5.0)
(s1665 5.0)
(s1666 2.0)
(s1668 4.0)
(s1669 5.0)
(s1670 5.0)
(s1671 2.0)
(s1673 4.0)
(s1674 5.0)
(s1675 5.0)
(s1676 2.0)
(s1678 4.0)
(s1679 5.0)
(s1680 5.0)
(s1681 2.0)
(s1683 4.0)
(s1684 5.0)
(s1685 5.0)
(s1686 2.0)
(s1688 4.0)
(s1689 5.0)
(s1690 5.0)
(s1691 2.0)
(s1693 4.0)
(s1694 5.0)
(s1695 5.0)
(s1696 2.0)
(s1698 4.0)
(s1699 5.0)
(s1700 5.0)
(s1701 2.0)
(s1703 4.0)
(s1704 5.0)
(s1705 5.0)
(s1706 2.0)
(s1708 4.0)
(s1709 5.0)
(s1710 5.0)
(s1711 2.0)
(s1713 4.0)
(s1714 5.0)
(s1715 5.0)
(s1716 2.0)
(s1718 4.0)
(s1719 5.0)
(s1720 5.0)
(s1721 2.0)
(s1723 4.0)
(s1724 5.0)
(s1725 5.0)
(s1726 2.0)
(s1728 4.0)
(s1729 5.0)
(s1730 5.0)
(s1731 2.0)
(s1733 4.0)
(s1734 5.0)
(s1735 5.0)
(s1736 2.0)
(s1738 4.0)
(s1739 5.0)
(s1740 5.0)
(s1741 2.0)
(s1743 4.0)
(s1744 5.0)
(s1745 5.0)
(s1746 2.0)
(s1748 4.0)
(s1749 5.0)
(s1750 5.0)
(s1751 2.0)
(s1753 4.0)
(s1754 5.0)
(s1755 5.0)
(s1756 2.0)
(s1758 4.0)
(s1759 5.0)
(s1760 5.0)
(s1761 2.0)
(s1763 4.0)
(s1764 5.0)
(s1765 5.0)
(s1766 2.0)
(s1768 4.0)
(s1769 5.0)
(s1770 5.0)
(s1771 2.0)
(s1773 4.0)
(s1774 5.0)
(s1775 5.0)
(s1776 2.0)
(s1778 4.0)
(s1779 5.0)
(s1780 5.0)
(s1781 2.0)
(s1783 4.0)
(s1784 5.0)
(s1785 5.0)
(s1786 2.0)
(s1788 4.0)
(s1789 5.0)
(s1790 5.0)
(s1791 2.0)
(s1793 4.0)
(s1794 5.0)
(s1795 5.0)
(s1796 2.0)
(s1798 4.0)
(s1799 5.0)
(s1800 5.0)
(s1801 2.0)
(s1803 4.0)
(s1804 5.0)
(s1805 5.0)
(s1806 2.0)
(s1808 4.0)
(s1809 5.0)
(s1810 5.0)
(s1811 2.0)
(s1813 4.0)
(s1814 5.0)
(s1815 5.0)
(s1816 2.0)
(s1818 4.0)
(s1819 5.0)
(s1820 5.0)
(s1821 2.0)
(s1823 4.0)
(s1824 5.0)
(s1825 5.0)
(s1826 2.0)
(s1828 4.0)
(s1829 5.0)
(s1830 5.0)
(s1831 2.0)
(s1833 4.0)
(s1834 5.0)
(s1835 5.0)
(s1836 2.0)
(s1838 4.0)
(s1839 5.0)
(s1840 5.0)
(s1841 2.0)
(s1843 4.0)
(s1844 5.0)
(s1845 5.0)
(s1846 2.0)
(s1848 4.0)
(s1849 5.0)
(s1850 5.0)
(s1851 2.0)
(s1853 4.0)
(s1854 5.0)
(s1855 5.0)
(s1856 2.0)
(s1858 4.0)
(s1859 5.0)
(s1860 5.0)
(s1861 2.0)
(s1863 4.0)
(s1864 5.0)
(s1865 5.0)
(s1866 2.0)
(s1868 4.0)
(s1869 5.0)
(s1870 5.0)
(s1871 2.0)
(s1873 4.0)
(s1874 5.0)
(s1875 5.0)
(s1876 2.0)
(s1878 4.0)
(s1879 5.0)
(s1880 5.0)
(s1881 2.0)
(s1883 4.0)
(s1884 5.0)
(s1885 5.0)
(s1886 2.0)
(s1888 4.0)
(s1889 5.0)
(s1890 5.0)
(s1891 2.0)
(s1893 4.0)
(s1894 5.0)
(s1895 5.0)
(s1896 2.0)
(s1898 4.0)
(s1899 5.0)
(s1900 5.0)
(s1901 2.0)
(s1903 4.0)
(s1904 5.0)
(s1905 5.0)
(s1906 2.0)
(s1908 4.0)
(s1909 5.0)
(s1910 5.0)
(s1911 2.0)
(s1913 4.0)
(s1914 5.0)
(s1915 5.0)
(s1916 2.0)
(s1918 4.0)
(s1919 5.0)
(s1920 5.0)
(s1921 2.0)
(s1923 4.0)
(s1924 5.0)
(s1925 5.0)
(s1926 2.0)
(s1928 4.0)
(s1929 5.0)
(s1930 5.0)
(s1931 2.0)
(s1933 4.0)
(s1934 5.0)
(s1935 5.0)
(s1936 2.0)
(s1938 4.0)
(s1939 5.0)
(s1940 5.0)
(s1941 2.0)
(s1943 4.0)
(s1944 5.0)
(s1945 5.0)
(s1946 2.0)
(s1948 4.0)
(s1949 5.0)
(s1950 5.0)
(s1951 2.0)
(s1953 4.0)
(s1954 5.0)
(s1955 5.0)
(s1956 2.0)
(s1958 4.0)
(s1959 5.0)
(s1960 5.0)
(s1961 2.0)
(s1963 4.0)
(s1964 5.0)
(s1965 5.0)
(s1966 2.0)
(s1968 4.0)
(s1969 5.0)
(s1970 5.0)
(s1971 2.0)
(s1973 4.0)
(s1974 5.0)
(s1975 5.0)
(s1976 2.0)
(s1978 4.0)
(s1979 5.0)
(s1980 5.0)
(s1981 2.0)
(s1983 4.0)
(s1984 5.0)
(s1985 5.0)
(s1986 2.0)
(s1988 4.0)
(s1989 5.0)
(s1990 5.0)
(s1991 2.0)
(s1993 4.0)
(s1994 5.0)
(s1995 5.0)
(s1996 2.0)
(s1998 4.0)
(s1999 5.0)
(s2000 5.0)
(s2001 2.0)
(s2003 4.0)
(s2004 5.0)
(s2005 5.0)
(s2006 2.0)
(s2008 4.0)
(s2009 5.0)
(s2010 5.0)
(s2011 2.0)
(s2013 4.0)
(s2014 5.0)
(s2015 5.0)
(s2016 2.0)
(s2018 4.0)
(s2019 5.0)
(s2020 5.0)
(s2021 2.0)
(s2023 4.0)
(s2024 5.0)
(s2025 5.0)
(s2026 2.0)
(s2028 4.0)
(s2029 5.0)
(s2030 5.0)
(s2031 2.0)
(s2033 4.0)
(s2034 5.0)
(s2035 5.0)
(s2036 2.0)
(s2038 4.0)
(s2039 5.0)
(s2040 5.0)
(s2041 2.0)
(s2043 4.0)
(s2044 5.0)
(s2045 5.0)
(s2046 2.0)
(s2048 4.0)
(s2049 5.0)
(s2050 5.0)
(s2051 2.0)
(s2053 4.0)
(s2054 5.0)
(s2055 5.0)
(s2056 2.0)
(s2058 4.0)
(s2059 5.0)
(s2060 5.0)
(s2061 2.0)
(s2063 4.0)
(s2064 5.0)
(s2065 5.0)
(s2066 2.0)
(s2068 4.0)
(s2069 5.0)
(s2070 5.0)
(s2071 2.0)
(s2073 4.0)
(s2074 5.0)
(s2075 5.0)
(s2076 2.0)
(s2078 4.0)
(s2079 5.0)
(s2080 5.0)
(s2081 2.0)
(s2083 4.0)
(s2084 5.0)
(s2085 5.0)
(s2086 2.0)
(s2088 4.0)
(s2089 5.0)
(s2090 5.0)
(s2091 2.0)
(s2093 4.0)
(s2094 5.0)
(s2095 5.0)
(s2096 2.0)
(s2098 4.0)
(s2099 5.0)
(s2100 5.0)
(s2101 2.0)
(s2103 4.0)
(s2104 5.0)
(s2105 5.0)
(s2106 2.0)
(s2108 4.0)
(s2109 5.0)
(s2110 5.0)
(s2111 2.0)
(s2113 4.0)
(s2114 5.0)
(s2115 5.0)
(s2116 2.0)
(s2118 4.0)
(s2119 5.0)
(s2120 5.0)
(s2121 2.0)
(s2123 4.0)
(s2124 5.0)
(s2125 5.0)
(s2126 2.0)
(s2128 4.0)
(s2129 5.0)
(s2130 5.0)
(s2131 2.0)
(s2133 4.0)
(s2134 5.0)
(s2135 5.0)
(s2136 2.0)
(s2138 4.0)
(s2139 5.0)
(s2140 5.0)
(s2141 2.0)
(s2143 4.0)
(s2144 5.0)
(s2145 5.0)
(s2146 2.0)
(s2148 4.0)
(s2149 5.0)
(s2150 5.0)
(s2151 2.0)
(s2153 4.0)
(s2154 5.0)
(s2155 5.0)
(s2156 2.0)
(s2158 4.0)
(s2159 5.0)
(s2160 5.0)
(s2161 2.0)
(s2163 4.0)
(s2164 5.0)
(s2165 5.0)
(s2166 2.0)
(s2168 4.0)
(s2169 5.0)
(s2170 5.0)
(s2171 2.0)
(s2173 4.0)
(s2174 5.0)
(s2175 5.0)
(s2176 2.0)
(s2178 4.0)
(s2179 5.0)
(s2180 5.0)
(s2181 2.0)
(s2183 4.0)
(s2184 5.0)
(s2185 5.0)
(s2186 2.0)
(s2188 4.0)
(s2189 5.0)
(s2190 5.0)
(s2191 2.0)
(s2193 4.0)
(s2194 5.0)
(s2195 5.0)
(s2196 2.0)
(s2198 4.0)
(s2199 5.0)
(s2200 5.0)
(s2201 2.0)
(s2203 4.0)
(s2204 5.0)
(s2205 5.0)
(s2206 2.0)
(s2208 4.0)
(s2209 5.0)
(s2210 5.0)
(s2211 2.0)
(s2213 4.0)
(s2214 5.0)
(s2215 5.0)
(s2216 2.0)
(s2218 4.0)
(s2219 5.0)
(s2220 5.0)
(s2221 2.0)
(s2223 4.0)
(s2224 5.0)
(s2225 5.0)
(s2226 2.0)
(s2228 4.0)
(s2229 5.0)
(s2230 5.0)
(s2231 2.0)
(s2233 4.0)
(s2234 5.0)
(s2235 5.0)
(s2236 2.0)
(s2238 4.0)
(s2239 5.0)
(s2240 5.0)
(s2241 2.0)
(s2243 4.0)
(s2244 5.0)
(s2245 5.0)
(s2246 2.0)
(s2248 4.0)
(s2249 5.0)
(s2250 5.0)
(s2251 2.0)
(s2253 4.0)
(s2254 5.0)
(s2255 5.0)
(s2256 2.0)
(s2258 4.0)
(s2259 5.0)
(s2260 5.0)
(s2261 2.0)
(s2263 4.0)
(s2264 5.0)
(s2265 5.0)
(s2266 2.0)
(s2268 4.0)
(s2269 5.0)
(s2270 5.0)
(s2271 2.0)
(s2273 4.0)
(s2274 5.0)
(s2275 5.0)
(s2276 2.0)
(s2278 4.0)
(s2279 5.0)
(s2280 5.0)
(s2281 2.0)
(s2283 4.0)
(s2284 5.0)
(s2285 5.0)
(s2286 2.0)
(s2288 4.0)
(s2289 5.0)
(s2290 5.0)
(s2291 2.0)
(s2293 4.0)
(s2294 5.0)
(s2295 5.0)
(s2296 2.0)
(s2298 4.0)
(s2299 5.0)
(s2300 5.0)
(s2301 2.0)
(s2303 4.0)
(s2304 5.0)
(s2305 5.0)
(s2306 2.0)
(s2308 4.0)
(s2309 5.0)
(s2310 5.0)
(s2311 2.0)
(s2313 4.0)
(s2314 5.0)
(s2315 5.0)
(s2316 2.0)
(s2318 4.0)
(s2319 5.0)
(s2320 5.0)
(s2321 2.0)
(s2323 4.0)
(s2324 5.0)
(s2325 5.0)
(s2326 2.0)
(s2328 4.0)
(s2329 5.0)
(s2330 5.0)
(s2331 2.0)
(s2333 4.0)
(s2334 5.0)
(s2335 5.0)
(s2336 2.0)
(s2338 4.0)
(s2339 5.0)
(s2340 5.0)
(s2341 2.0)
(s2343 4.0)
(s2344 5.0)
(s2345 5.0)
(s2346 2.0)
(s2348 4.0)
(s2349 5.0)
(s2350 5.0)
(s2351 2.0)
(s2353 4.0)
(s2354 5.0)
(s2355 5.0)
(s2356 2.0)
(s2358 4.0)
(s2359 5.0)
(s2360 5.0)
(s2361 2.0)
(s2363 4.0)
(s2364 5.0)
(s2365 5.0)
(s2366 2.0)
(s2368 4.0)
(s2369 5.0)
(s2370 5.0)
(s2371 2.0)
(s2373 4.0)
(s2374 5.0)
(s2375 5.0)
(s2376 2.0)
(s2378 4.0)
(s2379 5.0)
(s2380 5.0)
(s2381 2.0)
(s2383 4.0)
(s2384 5.0)
(s2385 5.0)
(s2386 2.0)
(s2388 4.0)
(s2389 5.0)
(s2390 5.0)
(s2391 2.0)
(s2393 4.0)
(s2394 5.0)
(s2395 5.0)
(s2396 2.0)
(s2398 4.0)
(s2399 5.0)
(s2400 5.0)
(s2401 2.0)
(s2403 4.0)
(s2404 5.0)
(s2405 5.0)
(s2406 2.0)
(s2408 4.0)
(s2409 5.0)
(s2410 5.0)
(s2411 2.0)
(s2413 4.0)
(s2414 5.0)
(s2415 5.0)
(s2416 2.0)
(s2418 4.0)
(s2419 5.0)
(s2420 5.0)
(s2421 2.0)
(s2423 4.0)
(s2424 5.0)
(s2425 5.0)
(s2426 2.0)
(s2428 4.0)
(s2429 5.0)
(s2430 5.0)
(s2431 2.0)
(s2433 4.0)
(s2434 5.0)
(s2435 5.0)
(s2436 2.0)
(s2438 4.0)
(s2439 5.0)
(s2440 5.0)
(s2441 2.0)
(s2443 4.0)
(s2444 5.0)
(s2445 5.0)
(s2446 2.0)
(s2448 4.0)
(s2449 5.0)
(s2450 5.0)
(s2451 2.0)
(s2453 4.0)
(s2454 5.0)
(s2455 5.0)
(s2456 2.0)
(s2458 4.0)
(s2459 5.0)
(s2460 5.0)
(s2461 2.0)
(s2463 4.0)
(s2464 5.0)
(s2465 5.0)
(s2466 2.0)
(s2468 4.0)
(s2469 5.0)
(s2470 5.0)
(s2471 2.0)
(s2473 4.0)
(s2474 5.0)
(s2475 5.0)
(s2476 2.0)
(s2478 4.0)
(s2479 5.0)
(s2480 5.0)
(s2481 2.0)
(s2483 4.0)
(s2484 5.0)
(s2485 5.0)
(s2486 2.0)
(s2488 4.0)
(s2489 5.0)
(s2490 5.0)
(s2491 2.0)
(s2493 4.0)
(s2494 5.0)
(s2495 5.0)
(s2496 2.0)
(s2498 4.0)
(s2499 5.0)
(s2500 5.0)
(s2501 2.0)
(s2503 4.0)
(s2504 5.0)
(s2505 5.0)
(s2506 2.0)
(s2508 4.0)
(s2509 5.0)
(s2510 5.0)
(s2511 2.0)
(s2513 4.0)
(s2514 5.0)
(s2515 5.0)
(s2516 2.0)
(s2518 4.0)
(s2519 5.0)
(s2520 5.0)
(s2521 2.0)
(s2523 4.0)
(s2524 5.0)
(s2525 5.0)
(s2526 2.0)
(s2528 4.0)
(s2529 5.0)
(s2530 5.0)
(s2531 2.0)
(s2533 4.0)
(s2534 5.0)
(s2535 5.0)
(s2536 2.0)
(s2538 4.0)
(s2539 5.0)
(s2540 5.0)
(s2541 2.0)
(s2543 4.0)
(s2544 5.0)
(s2545 5.0)
(s2546 2.0)
(s2548 4.0)
(s2549 5.0)
(s2550 5.0)
(s2551 2.0)
(s2553 4.0)
(s2554 5.0)
(s2555 5.0)
(s2556 2.0)
(s2558 4.0)
(s2559 5.0)
(s2560 5.0)
(s2561 2.0)
(s2563 4.0)
(s2564 5.0)
(s2565 5.0)
(s2566 2.0)
(s2568 4.0)
(s2569 5.0)
(s2570 5.0)
(s2571 2.0)
(s2573 4.0)
(s2574 5.0)
(s2575 5.0)
(s2576 2.0)
(s2578 4.0)
(s2579 5.0)
(s2580 5.0)
(s2581 2.0)
(s2583 4.0)
(s2584 5.0)
(s2585 5.0)
(s2586 2.0)
(s2588 4.0)
(s2589 5.0)
(s2590 5.0)
(s2591 2.0)
(s2593 4.0)
(s2594 5.0)
(s2595 5.0)
(s2596 2.0)
(s2598 4.0)
(s2599 5.0)
(s2600 5.0)
(s2601 2.0)
(s2603 4.0)
(s2604 5.0)
(s2605 5.0)
(s2606 2.0)
(s2608 4.0)
(s2609 5.0)
(s2610 5.0)
(s2611 2.0)
(s2613 4.0)
(s2614 5.0)
(s2615 5.0)
(s2616 2.0)
(s2618 4.0)
(s2619 5.0)
(s2620 5.0)
(s2621 2.0)
(s2623 4.0)
(s2624 5.0)
(s2625 5.0)
(s2626 2.0)
(s2628 4.0)
(s2629 5.0)
(s2630 5.0)
(s2631 2.0)
(s2633 4.0)
(s2634 5.0)
(s2635 5.0)
(s2636 2.0)
(s2638 4.0)
(s2639 5.0)
(s2640 5.0)
(s2641 2.0)
(s2643 4.0)
(s2644 5.0)
(s2645 5.0)
(s2646 2.0)
(s2648 4.0)
(s2649 5.0)
(s2650 5.0)
(s2651 2.0)
(s2653 4.0)
(s2654 5.0)
(s2655 5.0)
(s2656 2.0)
(s2658 4.0)
(s2659 5.0)
(s2660 5.0)
(s2661 2.0)
(s2663 4.0)
(s2664 5.0)
(s2665 5.0)
(s2666 2.0)
(s2668 4.0)
(s2669 5.0)
(s2670 5.0)
(s2671 2.0)
(s2673 4.0)
(s2674 5.0)
(s2675 5.0)
(s2676 2.0)
(s2678 4.0)
(s2679 5.0)
(s2680 5.0)
(s2681 2.0)
(s2683 4.0)
(s2684 5.0)
(s2685 5.0)
(s2686 2.0)
(s2688 4.0)
(s2689 5.0)
(s2690 5.0)
(s2691 2.0)
(s2693 4.0)
(s2694 5.0)
(s2695 5.0)
(s2696 2.0)
(s2698 4.0)
(s2699 5.0)
(s2700 5.0)
(s2701 2.0)
(s2703 4.0)
(s2704 5.0)
(s2705 5.0)
(s2706 2.0)
(s2708 4.0)
(s2709 5.0)
(s2710 5.0)
(s2711 2.0)
(s2713 4.0)
(s2714 5.0)
(s2715 5.0)
(s2716 2.0)
(s2718 4.0)
(s2719 5.0)
(s2720 5.0)
(s2721 2.0)
(s2723 4.0)
(s2724 5.0)
(s2725 5.0)
(s2726 2.0)
(s2728 4.0)
(s2729 5.0)
(s2730 5.0)
(s2731 2.0)
(s2733 4.0)
(s2734 5.0)
(s2735 5.0)
(s2736 2.0)
(s2738 4.0)
(s2739 5.0)
(s2740 5.0)
(s2741 2.0)
(s2743 4.0)
(s2744 5.0)
(s2745 5.0)
(s2746 2.0)
(s2748 4.0)
(s2749 5.0)
(s2750 5.0)
(s2751 2.0)
(s2753 4.0)
(s2754 5.0)
(s2755 5.0)
(s2756 2.0)
(s2758 4.0)
(s2759 5.0)
(s2760 5.0)
(s2761 2.0)
(s2763 4.0)
(s2764 5.0)
(s2765 5.0)
(s2766 2.0)
(s2768 4.0)
(s2769 5.0)
(s2770 5.0)
(s2771 2.0)
(s2773 4.0)
(s2774 5.0)
(s2775 5.0)
(s2776 2.0)
(s2778 4.0)
(s2779 5.0)
(s2780 5.0)
(s2781 2.0)
(s2783 4.0)
(s2784 5.0)
(s2785 5.0)
(s2786 2.0)
(s2788 4.0)
(s2789 5.0)
(s2790 5.0)
(s2791 2.0)
(s2793 4.0)
(s2794 5.0)
(s2795 5.0)
(s2796 2.0)
(s2798 4.0)
(s2799 5.0)
(s2800 5.0)
(s2801 2.0)
(s2803 4.0)
(s2804 5.0)
(s2805 5.0)
(s2806 2.0)
(s2808 4.0)
(s2809 5.0)
(s2810 5.0)
(s2811 2.0)
(s2813 4.0)
(s2814 5.0)
(s2815 5.0)
(s2816 2.0)
(s2818 4.0)
(s2819 5.0)
(s2820 5.0)
(s2821 2.0)
(s2823 4.0)
(s2824 5.0)
(s2825 5.0)
(s2826 2.0)
(s2828 4.0)
(s2829 5.0)
(s2830 5.0)
(s2831 2.0)
(s2833 4.0)
(s2834 5.0)
(s2835 5.0)
(s2836 2.0)
(s2838 4.0)
(s2839 5.0)
(s2840 5.0)
(s2841 2.0)
(s2843 4.0)
(s2844 5.0)
(s2845 5.0)
(s2846 2.0)
(s2848 4.0)
(s2849 5.0)
(s2850 5.0)
(s2851 2.0)
(s2853 4.0)
(s2854 5.0)
(s2855 5.0)
(s2856 2.0)
(s2858 4.0)
(s2859 5.0)
(s2860 5.0)
(s2861 2.0)
(s2863 4.0)
(s2864 5.0)
(s2865 5.0)
(s2866 2.0)
(s2868 4.0)
(s2869 5.0)
(s2870 5.0)
(s2871 2.0)
(s2873 4.0)
(s2874 5.0)
(s2875 5.0)
(s2876 2.0)
(s2878 4.0)
(s2879 5.0)
(s2880 5.0)
(s2881 2.0)
(s2883 4.0)
(s2884 5.0)
(s2885 5.0)
(s2886 2.0)
(s2888 4.0)
(s2889 5.0)
(s2890 5.0)
(s2891 2.0)
(s2893 4.0)
(s2894 5.0)
(s2895 5.0)
(s2896 2.0)
(s2898 4.0)
(s2899 5.0)
(s2900 5.0)
(s2901 2.0)
(s2903 4.0)
(s2904 5.0)
(s2905 5.0)
(s2906 2.0)
(s2908 4.0)
(s2909 5.0)
(s2910 5.0)
(s2911 2.0)
(s2913 4.0)
(s2914 5.0)
(s2915 5.0)
(s2916 2.0)
(s2918 4.0)
(s2919 5.0)
(s2920 5.0)
(s2921 2.0)
(s2923 4.0)
(s2924 5.0)
(s2925 5.0)
(s2926 2.0)
(s2928 4.0)
(s2929 5.0)
(s2930 5.0)
(s2931 2.0)
(s2933 4.0)
(s2934 5.0)
(s2935 5.0)
(s2936 2.0)
(s2938 4.0)
(s2939 5.0)
(s2940 5.0)
(s2941 2.0)
(s2943 4.0)
(s2944 5.0)
(s2945 5.0)
(s2946 2.0)
(s2948 4.0)
(s2949 5.0)
(s2950 5.0)
(s2951 2.0)
(s2953 4.0)
(s2954 5.0)
(s2955 5.0)
(s2956 2.0)
(s2958 4.0)
(s2959 5.0)
(s2960 5.0)
(s2961 2.0)
(s2963 4.0)
(s2964 5.0)
(s2965 5.0)
(s2966 2.0)
(s2968 4.0)
(s2969 5.0)
(s2970 5.0)
(s2971 2.0)
(s2973 4.0)
(s2974 5.0)
(s2975 5.0)
(s2976 2.0)
(s2978 4.0)
(s2979 5.0)
(s2980 5.0)
(s2981 2.0)
(s2983 4.0)
(s2984 5.0)
(s2985 5.0)
(s2986 2.0)
(s2988 4.0)
(s2989 5.0)
(s2990 5.0)
(s2991 2.0)
(s2993 4.0)
(s2994 5.0)
(s2995 5.0)
(s2996 2.0)
(s2998 4.0)
(s2999 5.0)
(s3000 5.0)
(s3001 2.0)
(s3003 4.0)
(s3004 5.0)
(s3005 5.0)
(s3006 2.0)
(s3008 4.0)
(s3009 5.0)
(s3010 5.0)
(s3011 2.0)
(s3013 4.0)
(s3014 5.0)
(s3015 5.0)
(s3016 2.0)
(s3018 4.0)
(s3019 5.0)
(s3020 5.0)
(s3021 2.0)
(s3023 4.0)
(s3024 5.0)
(s3025 5.0)
(s3026 2.0)
(s3028 4.0)
(s3029 5.0)
(s3030 5.0)
(s3031 2.0)
(s3033 4.0)
(s3034 5.0)
(s3035 5.0)
(s3036 2.0)
(s3038 4.0)
(s3039 5.0)
(s3040 5.0)
(s3041 2.0)
(s3043 4.0)
(s3044 5.0)
(s3045 5.0)
(s3046 2.0)
(s3048 4.0)
(s3049 5.0)
(s3050 5.0)
(s3051 2.0)
(s3053 4.0)
(s3054 5.0)
(s3055 5.0)
(s3056 2.0)
(s3058 4.0)
(s3059 5.0)
(s3060 5.0)
(s3061 2.0)
(s3063 4.0)
(s3064 5.0)
(s3065 5.0)
(s3066 2.0)
(s3068 4.0)
(s3069 5.0)
(s3070 5.0)
(s3071 2.0)
(s3073 4.0)
(s3074 5.0)
(s3075 5.0)
(s3076 2.0)
(s3078 4.0)
(s3079 5.0)
(s3080 5.0)
(s3081 2.0)
(s3083 4.0)
(s3084 5.0)
(s3085 5.0)
(s3086 2.0)
(s3088 4.0)
(s3089 5.0)
(s3090 5.0)
(s3091 2.0)
(s3093 4.0)
(s3094 5.0)
(s3095 5.0)
(s3096 2.0)
(s3098 4.0)
(s3099 5.0)
(s3100 5.0)
(s3101 2.0)
(s3103 4.0)
(s3104 5.0)
(s3105 5.0)
(s3106 2.0)
(s3108 4.0)
(s3109 5.0)
(s3110 5.0)
(s3111 2.0)
(s3113 4.0)
(s3114 5.0)
(s3115 5.0)
(s3116 2.0)
(s3118 4.0)
(s3119 5.0)
(s3120 5.0)
(s3121 2.0)
(s3123 4.0)
(s3124 5.0)
(s3125 5.0)
(s3126 2.0)
(s3128 4.0)
(s3129 5.0)
(s3130 5.0)
(s3131 2.0)
(s3133 4.0)
(s3134 5.0)
(s3135 5.0)
(s3136 2.0)
(s3138 4.0)
(s3139 5.0)
(s3140 5.0)
(s3141 2.0)
(s3143 4.0)
(s3144 5.0)
(s3145 5.0)
(s3146 2.0)
(s3148 4.0)
(s3149 5.0)
(s3150 5.0)
(s3151 2.0)
(s3153 4.0)
(s3154 5.0)
(s3155 5.0)
(s3156 2.0)
(s3158 4.0)
(s3159 5.0)
(s3160 5.0)
(s3161 2.0)
(s3163 4.0)
(s3164 5.0)
(s3165 5.0)
(s3166 2.0)
(s3168 4.0)
(s3169 5.0)
(s3170 5.0)
(s3171 2.0)
(s3173 4.0)
(s3174 5.0)
(s3175 5.0)
(s3176 2.0)
(s3178 4.0)
(s3179 5.0)
(s3180 5.0)
(s3181 2.0)
(s3183 4.0)
(s3184 5.0)
(s3185 5.0)
(s3186 2.0)
(s3188 4.0)
(s3189 5.0)
(s3190 5.0)
(s3191 2.0)
(s3193 4.0)
(s3194 5.0)
(s3195 5.0)
(s3196 2.0)
(s3198 4.0)
(s3199 5.0)
(s3200 5.0)
(s3201 2.0)
(s3203 4.0)
(s3204 5.0)
(s3205 5.0)
(s3206 2.0)
(s3208 4.0)
(s3209 5.0)
(s3210 5.0)
(s3211 2.0)
(s3213 4.0)
(s3214 5.0)
(s3215 5.0)
(s3216 2.0)
(s3218 4.0)
(s3219 5.0)
(s3220 5.0)
(s3221 2.0)
(s3223 4.0)
(s3224 5.0)
(s3225 5.0)
(s3226 2.0)
(s3228 4.0)
(s3229 5.0)
(s3230 5.0)
(s3231 2.0)
(s3233 4.0)
(s3234 5.0)
(s3235 5.0)
(s3236 2.0)
(s3238 4.0)
(s3239 5.0)
(s3240 5.0)
(s3241 2.0)
(s3243 4.0)
(s3244 5.0)
(s3245 5.0)
(s3246 2.0)
(s3248 4.0)
(s3249 5.0)
(s3250 5.0)
(s3251 2.0)
(s3253 4.0)
(s3254 5.0)
(s3255 5.0)
(s3256 2.0)
(s3258 4.0)
(s3259 5.0)
(s3260 5.0)
(s3261 2.0)
(s3263 4.0)
(s3264 5.0)
(s3265 5.0)
(s3266 2.0)
(s3268 4.0)
(s3269 5.0)
(s3270 5.0)
(s3271 2.0)
(s3273 4.0)
(s3274 5.0)
(s3275 5.0)
(s3276 2.0)
(s3278 4.0)
(s3279 5.0)
(s3280 5.0)
(s3281 2.0)
(s3283 4.0)
(s3284 5.0)
(s3285 5.0)
(s3286 2.0)
(s3288 4.0)
(s3289 5.0)
(s3290 5.0)
(s3291 2.0)
(s3293 4.0)
(s3294 5.0)
(s3295 5.0)
(s3296 2.0)
(s3298 4.0)
(s3299 5.0)
(s3300 5.0)
(s3301 2.0)
(s3303 4.0)
(s3304 5.0)
(s3305 5.0)
(s3306 2.0)
(s3308 4.0)
(s3309 5.0)
(s3310 5.0)
(s3311 2.0)
(s3313 4.0)
(s3314 5.0)
(s3315 5.0)
(s3316 2.0)
(s3318 4.0)
(s3319 5.0)
(s3320 5.0)
(s3321 2.0)
(s3323 4.0)
(s3324 5.0)
(s3325 5.0)
(s3326 2.0)
(s3328 4.0)
(s3329 5.0)
(s3330 5.0)
(s3331 2.0)
(s3333 4.0)
(s3334 5.0)
(s3335 5.0)
(s3336 2.0)
(s3338 4.0)
(s3339 5.0)
(s3340 5.0)
(s3341 2.0)
(s3343 4.0)
(s3344 5.0)
(s3345 5.0)
(s3346 2.0)
(s3348 4.0)
(s3349 5.0)
(s3350 5.0)
(s3351 2.0)
(s3353 4.0)
(s3354 5.0)
(s3355 5.0)
(s3356 2.0)
(s3358 4.0)
(s3359 5.0)
(s3360 5.0)
(s3361 2.0)
(s3363 4.0)
(s3364 5.0)
(s3365 5.0)
(s3366 2.0)
(s3368 4.0)
(s3369 5.0)
(s3370 5.0)
(s3371 2.0)
(s3373 4.0)
(s3374 5.0)
(s3375 5.0)
(s3376 2.0)
(s3378 4.0)
(s3379 5.0)
(s3380 5.0)
(s3381 2.0)
(s3383 4.0)
(s3384 5.0)
(s3385 5.0)
(s3386 2.0)
(s3388 4.0)
(s3389 5.0)
(s3390 5.0)
(s3391 2.0)
(s3393 4.0)
(s3394 5.0)
(s3395 5.0)
(s3396 2.0)
(s3398 4.0)
(s3399 5.0)
(s3400 5.0)
(s3401 2.0)
(s3403 4.0)
(s3404 5.0)
(s3405 5.0)
(s3406 2.0)
(s3408 4.0)
(s3409 5.0)
(s3410 5.0)
(s3411 2.0)
(s3413 4.0)
(s3414 5.0)
(s3415 5.0)
(s3416 2.0)
(s3418 4.0)
(s3419 5.0)
(s3420 5.0)
(s3421 2.0)
(s3423 4.0)
(s3424 5.0)
(s3425 5.0)
(s3426 2.0)
(s3428 4.0)
(s3429 5.0)
(s3430 5.0)
(s3431 2.0)
(s3433 4.0)
(s3434 5.0)
(s3435 5.0)
(s3436 2.0)
(s3438 4.0)
(s3439 5.0)
(s3440 5.0)
(s3441 2.0)
(s3443 4.0)
(s3444 5.0)
(s3445 5.0)
(s3446 2.0)
(s3448 4.0)
(s3449 5.0)
(s3450 5.0)
(s3451 2.0)
(s3453 4.0)
(s3454 5.0)
(s3455 5.0)
(s3456 2.0)
(s3458 4.0)
(s3459 5.0)
(s3460 5.0)
(s3461 2.0)
(s3463 4.0)
(s3464 5.0)
(s3465 5.0)
(s3466 2.0)
(s3468 4.0)
(s3469 5.0)
(s3470 5.0)
(s3471 2.0)
(s3473 4.0)
(s3474 5.0)
(s3475 5.0)
(s3476 2.0)
(s3478 4.0)
(s3479 5.0)
(s3480 5.0)
(s3481 2.0)
(s3483 4.0)
(s3484 5.0)
(s3485 5.0)
(s3486 2.0)
(s3488 4.0)
(s3489 5.0)
(s3490 5.0)
(s3491 2.0)
(s3493 4.0)
(s3494 5.0)
(s3495 5.0)
(s3496 2.0)
(s3498 4.0)
(s3499 5.0)
(s3500 5.0)
(s3501 2.0)
(s3503 4.0)
(s3504 5.0)
(s3505 5.0)
(s3506 2.0)
(s3508 timeout
4.0) org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30072 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Error getting values : (error "ParserException while parsing response: ((s0 5)
(s1 2)
(s3 4)
(s4 5)
(s5 5)
(s6 2)
(s8 4)
(s9 5)
(s10 5)
(s11 2)
(s13 4)
(s14 5)
(s15 5)
(s16 2)
(s18 4)
(s19 5)
(s20 5)
(s21 2)
(s23 4)
(s24 5)
(s25 5)
(s26 2)
(s28 4)
(s29 5)
(s30 5)
(s31 2)
(s33 4)
(s34 5)
(s35 5)
(s36 2)
(s38 4)
(s39 5)
(s40 5)
(s41 2)
(s43 4)
(s44 5)
(s45 5)
(s46 2)
(s48 4)
(s49 5)
(s50 5)
(s51 2)
(s53 4)
(s54 5)
(s55 5)
(s56 2)
(s58 4)
(s59 5)
(s60 5)
(s61 2)
(s63 4)
(s64 5)
(s65 5)
(s66 2)
(s68 4)
(s69 5)
(s70 5)
(s71 2)
(s73 4)
(s74 5)
(s75 5)
(s76 2)
(s78 4)
(s79 5)
(s80 5)
(s81 2)
(s83 4)
(s84 5)
(s85 5)
(s86 2)
(s88 4)
(s89 5)
(s90 5)
(s91 2)
(s93 4)
(s94 5)
(s95 5)
(s96 2)
(s98 4)
(s99 5)
(s100 5)
(s101 2)
(s103 4)
(s104 5)
(s105 5)
(s106 2)
(s108 4)
(s109 5)
(s110 5)
(s111 2)
(s113 4)
(s114 5)
(s115 5)
(s116 2)
(s118 4)
(s119 5)
(s120 5)
(s121 2)
(s123 4)
(s124 5)
(s125 5)
(s126 2)
(s128 4)
(s129 5)
(s130 5)
(s131 2)
(s133 4)
(s134 5)
(s135 5)
(s136 2)
(s138 4)
(s139 5)
(s140 5)
(s141 2)
(s143 4)
(s144 5)
(s145 5)
(s146 2)
(s148 4)
(s149 5)
(s150 5)
(s151 2)
(s153 4)
(s154 5)
(s155 5)
(s156 2)
(s158 4)
(s159 5)
(s160 5)
(s161 2)
(s163 4)
(s164 5)
(s165 5)
(s166 2)
(s168 4)
(s169 5)
(s170 5)
(s171 2)
(s173 4)
(s174 5)
(s175 5)
(s176 2)
(s178 4)
(s179 5)
(s180 5)
(s181 2)
(s183 4)
(s184 5)
(s185 5)
(s186 2)
(s188 4)
(s189 5)
(s190 5)
(s191 2)
(s193 4)
(s194 5)
(s195 5)
(s196 2)
(s198 4)
(s199 5)
(s200 5)
(s201 2)
(s203 4)
(s204 5)
(s205 5)
(s206 2)
(s208 4)
(s209 5)
(s210 5)
(s211 2)
(s213 4)
(s214 5)
(s215 5)
(s216 2)
(s218 4)
(s219 5)
(s220 5)
(s221 2)
(s223 4)
(s224 5)
(s225 5)
(s226 2)
(s228 4)
(s229 5)
(s230 5)
(s231 2)
(s233 4)
(s234 5)
(s235 5)
(s236 2)
(s238 4)
(s239 5)
(s240 5)
(s241 2)
(s243 4)
(s244 5)
(s245 5)
(s246 2)
(s248 4)
(s249 5)
(s250 5)
(s251 2)
(s253 4)
(s254 5)
(s255 5)
(s256 2)
(s258 4)
(s259 5)
(s260 5)
(s261 2)
(s263 4)
(s264 5)
(s265 5)
(s266 2)
(s268 4)
(s269 5)
(s270 5)
(s271 2)
(s273 4)
(s274 5)
(s275 5)
(s276 2)
(s278 4)
(s279 5)
(s280 5)
(s281 2)
(s283 4)
(s284 5)
(s285 5)
(s286 2)
(s288 4)
(s289 5)
(s290 5)
(s291 2)
(s293 4)
(s294 5)
(s295 5)
(s296 2)
(s298 4)
(s299 5)
(s300 5)
(s301 2)
(s303 4)
(s304 5)
(s305 5)
(s306 2)
(s308 4)
(s309 5)
(s310 5)
(s311 2)
(s313 4)
(s314 5)
(s315 5)
(s316 2)
(s318 4)
(s319 5)
(s320 5)
(s321 2)
(s323 4)
(s324 5)
(s325 5)
(s326 2)
(s328 4)
(s329 5)
(s330 5)
(s331 2)
(s333 4)
(s334 5)
(s335 5)
(s336 2)
(s338 4)
(s339 5)
(s340 5)
(s341 2)
(s343 4)
(s344 5)
(s345 5)
(s346 2)
(s348 4)
(s349 5)
(s350 5)
(s351 2)
(s353 4)
(s354 5)
(s355 5)
(s356 2)
(s358 4)
(s359 5)
(s360 5)
(s361 2)
(s363 4)
(s364 5)
(s365 5)
(s366 2)
(s368 4)
(s369 5)
(s370 5)
(s371 2)
(s373 4)
(s374 5)
(s375 5)
(s376 2)
(s378 4)
(s379 5)
(s380 5)
(s381 2)
(s383 4)
(s384 5)
(s385 5)
(s386 2)
(s388 4)
(s389 5)
(s390 5)
(s391 2)
(s393 4)
(s394 5)
(s395 5)
(s396 2)
(s398 4)
(s399 5)
(s400 5)
(s401 2)
(s403 4)
(s404 5)
(s405 5)
(s406 2)
(s408 4)
(s409 5)
(s410 5)
(s411 2)
(s413 4)
(s414 5)
(s415 5)
(s416 2)
(s418 4)
(s419 5)
(s420 5)
(s421 2)
(s423 4)
(s424 5)
(s425 5)
(s426 2)
(s428 4)
(s429 5)
(s430 5)
(s431 2)
(s433 4)
(s434 5)
(s435 5)
(s436 2)
(s438 4)
(s439 5)
(s440 5)
(s441 2)
(s443 4)
(s444 5)
(s445 5)
(s446 2)
(s448 4)
(s449 5)
(s450 5)
(s451 2)
(s453 4)
(s454 5)
(s455 5)
(s456 2)
(s458 4)
(s459 5)
(s460 5)
(s461 2)
(s463 4)
(s464 5)
(s465 5)
(s466 2)
(s468 4)
(s469 5)
(s470 5)
(s471 2)
(s473 4)
(s474 5)
(s475 5)
(s476 2)
(s478 4)
(s479 5)
(s480 5)
(s481 2)
(s483 4)
(s484 5)
(s485 5)
(s486 2)
(s488 4)
(s489 5)
(s490 5)
(s491 2)
(s493 4)
(s494 5)
(s495 5)
(s496 2)
(s498 4)
(s499 5)
(s500 5)
(s501 2)
(s503 4)
(s504 5)
(s505 5)
(s506 2)
(s508 4)
(s509 5)
(s510 5)
(s511 2)
(s513 4)
(s514 5)
(s515 5)
(s516 2)
(s518 4)
(s519 5)
(s520 5)
(s521 2)
(s523 4)
(s524 5)
(s525 5)
(s526 2)
(s528 4)
(s529 5)
(s530 5)
(s531 2)
(s533 4)
(s534 5)
(s535 5)
(s536 2)
(s538 4)
(s539 5)
(s540 5)
(s541 2)
(s543 4)
(s544 5)
(s545 5)
(s546 2)
(s548 4)
(s549 5)
(s550 5)
(s551 2)
(s553 4)
(s554 5)
(s555 5)
(s556 2)
(s558 4)
(s559 5)
(s560 5)
(s561 2)
(s563 4)
(s564 5)
(s565 5)
(s566 2)
(s568 4)
(s569 5)
(s570 5)
(s571 2)
(s573 4)
(s574 5)
(s575 5)
(s576 2)
(s578 4)
(s579 5)
(s580 5)
(s581 2)
(s583 4)
(s584 5)
(s585 5)
(s586 2)
(s588 4)
(s589 5)
(s590 5)
(s591 2)
(s593 4)
(s594 5)
(s595 5)
(s596 2)
(s598 4)
(s599 5)
(s600 5)
(s601 2)
(s603 4)
(s604 5)
(s605 5)
(s606 2)
(s608 4)
(s609 5)
(s610 5)
(s611 2)
(s613 4)
(s614 5)
(s615 5)
(s616 2)
(s618 4)
(s619 5)
(s620 5)
(s621 2)
(s623 4)
(s624 5)
(s625 5)
(s626 2)
(s628 4)
(s629 5)
(s630 5)
(s631 2)
(s633 4)
(s634 5)
(s635 5)
(s636 2)
(s638 4)
(s639 5)
(s640 5)
(s641 2)
(s643 4)
(s644 5)
(s645 5)
(s646 2)
(s648 4)
(s649 5)
(s650 5)
(s651 2)
(s653 4)
(s654 5)
(s655 5)
(s656 2)
(s658 4)
(s659 5)
(s660 5)
(s661 2)
(s663 4)
(s664 5)
(s665 5)
(s666 2)
(s668 4)
(s669 5)
(s670 5)
(s671 2)
(s673 4)
(s674 5)
(s675 5)
(s676 2)
(s678 4)
(s679 5)
(s680 5)
(s681 2)
(s683 4)
(s684 5)
(s685 5)
(s686 2)
(s688 4)
(s689 5)
(s690 5)
(s691 2)
(s693 4)
(s694 5)
(s695 5)
(s696 2)
(s698 4)
(s699 5)
(s700 5)
(s701 2)
(s703 4)
(s704 5)
(s705 5)
(s706 2)
(s708 4)
(s709 5)
(s710 5)
(s711 2)
(s713 4)
(s714 5)
(s715 5)
(s716 2)
(s718 4)
(s719 5)
(s720 5)
(s721 2)
(s723 4)
(s724 5)
(s725 5)
(s726 2)
(s728 4)
(s729 5)
(s730 5)
(s731 2)
(s733 4)
(s734 5)
(s735 5)
(s736 2)
(s738 4)
(s739 5)
(s740 5)
(s741 2)
(s743 4)
(s744 5)
(s745 5)
(s746 2)
(s748 4)
(s749 5)
(s750 5)
(s751 2)
(s753 4)
(s754 5)
(s755 5)
(s756 2)
(s758 4)
(s759 5)
(s760 5)
(s761 2)
(s763 4)
(s764 5)
(s765 5)
(s766 2)
(s768 4)
(s769 5)
(s770 5)
(s771 2)
(s773 4)
(s774 5)
(s775 5)
(s776 2)
(s778 4)
(s779 5)
(s780 5)
(s781 2)
(s783 4)
(s784 5)
(s785 5)
(s786 2)
(s788 4)
(s789 5)
(s790 5)
(s791 2)
(s793 4)
(s794 5)
(s795 5)
(s796 2)
(s798 4)
(s799 5)
(s800 5)
(s801 2)
(s803 4)
(s804 5)
(s805 5)
(s806 2)
(s808 4)
(s809 5)
(s810 5)
(s811 2)
(s813 4)
(s814 5)
(s815 5)
(s816 2)
(s818 4)
(s819 5)
(s820 5)
(s821 2)
(s823 4)
(s824 5)
(s825 5)
(s826 2)
(s828 4)
(s829 5)
(s830 5)
(s831 2)
(s833 4)
(s834 5)
(s835 5)
(s836 2)
(s838 4)
(s839 5)
(s840 5)
(s841 2)
(s843 4)
(s844 5)
(s845 5)
(s846 2)
(s848 4)
(s849 5)
(s850 5)
(s851 2)
(s853 4)
(s854 5)
(s855 5)
(s856 2)
(s858 4)
(s859 5)
(s860 5)
(s861 2)
(s863 4)
(s864 5)
(s865 5)
(s866 2)
(s868 4)
(s869 5)
(s870 5)
(s871 2)
(s873 4)
(s874 5)
(s875 5)
(s876 2)
(s878 4)
(s879 5)
(s880 5)
(s881 2)
(s883 4)
(s884 5)
(s885 5)
(s886 2)
(s888 4)
(s889 5)
(s890 5)
(s891 2)
(s893 4)
(s894 5)
(s895 5)
(s896 2)
(s898 4)
(s899 5)
(s900 5)
(s901 2)
(s903 4)
(s904 5)
(s905 5)
(s906 2)
(s908 4)
(s909 5)
(s910 5)
(s911 2)
(s913 4)
(s914 5)
(s915 5)
(s916 2)
(s918 4)
(s919 5)
(s920 5)
(s921 2)
(s923 4)
(s924 5)
(s925 5)
(s926 2)
(s928 4)
(s929 5)
(s930 5)
(s931 2)
(s933 4)
(s934 5)
(s935 5)
(s936 2)
(s938 4)
(s939 5)
(s940 5)
(s941 2)
(s943 4)
(s944 5)
(s945 5)
(s946 2)
(s948 4)
(s949 5)
(s950 5)
(s951 2)
(s953 4)
(s954 5)
(s955 5)
(s956 2)
(s958 4)
(s959 5)
(s960 5)
(s961 2)
(s963 4)
(s964 5)
(s965 5)
(s966 2)
(s968 4)
(s969 5)
(s970 5)
(s971 2)
(s973 4)
(s974 5)
(s975 5)
(s976 2)
(s978 4)
(s979 5)
(s980 5)
(s981 2)
(s983 4)
(s984 5)
(s985 5)
(s986 2)
(s988 4)
(s989 5)
(s990 5)
(s991 2)
(s993 4)
(s994 5)
(s995 5)
(s996 2)
(s998 4)
(s999 5)
(s1000 5)
(s1001 2)
(s1003 4)
(s1004 5)
(s1005 5)
(s1006 2)
(s1008 4)
(s1009 5)
(s1010 5)
(s1011 2)
(s1013 4)
(s1014 5)
(s1015 5)
(s1016 2)
(s1018 4)
(s1019 5)
(s1020 5)
(s1021 2)
(s1023 4)
(s1024 5)
(s1025 5)
(s1026 2)
(s1028 4)
(s1029 5)
(s1030 5)
(s1031 2)
(s1033 4)
(s1034 5)
(s1035 5)
(s1036 2)
(s1038 4)
(s1039 5)
(s1040 5)
(s1041 2)
(s1043 4)
(s1044 5)
(s1045 5)
(s1046 2)
(s1048 4)
(s1049 5)
(s1050 5)
(s1051 2)
(s1053 4)
(s1054 5)
(s1055 5)
(s1056 2)
(s1058 4)
(s1059 5)
(s1060 5)
(s1061 2)
(s1063 4)
(s1064 5)
(s1065 5)
(s1066 2)
(s1068 4)
(s1069 5)
(s1070 5)
(s1071 2)
(s1073 4)
(s1074 5)
(s1075 5)
(s1076 2)
(s1078 4)
(s1079 5)
(s1080 5)
(s1081 2)
(s1083 4)
(s1084 5)
(s1085 5)
(s1086 2)
(s1088 4)
(s1089 5)
(s1090 5)
(s1091 2)
(s1093 4)
(s1094 5)
(s1095 5)
(s1096 2)
(s1098 4)
(s1099 5)
(s1100 5)
(s1101 2)
(s1103 4)
(s1104 5)
(s1105 5)
(s1106 2)
(s1108 4)
(s1109 5)
(s1110 5)
(s1111 2)
(s1113 4)
(s1114 5)
(s1115 5)
(s1116 2)
(s1118 4)
(s1119 5)
(s1120 5)
(s1121 2)
(s1123 4)
(s1124 5)
(s1125 5)
(s1126 2)
(s1128 4)
(s1129 5)
(s1130 5)
(s1131 2)
(s1133 4)
(s1134 5)
(s1135 5)
(s1136 2)
(s1138 4)
(s1139 5)
(s1140 5)
(s1141 2)
(s1143 4)
(s1144 5)
(s1145 5)
(s1146 2)
(s1148 4)
(s1149 5)
(s1150 5)
(s1151 2)
(s1153 4)
(s1154 5)
(s1155 5)
(s1156 2)
(s1158 4)
(s1159 5)
(s1160 5)
(s1161 2)
(s1163 4)
(s1164 5)
(s1165 5)
(s1166 2)
(s1168 4)
(s1169 5)
(s1170 5)
(s1171 2)
(s1173 4)
(s1174 5)
(s1175 5)
(s1176 2)
(s1178 4)
(s1179 5)
(s1180 5)
(s1181 2)
(s1183 4)
(s1184 5)
(s1185 5)
(s1186 2)
(s1188 4)
(s1189 5)
(s1190 5)
(s1191 2)
(s1193 4)
(s1194 5)
(s1195 5)
(s1196 2)
(s1198 4)
(s1199 5)
(s1200 5)
(s1201 2)
(s1203 4)
(s1204 5)
(s1205 5)
(s1206 2)
(s1208 4)
(s1209 5)
(s1210 5)
(s1211 2)
(s1213 4)
(s1214 5)
(s1215 5)
(s1216 2)
(s1218 4)
(s1219 5)
(s1220 5)
(s1221 2)
(s1223 4)
(s1224 5)
(s1225 5)
(s1226 2)
(s1228 4)
(s1229 5)
(s1230 5)
(s1231 2)
(s1233 4)
(s1234 5)
(s1235 5)
(s1236 2)
(s1238 4)
(s1239 5)
(s1240 5)
(s1241 2)
(s1243 4)
(s1244 5)
(s1245 5)
(s1246 2)
(s1248 4)
(s1249 5)
(s1250 5)
(s1251 2)
(s1253 4)
(s1254 5)
(s1255 5)
(s1256 2)
(s1258 4)
(s1259 5)
(s1260 5)
(s1261 2)
(s1263 4)
(s1264 5)
(s1265 5)
(s1266 2)
(s1268 4)
(s1269 5)
(s1270 5)
(s1271 2)
(s1273 4)
(s1274 5)
(s1275 5)
(s1276 2)
(s1278 4)
(s1279 5)
(s1280 5)
(s1281 2)
(s1283 4)
(s1284 5)
(s1285 5)
(s1286 2)
(s1288 4)
(s1289 5)
(s1290 5)
(s1291 2)
(s1293 4)
(s1294 5)
(s1295 5)
(s1296 2)
(s1298 4)
(s1299 5)
(s1300 5)
(s1301 2)
(s1303 4)
(s1304 5)
(s1305 5)
(s1306 2)
(s1308 4)
(s1309 5)
(s1310 5)
(s1311 2)
(s1313 4)
(s1314 5)
(s1315 5)
(s1316 2)
(s1318 4)
(s1319 5)
(s1320 5)
(s1321 2)
(s1323 4)
(s1324 5)
(s1325 5)
(s1326 2)
(s1328 4)
(s1329 5)
(s1330 5)
(s1331 2)
(s1333 4)
(s1334 5)
(s1335 5)
(s1336 2)
(s1338 4)
(s1339 5)
(s1340 5)
(s1341 2)
(s1343 4)
(s1344 5)
(s1345 5)
(s1346 2)
(s1348 4)
(s1349 5)
(s1350 5)
(s1351 2)
(s1353 4)
(s1354 5)
(s1355 5)
(s1356 2)
(s1358 4)
(s1359 5)
(s1360 5)
(s1361 2)
(s1363 4)
(s1364 5)
(s1365 5)
(s1366 2)
(s1368 4)
(s1369 5)
(s1370 5)
(s1371 2)
(s1373 4)
(s1374 5)
(s1375 5)
(s1376 2)
(s1378 4)
(s1379 5)
(s1380 5)
(s1381 2)
(s1383 4)
(s1384 5)
(s1385 5)
(s1386 2)
(s1388 4)
(s1389 5)
(s1390 5)
(s1391 2)
(s1393 4)
(s1394 5)
(s1395 5)
(s1396 2)
(s1398 4)
(s1399 5)
(s1400 5)
(s1401 2)
(s1403 4)
(s1404 5)
(s1405 5)
(s1406 2)
(s1408 4)
(s1409 5)
(s1410 5)
(s1411 2)
(s1413 4)
(s1414 5)
(s1415 5)
(s1416 2)
(s1418 4)
(s1419 5)
(s1420 5)
(s1421 2)
(s1423 4)
(s1424 5)
(s1425 5)
(s1426 2)
(s1428 4)
(s1429 5)
(s1430 5)
(s1431 2)
(s1433 4)
(s1434 5)
(s1435 5)
(s1436 2)
(s1438 4)
(s1439 5)
(s1440 5)
(s1441 2)
(s1443 4)
(s1444 5)
(s1445 5)
(s1446 2)
(s1448 4)
(s1449 5)
(s1450 5)
(s1451 2)
(s1453 4)
(s1454 5)
(s1455 5)
(s1456 2)
(s1458 4)
(s1459 5)
(s1460 5)
(s1461 2)
(s1463 4)
(s1464 5)
(s1465 5)
(s1466 2)
(s1468 4)
(s1469 5)
(s1470 5)
(s1471 2)
(s1473 4)
(s1474 5)
(s1475 5)
(s1476 2)
(s1478 4)
(s1479 5)
(s1480 5)
(s1481 2)
(s1483 4)
(s1484 5)
(s1485 5)
(s1486 2)
(s1488 4)
(s1489 5)
(s1490 5)
(s1491 2)
(s1493 4)
(s1494 5)
(s1495 5)
(s1496 2)
(s1498 4)
(s1499 5)
(s1500 5)
(s1501 2)
(s1503 4)
(s1504 5)
(s1505 5)
(s1506 2)
(s1508 4)
(s1509 5)
(s1510 5)
(s1511 2)
(s1513 4)
(s1514 5)
(s1515 5)
(s1516 2)
(s1518 4)
(s1519 5)
(s1520 5)
(s1521 2)
(s1523 4)
(s1524 5)
(s1525 5)
(s1526 2)
(s1528 4)
(s1529 5)
(s1530 5)
(s1531 2)
(s1533 4)
(s1534 5)
(s1535 5)
(s1536 2)
(s1538 4)
(s1539 5)
(s1540 5)
(s1541 2)
(s1543 4)
(s1544 5)
(s1545 5)
(s1546 2)
(s1548 4)
(s1549 5)
(s1550 5)
(s1551 2)
(s1553 4)
(s1554 5)
(s1555 5)
(s1556 2)
(s1558 4)
(s1559 5)
(s1560 5)
(s1561 2)
(s1563 4)
(s1564 5)
(s1565 5)
(s1566 2)
(s1568 4)
(s1569 5)
(s1570 5)
(s1571 2)
(s1573 4)
(s1574 5)
(s1575 5)
(s1576 2)
(s1578 4)
(s1579 5)
(s1580 5)
(s1581 2)
(s1583 4)
(s1584 5)
(s1585 5)
(s1586 2)
(s1588 4)
(s1589 5)
(s1590 5)
(s1591 2)
(s1593 4)
(s1594 5)
(s1595 5)
(s1596 2)
(s1598 4)
(s1599 5)
(s1600 5)
(s1601 2)
(s1603 4)
(s1604 5)
(s1605 5)
(s1606 2)
(s1608 4)
(s1609 5)
(s1610 5)
(s1611 2)
(s1613 4)
(s1614 5)
(s1615 5)
(s1616 2)
(s1618 4)
(s1619 5)
(s1620 5)
(s1621 2)
(s1623 4)
(s1624 5)
(s1625 5)
(s1626 2)
(s1628 4)
(s1629 5)
(s1630 5)
(s1631 2)
(s1633 4)
(s1634 5)
(s1635 5)
(s1636 2)
(s1638 4)
(s1639 5)
(s1640 5)
(s1641 2)
(s1643 4)
(s1644 5)
(s1645 5)
(s1646 2)
(s1648 4)
(s1649 5)
(s1650 5)
(s1651 2)
(s1653 4)
(s1654 5)
(s1655 5)
(s1656 2)
(s1658 4)
(s1659 5)
(s1660 5)
(s1661 2)
(s1663 4)
(s1664 5)
(s1665 5)
(s1666 2)
(s1668 4)
(s1669 5)
(s1670 5)
(s1671 2)
(s1673 4)
(s1674 5)
(s1675 5)
(s1676 2)
(s1678 4)
(s1679 5)
(s1680 5)
(s1681 2)
(s1683 4)
(s1684 5)
(s1685 5)
(s1686 2)
(s1688 4)
(s1689 5)
(s1690 5)
(s1691 2)
(s1693 4)
(s1694 5)
(s1695 5)
(s1696 2)
(s1698 4)
(s1699 5)
(s1700 5)
(s1701 2)
(s1703 4)
(s1704 5)
(s1705 5)
(s1706 2)
(s1708 4)
(s1709 5)
(s1710 5)
(s1711 2)
(s1713 4)
(s1714 5)
(s1715 5)
(s1716 2)
(s1718 4)
(s1719 5)
(s1720 5)
(s1721 2)
(s1723 4)
(s1724 5)
(s1725 5)
(s1726 2)
(s1728 4)
(s1729 5)
(s1730 5)
(s1731 2)
(s1733 4)
(s1734 5)
(s1735 5)
(s1736 2)
(s1738 4)
(s1739 5)
(s1740 5)
(s1741 2)
(s1743 4)
(s1744 5)
(s1745 5)
(s1746 2)
(s1748 4)
(s1749 5)
(s1750 5)
(s1751 2)
(s1753 4)
(s1754 5)
(s1755 5)
(s1756 2)
(s1758 4)
(s1759 5)
(s1760 5)
(s1761 2)
(s1763 4)
(s1764 5)
(s1765 5)
(s1766 2)
(s1768 4)
(s1769 5)
(s1770 5)
(s1771 2)
(s1773 4)
(s1774 5)
(s1775 5)
(s1776 2)
(s1778 4)
(s1779 5)
(s1780 5)
(s1781 2)
(s1783 4)
(s1784 5)
(s1785 5)
(s1786 2)
(s1788 4)
(s1789 5)
(s1790 5)
(s1791 2)
(s1793 4)
(s1794 5)
(s1795 5)
(s1796 2)
(s1798 4)
(s1799 5)
(s1800 5)
(s1801 2)
(s1803 4)
(s1804 5)
(s1805 5)
(s1806 2)
(s1808 4)
(s1809 5)
(s1810 5)
(s1811 2)
(s1813 4)
(s1814 5)
(s1815 5)
(s1816 2)
(s1818 4)
(s1819 5)
(s1820 5)
(s1821 2)
(s1823 4)
(s1824 5)
(s1825 5)
(s1826 2)
(s1828 4)
(s1829 5)
(s1830 5)
(s1831 2)
(s1833 4)
(s1834 5)
(s1835 5)
(s1836 2)
(s1838 4)
(s1839 5)
(s1840 5)
(s1841 2)
(s1843 4)
(s1844 5)
(s1845 5)
(s1846 2)
(s1848 4)
(s1849 5)
(s1850 5)
(s1851 2)
(s1853 4)
(s1854 5)
(s1855 5)
(s1856 2)
(s1858 4)
(s1859 5)
(s1860 5)
(s1861 2)
(s1863 4)
(s1864 5)
(s1865 5)
(s1866 2)
(s1868 4)
(s1869 5)
(s1870 5)
(s1871 2)
(s1873 4)
(s1874 5)
(s1875 5)
(s1876 2)
(s1878 4)
(s1879 5)
(s1880 5)
(s1881 2)
(s1883 4)
(s1884 5)
(s1885 5)
(s1886 2)
(s1888 4)
(s1889 5)
(s1890 5)
(s1891 2)
(s1893 4)
(s1894 5)
(s1895 5)
(s1896 2)
(s1898 4)
(s1899 5)
(s1900 5)
(s1901 2)
(s1903 4)
(s1904 5)
(s1905 5)
(s1906 2)
(s1908 4)
(s1909 5)
(s1910 5)
(s1911 2)
(s1913 4)
(s1914 5)
(s1915 5)
(s1916 2)
(s1918 4)
(s1919 5)
(s1920 5)
(s1921 2)
(s1923 4)
(s1924 5)
(s1925 5)
(s1926 2)
(s1928 4)
(s1929 5)
(s1930 5)
(s1931 2)
(s1933 4)
(s1934 5)
(s1935 5)
(s1936 2)
(s1938 4)
(s1939 5)
(s1940 5)
(s1941 2)
(s1943 4)
(s1944 5)
(s1945 5)
(s1946 2)
(s1948 4)
(s1949 5)
(s1950 5)
(s1951 2)
(s1953 4)
(s1954 5)
(s1955 5)
(s1956 2)
(s1958 4)
(s1959 5)
(s1960 5)
(s1961 2)
(s1963 4)
(s1964 5)
(s1965 5)
(s1966 2)
(s1968 4)
(s1969 5)
(s1970 5)
(s1971 2)
(s1973 4)
(s1974 5)
(s1975 5)
(s1976 2)
(s1978 4)
(s1979 5)
(s1980 5)
(s1981 2)
(s1983 4)
(s1984 5)
(s1985 5)
(s1986 2)
(s1988 4)
(s1989 5)
(s1990 5)
(s1991 2)
(s1993 4)
(s1994 5)
(s1995 5)
(s1996 2)
(s1998 4)
(s1999 5)
(s2000 5)
(s2001 2)
(s2003 4)
(s2004 5)
(s2005 5)
(s2006 2)
(s2008 4)
(s2009 5)
(s2010 5)
(s2011 2)
(s2013 4)
(s2014 5)
(s2015 5)
(s2016 2)
(s2018 4)
(s2019 5)
(s2020 5)
(s2021 2)
(s2023 4)
(s2024 5)
(s2025 5)
(s2026 2)
(s2028 4)
(s2029 5)
(s2030 5)
(s2031 2)
(s2033 4)
(s2034 5)
(s2035 5)
(s2036 2)
(s2038 4)
(s2039 5)
(s2040 5)
(s2041 2)
(s2043 4)
(s2044 5)
(s2045 5)
(s2046 2)
(s2048 4)
(s2049 5)
(s2050 5)
(s2051 2)
(s2053 4)
(s2054 5)
(s2055 5)
(s2056 2)
(s2058 4)
(s2059 5)
(s2060 5)
(s2061 2)
(s2063 4)
(s2064 5)
(s2065 5)
(s2066 2)
(s2068 4)
(s2069 5)
(s2070 5)
(s2071 2)
(s2073 4)
(s2074 5)
(s2075 5)
(s2076 2)
(s2078 4)
(s2079 5)
(s2080 5)
(s2081 2)
(s2083 4)
(s2084 5)
(s2085 5)
(s2086 2)
(s2088 4)
(s2089 5)
(s2090 5)
(s2091 2)
(s2093 4)
(s2094 5)
(s2095 5)
(s2096 2)
(s2098 4)
(s2099 5)
(s2100 5)
(s2101 2)
(s2103 4)
(s2104 5)
(s2105 5)
(s2106 2)
(s2108 4)
(s2109 5)
(s2110 5)
(s2111 2)
(s2113 4)
(s2114 5)
(s2115 5)
(s2116 2)
(s2118 4)
(s2119 5)
(s2120 5)
(s2121 2)
(s2123 4)
(s2124 5)
(s2125 5)
(s2126 2)
(s2128 4)
(s2129 5)
(s2130 5)
(s2131 2)
(s2133 4)
(s2134 5)
(s2135 5)
(s2136 2)
(s2138 4)
(s2139 5)
(s2140 5)
(s2141 2)
(s2143 4)
(s2144 5)
(s2145 5)
(s2146 2)
(s2148 4)
(s2149 5)
(s2150 5)
(s2151 2)
(s2153 4)
(s2154 5)
(s2155 5)
(s2156 2)
(s2158 4)
(s2159 5)
(s2160 5)
(s2161 2)
(s2163 4)
(s2164 5)
(s2165 5)
(s2166 2)
(s2168 4)
(s2169 5)
(s2170 5)
(s2171 2)
(s2173 4)
(s2174 5)
(s2175 5)
(s2176 2)
(s2178 4)
(s2179 5)
(s2180 5)
(s2181 2)
(s2183 4)
(s2184 5)
(s2185 5)
(s2186 2)
(s2188 4)
(s2189 5)
(s2190 5)
(s2191 2)
(s2193 4)
(s2194 5)
(s2195 5)
(s2196 2)
(s2198 4)
(s2199 5)
(s2200 5)
(s2201 2)
(s2203 4)
(s2204 5)
(s2205 5)
(s2206 2)
(s2208 4)
(s2209 5)
(s2210 5)
(s2211 2)
(s2213 4)
(s2214 5)
(s2215 5)
(s2216 2)
(s2218 4)
(s2219 5)
(s2220 5)
(s2221 2)
(s2223 4)
(s2224 5)
(s2225 5)
(s2226 2)
(s2228 4)
(s2229 5)
(s2230 5)
(s2231 2)
(s2233 4)
(s2234 5)
(s2235 5)
(s2236 2)
(s2238 4)
(s2239 5)
(s2240 5)
(s2241 2)
(s2243 4)
(s2244 5)
(s2245 5)
(s2246 2)
(s2248 4)
(s2249 5)
(s2250 5)
(s2251 2)
(s2253 4)
(s2254 5)
(s2255 5)
(s2256 2)
(s2258 4)
(s2259 5)
(s2260 5)
(s2261 2)
(s2263 4)
(s2264 5)
(s2265 5)
(s2266 2)
(s2268 4)
(s2269 5)
(s2270 5)
(s2271 2)
(s2273 4)
(s2274 5)
(s2275 5)
(s2276 2)
(s2278 4)
(s2279 5)
(s2280 5)
(s2281 2)
(s2283 4)
(s2284 5)
(s2285 5)
(s2286 2)
(s2288 4)
(s2289 5)
(s2290 5)
(s2291 2)
(s2293 4)
(s2294 5)
(s2295 5)
(s2296 2)
(s2298 4)
(s2299 5)
(s2300 5)
(s2301 2)
(s2303 4)
(s2304 5)
(s2305 5)
(s2306 2)
(s2308 4)
(s2309 5)
(s2310 5)
(s2311 2)
(s2313 4)
(s2314 5)
(s2315 5)
(s2316 2)
(s2318 4)
(s2319 5)
(s2320 5)
(s2321 2)
(s2323 4)
(s2324 5)
(s2325 5)
(s2326 2)
(s2328 4)
(s2329 5)
(s2330 5)
(s2331 2)
(s2333 4)
(s2334 5)
(s2335 5)
(s2336 2)
(s2338 4)
(s2339 5)
(s2340 5)
(s2341 2)
(s2343 4)
(s2344 5)
(s2345 5)
(s2346 2)
(s2348 4)
(s2349 5)
(s2350 5)
(s2351 2)
(s2353 4)
(s2354 5)
(s2355 5)
(s2356 2)
(s2358 4)
(s2359 5)
(s2360 5)
(s2361 2)
(s2363 4)
(s2364 5)
(s2365 5)
(s2366 2)
(s2368 4)
(s2369 5)
(s2370 5)
(s2371 2)
(s2373 4)
(s2374 5)
(s2375 5)
(s2376 2)
(s2378 4)
(s2379 5)
(s2380 5)
(s2381 2)
(s2383 4)
(s2384 5)
(s2385 5)
(s2386 2)
(s2388 4)
(s2389 5)
(s2390 5)
(s2391 2)
(s2393 4)
(s2394 5)
(s2395 5)
(s2396 2)
(s2398 4)
(s2399 5)
(s2400 5)
(s2401 2)
(s2403 4)
(s2404 5)
(s2405 5)
(s2406 2)
(s2408 4)
(s2409 5)
(s2410 5)
(s2411 2)
(s2413 4)
(s2414 5)
(s2415 5)
(s2416 2)
(s2418 4)
(s2419 5)
(s2420 5)
(s2421 2)
(s2423 4)
(s2424 5)
(s2425 5)
(s2426 2)
(s2428 4)
(s2429 5)
(s2430 5)
(s2431 2)
(s2433 4)
(s2434 5)
(s2435 5)
(s2436 2)
(s2438 4)
(s2439 5)
(s2440 5)
(s2441 2)
(s2443 4)
(s2444 5)
(s2445 5)
(s2446 2)
(s2448 4)
(s2449 5)
(s2450 5)
(s2451 2)
(s2453 4)
(s2454 5)
(s2455 5)
(s2456 2)
(s2458 4)
(s2459 5)
(s2460 5)
(s2461 2)
(s2463 4)
(s2464 5)
(s2465 5)
(s2466 2)
(s2468 4)
(s2469 5)
(s2470 5)
(s2471 2)
(s2473 4)
(s2474 5)
(s2475 5)
(s2476 2)
(s2478 4)
(s2479 5)
(s2480 5)
(s2481 2)
(s2483 4)
(s2484 5)
(s2485 5)
(s2486 2)
(s2488 4)
(s2489 5)
(s2490 5)
(s2491 2)
(s2493 4)
(s2494 5)
(s2495 5)
(s2496 2)
(s2498 4)
(s2499 5)
(s2500 5)
(s2501 2)
(s2503 4)
(s2504 5)
(s2505 5)
(s2506 2)
(s2508 4)
(s2509 5)
(s2510 5)
(s2511 2)
(s2513 4)
(s2514 5)
(s2515 5)
(s2516 2)
(s2518 4)
(s2519 5)
(s2520 5)
(s2521 2)
(s2523 4)
(s2524 5)
(s2525 5)
(s2526 2)
(s2528 4)
(s2529 5)
(s2530 5)
(s2531 2)
(s2533 4)
(s2534 5)
(s2535 5)
(s2536 2)
(s2538 4)
(s2539 5)
(s2540 5)
(s2541 2)
(s2543 4)
(s2544 5)
(s2545 5)
(s2546 2)
(s2548 4)
(s2549 5)
(s2550 5)
(s2551 2)
(s2553 4)
(s2554 5)
(s2555 5)
(s2556 2)
(s2558 4)
(s2559 5)
(s2560 5)
(s2561 2)
(s2563 4)
(s2564 5)
(s2565 5)
(s2566 2)
(s2568 4)
(s2569 5)
(s2570 5)
(s2571 2)
(s2573 4)
(s2574 5)
(s2575 5)
(s2576 2)
(s2578 4)
(s2579 5)
(s2580 5)
(s2581 2)
(s2583 4)
(s2584 5)
(s2585 5)
(s2586 2)
(s2588 4)
(s2589 5)
(s2590 5)
(s2591 2)
(s2593 4)
(s2594 5)
(s2595 5)
(s2596 2)
(s2598 4)
(s2599 5)
(s2600 5)
(s2601 2)
(s2603 4)
(s2604 5)
(s2605 5)
(s2606 2)
(s2608 4)
(s2609 5)
(s2610 5)
(s2611 2)
(s2613 4)
(s2614 5)
(s2615 5)
(s2616 2)
(s2618 4)
(s2619 5)
(s2620 5)
(s2621 2)
(s2623 4)
(s2624 5)
(s2625 5)
(s2626 2)
(s2628 4)
(s2629 5)
(s2630 5)
(s2631 2)
(s2633 4)
(s2634 5)
(s2635 5)
(s2636 2)
(s2638 4)
(s2639 5)
(s2640 5)
(s2641 2)
(s2643 4)
(s2644 5)
(s2645 5)
(s2646 2)
(s2648 4)
(s2649 5)
(s2650 5)
(s2651 2)
(s2653 4)
(s2654 5)
(s2655 5)
(s2656 2)
(s2658 4)
(s2659 5)
(s2660 5)
(s2661 2)
(s2663 4)
(s2664 5)
(s2665 5)
(s2666 2)
(s2668 4)
(s2669 5)
(s2670 5)
(s2671 2)
(s2673 4)
(s2674 5)
(s2675 5)
(s2676 2)
(s2678 4)
(s2679 5)
(s2680 5)
(s2681 2)
(s2683 4)
(s2684 5)
(s2685 5)
(s2686 2)
(s2688 4)
(s2689 5)
(s2690 5)
(s2691 2)
(s2693 4)
(s2694 5)
(s2695 5)
(s2696 2)
(s2698 4)
(s2699 5)
(s2700 5)
(s2701 2)
(s2703 4)
(s2704 5)
(s2705 5)
(s2706 2)
(s2708 4)
(s2709 5)
(s2710 5)
(s2711 2)
(s2713 4)
(s2714 5)
(s2715 5)
(s2716 2)
(s2718 4)
(s2719 5)
(s2720 5)
(s2721 2)
(s2723 4)
(s2724 5)
(s2725 5)
(s2726 2)
(s2728 4)
(s2729 5)
(s2730 5)
(s2731 2)
(s2733 4)
(s2734 5)
(s2735 5)
(s2736 2)
(s2738 4)
(s2739 5)
(s2740 5)
(s2741 2)
(s2743 4)
(s2744 5)
(s2745 5)
(s2746 2)
(s2748 4)
(s2749 5)
(s2750 5)
(s2751 2)
(s2753 4)
(s2754 5)
(s2755 5)
(s2756 2)
(s2758 4)
(s2759 5)
(s2760 5)
(s2761 2)
(s2763 4)
(s2764 5)
(s2765 5)
(s2766 2)
(s2768 4)
(s2769 5)
(s2770 5)
(s2771 2)
(s2773 4)
(s2774 5)
(s2775 5)
(s2776 2)
(s2778 4)
(s2779 5)
(s2780 5)
(s2781 2)
(s2783 4)
(s2784 5)
(s2785 5)
(s2786 2)
(s2788 4)
(s2789 5)
(s2790 5)
(s2791 2)
(s2793 4)
(s2794 5)
(s2795 5)
(s2796 2)
(s2798 4)
(s2799 5)
(s2800 5)
(s2801 2)
(s2803 4)
(s2804 5)
(s2805 5)
(s2806 2)
(s2808 4)
(s2809 5)
(s2810 5)
(s2811 2)
(s2813 4)
(s2814 5)
(s2815 5)
(s2816 2)
(s2818 4)
(s2819 5)
(s2820 5)
(s2821 2)
(s2823 4)
(s2824 5)
(s2825 5)
(s2826 2)
(s2828 4)
(s2829 5)
(s2830 5)
(s2831 2)
(s2833 4)
(s2834 5)
(s2835 5)
(s2836 2)
(s2838 4)
(s2839 5)
(s2840 5)
(s2841 2)
(s2843 4)
(s2844 5)
(s2845 5)
(s2846 2)
(s2848 4)
(s2849 5)
(s2850 5)
(s2851 2)
(s2853 4)
(s2854 5)
(s2855 5)
(s2856 2)
(s2858 4)
(s2859 5)
(s2860 5)
(s2861 2)
(s2863 4)
(s2864 5)
(s2865 5)
(s2866 2)
(s2868 4)
(s2869 5)
(s2870 5)
(s2871 2)
(s2873 4)
(s2874 5)
(s2875 5)
(s2876 2)
(s2878 4)
(s2879 5)
(s2880 5)
(s2881 2)
(s2883 4)
(s2884 5)
(s2885 5)
(s2886 2)
(s2888 4)
(s2889 5)
(s2890 5)
(s2891 2)
(s2893 4)
(s2894 5)
(s2895 5)
(s2896 2)
(s2898 4)
(s2899 5)
(s2900 5)
(s2901 2)
(s2903 4)
(s2904 5)
(s2905 5)
(s2906 2)
(s2908 4)
(s2909 5)
(s2910 5)
(s2911 2)
(s2913 4)
(s2914 5)
(s2915 5)
(s2916 2)
(s2918 4)
(s2919 5)
(s2920 5)
(s2921 2)
(s2923 4)
(s2924 5)
(s2925 5)
(s2926 2)
(s2928 4)
(s2929 5)
(s2930 5)
(s2931 2)
(s2933 4)
(s2934 5)
(s2935 5)
(s2936 2)
(s2938 4)
(s2939 5)
(s2940 5)
(s2941 2)
(s2943 4)
(s2944 5)
(s2945 5)
(s2946 2)
(s2948 4)
(s2949 5)
(s2950 5)
(s2951 2)
(s2953 4)
(s2954 5)
(s2955 5)
(s2956 2)
(s2958 4)
(s2959 5)
(s2960 5)
(s2961 2)
(s2963 4)
(s2964 5)
(s2965 5)
(s2966 2)
(s2968 4)
(s2969 5)
(s2970 5)
(s2971 2)
(s2973 4)
(s2974 5)
(s2975 5)
(s2976 2)
(s2978 4)
(s2979 5)
(s2980 5)
(s2981 2)
(s2983 4)
(s2984 5)
(s2985 5)
(s2986 2)
(s2988 4)
(s2989 5)
(s2990 5)
(s2991 2)
(s2993 4)
(s2994 5)
(s2995 5)
(s2996 2)
(s2998 4)
(s2999 5)
(s3000 5)
(s3001 2)
(s3003 4)
(s3004 5)
(s3005 5)
(s3006 2)
(s3008 4)
(s3009 5)
(s3010 5)
(s3011 2)
(s3013 4)
(s3014 5)
(s3015 5)
(s3016 2)
(s3018 4)
(s3019 5)
(s3020 5)
(s3021 2)
(s3023 4)
(s3024 5)
(s3025 5)
(s3026 2)
(s3028 4)
(s3029 5)
(s3030 5)
(s3031 2)
(s3033 4)
(s3034 5)
(s3035 5)
(s3036 2)
(s3038 4)
(s3039 5)
(s3040 5)
(s3041 2)
(s3043 4)
(s3044 5)
(s3045 5)
(s3046 2)
(s3048 4)
(s3049 5)
(s3050 5)
(s3051 2)
(s3053 4)
(s3054 5)
(s3055 5)
(s3056 2)
(s3058 4)
(s3059 5)
(s3060 5)
(s3061 2)
(s3063 4)
(s3064 5)
(s3065 5)
(s3066 2)
(s3068 4)
(s3069 5)
(s3070 5)
(s3071 2)
(s3073 4)
(s3074 5)
(s3075 5)
(s3076 2)
(s3078 4)
(s3079 5)
(s3080 5)
(s3081 2)
(s3083 4)
(s3084 5)
(s3085 5)
(s3086 2)
(s3088 4)
(s3089 5)
(s3090 5)
(s3091 2)
(s3093 4)
(s3094 5)
(s3095 5)
(s3096 2)
(s3098 4)
(s3099 5)
(s3100 5)
(s3101 2)
(s3103 4)
(s3104 5)
(s3105 5)
(s3106 2)
(s3108 4)
(s3109 5)
(s3110 5)
(s3111 2)
(s3113 4)
(s3114 5)
(s3115 5)
(s3116 2)
(s3118 4)
(s3119 5)
(s3120 5)
(s3121 2)
(s3123 4)
(s3124 5)
(s3125 5)
(s3126 2)
(s3128 4)
(s3129 5)
(s3130 5)
(s3131 2)
(s3133 4)
(s3134 5)
(s3135 5)
(s3136 2)
(s3138 4)
(s3139 5)
(s3140 5)
(s3141 2)
(s3143 4)
(s3144 5)
(s3145 5)
(s3146 2)
(s3148 4)
(s3149 5)
(s3150 5)
(s3151 2)
(s3153 4)
(s3154 5)
(s3155 5)
(s3156 2)
(s3158 4)
(s3159 5)
(s3160 5)
(s3161 2)
(s3163 4)
(s3164 5)
(s3165 5)
(s3166 2)
(s3168 4)
(s3169 5)
(s3170 5)
(s3171 2)
(s3173 4)
(s3174 5)
(s3175 5)
(s3176 2)
(s3178 4)
(s3179 5)
(s3180 5)
(s3181 2)
(s3183 4)
(s3184 5)
(s3185 5)
(s3186 2)
(s3188 4)
(s3189 5)
(s3190 5)
(s3191 2)
(s3193 4)
(s3194 5)
(s3195 5)
(s3196 2)
(s3198 4)
(s3199 5)
(s3200 5)
(s3201 2)
(s3203 4)
(s3204 5)
(s3205 5)
(s3206 2)
(s3208 4)
(s3209 5)
(s3210 5)
(s3211 2)
(s3213 4)
(s3214 5)
(s3215 5)
(s3216 2)
(s3218 4)
(s3219 5)
(s3220 5)
(s3221 2)
(s3223 4)
(s3224 5)
(s3225 5)
(s3226 2)
(s3228 4)
(s3229 5)
(s3230 5)
(s3231 2)
(s3233 4)
(s3234 5)
(s3235 5)
(s3236 2)
(s3238 4)
(s3239 5)
(s3240 5)
(s3241 2)
(s3243 4)
(s3244 5)
(s3245 5)
(s3246 timeout
2)
(s3248 org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30086 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 64346ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 64390ms
Finished structural reductions in LTL mode , in 1 iterations and 93099 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Stuttering acceptance computed with spot in 124 ms :[(NOT p1), (NOT p1), true, (NOT p0)]
Running random walk in product with property : JoinFreeModules-PT-1000-LTLCardinality-14
Stuttering criterion allowed to conclude after 0 steps with 0 reset in 1 ms.
FORMULA JoinFreeModules-PT-1000-LTLCardinality-14 FALSE TECHNIQUES STUTTER_TEST
Treatment of property JoinFreeModules-PT-1000-LTLCardinality-14 finished in 93249 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202405141337/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(X((F(p0)&&(p1||X(G(p0))))))'
Support contains 3 out of 5000 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 206 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:38:54] [INFO ] Invariant cache hit.
[2024-05-23 23:38:54] [INFO ] State equation strengthened by 1000 read => feed constraints.
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20079 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Error getting values : (error "ParserException while parsing response: ((s0 5)
(s1 2)
(s3 4)
(s4 5)
(s5 5)
(s6 2)
(s8 4)
(s9 5)
(s10 5)
(s11 2)
(s13 4)
(s14 5)
(s15 5)
(s16 2)
(s18 4)
(s19 5)
(s20 5)
(s21 2)
(s23 4)
(s24 5)
(s25 5)
(s26 2)
(s28 4)
(s29 5)
(s30 5)
(s31 2)
(s33 4)
(s34 5)
(s35 5)
(s36 2)
(s38 4)
(s39 5)
(s40 5)
(s41 2)
(s43 4)
(s44 5)
(s45 5)
(s46 2)
(s48 4)
(s49 5)
(s50 5)
(s51 2)
(s53 4)
(s54 5)
(s55 5)
(s56 2)
(s58 4)
(s59 5)
(s60 5)
(s61 2)
(s63 4)
(s64 5)
(s65 5)
(s66 2)
(s68 4)
(s69 5)
(s70 5)
(s71 2)
(s73 4)
(s74 5)
(s75 5)
(s76 2)
(s78 4)
(s79 5)
(s80 5)
(s81 2)
(s83 4)
(s84 5)
(s85 5)
(s86 2)
(s88 4)
(s89 5)
(s90 5)
(s91 2)
(s93 4)
(s94 5)
(s95 5)
(s96 2)
(s98 4)
(s99 5)
(s100 5)
(s101 2)
(s103 4)
(s104 5)
(s105 5)
(s106 2)
(s108 4)
(s109 5)
(s110 5)
(s111 2)
(s113 4)
(s114 5)
(s115 5)
(s116 2)
(s118 4)
(s119 5)
(s120 5)
(s121 2)
(s123 4)
(s124 5)
(s125 5)
(s126 2)
(s128 4)
(s129 5)
(s130 5)
(s131 2)
(s133 4)
(s134 5)
(s135 5)
(s136 2)
(s138 4)
(s139 5)
(s140 5)
(s141 2)
(s143 4)
(s144 5)
(s145 5)
(s146 2)
(s148 4)
(s149 5)
(s150 5)
(s151 2)
(s153 4)
(s154 5)
(s155 5)
(s156 2)
(s158 4)
(s159 5)
(s160 5)
(s161 2)
(s163 4)
(s164 5)
(s165 5)
(s166 2)
(s168 4)
(s169 5)
(s170 5)
(s171 2)
(s173 4)
(s174 5)
(s175 5)
(s176 2)
(s178 4)
(s179 5)
(s180 5)
(s181 2)
(s183 4)
(s184 5)
(s185 5)
(s186 2)
(s188 4)
(s189 5)
(s190 5)
(s191 2)
(s193 4)
(s194 5)
(s195 5)
(s196 2)
(s198 4)
(s199 5)
(s200 5)
(s201 2)
(s203 4)
(s204 5)
(s205 5)
(s206 2)
(s208 4)
(s209 5)
(s210 5)
(s211 2)
(s213 4)
(s214 5)
(s215 5)
(s216 2)
(s218 4)
(s219 5)
(s220 5)
(s221 2)
(s223 4)
(s224 5)
(s225 5)
(s226 2)
(s228 4)
(s229 5)
(s230 5)
(s231 2)
(s233 4)
(s234 5)
(s235 5)
(s236 2)
(s238 4)
(s239 5)
(s240 5)
(s241 2)
(s243 4)
(s244 5)
(s245 5)
(s246 2)
(s248 4)
(s249 5)
(s250 5)
(s251 2)
(s253 4)
(s254 5)
(s255 5)
(s256 2)
(s258 4)
(s259 5)
(s260 5)
(s261 2)
(s263 4)
(s264 5)
(s265 5)
(s266 2)
(s268 4)
(s269 5)
(s270 5)
(s271 2)
(s273 4)
(s274 5)
(s275 5)
(s276 2)
(s278 4)
(s279 5)
(s280 5)
(s281 2)
(s283 4)
(s284 5)
(s285 5)
(s286 2)
(s288 4)
(s289 5)
(s290 5)
(s291 2)
(s293 4)
(s294 5)
(s295 5)
(s296 2)
(s298 4)
(s299 5)
(s300 5)
(s301 2)
(s303 4)
(s304 5)
(s305 5)
(s306 2)
(s308 4)
(s309 5)
(s310 5)
(s311 2)
(s313 4)
(s314 5)
(s315 5)
(s316 2)
(s318 4)
(s319 5)
(s320 5)
(s321 2)
(s323 4)
(s324 5)
(s325 5)
(s326 2)
(s328 4)
(s329 5)
(s330 5)
(s331 2)
(s333 4)
(s334 5)
(s335 5)
(s336 2)
(s338 4)
(s339 5)
(s340 5)
(s341 2)
(s343 4)
(s344 5)
(s345 5)
(s346 2)
(s348 4)
(s349 5)
(s350 5)
(s351 2)
(s353 4)
(s354 5)
(s355 5)
(s356 2)
(s358 4)
(s359 5)
(s360 5)
(s361 2)
(s363 4)
(s364 5)
(s365 5)
(s366 2)
(s368 4)
(s369 5)
(s370 5)
(s371 2)
(s373 4)
(s374 5)
(s375 5)
(s376 2)
(s378 4)
(s379 5)
(s380 5)
(s381 2)
(s383 4)
(s384 5)
(s385 5)
(s386 2)
(s388 4)
(s389 5)
(s390 5)
(s391 2)
(s393 4)
(s394 5)
(s395 5)
(s396 2)
(s398 4)
(s399 5)
(s400 5)
(s401 2)
(s403 4)
(s404 5)
(s405 5)
(s406 2)
(s408 4)
(s409 5)
(s410 5)
(s411 2)
(s413 4)
(s414 5)
(s415 5)
(s416 2)
(s418 4)
(s419 5)
(s420 5)
(s421 2)
(s423 4)
(s424 5)
(s425 5)
(s426 2)
(s428 4)
(s429 5)
(s430 5)
(s431 2)
(s433 4)
(s434 5)
(s435 5)
(s436 2)
(s438 4)
(s439 5)
(s440 5)
(s441 2)
(s443 4)
(s444 5)
(s445 5)
(s446 2)
(s448 4)
(s449 5)
(s450 5)
(s451 2)
(s453 4)
(s454 5)
(s455 5)
(s456 2)
(s458 4)
(s459 5)
(s460 5)
(s461 2)
(s463 4)
(s464 5)
(s465 5)
(s466 2)
(s468 4)
(s469 5)
(s470 5)
(s471 2)
(s473 4)
(s474 5)
(s475 5)
(s476 2)
(s478 4)
(s479 5)
(s480 5)
(s481 2)
(s483 4)
(s484 5)
(s485 5)
(s486 2)
(s488 4)
(s489 5)
(s490 5)
(s491 2)
(s493 4)
(s494 5)
(s495 5)
(s496 2)
(s498 4)
(s499 5)
(s500 5)
(s501 2)
(s503 4)
(s504 5)
(s505 5)
(s506 2)
(s508 4)
(s509 5)
(s510 5)
(s511 2)
(s513 4)
(s514 5)
(s515 5)
(s516 2)
(s518 4)
(s519 5)
(s520 5)
(s521 2)
(s523 4)
(s524 5)
(s525 5)
(s526 2)
(s528 4)
(s529 5)
(s530 5)
(s531 2)
(s533 4)
(s534 5)
(s535 5)
(s536 2)
(s538 4)
(s539 5)
(s540 5)
(s541 2)
(s543 4)
(s544 5)
(s545 5)
(s546 2)
(s548 4)
(s549 5)
(s550 5)
(s551 2)
(s553 4)
(s554 5)
(s555 5)
(s556 2)
(s558 4)
(s559 5)
(s560 5)
(s561 2)
(s563 4)
(s564 5)
(s565 5)
(s566 2)
(s568 4)
(s569 5)
(s570 5)
(s571 2)
(s573 4)
(s574 5)
(s575 5)
(s576 2)
(s578 4)
(s579 5)
(s580 5)
(s581 2)
(s583 4)
(s584 5)
(s585 5)
(s586 2)
(s588 4)
(s589 5)
(s590 5)
(s591 2)
(s593 4)
(s594 5)
(s595 5)
(s596 2)
(s598 4)
(s599 5)
(s600 5)
(s601 2)
(s603 4)
(s604 5)
(s605 5)
(s606 2)
(s608 4)
(s609 5)
(s610 5)
(s611 2)
(s613 4)
(s614 5)
(s615 5)
(s616 2)
(s618 4)
(s619 5)
(s620 5)
(s621 2)
(s623 4)
(s624 5)
(s625 5)
(s626 2)
(s628 4)
(s629 5)
(s630 5)
(s631 2)
(s633 4)
(s634 5)
(s635 5)
(s636 2)
(s638 4)
(s639 5)
(s640 5)
(s641 2)
(s643 4)
(s644 5)
(s645 5)
(s646 2)
(s648 4)
(s649 5)
(s650 5)
(s651 2)
(s653 4)
(s654 5)
(s655 5)
(s656 2)
(s658 4)
(s659 5)
(s660 5)
(s661 2)
(s663 4)
(s664 5)
(s665 5)
(s666 2)
(s668 4)
(s669 5)
(s670 5)
(s671 2)
(s673 4)
(s674 5)
(s675 5)
(s676 2)
(s678 4)
(s679 5)
(s680 5)
(s681 2)
(s683 4)
(s684 5)
(s685 5)
(s686 2)
(s688 4)
(s689 5)
(s690 5)
(s691 2)
(s693 4)
(s694 5)
(s695 5)
(s696 2)
(s698 4)
(s699 5)
(s700 5)
(s701 2)
(s703 4)
(s704 5)
(s705 5)
(s706 2)
(s708 4)
(s709 5)
(s710 5)
(s711 2)
(s713 4)
(s714 5)
(s715 5)
(s716 2)
(s718 4)
(s719 5)
(s720 5)
(s721 2)
(s723 4)
(s724 5)
(s725 5)
(s726 2)
(s728 4)
(s729 5)
(s730 5)
(s731 2)
(s733 4)
(s734 5)
(s735 5)
(s736 2)
(s738 4)
(s739 5)
(s740 5)
(s741 2)
(s743 4)
(s744 5)
(s745 5)
(s746 2)
(s748 4)
(s749 5)
(s750 5)
(s751 2)
(s753 4)
(s754 5)
(s755 5)
(s756 2)
(s758 4)
(s759 5)
(s760 5)
(s761 2)
(s763 4)
(s764 5)
(s765 5)
(s766 2)
(s768 4)
(s769 5)
(s770 5)
(s771 2)
(s773 4)
(s774 5)
(s775 5)
(s776 2)
(s778 4)
(s779 5)
(s780 5)
(s781 2)
(s783 4)
(s784 5)
(s785 5)
(s786 2)
(s788 4)
(s789 5)
(s790 5)
(s791 2)
(s793 4)
(s794 5)
(s795 5)
(s796 2)
(s798 4)
(s799 5)
(s800 5)
(s801 2)
(s803 4)
(s804 5)
(s805 5)
(s806 2)
(s808 4)
(s809 5)
(s810 5)
(s811 2)
(s813 4)
(s814 5)
(s815 5)
(s816 2)
(s818 4)
(s819 5)
(s820 5)
(s821 2)
(s823 4)
(s824 5)
(s825 5)
(s826 2)
(s828 4)
(s829 5)
(s830 5)
(s831 2)
(s833 4)
(s834 5)
(s835 5)
(s836 2)
(s838 4)
(s839 5)
(s840 5)
(s841 2)
(s843 4)
(s844 5)
(s845 5)
(s846 2)
(s848 4)
(s849 5)
(s850 5)
(s851 2)
(s853 4)
(s854 5)
(s855 5)
(s856 2)
(s858 4)
(s859 5)
(s860 5)
(s861 2)
(s863 4)
(s864 5)
(s865 5)
(s866 2)
(s868 4)
(s869 5)
(s870 5)
(s871 2)
(s873 4)
(s874 5)
(s875 5)
(s876 2)
(s878 4)
(s879 5)
(s880 5)
(s881 2)
(s883 4)
(s884 5)
(s885 5)
(s886 2)
(s888 4)
(s889 5)
(s890 5)
(s891 2)
(s893 4)
(s894 5)
(s895 5)
(s896 2)
(s898 4)
(s899 5)
(s900 5)
(s901 2)
(s903 4)
(s904 5)
(s905 5)
(s906 2)
(s908 4)
(s909 5)
(s910 5)
(s911 2)
(s913 4)
(s914 5)
(s915 5)
(s916 2)
(s918 4)
(s919 5)
(s920 5)
(s921 2)
(s923 4)
(s924 5)
(s925 5)
(s926 2)
(s928 4)
(s929 5)
(s930 5)
(s931 2)
(s933 4)
(s934 5)
(s935 5)
(s936 2)
(s938 4)
(s939 5)
(s940 5)
(s941 2)
(s943 4)
(s944 5)
(s945 5)
(s946 2)
(s948 4)
(s949 5)
(s950 5)
(s951 2)
(s953 4)
(s954 5)
(s955 5)
(s956 2)
(s958 4)
(s959 5)
(s960 5)
(s961 2)
(s963 4)
(s964 5)
(s965 5)
(s966 2)
(s968 4)
(s969 5)
(s970 5)
(s971 2)
(s973 4)
(s974 5)
(s975 5)
(s976 2)
(s978 4)
(s979 5)
(s980 5)
(s981 2)
(s983 4)
(s984 5)
(s985 5)
(s986 2)
(s988 4)
(s989 5)
(s990 5)
(s991 2)
(s993 4)
(s994 5)
(s995 5)
(s996 2)
(s998 4)
(s999 5)
(s1000 5)
(s1001 2)
(s1003 4)
(s1004 5)
(s1005 5)
(s1006 2)
(s1008 4)
(s1009 5)
(s1010 5)
(s1011 2)
(s1013 4)
(s1014 5)
(s1015 5)
(s1016 2)
(s1018 4)
(s1019 5)
(s1020 5)
(s1021 2)
(s1023 4)
(s1024 5)
(s1025 5)
(s1026 2)
(s1028 4)
(s1029 5)
(s1030 5)
(s1031 2)
(s1033 4)
(s1034 5)
(s1035 5)
(s1036 2)
(s1038 4)
(s1039 5)
(s1040 5)
(s1041 2)
(s1043 4)
(s1044 5)
(s1045 5)
(s1046 2)
(s1048 4)
(s1049 5)
(s1050 5)
(s1051 2)
(s1053 4)
(s1054 5)
(s1055 5)
(s1056 2)
(s1058 4)
(s1059 5)
(s1060 5)
(s1061 2)
(s1063 4)
(s1064 5)
(s1065 5)
(s1066 2)
(s1068 4)
(s1069 5)
(s1070 5)
(s1071 2)
(s1073 4)
(s1074 5)
(s1075 5)
(s1076 2)
(s1078 4)
(s1079 5)
(s1080 5)
(s1081 2)
(s1083 4)
(s1084 5)
(s1085 5)
(s1086 2)
(s1088 4)
(s1089 5)
(s1090 5)
(s1091 2)
(s1093 4)
(s1094 5)
(s1095 5)
(s1096 2)
(s1098 4)
(s1099 5)
(s1100 5)
(s1101 2)
(s1103 4)
(s1104 5)
(s1105 5)
(s1106 2)
(s1108 4)
(s1109 5)
(s1110 5)
(s1111 2)
(s1113 4)
(s1114 5)
(s1115 5)
(s1116 2)
(s1118 4)
(s1119 5)
(s1120 5)
(s1121 2)
(s1123 4)
(s1124 5)
(s1125 5)
(s1126 2)
(s1128 4)
(s1129 5)
(s1130 5)
(s1131 2)
(s1133 4)
(s1134 5)
(s1135 5)
(s1136 2)
(s1138 4)
(s1139 5)
(s1140 5)
(s1141 2)
(s1143 4)
(s1144 5)
(s1145 5)
(s1146 2)
(s1148 4)
(s1149 5)
(s1150 5)
(s1151 2)
(s1153 4)
(s1154 5)
(s1155 5)
(s1156 2)
(s1158 4)
(s1159 5)
(s1160 5)
(s1161 2)
(s1163 4)
(s1164 5)
(s1165 5)
(s1166 2)
(s1168 4)
(s1169 5)
(s1170 5)
(s1171 2)
(s1173 4)
(s1174 5)
(s1175 5)
(s1176 2)
(s1178 4)
(s1179 5)
(s1180 5)
(s1181 2)
(s1183 4)
(s1184 5)
(s1185 5)
(s1186 2)
(s1188 4)
(s1189 5)
(s1190 5)
(s1191 2)
(s1193 4)
(s1194 5)
(s1195 5)
(s1196 2)
(s1198 4)
(s1199 5)
(s1200 5)
(s1201 2)
(s1203 4)
(s1204 5)
(s1205 5)
(s1206 2)
(s1208 4)
(s1209 5)
(s1210 5)
(s1211 2)
(s1213 4)
(s1214 5)
(s1215 5)
(s1216 2)
(s1218 4)
(s1219 5)
(s1220 5)
(s1221 2)
(s1223 4)
(s1224 5)
(s1225 5)
(s1226 2)
(s1228 4)
(s1229 5)
(s1230 5)
(s1231 2)
(s1233 4)
(s1234 5)
(s1235 5)
(s1236 2)
(s1238 4)
(s1239 5)
(s1240 5)
(s1241 2)
(s1243 4)
(s1244 5)
(s1245 5)
(s1246 2)
(s1248 4)
(s1249 5)
(s1250 5)
(s1251 2)
(s1253 4)
(s1254 5)
(s1255 5)
(s1256 2)
(s1258 4)
(s1259 5)
(s1260 5)
(s1261 2)
(s1263 4)
(s1264 5)
(s1265 5)
(s1266 2)
(s1268 4)
(s1269 5)
(s1270 5)
(s1271 2)
(s1273 4)
(s1274 5)
(s1275 5)
(s1276 2)
(s1278 4)
(s1279 5)
(s1280 5)
(s1281 2)
(s1283 4)
(s1284 5)
(s1285 5)
(s1286 2)
(s1288 4)
(s1289 5)
(s1290 5)
(s1291 2)
(s1293 4)
(s1294 5)
(s1295 5)
(s1296 2)
(s1298 4)
(s1299 5)
(s1300 5)
(s1301 2)
(s1303 4)
(s1304 5)
(s1305 5)
(s1306 2)
(s1308 4)
(s1309 5)
(s1310 5)
(s1311 2)
(s1313 4)
(s1314 5)
(s1315 5)
(s1316 2)
(s1318 4)
(s1319 5)
(s1320 5)
(s1321 2)
(s1323 4)
(s1324 5)
(s1325 5)
(s1326 2)
(s1328 4)
(s1329 5)
(s1330 5)
(s1331 2)
(s1333 4)
(s1334 5)
(s1335 5)
(s1336 2)
(s1338 4)
(s1339 5)
(s1340 5)
(s1341 2)
(s1343 4)
(s1344 5)
(s1345 5)
(s1346 2)
(s1348 4)
(s1349 5)
(s1350 5)
(s1351 2)
(s1353 4)
(s1354 5)
(s1355 5)
(s1356 2)
(s1358 4)
(s1359 5)
(s1360 5)
(s1361 2)
(s1363 4)
(s1364 5)
(s1365 5)
(s1366 2)
(s1368 4)
(s1369 5)
(s1370 5)
(s1371 2)
(s1373 4)
(s1374 5)
(s1375 5)
(s1376 2)
(s1378 4)
(s1379 5)
(s1380 5)
(s1381 2)
(s1383 4)
(s1384 5)
(s1385 5)
(s1386 2)
(s1388 4)
(s1389 5)
(s1390 5)
(s1391 2)
(s1393 4)
(s1394 5)
(s1395 5)
(s1396 2)
(s1398 4)
(s1399 5)
(s1400 5)
(s1401 2)
(s1403 4)
(s1404 5)
(s1405 5)
(s1406 2)
(s1408 4)
(s1409 5)
(s1410 5)
(s1411 2)
(s1413 4)
(s1414 5)
(s1415 5)
(s1416 2)
(s1418 4)
(s1419 5)
(s1420 5)
(s1421 2)
(s1423 4)
(s1424 5)
(s1425 5)
(s1426 2)
(s1428 4)
(s1429 5)
(s1430 5)
(s1431 2)
(s1433 4)
(s1434 5)
(s1435 5)
(s1436 2)
(s1438 4)
(s1439 5)
(s1440 5)
(s1441 2)
(s1443 4)
(s1444 5)
(s1445 5)
(s1446 2)
(s1448 4)
(s1449 5)
(s1450 5)
(s1451 2)
(s1453 4)
(s1454 5)
(s1455 5)
(s1456 2)
(s1458 4)
(s1459 5)
(s1460 5)
(s1461 2)
(s1463 4)
(s1464 5)
(s1465 5)
(s1466 2)
(s1468 4)
(s1469 5)
(s1470 5)
(s1471 2)
(s1473 4)
(s1474 5)
(s1475 5)
(s1476 2)
(s1478 4)
(s1479 5)
(s1480 5)
(s1481 2)
(s1483 4)
(s1484 5)
(s1485 5)
(s1486 2)
(s1488 4)
(s1489 5)
(s1490 5)
(s1491 2)
(s1493 4)
(s1494 5)
(s1495 5)
(s1496 2)
(s1498 4)
(s1499 5)
(s1500 5)
(s1501 2)
(s1503 4)
(s1504 5)
(s1505 5)
(s1506 2)
(s1508 4)
(s1509 5)
(s1510 5)
(s1511 2)
(s1513 4)
(s1514 5)
(s1515 5)
(s1516 2)
(s1518 4)
(s1519 5)
(s1520 5)
(s1521 2)
(s1523 4)
(s1524 5)
(s1525 5)
(s1526 2)
(s1528 4)
(s1529 5)
(s1530 5)
(s1531 2)
(s1533 4)
(s1534 5)
(s1535 5)
(s1536 2)
(s1538 4)
(s1539 5)
(s1540 5)
(s1541 2)
(s1543 4)
(s1544 5)
(s1545 5)
(s1546 2)
(s1548 4)
(s1549 5)
(s1550 5)
(s1551 2)
(s1553 4)
(s1554 5)
(s1555 5)
(s1556 2)
(s1558 4)
(s1559 5)
(s1560 5)
(s1561 2)
(s1563 4)
(s1564 5)
(s1565 5)
(s1566 2)
(s1568 4)
(s1569 5)
(s1570 5)
(s1571 2)
(s1573 4)
(s1574 5)
(s1575 5)
(s1576 2)
(s1578 4)
(s1579 5)
(s1580 5)
(s1581 2)
(s1583 4)
(s1584 5)
(s1585 5)
(s1586 2)
(s1588 4)
(s1589 5)
(s1590 5)
(s1591 2)
(s1593 4)
(s1594 5)
(s1595 5)
(s1596 2)
(s1598 4)
(s1599 5)
(s1600 5)
(s1601 2)
(s1603 4)
(s1604 5)
(s1605 5)
(s1606 2)
(s1608 4)
(s1609 5)
(s1610 5)
(s1611 2)
(s1613 4)
(s1614 5)
(s1615 5)
(s1616 2)
(s1618 4)
(s1619 5)
(s1620 5)
(s1621 2)
(s1623 4)
(s1624 5)
(s1625 5)
(s1626 2)
(s1628 4)
(s1629 5)
(s1630 5)
(s1631 2)
(s1633 4)
(s1634 5)
(s1635 5)
(s1636 2)
(s1638 4)
(s1639 5)
(s1640 5)
(s1641 2)
(s1643 4)
(s1644 5)
(s1645 5)
(s1646 2)
(s1648 4)
(s1649 5)
(s1650 5)
(s1651 2)
(s1653 4)
(s1654 5)
(s1655 5)
(s1656 2)
(s1658 4)
(s1659 5)
(s1660 5)
(s1661 2)
(s1663 4)
(s1664 5)
(s1665 5)
(s1666 2)
(s1668 4)
(s1669 5)
(s1670 5)
(s1671 2)
(s1673 4)
(s1674 5)
(s1675 5)
(s1676 2)
(s1678 4)
(s1679 5)
(s1680 5)
(s1681 2)
(s1683 4)
(s1684 5)
(s1685 5)
(s1686 2)
(s1688 4)
(s1689 5)
(s1690 5)
(s1691 2)
(s1693 4)
(s1694 5)
(s1695 5)
(s1696 2)
(s1698 4)
(s1699 5)
(s1700 5)
(s1701 2)
(s1703 4)
(s1704 5)
(s1705 5)
(s1706 2)
(s1708 4)
(s1709 5)
(s1710 timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20078 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 44062ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 44103ms
[2024-05-23 23:39:38] [INFO ] Invariant cache hit.
[2024-05-23 23:39:38] [INFO ] Implicit Places using invariants in 841 ms returned []
[2024-05-23 23:39:38] [INFO ] Invariant cache hit.
[2024-05-23 23:39:42] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2024-05-23 23:39:42] [INFO ] Implicit Places using invariants and state equation in 3613 ms returned []
Implicit Place search using SMT with State Equation took 4455 ms to find 0 implicit places.
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:39:42] [INFO ] Invariant cache hit.
[2024-05-23 23:39:42] [INFO ] State equation strengthened by 1000 read => feed constraints.
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30073 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Error getting values : (error "ParserException while parsing response: ((s0 5)
(s1 2)
(s3 4)
(s4 5)
(s5 5)
(s6 2)
(s8 4)
(s9 5)
(s10 5)
(s11 2)
(s13 4)
(s14 5)
(s15 5)
(s16 2)
(s18 4)
(s19 5)
(s20 5)
(s21 2)
(s23 4)
(s24 5)
(s25 5)
(s26 2)
(s28 4)
(s29 5)
(s30 5)
(s31 2)
(s33 4)
(s34 5)
(s35 5)
(s36 2)
(s38 4)
(s39 5)
(s40 5)
(s41 2)
(s43 4)
(s44 5)
(s45 5)
(s46 2)
(s48 4)
(s49 5)
(s50 5)
(s51 2)
(s53 4)
(s54 5)
(s55 5)
(s56 2)
(s58 4)
(s59 5)
(s60 5)
(s61 2)
(s63 4)
(s64 5)
(s65 5)
(s66 2)
(s68 4)
(s69 5)
(s70 5)
(s71 2)
(s73 4)
(s74 5)
(s75 5)
(s76 2)
(s78 4)
(s79 5)
(s80 5)
(s81 2)
(s83 4)
(s84 5)
(s85 5)
(s86 2)
(s88 4)
(s89 5)
(s90 5)
(s91 2)
(s93 4)
(s94 5)
(s95 5)
(s96 2)
(s98 4)
(s99 5)
(s100 5)
(s101 2)
(s103 4)
(s104 5)
(s105 5)
(s106 2)
(s108 4)
(s109 5)
(s110 5)
(s111 2)
(s113 4)
(s114 5)
(s115 5)
(s116 2)
(s118 4)
(s119 5)
(s120 5)
(s121 2)
(s123 4)
(s124 5)
(s125 5)
(s126 2)
(s128 4)
(s129 5)
(s130 5)
(s131 2)
(s133 4)
(s134 5)
(s135 5)
(s136 2)
(s138 4)
(s139 5)
(s140 5)
(s141 2)
(s143 4)
(s144 5)
(s145 5)
(s146 2)
(s148 4)
(s149 5)
(s150 5)
(s151 2)
(s153 4)
(s154 5)
(s155 5)
(s156 2)
(s158 4)
(s159 5)
(s160 5)
(s161 2)
(s163 4)
(s164 5)
(s165 5)
(s166 2)
(s168 4)
(s169 5)
(s170 5)
(s171 2)
(s173 4)
(s174 5)
(s175 5)
(s176 2)
(s178 4)
(s179 5)
(s180 5)
(s181 2)
(s183 4)
(s184 5)
(s185 5)
(s186 2)
(s188 4)
(s189 5)
(s190 5)
(s191 2)
(s193 4)
(s194 5)
(s195 5)
(s196 2)
(s198 4)
(s199 5)
(s200 5)
(s201 2)
(s203 4)
(s204 5)
(s205 5)
(s206 2)
(s208 4)
(s209 5)
(s210 5)
(s211 2)
(s213 4)
(s214 5)
(s215 5)
(s216 2)
(s218 4)
(s219 5)
(s220 5)
(s221 2)
(s223 4)
(s224 5)
(s225 5)
(s226 2)
(s228 4)
(s229 5)
(s230 5)
(s231 2)
(s233 4)
(s234 5)
(s235 5)
(s236 2)
(s238 4)
(s239 5)
(s240 5)
(s241 2)
(s243 4)
(s244 5)
(s245 5)
(s246 2)
(s248 4)
(s249 5)
(s250 5)
(s251 2)
(s253 4)
(s254 5)
(s255 5)
(s256 2)
(s258 4)
(s259 5)
(s260 5)
(s261 2)
(s263 4)
(s264 5)
(s265 5)
(s266 2)
(s268 4)
(s269 5)
(s270 5)
(s271 2)
(s273 4)
(s274 5)
(s275 5)
(s276 2)
(s278 4)
(s279 5)
(s280 5)
(s281 2)
(s283 4)
(s284 5)
(s285 5)
(s286 2)
(s288 4)
(s289 5)
(s290 5)
(s291 2)
(s293 4)
(s294 5)
(s295 5)
(s296 2)
(s298 4)
(s299 5)
(s300 5)
(s301 2)
(s303 4)
(s304 5)
(s305 5)
(s306 2)
(s308 4)
(s309 5)
(s310 5)
(s311 2)
(s313 4)
(s314 5)
(s315 5)
(s316 2)
(s318 4)
(s319 5)
(s320 5)
(s321 2)
(s323 4)
(s324 5)
(s325 5)
(s326 2)
(s328 4)
(s329 5)
(s330 5)
(s331 2)
(s333 4)
(s334 5)
(s335 5)
(s336 2)
(s338 4)
(s339 5)
(s340 5)
(s341 2)
(s343 4)
(s344 5)
(s345 5)
(s346 2)
(s348 4)
(s349 5)
(s350 5)
(s351 2)
(s353 4)
(s354 5)
(s355 5)
(s356 2)
(s358 4)
(s359 5)
(s360 5)
(s361 2)
(s363 4)
(s364 5)
(s365 5)
(s366 2)
(s368 4)
(s369 5)
(s370 5)
(s371 2)
(s373 4)
(s374 5)
(s375 5)
(s376 2)
(s378 4)
(s379 5)
(s380 5)
(s381 2)
(s383 4)
(s384 5)
(s385 5)
(s386 2)
(s388 4)
(s389 5)
(s390 5)
(s391 2)
(s393 4)
(s394 5)
(s395 5)
(s396 2)
(s398 4)
(s399 5)
(s400 5)
(s401 2)
(s403 4)
(s404 5)
(s405 5)
(s406 2)
(s408 4)
(s409 5)
(s410 5)
(s411 2)
(s413 4)
(s414 5)
(s415 5)
(s416 2)
(s418 4)
(s419 5)
(s420 5)
(s421 2)
(s423 4)
(s424 5)
(s425 5)
(s426 2)
(s428 4)
(s429 5)
(s430 5)
(s431 2)
(s433 4)
(s434 5)
(s435 5)
(s436 2)
(s438 4)
(s439 5)
(s440 5)
(s441 2)
(s443 4)
(s444 5)
(s445 5)
(s446 2)
(s448 4)
(s449 5)
(s450 5)
(s451 2)
(s453 4)
(s454 5)
(s455 5)
(s456 2)
(s458 4)
(s459 5)
(s460 5)
(s461 2)
(s463 4)
(s464 5)
(s465 5)
(s466 2)
(s468 4)
(s469 5)
(s470 5)
(s471 2)
(s473 4)
(s474 5)
(s475 5)
(s476 2)
(s478 4)
(s479 5)
(s480 5)
(s481 2)
(s483 4)
(s484 5)
(s485 5)
(s486 2)
(s488 4)
(s489 5)
(s490 5)
(s491 2)
(s493 4)
(s494 5)
(s495 5)
(s496 2)
(s498 4)
(s499 5)
(s500 5)
(s501 2)
(s503 4)
(s504 5)
(s505 5)
(s506 2)
(s508 4)
(s509 5)
(s510 5)
(s511 2)
(s513 4)
(s514 5)
(s515 5)
(s516 2)
(s518 4)
(s519 5)
(s520 5)
(s521 2)
(s523 4)
(s524 5)
(s525 5)
(s526 2)
(s528 4)
(s529 5)
(s530 5)
(s531 2)
(s533 4)
(s534 5)
(s535 5)
(s536 2)
(s538 4)
(s539 5)
(s540 5)
(s541 2)
(s543 4)
(s544 5)
(s545 5)
(s546 2)
(s548 4)
(s549 5)
(s550 5)
(s551 2)
(s553 4)
(s554 5)
(s555 5)
(s556 2)
(s558 4)
(s559 5)
(s560 5)
(s561 2)
(s563 4)
(s564 5)
(s565 5)
(s566 2)
(s568 4)
(s569 5)
(s570 5)
(s571 2)
(s573 4)
(s574 5)
(s575 5)
(s576 2)
(s578 4)
(s579 5)
(s580 5)
(s581 2)
(s583 4)
(s584 5)
(s585 5)
(s586 2)
(s588 4)
(s589 5)
(s590 5)
(s591 2)
(s593 4)
(s594 5)
(s595 5)
(s596 2)
(s598 4)
(s599 5)
(s600 5)
(s601 2)
(s603 4)
(s604 5)
(s605 5)
(s606 2)
(s608 4)
(s609 5)
(s610 5)
(s611 2)
(s613 4)
(s614 5)
(s615 5)
(s616 2)
(s618 4)
(s619 5)
(s620 5)
(s621 2)
(s623 4)
(s624 5)
(s625 5)
(s626 2)
(s628 4)
(s629 5)
(s630 5)
(s631 2)
(s633 4)
(s634 5)
(s635 5)
(s636 2)
(s638 4)
(s639 5)
(s640 5)
(s641 2)
(s643 4)
(s644 5)
(s645 5)
(s646 2)
(s648 4)
(s649 5)
(s650 5)
(s651 2)
(s653 4)
(s654 5)
(s655 5)
(s656 2)
(s658 4)
(s659 5)
(s660 5)
(s661 2)
(s663 4)
(s664 5)
(s665 5)
(s666 2)
(s668 4)
(s669 5)
(s670 5)
(s671 2)
(s673 4)
(s674 5)
(s675 5)
(s676 2)
(s678 4)
(s679 5)
(s680 5)
(s681 2)
(s683 4)
(s684 5)
(s685 5)
(s686 2)
(s688 4)
(s689 5)
(s690 5)
(s691 2)
(s693 4)
(s694 5)
(s695 5)
(s696 2)
(s698 4)
(s699 5)
(s700 5)
(s701 2)
(s703 4)
(s704 5)
(s705 5)
(s706 2)
(s708 4)
(s709 5)
(s710 5)
(s711 2)
(s713 4)
(s714 5)
(s715 5)
(s716 2)
(s718 4)
(s719 5)
(s720 5)
(s721 2)
(s723 4)
(s724 5)
(s725 5)
(s726 2)
(s728 4)
(s729 5)
(s730 5)
(s731 2)
(s733 4)
(s734 5)
(s735 5)
(s736 2)
(s738 4)
(s739 5)
(s740 5)
(s741 2)
(s743 4)
(s744 5)
(s745 5)
(s746 2)
(s748 4)
(s749 5)
(s750 5)
(s751 2)
(s753 4)
(s754 5)
(s755 5)
(s756 2)
(s758 4)
(s759 5)
(s760 5)
(s761 2)
(s763 4)
(s764 5)
(s765 5)
(s766 2)
(s768 4)
(s769 5)
(s770 5)
(s771 2)
(s773 4)
(s774 5)
(s775 5)
(s776 2)
(s778 4)
(s779 5)
(s780 5)
(s781 2)
(s783 4)
(s784 5)
(s785 5)
(s786 2)
(s788 4)
(s789 5)
(s790 5)
(s791 2)
(s793 4)
(s794 5)
(s795 5)
(s796 2)
(s798 4)
(s799 5)
(s800 5)
(s801 2)
(s803 4)
(s804 5)
(s805 5)
(s806 2)
(s808 4)
(s809 5)
(s810 5)
(s811 2)
(s813 4)
(s814 5)
(s815 5)
(s816 2)
(s818 4)
(s819 5)
(s820 5)
(s821 2)
(s823 4)
(s824 5)
(s825 5)
(s826 2)
(s828 4)
(s829 5)
(s830 5)
(s831 2)
(s833 4)
(s834 5)
(s835 5)
(s836 2)
(s838 4)
(s839 5)
(s840 5)
(s841 2)
(s843 4)
(s844 5)
(s845 5)
(s846 2)
(s848 4)
(s849 5)
(s850 5)
(s851 2)
(s853 4)
(s854 5)
(s855 5)
(s856 2)
(s858 4)
(s859 5)
(s860 5)
(s861 2)
(s863 4)
(s864 5)
(s865 5)
(s866 2)
(s868 4)
(s869 5)
(s870 5)
(s871 2)
(s873 4)
(s874 5)
(s875 5)
(s876 2)
(s878 4)
(s879 5)
(s880 5)
(s881 2)
(s883 4)
(s884 5)
(s885 5)
(s886 2)
(s888 4)
(s889 5)
(s890 5)
(s891 2)
(s893 4)
(s894 5)
(s895 5)
(s896 2)
(s898 4)
(s899 5)
(s900 5)
(s901 2)
(s903 4)
(s904 5)
(s905 5)
(s906 2)
(s908 4)
(s909 5)
(s910 5)
(s911 2)
(s913 4)
(s914 5)
(s915 5)
(s916 2)
(s918 4)
(s919 5)
(s920 5)
(s921 2)
(s923 4)
(s924 5)
(s925 5)
(s926 2)
(s928 4)
(s929 5)
(s930 5)
(s931 2)
(s933 4)
(s934 5)
(s935 5)
(s936 2)
(s938 4)
(s939 5)
(s940 5)
(s941 2)
(s943 4)
(s944 5)
(s945 5)
(s946 2)
(s948 4)
(s949 5)
(s950 5)
(s951 2)
(s953 4)
(s954 5)
(s955 5)
(s956 2)
(s958 4)
(s959 5)
(s960 5)
(s961 2)
(s963 4)
(s964 5)
(s965 5)
(s966 2)
(s968 4)
(s969 5)
(s970 5)
(s971 2)
(s973 4)
(s974 5)
(s975 5)
(s976 2)
(s978 4)
(s979 5)
(s980 5)
(s981 2)
(s983 4)
(s984 5)
(s985 5)
(s986 2)
(s988 4)
(s989 5)
(s990 5)
(s991 2)
(s993 4)
(s994 5)
(s995 5)
(s996 2)
(s998 4)
(s999 5)
(s1000 5)
(s1001 2)
(s1003 4)
(s1004 5)
(s1005 5)
(s1006 2)
(s1008 4)
(s1009 5)
(s1010 5)
(s1011 2)
(s1013 4)
(s1014 5)
(s1015 5)
(s1016 2)
(s1018 4)
(s1019 5)
(s1020 5)
(s1021 2)
(s1023 4)
(s1024 5)
(s1025 5)
(s1026 2)
(s1028 4)
(s1029 5)
(s1030 5)
(s1031 2)
(s1033 4)
(s1034 5)
(s1035 5)
(s1036 2)
(s1038 4)
(s1039 5)
(s1040 5)
(s1041 2)
(s1043 4)
(s1044 5)
(s1045 5)
(s1046 2)
(s1048 4)
(s1049 5)
(s1050 5)
(s1051 2)
(s1053 4)
(s1054 5)
(s1055 5)
(s1056 2)
(s1058 4)
(s1059 5)
(s1060 5)
(s1061 2)
(s1063 4)
(s1064 5)
(s1065 5)
(s1066 2)
(s1068 4)
(s1069 5)
(s1070 5)
(s1071 2)
(s1073 4)
(s1074 5)
(s1075 5)
(s1076 2)
(s1078 4)
(s1079 5)
(s1080 5)
(s1081 2)
(s1083 4)
(s1084 5)
(s1085 5)
(s1086 2)
(s1088 4)
(s1089 5)
(s1090 5)
(s1091 2)
(s1093 4)
(s1094 5)
(s1095 5)
(s1096 2)
(s1098 4)
(s1099 5)
(s1100 5)
(s1101 2)
(s1103 4)
(s1104 5)
(s1105 5)
(s1106 2)
(s1108 4)
(s1109 5)
(s1110 5)
(s1111 2)
(s1113 4)
(s1114 5)
(s1115 5)
(s1116 2)
(s1118 4)
(s1119 5)
(s1120 5)
(s1121 2)
(s1123 4)
(s1124 5)
(s1125 5)
(s1126 2)
(s1128 4)
(s1129 5)
(s1130 5)
(s1131 2)
(s1133 4)
(s1134 5)
(s1135 5)
(s1136 2)
(s1138 4)
(s1139 5)
(s1140 5)
(s1141 2)
(s1143 4)
(s1144 5)
(s1145 5)
(s1146 2)
(s1148 4)
(s1149 5)
(s1150 5)
(s1151 2)
(s1153 4)
(s1154 5)
(s1155 5)
(s1156 2)
(s1158 4)
(s1159 5)
(s1160 5)
(s1161 2)
(s1163 4)
(s1164 5)
(s1165 5)
(s1166 2)
(s1168 4)
(s1169 5)
(s1170 5)
(s1171 2)
(s1173 4)
(s1174 5)
(s1175 5)
(s1176 2)
(s1178 4)
(s1179 5)
(s1180 5)
(s1181 2)
(s1183 4)
(s1184 5)
(s1185 5)
(s1186 2)
(s1188 4)
(s1189 5)
(s1190 5)
(s1191 2)
(s1193 4)
(s1194 5)
(s1195 5)
(s1196 2)
(s1198 4)
(s1199 5)
(s1200 5)
(s1201 2)
(s1203 4)
(s1204 5)
(s1205 5)
(s1206 2)
(s1208 4)
(s1209 5)
(s1210 5)
(s1211 2)
(s1213 4)
(s1214 5)
(s1215 5)
(s1216 2)
(s1218 4)
(s1219 5)
(s1220 5)
(s1221 2)
(s1223 4)
(s1224 5)
(s1225 5)
(s1226 2)
(s1228 4)
(s1229 5)
(s1230 5)
(s1231 2)
(s1233 4)
(s1234 5)
(s1235 5)
(s1236 2)
(s1238 4)
(s1239 5)
(s1240 5)
(s1241 2)
(s1243 4)
(s1244 5)
(s1245 5)
(s1246 2)
(s1248 4)
(s1249 5)
(s1250 5)
(s1251 2)
(s1253 4)
(s1254 5)
(s1255 5)
(s1256 2)
(s1258 4)
(s1259 5)
(s1260 5)
(s1261 2)
(s1263 4)
(s1264 5)
(s1265 5)
(s1266 2)
(s1268 4)
(s1269 5)
(s1270 5)
(s1271 2)
(s1273 4)
(s1274 5)
(s1275 5)
(s1276 2)
(s1278 4)
(s1279 5)
(s1280 5)
(s1281 2)
(s1283 4)
(s1284 5)
(s1285 5)
(s1286 2)
(s1288 4)
(s1289 5)
(s1290 5)
(s1291 2)
(s1293 4)
(s1294 5)
(s1295 5)
(s1296 2)
(s1298 4)
(s1299 5)
(s1300 5)
(s1301 2)
(s1303 4)
(s1304 5)
(s1305 5)
(s1306 2)
(s1308 4)
(s1309 5)
(s1310 5)
(s1311 2)
(s1313 4)
(s1314 5)
(s1315 5)
(s1316 2)
(s1318 4)
(s1319 5)
(s1320 5)
(s1321 2)
(s1323 4)
(s1324 5)
(s1325 5)
(s1326 2)
(s1328 4)
(s1329 5)
(s1330 5)
(s1331 2)
(s1333 4)
(s1334 5)
(s1335 5)
(s1336 2)
(s1338 4)
(s1339 5)
(s1340 5)
(s1341 2)
(s1343 4)
(s1344 5)
(s1345 5)
(s1346 2)
(s1348 4)
(s1349 5)
(s1350 5)
(s1351 2)
(s1353 4)
(s1354 5)
(s1355 5)
(s1356 2)
(s1358 4)
(s1359 5)
(s1360 5)
(s1361 2)
(s1363 4)
(s1364 5)
(s1365 5)
(s1366 2)
(s1368 4)
(s1369 5)
(s1370 5)
(s1371 2)
(s1373 4)
(s1374 5)
(s1375 5)
(s1376 2)
(s1378 4)
(s1379 5)
(s1380 5)
(s1381 2)
(s1383 4)
(s1384 5)
(s1385 5)
(s1386 2)
(s1388 4)
(s1389 5)
(s1390 5)
(s1391 2)
(s1393 4)
(s1394 5)
(s1395 5)
(s1396 2)
(s1398 4)
(s1399 5)
(s1400 5)
(s1401 2)
(s1403 4)
(s1404 5)
(s1405 5)
(s1406 2)
(s1408 4)
(s1409 5)
(s1410 5)
(s1411 2)
(s1413 4)
(s1414 5)
(s1415 5)
(s1416 2)
(s1418 4)
(s1419 5)
(s1420 5)
(s1421 2)
(s1423 4)
(s1424 5)
(s1425 5)
(s1426 2)
(s1428 4)
(s1429 5)
(s1430 5)
(s1431 2)
(s1433 4)
(s1434 5)
(s1435 5)
(s1436 2)
(s1438 4)
(s1439 5)
(s1440 5)
(s1441 2)
(s1443 4)
(s1444 5)
(s1445 5)
(s1446 2)
(s1448 4)
(s1449 5)
(s1450 5)
(s1451 2)
(s1453 4)
(s1454 5)
(s1455 5)
(s1456 2)
(s1458 4)
(s1459 5)
(s1460 5)
(s1461 2)
(s1463 4)
(s1464 5)
(s1465 5)
(s1466 2)
(s1468 4)
(s1469 5)
(s1470 5)
(s1471 2)
(s1473 4)
(s1474 5)
(s1475 5)
(s1476 2)
(s1478 4)
(s1479 5)
(s1480 5)
(s1481 2)
(s1483 4)
(s1484 5)
(s1485 5)
(s1486 2)
(s1488 4)
(s1489 5)
(s1490 5)
(s1491 2)
(s1493 4)
(s1494 5)
(s1495 5)
(s1496 2)
(s1498 4)
(s1499 5)
(s1500 5)
(s1501 2)
(s1503 4)
(s1504 5)
(s1505 5)
(s1506 2)
(s1508 4)
(s1509 5)
(s1510 5)
(s1511 2)
(s1513 4)
(s1514 5)
(s1515 5)
(s1516 2)
(s1518 4)
(s1519 5)
(s1520 5)
(s1521 2)
(s1523 4)
(s1524 5)
(s1525 5)
(s1526 2)
(s1528 4)
(s1529 5)
(s1530 5)
(s1531 2)
(s1533 4)
(s1534 5)
(s1535 5)
(s1536 2)
(s1538 4)
(s1539 5)
(s1540 5)
(s1541 2)
(s1543 4)
(s1544 5)
(s1545 5)
(s1546 2)
(s1548 4)
(s1549 5)
(s1550 5)
(s1551 2)
(s1553 4)
(s1554 5)
(s1555 5)
(s1556 2)
(s1558 4)
(s1559 5)
(s1560 5)
(s1561 2)
(s1563 4)
(s1564 5)
(s1565 5)
(s1566 2)
(s1568 4)
(s1569 5)
(s1570 5)
(s1571 2)
(s1573 4)
(s1574 5)
(s1575 5)
(s1576 2)
(s1578 4)
(s1579 5)
(s1580 5)
(s1581 2)
(s1583 4)
(s1584 5)
(s1585 5)
(s1586 2)
(s1588 4)
(s1589 5)
(s1590 5)
(s1591 2)
(s1593 4)
(s1594 5)
(s1595 5)
(s1596 2)
(s1598 4)
(s1599 5)
(s1600 5)
(s1601 2)
(s1603 4)
(s1604 5)
(s1605 5)
(s1606 2)
(s1608 4)
(s1609 5)
(s1610 5)
(s1611 2)
(s1613 4)
(s1614 5)
(s1615 5)
(s1616 2)
(s1618 4)
(s1619 5)
(s1620 5)
(s1621 2)
(s1623 4)
(s1624 5)
(s1625 5)
(s1626 2)
(s1628 4)
(s1629 5)
(s1630 5)
(s1631 2)
(s1633 4)
(s1634 5)
(s1635 5)
(s1636 2)
(s1638 4)
(s1639 5)
(s1640 5)
(s1641 2)
(s1643 4)
(s1644 5)
(s1645 5)
(s1646 2)
(s1648 4)
(s1649 5)
(s1650 5)
(s1651 2)
(s1653 4)
(s1654 5)
(s1655 5)
(s1656 2)
(s1658 4)
(s1659 5)
(s1660 5)
(s1661 2)
(s1663 4)
(s1664 5)
(s1665 5)
(s1666 2)
(s1668 4)
(s1669 5)
(s1670 5)
(s1671 2)
(s1673 4)
(s1674 5)
(s1675 5)
(s1676 2)
(s1678 4)
(s1679 5)
(s1680 5)
(s1681 2)
(s1683 4)
(s1684 5)
(s1685 5)
(s1686 2)
(s1688 4)
(s1689 5)
(s1690 5)
(s1691 2)
(s1693 4)
(s1694 5)
(s1695 5)
(s1696 2)
(s1698 4)
(s1699 5)
(s1700 5)
(s1701 2)
(s1703 4)
(s1704 5)
(s1705 5)
(s1706 2)
(s1708 4)
(s1709 5)
(s1710 5)
(s1711 2)
(s1713 4)
(s1714 5)
(s1715 5)
(s1716 2)
(s1718 4)
(s1719 5)
(s1720 5)
(s1721 2)
(s1723 4)
(s1724 5)
(s1725 5)
(s1726 2)
(s1728 4)
(s1729 5)
(s1730 5)
(s1731 2)
(s1733 4)
(s1734 5)
(s1735 5)
(s1736 2)
(s1738 4)
(s1739 5)
(s1740 5)
(s1741 2)
(s1743 4)
(s1744 5)
(s1745 5)
(s1746 2)
(s1748 4)
(s1749 5)
(s1750 5)
(s1751 2)
(s1753 4)
(s1754 5)
(s1755 5)
(s1756 2)
(s1758 4)
(s1759 5)
(s1760 5)
(s1761 2)
(s1763 4)
(s1764 5)
(s1765 5)
(s1766 2)
(s1768 4)
(s1769 5)
(s1770 5)
(s1771 2)
(s1773 4)
(s1774 5)
(s1775 5)
(s1776 2)
(s1778 4)
(s1779 5)
(s1780 5)
(s1781 2)
(s1783 4)
(s1784 5)
(s1785 5)
(s1786 2)
(s1788 4)
(s1789 5)
(s1790 5)
(s1791 2)
(s1793 4)
(s1794 5)
(s1795 5)
(s1796 2)
(s1798 4)
(s1799 5)
(s1800 5)
(s1801 2)
(s1803 4)
(s1804 5)
(s1805 5)
(s1806 2)
(s1808 4)
(s1809 5)
(s1810 5)
(s1811 2)
(s1813 4)
(s1814 5)
(s1815 5)
(s1816 2)
(s1818 4)
(s1819 5)
(s1820 5)
(s1821 2)
(s1823 4)
(s1824 5)
(s1825 5)
(s1826 2)
(s1828 4)
(s1829 5)
(s1830 5)
(s1831 2)
(s1833 4)
(s1834 5)
(s1835 5)
(s1836 2)
(s1838 4)
(s1839 5)
(s1840 5)
(s1841 2)
(s1843 4)
(s1844 5)
(s1845 5)
(s1846 2)
(s1848 4)
(s1849 5)
(s1850 5)
(s1851 2)
(s1853 4)
(s1854 5)
(s1855 5)
(s1856 2)
(s1858 4)
(s1859 5)
(s1860 5)
(s1861 2)
(s1863 4)
(s1864 5)
(s1865 5)
(s1866 2)
(s1868 4)
(s1869 5)
(s1870 5)
(s1871 2)
(s1873 4)
(s1874 5)
(s1875 5)
(s1876 2)
(s1878 4)
(s1879 5)
(s1880 5)
(s1881 2)
(s1883 4)
(s1884 5)
(s1885 5)
(s1886 2)
(s1888 4)
(s1889 5)
(s1890 5)
(s1891 2)
(s1893 4)
(s1894 5)
(s1895 5)
(s1896 2)
(s1898 4)
(s1899 5)
(s1900 5)
(s1901 2)
(s1903 4)
(s1904 5)
(s1905 5)
(s1906 2)
(s1908 4)
(s1909 5)
(s1910 5)
(s1911 2)
(s1913 4)
(s1914 5)
(s1915 5)
(s1916 2)
(s1918 4)
(s1919 5)
(s1920 5)
(s1921 2)
(s1923 4)
(s1924 5)
(s1925 5)
(s1926 2)
(s1928 4)
(s1929 5)
(s1930 5)
(s1931 2)
(s1933 4)
(s1934 5)
(s1935 5)
(s1936 2)
(s1938 4)
(s1939 5)
(s1940 5)
(s1941 2)
(s1943 4)
(s1944 5)
(s1945 5)
(s1946 2)
(s1948 4)
(s1949 5)
(s1950 5)
(s1951 2)
(s1953 4)
(s1954 5)
(s1955 5)
(s1956 2)
(s1958 4)
(s1959 5)
(s1960 5)
(s1961 2)
(s1963 4)
(s1964 5)
(s1965 5)
(s1966 2)
(s1968 4)
(s1969 5)
(s1970 5)
(s1971 2)
(s1973 4)
(s1974 5)
(s1975 5)
(s1976 2)
(s1978 4)
(s1979 5)
(s1980 5)
(s1981 2)
(s1983 4)
(s1984 5)
(s1985 5)
(s1986 2)
(s1988 4)
(s1989 5)
(s1990 5)
(s1991 2)
(s1993 4)
(s1994 5)
(s1995 5)
(s1996 2)
(s1998 4)
(s1999 5)
(s2000 5)
(s2001 2)
(s2003 4)
(s2004 5)
(s2005 5)
(s2006 2)
(s2008 4)
(s2009 5)
(s2010 5)
(s2011 2)
(s2013 4)
(s2014 5)
(s2015 5)
(s2016 2)
(s2018 4)
(s2019 5)
(s2020 5)
(s2021 2)
(s2023 4)
(s2024 5)
(s2025 5)
(s2026 2)
(s2028 4)
(s2029 5)
(s2030 5)
(s2031 2)
(s2033 4)
(s2034 5)
(s2035 5)
(s2036 2)
(s2038 4)
(s2039 5)
(s2040 5)
(s2041 2)
(s2043 4)
(s2044 5)
(s2045 5)
(s2046 2)
(s2048 4)
(s2049 5)
(s2050 5)
(s2051 2)
(s2053 4)
(s2054 5)
(s2055 5)
(s2056 2)
(s2058 4)
(s2059 5)
(s2060 5)
(s2061 2)
(s2063 4)
(s2064 5)
(s2065 5)
(s2066 2)
(s2068 4)
(s2069 5)
(s2070 5)
(s2071 2)
(s2073 4)
(s2074 5)
(s2075 5)
(s2076 2)
(s2078 4)
(s2079 5)
(s2080 5)
(s2081 2)
(s2083 4)
(s2084 5)
(s2085 5)
(s2086 2)
(s2088 4)
(s2089 5)
(s2090 5)
(s2091 2)
(s2093 4)
(s2094 5)
(s2095 5)
(s2096 2)
(s2098 4)
(s2099 5)
(s2100 5)
(s2101 2)
(s2103 4)
(s2104 5)
(s2105 5)
(s2106 2)
(s2108 4)
(s2109 5)
(s2110 5)
(s2111 2)
(s2113 4)
(s2114 5)
(s2115 5)
(s2116 2)
(s2118 4)
(s2119 5)
(s2120 5)
(s2121 2)
(s2123 4)
(s2124 5)
(s2125 5)
(s2126 2)
(s2128 4)
(s2129 5)
(s2130 5)
(s2131 2)
(s2133 4)
(s2134 5)
(s2135 5)
(s2136 2)
(s2138 4)
(s2139 5)
(s2140 5)
(s2141 2)
(s2143 4)
(s2144 5)
(s2145 5)
(s2146 2)
(s2148 4)
(s2149 5)
(s2150 5)
(s2151 2)
(s2153 4)
(s2154 5)
(s2155 5)
(s2156 2)
(s2158 4)
(s2159 5)
(s2160 5)
(s2161 2)
(s2163 4)
(s2164 5)
(s2165 5)
(s2166 2)
(s2168 4)
(s2169 5)
(s2170 5)
(s2171 2)
(s2173 4)
(s2174 5)
(s2175 5)
(s2176 2)
(s2178 4)
(s2179 5)
(s2180 5)
(s2181 2)
(s2183 4)
(s2184 5)
(s2185 5)
(s2186 2)
(s2188 4)
(s2189 5)
(s2190 5)
(s2191 2)
(s2193 4)
(s2194 5)
(s2195 5)
(s2196 2)
(s2198 4)
(s2199 5)
(s2200 5)
(s2201 2)
(s2203 4)
(s2204 5)
(s2205 5)
(s2206 2)
(s2208 4)
(s2209 5)
(s2210 5)
(s2211 2)
(s2213 4)
(s2214 5)
(s2215 5)
(s2216 2)
(s2218 4)
(s2219 5)
(s2220 5)
(s2221 2)
(s2223 4)
(s2224 5)
(s2225 5)
(s2226 2)
(s2228 4)
(s2229 5)
(s2230 5)
(s2231 2)
(s2233 4)
(s2234 5)
(s2235 5)
(s2236 2)
(s2238 4)
(s2239 5)
(s2240 5)
(s2241 2)
(s2243 4)
(s2244 5)
(s2245 5)
(s2246 2)
(s2248 4)
(s2249 5)
(s2250 5)
(s2251 2)
(s2253 4)
(s2254 5)
(s2255 5)
(s2256 2)
(s2258 4)
(s2259 5)
(s2260 5)
(s2261 2)
(s2263 4)
(s2264 5)
(s2265 5)
(s2266 2)
(s2268 4)
(s2269 5)
(s2270 5)
(s2271 2)
(s2273 4)
(s2274 5)
(s2275 5)
(s2276 2)
(s2278 4)
(s2279 5)
(s2280 5)
(s2281 2)
(s2283 4)
(s2284 5)
(s2285 5)
(s2286 2)
(s2288 4)
(s2289 5)
(s2290 5)
(s2291 2)
(s2293 4)
(s2294 5)
(s2295 5)
(s2296 2)
(s2298 4)
(s2299 5)
(s2300 5)
(s2301 2)
(s2303 4)
(s2304 5)
(s2305 5)
(s2306 2)
(s2308 4)
(s2309 5)
(s2310 5)
(s2311 2)
(s2313 4)
(s2314 5)
(s2315 5)
(s2316 2)
(s2318 4)
(s2319 5)
(s2320 5)
(s2321 2)
(s2323 4)
(s2324 5)
(s2325 5)
(s2326 2)
(s2328 4)
(s2329 5)
(s2330 5)
(s2331 2)
(s2333 4)
(s2334 5)
(s2335 5)
(s2336 2)
(s2338 4)
(s2339 5)
(s2340 5)
(s2341 2)
(s2343 4)
(s2344 5)
(s2345 5)
(s2346 2)
(s2348 4)
(s2349 5)
(s2350 5)
(s2351 2)
(s2353 4)
(s2354 5)
(s2355 5)
(s2356 2)
(s2358 4)
(s2359 5)
(s2360 5)
(s2361 2)
(s2363 4)
(s2364 5)
(s2365 5)
(s2366 2)
(s2368 4)
(s2369 5)
(s2370 5)
(s2371 2)
(s2373 4)
(s2374 5)
(s2375 5)
(s2376 2)
(s2378 4)
(s2379 5)
(s2380 5)
(s2381 2)
(s2383 4)
(s2384 5)
(s2385 5)
(s2386 2)
(s2388 4)
(s2389 5)
(s2390 5)
(s2391 2)
(s2393 4)
(s2394 5)
(s2395 5)
(s2396 2)
(s2398 4)
(s2399 5)
(s2400 5)
(s2401 2)
(s2403 4)
(s2404 5)
(s2405 5)
(s2406 2)
(s2408 4)
(s2409 5)
(s2410 5)
(s2411 2)
(s2413 4)
(s2414 5)
(s2415 5)
(s2416 2)
(s2418 4)
(s2419 5)
(s2420 5)
(s2421 2)
(s2423 4)
(s2424 5)
(s2425 5)
(s2426 2)
(s2428 4)
(s2429 5)
(s2430 5)
(s2431 2)
(s2433 4)
(s2434 5)
(s2435 5)
(s2436 2)
(s2438 4)
(s2439 5)
(s2440 5)
(s2441 2)
(s2443 4)
(s2444 5)
(s2445 5)
(s2446 2)
(s2448 4)
(s2449 5)
(s2450 5)
(s2451 2)
(s2453 4)
(s2454 5)
(s2455 5)
(s2456 2)
(s2458 4)
(s2459 5)
(s2460 5)
(s2461 2)
(s2463 4)
(s2464 5)
(s2465 5)
(s2466 2)
(s2468 4)
(s2469 5)
(s2470 5)
(s2471 2)
(s2473 4)
(s2474 5)
(s2475 5)
(s2476 2)
(s2478 4)
(s2479 5)
(s2480 5)
(s2481 2)
(s2483 4)
(s2484 5)
(s2485 5)
(s2486 2)
(s2488 4)
(s2489 5)
(s2490 5)
(s2491 2)
(s2493 4)
(s2494 5)
(s2495 5)
(s2496 2)
(s2498 4)
(s2499 5)
(s2500 5)
(s2501 2)
(s2503 4)
(s2504 5)
(s2505 5)
(s2506 2)
(s2508 4)
(s2509 5)
(s2510 5)
(s2511 2)
(s2513 4)
(s2514 5)
(s2515 5)
(s2516 2)
(s2518 4)
(s2519 5)
(s2520 5)
(s2521 2)
(s2523 4)
(s2524 5)
(s2525 5)
(s2526 2)
(s2528 4)
(s2529 5)
(s2530 5)
(s2531 2)
(s2533 4)
(s2534 5)
(s2535 5)
(s2536 2)
(s2538 4)
(s2539 5)
(s2540 5)
(s2541 2)
(s2543 4)
(s2544 5)
(s2545 5)
(s2546 2)
(s2548 4)
(s2549 5)
(s2550 5)
(s2551 2)
(s2553 4)
(s2554 5)
(s2555 5)
(s2556 2)
(s2558 4)
(s2559 5)
(s2560 5)
(s2561 2)
(s2563 4)
(s2564 5)
(s2565 5)
(s2566 2)
(s2568 4)
(s2569 5)
(s2570 5)
(s2571 2)
(s2573 4)
(s2574 5)
(s2575 5)
(s2576 2)
(s2578 4)
(s2579 5)
(s2580 5)
(s2581 2)
(s2583 4)
(s2584 5)
(s2585 5)
(s2586 2)
(s2588 4)
(s2589 5)
(s2590 5)
(s2591 2)
(s2593 4)
(s2594 5)
(s2595 5)
(s2596 2)
(s2598 4)
(s2599 5)
(s2600 5)
(s2601 2)
(s2603 4)
(s2604 5)
(s2605 5)
(s2606 2)
(s2608 4)
(s2609 5)
(s2610 5)
(s2611 2)
(s2613 4)
(s2614 5)
(s2615 5)
(s2616 2)
(s2618 4)
(s2619 5)
(s2620 5)
(s2621 2)
(s2623 4)
(s2624 5)
(s2625 5)
(s2626 2)
(s2628 4)
(s2629 5)
(s2630 5)
(s2631 2)
(s2633 4)
(s2634 5)
(s2635 5)timeout

(s2636 org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30079 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 64040ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 64083ms
Finished structural reductions in LTL mode , in 1 iterations and 112863 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Stuttering acceptance computed with spot in 239 ms :[true, (NOT p0), (NOT p0), (NOT p0), (NOT p0)]
Running random walk in product with property : JoinFreeModules-PT-1000-LTLCardinality-15
Stuttering criterion allowed to conclude after 0 steps with 0 reset in 2 ms.
FORMULA JoinFreeModules-PT-1000-LTLCardinality-15 FALSE TECHNIQUES STUTTER_TEST
Treatment of property JoinFreeModules-PT-1000-LTLCardinality-15 finished in 113136 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202405141337/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(X(X(F((p0||X(p1))))))'
Found a Shortening insensitive property : JoinFreeModules-PT-1000-LTLCardinality-04
Stuttering acceptance computed with spot in 157 ms :[(AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1))]
Support contains 3 out of 5000 places. Attempting structural reductions.
Starting structural reductions in LI_LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 534 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:40:47] [INFO ] Invariant cache hit.
[2024-05-23 23:40:47] [INFO ] State equation strengthened by 1000 read => feed constraints.
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20082 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20076 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 44064ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 44109ms
[2024-05-23 23:41:31] [INFO ] Invariant cache hit.
[2024-05-23 23:41:32] [INFO ] Implicit Places using invariants in 843 ms returned []
[2024-05-23 23:41:32] [INFO ] Invariant cache hit.
[2024-05-23 23:41:36] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2024-05-23 23:41:36] [INFO ] Implicit Places using invariants and state equation in 3714 ms returned []
Implicit Place search using SMT with State Equation took 4562 ms to find 0 implicit places.
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:41:36] [INFO ] Invariant cache hit.
[2024-05-23 23:41:36] [INFO ] State equation strengthened by 1000 read => feed constraints.
Error getting values : (error "ParserException while parsing response: ((s0 5.0)
(s1 2.0)
(s3 4.0)
(s4 5.0)
(s5 5.0)
(s6 2.0)
(s8 4.0)
(s9 5.0)
(s10 5.0)
(s11 2.0)
(s13 4.0)
(s14 5.0)
(s15 5.0)
(s16 2.0)
(s18 4.0)
(s19 5.0)
(s20 5.0)
(s21 2.0)
(s23 4.0)
(s24 5.0)
(s25 5.0)
(s26 2.0)
(s28 4.0)
(s29 5.0)
(s30 5.0)
(s31 2.0)
(s33 4.0)
(s34 5.0)
(s35 5.0)
(s36 2.0)
(s38 4.0)
(s39 5.0)
(s40 5.0)
(s41 2.0)
(s43 4.0)
(s44 5.0)
(s45 5.0)
(s46 2.0)
(s48 4.0)
(s49 5.0)
(s50 5.0)
(s51 2.0)
(s53 4.0)
(s54 5.0)
(s55 5.0)
(s56 2.0)
(s58 4.0)
(s59 5.0)
(s60 5.0)
(s61 2.0)
(s63 4.0)
(s64 5.0)
(s65 5.0)
(s66 2.0)
(s68 4.0)
(s69 5.0)
(s70 5.0)
(s71 2.0)
(s73 4.0)
(s74 5.0)
(s75 5.0)
(s76 2.0)
(s78 4.0)
(s79 5.0)
(s80 5.0)
(s81 2.0)
(s83 4.0)
(s84 5.0)
(s85 5.0)
(s86 2.0)
(s88 4.0)
(s89 5.0)
(s90 5.0)
(s91 2.0)
(s93 4.0)
(s94 5.0)
(s95 5.0)
(s96 2.0)
(s98 4.0)
(s99 5.0)
(s100 5.0)
(s101 2.0)
(s103 4.0)
(s104 5.0)
(s105 5.0)
(s106 2.0)
(s108 4.0)
(s109 5.0)
(s110 5.0)
(s111 2.0)
(s113 4.0)
(s114 5.0)
(s115 5.0)
(s116 2.0)
(s118 4.0)
(s119 5.0)
(s120 5.0)
(s121 2.0)
(s123 4.0)
(s124 5.0)
(s125 5.0)
(s126 2.0)
(s128 4.0)
(s129 5.0)
(s130 5.0)
(s131 2.0)
(s133 4.0)
(s134 5.0)
(s135 5.0)
(s136 2.0)
(s138 4.0)
(s139 5.0)
(s140 5.0)
(s141 2.0)
(s143 4.0)
(s144 5.0)
(s145 5.0)
(s146 2.0)
(s148 4.0)
(s149 5.0)
(s150 5.0)
(s151 2.0)
(s153 timeout
4.0)
(s154 org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30075 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30075 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 64107ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 64152ms
Finished structural reductions in LI_LTL mode , in 1 iterations and 113372 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Running random walk in product with property : JoinFreeModules-PT-1000-LTLCardinality-04
Product exploration timeout after 64530 steps with 21510 reset in 10002 ms.
Product exploration timeout after 57960 steps with 19320 reset in 10003 ms.
Computed a total of 0 stabilizing places and 0 stable transitions
Computed a total of 0 stabilizing places and 0 stable transitions
Knowledge obtained : [(AND p0 p1)]
False Knowledge obtained : []
Knowledge based reduction with 1 factoid took 78 ms. Reduced automaton from 4 states, 4 edges and 2 AP (stutter sensitive) to 4 states, 4 edges and 2 AP (stutter sensitive).
Stuttering acceptance computed with spot in 156 ms :[(AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1))]
RANDOM walk for 41061 steps (8 resets) in 2071 ms. (19 steps per ms) remains 3/3 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1988 ms. (20 steps per ms) remains 3/3 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1967 ms. (20 steps per ms) remains 2/3 properties
[2024-05-23 23:43:02] [INFO ] Invariant cache hit.
[2024-05-23 23:43:02] [INFO ] State equation strengthened by 1000 read => feed constraints.
At refinement iteration 0 (INCLUDED_ONLY) 0/3 variables, 0/0 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 1 (OVERLAPS) 12/15 variables, 3/3 constraints. Problems are: Problem set: 0 solved, 2 unsolved
[2024-05-23 23:43:02] [INFO ] Deduced a trap composed of 3 places in 23 ms of which 1 ms to minimize.
At refinement iteration 2 (INCLUDED_ONLY) 0/15 variables, 1/4 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 3 (INCLUDED_ONLY) 0/15 variables, 0/4 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 4 (OVERLAPS) 24/39 variables, 15/19 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 5 (INCLUDED_ONLY) 0/39 variables, 3/22 constraints. Problems are: Problem set: 0 solved, 2 unsolved
All remaining problems are real, not stopping.
At refinement iteration 6 (INCLUDED_ONLY) 0/39 variables, 0/22 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 7 (OVERLAPS) 0/39 variables, 0/22 constraints. Problems are: Problem set: 0 solved, 2 unsolved
No progress, stopping.
After SMT solving in domain Real declared 39/13001 variables, and 22 constraints, problems are : Problem set: 0 solved, 2 unsolved in 115 ms.
Refiners :[Positive P Invariants (semi-flows): 3/1000 constraints, State Equation: 15/5000 constraints, ReadFeed: 3/1000 constraints, PredecessorRefiner: 2/2 constraints, Known Traps: 1/1 constraints]
Escalating to Integer solving :Problem set: 0 solved, 2 unsolved
At refinement iteration 0 (INCLUDED_ONLY) 0/3 variables, 0/0 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 1 (OVERLAPS) 12/15 variables, 3/3 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 2 (INCLUDED_ONLY) 0/15 variables, 1/4 constraints. Problems are: Problem set: 0 solved, 2 unsolved
[2024-05-23 23:43:02] [INFO ] Deduced a trap composed of 3 places in 24 ms of which 0 ms to minimize.
At refinement iteration 3 (INCLUDED_ONLY) 0/15 variables, 1/5 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 4 (INCLUDED_ONLY) 0/15 variables, 0/5 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 5 (OVERLAPS) 24/39 variables, 15/20 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 6 (INCLUDED_ONLY) 0/39 variables, 3/23 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 7 (INCLUDED_ONLY) 0/39 variables, 2/25 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 8 (INCLUDED_ONLY) 0/39 variables, 0/25 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 9 (OVERLAPS) 0/39 variables, 0/25 constraints. Problems are: Problem set: 0 solved, 2 unsolved
No progress, stopping.
After SMT solving in domain Int declared 39/13001 variables, and 25 constraints, problems are : Problem set: 0 solved, 2 unsolved in 156 ms.
Refiners :[Positive P Invariants (semi-flows): 3/1000 constraints, State Equation: 15/5000 constraints, ReadFeed: 3/1000 constraints, PredecessorRefiner: 2/2 constraints, Known Traps: 2/2 constraints]
After SMT, in 305ms problems are : Problem set: 0 solved, 2 unsolved
Finished Parikh walk after 14 steps, including 0 resets, run visited all 2 properties in 3 ms. (steps per millisecond=4 )
Finished Parikh walk after 0 steps, including 0 resets, run visited all 0 properties in 2 ms. (steps per millisecond=0 )
Parikh walk visited 2 properties in 3 ms.
Knowledge obtained : [(AND p0 p1)]
False Knowledge obtained : [(F (NOT p0)), (F (NOT p1)), (F (NOT (OR p0 p1)))]
Knowledge based reduction with 1 factoid took 177 ms. Reduced automaton from 4 states, 4 edges and 2 AP (stutter sensitive) to 4 states, 4 edges and 2 AP (stutter sensitive).
Stuttering acceptance computed with spot in 149 ms :[(AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1))]
Stuttering acceptance computed with spot in 144 ms :[(AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1))]
Support contains 3 out of 5000 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 207 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:43:03] [INFO ] Invariant cache hit.
[2024-05-23 23:43:03] [INFO ] State equation strengthened by 1000 read => feed constraints.
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20079 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Error getting values : (error "ParserException while parsing response: ((s0 5)
(s1 2)
(s3 4)
(s4 5)
(s5 5)
(s6 2)
(s8 4)
(s9 5)
(s10 5)
(s11 2)
(s13 4)
(s14 5)
(s15 5)
(s16 2)
(s18 4)
(s19 5)
(s20 5)
(s21 2)
(s23 4)
(s24 5)
(s25 5)
(s26 2)
(s28 4)
(s29 5)
(s30 5)
(s31 2)
(s33 4)
(s34 5)
(s35 5)
(s36 2)
(s38 4)
(s39 5)
(s40 5)
(s41 2)
(s43 4)
(s44 5)
(s45 5)
(s46 2)
(s48 4)
(s49 5)
(s50 5)
(s51 2)
(s53 4)
(s54 5)
(s55 5)
(s56 2)
(s58 4)
(s59 5)
(s60 5)
(s61 2)
(s63 4)
(s64 5)
(s65 5)
(s66 2)
(s68 4)
(s69 5)
(s70 5)
(s71 2)
(s73 4)
(s74 5)
(s75 5)
(s76 2)
(s78 4)
(s79 5)
(s80 5)
(s81 2)
(s83 4)
(s84 5)
(s85 5)
(s86 2)
(s88 4)
(s89 5)
(s90 5)
(s91 2)
(s93 4)
(s94 5)
(s95 5)
(s96 2)
(s98 4)
(s99 5)
(s100 5)
(s101 2)
(s103 4)
(s104 5)
(s105 5)
(s106 2)
(s108 4)
(s109 5)
(s110 5)
(s111 2)
(s113 4)
(s114 5)
(s115 5)
(s116 2)
(s118 4)
(s119 5)
(s120 5)
(s121 2)
(s123 4)
(s124 5)
(s125 5)
(s126 2)
(s128 4)
(s129 5)
(s130 5)
(s131 2)
(s133 4)
(s134 5)
(s135 5)
(s136 2)
(s138 4)
(s139 5)
(s140 5)
(s141 2)
(s143 4)
(s144 5)
(s145 5)
(s146 2)
(s148 4)
(s149 5)
(s150 5)
(s151 2)
(s153 4)
(s154 5)
(s155 5)
(s156 2)
(s158 4)
(s159 5)
(s160 5)
(s161 2)
(s163 4)
(s164 5)
(s165 5)
(s166 2)
(s168 4)
(s169 5)
(s170 5)
(s171 2)
(s173 4)
(s174 5)
(s175 5)
(s176 2)
(s178 4)
(s179 5)
(s180 5)
(s181 2)
(s183 4)
(s184 5)
(s185 5)
(s186 2)
(s188 4)
(s189 5)
(s190 5)
(s191 2)
(s193 4)
(s194 5)
(s195 5)
(s196 2)
(s198 4)
(s199 5)
(s200 5)
(s201 2)
(s203 4)
(s204 5)
(s205 5)
(s206 2)
(s208 4)
(s209 5)
(s210 5)
(s211 2)
(s213 4)
(s214 5)
(s215 5)
(s216 2)
(s218 4)
(s219 5)
(s220 5)
(s221 2)
(s223 4)
(s224 5)
(s225 5)
(s226 2)
(s228 4)
(s229 5)
(s230 5)
(s231 2)
(s233 4)
(s234 5)
(s235 5)
(s236 2)
(s238 4)
(s239 5)
(s240 5)
(s241 2)
(s243 4)
(s244 5)
(s245 5)
(s246 2)
(s248 4)
(s249 5)
(s250 5)
(s251 2)
(s253 4)
(s254 5)
(s255 5)
(s256 2)
(s258 4)
(s259 5)
(s260 5)
(s261 2)
(s263 4)
(s264 5)
(s265 5)
(s266 2)
(s268 4)
(s269 5)
(s270 5)
(s271 2)
(s273 4)
(s274 5)
(s275 5)
(s276 2)
(s278 4)
(s279 5)
(s280 5)
(s281 2)
(s283 4)
(s284 5)
(s285 5)
(s286 2)
(s288 4)
(s289 5)
(s290 5)
(s291 2)
(s293 4)
(s294 5)
(s295 5)
(s296 2)
(s298 4)
(s299 5)
(s300 5)
(s301 2)
(s303 4)
(s304 5)
(s305 5)
(s306 2)
(s308 4)
(s309 5)
(s310 5)
(s311 2)
(s313 4)
(s314 5)
(s315 5)
(s316 2)
(s318 4)
(s319 5)
(s320 5)
(s321 2)
(s323 4)
(s324 5)
(s325 5)
(s326 2)
(s328 4)
(s329 5)
(s330 5)
(s331 2)
(s333 4)
(s334 5)
(s335 5)
(s336 2)
(s338 4)
(s339 5)
(s340 5)
(s341 2)
(s343 4)
(s344 5)
(s345 5)
(s346 2)
(s348 4)
(s349 5)
(s350 5)
(s351 2)
(s353 4)
(s354 5)
(s355 5)
(s356 2)
(s358 4)
(s359 5)
(s360 5)
(s361 2)
(s363 4)
(s364 5)
(s365 5)
(s366 2)
(s368 4)
(s369 5)
(s370 5)
(s371 2)
(s373 4)
(s374 5)
(s375 5)
(s376 2)
(s378 4)
(s379 5)
(s380 5)
(s381 2)
(s383 4)
(s384 5)
(s385 5)
(s386 2)
(s388 4)
(s389 5)
(s390 5)
(s391 2)
(s393 4)
(s394 5)
(s395 5)
(s396 2)
(s398 4)
(s399 5)
(s400 5)
(s401 2)
(s403 4)
(s404 5)
(s405 5)
(s406 2)
(s408 4)
(s409 5)
(s410 5)
(s411 2)
(s413 4)
(s414 5)
(s415 5)
(s416 2)
(s418 4)
(s419 5)
(s420 5)
(s421 2)
(s423 4)
(s424 5)
(s425 5)
(s426 2)
(s428 4)
(s429 5)
(s430 5)
(s431 2)
(s433 4)
(s434 5)
(s435 5)
(s436 2)
(s438 4)
(s439 5)
(s440 5)
(s441 2)
(s443 4)
(s444 5)
(s445 5)
(s446 2)
(s448 4)
(s449 5)
(s450 5)
(s451 2)
(s453 4)
(s454 5)
(s455 5)
(s456 2)
(s458 4)
(s459 5)
(s460 5)
(s461 2)
(s463 4)
(s464 5)
(s465 5)
(s466 2)
(s468 4)
(s469 5)
(s470 5)
(s471 2)
(s473 4)
(s474 5)
(s475 5)
(s476 2)
(s478 4)
(s479 5)
(s480 5)
(s481 2)
(s483 4)
(s484 5)
(s485 5)
(s486 2)
(s488 4)
(s489 5)
(s490 5)
(s491 2)
(s493 4)
(s494 5)
(s495 5)
(s496 2)
(s498 4)
(s499 5)
(s500 5)
(s501 2)
(s503 4)
(s504 5)
(s505 5)
(s506 2)
(s508 4)
(s509 5)
(s510 5)
(s511 2)
(s513 4)
(s514 5)
(s515 5)
(s516 2)
(s518 4)
(s519 5)
(s520 5)
(s521 2)
(s523 4)
(s524 5)
(s525 5)
(s526 2)
(s528 4)
(s529 5)
(s530 5)
(s531 2)
(s533 4)
(s534 5)
(s535 5)
(s536 2)
(s538 4)
(s539 5)
(s540 5)
(s541 2)
(s543 4)
(s544 5)
(s545 5)
(s546 2)
(s548 4)
(s549 5)
(s550 5)
(s551 2)
(s553 4)
(s554 5)
(s555 5)
(s556 2)
(s558 4)
(s559 5)
(s560 5)
(s561 2)
(s563 4)
(s564 5)
(s565 5)
(s566 2)
(s568 4)
(s569 5)
(s570 5)
(s571 2)
(s573 4)
(s574 5)
(s575 5)
(s576 2)
(s578 4)
(s579 5)
(s580 5)
(s581 2)
(s583 4)
(s584 5)
(s585 5)
(s586 2)
(s588 4)
(s589 5)
(s590 5)
(s591 2)
(s593 4)
(s594 5)
(s595 5)
(s596 2)
(s598 4)
(s599 5)
(s600 5)
(s601 2)
(s603 4)
(s604 5)
(s605 5)
(s606 2)
(s608 4)
(s609 5)
(s610 5)
(s611 2)
(s613 4)
(s614 5)
(s615 5)
(s616 2)
(s618 4)
(s619 5)
(s620 5)
(s621 2)
(s623 4)
(s624 5)
(s625 5)
(s626 2)
(s628 4)
(s629 5)
(s630 5)
(s631 2)
(s633 4)
(s634 5)
(s635 5)
(s636 2)
(s638 4)
(s639 5)
(s640 5)
(s641 2)
(s643 4)
(s644 5)
(s645 5)
(s646 2)
(s648 4)
(s649 5)
(s650 5)
(s651 2)
(s653 4)
(s654 5)
(s655 5)
(s656 2)
(s658 4)
(s659 5)
(s660 5)
(s661 2)
(s663 4)
(s664 5)
(s665 5)
(s666 2)
(s668 4)
(s669 5)
(s670 5)
(s671 2)
(s673 4)
(s674 5)
(s675 5)
(s676 2)
(s678 4)
(s679 5)
(s680 5)
(s681 2)
(s683 4)
(s684 5)
(s685 5)
(s686 2)
(s688 4)
(s689 5)
(s690 5)
(s691 2)
(s693 4)
(s694 5)
(s695 5)
(s696 2)
(s698 4)
(s699 5)
(s700 5)
(s701 2)
(s703 4)
(s704 5)
(s705 5)
(s706 2)
(s708 4)
(s709 5)
(s710 5)
(s711 2)
(s713 4)
(s714 5)
(s715 5)
(s716 2)
(s718 4)
(s719 5)
(s720 5)
(s721 2)
(s723 4)
(s724 5)
(s725 5)
(s726 2)
(s728 4)
(s729 5)
(s730 5)
(s731 2)
(s733 4)
(s734 5)
(s735 5)
(s736 2)
(s738 4)
(s739 5)
(s740 5)
(s741 2)
(s743 4)
(s744 5)
(s745 5)
(s746 2)
(s748 4)
(s749 5)
(s750 5)
(s751 2)
(s753 4)
(s754 5)
(s755 5)
(s756 2)
(s758 4)
(s759 5)
(s760 5)
(s761 2)
(s763 4)
(s764 5)
(s765 5)
(s766 2)
(s768 4)
(s769 5)
(s770 5)
(s771 2)
(s773 4)
(s774 5)
(s775 5)
(s776 2)
(s778 4)
(s779 5)
(s780 5)
(s781 2)
(s783 4)
(s784 5)
(s785 5)
(s786 2)
(s788 4)
(s789 5)
(s790 5)
(s791 2)
(s793 4)
(s794 5)
(s795 5)
(s796 2)
(s798 4)
(s799 5)
(s800 5)
(s801 2)
(s803 4)
(s804 5)
(s805 5)
(s806 2)
(s808 4)
(s809 5)
(s810 5)
(s811 2)
(s813 4)
(s814 5)
(s815 5)
(s816 2)
(s818 4)
(s819 5)
(s820 5)
(s821 2)
(s823 4)
(s824 5)
(s825 5)
(s826 2)
(s828 4)
(s829 5)
(s830 5)
(s831 2)
(s833 4)
(s834 5)
(s835 5)
(s836 2)
(s838 4)
(s839 5)
(s840 5)
(s841 2)
(s843 4)
(s844 5)
(s845 5)
(s846 2)
(s848 4)
(s849 5)
(s850 5)
(s851 2)
(s853 4)
(s854 5)
(s855 5)
(s856 2)
(s858 4)
(s859 5)
(s860 5)
(s861 2)
(s863 4)
(s864 5)
(s865 5)
(s866 2)
(s868 4)
(s869 5)
(s870 5)
(s871 2)
(s873 4)
(s874 5)
(s875 5)
(s876 2)
(s878 4)
(s879 5)
(s880 5)
(s881 2)
(s883 4)
(s884 5)
(s885 5)
(s886 2)
(s888 4)
(s889 5)
(s890 5)
(s891 2)
(s893 4)
(s894 5)
(s895 5)
(s896 2)
(s898 4)
(s899 5)
(s900 5)
(s901 2)
(s903 4)
(s904 5)
(s905 5)
(s906 2)
(s908 4)
(s909 5)
(s910 5)
(s911 2)
(s913 4)
(s914 5)
(s915 5)
(s916 2)
(s918 4)
(s919 5)
(s920 5)
(s921 2)
(s923 4)
(s924 5)
(s925 5)
(s926 2)
(s928 4)
(s929 5)
(s930 5)
(s931 2)
(s933 4)
(s934 5)
(s935 5)
(s936 2)
(s938 4)
(s939 5)
(s940 5)
(s941 2)
(s943 4)
(s944 5)
(s945 5)
(s946 2)
(s948 4)
(s949 5)
(s950 5)
(s951 2)
(s953 4)
(s954 5)
(s955 5)
(s956 2)
(s958 4)
(s959 5)
(s960 5)
(s961 2)
(s963 4)
(s964 5)
(s965 5)
(s966 2)
(s968 4)
(s969 5)
(s970 5)
(s971 2)
(s973 4)
(s974 5)
(s975 5)
(s976 2)
(s978 4)
(s979 5)
(s980 5)
(s981 2)
(s983 4)
(s984 5)
(s985 5)
(s986 2)
(s988 4)
(s989 5)
(s990 5)
(s991 2)
(s993 4)
(s994 5)
(s995 5)
(s996 2)
(s998 4)
(s999 5)
(s1000 5)
(s1001 2)
(s1003 4)
(s1004 5)
(s1005 5)
(s1006 2)
(s1008 4)
(s1009 5)
(s1010 5)
(s1011 2)
(s1013 4)
(s1014 5)
(s1015 5)
(s1016 2)
(s1018 4)
(s1019 5)
(s1020 5)
(s1021 2)
(s1023 4)
(s1024 5)
(s1025 5)
(s1026 2)
(s1028 4)
(s1029 5)
(s1030 5)
(s1031 2)
(s1033 4)
(s1034 5)
(s1035 5)
(s1036 2)
(s1038 4)
(s1039 5)
(s1040 5)
(s1041 2)
(s1043 4)
(s1044 5)
(s1045 5)
(s1046 2)
(s1048 4)
(s1049 5)
(s1050 5)
(s1051 2)
(s1053 4)
(s1054 5)
(s1055 5)
(s1056 2)
(s1058 4)
(s1059 5)
(s1060 5)
(s1061 2)
(s1063 4)
(s1064 5)
(s1065 5)
(s1066 2)
(s1068 4)
(s1069 5)
(s1070 5)
(s1071 2)
(s1073 4)
(s1074 5)
(s1075 5)
(s1076 2)
(s1078 4)
(s1079 5)
(s1080 5)
(s1081 2)
(s1083 4)
(s1084 5)
(s1085 5)
(s1086 2)
(s1088 4)
(s1089 5)
(s1090 5)
(s1091 2)
(s1093 4)
(s1094 5)
(s1095 5)
(s1096 2)
(s1098 4)
(s1099 5)
(s1100 5)
(s1101 2)
(s1103 4)
(s1104 5)
(s1105 5)
(s1106 2)
(s1108 4)
(s1109 5)
(s1110 5)
(s1111 2)
(s1113 4)
(s1114 5)
(s1115 5)
(s1116 2)
(s1118 4)
(s1119 5)
(s1120 5)
(s1121 2)
(s1123 4)
(s1124 5)
(s1125 5)
(s1126 2)
(s1128 4)
(s1129 5)
(s1130 5)
(s1131 2)
(s1133 4)
(s1134 5)
(s1135 5)
(s1136 2)
(s1138 4)
(s1139 5)
(s1140 5)
(s1141 2)
(s1143 4)
(s1144 5)
(s1145 5)
(s1146 2)
(s1148 4)
(s1149 5)
(s1150 5)
(s1151 2)
(s1153 4)
(s1154 5)
(s1155 5)
(s1156 2)
(s1158 4)
(s1159 5)
(s1160 5)
(s1161 2)
(s1163 4)
(s1164 5)
(s1165 5)
(s1166 2)
(s1168 4)
(s1169 5)
(s1170 5)
(s1171 2)
(s1173 4)
(s1174 5)
(s1175 5)
(s1176 2)
(s1178 4)
(s1179 5)
(s1180 5)
(s1181 2)
(s1183 4)
(s1184 5)
(s1185 5)
(s1186 2)
(s1188 4)
(s1189 5)
(s1190 5)
(s1191 2)
(s1193 4)
(s1194 5)
(s1195 5)
(s1196 2)
(s1198 4)
(s1199 5)
(s1200 5)
(s1201 2)
(s1203 4)
(s1204 5)
(s1205 5)
(s1206 2)
(s1208 4)
(s1209 5)
(s1210 5)
(s1211 2)
(s1213 4)
(s1214 5)
(s1215 5)
(s1216 2)
(s1218 4)
(s1219 5)
(s1220 5)
(s1221 2)
(s1223 4)
(s1224 5)
(s1225 5)
(s1226 2)
(s1228 4)
(s1229 5)
(s1230 5)
(s1231 2)
(s1233 4)
(s1234 5)
(s1235 5)
(s1236 2)
(s1238 4)
(s1239 5)
(s1240 5)
(s1241 2)
(s1243 4)
(s1244 5)
(s1245 5)
(s1246 2)
(s1248 4)
(s1249 5)
(s1250 5)
(s1251 2)
(s1253 4)
(s1254 5)
(s1255 5)
(s1256 2)
(s1258 4)
(s1259 5)
(s1260 5)
(s1261 2)
(s1263 4)
(s1264 5)
(s1265 5)
(s1266 2)
(s1268 4)
(s1269 5)
(s1270 5)
(s1271 2)
(s1273 4)
(s1274 5)
(s1275 5)
(s1276 2)
(s1278 4)
(s1279 5)
(s1280 5)
(s1281 2)
(s1283 4)
(s1284 5)
(s1285 5)
(s1286 2)
(s1288 4)
(s1289 5)
(s1290 5)
(s1291 2)
(s1293 4)
(s1294 5)
(s1295 5)
(s1296 2)
(s1298 4)
(s1299 5)
(s1300 5)
(s1301 2)
(s1303 4)
(s1304 5)
(s1305 5)
(s1306 2)
(s1308 4)
(s1309 5)
(s1310 5)
(s1311 2)
(s1313 4)
(s1314 5)
(s1315 5)
(s1316 2)
(s1318 4)
(s1319 5)
(s1320 5)
(s1321 2)
(s1323 4)
(s1324 5)
(s1325 5)
(s1326 2)
(s1328 4)
(s1329 5)
(s1330 5)
(s1331 2)
(s1333 4)
(s1334 5)
(s1335 5)
(s1336 2)
(s1338 4)
(s1339 5)
(s1340 5)
(s1341 2)
(s1343 4)
(s1344 5)
(s1345 5)
(s1346 2)
(s1348 4)
(s1349 5)
(s1350 5)
(s1351 2)
(s1353 4)
(s1354 5)
(s1355 5)
(s1356 2)
(s1358 4)
(s1359 5)
(s1360 5)
(s1361 2)
(s1363 4)
(s1364 5)
(s1365 5)
(s1366 2)
(s1368 4)
(s1369 5)
(s1370 5)
(s1371 2)
(s1373 4)
(s1374 5)
(s1375 5)
(s1376 2)
(s1378 4)
(s1379 5)
(s1380 5)
(s1381 2)
(s1383 4)
(s1384 5)
(s1385 5)
(s1386 2)
(s1388 4)
(s1389 5)
(s1390 5)
(s1391 2)
(s1393 4)
(s1394 5)
(s1395 5)
(s1396 2)
(s1398 4)
(s1399 5)
(s1400 5)
(s1401 2)
(s1403 4)
(s1404 5)
(s1405 5)
(s1406 2)
(s1408 4)
(s1409 5)
(s1410 5)
(s1411 2)
(s1413 4)
(s1414 5)
(s1415 5)
(s1416 2)
(s1418 4)
(s1419 5)
(s1420 5)
(s1421 2)
(s1423 4)
(s1424 5)
(s1425 5)
(s1426 2)
(s1428 4)
(s1429 5)
(s1430 5)
(s1431 2)
(s1433 4)
(s1434 5)
(s1435 5)
(s1436 2)
(s1438 4)
(s1439 5)
(s1440 5)
(s1441 2)
(s1443 4)
(s1444 5)
(s1445 5)
(s1446 2)
(s1448 4)
(s1449 5)
(s1450 5)
(s1451 2)
(s1453 4)
(s1454 5)
(s1455 5)
(s1456 2)
(s1458 4)
(s1459 5)
(s1460 5)
(s1461 2)
(s1463 4)
(s1464 5)
(s1465 5)
(s1466 2)
(s1468 4)
(s1469 5)
(s1470 5)
(s1471 2)
(s1473 4)
(s1474 5)
(s1475 5)
(s1476 2)
(s1478 4)
(s1479 5)
(s1480 5)
(s1481 2)
(s1483 4)
(s1484 5)
(s1485 5)
(s1486 2)
(s1488 4)
(s1489 5)
(s1490 5)
(s1491 2)
(s1493 4)
(s1494 5)
(s1495 5)
(s1496 2)
(s1498 4)
(s1499 5)
(s1500 5)
(s1501 2)
(s1503 4)
(s1504 5)
(s1505 5)
(s1506 2)
(s1508 4)
(s1509 5)
(s1510 5)
(s1511 2)
(s1513 4)
(s1514 5)
(s1515 5)
(s1516 2)
(s1518 4)
(s1519 5)
(s1520 5)
(s1521 2)
(s1523 4)
(s1524 5)
(s1525 5)
(s1526 2)
(s1528 4)
(s1529 5)
(s1530 5)
(s1531 2)
(s1533 4)
(s1534 5)
(s1535 5)
(s1536 2)
(s1538 4)
(s1539 5)
(s1540 5)
(s1541 2)
(s1543 4)
(s1544 5)
(s1545 5)
(s1546 2)
(s1548 4)
(s1549 5)
(s1550 5)
(s1551 2)
(s1553 4)
(s1554 5)
(s1555 5)
(s1556 2)
(s1558 4)
(s1559 5)
(s1560 5)
(s1561 2)
(s1563 4)
(s1564 5)
(s1565 5)
(s1566 2)
(s1568 4)
(s1569 5)
(s1570 5)
(s1571 2)
(s1573 4)
(s1574 5)
(s1575 5)
(s1576 2)
(s1578 4)
(s1579 5)
(s1580 5)
(s1581 2)
(s1583 4)
(s1584 5)
(s1585 5)
(s1586 2)
(s1588 4)
(s1589 5)
(s1590 5)
(s1591 2)
(s1593 4)
(s1594 5)
(s1595 5)
(s1596 2)
(s1598 4)
(s1599 5)
(s1600 5)
(s1601 2)
(s1603 4)
(s1604 5)
(s1605 5)
(s1606 2)
(s1608 4)
(s1609 5)
(s1610 5)
(s1611 2)
(s1613 4)
(s1614 5)
(s1615 5)
(s1616 2)
(s1618 4)
(s1619 5)
(s1620 5)
(s1621 2)
(s1623 4)
(s1624 5)
(s1625 5)
(s1626 2)
(s1628 4)
(s1629 5)
(s1630 5)
(s1631 2)
(s1633 4)
(s1634 5)
(s1635 5)
(s1636 2)
(s1638 4)
(s1639 5)
(s1640 5)
(s1641 2)
(s1643 4)
(s1644 5)
(s1645 5)
(s1646 2)
(s1648 4)
(s1649 5)
(s1650 5)
(s1651 2)
(s1653 4)
(s1654 5)
(s1655 5)
(s1656 2)
(s1658 4)
(s1659 5)
(s1660 5)
(s1661 2)
(s1663 4)
(s1664 5)
(s1665 5)
(s1666 2)
(s1668 4)
(s1669 5)
(s1670 5)
(s1671 2)
(s1673 4)
(s1674 5)
(s1675 5)
(s1676 2)
(s1678 4)
(s1679 5)
(s1680 5)
(s1681 2)
(s1683 4)
(s1684 5)
(s1685 5)
(s1686 2)
(s1688 4)
(s1689 5)
(s1690 5)
(s1691 2)
(s1693 4)
(s1694 5)
(s1695 5)
(s1696 2)
(s1698 4)
(s1699 5)
(s1700 5)
(s1701 2)
(s1703 4)
(s1704 5)
(s1705 5)
(s1706 2)
(s1708 4)
(s1709 5)
(s1710 5)
(s1711 2)
(s1713 4)
(s1714 5)
(s1715 5)
(s1716 2)
(s1718 4)
(s1719 5)
(s1720 5)
(s1721 2)
(s1723 4)
(s1724 5)
(s1725 5)
(s1726 2)
(s1728 4)
(s1729 5)
(s1730 5)
(s1731 2)
(s1733 4)
(s1734 5)
(s1735 5)
(s1736 2)
(s1738 4)
(s1739 5)
(s1740 5)
(s1741 2)
(s1743 4)
(s1744 5)
(s1745 5)
(s1746 2)
(s1748 4)
(s1749 5)
(s1750 5)
(s1751 2)
(s1753 4)
(s1754 5)
(s1755 5)
(s1756 2)
(s1758 4)
(s1759 5)
(s1760 5)
(s1761 2)
(s1763 4)
(s1764 5)
(s1765 5)
(s1766 2)
(s1768 4)
(s1769 5)
(s1770 5)
(s1771 2)
(s1773 4)
(s1774 5)
(s1775 5)
(s1776 2)
(s1778 4)
(s1779 5)
(s1780 5)
(s1781 2)
(s1783 4)
(s1784 5)
(s1785 5)
(s1786 2)
(s1788 4)
(s1789 5)
(s1790 5)
(s1791 2)
(s1793 4)
(s1794 5)
(s1795 5)
(s1796 2)
(s1798 4)
(s1799 5)
(s1800 5)
(s1801 2)
(s1803 4)
(s1804 5)
(s1805 5)
(s1806 2)
(s1808 4)
(s1809 5)
(s1810 5)
(s1811 2)
(s1813 4)
(s1814 5)
(s1815 5)
(s1816 2)
(s1818 4)
(s1819 5)
(s1820 5)
(s1821 2)
(s1823 4)
(s1824 5)
(s1825 5)
(s1826 2)
(s1828 4)
(s1829 5)
(s1830 5)
(s1831 2)
(s1833 4)
(s1834 5)
(s1835 5)
(s1836 2)
(s1838 4)
(s1839 5)
(s1840 5)
(s1841 2)
(s1843 4)
(s1844 5)
(s1845 5)
(s1846 2)
(s1848 4)
(s1849 5)
(s1850 5)
(s1851 2)
(s1853 4)
(s1854 5)
(s1855 5)
(s1856 2)
(s1858 4)
(s1859 5)
(s1860 5)
(s1861 2)
(s1863 4)
(s1864 5)
(s1865 5)
(s1866 2)
(s1868 4)
(s1869 5)
(s1870 5)
(s1871 2)
(s1873 4)
(s1874 5)
(s1875 5)
(s1876 2)
(s1878 4)
(s1879 5)
(s1880 5)
(s1881 2)
(s1883 4)
(s1884 5)
(s1885 5)
(s1886 2)
(s1888 4)
(s1889 5)
(s1890 5)
(s1891 2)
(s1893 4)
(s1894 5)
(s1895 5)
(s1896 2)
(s1898 4)
(s1899 5)
(s1900 5)
(s1901 2)
(s1903 4)
(s1904 5)
(s1905 5)
(s1906 2)
(s1908 4)
(s1909 5)
(s1910 5)
(s1911 2)
(s1913 4)
(s1914 5)
(s1915 5)
(s1916 2)
(s1918 4)
(s1919 5)
(s1920 5)
(s1921 2)
(s1923 4)
(s1924 5)
(s1925 5)
(s1926 2)
(s1928 4)
(s1929 5)
(s1930 5)
(s1931 2)
(s1933 4)
(s1934 5)
(s1935 5)
(s1936 2)
(s1938 4)
(s1939 5)
(s1940 5)
(s1941 2)
(s1943 4)
(s1944 5)
(s1945 5)
(s1946 2)
(s1948 4)
(s1949 5)
(s1950 5)
(s1951 2)
(s1953 4)
(s1954 5)
(s1955 5)
(s1956 2)
(s1958 4)
(s1959 5)
(s1960 5)
(s1961 2)
(s1963 4)
(s1964 5)
(s1965 5)
(s1966 2)
(s1968 4)
(s1969 5)
(s1970 5)
(s1971 2)
(s1973 4)
(s1974 5)
(s1975 5)
(s1976 2)
(s1978 4)
(s1979 5)
(s1980 5)
(s1981 2)
(s1983 4)
(s1984 5)
(s1985 5)
(s1986 2)
(s1988 4)
(s1989 5)
(s1990 5)
(s1991 2)
(s1993 4)
(s1994 5)
(s1995 5)
(s1996 2)
(s1998 4)
(s1999 5)
(s2000 5)
(s2001 2)
(s2003 4)
(s2004 5)
(s2005 5)
(s2006 2)
(s2008 4)
(s2009 5)
(s2010 5)
(s2011 2)
(s2013 4)
(s2014 5)
(s2015 5)
(s2016 2)
(s2018 4)
(s2019 5)
(s2020 5)
(s2021 2)
(s2023 4)
(s2024 5)
(s2025 5)
(s2026 2)
(s2028 4)
(s2029 5)
(s2030 5)
(s2031 2)
(s2033 4)
(s2034 5)
(s2035 5)
(s2036 2)
(s2038 4)
(s2039 5)
(s2040 5)
(s2041 2)
(s2043 4)
(s2044 5)
(s2045 5)
(s2046 2)
(s2048 4)
(s2049 5)
(s2050 5)
(s2051 2)
(s2053 4)
(s2054 5)
(s2055 5)
(s2056 2)
(s2058 4)
(s2059 5)
(s2060 5)
(s2061 2)
(s2063 4)
(s2064 5)
(s2065 5)
(s2066 2)
(s2068 4)
(s2069 5)
(s2070 5)
(s2071 2)
(s2073 4)
(s2074 5)
(s2075 5)
(s2076 2)
(s2078 4)
(s2079 5)
(s2080 5)
(s2081 2)
(s2083 4)
(s2084 5)
(s2085 5)
(s2086 2)
(s2088 4)
(s2089 5)
(s2090 5)
(s2091 2)
(s2093 4)
(s2094 5)
(s2095 5)
(s2096 2)
(s2098 4)
(s2099 5)
(s2100 5)
(s2101 2)
(s2103 4)
(s2104 5)
(s2105 5)
(s2106 2)
(s2108 4)
(s2109 5)
(s2110 5)
(s2111 2)
(s2113 4)
(s2114 5)
(s2115 5)
(s2116 2)
(s2118 4)
(s2119 5)
(s2120 5)
(s2121 2)
(s2123 4)
(s2124 5)
(s2125 5)
(s2126 2)
(s2128 4)
(s2129 5)
(s2130 5)
(s2131 2)
(s2133 4)
(s2134 5)
(s2135 5)
(s2136 2)
(s2138 4)
(s2139 5)
(s2140 5)
(s2141 2)
(s2143 4)
(s2144 5)
(s2145 5)
(s2146 2)
(s2148 4)
(s2149 5)
(s2150 5)
(s2151 2)
(s2153 4)
(s2154 5)
(s2155 5)
(s2156 2)
(s2158 4)
(s2159 5)
(s2160 5)
(s2161 2)
(s2163 4)
(s2164 5)
(s2165 5)
(s2166 2)
(s2168 4)
(s2169 5)
(s2170 5)
(s2171 2)
(s2173 4)
(s2174 5)
(s2175 5)
(s2176 2)
(s2178 4)
(s2179 5)
(s2180 5)
(s2181 2)
(s2183 4)
(s2184 5)
(s2185 5)
(s2186 2)
(s2188 4)
(s2189 5)
(s2190 5)
(s2191 2)
(s2193 4)
(s2194 5)
(s2195 5)
(s2196 2)
(s2198 4)
(s2199 5)
(s2200 5)
(s2201 2)
(s2203 4)
(s2204 5)
(s2205 5)
(s2206 2)
(s2208 4)
(s2209 5)
(s2210 5)
(s2211 2)
(s2213 4)
(s2214 5)
(s2215 5)
(s2216 2)
(s2218 4)
(s2219 5)
(s2220 5)
(s2221 2)
(s2223 4)
(s2224 5)
(s2225 5)
(s2226 2)
(s2228 4)
(s2229 5)
(s2230 5)
(s2231 2)
(s2233 4)
(s2234 5)
(s2235 5)
(s2236 2)
(s2238 4)
(s2239 5)
(s2240 5)
(s2241 2)
(s2243 4)
(s2244 5)
(s2245 5)
(s2246 2)
(s2248 4)
(s2249 5)
(s2250 5)
(s2251 2)
(s2253 4)
(s2254 5)
(s2255 5)
(s2256 2)
(s2258 4)
(s2259 5)
(s2260 5)
(s2261 2)
(s2263 4)
(s2264 5)
(s2265 5)
(s2266 2)
(s2268 4)
(s2269 5)
(s2270 5)
(s2271 2)
(s2273 4)
(s2274 5)
(s2275 5)
(s2276 2)
(s2278 4)
(s2279 5)
(s2280 5)
(s2281 2)
(s2283 4)
(s2284 5)
(s2285 5)
(s2286 2)
(s2288 4)
(s2289 5)
(s2290 5)
(s2291 2)
(s2293 4)
(s2294 5)
(s2295 5)
(s2296 2)
(s2298 4)
(s2299 5)
(s2300 5)
(s2301 2)
(s2303 4)
(s2304 5)
(s2305 5)
(s2306 2)
(s2308 4)
(s2309 5)
(s2310 5)
(s2311 2)
(s2313 4)
(s2314 5)
(s2315 5)
(s2316 2)
(s2318 4)
(s2319 5)
(s2320 5)
(s2321 2)
(s2323 4)
(s2324 5)
(s2325 5)
(s2326 timeout
2) org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20082 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 44165ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 44210ms
[2024-05-23 23:43:47] [INFO ] Invariant cache hit.
[2024-05-23 23:43:48] [INFO ] Implicit Places using invariants in 853 ms returned []
[2024-05-23 23:43:48] [INFO ] Invariant cache hit.
[2024-05-23 23:43:52] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2024-05-23 23:43:52] [INFO ] Implicit Places using invariants and state equation in 3673 ms returned []
Implicit Place search using SMT with State Equation took 4528 ms to find 0 implicit places.
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:43:52] [INFO ] Invariant cache hit.
[2024-05-23 23:43:52] [INFO ] State equation strengthened by 1000 read => feed constraints.
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30081 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30075 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 64070ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 64112ms
Finished structural reductions in LTL mode , in 1 iterations and 113071 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Computed a total of 0 stabilizing places and 0 stable transitions
Computed a total of 0 stabilizing places and 0 stable transitions
Knowledge obtained : [(AND p0 p1)]
False Knowledge obtained : []
Knowledge based reduction with 1 factoid took 76 ms. Reduced automaton from 4 states, 4 edges and 2 AP (stutter sensitive) to 4 states, 4 edges and 2 AP (stutter sensitive).
Stuttering acceptance computed with spot in 137 ms :[(AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1))]
RANDOM walk for 41064 steps (8 resets) in 1793 ms. (22 steps per ms) remains 3/3 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1937 ms. (20 steps per ms) remains 3/3 properties
BEST_FIRST walk for 40004 steps (8 resets) in 1952 ms. (20 steps per ms) remains 2/3 properties
[2024-05-23 23:44:58] [INFO ] Invariant cache hit.
[2024-05-23 23:44:58] [INFO ] State equation strengthened by 1000 read => feed constraints.
At refinement iteration 0 (INCLUDED_ONLY) 0/3 variables, 0/0 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 1 (OVERLAPS) 12/15 variables, 3/3 constraints. Problems are: Problem set: 0 solved, 2 unsolved
[2024-05-23 23:44:58] [INFO ] Deduced a trap composed of 3 places in 23 ms of which 0 ms to minimize.
At refinement iteration 2 (INCLUDED_ONLY) 0/15 variables, 1/4 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 3 (INCLUDED_ONLY) 0/15 variables, 0/4 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 4 (OVERLAPS) 24/39 variables, 15/19 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 5 (INCLUDED_ONLY) 0/39 variables, 3/22 constraints. Problems are: Problem set: 0 solved, 2 unsolved
All remaining problems are real, not stopping.
At refinement iteration 6 (INCLUDED_ONLY) 0/39 variables, 0/22 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 7 (OVERLAPS) 0/39 variables, 0/22 constraints. Problems are: Problem set: 0 solved, 2 unsolved
No progress, stopping.
After SMT solving in domain Real declared 39/13001 variables, and 22 constraints, problems are : Problem set: 0 solved, 2 unsolved in 110 ms.
Refiners :[Positive P Invariants (semi-flows): 3/1000 constraints, State Equation: 15/5000 constraints, ReadFeed: 3/1000 constraints, PredecessorRefiner: 2/2 constraints, Known Traps: 1/1 constraints]
Escalating to Integer solving :Problem set: 0 solved, 2 unsolved
At refinement iteration 0 (INCLUDED_ONLY) 0/3 variables, 0/0 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 1 (OVERLAPS) 12/15 variables, 3/3 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 2 (INCLUDED_ONLY) 0/15 variables, 1/4 constraints. Problems are: Problem set: 0 solved, 2 unsolved
[2024-05-23 23:44:58] [INFO ] Deduced a trap composed of 3 places in 22 ms of which 1 ms to minimize.
At refinement iteration 3 (INCLUDED_ONLY) 0/15 variables, 1/5 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 4 (INCLUDED_ONLY) 0/15 variables, 0/5 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 5 (OVERLAPS) 24/39 variables, 15/20 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 6 (INCLUDED_ONLY) 0/39 variables, 3/23 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 7 (INCLUDED_ONLY) 0/39 variables, 2/25 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 8 (INCLUDED_ONLY) 0/39 variables, 0/25 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 9 (OVERLAPS) 0/39 variables, 0/25 constraints. Problems are: Problem set: 0 solved, 2 unsolved
No progress, stopping.
After SMT solving in domain Int declared 39/13001 variables, and 25 constraints, problems are : Problem set: 0 solved, 2 unsolved in 140 ms.
Refiners :[Positive P Invariants (semi-flows): 3/1000 constraints, State Equation: 15/5000 constraints, ReadFeed: 3/1000 constraints, PredecessorRefiner: 2/2 constraints, Known Traps: 2/2 constraints]
After SMT, in 278ms problems are : Problem set: 0 solved, 2 unsolved
Finished Parikh walk after 35 steps, including 0 resets, run visited all 2 properties in 3 ms. (steps per millisecond=11 )
Finished Parikh walk after 0 steps, including 0 resets, run visited all 0 properties in 1 ms. (steps per millisecond=0 )
Parikh walk visited 2 properties in 5 ms.
Knowledge obtained : [(AND p0 p1)]
False Knowledge obtained : [(F (NOT p0)), (F (NOT p1)), (F (NOT (OR p0 p1)))]
Knowledge based reduction with 1 factoid took 146 ms. Reduced automaton from 4 states, 4 edges and 2 AP (stutter sensitive) to 4 states, 4 edges and 2 AP (stutter sensitive).
Stuttering acceptance computed with spot in 147 ms :[(AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1))]
Stuttering acceptance computed with spot in 142 ms :[(AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1))]
Stuttering acceptance computed with spot in 158 ms :[(AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1))]
Product exploration timeout after 64290 steps with 21430 reset in 10001 ms.
Product exploration timeout after 59580 steps with 19860 reset in 10001 ms.
Applying partial POR strategy [false, true, false, false]
Stuttering acceptance computed with spot in 133 ms :[(AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1))]
Support contains 3 out of 5000 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 518 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:45:20] [INFO ] Invariant cache hit.
[2024-05-23 23:45:20] [INFO ] State equation strengthened by 1000 read => feed constraints.
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20072 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Error getting values : (error "Error writing to Z3 solver: java.io.IOException: Broken pipe")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20072 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 44036ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 44078ms
[2024-05-23 23:46:04] [INFO ] Redundant transitions in 662 ms returned []
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:46:04] [INFO ] Invariant cache hit.
[2024-05-23 23:46:05] [INFO ] State equation strengthened by 1000 read => feed constraints.
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30070 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Error getting values : (error "Error writing to Z3 solver: java.io.IOException: Broken pipe")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30076 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 64098ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 64142ms
Finished structural reductions in SI_LTL mode , in 1 iterations and 109422 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Support contains 3 out of 5000 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 197 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:47:09] [INFO ] Invariant cache hit.
[2024-05-23 23:47:09] [INFO ] State equation strengthened by 1000 read => feed constraints.
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20087 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20087 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 44176ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 44221ms
[2024-05-23 23:47:53] [INFO ] Invariant cache hit.
[2024-05-23 23:47:54] [INFO ] Implicit Places using invariants in 850 ms returned []
[2024-05-23 23:47:54] [INFO ] Invariant cache hit.
[2024-05-23 23:47:57] [INFO ] State equation strengthened by 1000 read => feed constraints.
[2024-05-23 23:47:58] [INFO ] Implicit Places using invariants and state equation in 3681 ms returned []
Implicit Place search using SMT with State Equation took 4533 ms to find 0 implicit places.
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:47:58] [INFO ] Invariant cache hit.
[2024-05-23 23:47:58] [INFO ] State equation strengthened by 1000 read => feed constraints.
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30068 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved
Error getting values : (error "ParserException while parsing response: ((s0 5)
(s1 2)
(s3 4)
(s4 5)
(s5 5)
(s6 2)
(s8 4)
(s9 5)
(s10 5)
(s11 2)
(s13 4)
(s14 5)
(s15 5)
(s16 2)
(s18 4)
(s19 5)
(s20 5)
(s21 2)
(s23 4)
(s24 5)
(s25 5)
(s26 2)
(s28 4)
(s29 5)
(s30 5)
(s31 2)
(s33 4)
(s34 5)
(s35 5)
(s36 2)
(s38 4)
(s39 5)
(s40 5)
(s41 2)
(s43 4)
(s44 5)
(s45 5)
(s46 2)
(s48 4)
(s49 5)
(s50 5)
(s51 2)
(s53 4)
(s54 5)
(s55 5)
(s56 2)
(s58 4)
(s59 5)
(s60 5)
(s61 2)
(s63 4)
(s64 5)
(s65 5)
(s66 2)
(s68 4)
(s69 5)
(s70 5)
(s71 2)
(s73 4)
(s74 5)
(s75 5)
(s76 2)
(s78 4)
(s79 5)
(s80 5)
(s81 2)
(s83 4)
(s84 5)
(s85 5)
(s86 2)
(s88 4)
(s89 5)
(s90 5)
(s91 2)
(s93 4)
(s94 5)
(s95 5)
(s96 2)
(s98 4)
(s99 5)
(s100 5)
(s101 2)
(s103 4)
(s104 5)
(s105 5)
(s106 2)
(s108 4)
(s109 5)
(s110 5)
(s111 2)
(s113 4)
(s114 5)
(s115 5)
(s116 2)
(s118 4)
(s119 5)
(s120 5)
(s121 2)
(s123 4)
(s124 5)
(s125 5)
(s126 2)
(s128 4)
(s129 5)
(s130 5)
(s131 2)
(s133 4)
(s134 5)
(s135 5)
(s136 2)
(s138 4)
(s139 5)
(s140 5)
(s141 2)
(s143 4)
(s144 5)
(s145 5)
(s146 2)
(s148 4)
(s149 5)
(s150 5)
(s151 2)
(s153 4)
(s154 5)
(s155 5)
(s156 2)
(s158 4)
(s159 5)
(s160 5)
(s161 2)
(s163 4)
(s164 5)
(s165 5)
(s166 2)
(s168 4)
(s169 5)
(s170 5)
(s171 2)
(s173 4)
(s174 5)
(s175 5)
(s176 2)
(s178 4)
(s179 5)
(s180 5)
(s181 2)
(s183 4)
(s184 5)
(s185 5)
(s186 2)
(s188 4)
(s189 5)
(s190 5)
(s191 2)
(s193 4)
(s194 5)
(s195 5)
(s196 2)
(s198 4)
(s199 5)
(s200 5)
(s201 2)
(s203 4)
(s204 5)
(s205 5)
(s206 2)
(s208 4)
(s209 5)
(s210 5)
(s211 2)
(s213 4)
(s214 5)
(s215 5)
(s216 2)
(s218 4)
(s219 5)
(s220 5)
(s221 2)
(s223 4)
(s224 5)
(s225 5)
(s226 2)
(s228 4)
(s229 5)
(s230 5)
(s231 2)
(s233 4)
(s234 5)
(s235 5)
(s236 2)
(s238 4)
(s239 5)
(s240 5)
(s241 2)
(s243 4)
(s244 5)
(s245 5)
(s246 2)
(s248 4)
(s249 5)
(s250 5)
(s251 2)
(s253 4)
(s254 5)
(s255 5)
(s256 2)
(s258 4)
(s259 5)
(s260 5)
(s261 2)
(s263 4)
(s264 5)
(s265 5)
(s266 2)
(s268 4)
(s269 5)
(s270 5)
(s271 2)
(s273 4)
(s274 5)
(s275 5)
(s276 2)
(s278 4)
(s279 5)
(s280 5)
(s281 2)
(s283 4)
(s284 5)
(s285 5)
(s286 2)
(s288 4)
(s289 5)
(s290 5)
(s291 2)
(s293 4)
(s294 5)
(s295 5)
(s296 2)
(s298 4)
(s299 5)
(s300 5)
(s301 2)
(s303 4)
(s304 5)
(s305 5)
(s306 2)
(s308 4)
(s309 5)
(s310 5)
(s311 2)
(s313 4)
(s314 5)
(s315 5)
(s316 2)
(s318 4)
(s319 5)
(s320 5)
(s321 2)
(s323 4)
(s324 5)
(s325 5)
(s326 2)
(s328 4)
(s329 5)
(s330 5)
(s331 2)
(s333 4)
(s334 5)
(s335 5)
(s336 2)
(s338 4)
(s339 5)
(s340 5)
(s341 2)
(s343 4)
(s344 5)
(s345 5)
(s346 2)
(s348 4)
(s349 5)
(s350 5)
(s351 2)
(s353 4)
(s354 5)
(s355 5)
(s356 2)
(s358 4)
(s359 5)
(s360 5)
(s361 2)
(s363 4)
(s364 5)
(s365 5)
(s366 2)
(s368 4)
(s369 5)
(s370 5)
(s371 2)
(s373 4)
(s374 5)
(s375 5)
(s376 2)
(s378 4)
(s379 5)
(s380 5)
(s381 2)
(s383 4)
(s384 5)
(s385 5)
(s386 2)
(s388 4)
(s389 5)
(s390 5)
(s391 2)
(s393 4)
(s394 5)
(s395 5)
(s396 2)
(s398 4)
(s399 5)
(s400 5)
(s401 2)
(s403 4)
(s404 5)
(s405 5)
(s406 2)
(s408 4)
(s409 5)
(s410 5)
(s411 2)
(s413 4)
(s414 5)
(s415 5)
(s416 2)
(s418 4)
(s419 5)
(s420 5)
(s421 2)
(s423 4)
(s424 5)
(s425 5)
(s426 2)
(s428 4)
(s429 5)
(s430 5)
(s431 2)
(s433 4)
(s434 5)
(s435 5)
(s436 2)
(s438 4)
(s439 5)
(s440 5)
(s441 2)
(s443 4)
(s444 5)
(s445 5)
(s446 2)
(s448 4)
(s449 5)
(s450 5)
(s451 2)
(s453 4)
(s454 5)
(s455 5)
(s456 2)
(s458 4)
(s459 5)
(s460 5)
(s461 2)
(s463 4)
(s464 5)
(s465 5)
(s466 2)
(s468 4)
(s469 5)
(s470 5)
(s471 2)
(s473 4)
(s474 5)
(s475 5)
(s476 2)
(s478 4)
(s479 5)
(s480 5)
(s481 2)
(s483 4)
(s484 5)
(s485 5)
(s486 2)
(s488 4)
(s489 5)
(s490 5)
(s491 2)
(s493 4)
(s494 5)
(s495 5)
(s496 2)
(s498 4)
(s499 5)
(s500 5)
(s501 2)
(s503 4)
(s504 5)
(s505 5)
(s506 2)
(s508 4)
(s509 5)
(s510 5)
(s511 2)
(s513 timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 30083 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 0/6000 constraints, Known Traps: 0/0 constraints]
After SMT, in 64064ms problems are : Problem set: 0 solved, 6000 unsolved
Search for dead transitions found 0 dead transitions in 64108ms
Finished structural reductions in LTL mode , in 1 iterations and 113072 ms. Remains : 5000/5000 places, 8001/8001 transitions.
Treatment of property JoinFreeModules-PT-1000-LTLCardinality-04 finished in 495440 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202405141337/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(G((F(p0)&&F((G(p1)||G(p2))))))'
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202405141337/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(X(X(G((p0||X(p1))))))'
Found a Lengthening insensitive property : JoinFreeModules-PT-1000-LTLCardinality-09
Stuttering acceptance computed with spot in 148 ms :[true, (NOT p1), (AND (NOT p0) (NOT p1)), (AND (NOT p1) (NOT p0)), (AND (NOT p1) (NOT p0))]
Support contains 3 out of 5000 places. Attempting structural reductions.
Starting structural reductions in LI_LTL mode, iteration 0 : 5000/5000 places, 8001/8001 transitions.
Applied a total of 0 rules in 563 ms. Remains 5000 /5000 variables (removed 0) and now considering 8001/8001 (removed 0) transitions.
Running 6000 sub problems to find dead transitions.
[2024-05-23 23:49:03] [INFO ] Invariant cache hit.
[2024-05-23 23:49:03] [INFO ] State equation strengthened by 1000 read => feed constraints.
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 4000/13001 variables, and 0 constraints, problems are : Problem set: 0 solved, 6000 unsolved in 20070 ms.
Refiners :[Positive P Invariants (semi-flows): 0/1000 constraints, State Equation: 0/5000 constraints, ReadFeed: 0/1000 constraints, PredecessorRefiner: 6000/6000 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 6000 unsolved

BK_TIME_CONFINEMENT_REACHED

--------------------
content from stderr:

+ ulimit -s 65536
+ [[ -z '' ]]
+ export LTSMIN_MEM_SIZE=8589934592
+ LTSMIN_MEM_SIZE=8589934592
+ export PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ export LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
+ LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
++ sed s/.jar//
++ perl -pe 's/.*\.//g'
++ ls /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/plugins/fr.lip6.move.gal.application.pnmcc_1.0.0.202405141337.jar
+ VERSION=202405141337
+ echo 'Running Version 202405141337'
+ /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/its-tools -pnfolder /home/mcc/execution -examination LTLCardinality -timeout 360 -rebuildPNML

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="JoinFreeModules-PT-1000"
export BK_EXAMINATION="LTLCardinality"
export BK_TOOL="greatspnxred"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5568"
echo " Executing tool greatspnxred"
echo " Input is JoinFreeModules-PT-1000, examination is LTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r223-tall-171649610600075"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"

tar xzf /home/mcc/BenchKit/INPUTS/JoinFreeModules-PT-1000.tgz
mv JoinFreeModules-PT-1000 execution
cd execution
if [ "LTLCardinality" = "ReachabilityDeadlock" ] || [ "LTLCardinality" = "UpperBounds" ] || [ "LTLCardinality" = "QuasiLiveness" ] || [ "LTLCardinality" = "StableMarking" ] || [ "LTLCardinality" = "Liveness" ] || [ "LTLCardinality" = "OneSafe" ] || [ "LTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh

echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "LTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "LTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "LTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property LTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "LTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' LTLCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ "LTLCardinality" = "ReachabilityDeadlock" ] || [ "LTLCardinality" = "QuasiLiveness" ] || [ "LTLCardinality" = "StableMarking" ] || [ "LTLCardinality" = "Liveness" ] || [ "LTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME LTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;