fond
Model Checking Contest 2024
14th edition, Geneva, Switzerland, June 25, 2024
Execution of r157-smll-171636265100123
Last Updated
July 7, 2024

About the Execution of GreatSPN+red for Echo-PT-d03r07

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
4488.892 3600000.00 3834631.00 10673.00 FFFFFF??F??????T normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Formatting '/data/fkordon/mcc2024-input.r157-smll-171636265100123.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2024-input.qcow2 backing_fmt=qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
..............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
=====================================================================
Generated by BenchKit 2-5568
Executing tool greatspnxred
Input is Echo-PT-d03r07, examination is LTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r157-smll-171636265100123
=====================================================================

--------------------
preparation of the directory to be used:
/home/mcc/execution
total 2.6M
-rw-r--r-- 1 mcc users 7.5K May 14 13:22 CTLCardinality.txt
-rw-r--r-- 1 mcc users 83K May 14 13:22 CTLCardinality.xml
-rw-r--r-- 1 mcc users 4.9K May 14 13:22 CTLFireability.txt
-rw-r--r-- 1 mcc users 41K May 14 13:22 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K May 18 16:42 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 5.9K May 18 16:42 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 3.5K May 19 07:09 LTLCardinality.txt
-rw-r--r-- 1 mcc users 25K May 19 15:51 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.0K May 19 07:17 LTLFireability.txt
-rw-r--r-- 1 mcc users 16K May 19 18:17 LTLFireability.xml
-rw-r--r-- 1 mcc users 12K Apr 12 04:45 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 119K Apr 12 04:45 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 6.6K Apr 12 04:43 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 52K Apr 12 04:43 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.6K Apr 22 14:43 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.6K Apr 22 14:43 UpperBounds.xml
-rw-r--r-- 1 mcc users 6 May 18 16:42 equiv_col
-rw-r--r-- 1 mcc users 7 May 18 16:42 instance
-rw-r--r-- 1 mcc users 6 May 18 16:42 iscolored
-rw-r--r-- 1 mcc users 2.2M May 18 16:42 model.pnml

--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME Echo-PT-d03r07-LTLCardinality-00
FORMULA_NAME Echo-PT-d03r07-LTLCardinality-01
FORMULA_NAME Echo-PT-d03r07-LTLCardinality-02
FORMULA_NAME Echo-PT-d03r07-LTLCardinality-03
FORMULA_NAME Echo-PT-d03r07-LTLCardinality-04
FORMULA_NAME Echo-PT-d03r07-LTLCardinality-05
FORMULA_NAME Echo-PT-d03r07-LTLCardinality-06
FORMULA_NAME Echo-PT-d03r07-LTLCardinality-07
FORMULA_NAME Echo-PT-d03r07-LTLCardinality-08
FORMULA_NAME Echo-PT-d03r07-LTLCardinality-09
FORMULA_NAME Echo-PT-d03r07-LTLCardinality-10
FORMULA_NAME Echo-PT-d03r07-LTLCardinality-11
FORMULA_NAME Echo-PT-d03r07-LTLCardinality-12
FORMULA_NAME Echo-PT-d03r07-LTLCardinality-13
FORMULA_NAME Echo-PT-d03r07-LTLCardinality-14
FORMULA_NAME Echo-PT-d03r07-LTLCardinality-15

=== Now, execution of the tool begins

BK_START 1716459863091

Invoking MCC driver with
BK_TOOL=greatspnxred
BK_EXAMINATION=LTLCardinality
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=Echo-PT-d03r07
BK_MEMORY_CONFINEMENT=16384
Applying reductions before tool greatspn
Invoking reducer
Running Version 202405141337
[2024-05-23 10:24:25] [INFO ] Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, LTLCardinality, -timeout, 360, -rebuildPNML]
[2024-05-23 10:24:25] [INFO ] Parsing pnml file : /home/mcc/execution/model.pnml
[2024-05-23 10:24:26] [INFO ] Load time of PNML (sax parser for PT used): 741 ms
[2024-05-23 10:24:26] [INFO ] Transformed 4209 places.
[2024-05-23 10:24:26] [INFO ] Transformed 3518 transitions.
[2024-05-23 10:24:26] [INFO ] Found NUPN structural information;
[2024-05-23 10:24:26] [INFO ] Parsed PT model containing 4209 places and 3518 transitions and 25540 arcs in 1016 ms.
Parsed 16 properties from file /home/mcc/execution/LTLCardinality.xml in 20 ms.
Working with output stream class java.io.PrintStream
Initial state reduction rules removed 1 formulas.
FORMULA Echo-PT-d03r07-LTLCardinality-02 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA Echo-PT-d03r07-LTLCardinality-04 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA Echo-PT-d03r07-LTLCardinality-15 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
Support contains 43 out of 4209 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 4209/4209 places, 3518/3518 transitions.
Reduce places removed 340 places and 0 transitions.
Iterating post reduction 0 with 340 rules applied. Total rules applied 340 place count 3869 transition count 3518
Applied a total of 340 rules in 892 ms. Remains 3869 /4209 variables (removed 340) and now considering 3518/3518 (removed 0) transitions.
// Phase 1: matrix 3518 rows 3869 cols
[2024-05-23 10:24:37] [INFO ] Invariants computation overflowed in 9535 ms
[2024-05-23 10:24:44] [INFO ] Implicit Places using invariants in 16365 ms returned []
// Phase 1: matrix 3518 rows 3869 cols
[2024-05-23 10:24:53] [INFO ] Invariants computation overflowed in 9221 ms
[2024-05-23 10:25:56] [INFO ] Performed 3/3869 implicitness test of which 0 returned IMPLICIT in 37 seconds.
[2024-05-23 10:26:29] [INFO ] Performed 5/3869 implicitness test of which 0 returned IMPLICIT in 69 seconds.
[2024-05-23 10:27:01] [INFO ] Performed 7/3869 implicitness test of which 0 returned IMPLICIT in 102 seconds.
[2024-05-23 10:27:33] [INFO ] Performed 9/3869 implicitness test of which 0 returned IMPLICIT in 134 seconds.
[2024-05-23 10:27:33] [INFO ] Timeout of Implicit test with SMT after 134 seconds.
[2024-05-23 10:27:33] [INFO ] Implicit Places using invariants and state equation in 169108 ms returned []
Implicit Place search using SMT with State Equation took 185520 ms to find 0 implicit places.
Running 3517 sub problems to find dead transitions.
// Phase 1: matrix 3518 rows 3869 cols
[2024-05-23 10:27:42] [INFO ] Invariants computation overflowed in 8850 ms
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
At refinement iteration 0 (INCLUDED_ONLY) 0/3865 variables, 3865/3865 constraints. Problems are: Problem set: 0 solved, 3517 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 3865/7387 variables, and 3865 constraints, problems are : Problem set: 0 solved, 3517 unsolved in 30228 ms.
Refiners :[Domain max(s): 3865/3869 constraints, State Equation: 0/3869 constraints, PredecessorRefiner: 3517/3517 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 3517 unsolved
At refinement iteration 0 (INCLUDED_ONLY) 0/3865 variables, 3865/3865 constraints. Problems are: Problem set: 0 solved, 3517 unsolved
Error getting values : (error "ParserException while parsing response: ((s0 1)
(s1 1)
(s2 1)
(s3 1)
(s4 1)
(s5 1)
(s6 1)
(s7 1)
(s8 1)
(s9 1)
(s10 1)
(s11 1)
(s12 1)
(s13 1)
(s14 1)
(s15 1)
(s16 1)
(s17 1)
(s18 1)
(s19 1)
(s20 1)
(s21 1)
(s22 1)
(s23 1)
(s24 1)
(s25 1)
(s26 1)
(s27 1)
(s28 1)
(s29 1)
(s30 1)
(s31 1)
(s32 1)
(s33 1)
(s34 1)
(s35 1)
(s36 1)
(s37 1)
(s38 1)
(s39 1)
(s40 1)
(s41 1)
(s42 1)
(s43 1)
(s44 1)
(s45 1)
(s46 1)
(s47 1)
(s48 1)
(s49 1)
(s50 1)
(s51 1)
(s52 1)
(s53 1)
(s54 1)
(s55 1)
(s56 1)
(s57 1)
(s58 1)
(s59 1)
(s60 1)
(s61 1)
(s62 1)
(s63 1)
(s64 1)
(s65 1)
(s66 1)
(s67 1)
(s68 1)
(s69 1)
(s70 1)
(s71 1)
(s72 1)
(s73 1)
(s74 1)
(s75 1)
(s76 1)
(s77 1)
(s78 1)
(s79 1)
(s80 1)
(s81 1)
(s82 1)
(s83 1)
(s84 1)
(s85 1)
(s86 1)
(s87 1)
(s88 1)
(s89 1)
(s90 1)
(s91 1)
(s92 1)
(s93 1)
(s94 1)
(s95 1)
(s96 1)
(s97 1)
(s98 1)
(s99 1)
(s100 1)
(s101 1)
(s102 1)
(s103 1)
(s104 1)
(s105 1)
(s106 1)
(s107 1)
(s108 1)
(s109 1)
(s110 1)
(s111 1)
(s112 1)
(s113 1)
(s114 1)
(s115 1)
(s116 1)
(s117 1)
(s118 1)
(s119 1)
(s120 1)
(s121 1)
(s122 1)
(s123 1)
(s124 1)
(s125 1)
(s126 1)
(s127 1)
(s128 1)
(s129 1)
(s130 1)
(s131 1)
(s132 1)
(s133 1)
(s134 1)
(s135 1)
(s136 1)
(s137 1)
(s138 1)
(s139 1)
(s140 1)
(s141 1)
(s142 1)
(s143 1)
(s144 1)
(s145 1)
(s146 1)
(s147 1)
(s148 1)
(s149 1)
(s150 1)
(s151 1)
(s152 1)
(s153 1)
(s154 1)
(s155 1)
(s156 1)
(s157 1)
(s158 1)
(s159 1)
(s160 1)
(s161 1)
(s162 1)
(s163 1)
(s164 1)
(s165 1)
(s166 1)
(s167 1)
(s168 1)
(s169 1)
(s170 1)
(s171 1)
(s172 1)
(s173 1)
(s174 1)
(s175 1)
(s176 1)
(s177 1)
(s178 1)
(s179 1)
(s180 1)
(s181 1)
(s182 1)
(s183 1)
(s184 1)
(s185 1)
(s186 1)
(s187 1)
(s188 1)
(s189 1)
(s190 1)
(s191 1)
(s192 1)
(s193 1)
(s194 1)
(s195 1)
(s196 1)
(s197 1)
(s198 1)
(s199 1)
(s200 1)
(s201 1)
(s202 1)
(s203 1)
(s204 1)
(s205 1)
(s206 1)
(s207 1)
(s208 1)
(s209 1)
(s210 1)
(s211 1)
(s212 1)
(s213 1)
(s214 1)
(s215 1)
(s216 1)
(s217 1)
(s218 1)
(s219 1)
(s220 1)
(s221 1)
(s222 1)
(s223 1)
(s224 1)
(s225 1)
(s226 1)
(s227 1)
(s228 1)
(s229 1)
(s230 1)
(s231 1)
(s232 1)
(s233 1)
(s234 1)
(s235 1)
(s236 1)
(s237 1)
(s238 1)
(s239 1)
(s240 1)
(s241 1)
(s242 1)
(s243 1)
(s244 1)
(s245 1)
(s246 1)
(s247 1)
(s248 1)
(s249 1)
(s251 1)
(s252 1)
(s253 1)
(s254 1)
(s255 1)
(s256 1)
(s257 1)
(s258 1)
(s259 1)
(s260 1)
(s261 1)
(s262 1)
(s263 1)
(s264 1)
(s265 1)
(s266 1)
(s267 1)
(s268 1)
(s269 1)
(s270 1)
(s271 1)
(s272 1)
(s273 1)
(s274 1)
(s275 1)
(s276 1)
(s277 1)
(s278 1)
(s279 1)
(s280 1)
(s281 1)
(s282 1)
(s283 1)
(s284 1)
(s285 1)
(s286 1)
(s287 1)
(s288 1)
(s289 1)
(s290 1)
(s291 1)
(s292 1)
(s293 1)
(s294 1)
(s295 1)
(s296 1)
(s297 1)
(s298 1)
(s299 1)
(s300 1)
(s301 1)
(s302 1)
(s303 1)
(s304 1)
(s305 1)
(s306 1)
(s307 1)
(s308 1)
(s309 1)
(s310 1)
(s311 1)
(s312 1)
(s313 1)
(s314 1)
(s315 1)
(s316 1)
(s317 1)
(s318 1)
(s319 1)
(s320 1)
(s321 1)
(s322 1)
(s323 1)
(s324 1)
(s325 1)
(s326 1)
(s327 1)
(s328 1)
(s329 1)
(s330 1)
(s331 1)
(s332 1)
(s333 1)
(s334 1)
(s335 1)
(s336 1)
(s337 1)
(s338 1)
(s339 1)
(s340 1)
(s341 1)
(s342 1)
(s343 1)
(s344 1)
(s345 1)
(s346 1)
(s347 1)
(s348 1)
(s349 1)
(s350 1)
(s351 1)
(s352 1)
(s353 1)
(s354 1)
(s355 1)
(s356 1)
(s357 1)
(s358 1)
(s359 1)
(s360 1)
(s361 1)
(s362 1)
(s363 1)
(s364 1)
(s365 1)
(s366 1)
(s367 1)
(s368 1)
(s369 1)
(s370 1)
(s371 1)
(s372 1)
(s373 1)
(s374 1)
(s375 1)
(s376 1)
(s377 1)
(s378 1)
(s379 1)
(s380 1)
(s381 1)
(s382 1)
(s383 1)
(s384 1)
(s385 1)
(s386 1)
(s387 1)
(s388 1)
(s389 1)
(s390 1)
(s391 1)
(s392 1)
(s393 1)
(s394 1)
(s395 1)
(s396 1)
(s397 1)
(s398 1)
(s399 1)
(s400 1)
(s401 1)
(s402 1)
(s403 1)
(s404 1)
(s405 1)
(s406 1)
(s407 1)
(s408 1)
(s409 1)
(s410 1)
(s411 1)
(s412 1)
(s413 1)
(s414 1)
(s415 1)
(s416 1)
(s417 1)
(s418 1)
(s419 1)
(s420 1)
(s421 1)
(s422 1)
(s423 1)
(s424 1)
(s425 1)
(s426 1)
(s427 1)
(s428 1)
(s429 1)
(s430 1)
(s431 1)
(s432 1)
(s433 1)
(s434 1)
(s435 1)
(s436 1)
(s437 1)
(s438 1)
(s439 1)
(s440 1)
(s441 1)
(s442 1)
(s443 1)
(s444 1)
(s445 1)
(s446 1)
(s447 1)
(s448 1)
(s449 1)
(s450 1)
(s451 1)
(s452 1)
(s453 1)
(s454 1)
(s455 1)
(s456 1)
(s457 1)
(s458 1)
(s459 1)
(s460 1)
(s461 1)
(s462 1)
(s463 1)
(s464 1)
(s465 1)
(s466 1)
(s467 1)
(s468 1)
(s469 1)
(s470 1)
(s471 1)
(s472 1)
(s473 1)
(s474 1)
(s475 1)
(s476 1)
(s477 1)
(s478 1)
(s479 1)
(s480 1)
(s481 1)
(s482 1)
(s483 1)
(s484 1)
(s485 1)
(s486 1)
(s487 1)
(s488 1)
(s489 1)
(s490 1)
(s491 1)
(s492 1)
(s493 1)
(s494 1)
(s495 1)
(s496 1)
(s497 1)
(s498 1)
(s499 1)
(s500 1)
(s501 1)
(s502 1)
(s503 1)
(s504 1)
(s505 1)
(s506 1)
(s507 1)
(s508 1)
(s509 1)
(s510 1)
(s511 1)
(s512 1)
(s513 1)
(s514 1)
(s515 1)
(s516 1)
(s517 1)
(s518 1)
(s519 1)
(s520 1)
(s521 1)
(s522 1)
(s523 1)
(s524 1)
(s525 1)
(s526 1)
(s527 1)
(s528 1)
(s529 1)
(s530 1)
(s531 1)
(s532 1)
(s533 1)
(s534 1)
(s535 1)
(s536 1)
(s537 1)
(s538 1)
(s539 1)
(s540 1)
(s541 1)
(s542 1)
(s543 1)
(s544 1)
(s545 1)
(s546 1)
(s547 1)
(s548 1)
(s549 1)
(s550 1)
(s551 1)
(s552 1)
(s553 1)
(s554 1)
(s555 1)
(s556 1)
(s557 1)
(s558 1)
(s559 1)
(s560 1)
(s561 1)
(s562 1)
(s563 1)
(s564 1)
(s565 1)
(s566 1)
(s567 1)
(s568 1)
(s569 1)
(s570 1)
(s571 1)
(s572 1)
(s573 1)
(s574 1)
(s575 1)
(s576 1)
(s577 1)
(s578 1)
(s579 1)
(s580 1)
(s581 1)
(s582 1)
(s583 1)
(s584 1)
(s585 1)
(s586 1)
(s587 1)
(s588 1)
(s589 1)
(s590 1)
(s591 1)
(s592 1)
(s593 1)
(s594 1)
(s595 1)
(s596 1)
(s597 1)
(s598 1)
(s599 1)
(s600 1)
(s601 1)
(s602 1)
(s603 1)
(s604 1)
(s605 1)
(s606 1)
(s607 1)
(s608 1)
(s609 1)
(s610 1)
(s611 1)
(s612 1)
(s613 1)
(s614 1)
(s615 1)
(s616 1)
(s617 1)
(s618 1)
(s619 1)
(s620 1)
(s621 1)
(s622 1)
(s623 1)
(s624 1)
(s625 1)
(s626 1)
(s627 1)
(s628 1)
(s629 1)
(s630 1)
(s631 1)
(s632 1)
(s633 1)
(s634 1)
(s635 1)
(s636 1)
(s637 1)
(s638 1)
(s639 1)
(s640 1)
(s641 1)
(s642 1)
(s643 1)
(s644 1)
(s645 1)
(s646 1)
(s647 1)
(s648 1)
(s649 1)
(s650 1)
(s651 1)
(s652 1)
(s653 1)
(s654 1)
(s655 1)
(s656 1)
(s657 1)
(s658 1)
(s659 1)
(s660 1)
(s661 1)
(s662 1)
(s663 1)
(s664 1)
(s665 1)
(s666 1)
(s667 1)
(s668 1)
(s669 1)
(s670 1)
(s671 1)
(s672 1)
(s673 1)
(s674 1)
(s675 1)
(s676 1)
(s677 1)
(s678 1)
(s679 1)
(s680 1)
(s681 1)
(s682 1)
(s683 1)
(s684 1)
(s685 1)
(s686 1)
(s687 1)
(s688 1)
(s689 1)
(s690 1)
(s691 1)
(s692 1)
(s693 1)
(s694 1)
(s695 1)
(s696 1)
(s697 1)
(s698 1)
(s699 1)
(s700 1)
(s701 1)
(s702 1)
(s703 1)
(s704 1)
(s705 1)
(s706 1)
(s707 1)
(s708 1)
(s709 1)
(s710 1)
(s711 1)
(s712 1)
(s713 1)
(s714 1)
(s715 1)
(s716 1)
(s717 1)
(s718 1)
(s719 1)
(s720 1)
(s721 1)
(s722 1)
(s723 1)
(s724 1)
(s725 1)
(s726 1)
(s727 1)
(s728 1)
(s729 1)
(s730 1)
(s731 1)
(s732 1)
(s733 1)
(s734 1)
(s735 1)
(s736 1)
(s737 1)
(s738 1)
(s739 1)
(s740 1)
(s741 1)
(s742 1)
(s743 1)
(s744 1)
(s745 1)
(s746 1)
(s747 1)
(s748 1)
(s749 1)
(s750 1)
(s751 1)
(s752 1)
(s753 1)
(s754 1)
(s755 1)
(s756 1)
(s757 1)
(s758 1)
(s759 1)
(s760 1)
(s761 1)
(s762 1)
(s763 1)
(s764 1)
(s765 1)
(s766 1)
(s767 1)
(s768 1)
(s769 1)
(s770 1)
(s771 1)
(s772 1)
(s773 1)
(s774 1)
(s775 1)
(s776 1)
(s777 1)
(s778 1)
(s779 1)
(s780 1)
(s781 1)
(s782 1)
(s783 1)
(s784 1)
(s785 1)
(s786 1)
(s787 1)
(s788 1)
(s789 1)
(s790 1)
(s791 1)
(s792 1)
(s793 1)
(s794 1)
(s795 1)
(s796 1)
(s797 1)
(s798 1)
(s799 1)
(s800 1)
(s802 1)
(s803 1)
(s804 1)
(s805 1)
(s806 1)
(s807 1)
(s808 1)
(s809 1)
(s810 1)
(s811 1)
(s812 1)
(s813 1)
(s814 1)
(s815 1)
(s816 1)
(s817 1)
(s818 1)
(s819 1)
(s820 1)
(s821 1)
(s822 1)
(s823 1)
(s824 1)
(s825 1)
(s826 1)
(s827 1)
(s828 1)
(s829 1)
(s830 1)
(s831 1)
(s832 1)
(s833 1)
(s834 1)
(s835 1)
(s836 1)
(s837 1)
(s838 1)
(s839 1)
(s840 1)
(s841 1)
(s843 1)
(s844 1)
(s845 1)
(s846 1)
(s847 1)
(s848 1)
(s849 1)
(s850 1)
(s851 1)
(s852 1)
(s853 1)
(s854 1)
(s855 1)
(s856 1)
(s857 1)
(s858 1)
(s859 1)
(s860 1)
(s861 1)
(s862 1)
(s863 1)
(s864 1)
(s865 1)
(s866 1)
(s867 1)
(s868 1)
(s869 1)
(s870 1)
(s871 1)
(s872 1)
(s873 1)
(s874 1)
(s875 1)
(s876 1)
(s877 1)
(s878 1)
(s879 1)
(s880 1)
(s881 1)
(s882 1)
(s883 1)
(s884 1)
(s885 1)
(s886 1)
(s887 1)
(s888 1)
(s889 1)
(s890 1)
(s891 1)
(s892 1)
(s893 1)
(s894 1)
(s895 1)
(s896 1)
(s897 1)
(s898 1)
(s899 1)
(s900 1)
(s901 1)
(s902 1)
(s903 1)
(s904 1)
(s905 1)
(s906 1)
(s907 1)
(s908 1)
(s909 1)
(s910 1)
(s911 1)
(s912 1)
(s913 1)
(s914 1)
(s915 1)
(s916 1)
(s917 1)
(s918 1)
(s919 1)
(s920 1)
(s921 1)
(s922 1)
(s923 1)
(s924 1)
(s925 1)
(s926 1)
(s927 1)
(s928 1)
(s929 1)
(s930 1)
(s931 1)
(s932 1)
(s933 1)
(s934 1)
(s935 1)
(s936 1)
(s937 1)
(s938 1)
(s939 1)
(s940 1)
(s941 1)
(s942 1)
(s943 1)
(s944 1)
(s945 1)
(s946 1)
(s947 1)
(s948 1)
(s949 1)
(s950 1)
(s951 1)
(s952 1)
(s953 1)
(s954 1)
(s955 1)
(s956 1)
(s957 1)
(s958 1)
(s959 1)
(s960 1)
(s961 1)
(s962 1)
(s963 1)
(s964 1)
(s965 1)
(s966 1)
(s967 1)
(s968 1)
(s969 1)
(s970 1)
(s971 1)
(s972 1)
(s973 1)
(s974 1)
(s975 1)
(s976 1)
(s977 1)
(s978 1)
(s979 1)
(s980 1)
(s981 1)
(s982 1)
(s983 1)
(s984 1)
(s985 1)
(s986 1)
(s987 1)
(s988 1)
(s989 1)
(s990 1)
(s991 1)
(s992 1)
(s993 1)
(s994 1)
(s995 1)
(s996 1)
(s997 1)
(s998 1)
(s999 1)
(s1000 1)
(s1001 1)
(s1002 1)
(s1003 1)
(s1004 1)
(s1005 1)
(s1006 1)
(s1007 1)
(s1008 1)
(s1009 1)
(s1010 1)
(s1011 1)
(s1012 1)
(s1013 1)
(s1014 1)
(s1015 1)
(s1016 1)
(s1017 1)
(s1018 1)
(s1019 1)
(s1020 1)
(s1021 1)
(s1022 1)
(s1023 1)
(s1024 1)
(s1025 1)
(s1026 1)
(s1027 1)
(s1028 1)
(s1029 1)
(s1030 1)
(s1031 1)
(s1032 1)
(s1033 1)
(s1034 1)
(s1035 1)
(s1036 1)
(s1037 1)
(s1038 1)
(s1039 1)
(s1040 1)
(s1041 1)
(s1042 1)
(s1043 1)
(s1044 1)
(s1045 1)
(s1046 1)
(s1047 1)
(s1048 1)
(s1049 1)
(s1050 1)
(s1051 1)
(s1052 1)
(s1053 1)
(s1054 1)
(s1055 1)
(s1056 1)
(s1057 1)
(s1058 1)
(s1059 1)
(s1060 1)
(s1061 1)
(s1062 1)
(s1063 1)
(s1064 1)
(s1065 1)
(s1066 1)
(s1067 1)
(s1068 1)
(s1069 1)
(s1070 1)
(s1071 1)
(s1072 1)
(s1073 1)
(s1074 1)
(s1075 1)
(s1076 1)
(s1077 1)
(s1078 1)
(s1079 1)
(s1080 1)
(s1081 1)
(s1082 1)
(s1083 1)
(s1084 1)
(s1085 1)
(s1086 1)
(s1087 1)
(s1088 1)
(s1089 1)
(s1090 1)
(s1091 1)
(s1092 1)
(s1093 1)
(s1094 1)
(s1095 1)
(s1096 1)
(s1097 1)
(s1098 1)
(s1099 1)
(s1100 1)
(s1101 1)
(s1102 1)
(s1103 1)
(s1104 1)
(s1105 1)
(s1106 1)
(s1107 1)
(s1108 1)
(s1109 1)
(s1110 1)
(s1111 1)
(s1112 1)
(s1113 1)
(s1114 1)
(s1115 1)
(s1116 1)
(s1117 1)
(s1118 1)
(s1119 1)
(s1120 1)
(s1121 1)
(s1122 1)
(s1123 1)
(s1124 1)
(s1125 1)
(s1126 1)
(s1127 1)
(s1128 1)
(s1129 1)
(s1130 1)
(s1131 1)
(s1132 1)
(s1133 1)
(s1134 1)
(s1135 1)
(s1136 1)
(s1137 1)
(s1138 1)
(s1139 1)
(s1140 1)
(s1141 1)
(s1142 1)
(s1143 1)
(s1144 1)
(s1145 1)
(s1146 1)
(s1147 1)
(s1148 1)
(s1149 1)
(s1150 1)
(s1151 1)
(s1152 1)
(s1153 1)
(s1154 1)
(s1155 1)
(s1156 1)
(s1157 1)
(s1158 1)
(s1159 1)
(s1160 1)
(s1161 1)
(s1162 1)
(s1163 1)
(s1164 1)
(s1165 1)
(s1166 1)
(s1167 1)
(s1168 1)
(s1169 1)
(s1170 1)
(s1171 1)
(s1172 1)
(s1173 1)
(s1174 1)
(s1175 1)
(s1176 1)
(s1177 1)
(s1178 1)
(s1179 1)
(s1180 1)
(s1181 1)
(s1182 1)
(s1183 1)
(s1184 1)
(s1185 1)
(s1186 1)
(s1187 1)
(s1188 1)
(s1189 1)
(s1190 1)
(s1191 1)
(s1192 1)
(s1193 1)
(s1194 1)
(s1195 1)
(s1196 1)
(s1197 1)
(s1198 1)
(s1199 1)
(s1200 1)
(s1201 1)
(s1202 1)
(s1203 1)
(s1204 1)
(s1205 1)
(s1206 1)
(s1207 1)
(s1208 1)
(s1209 1)
(s1210 1)
(s1211 1)
(s1212 1)
(s1213 1)
(s1214 1)
(s1215 1)
(s1216 1)
(s1217 1)
(s1218 1)
(s1219 1)
(s1220 1)
(s1221 1)
(s1222 1)
(s1223 1)
(s1224 1)
(s1225 1)
(s1226 1)
(s1227 1)
(s1228 1)
(s1229 1)
(s1230 1)
(s1231 1)
(s1232 1)
(s1233 1)
(s1234 1)
(s1235 1)
(s1236 1)
(s1237 1)
(s1238 1)
(s1239 1)
(s1240 1)
(s1241 1)
(s1242 1)
(s1243 1)
(s1244 1)
(s1245 1)
(s1246 1)
(s1247 1)
(s1248 1)
(s1249 1)
(s1250 1)
(s1251 1)
(s1252 1)
(s1253 1)
(s1254 1)
(s1255 1)
(s1256 1)
(s1257 1)
(s1258 1)
(s1259 1)
(s1260 1)
(s1261 1)
(s1262 1)
(s1263 1)
(s1264 1)
(s1265 1)
(s1266 1)
(s1267 1)
(s1268 1)
(s1269 1)
(s1270 1)
(s1271 1)
(s1272 1)
(s1273 1)
(s1274 1)
(s1275 1)
(s1276 1)
(s1277 1)
(s1278 1)
(s1279 1)
(s1280 1)
(s1281 1)
(s1282 1)
(s1283 1)
(s1284 1)
(s1285 1)
(s1286 1)
(s1287 1)
(s1288 1)
(s1289 1)
(s1290 1)
(s1291 1)
(s1292 1)
(s1293 1)
(s1294 1)
(s1295 1)
(s1296 1)
(s1297 1)
(s1298 1)
(s1299 1)
(s1300 1)
(s1301 1)
(s1302 1)
(s1303 1)
(s1304 1)
(s1305 1)
(s1306 1)
(s1307 1)
(s1308 1)
(s1309 1)
(s1310 1)
(s1311 1)
(s1312 1)
(s1313 1)
(s1314 1)
(s1315 1)
(s1316 1)
(s1317 1)
(s1318 1)
(s1319 1)
(s1320 1)
(s1321 1)
(s1322 1)
(s1323 1)
(s1324 1)
(s1325 1)
(s1326 1)
(s1327 1)
(s1328 1)
(s1329 1)
(s1330 1)
(s1331 1)
(s1332 1)
(s1333 1)
(s1334 1)
(s1335 1)
(s1336 1)
(s1337 1)
(s1338 1)
(s1339 1)
(s1340 1)
(s1341 1)
(s1342 1)
(s1343 1)
(s1344 1)
(s1345 1)
(s1346 1)
(s1347 1)
(s1348 1)
(s1349 1)
(s1350 1)
(s1351 1)
(s1352 1)
(s1353 1)
(s1354 1)
(s1355 1)
(s1356 1)
(s1357 1)
(s1358 1)
(s1359 1)
(s1360 1)
(s1361 1)
(s1362 1)
(s1363 1)
(s1364 1)
(s1365 1)
(s1366 1)
(s1367 1)
(s1368 1)
(s1369 1)
(s1370 1)
(s1371 1)
(s1372 1)
(s1373 1)
(s1374 1)
(s1375 1)
(s1376 1)
(s1377 1)
(s1378 1)
(s1379 1)
(s1380 1)
(s1381 1)
(s1382 1)
(s1383 1)
(s1384 1)
(s1385 1)
(s1386 1)
(s1387 1)
(s1388 1)
(s1389 1)
(s1390 1)
(s1391 1)
(s1392 1)
(s1393 1)
(s1394 1)
(s1395 1)
(s1396 1)
(s1397 1)
(s1398 1)
(s1399 1)
(s1400 1)
(s1401 1)
(s1402 1)
(s1403 1)
(s1404 1)
(s1405 1)
(s1406 1)
(s1407 1)
(s1408 1)
(s1409 1)
(s1410 1)
(s1411 1)
(s1412 1)
(s1413 1)
(s1414 1)
(s1415 1)
(s1416 1)
(s1417 1)
(s1418 1)
(s1419 1)
(s1420 1)
(s1421 1)
(s1422 1)
(s1423 1)
(s1424 1)
(s1425 1)
(s1426 1)
(s1427 1)
(s1428 1)
(s1429 1)
(s1430 1)
(s1431 1)
(s1432 1)
(s1433 1)
(s1434 1)
(s1435 1)
(s1436 1)
(s1437 1)
(s1438 1)
(s1439 1)
(s1440 1)
(s1441 1)
(s1442 1)
(s1443 1)
(s1444 1)
(s1445 1)
(s1446 1)
(s1447 1)
(s1448 1)
(s1449 1)
(s1450 1)
(s1451 1)
(s1452 1)
(s1453 1)
(s1454 1)
(s1455 1)
(s1456 1)
(s1457 1)
(s1458 1)
(s1459 1)
(s1460 1)
(s1461 1)
(s1462 1)
(s1463 1)
(s1464 1)
(s1465 1)
(s1466 1)
(s1467 1)
(s1468 1)
(s1469 1)
(s1470 1)
(s1471 1)
(s1472 1)
(s1473 1)
(s1474 1)
(s1475 1)
(s1476 1)
(s1477 1)
(s1478 1)
(s1479 1)
(s1480 1)
(s1481 1)
(s1482 1)
(s1483 1)
(s1484 1)
(s1485 1)
(s1486 1)
(s1487 1)
(s1488 1)
(s1489 1)
(s1490 1)
(s1491 1)
(s1492 1)
(s1493 1)
(s1494 1)
(s1495 1)
(s1496 1)
(s1497 1)
(s1498 1)
(s1499 1)
(s1500 1)
(s1501 1)
(s1502 1)
(s1503 1)
(s1504 1)
(s1505 1)
(s1506 1)
(s1507 1)
(s1508 1)
(s1509 1)
(s1510 1)
(s1511 1)
(s1512 1)
(s1513 1)
(s1514 1)
(s1515 1)
(s1516 1)
(s1517 1)
(s1518 1)
(s1519 1)
(s1520 1)
(s1521 1)
(s1522 1)
(s1523 1)
(s1524 1)
(s1525 1)
(s1526 1)
(s1527 1)
(s1528 1)
(s1529 1)
(s1530 1)
(s1531 1)
(s1532 1)
(s1533 1)
(s1534 1)
(s1535 1)
(s1536 1)
(s1537 1)
(s1538 1)
(s1539 1)
(s1540 1)
(s1541 1)
(s1542 1)
(s1543 1)
(s1544 1)
(s1545 1)
(s1546 1)
(s1547 1)
(s1548 1)
(s1549 1)
(s1550 1)
(s1551 1)
(s1552 1)
(s1553 1)
(s1554 1)
(s1555 1)
(s1556 1)
(s1557 1)
(s1558 1)
(s1559 1)
(s1560 1)
(s1561 1)
(s1562 1)
(s1563 1)
(s1564 1)
(s1565 1)
(s1566 1)
(s1567 1)
(s1568 1)
(s1569 1)
(s1570 1)
(s1571 1)
(s1572 1)
(s1573 1)
(s1574 1)
(s1575 1)
(s1576 1)
(s1577 1)
(s1578 1)
(s1579 1)
(s1580 1)
(s1581 1)
(s1582 1)
(s1583 1)
(s1584 1)
(s1585 1)
(s1586 1)
(s1587 1)
(s1588 1)
(s1589 1)
(s1590 1)
(s1591 1)
(s1592 1)
(s1593 1)
(s1594 1)
(s1595 1)
(s1596 1)
(s1597 1)
(s1598 1)
(s1599 1)
(s1600 1)
(s1601 1)
(s1602 1)
(s1603 1)
(s1604 1)
(s1605 1)
(s1606 1)
(s1607 1)
(s1608 1)
(s1609 1)
(s1610 1)
(s1611 1)
(s1612 1)
(s1613 1)
(s1614 1)
(s1615 1)
(s1616 1)
(s1617 1)
(s1618 1)
(s1619 1)
(s1620 1)
(s1621 1)
(s1622 1)
(s1623 1)
(s1624 1)
(s1625 1)
(s1626 1)
(s1627 1)
(s1628 1)
(s1629 1)
(s1630 1)
(s1631 1)
(s1632 1)
(s1633 1)
(s1634 1)
(s1635 1)
(s1636 1)
(s1637 1)
(s1638 1)
(s1639 1)
(s1640 1)
(s1641 1)
(s1642 1)
(s1643 1)
(s1644 1)
(s1645 1)
(s1646 1)
(s1647 1)
(s1648 1)
(s1649 1)
(s1650 1)
(s1651 1)
(s1652 1)
(s1653 1)
(s1654 1)
(s1655 1)
(s1656 1)
(s1657 1)
(s1658 1)
(s1659 1)
(s1660 1)
(s1661 1)
(s1662 1)
(s1663 1)
(s1664 1)
(s1665 1)
(s1666 1)
(s1667 1)
(s1668 1)
(s1669 1)
(s1670 1)
(s1671 1)
(s1672 1)
(s1673 1)
(s1674 1)
(s1675 1)
(s1676 1)
(s1677 1)
(s1678 1)
(s1679 1)
(s1680 1)
(s1681 1)
(s1682 1)
(s1683 1)
(s1684 1)
(s1685 1)
(s1686 1)
(s1687 1)
(s1688 1)
(s1689 1)
(s1690 1)
(s1691 1)
(s1692 1)
(s1693 1)
(s1694 1)
(s1695 1)
(s1696 1)
(s1697 1)
(s1698 1)
(s1699 1)
(s1700 1)
(s1701 1)
(s1702 1)
(s1703 1)
(s1704 1)
(s1705 1)
(s1706 1)
(s1707 1)
(s1708 1)
(s1709 1)
(s1710 1)
(s1711 1)
(s1712 1)
(s1713 1)
(s1714 1)
(s1715 1)
(s1716 1)
(s1717 1)
(s1718 1)
(s1719 1)
(s1720 1)
(s1721 1)
(s1722 1)
(s1723 1)
(s1724 1)
(s1725 1)
(s1726 1)
(s1727 1)
(s1728 1)
(s1729 1)
(s1730 1)
(s1731 1)
(s1732 1)
(s1733 1)
(s1734 1)
(s1735 1)
(s1736 1)
(s1737 1)
(s1738 1)
(s1739 1)
(s1740 1)
(s1741 1)
(s1742 1)
(s1743 1)
(s1744 1)
(s1745 1)
(s1746 1)
(s1747 1)
(s1748 1)
(s1749 1)
(s1750 1)
(s1751 1)
(s1752 1)
(s1753 1)
(s1754 1)
(s1755 1)
(s1756 1)
(s1757 1)
(s1758 1)
(s1759 1)
(s1760 1)
(s1761 1)
(s1762 1)
(s1763 1)
(s1764 1)
(s1765 1)
(s1766 1)
(s1767 1)
(s1768 1)
(s1769 1)
(s1770 1)
(s1771 1)
(s1772 1)
(s1773 1)
(s1774 1)
(s1775 1)
(s1776 1)
(s1777 1)
(s1778 1)
(s1779 1)
(s1780 1)
(s1781 1)
(s1782 1)
(s1783 1)
(s1784 1)
(s1785 1)
(s1786 1)
(s1787 1)
(s1788 1)
(s1789 1)
(s1790 1)
(s1791 1)
(s1792 1)
(s1793 1)
(s1794 1)
(s1795 1)
(s1796 1)
(s1797 1)
(s1798 1)
(s1799 1)
(s1800 1)
(s1801 1)
(s1802 1)
(s1803 1)
(s1804 1)
(s1805 1)
(s1806 1)
(s1807 1)
(s1808 1)
(s1809 1)
(s1810 1)
(s1811 1)
(s1812 1)
(s1813 1)
(s1814 1)
(s1815 1)
(s1816 1)
(s1817 1)
(s1818 1)
(s1819 1)
(s1820 1)
(s1821 1)
(s1822 1)
(s1823 1)
(s1824 1)
(s1825 1)
(s1826 1)
(s1827 1)
(s1828 1)
(s1829 1)
(s1830 1)
(s1831 1)
(s1832 1)
(s1833 1)
(s1834 1)
(s1835 1)
(s1836 1)
(s1837 1)
(s1838 1)
(s1839 1)
(s1840 1)
(s1841 1)
(s1842 1)
(s1843 1)
(s1844 1)
(s1845 1)
(s1846 1)
(s1847 1)
(s1848 1)
(s1849 1)
(s1850 1)
(s1851 1)
(s1852 1)
(s1853 1)
(s1854 1)
(s1855 1)
(s1856 1)
(s1857 1)
(s1858 1)
(s1859 1)
(s1860 1)
(s1861 1)
(s1862 1)
(s1863 1)
(s1864 1)
(s1865 1)
(s1866 1)
(s1867 1)
(s1868 1)
(s1869 1)
(s1870 1)
(s1871 1)
(s1872 1)
(s1873 1)
(s1874 1)
(s1875 1)
(s1876 1)
(s1877 1)
(s1878 1)
(s1879 1)
(s1880 1)
(s1881 1)
(s1882 1)
(s1883 1)
(s1884 1)
(s1885 1)
(s1886 1)
(s1887 1)
(s1888 1)
(s1889 1)
(s1890 1)
(s1891 1)
(s1892 1)
(s1893 1)
(s1894 1)
(s1895 1)
(s1896 1)
(s1897 1)
(s1898 1)
(s1899 1)
(s1900 1)
(s1901 1)
(s1902 1)
(s1903 1)
(s1904 1)
(s1905 1)
(s1906 1)
(s1907 1)
(s1908 1)
(s1909 1)
(s1910 1)
(s1911 1)
(s1912 1)
(s1913 1)
(s1914 1)
(s1915 1)
(s1916 1)
(s1917 1)
(s1918 1)
(s1919 1)
(s1920 1)
(s1921 1)
(s1922 1)
(s1923 1)
(s1924 1)
(s1925 1)
(s1926 1)
(s1927 1)
(s1928 1)
(s1929 1)
(s1930 1)
(s1931 1)
(s1932 1)
(s1933 1)
(s1934 1)
(s1935 1)
(s1936 1)
(s1937 1)
(s1938 1)
(s1939 1)
(s1940 1)
(s1941 1)
(s1942 1)
(s1943 1)
(s1944 1)
(s1945 1)
(s1946 1)
(s1947 1)
(s1948 1)
(s1949 1)
(s1950 1)
(s1951 1)
(s1952 1)
(s1953 1)
(s1954 1)
(s1955 1)
(s1956 1)
(s1957 1)
(s1958 1)
(s1959 1)
(s1960 1)
(s1961 1)
(s1962 1)
(s1963 1)
(s1964 1)
(s1965 1)
(s1966 1)
(s1967 1)
(s1968 1)
(s1969 1)
(s1970 1)
(s1971 1)
(s1972 1)
(s1973 1)
(s1974 1)
(s1975 1)
(s1976 1)
(s1977 1)
(s1978 1)
(s1979 1)
(s1980 1)
(s1981 1)
(s1982 1)
(s1983 1)
(s1984 1)
(s1985 1)
(s1986 1)
(s1987 1)
(s1988 1)
(s1989 1)
(s1990 1)
(s1991 1)
(s1992 1)
(s1993 1)
(s1994 1)
(s1995 1)
(s1996 1)
(s1997 1)
(s1998 1)
(s1999 1)
(s2000 1)
(s2001 1)
(s2002 1)
(s2003 1)
(s2004 1)
(s2005 1)
(s2006 1)
(s2007 1)
(s2008 1)
(s2009 1)
(s2010 1)
(s2011 1)
(s2012 1)
(s2013 1)
(s2014 1)
(s2015 1)
(s2016 1)
(s2017 1)
(s2018 1)
(s2019 1)
(s2020 1)
(s2021 1)
(s2022 1)
(s2023 1)
(s2024 1)
(s2025 1)
(s2026 1)
(s2027 1)
(s2028 1)
(s2029 1)
(s2030 1)
(s2031 1)
(s2032 1)
(s2033 1)
(s2034 1)
(s2035 1)
(s2036 1)
(s2037 1)
(s2038 1)
(s2039 1)
(s2040 1)
(s2041 1)
(s2042 1)
(s2043 1)
(s2044 1)
(s2045 1)
(s2046 1)
(s2047 1)
(s2048 1)
(s2049 1)
(s2050 1)
(s2051 1)
(s2052 1)
(s2053 1)
(s2054 1)
(s2055 1)
(s2056 1)
(s2057 1)
(s2058 1)
(s2059 1)
(s2060 1)
(s2061 1)
(s2062 1)
(s2063 1)
(s2064 1)
(s2065 1)
(s2066 1)
(s2067 1)
(s2068 1)
(s2069 1)
(s2070 1)
(s2071 1)
(s2072 1)
(s2073 1)
(s2074 1)
(s2075 1)
(s2076 1)
(s2077 1)
(s2078 1)
(s2079 1)
(s2080 1)
(s2081 1)
(s2082 1)
(s2083 1)
(s2084 1)
(s2085 1)
(s2086 1)
(s2087 1)
(s2088 1)
(s2089 1)
(s2090 1)
(s2091 1)
(s2092 1)
(s2093 1)
(s2094 1)
(s2095 1)
(s2096 1)
(s2097 1)
(s2098 1)
(s2099 1)
(s2100 1)
(s2101 1)
(s2102 1)
(s2103 1)
(s2104 1)
(s2105 1)
(s2106 1)
(s2107 1)
(s2108 1)
(s2109 1)
(s2110 1)
(s2111 1)
(s2112 1)
(s2113 1)
(s2114 1)
(s2115 1)
(s2116 1)
(s2117 1)
(s2118 1)
(s2119 1)
(s2120 1)
(s2121 1)
(s2122 1)
(s2123 1)
(s2124 1)
(s2125 1)
(s2126 1)
(s2127 1)
(s2128 1)
(s2129 1)
(s2130 1)
(s2131 1)
(s2132 1)
(s2133 1)
(s2134 1)
(s2135 1)
(s2136 1)
(s2137 1)
(s2138 1)
(s2139 1)
(s2140 1)
(s2141 1)
(s2142 1)
(s2143 1)
(s2144 1)
(s2145 1)
(s2146 1)
(s2147 1)
(s2148 1)
(s2149 1)
(s2150 1)
(s2151 1)
(s2152 1)
(s2153 1)
(s2154 1)
(s2155 1)
(s2156 1)
(s2157 1)
(s2158 1)
(s2159 1)
(s2160 1)
(s2161 1)
(s2162 1)
(s2163 1)
(s2164 1)
(s2165 1)
(s2166 1)
(s2167 1)
(s2168 1)
(s2169 1)
(s2170 1)
(s2171 1)
(s2172 1)
(s2173 1)
(s2174 1)
(s2175 1)
(s2176 1)
(s2177 1)
(s2178 1)
(s2179 1)
(s2180 1)
(s2181 1)
(s2182 1)
(s2183 1)
(s2184 1)
(s2185 1)
(s2186 1)
(s2187 1)
(s2188 1)
(s2189 1)
(s2190 1)
(s2191 1)
(s2192 1)
(s2193 1)
(s2194 1)
(s2195 1)
(s2196 1)
(s2197 1)
(s2198 1)
(s2199 1)
(s2200 1)
(s2201 1)
(s2202 1)
(s2203 1)
(s2204 1)
(s2205 1)
(s2206 1)
(s2207 1)
(s2208 1)
(s2209 1)
(s2210 1)
(s2211 1)
(s2212 1)
(s2213 1)
(s2214 1)
(s2215 1)
(s2216 1)
(s2217 1)
(s2218 1)
(s2219 1)
(s2220 1)
(s2221 1)
(s2222 1)
(s2223 1)
(s2224 1)
(s2225 1)
(s2226 1)
(s2227 1)
(s2228 1)
(s2229 1)
(s2230 1)
(s2231 1)
(s2232 1)
(s2233 1)
(s2234 1)
(s2235 1)
(s2236 1)
(s2237 1)
(s2238 1)
(s2239 1)
(s2240 1)
(s2241 1)
(s2242 1)
(s2243 1)
(s2244 1)
(s2245 1)
(s2246 1)
(s2247 1)
(s2248 1)
(s2249 1)
(s2250 1)
(s2251 1)
(s2252 1)
(s2253 1)
(s2254 1)
(s2255 1)
(s2256 1)
(s2257 1)
(s2258 1)
(s2259 1)
(s2260 1)
(s2261 1)
(s2262 1)
(s2263 1)
(s2264 1)
(s2265 1)
(s2266 1)
(s2267 1)
(s2268 1)
(s2269 1)
(s2270 1)
(s2271 1)
(s2272 1)
(s2273 1)
(s2274 1)
(s2275 1)
(s2276 1)
(s2277 1)
(s2278 1)
(s2279 1)
(s2280 1)
(s2281 1)
(s2282 1)
(s2283 1)
(s2284 1)
(s2285 1)
(s2286 1)
(s2287 1)
(s2288 1)
(s2289 1)
(s2290 1)
(s2291 1)
(s2292 1)
(s2293 1)
(s2294 1)
(s2295 1)
(s2296 1)
(s2297 1)
(s2298 1)
(s2299 1)
(s2300 1)
(s2301 1)
(s2302 1)
(s2303 1)
(s2304 1)
(s2305 1)
(s2306 1)
(s2307 1)
(s2308 1)
(s2309 1)
(s2310 1)
(s2311 1)
(s2312 1)
(s2313 1)
(s2314 1)
(s2315 1)
(s2316 1)
(s2317 1)
(s2318 1)
(s2319 1)
(s2320 1)
(s2321 1)
(s2322 1)
(s2323 1)
(s2324 1)
(s2325 1)
(s2326 1)
(s2327 1)
(s2328 1)
(s2329 1)
(s2330 1)
(s2331 1)
(s2332 1)
(s2333 1)
(s2334 1)
(s2335 1)
(s2336 1)
(s2337 1)
(s2338 1)
(s2339 1)
(s2340 1)
(s2341 1)
(s2342 1)
(s2343 1)
(s2344 1)
(s2345 1)
(s2346 1)
(s2347 1)
(s2348 1)
(s2349 1)
(s2350 1)
(s2351 1)
(s2352 1)
(s2353 1)
(s2354 1)
(s2355 1)
(s2356 1)
(s2357 1)
(s2358 1)
(s2359 1)
(s2360 1)
(s2361 1)
(s2362 1)
(s2363 1)
(s2364 1)
(s2365 1)
(s2366 1)
(s2367 1)
(s2368 1)
(s2369 1)
(s2370 1)
(s2371 1)
(s2372 1)
(s2373 1)
(s2374 1)
(s2375 1)
(s2376 1)
(s2377 1)
(s2378 1)
(s2379 1)
(s2380 1)
(s2381 1)
(s2382 1)
(s2383 1)
(s2384 1)
(s2385 1)
(s2386 1)
(s2387 1)
(s2388 1)
(s2389 1)
(s2390 1)
(s2391 1)
(s2392 1)
(s2393 1)
(s2394 1)
(s2395 1)
(s2396 1)
(s2397 1)
(s2398 1)
(s2399 1)
(s2400 1)
(s2401 1)
(s2402 1)
(s2403 1)
(s2404 1)
(s2405 1)
(s2406 1)
(s2407 1)
(s2408 1)
(s2409 1)
(s2410 1)
(s2411 1)
(s2412 1)
(s2413 1)
(s2414 1)
(s2415 1)
(s2416 1)
(s2417 1)
(s2418 1)
(s2419 1)
(s2420 1)
(s2421 1)
(s2422 1)
(s2423 1)
(s2424 1)
(s2425 1)
(s2426 1)
(s2427 1)
(s2428 1)
(s2429 1)
(s2430 1)
(s2431 1)
(s2432 1)
(s2433 1)
(s2434 1)
(s2435 1)
(s2436 1)
(s2437 1)
(s2438 1)
(s2439 1)
(s2440 1)
(s2441 1)
(s2442 1)
(s2443 1)
(s2444 1)
(s2445 1)
(s2446 1)
(s2447 1)
(s2448 1)
(s2449 1)
(s2450 1)
(s2451 1)
(s2452 1)
(s2453 1)
(s2454 1)
(s2455 1)
(s2456 1)
(s2457 1)
(s2458 1)
(s2459 1)
(s2460 1)
(s2461 1)
(s2462 1)
(s2463 1)
(s2464 1)
(s2465 1)
(s2466 1)
(s2467 1)
(s2468 1)
(s2469 1)
(s2470 1)
(s2471 1)
(s2472 1)
(s2473 1)
(s2474 1)
(s2475 1)
(s2476 1)
(s2477 1)
(s2478 1)
(s2479 1)
(s2480 1)
(s2481 1)
(s2482 1)
(s2483 1)
(s2484 1)
(s2485 1)
(s2486 1)
(s2487 1)
(s2488 1)
(s2489 1)
(s2490 1)
(s2491 1)
(s2492 1)
(s2493 1)
(s2494 1)
(s2495 1)
(s2496 1)
(s2497 1)
(s2498 1)
(s2499 1)
(s2500 1)
(s2501 1)
(s2502 1)
(s2503 1)
(s2504 1)
(s2505 1)
(s2506 1)
(s2507 1)
(s2508 1)
(s2509 1)
(s2510 1)
(s2511 1)
(s2512 1)
(s2513 1)
(s2514 1)
(s2515 1)
(s2516 1)
(s2517 1)
(s2518 1)
(s2519 1)
(s2520 1)
(s2521 1)
(s2522 1)
(s2523 1)
(s2524 1)
(s2525 1)
(s2526 1)
(s2527 1)
(s2528 1)
(s2529 1)
(s2530 1)
(s2531 1)
(s2532 1)
(s2533 1)
(s2534 1)
(s2535 1)
(s2536 1)
(s2537 1)
(s2538 1)
(s2539 1)
(s2540 1)
(s2541 1)
(s2542 1)
(s2543 1)
(s2544 1)
(s2545 1)
(s2546 1)
(s2547 1)
(s2548 1)
(s2549 1)
(s2550 1)
(s2551 1)
(s2552 1)
(s2553 1)
(s2554 1)
(s2555 1)
(s2556 1)
(s2557 1)
(s2558 1)
(s2559 1)
(s2560 1)
(s2561 1)
(s2562 1)
(s2563 1)
(s2564 1)
(s2565 1)
(s2566 1)
(s2567 1)
(s2568 1)
(s2569 1)
(s2570 1)
(s2571 1)
(s2572 1)
(s2573 1)
(s2574 1)
(s2575 1)
(s2576 1)
(s2577 1)
(s2578 1)
(s2579 1)
(s2580 1)
(s2581 1)
(s2582 1)
(s2583 1)
(s2584 1)
(s2585 1)
(s2586 1)
(s2587 1)
(s2588 1)
(s2589 1)
(s2590 1)
(s2591 1)
(s2592 1)
(s2593 1)
(s2594 1)
(s2595 1)
(s2596 1)
(s2597 1)
(s2598 1)
(s2599 1)
(s2600 1)
(s2601 1)
(s2602 1)
(s2603 1)
(s2604 1)
(s2605 1)
(s2606 1)
(s2607 1)
(s2608 1)
(s2609 1)
(s2610 1)
(s2611 1)
(s2612 1)
(s2613 1)
(s2614 1)
(s2615 1)
(s2616 1)
(s2617 1)
(s2618 1)
(s2619 1)
(s2620 1)
(s2621 1)
(s2622 1)
(s2623 1)
(s2624 1)
(s2625 1)
(s2626 1)
(s2627 1)
(s2628 1)
(s2629 1)
(s2630 1)
(s2631 1)
(s2632 1)
(s2633 1)
(s2634 1)
(s2635 1)
(s2636 1)
(s2637 1)
(s2638 1)
(s2639 1)
(s2640 1)
(s2641 1)
(s2642 1)
(s2643 1)
(s2644 1)
(s2645 1)
(s2646 1)
(s2647 1)
(s2648 1)
(s2649 1)
(s2650 1)
(s2651 1)
(s2652 1)
(s2653 1)
(s2654 1)
(s2655 1)
(s2656 1)
(s2657 1)
(s2658 1)
(s2659 1)
(s2660 1)
(s2661 1)
(s2662 1)
(s2663 1)
(s2664 1)
(s2665 1)
(s2666 1)
(s2667 1)
(s2668 1)
(s2669 1)
(s2670 1)
(s2671 1)
(s2672 1)
(s2673 1)
(s2674 1)
(s2675 1)
(s2676 1)
(s2677 1)
(s2678 1)
(s2679 1)
(s2680 1)
(s2681 1)
(s2682 1)
(s2683 1)
(s2684 1)
(s2685 1)
(s2686 1)
(s2687 1)
(s2688 1)
(s2689 1)
(s2690 1)
(s2691 1)
(s2692 1)
(s2693 1)
(s2694 1)
(s2695 1)
(s2696 1)
(s2697 1)
(s2698 1)
(s2699 1)
(s2700 1)
(s2701 1)
(s2702 1)
(s2703 1)
(s2704 1)
(s2705 1)
(s2706 1)
(s2707 1)
(s2708 1)
(s2709 1)
(s2710 1)
(s2711 1)
(s2712 1)
(s2713 1)
(s2714 1)
(s2715 1)
(s2716 1)
(s2717 1)
(s2718 1)
(s2719 1)
(s2720 1)
(s2721 1)
(s2722 1)
(s2723 1)
(s2724 1)
(s2725 1)
(s2726 1)
(s2727 1)
(s2728 1)
(s2729 1)
(s2730 1)
(s2731 1)
(s2732 1)
(s2733 1)
(s2734 1)
(s2735 1)
(s2736 1)
(s2737 1)
(s2738 1)
(s2739 1)
(s2740 1)
(s2741 1)
(s2742 1)
(s2743 1)
(s2744 1)
(s2745 1)
(s2746 1)
(s2747 1)
(s2748 1)
(s2749 1)
(s2750 1)
(s2751 1)
(s2752 1)
(s2753 1)
(s2754 1)
(s2755 1)
(s2756 1)
(s2757 1)
(s2758 1)
(s2759 1)
(s2760 1)
(s2761 1)
(s2762 1)
(s2763 1)
(s2764 1)
(s2765 1)
(s2766 1)
(s2767 1)
(s2768 1)
(s2769 1)
(s2770 1)
(s2771 1)
(s2772 timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 3865/7387 variables, and 3865 constraints, problems are : Problem set: 0 solved, 3517 unsolved in 30085 ms.
Refiners :[Domain max(s): 3865/3869 constraints, State Equation: 0/3869 constraints, PredecessorRefiner: 0/3517 constraints, Known Traps: 0/0 constraints]
After SMT, in 72919ms problems are : Problem set: 0 solved, 3517 unsolved
Search for dead transitions found 0 dead transitions in 73015ms
Starting structural reductions in LTL mode, iteration 1 : 3869/4209 places, 3518/3518 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 259502 ms. Remains : 3869/4209 places, 3518/3518 transitions.
Support contains 43 out of 3869 places after structural reductions.
[2024-05-23 10:28:47] [INFO ] Flatten gal took : 563 ms
[2024-05-23 10:28:47] [INFO ] Flatten gal took : 325 ms
[2024-05-23 10:28:48] [INFO ] Input system was already deterministic with 3518 transitions.
Reduction of identical properties reduced properties to check from 26 to 25
RANDOM walk for 18453 steps (26 resets) in 3170 ms. (5 steps per ms) remains 0/25 properties
Computed a total of 3869 stabilizing places and 3518 stable transitions
Complete graph has no SCC; deadlocks are unavoidable. place count 3869 transition count 3518
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge (and all enablings converge to false).
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202405141337/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!((F((p0&&(F(p1)||X(p2))))&&X(G(p0))))'
Support contains 6 out of 3869 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 3869/3869 places, 3518/3518 transitions.
Reduce places removed 3 places and 0 transitions.
Iterating post reduction 0 with 3 rules applied. Total rules applied 3 place count 3866 transition count 3518
Applied a total of 3 rules in 283 ms. Remains 3866 /3869 variables (removed 3) and now considering 3518/3518 (removed 0) transitions.
// Phase 1: matrix 3518 rows 3866 cols
[2024-05-23 10:28:59] [INFO ] Invariants computation overflowed in 9239 ms
[2024-05-23 10:29:05] [INFO ] Implicit Places using invariants in 15046 ms returned []
// Phase 1: matrix 3518 rows 3866 cols
[2024-05-23 10:29:14] [INFO ] Invariants computation overflowed in 8707 ms
[2024-05-23 10:30:35] [INFO ] Performed 1/3866 implicitness test of which 0 returned IMPLICIT in 32 seconds.
[2024-05-23 10:31:07] [INFO ] Performed 3/3866 implicitness test of which 0 returned IMPLICIT in 64 seconds.
[2024-05-23 10:31:39] [INFO ] Performed 5/3866 implicitness test of which 0 returned IMPLICIT in 96 seconds.
[2024-05-23 10:31:54] [INFO ] Implicit Places using invariants and state equation in 168757 ms returned []
Implicit Place search using SMT with State Equation took 183810 ms to find 0 implicit places.
Running 3517 sub problems to find dead transitions.
// Phase 1: matrix 3518 rows 3866 cols
[2024-05-23 10:32:03] [INFO ] Invariants computation overflowed in 8648 ms
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
At refinement iteration 0 (INCLUDED_ONLY) 0/3865 variables, 3865/3865 constraints. Problems are: Problem set: 0 solved, 3517 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 3865/7384 variables, and 3865 constraints, problems are : Problem set: 0 solved, 3517 unsolved in 30075 ms.
Refiners :[Domain max(s): 3865/3866 constraints, State Equation: 0/3866 constraints, PredecessorRefiner: 3517/3517 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 3517 unsolved
At refinement iteration 0 (INCLUDED_ONLY) 0/3865 variables, 3865/3865 constraints. Problems are: Problem set: 0 solved, 3517 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 3865/7384 variables, and 3865 constraints, problems are : Problem set: 0 solved, 3517 unsolved in 30071 ms.
Refiners :[Domain max(s): 3865/3866 constraints, State Equation: 0/3866 constraints, PredecessorRefiner: 0/3517 constraints, Known Traps: 0/0 constraints]
After SMT, in 72288ms problems are : Problem set: 0 solved, 3517 unsolved
Search for dead transitions found 0 dead transitions in 72354ms
Starting structural reductions in LTL mode, iteration 1 : 3866/3869 places, 3518/3518 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 256468 ms. Remains : 3866/3869 places, 3518/3518 transitions.
Stuttering acceptance computed with spot in 383 ms :[(NOT p0), true, (OR (NOT p0) (AND (NOT p1) (NOT p2))), (OR (NOT p0) (AND (NOT p1) (NOT p2))), (OR (NOT p0) (AND (NOT p1) (NOT p2)))]
Running random walk in product with property : Echo-PT-d03r07-LTLCardinality-00
Entered a terminal (fully accepting) state of product in 40 steps with 0 reset in 4 ms.
FORMULA Echo-PT-d03r07-LTLCardinality-00 FALSE TECHNIQUES STUTTER_TEST
Treatment of property Echo-PT-d03r07-LTLCardinality-00 finished in 256974 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202405141337/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(G((F(p0)&&F((p1 U (p2||G(p1)))))))'
Support contains 3 out of 3869 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 3869/3869 places, 3518/3518 transitions.
Graph (complete) has 14563 edges and 3869 vertex of which 3860 are kept as prefixes of interest. Removing 9 places using SCC suffix rule.47 ms
Discarding 9 places :
Also discarding 1 output transitions
Drop transitions (Output transitions of discarded places.) removed 1 transitions
Reduce places removed 1 places and 1 transitions.
Applied a total of 1 rules in 616 ms. Remains 3859 /3869 variables (removed 10) and now considering 3516/3518 (removed 2) transitions.
// Phase 1: matrix 3516 rows 3859 cols
[2024-05-23 10:33:18] [INFO ] Invariants computation overflowed in 10343 ms
[2024-05-23 10:33:23] [INFO ] Implicit Places using invariants in 15986 ms returned []
// Phase 1: matrix 3516 rows 3859 cols
[2024-05-23 10:33:34] [INFO ] Invariants computation overflowed in 10342 ms
[2024-05-23 10:34:48] [INFO ] Performed 1/3859 implicitness test of which 0 returned IMPLICIT in 32 seconds.
[2024-05-23 10:35:20] [INFO ] Performed 3/3859 implicitness test of which 0 returned IMPLICIT in 64 seconds.
[2024-05-23 10:35:52] [INFO ] Performed 5/3859 implicitness test of which 0 returned IMPLICIT in 96 seconds.
[2024-05-23 10:36:14] [INFO ] Implicit Places with SMT raised an exceptionSMT solver raised an error when submitting script. Raised (error "Failed to assert expression: java.io.IOException: Broken pipe ... after 170410 ms
Implicit Place search using SMT with State Equation took 186398 ms to find 0 implicit places.
[2024-05-23 10:36:14] [INFO ] Redundant transitions in 290 ms returned []
Running 3510 sub problems to find dead transitions.
// Phase 1: matrix 3516 rows 3859 cols
[2024-05-23 10:36:24] [INFO ] Invariants computation overflowed in 9885 ms
Error getting values : (error "ParserException while parsing response: ((s0 1.0)
(s1 1.0)
(s2 1.0)
(s3 1.0)
(s4 1.0)
(s5 1.0)
(s6 1.0)
(s7 1.0)
(s8 1.0)
(s9 1.0)
(s10 1.0)
(s11 1.0)
(s12 1.0)
(s13 1.0)
(s14 1.0)
(s15 1.0)
(s16 1.0)
(s17 1.0)
(s18 1.0)
(s19 1.0)
(s20 1.0)
(s21 1.0)
(s22 1.0)
(s23 1.0)
(s24 1.0)
(s25 1.0)
(s26 1.0)
(s27 1.0)
(s28 1.0)
(s29 1.0)
(s30 1.0)
(s31 1.0)
(s32 1.0)
(s33 1.0)
(s34 1.0)
(s35 1.0)
(s36 1.0)
(s37 1.0)
(s38 1.0)
(s39 1.0)
(s40 1.0)
(s41 1.0)
(s42 1.0)
(s43 1.0)
(s44 1.0)
(s45 1.0)
(s46 1.0)
(s47 1.0)
(s48 1.0)
(s49 1.0)
(s50 1.0)
(s51 1.0)
(s52 1.0)
(s53 1.0)
(s54 1.0)
(s55 1.0)
(s56 1.0)
(s57 1.0)
(s58 1.0)
(s59 1.0)
(s60 1.0)
(s61 1.0)
(s62 1.0)
(s63 1.0)
(s64 1.0)
(s65 1.0)
(s66 1.0)
(s67 1.0)
(s68 1.0)
(s69 1.0)
(s70 1.0)
(s71 1.0)
(s72 1.0)
(s73 1.0)
(s74 1.0)
(s75 1.0)
(s76 1.0)
(s77 1.0)
(s78 1.0)
(s79 1.0)
(s80 1.0)
(s81 1.0)
(s82 1.0)
(s83 1.0)
(s84 1.0)
(s85 1.0)
(s86 1.0)
(s87 1.0)
(s88 1.0)
(s89 1.0)
(s90 1.0)
(s91 1.0)
(s92 1.0)
(s93 1.0)
(s94 1.0)
(s95 1.0)
(s96 1.0)
(s97 1.0)
(s98 1.0)
(s99 1.0)
(s100 1.0)
(s101 1.0)
(s102 1.0)
(s103 1.0)
(s104 1.0)
(s105 1.0)
(s106 1.0)
(s107 1.0)
(s108 1.0)
(s109 1.0)
(s110 1.0)
(s111 1.0)
(s112 1.0)
(s113 1.0)
(s114 1.0)
(s115 1.0)
(s116 1.0)
(s117 1.0)
(s118 1.0)
(s119 1.0)
(s120 1.0)
(s121 1.0)
(s122 1.0)
(s123 1.0)
(s124 1.0)
(s125 1.0)
(s126 1.0)
(s127 1.0)
(s128 1.0)
(s129 1.0)
(s130 1.0)
(s131 1.0)
(s132 1.0)
(s133 1.0)
(s134 1.0)
(s135 1.0)
(s136 1.0)
(s137 1.0)
(s138 1.0)
(s139 1.0)
(s140 1.0)
(s141 1.0)
(s142 1.0)
(s143 1.0)
(s144 1.0)
(s145 1.0)
(s146 1.0)
(s147 1.0)
(s148 1.0)
(s149 1.0)
(s150 1.0)
(s151 1.0)
(s152 1.0)
(s153 1.0)
(s154 1.0)
(s155 1.0)
(s156 1.0)
(s157 1.0)
(s158 1.0)
(s159 1.0)
(s160 1.0)
(s161 1.0)
(s162 1.0)
(s163 1.0)
(s164 1.0)
(s165 1.0)
(s166 1.0)
(s167 1.0)
(s168 1.0)
(s169 1.0)
(s170 1.0)
(s171 1.0)
(s172 1.0)
(s173 1.0)
(s174 1.0)
(s175 1.0)
(s176 1.0)
(s177 1.0)
(s178 1.0)
(s179 1.0)
(s180 1.0)
(s181 1.0)
(s182 1.0)
(s183 1.0)
(s184 1.0)
(s185 1.0)
(s186 1.0)
(s187 1.0)
(s188 1.0)
(s189 1.0)
(s190 1.0)
(s191 1.0)
(s192 1.0)
(s193 1.0)
(s194 1.0)
(s195 1.0)
(s196 1.0)
(s197 1.0)
(s198 1.0)
(s199 1.0)
(s200 1.0)
(s201 1.0)
(s202 1.0)
(s203 1.0)
(s204 1.0)
(s205 1.0)
(s206 1.0)
(s207 1.0)
(s208 1.0)
(s209 1.0)
(s210 1.0)
(s211 1.0)
(s212 1.0)
(s213 1.0)
(s214 1.0)
(s215 1.0)
(s216 1.0)
(s217 1.0)
(s218 1.0)
(s219 1.0)
(s220 1.0)
(s221 1.0)
(s222 1.0)
(s223 1.0)
(s224 1.0)
(s225 1.0)
(s226 1.0)
(s227 1.0)
(s228 1.0)
(s229 1.0)
(s230 1.0)
(s231 1.0)
(s232 1.0)
(s233 1.0)
(s234 1.0)
(s235 1.0)
(s236 1.0)
(s237 1.0)
(s238 1.0)
(s239 1.0)
(s240 1.0)
(s241 1.0)
(s242 1.0)
(s243 1.0)
(s244 1.0)
(s245 1.0)
(s246 1.0)
(s247 1.0)
(s248 1.0)
(s249 1.0)
(s250 1.0)
(s251 1.0)
(s252 1.0)
(s253 1.0)
(s254 1.0)
(s255 1.0)
(s256 1.0)
(s257 1.0)
(s258 1.0)
(s259 1.0)
(s260 1.0)
(s261 1.0)
(s262 1.0)
(s263 1.0)
(s264 1.0)
(s265 1.0)
(s266 1.0)
(s267 1.0)
(s268 1.0)
(s269 1.0)
(s270 1.0)
(s271 1.0)
(s272 1.0)
(s273 1.0)
(s274 1.0)
(s275 1.0)
(s276 1.0)
(s277 1.0)
(s278 1.0)
(s279 1.0)
(s280 1.0)
(s281 1.0)
(s282 1.0)
(s283 1.0)
(s284 1.0)
(s285 1.0)
(s286 1.0)
(s287 1.0)
(s288 1.0)
(s289 1.0)
(s290 1.0)
(s291 1.0)
(s292 1.0)
(s293 1.0)
(s294 1.0)
(s295 1.0)
(s296 1.0)
(s297 1.0)
(s298 1.0)
(s299 1.0)
(s300 1.0)
(s301 1.0)
(s302 1.0)
(s303 1.0)
(s304 1.0)
(s305 1.0)
(s306 1.0)
(s307 1.0)
(s308 1.0)
(s309 1.0)
(s310 1.0)
(s311 1.0)
(s312 1.0)
(s313 1.0)
(s314 1.0)
(s315 1.0)
(s316 1.0)
(s317 1.0)
(s318 1.0)
(s319 1.0)
(s320 1.0)
(s321 1.0)
(s322 1.0)
(s323 1.0)
(s324 1.0)
(s325 1.0)
(s326 1.0)
(s327 1.0)
(s328 1.0)
(s329 1.0)
(s330 1.0)
(s331 1.0)
(s332 1.0)
(s333 1.0)
(s334 1.0)
(s335 1.0)
(s336 1.0)
(s337 1.0)
(s338 1.0)
(s339 1.0)
(s340 1.0)
(s341 1.0)
(s342 1.0)
(s343 1.0)
(s344 1.0)
(s345 1.0)
(s346 1.0)
(s347 1.0)
(s348 1.0)
(s349 1.0)
(s350 1.0)
(s351 1.0)
(s352 1.0)
(s353 1.0)
(s354 1.0)
(s355 1.0)
(s356 1.0)
(s357 1.0)
(s358 1.0)
(s359 1.0)
(s360 1.0)
(s361 1.0)
(s362 1.0)
(s363 1.0)
(s364 1.0)
(s365 1.0)
(s366 1.0)
(s367 1.0)
(s368 1.0)
(s369 1.0)
(s370 1.0)
(s371 1.0)
(s372 1.0)
(s373 1.0)
(s374 1.0)
(s375 1.0)
(s376 1.0)
(s377 1.0)
(s378 1.0)
(s379 1.0)
(s380 1.0)
(s381 1.0)
(s382 1.0)
(s383 1.0)
(s384 1.0)
(s385 1.0)
(s386 1.0)
(s387 1.0)
(s388 1.0)
(s389 1.0)
(s390 1.0)
(s391 1.0)
(s392 1.0)
(s393 1.0)
(s394 1.0)
(s395 1.0)
(s396 1.0)
(s397 1.0)
(s398 1.0)
(s399 1.0)
(s400 1.0)
(s401 1.0)
(s402 1.0)
(s403 1.0)
(s404 1.0)
(s405 1.0)
(s406 1.0)
(s407 1.0)
(s408 1.0)
(s409 1.0)
(s410 1.0)
(s411 1.0)
(s412 1.0)
(s413 1.0)
(s414 1.0)
(s415 1.0)
(s416 1.0)
(s417 1.0)
(s418 1.0)
(s419 1.0)
(s420 1.0)
(s421 1.0)
(s422 1.0)
(s423 1.0)
(s424 1.0)
(s425 1.0)
(s426 1.0)
(s427 1.0)
(s428 1.0)
(s429 1.0)
(s430 1.0)
(s431 1.0)
(s432 1.0)
(s433 1.0)
(s434 1.0)
(s435 1.0)
(s436 1.0)
(s437 1.0)
(s438 1.0)
(s439 1.0)
(s440 1.0)
(s441 1.0)
(s442 1.0)
(s443 1.0)
(s444 1.0)
(s445 1.0)
(s446 1.0)
(s447 1.0)
(s448 1.0)
(s449 1.0)
(s450 1.0)
(s451 1.0)
(s452 1.0)
(s453 1.0)
(s454 1.0)
(s455 1.0)
(s456 1.0)
(s457 1.0)
(s458 1.0)
(s459 1.0)
(s460 1.0)
(s461 1.0)
(s462 1.0)
(s463 1.0)
(s464 1.0)
(s465 1.0)
(s466 1.0)
(s467 1.0)
(s468 1.0)
(s469 1.0)
(s470 1.0)
(s471 1.0)
(s472 1.0)
(s473 1.0)
(s474 1.0)
(s475 1.0)
(s476 1.0)
(s477 1.0)
(s478 1.0)
(s479 1.0)
(s480 1.0)
(s481 1.0)
(s482 1.0)
(s483 1.0)
(s484 1.0)
(s485 1.0)
(s486 1.0)
(s487 1.0)
(s488 1.0)
(s489 1.0)
(s490 1.0)
(s491 1.0)
(s492 1.0)
(s493 1.0)
(s494 1.0)
(s495 1.0)
(s496 1.0)
(s497 1.0)
(s498 1.0)
(s499 1.0)
(s500 1.0)
(s501 1.0)
(s502 1.0)
(s503 1.0)
(s504 1.0)
(s505 1.0)
(s506 1.0)
(s507 1.0)
(s508 1.0)
(s509 1.0)
(s510 1.0)
(s511 1.0)
(s512 1.0)
(s513 1.0)
(s514 1.0)
(s515 1.0)
(s516 1.0)
(s517 1.0)
(s518 1.0)
(s519 1.0)
(s520 1.0)
(s521 1.0)
(s522 1.0)
(s523 1.0)
(s524 1.0)
(s525 1.0)
(s526 1.0)
(s527 1.0)
(s528 1.0)
(s529 1.0)
(s530 1.0)
(s531 1.0)
(s532 1.0)
(s533 1.0)
(s534 1.0)
(s535 1.0)
(s536 1.0)
(s537 1.0)
(s538 1.0)
(s539 1.0)
(s540 1.0)
(s541 1.0)
(s542 1.0)
(s543 1.0)
(s544 1.0)
(s545 1.0)
(s546 1.0)
(s547 1.0)
(s548 1.0)
(s549 1.0)
(s550 1.0)
(s551 1.0)
(s552 1.0)
(s553 1.0)
(s554 1.0)
(s555 timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
At refinement iteration 0 (INCLUDED_ONLY) 0/3858 variables, 3858/3858 constraints. Problems are: Problem set: 0 solved, 3510 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 3858/7375 variables, and 3858 constraints, problems are : Problem set: 0 solved, 3510 unsolved in 30072 ms.
Refiners :[Domain max(s): 3858/3859 constraints, State Equation: 0/3859 constraints, PredecessorRefiner: 3510/3510 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 3510 unsolved
At refinement iteration 0 (INCLUDED_ONLY) 0/3858 variables, 3858/3858 constraints. Problems are: Problem set: 0 solved, 3510 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 3858/7375 variables, and 3858 constraints, problems are : Problem set: 0 solved, 3510 unsolved in 30082 ms.
Refiners :[Domain max(s): 3858/3859 constraints, State Equation: 0/3859 constraints, PredecessorRefiner: 0/3510 constraints, Known Traps: 0/0 constraints]
After SMT, in 73133ms problems are : Problem set: 0 solved, 3510 unsolved
Search for dead transitions found 0 dead transitions in 73182ms
Starting structural reductions in SI_LTL mode, iteration 1 : 3859/3869 places, 3516/3518 transitions.
Finished structural reductions in SI_LTL mode , in 1 iterations and 260513 ms. Remains : 3859/3869 places, 3516/3518 transitions.
Stuttering acceptance computed with spot in 139 ms :[(OR (NOT p0) (AND (NOT p1) (NOT p2))), (NOT p0), (AND (NOT p2) (NOT p1))]
Running random walk in product with property : Echo-PT-d03r07-LTLCardinality-01
Stuttering criterion allowed to conclude after 684 steps with 0 reset in 54 ms.
FORMULA Echo-PT-d03r07-LTLCardinality-01 FALSE TECHNIQUES STUTTER_TEST
Treatment of property Echo-PT-d03r07-LTLCardinality-01 finished in 260741 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202405141337/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(X((G(p0)||X(F(p1)))))'
Support contains 3 out of 3869 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 3869/3869 places, 3518/3518 transitions.
Reduce places removed 3 places and 0 transitions.
Iterating post reduction 0 with 3 rules applied. Total rules applied 3 place count 3866 transition count 3518
Applied a total of 3 rules in 298 ms. Remains 3866 /3869 variables (removed 3) and now considering 3518/3518 (removed 0) transitions.
// Phase 1: matrix 3518 rows 3866 cols
[2024-05-23 10:37:37] [INFO ] Invariants computation overflowed in 8681 ms
[2024-05-23 10:37:41] [INFO ] Implicit Places using invariants in 13521 ms returned []
// Phase 1: matrix 3518 rows 3866 cols
[2024-05-23 10:37:50] [INFO ] Invariants computation overflowed in 8373 ms
[2024-05-23 10:39:08] [INFO ] Performed 1/3866 implicitness test of which 0 returned IMPLICIT in 32 seconds.
[2024-05-23 10:39:40] [INFO ] Performed 3/3866 implicitness test of which 0 returned IMPLICIT in 64 seconds.
[2024-05-23 10:40:13] [INFO ] Performed 5/3866 implicitness test of which 0 returned IMPLICIT in 96 seconds.
[2024-05-23 10:40:30] [INFO ] Implicit Places using invariants and state equation in 168421 ms returned []
Implicit Place search using SMT with State Equation took 181951 ms to find 0 implicit places.
Running 3517 sub problems to find dead transitions.
// Phase 1: matrix 3518 rows 3866 cols
[2024-05-23 10:40:38] [INFO ] Invariants computation overflowed in 8409 ms
Error getting values : (error "Error writing to Z3 solver: java.io.IOException: Broken pipe")
At refinement iteration 0 (INCLUDED_ONLY) 0/3865 variables, 3865/3865 constraints. Problems are: Problem set: 0 solved, 3517 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 3865/7384 variables, and 3865 constraints, problems are : Problem set: 0 solved, 3517 unsolved in 30066 ms.
Refiners :[Domain max(s): 3865/3866 constraints, State Equation: 0/3866 constraints, PredecessorRefiner: 3517/3517 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 3517 unsolved
At refinement iteration 0 (INCLUDED_ONLY) 0/3865 variables, 3865/3865 constraints. Problems are: Problem set: 0 solved, 3517 unsolved
Error getting values : (error "ParserException while parsing response: ((s0 1)
(s1 1)
(s2 1)
(s3 1)
(s4 1)
(s5 1)
(s6 1)
(s7 1)
(s8 1)
(s9 1)
(s10 1)
(s11 1)
(s12 1)
(s13 1)
(s14 1)
(s15 1)
(s16 1)
(s17 1)
(s18 1)
(s19 1)
(s20 1)
(s21 1)
(s22 1)
(s23 1)
(s24 1)
(s25 1)
(s26 1)
(s27 1)
(s28 1)
(s29 1)
(s30 1)
(s31 1)
(s32 1)
(s33 1)
(s34 1)
(s35 1)
(s36 1)
(s37 1)
(s38 1)
(s39 1)
(s40 1)
(s41 1)
(s42 1)
(s43 1)
(s44 1)
(s45 1)
(s46 1)
(s47 1)
(s48 1)
(s49 1)
(s50 1)
(s51 1)
(s52 1)
(s53 1)
(s54 1)
(s55 1)
(s56 1)
(s57 1)
(s58 1)
(s59 1)
(s60 1)
(s61 1)
(s62 1)
(s63 1)
(s64 1)
(s65 1)
(s66 1)
(s67 1)
(s68 1)
(s69 1)
(s70 1)
(s71 1)
(s72 1)
(s73 1)
(s74 1)
(s75 1)
(s76 1)
(s77 1)
(s78 1)
(s79 1)
(s80 1)
(s81 1)
(s82 1)
(s83 1)
(s84 1)
(s85 1)
(s86 1)
(s87 1)
(s88 1)
(s89 1)
(s90 1)
(s91 1)
(s92 1)
(s93 1)
(s94 1)
(s95 1)
(s96 1)
(s97 1)
(s98 1)
(s99 1)
(s100 1)
(s101 1)
(s102 1)
(s103 1)
(s104 1)
(s105 1)
(s106 1)
(s107 1)
(s108 1)
(s109 1)
(s110 1)
(s111 1)
(s112 1)
(s113 1)
(s114 1)
(s115 1)
(s116 1)
(s117 1)
(s118 1)
(s119 1)
(s120 1)
(s121 1)
(s122 1)
(s123 1)
(s124 1)
(s125 1)
(s126 1)
(s127 1)
(s128 1)
(s129 1)
(s130 1)
(s131 1)
(s132 1)
(s133 1)
(s134 1)
(s135 1)
(s136 1)
(s137 1)
(s138 1)
(s139 1)
(s140 1)
(s141 1)
(s142 1)
(s143 1)
(s144 1)
(s145 1)
(s146 1)
(s147 1)
(s148 1)
(s149 1)
(s150 1)
(s151 1)
(s152 1)
(s153 1)
(s154 1)
(s155 1)
(s156 1)
(s157 1)
(s158 1)
(s159 1)
(s160 1)
(s161 1)
(s162 1)
(s163 1)
(s164 1)
(s165 1)
(s166 1)
(s167 1)
(s168 1)
(s169 1)
(s170 1)
(s171 1)
(s172 1)
(s173 1)
(s174 1)
(s175 1)
(s176 1)
(s177 1)
(s178 1)
(s179 1)
(s180 1)
(s181 1)
(s182 1)
(s183 1)
(s184 1)
(s185 1)
(s186 1)
(s187 1)
(s188 1)
(s189 1)
(s190 1)
(s191 1)
(s192 1)
(s193 1)
(s194 1)
(s195 1)
(s196 1)
(s197 1)
(s198 1)
(s199 1)
(s200 1)
(s201 1)
(s202 1)
(s203 1)
(s204 1)
(s205 1)
(s206 1)
(s207 1)
(s208 1)
(s209 1)
(s210 1)
(s211 1)
(s212 1)
(s213 1)
(s214 1)
(s215 1)
(s216 1)
(s217 1)
(s218 1)
(s219 1)
(s220 1)
(s221 1)
(s222 1)
(s223 1)
(s224 1)
(s225 1)
(s226 1)
(s227 1)
(s228 1)
(s229 1)
(s230 1)
(s231 1)
(s232 1)
(s233 1)
(s234 1)
(s235 1)
(s236 1)
(s237 1)
(s238 1)
(s239 1)
(s240 1)
(s241 1)
(s242 1)
(s243 1)
(s244 1)
(s245 1)
(s246 1)
(s247 1)
(s248 1)
(s249 1)
(s250 1)
(s251 1)
(s252 1)
(s253 1)
(s254 1)
(s255 1)
(s256 1)
(s257 1)
(s258 1)
(s259 1)
(s260 1)
(s261 1)
(s262 1)
(s263 1)
(s264 1)
(s265 1)
(s266 1)
(s267 1)
(s268 1)
(s269 1)
(s270 1)
(s271 1)
(s272 1)
(s273 1)
(s274 1)
(s275 1)
(s276 1)
(s277 1)
(s278 1)
(s279 1)
(s280 1)
(s281 1)
(s282 1)
(s283 1)
(s284 1)
(s285 1)
(s286 1)
(s287 1)
(s288 1)
(s289 1)
(s290 1)
(s291 1)
(s292 1)
(s293 1)
(s294 1)
(s295 1)
(s296 1)
(s297 1)
(s298 1)
(s299 1)
(s300 1)
(s301 1)
(s302 1)
(s303 1)
(s304 1)
(s305 1)
(s306 1)
(s307 1)
(s308 1)
(s309 1)
(s310 1)
(s311 1)
(s312 1)
(s313 1)
(s314 1)
(s315 1)
(s316 1)
(s317 1)
(s318 1)
(s319 1)
(s320 1)
(s321 1)
(s322 1)
(s323 1)
(s324 1)
(s325 1)
(s326 1)
(s327 1)
(s328 1)
(s329 1)
(s330 1)
(s331 1)
(s332 1)
(s333 1)
(s334 1)
(s335 1)
(s336 1)
(s337 1)
(s338 1)
(s339 1)
(s340 1)
(s341 1)
(s342 1)
(s343 1)
(s344 1)
(s345 1)
(s346 1)
(s347 1)
(s348 1)
(s349 1)
(s350 1)
(s351 1)
(s352 1)
(s353 1)
(s354 1)
(s355 1)
(s356 1)
(s357 1)
(s358 1)
(s359 1)
(s360 1)
(s361 1)
(s362 1)
(s363 1)
(s364 1)
(s365 1)
(s366 1)
(s367 1)
(s368 1)
(s369 1)
(s370 1)
(s371 1)
(s372 1)
(s373 1)
(s374 1)
(s375 1)
(s376 1)
(s377 1)
(s378 1)
(s379 1)
(s380 1)
(s381 1)
(s382 1)
(s383 1)
(s384 1)
(s385 1)
(s386 1)
(s387 1)
(s388 1)
(s389 1)
(s390 1)
(s391 1)
(s392 1)
(s393 1)
(s394 1)
(s395 1)
(s396 1)
(s397 1)
(s398 1)
(s399 1)
(s400 1)
(s401 1)
(s402 1)
(s403 1)
(s404 1)
(s405 1)
(s406 1)
(s407 1)
(s408 1)
(s409 1)
(s410 1)
(s411 1)
(s412 1)
(s413 1)
(s414 1)
(s415 1)
(s416 1)
(s417 1)
(s418 1)
(s419 1)
(s420 1)
(s421 1)
(s422 1)
(s423 1)
(s424 1)
(s425 1)
(s426 1)
(s427 1)
(s428 1)
(s429 1)
(s430 1)
(s431 1)
(s432 1)
(s433 1)
(s434 1)
(s435 1)
(s436 1)
(s437 1)
(s438 1)
(s439 1)
(s440 1)
(s441 1)
(s442 1)
(s443 1)
(s444 1)
(s445 1)
(s446 1)
(s447 1)
(s448 1)
(s449 1)
(s450 1)
(s451 1)
(s452 1)
(s453 1)
(s454 1)
(s455 1)
(s456 1)
(s457 1)
(s458 1)
(s459 1)
(s460 1)
(s461 1)
(s462 1)
(s463 1)
(s464 1)
(s465 1)
(s466 1)
(s467 1)
(s468 1)
(s469 1)
(s470 1)
(s471 1)
(s472 1)
(s473 1)
(s474 1)
(s475 1)
(s476 1)
(s477 1)
(s478 1)
(s479 1)
(s480 1)
(s481 1)
(s482 1)
(s483 1)
(s484 1)
(s485 1)
(s486 1)
(s487 1)
(s488 1)
(s489 1)
(s490 1)
(s491 1)
(s492 1)
(s493 1)
(s494 1)
(s495 1)
(s496 1)
(s497 1)
(s498 1)
(s499 1)
(s500 1)
(s501 1)
(s502 1)
(s503 1)
(s504 1)
(s505 1)
(s506 1)
(s507 1)
(s508 1)
(s509 1)
(s510 1)
(s511 1)
(s512 1)
(s513 1)
(s514 1)
(s515 1)
(s516 1)
(s517 1)
(s518 1)
(s519 1)
(s520 1)
(s521 1)
(s522 1)
(s523 1)
(s524 1)
(s525 1)
(s526 1)
(s527 1)
(s528 1)
(s529 1)
(s530 1)
(s531 1)
(s532 1)
(s533 1)
(s534 1)
(s535 1)
(s536 1)
(s537 1)
(s538 1)
(s539 1)
(s540 1)
(s541 1)
(s542 1)
(s543 1)
(s544 1)
(s545 1)
(s546 1)
(s547 1)
(s548 1)
(s549 1)
(s550 1)
(s551 1)
(s552 1)
(s553 1)
(s554 1)
(s555 1)
(s556 1)
(s557 1)
(s558 1)
(s559 1)
(s560 1)
(s561 1)
(s562 1)
(s563 1)
(s564 1)
(s565 1)
(s566 1)
(s567 1)
(s568 1)
(s569 1)
(s570 1)
(s571 1)
(s572 1)
(s573 1)
(s574 1)
(s575 1)
(s576 1)
(s577 1)
(s578 1)
(s579 1)
(s580 1)
(s581 1)
(s582 1)
(s583 1)
(s584 1)
(s585 1)
(s586 1)
(s587 1)
(s588 1)
(s589 1)
(s590 1)
(s591 1)
(s592 1)
(s593 1)
(s594 1)
(s595 1)
(s596 1)
(s597 1)
(s598 1)
(s599 1)
(s600 1)
(s601 1)
(s602 1)
(s603 1)
(s604 1)
(s605 1)
(s606 1)
(s607 1)
(s608 1)
(s609 1)
(s610 1)
(s611 1)
(s612 1)
(s613 1)
(s614 1)
(s615 1)
(s616 1)
(s617 1)
(s618 1)
(s619 1)
(s620 1)
(s621 1)
(s622 1)
(s623 1)
(s624 1)
(s625 1)
(s626 1)
(s627 1)
(s628 1)
(s629 1)
(s630 1)
(s631 1)
(s632 1)
(s633 1)
(s634 1)
(s635 1)
(s636 1)
(s637 1)
(s638 1)
(s639 1)
(s640 1)
(s641 1)
(s642 1)
(s643 1)
(s644 1)
(s645 1)
(s646 1)
(s647 1)
(s648 1)
(s649 1)
(s650 1)
(s651 1)
(s652 1)
(s653 1)
(s654 1)
(s655 1)
(s656 1)
(s657 1)
(s658 1)
(s659 1)
(s660 1)
(s661 1)
(s662 1)
(s663 1)
(s664 1)
(s665 1)
(s666 1)
(s667 1)
(s668 1)
(s669 1)
(s670 1)
(s671 1)
(s672 1)
(s673 1)
(s674 1)
(s675 1)
(s676 1)
(s677 1)
(s678 1)
(s679 1)
(s680 1)
(s681 1)
(s682 1)
(s683 1)
(s684 1)
(s685 1)
(s686 1)
(s687 1)
(s688 1)
(s689 1)
(s690 1)
(s691 1)
(s692 1)
(s693 1)
(s694 1)
(s695 1)
(s696 1)
(s697 1)
(s698 1)
(s699 1)
(s700 1)
(s701 1)
(s702 1)
(s703 1)
(s704 1)
(s705 1)
(s706 1)
(s707 1)
(s708 1)
(s709 1)
(s710 1)
(s711 1)
(s712 1)
(s713 1)
(s714 1)
(s715 1)
(s716 1)
(s717 1)
(s718 1)
(s719 1)
(s720 1)
(s721 1)
(s722 1)
(s723 1)
(s724 1)
(s725 1)
(s726 1)
(s727 1)
(s728 1)
(s729 1)
(s730 1)
(s731 1)
(s732 1)
(s733 1)
(s734 1)
(s735 1)
(s736 1)
(s737 1)
(s738 1)
(s739 1)
(s740 1)
(s741 1)
(s742 1)
(s743 1)
(s744 1)
(s745 1)
(s746 1)
(s747 1)
(s748 1)
(s749 1)
(s750 1)
(s751 1)
(s752 1)
(s753 1)
(s754 1)
(s755 1)
(s756 1)
(s757 1)
(s758 1)
(s759 1)
(s760 1)
(s761 1)
(s762 1)
(s763 1)
(s764 1)
(s765 1)
(s766 1)
(s767 1)
(s768 1)
(s769 1)
(s770 1)
(s771 1)
(s772 1)
(s773 1)
(s774 1)
(s775 1)
(s776 1)
(s777 1)
(s778 1)
(s779 1)
(s780 1)
(s781 1)
(s782 1)
(s783 1)
(s784 1)
(s785 1)
(s786 1)
(s787 1)
(s788 1)
(s789 1)
(s790 1)
(s791 1)
(s792 1)
(s793 1)
(s794 1)
(s795 1)
(s796 1)
(s797 1)
(s798 1)
(s799 1)
(s800 1)
(s801 1)
(s802 1)
(s803 1)
(s804 1)
(s805 1)
(s806 1)
(s807 1)
(s808 1)
(s809 1)
(s810 1)
(s811 1)
(s812 1)
(s813 1)
(s814 1)
(s815 1)
(s816 1)
(s817 1)
(s818 1)
(s819 1)
(s820 1)
(s821 1)
(s822 1)
(s823 1)
(s824 1)
(s825 1)
(s826 1)
(s827 1)
(s828 1)
(s829 1)
(s830 1)
(s831 1)
(s832 1)
(s833 1)
(s834 1)
(s835 1)
(s836 1)
(s837 1)
(s838 1)
(s839 1)
(s840 1)
(s841 1)
(s842 1)
(s843 1)
(s844 1)
(s845 1)
(s846 1)
(s847 1)
(s848 1)
(s849 1)
(s850 1)
(s851 1)
(s852 1)
(s853 1)
(s854 1)
(s855 1)
(s856 1)
(s857 1)
(s858 1)
(s859 1)
(s860 1)
(s861 1)
(s862 1)
(s863 1)
(s864 1)
(s865 1)
(s866 1)
(s867 1)
(s868 1)
(s869 1)
(s870 1)
(s871 1)
(s872 1)
(s873 1)
(s874 1)
(s875 1)
(s876 1)
(s877 1)
(s878 1)
(s879 1)
(s880 1)
(s881 1)
(s882 1)
(s883 1)
(s884 1)
(s885 1)
(s886 1)
(s887 1)
(s888 1)
(s889 1)
(s890 1)
(s891 1)
(s892 1)
(s893 1)
(s894 1)
(s895 1)
(s896 1)
(s897 1)
(s898 1)
(s899 1)
(s900 1)
(s901 1)
(s902 1)
(s903 1)
(s904 1)
(s905 1)
(s906 1)
(s907 1)
(s908 1)
(s909 1)
(s910 1)
(s911 1)
(s912 1)
(s913 1)
(s914 1)
(s915 1)
(s916 1)
(s917 1)
(s918 1)
(s919 1)
(s920 1)
(s921 1)
(s922 1)
(s923 1)
(s924 1)
(s925 1)
(s926 1)
(s927 1)
(s928 1)
(s929 1)
(s930 1)
(s931 1)
(s932 1)
(s933 1)
(s934 1)
(s935 1)
(s936 1)
(s937 1)
(s938 1)
(s939 1)
(s940 1)
(s941 1)
(s942 1)
(s943 1)
(s944 1)
(s945 1)
(s946 1)
(s947 1)
(s948 1)
(s949 1)
(s950 1)
(s951 1)
(s952 1)
(s953 1)
(s954 1)
(s955 1)
(s956 1)
(s957 1)
(s958 1)
(s959 1)
(s960 1)
(s961 1)
(s962 1)
(s963 1)
(s964 1)
(s965 1)
(s966 1)
(s967 1)
(s968 1)
(s969 1)
(s970 1)
(s971 1)
(s972 1)
(s973 1)
(s974 1)
(s975 1)
(s976 1)
(s977 1)
(s978 1)
(s979 1)
(s980 1)
(s981 1)
(s982 1)
(s983 1)
(s984 1)
(s985 1)
(s986 1)
(s987 1)
(s988 1)
(s989 1)
(s990 1)
(s991 1)
(s992 1)
(s993 1)
(s994 1)
(s995 1)
(s996 1)
(s997 1)
(s998 1)
(s999 1)
(s1000 1)
(s1001 1)
(s1002 1)
(s1003 1)
(s1004 1)
(s1005 1)
(s1006 1)
(s1007 1)
(s1008 1)
(s1009 1)
(s1010 1)
(s1011 1)
(s1012 1)
(s1013 1)
(s1014 1)
(s1015 1)
(s1016 1)
(s1017 1)
(s1018 1)
(s1019 1)
(s1020 1)
(s1021 1)
(s1022 1)
(s1023 1)
(s1024 1)
(s1025 1)
(s1026 1)
(s1027 1)
(s1028 1)
(s1029 1)
(s1030 1)
(s1031 1)
(s1032 1)
(s1033 1)
(s1034 1)
(s1035 1)
(s1036 1)
(s1037 1)
(s1038 1)
(s1039 1)
(s1040 1)
(s1041 1)
(s1042 1)
(s1043 1)
(s1044 1)
(s1045 1)
(s1046 1)
(s1047 1)
(s1048 1)
(s1049 1)
(s1050 1)
(s1051 1)
(s1052 1)
(s1053 1)
(s1054 1)
(s1055 1)
(s1056 1)
(s1057 1)
(s1058 1)
(s1059 1)
(s1060 1)
(s1061 1)
(s1062 1)
(s1063 1)
(s1064 1)
(s1065 1)
(s1066 1)
(s1067 1)
(s1068 1)
(s1069 1)
(s1070 1)
(s1071 1)
(s1072 1)
(s1073 1)
(s1074 1)
(s1075 1)
(s1076 1)
(s1077 1)
(s1078 1)
(s1079 1)
(s1080 1)
(s1081 1)
(s1082 1)
(s1083 1)
(s1084 1)
(s1085 1)
(s1086 1)
(s1087 1)
(s1088 1)
(s1089 1)
(s1090 1)
(s1091 1)
(s1092 1)
(s1093 1)
(s1094 1)
(s1095 1)
(s1096 1)
(s1097 1)
(s1098 1)
(s1099 1)
(s1100 1)
(s1101 1)
(s1102 1)
(s1103 1)
(s1104 1)
(s1105 1)
(s1106 1)
(s1107 1)
(s1108 1)
(s1109 1)
(s1110 1)
(s1111 1)
(s1112 1)
(s1113 1)
(s1114 1)
(s1115 1)
(s1116 1)
(s1117 1)
(s1118 1)
(s1119 1)
(s1120 1)
(s1121 1)
(s1122 1)
(s1123 1)
(s1124 1)
(s1125 1)
(s1126 1)
(s1127 1)
(s1128 1)
(s1129 1)
(s1130 1)
(s1131 1)
(s1132 1)
(s1133 1)
(s1134 1)
(s1135 1)
(s1136 1)
(s1137 1)
(s1138 1)
(s1139 1)
(s1140 1)
(s1141 1)
(s1142 1)
(s1143 1)
(s1144 1)
(s1145 1)
(s1146 1)
(s1147 1)
(s1148 1)
(s1149 1)
(s1150 1)
(s1151 1)
(s1152 1)
(s1153 1)
(s1154 1)
(s1155 1)
(s1156 1)
(s1157 1)
(s1158 1)
(s1159 1)
(s1160 1)
(s1161 1)
(s1162 1)
(s1163 1)
(s1164 1)
(s1165 1)
(s1166 1)
(s1167 1)
(s1168 1)
(s1169 1)
(s1170 1)
(s1171 1)
(s1172 1)
(s1173 1)
(s1174 1)
(s1175 1)
(s1176 1)
(s1177 1)
(s1178 1)
(s1179 1)
(s1180 1)
(s1181 1)
(s1182 1)
(s1183 1)
(s1184 1)
(s1185 1)
(s1186 1)
(s1187 1)
(s1188 1)
(s1189 1)
(s1190 1)
(s1191 1)
(s1192 1)
(s1193 1)
(s1194 1)
(s1195 1)
(s1196 1)
(s1197 1)
(s1198 1)
(s1199 1)
(s1200 1)
(s1201 1)
(s1202 1)
(s1203 1)
(s1204 1)
(s1205 1)
(s1206 1)
(s1207 1)
(s1208 1)
(s1209 1)
(s1210 1)
(s1211 1)
(s1212 1)
(s1213 1)
(s1214 1)
(s1215 1)
(s1216 1)
(s1217 1)
(s1218 1)
(s1219 1)
(s1220 1)
(s1221 1)
(s1222 1)
(s1223 1)
(s1224 1)
(s1225 1)
(s1226 1)
(s1227 1)
(s1228 1)
(s1229 1)
(s1230 1)
(s1231 1)
(s1232 1)
(s1233 1)
(s1234 1)
(s1235 1)
(s1236 1)
(s1237 1)
(s1238 1)
(s1239 1)
(s1240 1)
(s1241 1)
(s1242 1)
(s1243 1)
(s1244 1)
(s1245 1)
(s1246 1)
(s1247 1)
(s1248 1)
(s1249 1)
(s1250 1)
(s1251 1)
(s1252 1)
(s1253 1)
(s1254 1)
(s1255 1)
(s1256 1)
(s1257 1)
(s1258 1)
(s1259 1)
(s1260 1)
(s1261 1)
(s1262 1)
(s1263 1)
(s1264 1)
(s1265 1)
(s1266 1)
(s1267 1)
(s1268 1)
(s1269 1)
(s1270 1)
(s1271 1)
(s1272 1)
(s1273 1)
(s1274 1)
(s1275 1)
(s1276 1)
(s1277 1)
(s1278 1)
(s1279 1)
(s1280 1)
(s1281 1)
(s1282 1)
(s1283 1)
(s1284 1)
(s1285 1)
(s1286 1)
(s1287 1)
(s1288 1)
(s1289 1)
(s1290 1)
(s1291 1)
(s1292 1)
(s1293 1)
(s1294 1)
(s1295 1)
(s1296 1)
(s1297 1)
(s1298 1)
(s1299 1)
(s1300 1)
(s1301 1)
(s1302 1)
(s1303 1)
(s1304 1)
(s1305 1)
(s1306 1)
(s1307 1)
(s1308 1)
(s1309 1)
(s1310 1)
(s1311 1)
(s1312 1)
(s1313 1)
(s1314 1)
(s1315 1)
(s1316 1)
(s1317 1)
(s1318 1)
(s1319 1)
(s1320 1)
(s1321 1)
(s1322 1)
(s1323 1)
(s1324 1)
(s1325 1)
(s1326 1)
(s1327 1)
(s1328 1)
(s1329 1)
(s1330 1)
(s1331 1)
(s1332 1)
(s1333 1)
(s1334 1)
(s1335 1)
(s1336 1)
(s1337 1)
(s1338 1)
(s1339 1)
(s1340 1)
(s1341 1)
(s1342 1)
(s1343 1)
(s1344 1)
(s1345 1)
(s1346 1)
(s1347 1)
(s1348 1)
(s1349 1)
(s1350 1)
(s1351 1)
(s1352 1)
(s1353 1)
(s1354 1)
(s1355 1)
(s1356 1)
(s1357 1)
(s1358 1)
(s1359 1)
(s1360 1)
(s1361 1)
(s1362 1)
(s1363 1)
(s1364 1)
(s1365 1)
(s1366 1)
(s1367 1)
(s1368 1)
(s1369 1)
(s1370 1)
(s1371 1)
(s1372 1)
(s1373 1)
(s1374 1)
(s1375 1)
(s1376 1)
(s1377 1)
(s1378 1)
(s1379 1)
(s1380 1)
(s1381 1)
(s1382 1)
(s1383 1)
(s1384 1)
(s1385 1)
(s1386 1)
(s1387 1)
(s1388 1)
(s1389 1)
(s1390 1)
(s1391 1)
(s1392 1)
(s1393 1)
(s1394 1)
(s1395 1)
(s1396 1)
(s1397 1)
(s1398 1)
(s1399 1)
(s1400 1)
(s1401 1)
(s1402 1)
(s1403 1)
(s1404 1)
(s1405 1)
(s1406 1)
(s1407 1)
(s1408 1)
(s1409 1)
(s1410 1)
(s1411 1)
(s1412 1)
(s1413 1)
(s1414 1)
(s1415 1)
(s1416 1)
(s1417 1)
(s1418 1)
(s1419 1)
(s1420 1)
(s1421 1)
(s1422 1)
(s1423 1)
(s1424 1)
(s1425 1)
(s1426 1)
(s1427 1)
(s1428 1)
(s1429 1)
(s1430 1)
(s1431 1)
(s1432 1)
(s1433 1)
(s1434 1)
(s1435 1)
(s1436 1)
(s1437 1)
(s1438 1)
(s1439 1)
(s1440 1)
(s1441 1)
(s1442 1)
(s1443 1)
(s1444 1)
(s1445 1)
(s1446 1)
(s1447 1)
(s1448 1)
(s1449 1)
(s1450 1)
(s1451 1)
(s1452 1)
(s1453 1)
(s1454 1)
(s1455 1)
(s1456 1)
(s1457 1)
(s1458 1)
(s1459 1)
(s1460 1)
(s1461 1)
(s1462 1)
(s1463 1)
(s1464 1)
(s1465 1)
(s1466 1)
(s1467 1)
(s1468 1)
(s1469 1)
(s1470 1)
(s1471 1)
(s1472 1)
(s1473 1)
(s1474 1)
(s1475 1)
(s1476 1)
(s1477 1)
(s1478 1)
(s1479 1)
(s1480 1)
(s1481 1)
(s1482 1)
(s1483 1)
(s1484 1)
(s1485 1)
(s1486 1)
(s1487 1)
(s1488 1)
(s1489 1)
(s1490 1)
(s1491 1)
(s1492 1)
(s1493 1)
(s1494 1)
(s1495 1)
(s1496 1)
(s1497 1)
(s1498 1)
(s1499 1)
(s1500 1)
(s1501 1)
(s1502 1)
(s1503 1)
(s1504 1)
(s1505 1)
(s1506 1)
(s1507 1)
(s1508 1)
(s1509 1)
(s1510 1)
(s1511 1)
(s1512 1)
(s1513 1)
(s1514 1)
(s1515 1)
(s1516 1)
(s1517 1)
(s1518 1)
(s1519 1)
(s1520 1)
(s1521 1)
(s1522 1)
(s1523 1)
(s1524 1)
(s1525 1)
(s1526 1)
(s1527 1)
(s1528 1)
(s1529 1)
(s1530 1)
(s1531 1)
(s1532 1)
(s1533 1)
(s1534 1)
(s1535 1)
(s1536 1)
(s1537 1)
(s1538 1)
(s1539 1)
(s1540 1)
(s1541 1)
(s1542 1)
(s1543 1)
(s1544 1)
(s1545 1)
(s1546 1)
(s1547 1)
(s1548 1)
(s1549 1)
(s1550 1)
(s1551 1)
(s1552 1)
(s1553 1)
(s1554 1)
(s1555 1)
(s1556 1)
(s1557 1)
(s1558 1)
(s1559 1)
(s1560 1)
(s1561 1)
(s1562 1)
(s1563 1)
(s1564 1)
(s1565 1)
(s1566 1)
(s1567 1)
(s1568 1)
(s1569 1)
(s1570 1)
(s1571 1)
(s1572 1)
(s1573 1)
(s1574 1)
(s1575 1)
(s1576 1)
(s1577 1)
(s1578 1)
(s1579 1)
(s1580 1)
(s1581 1)
(s1582 1)
(s1583 1)
(s1584 1)
(s1585 1)
(s1586 1)
(s1587 1)
(s1588 1)
(s1589 1)
(s1590 1)
(s1591 1)
(s1592 1)
(s1593 1)
(s1594 1)
(s1595 1)
(s1596 1)
(s1597 1)
(s1598 1)
(s1599 1)
(s1600 1)
(s1601 1)
(s1602 1)
(s1603 1)
(s1604 1)
(s1605 1)
(s1606 1)
(s1607 1)
(s1608 1)
(s1609 1)
(s1610 1)
(s1611 1)
(s1612 1)
(s1613 1)
(s1614 1)
(s1615 1)
(s1616 1)
(s1617 1)
(s1618 1)
(s1619 1)
(s1620 1)
(s1621 1)
(s1622 1)
(s1623 1)
(s1624 1)
(s1625 1)
(s1626 1)
(s1627 1)
(s1628 1)
(s1629 1)
(s1630 1)
(s1631 1)
(s1632 1)
(s1633 1)
(s1634 1)
(s1635 1)
(s1636 1)
(s1637 1)
(s1638 1)
(s1639 1)
(s1640 1)
(s1641 1)
(s1642 1)
(s1643 1)
(s1644 1)
(s1645 1)
(s1646 1)
(s1647 1)
(s1648 1)
(s1649 1)
(s1650 1)
(s1651 1)
(s1652 1)
(s1653 1)
(s1654 1)
(s1655 1)
(s1656 1)
(s1657 1)
(s1658 1)
(s1659 1)
(s1660 1)
(s1661 1)
(s1662 1)
(s1663 1)
(s1664 1)
(s1665 1)
(s1666 1)
(s1667 1)
(s1668 1)
(s1669 1)
(s1670 1)
(s1671 1)
(s1672 1)
(s1673 1)
(s1674 1)
(s1675 1)
(s1676 1)
(s1677 1)
(s1678 1)
(s1679 1)
(s1680 1)
(s1681 1)
(s1682 1)
(s1683 1)
(s1684 1)
(s1685 1)
(s1686 1)
(s1687 1)
(s1688 1)
(s1689 1)
(s1690 1)
(s1691 1)
(s1692 1)
(s1693 1)
(s1694 1)
(s1695 1)
(s1696 1)
(s1697 1)
(s1698 1)
(s1699 1)
(s1700 1)
(s1701 1)
(s1702 1)
(s1703 1)
(s1704 1)
(s1705 1)
(s1706 1)
(s1707 1)
(s1708 1)
(s1709 1)
(s1710 1)
(s1711 1)
(s1712 1)
(s1713 1)
(s1714 1)
(s1715 1)
(s1716 1)
(s1717 1)
(s1718 1)
(s1719 1)
(s1720 1)
(s1721 1)
(s1722 1)
(s1723 1)
(s1724 1)
(s1725 1)
(s1726 1)
(s1727 1)
(s1728 1)
(s1729 1)
(s1730 1)
(s1731 1)
(s1732 1)
(s1733 1)
(s1734 1)
(s1735 1)
(s1736 1)
(s1737 1)
(s1738 1)
(s1739 1)
(s1740 1)
(s1741 1)
(s1742 1)
(s1743 1)
(s1744 1)
(s1745 1)
(s1746 1)
(s1747 1)
(s1748 1)
(s1749 1)
(s1750 1)
(s1751 1)
(s1752 1)
(s1753 1)
(s1754 1)
(s1755 1)
(s1756 1)
(s1757 1)
(s1758 1)
(s1759 1)
(s1760 1)
(s1761 1)
(s1762 1)
(s1763 1)
(s1764 1)
(s1765 1)
(s1766 1)
(s1767 1)
(s1768 1)
(s1769 1)
(s1770 1)
(s1771 1)
(s1772 1)
(s1773 1)
(s1774 1)
(s1775 1)
(s1776 1)
(s1777 1)
(s1778 1)
(s1779 1)
(s1780 1)
(s1781 1)
(s1782 1)
(s1783 1)
(s1784 1)
(s1785 1)
(s1786 1)
(s1787 1)
(s1788 1)
(s1789 1)
(s1790 1)
(s1791 1)
(s1792 1)
(s1793 1)
(s1794 1)
(s1795 1)
(s1796 1)
(s1797 1)
(s1798 1)
(s1799 1)
(s1800 1)
(s1801 1)
(s1802 1)
(s1803 1)
(s1804 1)
(s1805 1)
(s1806 1)
(s1807 1)
(s1808 1)
(s1809 1)
(s1810 1)
(s1811 1)
(s1812 1)
(s1813 1)
(s1814 1)
(s1815 1)
(s1816 1)
(s1817 1)
(s1818 1)
(s1819 1)
(s1820 1)
(s1821 1)
(s1822 1)
(s1823 1)
(s1824 1)
(s1825 1)
(s1826 1)
(s1827 1)
(s1828 1)
(s1829 1)
(s1830 1)
(s1831 1)
(s1832 1)
(s1833 1)
(s1834 1)
(s1835 1)
(s1836 1)
(s1837 1)
(s1838 1)
(s1839 1)
(s1840 1)
(s1841 1)
(s1842 1)
(s1843 1)
(s1844 1)
(s1845 1)
(s1846 1)
(s1847 1)
(s1848 1)
(s1849 1)
(s1850 1)
(s1851 1)
(s1852 1)
(s1853 1)
(s1854 1)
(s1855 1)
(s1856 1)
(s1857 1)
(s1858 1)
(s1859 1)
(s1860 1)
(s1861 1)
(s1862 1)
(s1863 1)
(s1864 1)
(s1865 1)
(s1866 1)
(s1867 1)
(s1868 1)
(s1869 1)
(s1870 1)
(s1871 1)
(s1872 1)
(s1873 1)
(s1874 1)
(s1875 1)
(s1876 1)
(s1877 1)
(s1878 1)
(s1879 1)
(s1880 1)
(s1881 1)
(s1882 1)
(s1883 1)
(s1884 1)
(s1885 1)
(s1886 1)
(s1887 1)
(s1888 1)
(s1889 1)
(s1890 1)
(s1891 1)
(s1892 1)
(s1893 1)
(s1894 1)
(s1895 1)
(s1896 1)
(s1897 1)
(s1898 1)
(s1899 1)
(s1900 1)
(s1901 1)
(s1902 1)
(s1903 1)
(s1904 1)
(s1905 1)
(s1906 1)
(s1907 1)
(s1908 1)
(s1909 1)
(s1910 1)
(s1911 1)
(s1912 1)
(s1913 1)
(s1914 1)
(s1915 1)
(s1916 1)
(s1917 1)
(s1918 1)
(s1919 1)
(s1920 1)
(s1921 1)
(s1922 1)
(s1923 1)
(s1924 1)
(s1925 1)
(s1926 1)
(s1927 1)
(s1928 1)
(s1929 1)
(s1930 1)
(s1931 1)
(s1932 1)
(s1933 1)
(s1934 1)
(s1935 1)
(s1936 1)
(s1937 1)
(s1938 1)
(s1939 1)
(s1940 1)
(s1941 1)
(s1942 1)
(s1943 1)
(s1944 1)
(s1945 1)
(s1946 1)
(s1947 1)
(s1948 1)
(s1949 1)
(s1950 1)
(s1951 1)
(s1952 1)
(s1953 1)
(s1954 1)
(s1955 1)
(s1956 1)
(s1957 1)
(s1958 1)
(s1959 1)
(s1960 1)
(s1961 1)
(s1962 1)
(s1963 1)
(s1964 1)
(s1965 1)
(s1966 1)
(s1967 1)
(s1968 1)
(s1969 1)
(s1970 1)
(s1971 1)
(s1972 1)
(s1973 1)
(s1974 1)
(s1975 1)
(s1976 1)
(s1977 1)
(s1978 1)
(s1979 1)
(s1980 1)
(s1981 1)
(s1982 1)
(s1983 1)
(s1984 1)
(s1985 1)
(s1986 1)
(s1987 1)
(s1988 1)
(s1989 1)
(s1990 1)
(s1991 1)
(s1992 1)
(s1993 1)
(s1994 1)
(s1995 1)
(s1996 1)
(s1997 1)
(s1998 1)
(s1999 1)
(s2000 1)
(s2001 1)
(s2002 1)
(s2003 1)
(s2004 1)
(s2005 1)
(s2006 1)
(s2007 1)
(s2008 1)
(s2009 1)
(s2010 1)
(s2011 1)
(s2012 1)
(s2013 1)
(s2014 1)
(s2015 1)
(s2016 1)
(s2017 1)
(s2018 1)
(s2019 1)
(s2020 1)
(s2021 1)
(s2022 1)
(s2023 1)
(s2024 1)
(s2025 1)
(s2026 1)
(s2027 1)
(s2028 1)
(s2029 1)
(s2030 1)
(s2031 1)
(s2032 1)
(s2033 1)
(s2034 1)
(s2035 1)
(s2036 1)
(s2037 1)
(s2038 1)
(s2039 1)
(s2040 1)
(s2041 1)
(s2042 1)
(s2043 1)
(s2044 1)
(s2045 1)
(s2046 1)
(s2047 1)
(s2048 1)
(s2049 1)
(s2050 1)
(s2051 1)
(s2052 1)
(s2053 1)
(s2054 1)
(s2055 1)
(s2056 1)
(s2057 1)
(s2058 1)
(s2059 1)
(s2060 1)
(s2061 1)
(s2062 1)
(s2063 1)
(s2064 1)
(s2065 1)
(s2066 1)
(s2067 1)
(s2068 1)
(s2069 1)
(s2070 1)
(s2071 1)
(s2072 1)
(s2073 1)
(s2074 1)
(s2075 1)
(s2076 1)
(s2077 1)
(s2078 1)
(s2079 1)
(s2080 1)
(s2081 1)
(s2082 1)
(s2083 1)
(s2084 1)
(s2085 1)
(s2086 1)
(s2087 1)
(s2088 1)
(s2089 1)
(s2090 1)
(s2091 1)
(s2092 1)
(s2093 1)
(s2094 1)
(s2095 1)
(s2096 1)
(s2097 1)
(s2098 1)
(s2099 1)
(s2100 1)
(s2101 1)
(s2102 1)
(s2103 1)
(s2104 1)
(s2105 1)
(s2106 1)
(s2107 1)
(s2108 1)
(s2109 1)
(s2110 1)
(s2111 1)
(s2112 1)
(s2113 1)
(s2114 1)
(s2115 1)
(s2116 1)
(s2117 1)
(s2118 1)
(s2119 1)
(s2120 1)
(s2121 1)
(s2122 1)
(s2123 1)
(s2124 1)
(s2125 1)
(s2126 1)
(s2127 1)
(s2128 1)
(s2129 1)
(s2130 1)
(s2131 1)
(s2132 1)
(s2133 1)
(s2134 1)
(s2135 1)
(s2136 1)
(s2137 1)
(s2138 1)
(s2139 1)
(s2140 1)
(s2141 1)
(s2142 1)
(s2143 1)
(s2144 1)
(s2145 1)
(s2146 1)
(s2147 1)
(s2148 1)
(s2149 1)
(s2150 1)
(s2151 1)
(s2152 1)
(s2153 1)
(s2154 1)
(s2155 1)
(s2156 1)
(s2157 1)
(s2158 1)
(s2159 1)
(s2160 1)
(s2161 1)
(s2162 1)
(s2163 1)
(s2164 1)
(s2165 1)
(s2166 1)
(s2167 1)
(s2168 1)
(s2169 1)
(s2170 1)
(s2171 1)
(s2172 1)
(s2173 1)
(s2174 1)
(s2175 1)
(s2176 1)
(s2177 1)
(s2178 1)
(s2179 1)
(s2180 1)
(s2181 1)
(s2182 1)
(s2183 1)
(s2184 1)
(s2185 1)
(s2186 1)
(s2187 1)
(s2188 1)
(s2189 1)
(s2190 1)
(s2191 1)
(s2192 1)
(s2193 1)
(s2194 1)
(s2195 1)
(s2196 1)
(s2197 1)
(s2198 1)
(s2199 1)
(s2200 1)
(s2201 1)
(s2202 1)
(s2203 1)
(s2204 1)
(s2205 1)
(s2206 1)
(s2207 1)
(s2208 1)
(s2209 1)
(s2210 1)
(s2211 1)
(s2212 1)
(s2213 1)
(s2214 1)
(s2215 1)
(s2216 1)
(s2217 1)
(s2218 1)
(s2219 1)
(s2220 1)
(s2221 1)
(s2222 1)
(s2223 1)
(s2224 1)
(s2225 1)
(s2226 1)
(s2227 1)
(s2228 1)
(s2229 1)
(s2230 1)
(s2231 1)
(s2232 1)
(s2233 1)
(s2234 1)
(s2235 1)
(s2236 1)
(s2237 1)
(s2238 1)
(s2239 1)
(s2240 1)
(s2241 1)
(s2242 1)
(s2243 1)
(s2244 1)
(s2245 1)
(s2246 1)
(s2247 1)
(s2248 1)
(s2249 1)
(s2250 1)
(s2251 1)
(s2252 1)
(s2253 1)
(s2254 1)
(s2255 1)
(s2256 1)
(s2257 1)
(s2258 1)
(s2259 1)
(s2260 1)
(s2261 1)
(s2262 1)
(s2263 1)
(s2264 1)
(s2265 1)
(s2266 1)
(s2267 1)
(s2268 1)
(s2269 1)
(s2270 1)
(s2271 1)
(s2272 1)
(s2273 1)
(s2274 1)
(s2275 1)
(s2276 1)
(s2277 1)
(s2278 1)
(s2279 1)
(s2280 1)
(s2281 1)
(s2282 1)
(s2283 1)
(s2284 1)
(s2285 1)
(s2286 1)
(s2287 1)
(s2288 1)
(s2289 1)
(s2290 1)
(s2291 1)
(s2292 1)
(s2293 1)
(s2294 1)
(s2295 1)
(s2296 1)
(s2297 1)
(s2298 1)
(s2299 1)
(s2300 1)
(s2301 1)
(s2302 1)
(s2303 1)
(s2304 1)
(s2305 1)
(s2306 1)
(s2307 1)
(s2308 1)
(s2309 1)
(s2310 1)
(s2311 1)
(s2312 1)
(s2313 1)
(s2314 1)
(s2315 1)
(s2316 1)
(s2317 1)
(s2318 1)
(s2319 1)
(s2320 1)
(s2321 1)
(s2322 1)
(s2323 1)
(s2324 1)
(s2325 1)
(s2326 1)
(s2327 1)
(s2328 1)
(s2329 1)
(s2330 1)
(s2331 1)
(s2332 1)
(s2333 1)
(s2334 1)
(s2335 1)
(s2336 1)
(s2337 1)
(s2338 1)
(s2339 1)
(s2340 1)
(s2341 1)
(s2342 1)
(s2343 1)
(s2344 1)
(s2345 1)
(s2346 1)
(s2347 1)
(s2348 1)
(s2349 1)
(s2350 1)
(s2351 1)
(s2352 1)
(s2353 1)
(s2354 1)
(s2355 1)
(s2356 1)
(s2357 1)
(s2358 1)
(s2359 1)
(s2360 1)
(s2361 1)
(s2362 1)
(s2363 1)
(s2364 1)
(s2365 1)
(s2366 1)
(s2367 1)
(s2368 1)
(s2369 1)
(s2370 1)
(s2371 1)
(s2372 1)
(s2373 1)
(s2374 1)
(s2375 1)
(s2376 1)
(s2377 1)
(s2378 1)
(s2379 1)
(s2380 1)
(s2381 1)
(s2382 1)
(s2383 1)
(s2384 1)
(s2385 1)
(s2386 1)
(s2387 1)
(s2388 1)
(s2389 1)
(s2390 1)
(s2391 1)
(s2392 1)
(s2393 1)
(s2394 1)
(s2395 1)
(s2396 1)
(s2397 1)
(s2398 1)
(s2399 1)
(s2400 1)
(s2401 1)
(s2402 1)
(s2403 1)
(s2404 1)
(s2405 1)
(s2406 1)
(s2407 1)
(s2408 1)
(s2409 1)
(s2410 1)
(s2411 1)
(s2412 1)
(s2413 1)
(s2414 1)
(s2415 1)
(s2416 1)
(s2417 1)
(s2418 1)
(s2419 1)
(s2420 1)
(s2421 1)
(s2422 1)
(s2423 1)
(s2424 1)
(s2425 1)
(s2426 1)
(s2427 1)
(s2428 1)
(s2429 1)
(s2430 1)
(s2431 1)
(s2432 1)
(s2433 1)
(s2434 1)
(s2435 1)
(s2436 1)
(s2437 1)
(s2438 1)
(s2439 1)
(s2440 1)
(s2441 1)
(s2442 1)
(s2443 1)
(s2444 1)
(s2445 1)
(s2446 1)
(s2447 1)
(s2448 1)
(s2449 1)
(s2450 1)
(s2451 1)
(s2452 1)
(s2453 1)
(s2454 1)
(s2455 1)
(s2456 1)
(s2457 1)
(s2458 1)
(s2459 1)
(s2460 1)
(s2461 1)
(s2462 1)
(s2463 1)
(s2464 1)
(s2465 1)
(s2466 1)
(s2467 1)
(s2468 1)
(s2469 1)
(s2470 1)
(s2471 1)
(s2472 1)
(s2473 1)
(s2474 1)
(s2475 1)
(s2476 1)
(s2477 1)
(s2478 1)
(s2479 1)
(s2480 1)
(s2481 1)
(s2482 1)
(s2483 1)
(s2484 1)
(s2485 1)
(s2486 1)
(s2487 1)
(s2488 1)
(s2489 1)
(s2490 1)
(s2491 1)
(s2492 1)
(s2493 1)
(s2494 1)
(s2495 1)
(s2496 1)
(s2497 1)
(s2498 1)
(s2499 1)
(s2500 1)
(s2501 1)
(s2502 1)
(s2503 1)
(s2504 1)
(s2505 1)
(s2506 1)
(s2507 1)
(s2508 1)
(s2509 1)
(s2510 1)
(s2511 1)
(s2512 1)
(s2513 1)
(s2514 1)
(s2515 1)
(s2516 1)
(s2517 1)
(s2518 1)
(s2519 1)
(s2520 1)
(s2521 1)
(s2522 1)
(s2523 1)
(s2524 1)
(s2525 1)
(s2526 1)
(s2527 1)
(s2528 1)
(s2529 1)
(s2530 1)
(s2531 1)
(s2532 1)
(s2533 1)
(s2534 1)
(s2535 1)
(s2536 1)
(s2537 1)
(s2538 1)
(s2539 1)
(s2540 1)
(s2541 1)
(s2542 1)
(s2543 1)
(s2544 1)
(s2545 1)
(s2546 1)
(s2547 1)
(s2548 1)
(s2549 1)
(s2550 1)
(s2551 1)
(s2552 1)
(s2553 1)
(s2554 1)
(s2555 1)
(s2556 1)
(s2557 1)
(s2558 1)
(s2559 1)
(s2560 1)
(s2561 1)
(s2562 1)
(s2563 1)
(s2564 1)
(s2565 1)
(s2566 1)
(s2567 1)
(s2568 1)
(s2569 1)
(s2570 1)
(s2571 1)
(s2572 1)
(s2573 1)
(s2574 1)
(s2575 1)
(s2576 1)
(s2577 1)
(s2578 1)
(s2579 1)
(s2580 1)
(s2581 1)
(s2582 1)
(s2583 1)
(s2584 1)
(s2585 1)
(s2586 1)
(s2587 1)
(s2588 1)
(s2589 1)
(s2590 1)
(s2591 1)
(s2592 1)
(s2593 1)
(s2594 1)
(s2595 1)
(s2596 1)
(s2597 1)
(s2598 1)
(s2599 1)
(s2600 1)
(s2601 1)
(s2602 1)
(s2603 1)
(s2604 1)
(s2605 1)
(s2606 1)
(s2607 1)
(s2608 1)
(s2609 1)
(s2610 1)
(s2611 1)
(s2612 1)
(s2613 1)
(s2614 1)
(s2615 1)
(s2616 1)
(s2617 1)
(s2618 1)
(s2619 1)
(s2620 1)
(s2621 1)
(s2622 1)
(s2623 1)
(s2624 1)
(s2625 1)
(s2626 1)
(s2627 1)
(s2628 1)
(s2629 1)
(s2630 1)
(s2631 1)
(s2632 1)
(s2633 1)
(s2634 1)
(s2635 1)
(s2636 1)
(s2637 1)
(s2638 1)
(s2639 1)
(s2640 1)
(s2641 1)
(s2642 1)
(s2643 1)
(s2644 1)
(s2645 1)
(s2646 1)
(s2647 1)
(s2648 1)
(s2649 1)
(s2650 1)
(s2651 1)
(s2652 1)
(s2653 1)
(s2654 1)
(s2655 1)
(s2656 1)
(s2657 1)
(s2658 1)
(s2659 1)
(s2660 1)
(s2661 1)
(s2662 1)
(s2663 1)
(s2664 1)
(s2665 1)
(s2666 1)
(s2667 1)
(s2668 1)
(s2669 1)
(s2670 1)
(s2671 1)
(s2672 1)
(s2673 1)
(s2674 1)
(s2675 1)
(s2676 1)
(s2677 1)
(s2678 1)
(s2679 1)
(s2680 1)
(s2681 1)
(s2682 1)
(s2683 1)
(s2684 1)
(s2685 1)
(s2686 1)
(s2687 1)
(s2688 1)
(s2689 1)
(s2690 1)
(s2691 1)
(s2692 1)
(s2693 1)
(s2694 1)
(s2695 1)
(s2696 1)
(s2697 1)
(s2698 1)
(s2699 1)
(s2700 1)
(s2701 1)
(s2702 1)
(s2703 1)
(s2704 1)
(s2705 1)
(s2706 1)
(s2707 1)
(s2708 1)
(s2709 1)
(s2710 1)
(s2711 1)
(s2712 1)
(s2713 1)
(s2714 1)
(s2715 1)
(s2716 1)
(s2717 1)
(s2718 1)
(s2719 1)
(s2720 1)
(s2721 1)
(s2722 1)
(s2723 1)
(s2724 1)
(s2725 1)
(s2726 1)
(s2727 1)
(s2728 1)
(s2729 1)
(s2730 1)
(s2731 1)
(s2732 1)
(s2733 1)
(s2734 1)
(s2735 1)
(s2736 1)
(s2737 1)
(s2738 1)
(s2739 1)
(s2740 1)
(s2741 1)
(s2742 1)
(s2743 1)
(s2744 1)
(s2745 1)
(s2746 1)
(s2747 1)
(s2748 1)
(s2749 1)
(s2750 1)
(s2751 1)
(s2752 1)
(s2753 1)
(s2754 1)
(s2755 1)
(s2756 1)
(s2757 1)
(s2758 1)
(s2759 1)
(s2760 1)
(s2761 1)
(s2762 1)
(s2763 1)
(s2764 1)
(s2765 1)
(s2766 1)
(s2767 1)
(s2768 1)
(s2769 1)
(s2770 1)
(s2771 1)
(s2772 1)
(s2773 1)
(s2774 1)
(s2775 1)
(s2776 1)
(s2777 1)
(s2778 1)
(s2779 1)
(s2780 1)
(s2781 1)
(s2782 1)
(s2783 1)
(s2784 1)
(s2785 1)
(s2786 1)
(s2787 1)
(s2788 1)
(s2789 1)
(s2790 1)
(s2791 1)
(s2792 1)
(s2793 1)
(s2794 1)
(s2795 1)
(s2796 1)
(s2797 1)
(s2798 1)
(s2799 1)
(s2800 1)
(s2801 1)
(s2802 1)
(s2803 1)
(s2804 1)
(s2805 1)
(s2806 1)
(s2807 1)
(s2808 1)
(s2809 1)
(s2810 1)
(s2811 1)
(s2812 1)
(s2813 1)
(s2814 1)
(s2815 1)
(s2816 1)
(s2817 1)
(s2818 1)
(s2819 1)
(s2820 1)
(s2821 1)
(s2822 1)
(s2823 1)
(s2824 1)
(s2825 1)
(s2826 1)
(s2827 1)
(s2828 1)
(s2829 1)
(s2830 1)
(s2831 1)
(s2832 1)
(s2833 1)
(s2834 1)
(s2835 1)
(s2836 1)
(s2837 1)
(s2838 1)
(s2839 1)
(s2840 1)
(s2841 1)
(s2842 1)
(s2843 1)
(s2844 1)
(s2845 1)
(s2846 1)
(s2847 1)
(s2848 1)
(s2849 1)
(s2850 1)
(s2851 1)
(s2852 1)
(s2853 1)
(s2854 1)
(s2855 1)
(s2856 1)
(s2857 1)
(s2858 1)
(s2859 1)
(s2860 1)
(s2861 1)
(s2862 1)
(s2863 1)
(s2864 1)
(s2865 1)
(s2866 1)
(s2867 1)
(s2868 1)
(s2869 1)
(s2870 1)
(s2871 1)
(s2872 1)
(s2873 1)
(s2874 1)
(s2875 1)
(s2876 1)
(s2877 1)
(s2878 1)
(s2879 1)
(s2880 1)
(s2881 timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 3865/7384 variables, and 3865 constraints, problems are : Problem set: 0 solved, 3517 unsolved in 30070 ms.
Refiners :[Domain max(s): 3865/3866 constraints, State Equation: 0/3866 constraints, PredecessorRefiner: 0/3517 constraints, Known Traps: 0/0 constraints]
After SMT, in 71669ms problems are : Problem set: 0 solved, 3517 unsolved
Search for dead transitions found 0 dead transitions in 71712ms
Starting structural reductions in LTL mode, iteration 1 : 3866/3869 places, 3518/3518 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 253969 ms. Remains : 3866/3869 places, 3518/3518 transitions.
Stuttering acceptance computed with spot in 161 ms :[(NOT p1), (AND (NOT p1) (NOT p0)), (AND (NOT p1) (NOT p0)), (AND (NOT p1) (NOT p0))]
Running random walk in product with property : Echo-PT-d03r07-LTLCardinality-03
Stuttering criterion allowed to conclude after 686 steps with 0 reset in 49 ms.
FORMULA Echo-PT-d03r07-LTLCardinality-03 FALSE TECHNIQUES STUTTER_TEST
Treatment of property Echo-PT-d03r07-LTLCardinality-03 finished in 254213 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202405141337/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!((X(G(p0))||(p1 U (G(p1)||(p1&&G(p2))))))'
Support contains 4 out of 3869 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 3869/3869 places, 3518/3518 transitions.
Reduce places removed 3 places and 0 transitions.
Iterating post reduction 0 with 3 rules applied. Total rules applied 3 place count 3866 transition count 3518
Applied a total of 3 rules in 256 ms. Remains 3866 /3869 variables (removed 3) and now considering 3518/3518 (removed 0) transitions.
// Phase 1: matrix 3518 rows 3866 cols
[2024-05-23 10:41:50] [INFO ] Invariants computation overflowed in 8277 ms
[2024-05-23 10:41:56] [INFO ] Implicit Places using invariants in 13735 ms returned []
// Phase 1: matrix 3518 rows 3866 cols
[2024-05-23 10:42:04] [INFO ] Invariants computation overflowed in 8188 ms
[2024-05-23 10:43:23] [INFO ] Performed 1/3866 implicitness test of which 0 returned IMPLICIT in 32 seconds.
[2024-05-23 10:43:55] [INFO ] Performed 3/3866 implicitness test of which 0 returned IMPLICIT in 64 seconds.
[2024-05-23 10:44:27] [INFO ] Performed 5/3866 implicitness test of which 0 returned IMPLICIT in 96 seconds.
[2024-05-23 10:44:44] [INFO ] Implicit Places using invariants and state equation in 168229 ms returned []
Implicit Place search using SMT with State Equation took 181967 ms to find 0 implicit places.
Running 3517 sub problems to find dead transitions.
// Phase 1: matrix 3518 rows 3866 cols
[2024-05-23 10:44:52] [INFO ] Invariants computation overflowed in 8304 ms
Error getting values : (error "Error writing to Z3 solver: java.io.IOException: Broken pipe")
At refinement iteration 0 (INCLUDED_ONLY) 0/3865 variables, 3865/3865 constraints. Problems are: Problem set: 0 solved, 3517 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 3865/7384 variables, and 3865 constraints, problems are : Problem set: 0 solved, 3517 unsolved in 30089 ms.
Refiners :[Domain max(s): 3865/3866 constraints, State Equation: 0/3866 constraints, PredecessorRefiner: 3517/3517 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 3517 unsolved
At refinement iteration 0 (INCLUDED_ONLY) 0/3865 variables, 3865/3865 constraints. Problems are: Problem set: 0 solved, 3517 unsolved
(s57 1timeout
^^^^^^^^
(error "Invalid token: 1timeout")
Error getting values : (error "ParserException while parsing response: ((s0 1)
(s1 1)
(s2 1)
(s3 1)
(s4 1)
(s5 1)
(s6 1)
(s7 1)
(s8 1)
(s9 1)
(s10 1)
(s11 1)
(s12 1)
(s13 1)
(s14 1)
(s15 1)
(s16 1)
(s17 1)
(s18 1)
(s19 1)
(s20 1)
(s21 1)
(s22 1)
(s23 1)
(s24 1)
(s25 1)
(s26 1)
(s27 1)
(s28 1)
(s29 1)
(s30 1)
(s31 1)
(s32 1)
(s33 1)
(s34 1)
(s35 1)
(s36 1)
(s37 1)
(s38 1)
(s39 1)
(s40 1)
(s41 1)
(s42 1)
(s43 1)
(s44 1)
(s45 1)
(s46 1)
(s47 1)
(s48 1)
(s49 1)
(s50 1)
(s51 1)
(s52 1)
(s53 1)
(s54 1)
(s55 1)
(s56 1)
(s57 1timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 3865/7384 variables, and 3865 constraints, problems are : Problem set: 0 solved, 3517 unsolved in 30121 ms.
Refiners :[Domain max(s): 3865/3866 constraints, State Equation: 0/3866 constraints, PredecessorRefiner: 0/3517 constraints, Known Traps: 0/0 constraints]
After SMT, in 71516ms problems are : Problem set: 0 solved, 3517 unsolved
Search for dead transitions found 0 dead transitions in 71574ms
Starting structural reductions in LTL mode, iteration 1 : 3866/3869 places, 3518/3518 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 253805 ms. Remains : 3866/3869 places, 3518/3518 transitions.
Stuttering acceptance computed with spot in 591 ms :[true, (AND (NOT p0) (NOT p1)), (NOT p0), (AND (NOT p0) (NOT p1)), (AND (NOT p0) (NOT p1) (NOT p2)), (NOT p1), (AND (NOT p1) (NOT p2)), (NOT p2), (AND (NOT p0) (NOT p2))]
Running random walk in product with property : Echo-PT-d03r07-LTLCardinality-05
Entered a terminal (fully accepting) state of product in 962 steps with 1 reset in 78 ms.
FORMULA Echo-PT-d03r07-LTLCardinality-05 FALSE TECHNIQUES STUTTER_TEST
Treatment of property Echo-PT-d03r07-LTLCardinality-05 finished in 254519 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202405141337/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!((F(p0)&&F(p1)))'
Support contains 2 out of 3869 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 3869/3869 places, 3518/3518 transitions.
Graph (complete) has 14563 edges and 3869 vertex of which 3860 are kept as prefixes of interest. Removing 9 places using SCC suffix rule.25 ms
Discarding 9 places :
Also discarding 1 output transitions
Drop transitions (Output transitions of discarded places.) removed 1 transitions
Reduce places removed 1 places and 1 transitions.
Applied a total of 1 rules in 550 ms. Remains 3859 /3869 variables (removed 10) and now considering 3516/3518 (removed 2) transitions.
// Phase 1: matrix 3516 rows 3859 cols
[2024-05-23 10:46:06] [INFO ] Invariants computation overflowed in 8827 ms
[2024-05-23 10:46:11] [INFO ] Implicit Places using invariants in 14507 ms returned []
// Phase 1: matrix 3516 rows 3859 cols
[2024-05-23 10:46:20] [INFO ] Invariants computation overflowed in 8373 ms
[2024-05-23 10:47:21] [INFO ] Performed 25/3859 implicitness test of which 0 returned IMPLICIT in 39 seconds.
[2024-05-23 10:47:53] [INFO ] Performed 27/3859 implicitness test of which 0 returned IMPLICIT in 71 seconds.
[2024-05-23 10:48:26] [INFO ] Performed 29/3859 implicitness test of which 0 returned IMPLICIT in 103 seconds.
[2024-05-23 10:48:58] [INFO ] Performed 31/3859 implicitness test of which 0 returned IMPLICIT in 136 seconds.
[2024-05-23 10:48:58] [INFO ] Timeout of Implicit test with SMT after 136 seconds.
[2024-05-23 10:48:58] [INFO ] Implicit Places using invariants and state equation in 166270 ms returned []
Implicit Place search using SMT with State Equation took 180779 ms to find 0 implicit places.
[2024-05-23 10:48:58] [INFO ] Redundant transitions in 154 ms returned []
Running 3510 sub problems to find dead transitions.
// Phase 1: matrix 3516 rows 3859 cols
[2024-05-23 10:49:06] [INFO ] Invariants computation overflowed in 8411 ms
At refinement iteration 0 (INCLUDED_ONLY) 0/3858 variables, 3858/3858 constraints. Problems are: Problem set: 0 solved, 3510 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 3858/7375 variables, and 3858 constraints, problems are : Problem set: 0 solved, 3510 unsolved in 30108 ms.
Refiners :[Domain max(s): 3858/3859 constraints, State Equation: 0/3859 constraints, PredecessorRefiner: 3510/3510 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 3510 unsolved
At refinement iteration 0 (INCLUDED_ONLY) 0/3858 variables, 3858/3858 constraints. Problems are: Problem set: 0 solved, 3510 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 3858/7375 variables, and 3858 constraints, problems are : Problem set: 0 solved, 3510 unsolved in 30102 ms.
Refiners :[Domain max(s): 3858/3859 constraints, State Equation: 0/3859 constraints, PredecessorRefiner: 0/3510 constraints, Known Traps: 0/0 constraints]
After SMT, in 71778ms problems are : Problem set: 0 solved, 3510 unsolved
Search for dead transitions found 0 dead transitions in 71819ms
Starting structural reductions in SI_LTL mode, iteration 1 : 3859/3869 places, 3516/3518 transitions.
Finished structural reductions in SI_LTL mode , in 1 iterations and 253327 ms. Remains : 3859/3869 places, 3516/3518 transitions.
Stuttering acceptance computed with spot in 165 ms :[(NOT p1), (NOT p0), (OR (NOT p0) (NOT p1))]
Running random walk in product with property : Echo-PT-d03r07-LTLCardinality-06
Product exploration explored 100000 steps with 186 reset in 5064 ms.
Product exploration explored 100000 steps with 185 reset in 5510 ms.
Computed a total of 3859 stabilizing places and 3516 stable transitions
Complete graph has no SCC; deadlocks are unavoidable. place count 3859 transition count 3516
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge (and all enablings converge to false).
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge : F ( (Ga|G!a) & (Gb|G!b)...)
Knowledge obtained : [(AND (NOT p1) p0), (X (NOT (AND (NOT p0) (NOT p1)))), (X (AND p0 (NOT p1))), (X (NOT (AND (NOT p0) p1))), (X (NOT p1)), (X p0), (X (X (NOT (AND (NOT p0) (NOT p1))))), (X (X (AND p0 (NOT p1)))), (X (X (NOT (AND (NOT p0) p1)))), (X (X (NOT p1))), (X (X p0)), (F (OR (G p1) (G (NOT p1)))), (F (OR (G p0) (G (NOT p0))))]
False Knowledge obtained : []
Knowledge based reduction with 13 factoid took 336 ms. Reduced automaton from 3 states, 5 edges and 2 AP (stutter insensitive) to 2 states, 3 edges and 1 AP (stutter insensitive).
Stuttering acceptance computed with spot in 71 ms :[(NOT p1), (NOT p1)]
RANDOM walk for 1906 steps (0 resets) in 212 ms. (8 steps per ms) remains 0/1 properties
Knowledge obtained : [(AND (NOT p1) p0), (X (NOT (AND (NOT p0) (NOT p1)))), (X (AND p0 (NOT p1))), (X (NOT (AND (NOT p0) p1))), (X (NOT p1)), (X p0), (X (X (NOT (AND (NOT p0) (NOT p1))))), (X (X (AND p0 (NOT p1)))), (X (X (NOT (AND (NOT p0) p1)))), (X (X (NOT p1))), (X (X p0)), (F (OR (G p1) (G (NOT p1)))), (F (OR (G p0) (G (NOT p0))))]
False Knowledge obtained : [(F p1)]
Knowledge based reduction with 13 factoid took 689 ms. Reduced automaton from 2 states, 3 edges and 1 AP (stutter insensitive) to 2 states, 3 edges and 1 AP (stutter insensitive).
Stuttering acceptance computed with spot in 88 ms :[(NOT p1), (NOT p1)]
Stuttering acceptance computed with spot in 90 ms :[(NOT p1), (NOT p1)]
// Phase 1: matrix 3516 rows 3859 cols
[2024-05-23 10:50:34] [INFO ] Invariants computation overflowed in 8839 ms
[2024-05-23 10:50:49] [INFO ] [Real]Absence check using state equation in 1528 ms returned unknown
Could not prove EG (NOT p1)
Support contains 2 out of 3859 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 3859/3859 places, 3516/3516 transitions.
Applied a total of 0 rules in 456 ms. Remains 3859 /3859 variables (removed 0) and now considering 3516/3516 (removed 0) transitions.
// Phase 1: matrix 3516 rows 3859 cols
[2024-05-23 10:50:58] [INFO ] Invariants computation overflowed in 8526 ms
[2024-05-23 10:51:03] [INFO ] Implicit Places using invariants in 14167 ms returned []
// Phase 1: matrix 3516 rows 3859 cols
[2024-05-23 10:51:12] [INFO ] Invariants computation overflowed in 8308 ms
[2024-05-23 10:52:17] [INFO ] Performed 25/3859 implicitness test of which 0 returned IMPLICIT in 40 seconds.
[2024-05-23 10:52:49] [INFO ] Performed 27/3859 implicitness test of which 0 returned IMPLICIT in 72 seconds.
[2024-05-23 10:53:21] [INFO ] Performed 29/3859 implicitness test of which 0 returned IMPLICIT in 104 seconds.
[2024-05-23 10:53:52] [INFO ] Performed 31/3859 implicitness test of which 0 returned IMPLICIT in 135 seconds.
[2024-05-23 10:53:52] [INFO ] Timeout of Implicit test with SMT after 135 seconds.
[2024-05-23 10:53:52] [INFO ] Implicit Places using invariants and state equation in 168348 ms returned []
Implicit Place search using SMT with State Equation took 182516 ms to find 0 implicit places.
[2024-05-23 10:53:52] [INFO ] Redundant transitions in 373 ms returned []
Running 3510 sub problems to find dead transitions.
// Phase 1: matrix 3516 rows 3859 cols
[2024-05-23 10:54:01] [INFO ] Invariants computation overflowed in 8963 ms
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
At refinement iteration 0 (INCLUDED_ONLY) 0/3858 variables, 3858/3858 constraints. Problems are: Problem set: 0 solved, 3510 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 3858/7375 variables, and 3858 constraints, problems are : Problem set: 0 solved, 3510 unsolved in 30087 ms.
Refiners :[Domain max(s): 3858/3859 constraints, State Equation: 0/3859 constraints, PredecessorRefiner: 3510/3510 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 3510 unsolved
At refinement iteration 0 (INCLUDED_ONLY) 0/3858 variables, 3858/3858 constraints. Problems are: Problem set: 0 solved, 3510 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 3858/7375 variables, and 3858 constraints, problems are : Problem set: 0 solved, 3510 unsolved in 30101 ms.
Refiners :[Domain max(s): 3858/3859 constraints, State Equation: 0/3859 constraints, PredecessorRefiner: 0/3510 constraints, Known Traps: 0/0 constraints]
After SMT, in 72194ms problems are : Problem set: 0 solved, 3510 unsolved
Search for dead transitions found 0 dead transitions in 72278ms
Finished structural reductions in SI_LTL mode , in 1 iterations and 255644 ms. Remains : 3859/3859 places, 3516/3516 transitions.
Computed a total of 3859 stabilizing places and 3516 stable transitions
Complete graph has no SCC; deadlocks are unavoidable. place count 3859 transition count 3516
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge (and all enablings converge to false).
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge : F ( (Ga|G!a) & (Gb|G!b)...)
Knowledge obtained : [(NOT p1), (X (NOT p1)), (X (X (NOT p1))), (F (OR (G p1) (G (NOT p1))))]
False Knowledge obtained : []
Knowledge based reduction with 4 factoid took 92 ms. Reduced automaton from 2 states, 3 edges and 1 AP (stutter insensitive) to 2 states, 3 edges and 1 AP (stutter insensitive).
Stuttering acceptance computed with spot in 188 ms :[(NOT p1), (NOT p1)]
RANDOM walk for 2075 steps (0 resets) in 230 ms. (8 steps per ms) remains 0/1 properties
Knowledge obtained : [(NOT p1), (X (NOT p1)), (X (X (NOT p1))), (F (OR (G p1) (G (NOT p1))))]
False Knowledge obtained : [(F p1)]
Knowledge based reduction with 4 factoid took 167 ms. Reduced automaton from 2 states, 3 edges and 1 AP (stutter insensitive) to 2 states, 3 edges and 1 AP (stutter insensitive).
Stuttering acceptance computed with spot in 101 ms :[(NOT p1), (NOT p1)]
Stuttering acceptance computed with spot in 97 ms :[(NOT p1), (NOT p1)]
// Phase 1: matrix 3516 rows 3859 cols
[2024-05-23 10:55:17] [INFO ] Invariants computation overflowed in 8598 ms
[2024-05-23 10:55:32] [INFO ] [Real]Absence check using state equation in 833 ms returned unknown
Could not prove EG (NOT p1)
Stuttering acceptance computed with spot in 65 ms :[(NOT p1), (NOT p1)]
Product exploration explored 100000 steps with 182 reset in 4801 ms.
Product exploration explored 100000 steps with 180 reset in 5561 ms.
Support contains 2 out of 3859 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 3859/3859 places, 3516/3516 transitions.
Applied a total of 0 rules in 309 ms. Remains 3859 /3859 variables (removed 0) and now considering 3516/3516 (removed 0) transitions.
// Phase 1: matrix 3516 rows 3859 cols
[2024-05-23 10:55:51] [INFO ] Invariants computation overflowed in 8085 ms
[2024-05-23 10:55:58] [INFO ] Implicit Places using invariants in 15152 ms returned []
// Phase 1: matrix 3516 rows 3859 cols
[2024-05-23 10:56:06] [INFO ] Invariants computation overflowed in 8247 ms
[2024-05-23 10:57:08] [INFO ] Performed 25/3859 implicitness test of which 0 returned IMPLICIT in 39 seconds.
[2024-05-23 10:57:40] [INFO ] Performed 27/3859 implicitness test of which 0 returned IMPLICIT in 71 seconds.
[2024-05-23 10:58:12] [INFO ] Performed 29/3859 implicitness test of which 0 returned IMPLICIT in 103 seconds.
[2024-05-23 10:58:46] [INFO ] Performed 137/3859 implicitness test of which 0 returned IMPLICIT in 138 seconds.
[2024-05-23 10:58:46] [INFO ] Timeout of Implicit test with SMT after 138 seconds.
[2024-05-23 10:58:46] [INFO ] Implicit Places using invariants and state equation in 168283 ms returned []
Implicit Place search using SMT with State Equation took 183437 ms to find 0 implicit places.
[2024-05-23 10:58:47] [INFO ] Redundant transitions in 220 ms returned []
Running 3510 sub problems to find dead transitions.
// Phase 1: matrix 3516 rows 3859 cols
[2024-05-23 10:58:56] [INFO ] Invariants computation overflowed in 8892 ms
At refinement iteration 0 (INCLUDED_ONLY) 0/3858 variables, 3858/3858 constraints. Problems are: Problem set: 0 solved, 3510 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 3858/7375 variables, and 3858 constraints, problems are : Problem set: 0 solved, 3510 unsolved in 30114 ms.
Refiners :[Domain max(s): 3858/3859 constraints, State Equation: 0/3859 constraints, PredecessorRefiner: 3510/3510 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 3510 unsolved
At refinement iteration 0 (INCLUDED_ONLY) 0/3858 variables, 3858/3858 constraints. Problems are: Problem set: 0 solved, 3510 unsolved
Error getting values : (error "ParserException while parsing response: ((s0 1)
(s1 1)
(s2 1)
(s3 1)
(s4 1)
(s5 1)
(s6 1)
(s7 1)
(s8 1)
(s9 1)
(s10 1)
(s11 1)
(s12 1)
(s13 1)
(s14 1)
(s15 1)
(s16 1)
(s17 1)
(s18 1)
(s19 1)
(s20 1)
(s21 1)
(s22 1)
(s23 1)
(s24 1)
(s25 1)
(s26 1)
(s27 1)
(s28 1)
(s29 1)
(s30 1)
(s31 1)
(s32 1)
(s33 1)
(s34 1)
(s35 1)
(s36 1)
(s37 1)
(s38 1)
(s39 1)
(s40 1)
(s41 1)
(s42 1)
(s43 1)
(s44 1)
(s45 1)
(s46 1)
(s47 1)
(s48 1)
(s49 1)
(s50 1)
(s51 1)
(s52 1)
(s53 1)
(s54 1)
(s55 1)
(s56 1)
(s57 1)
(s58 1)
(s59 1)
(s60 1)
(s61 1)
(s62 1)
(s63 1)
(s64 1)
(s65 1)
(s66 1)
(s67 1)
(s68 1)
(s69 1)
(s70 1)
(s71 1)
(s72 1)
(s73 1)
(s74 1)
(s75 1)
(s76 1)
(s77 1)
(s78 1)
(s79 1)
(s80 1)
(s81 1)
(s82 1)
(s83 1)
(s84 1)
(s85 1)
(s86 1)
(s87 1)
(s88 1)
(s89 1)
(s90 1)
(s91 1)
(s92 1)
(s93 1)
(s94 1)
(s95 1)
(s96 1)
(s97 1)
(s98 1)
(s99 1)
(s100 1)
(s101 1)
(s102 1)
(s103 1)
(s104 1)
(s105 1)
(s106 1)
(s107 1)
(s108 1)
(s109 1)
(s110 1)
(s111 1)
(s112 1)
(s113 1)
(s114 1)
(s115 1)
(s116 1)
(s117 1)
(s118 1)
(s119 1)
(s120 1)
(s121 1)
(s122 1)
(s123 1)
(s124 1)
(s125 1)
(s126 1)
(s127 1)
(s128 1)
(s129 1)
(s130 1)
(s131 1)
(s132 1)
(s133 1)
(s134 1)
(s135 1)
(s136 1)
(s137 1)
(s138 1)
(s139 1)
(s140 1)
(s141 1)
(s142 1)
(s143 1)
(s144 1)
(s145 1)
(s146 1)
(s147 1)
(s148 1)
(s149 1)
(s150 1)
(s151 1)
(s152 1)
(s153 1)
(s154 1)
(s155 1)
(s156 1)
(s157 1)
(s158 1)
(s159 1)
(s160 1)
(s161 1)
(s162 1)
(s163 1)
(s164 1)
(s165 1)
(s166 1)
(s167 1)
(s168 1)
(s169 1)
(s170 1)
(s171 1)
(s172 1)
(s173 1)
(s174 1)
(s175 1)
(s176 1)
(s177 1)
(s178 1)
(s179 1)
(s180 1)
(s181 1)
(s182 1)
(s183 1)
(s184 1)
(s185 1)
(s186 1)
(s187 1)
(s188 1)
(s189 1)
(s190 1)
(s191 1)
(s192 1)
(s193 1)
(s194 1)
(s195 1)
(s196 1)
(s197 1)
(s198 1)
(s199 1)
(s200 1)
(s201 1)
(s202 1)
(s203 1)
(s204 1)
(s205 1)
(s206 1)
(s207 1)
(s208 1)
(s209 1)
(s210 1)
(s211 1)
(s212 1)
(s213 1)
(s214 1)
(s215 1)
(s216 1)
(s217 1)
(s218 1)
(s219 1)
(s220 1)
(s221 1)
(s222 1)
(s223 1)
(s224 1)
(s225 1)
(s226 1)
(s227 1)
(s228 1)
(s229 1)
(s230 1)
(s231 1)
(s232 1)
(s233 1)
(s234 1)
(s235 1)
(s236 1)
(s237 1)
(s238 1)
(s239 1)
(s240 1)
(s241 1)
(s242 1)
(s243 1)
(s244 1)
(s245 1)
(s246 1)
(s247 1)
(s248 1)
(s249 1)
(s250 1)
(s251 1)
(s252 1)
(s253 1)
(s254 1)
(s255 1)
(s256 1)
(s257 1)
(s258 1)
(s259 1)
(s260 1)
(s261 1)
(s262 1)
(s263 1)
(s264 1)
(s265 1)
(s266 1)
(s267 1)
(s268 1)
(s269 1)
(s270 1)
(s271 1)
(s272 1)
(s273 1)
(s274 1)
(s275 1)
(s276 1)
(s277 1)
(s278 1)
(s279 1)
(s280 1)
(s281 1)
(s282 1)
(s283 1)
(s284 1)
(s285 1)
(s286 1)
(s287 1)
(s288 1)
(s289 1)
(s290 1)
(s291 1)
(s292 1)
(s293 1)
(s294 1)
(s295 1)
(s296 1)
(s297 1)
(s298 1)
(s299 1)
(s300 1)
(s301 1)
(s302 1)
(s303 1)
(s304 1)
(s305 1)
(s306 1)
(s307 1)
(s308 1)
(s309 1)
(s310 1)
(s311 1)
(s312 1)
(s313 1)
(s314 1)
(s315 1)
(s316 1)
(s317 1)
(s318 1)
(s319 1)
(s320 1)
(s321 1)
(s322 1)
(s323 1)
(s324 1)
(s325 1)
(s326 1)
(s327 1)
(s328 1)
(s329 1)
(s330 1)
(s331 1)
(s332 1)
(s333 1)
(s334 1)
(s335 1)
(s336 1)
(s337 1)
(s338 1)
(s339 1)
(s340 1)
(s341 1)
(s342 1)
(s343 1)
(s344 1)
(s345 1)
(s346 1)
(s347 1)
(s348 1)
(s349 1)
(s350 1)
(s351 1)
(s352 1)
(s353 1)
(s354 1)
(s355 1)
(s356 1)
(s357 1)
(s358 1)
(s359 1)
(s360 1)
(s361 1)
(s362 1)
(s363 1)
(s364 1)
(s365 1)
(s366 1)
(s367 1)
(s368 1)
(s369 1)
(s370 1)
(s371 1)
(s372 1)
(s373 1)
(s374 1)
(s375 1)
(s376 1)
(s377 1)
(s378 1)
(s379 1)
(s380 1)
(s381 1)
(s382 1)
(s383 1)
(s384 1)
(s385 1)
(s386 1)
(s387 1)
(s388 1)
(s389 1)
(s390 1)
(s391 1)
(s392 1)
(s393 1)
(s394 1)
(s395 1)
(s396 1)
(s397 1)
(s398 1)
(s399 1)
(s400 1)
(s401 1)
(s402 1)
(s403 1)
(s404 1)
(s405 1)
(s406 1)
(s407 1)
(s408 1)
(s409 1)
(s410 1)
(s411 1)
(s412 1)
(s413 1)
(s414 1)
(s415 1)
(s416 1)
(s417 1)
(s418 1)
(s419 1)
(s420 1)
(s421 1)
(s422 1)
(s423 1)
(s424 1)
(s425 1)
(s426 1)
(s427 1)
(s428 1)
(s429 1)
(s430 1)
(s431 1)
(s432 1)
(s433 1)
(s434 1)
(s435 1)
(s436 1)
(s437 1)
(s438 1)
(s439 1)
(s440 1)
(s441 1)
(s442 1)
(s443 1)
(s444 1)
(s445 1)
(s446 1)
(s447 1)
(s448 1)
(s449 1)
(s450 1)
(s451 1)
(s452 1)
(s453 1)
(s454 1)
(s455 1)
(s456 1)
(s457 1)
(s458 1)
(s459 1)
(s460 1)
(s461 1)
(s462 1)
(s463 1)
(s464 1)
(s465 1)
(s466 1)
(s467 1)
(s468 1)
(s469 1)
(s470 1)
(s471 1)
(s472 1)
(s473 1)
(s474 1)
(s475 1)
(s476 1)
(s477 1)
(s478 1)
(s479 1)
(s480 1)
(s481 1)
(s482 1)
(s483 1)
(s484 1)
(s485 1)
(s486 1)
(s487 1)
(s488 1)
(s489 1)
(s490 1)
(s491 1)
(s492 1)
(s493 1)
(s494 1)
(s495 1)
(s496 1)
(s497 1)
(s498 1)
(s499 1)
(s500 1)
(s501 1)
(s502 1)
(s503 1)
(s504 1)
(s505 1)
(s506 1)
(s507 1)
(s508 1)
(s509 1)
(s510 1)
(s511 1)
(s512 1)
(s513 1)
(s514 1)
(s515 1)
(s516 1)
(s517 1)
(s518 1)
(s519 1)
(s520 1)
(s521 1)
(s522 1)
(s523 1)
(s524 1)
(s525 1)
(s526 1)
(s527 1)
(s528 1)
(s529 1)
(s530 1)
(s531 1)
(s532 1)
(s533 1)
(s534 1)
(s535 1)
(s536 1)
(s537 1)
(s538 1)
(s539 1)
(s540 1)
(s541 1)
(s542 1)
(s543 1)
(s544 1)
(s545 1)
(s546 1)
(s547 1)
(s548 1)
(s549 1)
(s550 1)
(s551 1)
(s552 1)
(s553 1)
(s554 1)
(s555 1)
(s556 1)
(s557 1)
(s558 1)
(s559 1)
(s560 1)
(s561 1)
(s562 1)
(s563 1)
(s564 1)
(s565 1)
(s566 1)
(s567 1)
(s568 1)
(s569 1)
(s570 1)
(s571 1)
(s572 1)
(s573 1)
(s574 1)
(s575 1)
(s576 1)
(s577 1)
(s578 1)
(s579 1)
(s580 1)
(s581 1)
(s582 1)
(s583 1)
(s584 1)
(s585 1)
(s586 1)
(s587 1)
(s588 1)
(s589 1)
(s590 1)
(s591 1)
(s592 1)
(s593 1)
(s594 1)
(s595 1)
(s596 1)
(s597 1)
(s598 1)
(s599 1)
(s600 1)
(s601 1)
(s602 1)
(s603 1)
(s604 1)
(s605 1)
(s606 1)
(s607 1)
(s608 1)
(s609 1)
(s610 1)
(s611 1)
(s612 1)
(s613 1)
(s614 1)
(s615 1)
(s616 1)
(s617 1)
(s618 1)
(s619 1)
(s620 1)
(s621 1)
(s622 1)
(s623 1)
(s624 1)
(s625 1)
(s626 1)
(s627 1)
(s628 1)
(s629 1)
(s630 1)
(s631 1)
(s632 1)
(s633 1)
(s634 1)
(s635 1)
(s636 1)
(s637 1)
(s638 1)
(s639 1)
(s640 1)
(s641 1)
(s642 1)
(s643 1)
(s644 1)
(s645 1)
(s646 1)
(s647 1)
(s648 1)
(s649 1)
(s650 1)
(s651 1)
(s652 1)
(s653 1)
(s654 1)
(s655 1)
(s656 1)
(s657 1)
(s658 1)
(s659 1)
(s660 1)
(s661 1)
(s662 1)
(s663 1)
(s664 1)
(s665 1)
(s666 1)
(s667 1)
(s668 1)
(s669 1)
(s670 1)
(s671 1)
(s672 1)
(s673 1)
(s674 1)
(s675 1)
(s676 1)
(s677 1)
(s678 1)
(s679 1)
(s680 1)
(s681 1)
(s682 1)
(s683 1)
(s684 1)
(s685 1)
(s686 1)
(s687 1)
(s688 1)
(s689 1)
(s690 1)
(s691 1)
(s692 1)
(s693 1)
(s694 1)
(s695 1)
(s696 1)
(s697 1)
(s698 1)
(s699 1)
(s700 1)
(s701 1)
(s702 1)
(s703 1)
(s704 1)
(s705 1)
(s706 1)
(s707 1)
(s708 1)
(s709 1)
(s710 1)
(s711 1)
(s712 1)
(s713 1)
(s714 1)
(s715 1)
(s716 1)
(s717 1)
(s718 1)
(s719 1)
(s720 1)
(s721 1)
(s722 1)
(s723 1)
(s724 1)
(s725 1)
(s726 1)
(s727 1)
(s728 1)
(s729 1)
(s730 1)
(s731 1)
(s732 1)
(s733 1)
(s734 1)
(s735 1)
(s736 1)
(s737 1)
(s738 1)
(s739 1)
(s740 1)
(s741 1)
(s742 1)
(s743 1)
(s744 1)
(s745 1)
(s746 1)
(s747 1)
(s748 1)
(s749 1)
(s750 1)
(s751 1)
(s752 1)
(s753 1)
(s754 1)
(s755 1)
(s756 1)
(s757 1)
(s758 1)
(s759 1)
(s760 1)
(s761 1)
(s762 1)
(s763 1)
(s764 1)
(s765 1)
(s766 1)
(s767 1)
(s768 1)
(s769 1)
(s770 1)
(s771 1)
(s772 1)
(s773 1)
(s774 1)
(s775 1)
(s776 1)
(s777 1)
(s778 1)
(s779 1)
(s780 1)
(s781 1)
(s782 1)
(s783 1)
(s784 1)
(s785 1)
(s786 1)
(s787 1)
(s788 1)
(s789 1)
(s790 1)
(s791 1)
(s792 1)
(s793 1)
(s794 1)
(s795 1)
(s796 1)
(s797 1)
(s798 1)
(s799 1)
(s800 1)
(s801 1)
(s802 1)
(s803 1)
(s804 1)
(s805 1)
(s806 1)
(s807 1)
(s808 1)
(s809 1)
(s810 1)
(s811 1)
(s812 1)
(s813 1)
(s814 1)
(s815 1)
(s816 1)
(s817 1)
(s818 1)
(s819 1)
(s820 1)
(s821 1)
(s822 1)
(s823 1)
(s824 1)
(s825 1)
(s826 1)
(s827 1)
(s828 1)
(s829 1)
(s830 1)
(s831 1)
(s832 1)
(s833 1)
(s835 1)
(s836 1)
(s837 1)
(s838 1)
(s839 1)
(s840 1)
(s841 1)
(s842 1)
(s843 1)
(s844 1)
(s845 1)
(s846 1)
(s847 1)
(s848 1)
(s849 1)
(s850 1)
(s851 1)
(s852 1)
(s853 1)
(s854 1)
(s855 1)
(s856 1)
(s857 1)
(s858 1)
(s859 1)
(s860 1)
(s861 1)
(s862 1)
(s863 1)
(s864 1)
(s865 1)
(s866 1)
(s867 1)
(s868 1)
(s869 1)
(s870 1)
(s871 1)
(s872 1)
(s873 1)
(s874 1)
(s875 1)
(s876 1)
(s877 1)
(s878 1)
(s879 1)
(s880 1)
(s881 1)
(s882 1)
(s883 1)
(s884 1)
(s885 1)
(s886 1)
(s887 1)
(s888 1)
(s889 1)
(s890 1)
(s891 1)
(s892 1)
(s893 1)
(s894 1)
(s895 1)
(s896 1)
(s897 1)
(s898 1)
(s899 1)
(s900 1)
(s901 1)
(s902 1)
(s903 1)
(s904 1)
(s905 1)
(s906 1)
(s907 1)
(s908 1)
(s909 1)
(s910 1)
(s911 1)
(s912 1)
(s913 1)
(s914 1)
(s915 1)
(s916 1)
(s917 1)
(s918 1)
(s919 1)
(s920 1)
(s921 timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 3858/7375 variables, and 3858 constraints, problems are : Problem set: 0 solved, 3510 unsolved in 30100 ms.
Refiners :[Domain max(s): 3858/3859 constraints, State Equation: 0/3859 constraints, PredecessorRefiner: 0/3510 constraints, Known Traps: 0/0 constraints]
After SMT, in 72743ms problems are : Problem set: 0 solved, 3510 unsolved
Search for dead transitions found 0 dead transitions in 72811ms
Finished structural reductions in SI_LTL mode , in 1 iterations and 256804 ms. Remains : 3859/3859 places, 3516/3516 transitions.
Treatment of property Echo-PT-d03r07-LTLCardinality-06 finished in 843821 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202405141337/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(X(X(F((p0&&X(F(p1)))))))'
Support contains 2 out of 3869 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 3869/3869 places, 3518/3518 transitions.
Reduce places removed 3 places and 0 transitions.
Iterating post reduction 0 with 3 rules applied. Total rules applied 3 place count 3866 transition count 3518
Applied a total of 3 rules in 331 ms. Remains 3866 /3869 variables (removed 3) and now considering 3518/3518 (removed 0) transitions.
// Phase 1: matrix 3518 rows 3866 cols
[2024-05-23 11:00:09] [INFO ] Invariants computation overflowed in 8656 ms
[2024-05-23 11:00:14] [INFO ] Implicit Places using invariants in 14081 ms returned []
// Phase 1: matrix 3518 rows 3866 cols
[2024-05-23 11:00:23] [INFO ] Invariants computation overflowed in 8631 ms
[2024-05-23 11:01:44] [INFO ] Performed 1/3866 implicitness test of which 0 returned IMPLICIT in 32 seconds.
[2024-05-23 11:02:16] [INFO ] Performed 3/3866 implicitness test of which 0 returned IMPLICIT in 64 seconds.
[2024-05-23 11:02:48] [INFO ] Performed 5/3866 implicitness test of which 0 returned IMPLICIT in 96 seconds.
[2024-05-23 11:03:03] [INFO ] Implicit Places using invariants and state equation in 168698 ms returned []
Implicit Place search using SMT with State Equation took 182786 ms to find 0 implicit places.
Running 3517 sub problems to find dead transitions.
// Phase 1: matrix 3518 rows 3866 cols
[2024-05-23 11:03:12] [INFO ] Invariants computation overflowed in 8491 ms
Error getting values : (error "ParserException while parsing response: ((s0 1.0)
(s1 1.0)
(s2 1.0)
(s3 1.0)
(s4 1.0)
(s5 1.0)
(s6 1.0)
(s7 1.0)
(s8 1.0)
(s9 1.0)
(s10 1.0)
(s11 1.0)
(s12 1.0)
(s13 1.0)
(s14 1.0)
(s15 1.0)
(s16 1.0)
(s17 1.0)
(s18 1.0)
(s19 1.0)
(s20 1.0)
(s21 1.0)
(s22 1.0)
(s23 1.0)
(s24 1.0)
(s25 1.0)
(s26 1.0)
(s27 1.0)
(s28 1.0)
(s29 1.0)
(s30 1.0)
(s31 1.0)
(s32 1.0)
(s33 1.0)
(s34 1.0)
(s35 1.0)
(s36 1.0)
(s37 1.0)
(s38 1.0)
(s39 1.0)
(s40 1.0)
(s41 1.0)
(s42 1.0)
(s43 1.0)
(s44 1.0)
(s45 1.0)
(s46 1.0)
(s47 1.0)
(s48 1.0)
(s49 1.0)
(s50 1.0)
(s51 1.0)
(s52 1.0)
(s53 1.0)
(s54 1.0)
(s55 1.0)
(s56 1.0)
(s57 1.0)
(s58 1.0)
(s59 1.0)
(s60 1.0)
(s61 1.0)
(s62 1.0)
(s63 1.0)
(s64 1.0)
(s65 1.0)
(s66 1.0)
(s67 1.0)
(s68 1.0)
(s69 1.0)
(s70 1.0)
(s71 1.0)
(s72 1.0)
(s73 1.0)
(s74 1.0)
(s75 1.0)
(s76 1.0)
(s77 1.0)
(s78 1.0)
(s79 1.0)
(s80 1.0)
(s81 1.0)
(s82 1.0)
(s83 1.0)
(s84 1.0)
(s85 1.0)
(s86 1.0)
(s87 1.0)
(s88 1.0)
(s89 1.0)
(s90 1.0)
(s91 1.0)
(s92 1.0)
(s93 1.0)
(s94 1.0)
(s95 1.0)
(s96 1.0)
(s97 1.0)
(s98 1.0)
(s99 1.0)
(s100 1.0)
(s101 1.0)
(s102 1.0)
(s103 1.0)
(s104 1.0)
(s105 1.0)
(s106 1.0)
(s107 1.0)
(s108 1.0)
(s109 1.0)
(s110 1.0)
(s111 1.0)
(s112 1.0)
(s113 1.0)
(s114 1.0)
(s115 1.0)
(s116 1.0)
(s117 1.0)
(s118 1.0)
(s119 1.0)
(s120 1.0)
(s121 1.0)
(s122 1.0)
(s123 1.0)
(s124 1.0)
(s125 1.0)
(s126 1.0)
(s127 1.0)
(s128 1.0)
(s129 1.0)
(s130 1.0)
(s131 1.0)
(s132 1.0)
(s133 1.0)
(s134 1.0)
(s135 1.0)
(s136 1.0)
(s137 1.0)
(s138 1.0)
(s139 1.0)
(s140 1.0)
(s141 1.0)
(s142 1.0)
(s143 1.0)
(s144 1.0)
(s145 1.0)
(s146 1.0)
(s147 1.0)
(s148 1.0)
(s149 1.0)
(s150 1.0)
(s151 1.0)
(s152 1.0)
(s153 1.0)
(s154 1.0)
(s155 1.0)
(s156 1.0)
(s157 1.0)
(s158 1.0)
(s159 1.0)
(s160 1.0)
(s161 1.0)
(s162 1.0)
(s163 1.0)
(s164 1.0)
(s165 1.0)
(s166 1.0)
(s167 1.0)
(s168 1.0)
(s169 1.0)
(s170 1.0)
(s171 1.0)
(s172 1.0)
(s173 1.0)
(s174 1.0)
(s175 1.0)
(s176 1.0)
(s177 1.0)
(s178 1.0)
(s179 1.0)
(s180 1.0)
(s181 1.0)
(s182 1.0)
(s183 1.0)
(s184 1.0)
(s185 1.0)
(s186 1.0)
(s187 1.0)
(s188 1.0)
(s189 1.0)
(s190 1.0)
(s191 1.0)
(s192 1.0)
(s193 1.0)
(s194 1.0)
(s195 1.0)
(s196 1.0)
(s197 1.0)
(s198 1.0)
(s199 1.0)
(s200 1.0)
(s201 1.0)
(s202 1.0)
(s203 1.0)
(s204 1.0)
(s205 1.0)
(s206 1.0)
(s207 1.0)
(s208 1.0)
(s209 1.0)
(s210 1.0)
(s211 1.0)
(s212 1.0)
(s213 1.0)
(s214 1.0)
(s215 1.0)
(s216 1.0)
(s217 1.0)
(s218 1.0)
(s219 1.0)
(s220 1.0)
(s221 1.0)
(s222 1.0)
(s223 1.0)
(s224 1.0)
(s225 1.0)
(s226 1.0)
(s227 1.0)
(s228 1.0)
(s229 1.0)
(s230 1.0)
(s231 1.0)
(s232 1.0)
(s233 1.0)
(s234 1.0)
(s235 1.0)
(s236 1.0)
(s237 1.0)
(s238 1.0)
(s239 1.0)
(s240 1.0)
(s241 1.0)
(s242 1.0)
(s243 1.0)
(s244 1.0)
(s245 1.0)
(s246 1.0)
(s247 1.0)
(s248 1.0)
(s249 1.0)
(s250 1.0)
(s251 1.0)
(s252 1.0)
(s253 1.0)
(s254 1.0)
(s255 1.0)
(s256 1.0)
(s257 1.0)
(s258 1.0)
(s259 1.0)
(s260 1.0)
(s261 1.0)
(s262 1.0)
(s263 1.0)
(s264 1.0)
(s265 1.0)
(s266 1.0)
(s267 1.0)
(s268 1.0)
(s269 1.0)
(s270 1.0)
(s271 1.0)
(s272 1.0)
(s273 1.0)
(s274 1.0)
(s275 1.0)
(s276 1.0)
(s277 1.0)
(s278 1.0)
(s279 1.0)
(s280 1.0)
(s281 1.0)
(s282 1.0)
(s283 1.0)
(s284 1.0)
(s285 1.0)
(s286 1.0)
(s287 1.0)
(s288 1.0)
(s289 1.0)
(s290 1.0)
(s291 1.0)
(s292 1.0)
(s293 1.0)
(s294 1.0)
(s295 1.0)
(s296 1.0)
(s297 1.0)
(s298 1.0)
(s299 1.0)
(s300 1.0)
(s301 1.0)
(s302 1.0)
(s303 1.0)
(s304 1.0)
(s305 1.0)
(s306 1.0)
(s307 1.0)
(s308 1.0)
(s309 1.0)
(s310 1.0)
(s311 1.0)
(s312 1.0)
(s313 1.0)
(s314 1.0)
(s315 1.0)
(s316 1.0)
(s317 1.0)
(s318 1.0)
(s319 1.0)
(s320 1.0)
(s321 1.0)
(s322 1.0)
(s323 1.0)
(s324 1.0)
(s325 1.0)
(s326 1.0)
(s327 1.0)
(s328 1.0)
(s329 1.0)
(s330 1.0)
(s331 1.0)
(s332 1.0)
(s333 1.0)
(s334 1.0)
(s335 1.0)
(s336 1.0)
(s337 1.0)
(s338 1.0)
(s339 1.0)
(s340 1.0)
(s341 1.0)
(s342 1.0)
(s343 1.0)
(s344 1.0)
(s345 1.0)
(s346 1.0)
(s347 1.0)
(s348 1.0)
(s349 1.0)
(s350 1.0)
(s351 1.0)
(s352 1.0)
(s353 1.0)
(s354 1.0)
(s355 1.0)
(s356 1.0)
(s357 1.0)
(s358 1.0)
(s359 1.0)
(s360 1.0)
(s361 1.0)
(s362 1.0)
(s363 1.0)
(s364 1.0)
(s365 1.0)
(s366 1.0)
(s367 1.0)
(s368 1.0)
(s369 1.0)
(s370 1.0)
(s371 1.0)
(s372 1.0)
(s373 1.0)
(s374 1.0)
(s375 1.0)
(s376 1.0)
(s377 1.0)
(s378 1.0)
(s379 1.0)
(s380 1.0)
(s381 1.0)
(s382 1.0)
(s383 1.0)
(s384 1.0)
(s385 1.0)
(s386 1.0)
(s387 1.0)
(s388 1.0)
(s389 1.0)
(s390 1.0)
(s391 1.0)
(s392 1.0)
(s393 1.0)
(s394 1.0)
(s395 1.0)
(s396 1.0)
(s397 1.0)
(s398 1.0)
(s399 1.0)
(s400 1.0)
(s401 1.0)
(s402 1.0)
(s403 1.0)
(s404 1.0)
(s405 1.0)
(s406 1.0)
(s407 1.0)
(s408 1.0)
(s409 1.0)
(s410 1.0)
(s411 1.0)
(s412 1.0)
(s413 1.0)
(s414 1.0)
(s415 1.0)
(s416 1.0)
(s417 1.0)
(s418 1.0)
(s419 1.0)
(s420 1.0)
(s421 1.0)
(s422 1.0)
(s423 1.0)
(s424 1.0)
(s425 1.0)
(s426 1.0)
(s427 1.0)
(s428 1.0)
(s429 1.0)
(s430 1.0)
(s431 1.0)
(s432 1.0)
(s433 1.0)
(s434 1.0)
(s435 1.0)
(s436 1.0)
(s437 1.0)
(s438 1.0)
(s439 1.0)
(s440 1.0)
(s441 1.0)
(s442 1.0)
(s443 1.0)
(s444 1.0)
(s445 1.0)
(s446 1.0)
(s447 1.0)
(s448 1.0)
(s449 1.0)
(s450 1.0)
(s451 1.0)
(s452 1.0)
(s453 1.0)
(s454 1.0)
(s455 1.0)
(s456 1.0)
(s457 1.0)
(s458 1.0)
(s459 1.0)
(s460 1.0)
(s461 1.0)
(s462 1.0)
(s463 1.0)
(s464 1.0)
(s465 1.0)
(s466 1.0)
(s467 1.0)
(s468 1.0)
(s469 1.0)
(s470 1.0)
(s471 1.0)
(s472 1.0)
(s473 1.0)
(s474 1.0)
(s475 1.0)
(s476 1.0)
(s477 1.0)
(s478 1.0)
(s479 1.0)
(s480 1.0)
(s481 1.0)
(s482 1.0)
(s483 1.0)
(s484 1.0)
(s485 1.0)
(s486 1.0)
(s487 1.0)
(s488 1.0)
(s489 1.0)
(s490 1.0)
(s491 1.0)
(s492 1.0)
(s493 1.0)
(s494 1.0)
(s495 1.0)
(s496 1.0)
(s497 1.0)
(s498 1.0)
(s499 1.0)
(s500 1.0)
(s501 1.0)
(s502 1.0)
(s503 1.0)
(s504 1.0)
(s505 1.0)
(s506 1.0)
(s507 1.0)
(s508 1.0)
(s509 1.0)
(s510 1.0)
(s511 1.0)
(s512 1.0)
(s513 1.0)
(s514 1.0)
(s515 1.0)
(s516 1.0)
(s517 1.0)
(s518 1.0)
(s519 1.0)
(s520 1.0)
(s521 1.0)
(s522 1.0)
(s523 1.0)
(s524 1.0)
(s525 1.0)
(s526 1.0)
(s527 1.0)
(s528 1.0)
(s529 1.0)
(s530 1.0)
(s531 1.0)
(s532 1.0)
(s533 1.0)
(s534 1.0)
(s535 1.0)
(s536 1.0)
(s537 1.0)
(s538 1.0)
(s539 1.0)
(s540 1.0)
(s541 1.0)
(s542 1.0)
(s543 1.0)
(s544 1.0)
(s545 1.0)
(s546 1.0)
(s547 1.0)
(s548 1.0)
(s549 1.0)
(s550 1.0)
(s551 1.0)
(s552 1.0)
(s553 1.0)
(s554 1.0)
(s555 1.0)
(s556 1.0)
(s557 1.0)
(s558 1.0)
(s559 1.0)
(s560 1.0)
(s561 1.0)
(s562 1.0)
(s563 1.0)
(s564 1.0)
(s565 1.0)
(s566 1.0)
(s567 1.0)
(s568 1.0)
(s569 1.0)
(s570 1.0)
(s571 1.0)
(s572 1.0)
(s573 1.0)
(s574 1.0)
(s575 1.0)
(s576 1.0)
(s577 1.0)
(s578 1.0)
(s579 1.0)
(s580 1.0)
(s581 1.0)
(s582 1.0)
(s583 1.0)
(s584 1.0)
(s585 1.0)
(s586 1.0)
(s587 1.0)
(s588 1.0)
(s589 1.0)
(s590 1.0)
(s591 1.0)
(s592 1.0)
(s593 1.0)
(s594 1.0)
(s595 1.0)
(s596 1.0)
(s597 1.0)
(s598 1.0)
(s599 1.0)
(s600 1.0)
(s601 1.0)
(s602 1.0)
(s603 1.0)
(s604 1.0)
(s605 1.0)
(s606 1.0)
(s607 1.0)
(s608 1.0)
(s609 1.0)
(s610 1.0)
(s611 1.0)
(s612 1.0)
(s613 1.0)
(s614 1.0)
(s615 1.0)
(s616 1.0)
(s617 1.0)
(s618 1.0)
(s619 1.0)
(s620 1.0)
(s621 1.0)
(s622 1.0)
(s623 1.0)
(s624 1.0)
(s625 1.0)
(s626 1.0)
(s627 1.0)
(s628 1.0)
(s629 1.0)
(s630 1.0)
(s631 1.0)
(s632 1.0)
(s633 1.0)
(s634 1.0)
(s635 1.0)
(s636 1.0)
(s637 1.0)
(s638 1.0)
(s639 1.0)
(s640 1.0)
(s641 1.0)
(s642 1.0)
(s643 1.0)
(s644 1.0)
(s645 1.0)
(s646 1.0)
(s647 1.0)
(s648 1.0)
(s649 1.0)
(s650 1.0)
(s651 1.0)
(s652 1.0)
(s653 1.0)
(s654 1.0)
(s655 1.0)
(s656 1.0)
(s657 1.0)
(s658 1.0)
(s659 1.0)
(s660 1.0)
(s661 1.0)
(s662 1.0)
(s663 1.0)
(s664 1.0)
(s665 1.0)
(s666 1.0)
(s667 1.0)
(s668 1.0)
(s669 1.0)
(s670 1.0)
(s671 1.0)
(s672 1.0)
(s673 1.0)
(s674 1.0)
(s675 1.0)
(s676 1.0)
(s677 1.0)
(s678 1.0)
(s679 1.0)
(s680 1.0)
(s681 1.0)
(s682 1.0)
(s683 1.0)
(s684 1.0)
(s685 1.0)
(s686 1.0)
(s687 1.0)
(s688 1.0)
(s689 1.0)
(s690 1.0)
(s691 1.0)
(s692 1.0)
(s693 1.0)
(s694 1.0)
(s695 1.0)
(s696 1.0)
(s697 1.0)
(s698 1.0)
(s699 1.0)
(s700 1.0)
(s701 1.0)
(s702 1.0)
(s703 1.0)
(s704 1.0)
(s705 1.0)
(s706 1.0)
(s707 1.0)
(s708 1.0)
(s709 1.0)
(s710 1.0)
(s711 1.0)
(s712 1.0)
(s713 1.0)
(s714 1.0)
(s715 1.0)
(s716 1.0)
(s717 1.0)
(s718 1.0)
(s719 1.0)
(s720 1.0)
(s721 1.0)
(s722 1.0)
(s723 1.0)
(s724 1.0)
(s725 1.0)
(s726 1.0)
(s727 1.0)
(s728 1.0)
(s729 1.0)
(s730 1.0)
(s731 1.0)
(s732 1.0)
(s733 1.0)
(s734 1.0)
(s735 1.0)
(s736 1.0)
(s737 1.0)
(s738 1.0)
(s739 1.0)
(s740 1.0)
(s741 1.0)
(s742 1.0)
(s743 1.0)
(s744 1.0)
(s745 1.0)
(s746 1.0)
(s747 1.0)
(s748 1.0)
(s749 1.0)
(s750 1.0)
(s751 1.0)
(s752 1.0)
(s753 1.0)
(s754 1.0)
(s755 1.0)
(s756 1.0)
(s757 1.0)
(s758 1.0)
(s759 1.0)
(s760 1.0)
(s761 1.0)
(s762 1.0)
(s763 1.0)
(s764 1.0)
(s765 1.0)
(s766 1.0)
(s767 1.0)
(s768 1.0)
(s769 1.0)
(s770 1.0)
(s771 1.0)
(s772 1.0)
(s773 1.0)
(s774 1.0)
(s775 1.0)
(s776 1.0)
(s777 1.0)
(s778 1.0)
(s779 1.0)
(s780 1.0)
(s781 1.0)
(s782 1.0)
(s783 1.0)
(s784 1.0)
(s785 1.0)
(s786 1.0)
(s787 1.0)
(s788 1.0)
(s789 1.0)
(s790 1.0)
(s791 1.0)
(s792 1.0)
(s793 1.0)
(s794 1.0)
(s795 1.0)
(s796 1.0)
(s797 1.0)
(s798 1.0)
(s799 1.0)
(s800 1.0)
(s801 1.0)
(s802 1.0)
(s803 1.0)
(s804 1.0)
(s805 1.0)
(s806 1.0)
(s807 1.0)
(s808 1.0)
(s809 1.0)
(s810 1.0)
(s811 1.0)
(s812 1.0)
(s813 1.0)
(s814 1.0)
(s815 1.0)
(s816 1.0)
(s817 1.0)
(s818 1.0)
(s819 1.0)
(s820 1.0)
(s821 1.0)
(s822 1.0)
(s823 1.0)
(s824 1.0)
(s825 1.0)
(s826 1.0)
(s827 1.0)
(s828 1.0)
(s829 1.0)
(s830 1.0)
(s831 1.0)
(s832 1.0)
(s833 1.0)
(s834 1.0)
(s835 1.0)
(s836 1.0)
(s837 1.0)
(s838 1.0)
(s839 1.0)
(s840 1.0)
(s841 1.0)
(s842 1.0)
(s843 1.0)
(s844 1.0)
(s845 1.0)
(s846 1.0)
(s847 1.0)
(s848 1.0)
(s849 1.0)
(s850 1.0)
(s851 1.0)
(s852 1.0)
(s853 1.0)
(s854 1.0)
(s855 1.0)
(s856 1.0)
(s857 1.0)
(s858 1.0)
(s859 1.0)
(s860 1.0)
(s861 1.0)
(s862 1.0)
(s863 1.0)
(s864 1.0)
(s865 1.0)
(s866 1.0)
(s867 1.0)
(s868 1.0)
(s869 1.0)
(s870 1.0)
(s871 1.0)
(s872 1.0)
(s873 1.0)
(s874 1.0)
(s875 1.0)
(s876 1.0)
(s877 1.0)
(s878 1.0)
(s879 1.0)
(s880 1.0)
(s881 1.0)
(s882 1.0)
(s883 1.0)
(s884 1.0)
(s885 1.0)
(s886 1.0)
(s887 1.0)
(s888 1.0)
(s889 1.0)
(s890 1.0)
(s891 1.0)
(s892 1.0)
(s893 1.0)
(s894 1.0)
(s895 1.0)
(s896 1.0)
(s897 1.0)
(s898 1.0)
(s899 1.0)
(s900 1.0)
(s901 1.0)
(s902 1.0)
(s903 1.0)
(s904 1.0)
(s905 1.0)
(s906 1.0)
(s907 1.0)
(s908 1.0)
(s909 1.0)
(s910 1.0)
(s911 1.0)
(s912 1.0)
(s913 1.0)
(s914 1.0)
(s915 1.0)
(s916 1.0)
(s917 1.0)
(s918 1.0)
(s919 1.0)
(s920 1.0)
(s921 1.0)
(s922 1.0)
(s923 1.0)
(s924 1.0)
(s925 1.0)
(s926 1.0)
(s927 1.0)
(s928 1.0)
(s929 1.0)
(s930 1.0)
(s931 1.0)
(s932 1.0)
(s933 1.0)
(s934 1.0)
(s935 1.0)
(s936 1.0)
(s937 1.0)
(s938 1.0)
(s939 1.0)
(s940 1.0)
(s941 1.0)
(s942 1.0)
(s943 1.0)
(s944 1.0)
(s945 1.0)
(s946 1.0)
(s947 1.0)
(s948 1.0)
(s949 1.0)
(s950 1.0)
(s951 1.0)
(s952 1.0)
(s953 1.0)
(s954 1.0)
(s955 1.0)
(s956 1.0)
(s957 1.0)
(s958 1.0)
(s959 1.0)
(s960 1.0)
(s961 1.0)
(s962 1.0)
(s963 1.0)
(s964 1.0)
(s965 1.0)
(s966 1.0)
(s967 1.0)
(s968 1.0)
(s969 1.0)
(s970 1.0)
(s971 1.0)
(s972 1.0)
(s973 1.0)
(s974 1.0)
(s975 1.0)
(s976 1.0)
(s977 1.0)
(s978 1.0)
(s979 1.0)
(s980 1.0)
(s981 1.0)
(s982 1.0)
(s983 1.0)
(s984 1.0)
(s985 1.0)
(s986 1.0)
(s987 1.0)
(s988 1.0)
(s989 1.0)
(s990 1.0)
(s991 1.0)
(s992 1.0)
(s993 1.0)
(s994 1.0)
(s995 1.0)
(s996 1.0)
(s997 1.0)
(s998 1.0)
(s999 1.0)
(s1000 1.0)
(s1001 1.0)
(s1002 1.0)
(s1003 1.0)
(s1004 1.0)
(s1005 1.0)
(s1006 1.0)
(s1007 1.0)
(s1008 1.0)
(s1009 1.0)
(s1010 1.0)
(s1011 1.0)
(s1012 1.0)
(s1013 1.0)
(s1014 1.0)
(s1015 1.0)
(s1016 1.0)
(s1017 1.0)
(s1018 1.0)
(s1019 1.0)
(s1020 1.0)
(s1021 1.0)
(s1022 1.0)
(s1023 1.0)
(s1024 1.0)
(s1025 1.0)
(s1026 1.0)
(s1027 1.0)
(s1028 1.0)
(s1029 1.0)
(s1030 1.0)
(s1031 1.0)
(s1032 1.0)
(s1033 1.0)
(s1034 1.0)
(s1035 1.0)
(s1036 1.0)
(s1037 1.0)
(s1038 1.0)
(s1039 1.0)
(s1040 1.0)
(s1041 1.0)
(s1042 1.0)
(s1043 1.0)
(s1044 1.0)
(s1045 1.0)
(s1046 1.0)
(s1047 1.0)
(s1048 1.0)
(s1049 1.0)
(s1050 1.0)
(s1051 1.0)
(s1052 1.0)
(s1053 1.0)
(s1054 1.0)
(s1055 1.0)
(s1056 1.0)
(s1057 1.0)
(s1058 1.0)
(s1059 1.0)
(s1060 1.0)
(s1061 1.0)
(s1062 1.0)
(s1063 1.0)
(s1064 1.0)
(s1065 1.0)
(s1066 1.0)
(s1067 1.0)
(s1068 1.0)
(s1069 1.0)
(s1070 1.0)
(s1071 1.0)
(s1072 1.0)
(s1073 1.0)
(s1074 1.0)
(s1075 1.0)
(s1076 1.0)
(s1077 1.0)
(s1078 1.0)
(s1079 1.0)
(s1080 1.0)
(s1081 1.0)
(s1082 1.0)
(s1083 1.0)
(s1084 1.0)
(s1085 1.0)
(s1086 1.0)
(s1087 1.0)
(s1088 1.0)
(s1089 1.0)
(s1090 1.0)
(s1091 1.0)
(s1092 1.0)
(s1093 1.0)
(s1094 1.0)
(s1095 1.0)
(s1096 1.0)
(s1097 1.0)
(s1098 1.0)
(s1099 1.0)
(s1100 1.0)
(s1101 1.0)
(s1102 1.0)
(s1103 1.0)
(s1104 1.0)
(s1105 1.0)
(s1106 1.0)
(s1107 1.0)
(s1108 1.0)
(s1109 1.0)
(s1110 1.0)
(s1111 1.0)
(s1112 1.0)
(s1113 1.0)
(s1114 1.0)
(s1115 1.0)
(s1116 1.0)
(s1117 1.0)
(s1118 1.0)
(s1119 1.0)
(s1120 1.0)
(s1121 1.0)
(s1122 1.0)
(s1123 1.0)
(s1124 1.0)
(s1125 1.0)
(s1126 1.0)
(s1127 1.0)
(s1128 1.0)
(s1129 1.0)
(s1130 1.0)
(s1131 1.0)
(s1132 1.0)
(s1133 1.0)
(s1134 1.0)
(s1135 1.0)
(s1136 1.0)
(s1137 1.0)
(s1138 1.0)
(s1139 1.0)
(s1140 1.0)
(s1141 1.0)
(s1142 1.0)
(s1143 1.0)
(s1144 1.0)
(s1145 1.0)
(s1146 1.0)
(s1147 1.0)
(s1148 1.0)
(s1149 1.0)
(s1150 1.0)
(s1151 1.0)
(s1152 1.0)
(s1153 1.0)
(s1154 1.0)
(s1155 1.0)
(s1156 1.0)
(s1157 1.0)
(s1158 1.0)
(s1159 1.0)
(s1160 1.0)
(s1161 1.0)
(s1162 1.0)
(s1163 1.0)
(s1164 1.0)
(s1165 1.0)
(s1166 1.0)
(s1167 1.0)
(s1168 1.0)
(s1169 1.0)
(s1170 1.0)
(s1171 1.0)
(s1172 1.0)
(s1173 1.0)
(s1174 1.0)
(s1175 1.0)
(s1176 1.0)
(s1177 1.0)
(s1178 1.0)
(s1179 1.0)
(s1180 1.0)
(s1181 1.0)
(s1182 1.0)
(s1183 1.0)
(s1184 1.0)
(s1185 1.0)
(s1186 1.0)
(s1187 1.0)
(s1188 1.0)
(s1189 1.0)
(s1190 1.0)
(s1191 1.0)
(s1192 1.0)
(s1193 1.0)
(s1194 1.0)
(s1195 1.0)
(s1196 1.0)
(s1197 1.0)
(s1198 1.0)
(s1199 1.0)
(s1200 1.0)
(s1201 1.0)
(s1202 1.0)
(s1203 1.0)
(s1204 1.0)
(s1205 1.0)
(s1206 1.0)
(s1207 1.0)
(s1208 1.0)
(s1209 1.0)
(s1210 1.0)
(s1211 1.0)
(s1212 1.0)
(s1213 1.0)
(s1214 1.0)
(s1215 1.0)
(s1216 1.0)
(s1217 1.0)
(s1218 1.0)
(s1219 1.0)
(s1220 1.0)
(s1221 1.0)
(s1222 1.0)
(s1223 1.0)
(s1224 1.0)
(s1225 1.0)
(s1226 1.0)
(s1227 1.0)
(s1228 1.0)
(s1229 1.0)
(s1230 1.0)
(s1231 1.0)
(s1232 1.0)
(s1233 1.0)
(s1234 1.0)
(s1235 1.0)
(s1236 1.0)
(s1237 1.0)
(s1238 1.0)
(s1239 1.0)
(s1240 1.0)
(s1241 1.0)
(s1242 1.0)
(s1243 1.0)
(s1244 1.0)
(s1245 1.0)
(s1246 1.0)
(s1247 1.0)
(s1248 1.0)
(s1249 1.0)
(s1250 1.0)
(s1251 1.0)
(s1252 1.0)
(s1253 1.0)
(s1254 1.0)
(s1255 1.0)
(s1256 1.0)
(s1257 1.0)
(s1258 1.0)
(s1259 1.0)
(s1260 1.0)
(s1261 1.0)
(s1262 1.0)
(s1263 1.0)
(s1264 1.0)
(s1265 1.0)
(s1266 1.0)
(s1267 1.0)
(s1268 1.0)
(s1269 1.0)
(s1270 1.0)
(s1271 1.0)
(s1272 1.0)
(s1273 1.0)
(s1274 1.0)
(s1275 1.0)
(s1276 1.0)
(s1277 1.0)
(s1278 1.0)
(s1279 1.0)
(s1280 1.0)
(s1281 1.0)
(s1282 1.0)
(s1283 1.0)
(s1284 1.0)
(s1285 1.0)
(s1286 1.0)
(s1287 1.0)
(s1288 1.0)
(s1289 1.0)
(s1290 1.0)
(s1291 1.0)
(s1292 1.0)
(s1293 1.0)
(s1294 1.0)
(s1295 1.0)
(s1296 1.0)
(s1297 1.0)
(s1298 1.0)
(s1299 1.0)
(s1300 1.0)
(s1301 1.0)
(s1302 1.0)
(s1303 1.0)
(s1304 1.0)
(s1305 1.0)
(s1306 1.0)
(s1307 1.0)
(s1308 1.0)
(s1309 1.0)
(s1310 1.0)
(s1311 1.0)
(s1312 1.0)
(s1313 1.0)
(s1314 1.0)
(s1315 1.0)
(s1316 1.0)
(s1317 1.0)
(s1318 1.0)
(s1319 1.0)
(s1320 1.0)
(s1321 1.0)
(s1322 1.0)
(s1323 1.0)
(s1324 1.0)
(s1325 1.0)
(s1326 1.0)
(s1327 1.0)
(s1328 1.0)
(s1329 1.0)
(s1330 1.0)
(s1331 1.0)
(s1332 1.0)
(s1333 1.0)
(s1334 1.0)
(s1335 1.0)
(s1336 1.0)
(s1337 1.0)
(s1338 1.0)
(s1339 1.0)
(s1340 1.0)
(s1341 1.0)
(s1342 1.0)
(s1343 1.0)
(s1344 1.0)
(s1345 1.0)
(s1346 1.0)
(s1347 1.0)
(s1348 1.0)
(s1349 1.0)
(s1350 1.0)
(s1351 1.0)
(s1352 1.0)
(s1353 1.0)
(s1354 1.0)
(s1355 1.0)
(s1356 1.0)
(s1357 1.0)
(s1358 1.0)
(s1359 1.0)
(s1360 1.0)
(s1361 1.0)
(s1362 1.0)
(s1363 1.0)
(s1364 1.0)
(s1365 1.0)
(s1366 1.0)
(s1367 1.0)
(s1368 1.0)
(s1369 1.0)
(s1370 1.0)
(s1371 1.0)
(s1372 1.0)
(s1373 1.0)
(s1374 1.0)
(s1375 1.0)
(s1376 1.0)
(s1377 1.0)
(s1378 1.0)
(s1379 1.0)
(s1380 1.0)
(s1381 1.0)
(s1382 1.0)
(s1383 1.0)
(s1384 1.0)
(s1385 1.0)
(s1386 1.0)
(s1387 1.0)
(s1388 1.0)
(s1389 1.0)
(s1390 1.0)
(s1391 1.0)
(s1392 1.0)
(s1393 1.0)
(s1394 1.0)
(s1395 1.0)
(s1396 1.0)
(s1397 1.0)
(s1398 1.0)
(s1399 1.0)
(s1400 1.0)
(s1401 1.0)
(s1402 1.0)
(s1403 1.0)
(s1404 1.0)
(s1405 1.0)
(s1406 1.0)
(s1407 1.0)
(s1408 1.0)
(s1409 1.0)
(s1410 1.0)
(s1411 1.0)
(s1412 1.0)
(s1413 1.0)
(s1414 1.0)
(s1415 1.0)
(s1416 1.0)
(s1417 1.0)
(s1418 1.0)
(s1419 1.0)
(s1420 1.0)
(s1421 1.0)
(s1422 1.0)
(s1423 1.0)
(s1424 1.0)
(s1425 1.0)
(s1426 1.0)
(s1427 1.0)
(s1428 1.0)
(s1429 1.0)
(s1430 1.0)
(s1431 1.0)
(s1432 1.0)
(s1433 1.0)
(s1434 1.0)
(s1435 1.0)
(s1436 1.0)
(s1437 1.0)
(s1438 1.0)
(s1439 1.0)
(s1440 1.0)
(s1441 1.0)
(s1442 1.0)
(s1443 1.0)
(s1444 1.0)
(s1445 1.0)
(s1446 1.0)
(s1447 1.0)
(s1448 1.0)
(s1449 1.0)
(s1450 1.0)
(s1451 1.0)
(s1452 1.0)
(s1453 1.0)
(s1454 1.0)
(s1455 1.0)
(s1456 1.0)
(s1457 1.0)
(s1458 1.0)
(s1459 1.0)
(s1460 1.0)
(s1461 1.0)
(s1462 1.0)
(s1463 1.0)
(s1464 1.0)
(s1465 1.0)
(s1466 1.0)
(s1467 1.0)
(s1468 1.0)
(s1469 1.0)
(s1470 1.0)
(s1471 1.0)
(s1472 1.0)
(s1473 1.0)
(s1474 1.0)
(s1475 1.0)
(s1476 1.0)
(s1477 1.0)
(s1478 1.0)
(s1479 1.0)
(s1480 1.0)
(s1481 1.0)
(s1482 1.0)
(s1483 1.0)
(s1484 1.0)
(s1485 1.0)
(s1486 1.0)
(s1487 1.0)
(s1488 1.0)
(s1489 1.0)
(s1490 1.0)
(s1491 1.0)
(s1492 1.0)
(s1493 1.0)
(s1494 1.0)
(s1495 1.0)
(s1496 1.0)
(s1497 1.0)
(s1498 1.0)
(s1499 1.0)
(s1500 1.0)
(s1501 1.0)
(s1502 1.0)
(s1503 1.0)
(s1504 1.0)
(s1505 1.0)
(s1506 1.0)
(s1507 1.0)
(s1508 1.0)
(s1509 1.0)
(s1510 1.0)
(s1511 1.0)
(s1512 1.0)
(s1513 1.0)
(s1514 1.0)
(s1515 1.0)
(s1516 1.0)
(s1517 1.0)
(s1518 1.0)
(s1519 1.0)
(s1520 1.0)
(s1521 1.0)
(s1522 1.0)
(s1523 1.0)
(s1524 1.0)
(s1525 1.0)
(s1526 1.0)
(s1527 1.0)
(s1528 1.0)
(s1529 1.0)
(s1530 1.0)
(s1531 1.0)
(s1532 1.0)
(s1533 1.0)
(s1534 1.0)
(s1535 1.0)
(s1536 1.0)
(s1537 1.0)
(s1538 1.0)
(s1539 1.0)
(s1540 1.0)
(s1541 1.0)
(s1542 1.0)
(s1543 1.0)
(s1544 1.0)
(s1545 1.0)
(s1546 1.0)
(s1547 1.0)
(s1548 1.0)
(s1549 1.0)
(s1550 1.0)
(s1551 1.0)
(s1552 1.0)
(s1553 1.0)
(s1554 1.0)
(s1555 1.0)
(s1556 1.0)
(s1557 1.0)
(s1558 1.0)
(s1559 1.0)
(s1560 1.0)
(s1561 1.0)
(s1562 1.0)
(s1563 1.0)
(s1564 1.0)
(s1565 1.0)
(s1566 1.0)
(s1567 1.0)
(s1568 1.0)
(s1569 1.0)
(s1570 1.0)
(s1571 1.0)
(s1572 1.0)
(s1573 1.0)
(s1574 1.0)
(s1575 1.0)
(s1576 1.0)
(s1577 1.0)
(s1578 1.0)
(s1579 1.0)
(s1580 1.0)
(s1581 1.0)
(s1582 1.0)
(s1583 1.0)
(s1584 1.0)
(s1585 1.0)
(s1586 1.0)
(s1587 1.0)
(s1588 1.0)
(s1589 1.0)
(s1590 1.0)
(s1591 1.0)
(s1592 1.0)
(s1593 1.0)
(s1594 1.0)
(s1595 1.0)
(s1596 1.0)
(s1597 1.0)
(s1598 1.0)
(s1599 1.0)
(s1600 1.0)
(s1601 1.0)
(s1602 1.0)
(s1603 1.0)
(s1604 1.0)
(s1605 1.0)
(s1606 1.0)
(s1607 1.0)
(s1608 1.0)
(s1609 1.0)
(s1610 1.0)
(s1611 1.0)
(s1612 1.0)
(s1613 1.0)
(s1614 1.0)
(s1615 1.0)
(s1616 1.0)
(s1617 1.0)
(s1618 1.0)
(s1619 1.0)
(s1620 1.0)
(s1621 1.0)
(s1622 1.0)
(s1623 1.0)
(s1624 1.0)
(s1625 1.0)
(s1626 1.0)
(s1627 1.0)
(s1628 1.0)
(s1629 1.0)
(s1630 1.0)
(s1631 1.0)
(s1632 1.0)
(s1633 1.0)
(s1634 1.0)
(s1635 1.0)
(s1636 1.0)
(s1637 1.0)
(s1638 1.0)
(s1639 1.0)
(s1640 1.0)
(s1641 1.0)
(s1642 1.0)
(s1643 1.0)
(s1644 1.0)
(s1645 1.0)
(s1646 1.0)
(s1647 1.0)
(s1648 1.0)
(s1649 1.0)
(s1650 1.0)
(s1651 1.0)
(s1652 1.0)
(s1653 1.0)
(s1654 1.0)
(s1655 1.0)
(s1656 1.0)
(s1657 1.0)
(s1658 1.0)
(s1659 1.0)
(s1660 1.0)
(s1661 1.0)
(s1662 1.0)
(s1663 1.0)
(s1664 1.0)
(s1665 1.0)
(s1666 1.0)
(s1667 1.0)
(s1668 1.0)
(s1669 1.0)
(s1670 1.0)
(s1671 1.0)
(s1672 1.0)
(s1673 1.0)
(s1674 1.0)
(s1675 1.0)
(s1676 1.0)
(s1677 1.0)
(s1678 1.0)
(s1679 1.0)
(s1680 1.0)
(s1681 1.0)
(s1682 1.0)
(s1683 1.0)
(s1684 1.0)
(s1685 1.0)
(s1686 1.0)
(s1687 1.0)
(s1688 1.0)
(s1689 1.0)
(s1690 1.0)
(s1691 1.0)
(s1692 1.0)
(s1693 1.0)
(s1694 1.0)
(s1695 1.0)
(s1696 1.0)
(s1697 1.0)
(s1698 1.0)
(s1699 1.0)
(s1700 1.0)
(s1701 1.0)
(s1702 1.0)
(s1703 1.0)
(s1704 1.0)
(s1705 1.0)
(s1706 1.0)
(s1707 1.0)
(s1708 1.0)
(s1709 1.0)
(s1710 1.0)
(s1711 1.0)
(s1712 1.0)
(s1713 1.0)
(s1714 1.0)
(s1715 1.0)
(s1716 1.0)
(s1717 1.0)
(s1718 1.0)
(s1719 1.0)
(s1720 1.0)
(s1721 1.0)
(s1722 1.0)
(s1723 1.0)
(s1724 1.0)
(s1725 1.0)
(s1726 1.0)
(s1727 1.0)
(s1728 1.0)
(s1729 1.0)
(s1730 1.0)
(s1731 1.0)
(s1732 1.0)
(s1733 1.0)
(s1734 1.0)
(s1735 1.0)
(s1736 1.0)
(s1737 1.0)
(s1738 1.0)
(s1739 1.0)
(s1740 1.0)
(s1741 1.0)
(s1742 1.0)
(s1743 1.0)
(s1744 1.0)
(s1745 1.0)
(s1746 1.0)
(s1747 1.0)
(s1748 1.0)
(s1749 1.0)
(s1750 1.0)
(s1751 1.0)
(s1752 1.0)
(s1753 1.0)
(s1754 1.0)
(s1755 1.0)
(s1756 1.0)
(s1757 1.0)
(s1758 1.0)
(s1759 1.0)
(s1760 1.0)
(s1761 1.0)
(s1762 1.0)
(s1763 1.0)
(s1764 1.0)
(s1765 1.0)
(s1766 1.0)
(s1767 1.0)
(s1768 1.0)
(s1769 1.0)
(s1770 1.0)
(s1771 1.0)
(s1772 1.0)
(s1773 1.0)
(s1774 1.0)
(s1775 1.0)
(s1776 1.0)
(s1777 1.0)
(s1778 1.0)
(s1779 1.0)
(s1780 1.0)
(s1781 1.0)
(s1782 1.0)
(s1783 1.0)
(s1784 1.0)
(s1785 1.0)
(s1786 1.0)
(s1787 1.0)
(s1788 1.0)
(s1789 1.0)
(s1790 1.0)
(s1791 1.0)
(s1792 1.0)
(s1793 1.0)
(s1794 1.0)
(s1795 1.0)
(s1796 1.0)
(s1797 1.0)
(s1798 1.0)
(s1799 1.0)
(s1800 1.0)
(s1801 1.0)
(s1802 1.0)
(s1803 1.0)
(s1804 1.0)
(s1805 1.0)
(s1806 1.0)
(s1807 1.0)
(s1808 1.0)
(s1809 1.0)
(s1810 1.0)
(s1811 1.0)
(s1812 1.0)
(s1813 1.0)
(s1814 1.0)
(s1815 1.0)
(s1816 1.0)
(s1817 1.0)
(s1818 1.0)
(s1819 1.0)
(s1820 1.0)
(s1821 1.0)
(s1822 1.0)
(s1823 1.0)
(s1824 1.0)
(s1825 1.0)
(s1826 1.0)
(s1827 1.0)
(s1828 1.0)
(s1829 1.0)
(s1830 1.0)
(s1831 1.0)
(s1832 1.0)
(s1833 1.0)
(s1834 1.0)
(s1835 1.0)
(s1836 1.0)
(s1837 1.0)
(s1838 1.0)
(s1839 1.0)
(s1840 1.0)
(s1841 1.0)
(s1842 1.0)
(s1843 1.0)
(s1844 1.0)
(s1845 1.0)
(s1846 1.0)
(s1847 1.0)
(s1848 1.0)
(s1849 1.0)
(s1850 1.0)
(s1851 1.0)
(s1852 1.0)
(s1853 1.0)
(s1854 1.0)
(s1855 1.0)
(s1856 1.0)
(s1857 1.0)
(s1858 1.0)
(s1859 1.0)
(s1860 1.0)
(s1861 1.0)
(s1862 1.0)
(s1863 1.0)
(s1864 1.0)
(s1865 1.0)
(s1866 1.0)
(s1867 1.0)
(s1868 1.0)
(s1869 1.0)
(s1870 1.0)
(s1871 1.0)
(s1872 1.0)
(s1873 1.0)
(s1874 1.0)
(s1875 1.0)
(s1876 1.0)
(s1877 1.0)
(s1878 1.0)
(s1879 1.0)
(s1880 1.0)
(s1881 1.0)
(s1882 1.0)
(s1883 1.0)
(s1884 1.0)
(s1885 1.0)
(s1886 1.0)
(s1887 1.0)
(s1888 1.0)
(s1889 1.0)
(s1890 1.0)
(s1891 1.0)
(s1892 1.0)
(s1893 1.0)
(s1894 1.0)
(s1895 1.0)
(s1896 1.0)
(s1897 1.0)
(s1898 1.0)
(s1899 1.0)
(s1900 1.0)
(s1901 1.0)
(s1902 1.0)
(s1903 1.0)
(s1904 1.0)
(s1905 1.0)
(s1906 1.0)
(s1907 1.0)
(s1908 1.0)
(s1909 1.0)
(s1910 1.0)
(s1911 1.0)
(s1912 1.0)
(s1913 1.0)
(s1914 1.0)
(s1915 1.0)
(s1916 1.0)
(s1917 1.0)
(s1918 1.0)
(s1919 1.0)
(s1920 1.0)
(s1921 1.0)
(s1922 1.0)
(s1923 1.0)
(s1924 1.0)
(s1925 1.0)
(s1926 1.0)
(s1927 1.0)
(s1928 1.0)
(s1929 1.0)
(s1930 1.0)
(s1931 1.0)
(s1932 1.0)
(s1933 1.0)
(s1934 1.0)
(s1935 1.0)
(s1936 1.0)
(s1937 1.0)
(s1938 1.0)
(s1939 1.0)
(s1940 1.0)
(s1941 1.0)
(s1942 1.0)
(s1943 1.0)
(s1944 1.0)
(s1945 1.0)
(s1946 1.0)
(s1947 1.0)
(s1948 1.0)
(s1949 1.0)
(s1950 1.0)
(s1951 1.0)
(s1952 1.0)
(s1953 1.0)
(s1954 1.0)
(s1955 1.0)
(s1956 1.0)
(s1957 1.0)
(s1958 1.0)
(s1959 1.0)
(s1960 1.0)
(s1961 1.0)
(s1962 1.0)
(s1963 1.0)
(s1964 1.0)
(s1965 1.0)
(s1966 1.0)
(s1967 1.0)
(s1968 1.0)
(s1969 1.0)
(s1970 1.0)
(s1971 1.0)
(s1972 1.0)
(s1973 1.0)
(s1974 1.0)
(s1975 1.0)
(s1976 1.0)
(s1977 1.0)
(s1978 1.0)
(s1979 1.0)
(s1980 1.0)
(s1981 1.0)
(s1982 1.0)
(s1983 1.0)
(s1984 1.0)
(s1985 1.0)
(s1986 1.0)
(s1987 1.0)
(s1988 1.0)
(s1989 1.0)
(s1990 1.0)
(s1991 1.0)
(s1992 1.0)
(s1993 1.0)
(s1994 1.0)
(s1995 1.0)
(s1996 1.0)
(s1997 1.0)
(s1998 1.0)
(s1999 1.0)
(s2000 1.0)
(s2001 1.0)
(s2002 1.0)
(s2003 1.0)
(s2004 1.0)
(s2005 1.0)
(s2006 1.0)
(s2007 1.0)
(s2008 1.0)
(s2009 1.0)
(s2010 1.0)
(s2011 1.0)
(s2012 1.0)
(s2013 1.0)
(s2014 1.0)
(s2015 1.0)
(s2016 1.0)
(s2017 1.0)
(s2018 1.0)
(s2019 1.0)
(s2020 1.0)
(s2021 1.0)
(s2022 1.0)
(s2023 1.0)
(s2024 1.0)
(s2025 1.0)
(s2026 1.0)
(s2027 1.0)
(s2028 1.0)
(s2029 1.0)
(s2030 1.0)
(s2031 1.0)
(s2032 1.0)
(s2033 1.0)
(s2034 1.0)
(s2035 1.0)
(s2036 1.0)
(s2037 1.0)
(s2038 1.0)
(s2039 1.0)
(s2040 1.0)
(s2041 1.0)
(s2042 1.0)
(s2043 1.0)
(s2044 1.0)
(s2045 1.0)
(s2046 1.0)
(s2047 1.0)
(s2048 1.0)
(s2049 1.0)
(s2050 1.0)
(s2051 1.0)
(s2052 1.0)
(s2053 1.0)
(s2054 1.0)
(s2055 1.0)
(s2056 1.0)
(s2057 1.0)
(s2058 1.0)
(s2059 1.0)
(s2060 1.0)
(s2061 1.0)
(s2062 1.0)
(s2063 1.0)
(s2064 1.0)
(s2065 1.0)
(s2066 1.0)
(s2067 1.0)
(s2068 1.0)
(s2069 1.0)
(s2070 1.0)
(s2071 1.0)
(s2072 1.0)
(s2073 1.0)
(s2074 1.0)
(s2075 1.0)
(s2076 1.0)
(s2077 1.0)
(s2078 1.0)
(s2079 1.0)
(s2080 1.0)
(s2081 1.0)
(s2082 1.0)
(s2083 1.0)
(s2084 1.0)
(s2085 1.0)
(s2086 1.0)
(s2087 1.0)
(s2088 1.0)
(s2089 1.0)
(s2090 1.0)
(s2091 1.0)
(s2092 1.0)
(s2093 1.0)
(s2094 1.0)
(s2095 1.0)
(s2096 1.0)
(s2097 1.0)
(s2098 1.0)
(s2099 1.0)
(s2100 1.0)
(s2101 1.0)
(s2102 1.0)
(s2103 1.0)
(s2104 1.0)
(s2105 1.0)
(s2106 1.0)
(s2107 1.0)
(s2108 1.0)
(s2109 1.0)
(s2110 1.0)
(s2111 1.0)
(s2112 1.0)
(s2113 1.0)
(s2114 1.0)
(s2115 1.0)
(s2116 1.0)
(s2117 1.0)
(s2118 1.0)
(s2119 1.0)
(s2120 1.0)
(s2121 1.0)
(s2122 1.0)
(s2123 1.0)
(s2124 1.0)
(s2125 1.0)
(s2126 1.0)
(s2127 1.0)
(s2128 1.0)
(s2129 1.0)
(s2130 1.0)
(s2131 1.0)
(s2132 1.0)
(s2133 1.0)
(s2134 1.0)
(s2135 1.0)
(s2136 1.0)
(s2137 1.0)
(s2138 1.0)
(s2139 1.0)
(s2140 1.0)
(s2141 1.0)
(s2142 1.0)
(s2143 1.0)
(s2144 1.0)
(s2145 1.0)
(s2146 1.0)
(s2147 1.0)
(s2148 1.0)
(s2149 1.0)
(s2150 1.0)
(s2151 1.0)
(s2152 1.0)
(s2153 1.0)
(s2154 1.0)
(s2155 1.0)
(s2156 1.0)
(s2157 1.0)
(s2158 1.0)
(s2159 1.0)
(s2160 1.0)
(s2161 1.0)
(s2162 1.0)
(s2163 1.0)
(s2164 1.0)
(s2165 1.0)
(s2166 1.0)
(s2167 1.0)
(s2168 1.0)
(s2169 1.0)
(s2170 1.0)
(s2171 1.0)
(s2172 1.0)
(s2173 1.0)
(s2174 1.0)
(s2175 1.0)
(s2176 1.0)
(s2177 1.0)
(s2178 1.0)
(s2179 1.0)
(s2180 1.0)
(s2181 1.0)
(s2182 1.0)
(s2183 1.0)
(s2184 1.0)
(s2185 1.0)
(s2186 1.0)
(s2187 1.0)
(s2188 1.0)
(s2189 1.0)
(s2190 1.0)
(s2191 1.0)
(s2192 1.0)
(s2193 1.0)
(s2194 1.0)
(s2195 1.0)
(s2196 1.0)
(s2197 1.0)
(s2198 1.0)
(s2199 1.0)
(s2200 1.0)
(s2201 1.0)
(s2202 1.0)
(s2203 1.0)
(s2204 1.0)
(s2205 1.0)
(s2206 1.0)
(s2207 1.0)
(s2208 1.0)
(s2209 1.0)
(s2210 1.0)
(s2211 1.0)
(s2212 1.0)
(s2213 1.0)
(s2214 1.0)
(s2215 1.0)
(s2216 1.0)
(s2217 1.0)
(s2218 1.0)
(s2219 1.0)
(s2220 1.0)
(s2221 1.0)
(s2222 1.0)
(s2223 1.0)
(s2224 1.0)
(s2225 1.0)
(s2226 1.0)
(s2227 1.0)
(s2228 1.0)
(s2229 1.0)
(s2230 1.0)
(s2231 1.0)
(s2232 1.0)
(s2233 1.0)
(s2234 1.0)
(s2235 1.0)
(s2236 1.0)
(s2237 1.0)
(s2238 1.0)
(s2239 1.0)
(s2240 1.0)
(s2241 1.0)
(s2242 1.0)
(s2243 1.0)
(s2244 1.0)
(s2245 1.0)
(s2246 1.0)
(s2247 1.0)
(s2248 1.0)
(s2249 1.0)
(s2250 1.0)
(s2251 1.0)
(s2252 1.0)
(s2253 1.0)
(s2254 1.0)
(s2255 1.0)
(s2256 1.0)
(s2257 1.0)
(s2258 1.0)
(s2259 1.0)
(s2260 1.0)
(s2261 1.0)
(s2262 1.0)
(s2263 1.0)
(s2264 1.0)
(s2265 1.0)
(s2266 1.0)
(s2267 1.0)
(s2268 1.0)
(s2269 1.0)
(s2270 1.0)
(s2271 1.0)
(s2272 1.0)
(s2273 1.0)
(s2274 1.0)
(s2275 1.0)
(s2276 1.0)
(s2277 1.0)
(s2278 1.0)
(s2279 1.0)
(s2280 1.0)
(s2281 1.0)
(s2282 1.0)
(s2283 1.0)
(s2284 1.0)
(s2285 1.0)
(s2286 1.0)
(s2287 1.0)
(s2288 1.0)
(s2289 1.0)
(s2290 1.0)
(s2291 1.0)
(s2292 1.0)
(s2293 1.0)
(s2294 1.0)
(s2295 1.0)
(s2296 1.0)
(s2297 1.0)
(s2298 1.0)
(s2299 1.0)
(s2300 1.0)
(s2301 1.0)
(s2302 1.0)
(s2303 1.0)
(s2304 1.0)
(s2305 1.0)
(s2306 1.0)
(s2307 1.0)
(s2308 1.0)
(s2309 1.0)
(s2310 1.0)
(s2311 1.0)
(s2312 1.0)
(s2313 1.0)
(s2314 1.0)
(s2315 1.0)
(s2316 1.0)
(s2317 1.0)
(s2318 1.0)
(s2319 1.0)
(s2320 1.0)
(s2321 1.0)
(s2322 1.0)
(s2323 1.0)
(s2324 1.0)
(s2325 1.0)
(s2326 1.0)
(s2327 1.0)
(s2328 1.0)
(s2329 1.0)
(s2330 1.0)
(s2331 1.0)
(s2332 1.0)
(s2333 1.0)
(s2334 1.0)
(s2335 1.0)
(s2336 1.0)
(s2337 1.0)
(s2338 1.0)
(s2339 1.0)
(s2340 1.0)
(s2341 1.0)
(s2342 1.0)
(s2343 1.0)
(s2344 1.0)
(s2345 1.0)
(s2346 1.0)
(s2347 1.0)
(s2348 1.0)
(s2349 1.0)
(s2350 1.0)
(s2351 1.0)
(s2352 1.0)
(s2353 1.0)
(s2354 1.0)
(s2355 1.0)
(s2356 1.0)
(s2357 1.0)
(s2358 1.0)
(s2359 1.0)
(s2360 1.0)
(s2361 1.0)
(s2362 1.0)
(s2363 1.0)
(s2364 1.0)
(s2365 1.0)
(s2366 1.0)
(s2367 1.0)
(s2368 1.0)
(s2369 1.0)
(s2370 1.0)
(s2371 1.0)
(s2372 1.0)
(s2373 1.0)
(s2374 1.0)
(s2375 1.0)
(s2376 1.0)
(s2377 1.0)
(s2378 1.0)
(s2379 1.0)
(s2380 1.0)
(s2381 1.0)
(s2382 1.0)
(s2383 1.0)
(s2384 1.0)
(s2385 1.0)
(s2386 1.0)
(s2387 1.0)
(s2388 1.0)
(s2389 1.0)
(s2390 1.0)
(s2391 1.0)
(s2392 1.0)
(s2393 1.0)
(s2394 1.0)
(s2395 1.0)
(s2396 1.0)
(s2397 1.0)
(s2398 1.0)
(s2399 1.0)
(s2400 1.0)
(s2401 1.0)
(s2402 1.0)
(s2403 1.0)
(s2404 1.0)
(s2405 1.0)
(s2406 1.0)
(s2407 1.0)
(s2408 1.0)
(s2409 1.0)
(s2410 1.0)
(s2411 1.0)
(s2412 1.0)
(s2413 1.0)
(s2414 1.0)
(s2415 1.0)
(s2416 1.0)
(s2417 1.0)
(s2418 1.0)
(s2419 1.0)
(s2420 1.0)
(s2421 1.0)
(s2422 1.0)
(s2423 1.0)
(s2424 1.0)
(s2425 1.0)
(s2426 1.0)
(s2427 1.0)
(s2428 1.0)
(s2429 1.0)
(s2430 1.0)
(s2431 1.0)
(s2432 1.0)
(s2433 1.0)
(s2434 1.0)
(s2435 1.0)
(s2436 1.0)
(s2437 1.0)
(s2438 1.0)
(s2439 1.0)
(s2440 1.0)
(s2441 1.0)
(s2442 1.0)
(s2443 1.0)
(s2444 1.0)
(s2445 1.0)
(s2446 1.0)
(s2447 1.0)
(s2448 1.0)
(s2449 1.0)
(s2450 1.0)
(s2451 1.0)
(s2452 1.0)
(s2453 1.0)
(s2454 1.0)
(s2455 1.0)
(s2456 1.0)
(s2457 1.0)
(s2458 1.0)
(s2459 1.0)
(s2460 1.0)
(s2461 1.0)
(s2462 1.0)
(s2463 1.0)
(s2464 1.0)
(s2465 1.0)
(s2466 1.0)
(s2467 1.0)
(s2468 1.0)
(s2469 1.0)
(s2470 1.0)
(s2471 1.0)
(s2472 1.0)
(s2473 1.0)
(s2474 1.0)
(s2475 1.0)
(s2476 1.0)
(s2477 1.0)
(s2478 1.0)
(s2479 1.0)
(s2480 1.0)
(s2481 1.0)
(s2482 1.0)
(s2483 1.0)
(s2484 1.0)
(s2485 1.0)
(s2486 1.0)
(s2487 1.0)
(s2488 1.0)
(s2489 1.0)
(s2490 1.0)
(s2491 1.0)
(s2492 1.0)
(s2493 1.0)
(s2494 1.0)
(s2495 1.0)
(s2496 1.0)
(s2497 1.0)
(s2498 1.0)
(s2499 1.0)
(s2500 1.0)
(s2501 1.0)
(s2502 1.0)
(s2503 1.0)
(s2504 1.0)
(s2505 1.0)
(s2506 1.0)
(s2507 1.0)
(s2508 1.0)
(s2509 1.0)
(s2510 1.0)
(s2511 1.0)
(s2512 1.0)
(s2513 1.0)
(s2514 1.0)
(s2515 1.0)
(s2516 1.0)
(s2517 1.0)
(s2518 1.0)
(s2519 1.0)
(s2520 1.0)
(s2521 1.0)
(s2522 1.0)
(s2523 1.0)
(s2524 1.0)
(s2525 1.0)
(s2526 1.0)
(s2527 1.0)
(s2528 1.0)
(s2529 1.0)
(s2530 1.0)
(s2531 1.0)
(s2532 1.0)
(s2533 1.0)
(s2534 1.0)
(s2535 1.0)
(s2536 1.0)
(s2537 1.0)
(s2538 1.0)
(s2539 1.0)
(s2540 1.0)
(s2541 1.0)
(s2542 1.0)
(s2543 1.0)
(s2544 1.0)
(s2545 1.0)
(s2546 1.0)
(s2547 1.0)
(s2548 1.0)
(s2549 1.0)
(s2550 1.0)
(s2551 1.0)
(s2552 1.0)
(s2553 1.0)
(s2554 1.0)
(s2555 1.0)
(s2556 1.0)
(s2557 1.0)
(s2558 1.0)
(s2559 1.0)
(s2560 1.0)
(s2561 1.0)
(s2562 1.0)
(s2563 1.0)
(s2564 1.0)
(s2565 1.0)
(s2566 1.0)
(s2567 1.0)
(s2568 1.0)
(s2569 1.0)
(s2570 1.0)
(s2571 1.0)
(s2572 1.0)
(s2573 1.0)
(s2574 1.0)
(s2575 1.0)
(s2576 1.0)
(s2577 1.0)
(s2578 1.0)
(s2579 1.0)
(s2580 1.0)
(s2581 1.0)
(s2582 1.0)
(s2583 1.0)
(s2584 1.0)
(s2585 1.0)
(s2586 1.0)
(s2587 1.0)
(s2588 1.0)
(s2589 1.0)
(s2590 timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
At refinement iteration 0 (INCLUDED_ONLY) 0/3865 variables, 3865/3865 constraints. Problems are: Problem set: 0 solved, 3517 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 3865/7384 variables, and 3865 constraints, problems are : Problem set: 0 solved, 3517 unsolved in 30106 ms.
Refiners :[Domain max(s): 3865/3866 constraints, State Equation: 0/3866 constraints, PredecessorRefiner: 3517/3517 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 3517 unsolved
At refinement iteration 0 (INCLUDED_ONLY) 0/3865 variables, 3865/3865 constraints. Problems are: Problem set: 0 solved, 3517 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 3865/7384 variables, and 3865 constraints, problems are : Problem set: 0 solved, 3517 unsolved in 30095 ms.
Refiners :[Domain max(s): 3865/3866 constraints, State Equation: 0/3866 constraints, PredecessorRefiner: 0/3517 constraints, Known Traps: 0/0 constraints]
After SMT, in 71891ms problems are : Problem set: 0 solved, 3517 unsolved
Search for dead transitions found 0 dead transitions in 71962ms
Starting structural reductions in LTL mode, iteration 1 : 3866/3869 places, 3518/3518 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 255095 ms. Remains : 3866/3869 places, 3518/3518 transitions.
Stuttering acceptance computed with spot in 216 ms :[(NOT p1), (OR (NOT p0) (NOT p1)), (OR (NOT p0) (NOT p1)), (OR (NOT p0) (NOT p1))]
Running random walk in product with property : Echo-PT-d03r07-LTLCardinality-07
Product exploration explored 100000 steps with 405 reset in 5478 ms.
Product exploration explored 100000 steps with 395 reset in 5323 ms.
Computed a total of 3866 stabilizing places and 3518 stable transitions
Complete graph has no SCC; deadlocks are unavoidable. place count 3866 transition count 3518
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge (and all enablings converge to false).
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge : F ( (Ga|G!a) & (Gb|G!b)...)
Knowledge obtained : [(AND (NOT p1) (NOT p0)), (X (X (NOT p0))), (F (OR (G p1) (G (NOT p1)))), (F (OR (G p0) (G (NOT p0))))]
False Knowledge obtained : []
Knowledge based reduction with 4 factoid took 167 ms. Reduced automaton from 4 states, 5 edges and 2 AP (stutter sensitive) to 4 states, 5 edges and 2 AP (stutter sensitive).
Stuttering acceptance computed with spot in 202 ms :[(NOT p1), (OR (NOT p0) (NOT p1)), (OR (NOT p0) (NOT p1)), (OR (NOT p0) (NOT p1))]
RANDOM walk for 1108 steps (0 resets) in 104 ms. (10 steps per ms) remains 0/2 properties
Knowledge obtained : [(AND (NOT p1) (NOT p0)), (X (X (NOT p0))), (F (OR (G p1) (G (NOT p1)))), (F (OR (G p0) (G (NOT p0))))]
False Knowledge obtained : [(F p1), (F p0)]
Knowledge based reduction with 4 factoid took 320 ms. Reduced automaton from 4 states, 5 edges and 2 AP (stutter sensitive) to 4 states, 5 edges and 2 AP (stutter sensitive).
Stuttering acceptance computed with spot in 205 ms :[(NOT p1), (OR (NOT p0) (NOT p1)), (OR (NOT p0) (NOT p1)), (OR (NOT p0) (NOT p1))]
Stuttering acceptance computed with spot in 203 ms :[(NOT p1), (OR (NOT p0) (NOT p1)), (OR (NOT p0) (NOT p1)), (OR (NOT p0) (NOT p1))]
// Phase 1: matrix 3518 rows 3866 cols
[2024-05-23 11:04:40] [INFO ] Invariants computation overflowed in 8820 ms
[2024-05-23 11:04:55] [INFO ] [Real]Absence check using state equation in 1601 ms returned unknown
Could not prove EG (NOT p0)
// Phase 1: matrix 3518 rows 3866 cols
[2024-05-23 11:05:04] [INFO ] Invariants computation overflowed in 8876 ms
[2024-05-23 11:05:19] [INFO ] [Real]Absence check using state equation in 1021 ms returned unknown
Could not prove EG (NOT p1)
Support contains 2 out of 3866 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 3866/3866 places, 3518/3518 transitions.
Applied a total of 0 rules in 481 ms. Remains 3866 /3866 variables (removed 0) and now considering 3518/3518 (removed 0) transitions.
// Phase 1: matrix 3518 rows 3866 cols
[2024-05-23 11:05:28] [INFO ] Invariants computation overflowed in 8588 ms
[2024-05-23 11:05:33] [INFO ] Implicit Places using invariants in 13904 ms returned []
// Phase 1: matrix 3518 rows 3866 cols
[2024-05-23 11:05:41] [INFO ] Invariants computation overflowed in 8439 ms
[2024-05-23 11:07:02] [INFO ] Performed 1/3866 implicitness test of which 0 returned IMPLICIT in 32 seconds.
[2024-05-23 11:07:34] [INFO ] Performed 3/3866 implicitness test of which 0 returned IMPLICIT in 64 seconds.
[2024-05-23 11:08:06] [INFO ] Performed 5/3866 implicitness test of which 0 returned IMPLICIT in 96 seconds.
[2024-05-23 11:08:21] [INFO ] Implicit Places with SMT raised an exceptionSMT solver raised an error when submitting script. Raised (error "Failed to assert expression: java.io.IOException: Broken pipe ... after 168485 ms
Implicit Place search using SMT with State Equation took 182392 ms to find 0 implicit places.
Running 3517 sub problems to find dead transitions.
// Phase 1: matrix 3518 rows 3866 cols
[2024-05-23 11:08:30] [INFO ] Invariants computation overflowed in 8773 ms
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
At refinement iteration 0 (INCLUDED_ONLY) 0/3865 variables, 3865/3865 constraints. Problems are: Problem set: 0 solved, 3517 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 3865/7384 variables, and 3865 constraints, problems are : Problem set: 0 solved, 3517 unsolved in 30096 ms.
Refiners :[Domain max(s): 3865/3866 constraints, State Equation: 0/3866 constraints, PredecessorRefiner: 3517/3517 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 3517 unsolved
At refinement iteration 0 (INCLUDED_ONLY) 0/3865 variables, 3865/3865 constraints. Problems are: Problem set: 0 solved, 3517 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 3865/7384 variables, and 3865 constraints, problems are : Problem set: 0 solved, 3517 unsolved in 30103 ms.
Refiners :[Domain max(s): 3865/3866 constraints, State Equation: 0/3866 constraints, PredecessorRefiner: 0/3517 constraints, Known Traps: 0/0 constraints]
After SMT, in 72406ms problems are : Problem set: 0 solved, 3517 unsolved
Search for dead transitions found 0 dead transitions in 72449ms
Finished structural reductions in LTL mode , in 1 iterations and 255332 ms. Remains : 3866/3866 places, 3518/3518 transitions.
Computed a total of 3866 stabilizing places and 3518 stable transitions
Complete graph has no SCC; deadlocks are unavoidable. place count 3866 transition count 3518
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge (and all enablings converge to false).
Detected that all paths lead to deadlock. Applying this knowledge to assert that all AP eventually converge : F ( (Ga|G!a) & (Gb|G!b)...)
Knowledge obtained : [(AND (NOT p1) (NOT p0)), (X (X (NOT p0))), (F (OR (G p1) (G (NOT p1)))), (F (OR (G p0) (G (NOT p0))))]
False Knowledge obtained : []
Knowledge based reduction with 4 factoid took 138 ms. Reduced automaton from 4 states, 5 edges and 2 AP (stutter sensitive) to 4 states, 5 edges and 2 AP (stutter sensitive).
Stuttering acceptance computed with spot in 142 ms :[(NOT p1), (OR (NOT p0) (NOT p1)), (OR (NOT p0) (NOT p1)), (OR (NOT p0) (NOT p1))]
RANDOM walk for 1392 steps (0 resets) in 71 ms. (19 steps per ms) remains 0/2 properties
Knowledge obtained : [(AND (NOT p1) (NOT p0)), (X (X (NOT p0))), (F (OR (G p1) (G (NOT p1)))), (F (OR (G p0) (G (NOT p0))))]
False Knowledge obtained : [(F p1), (F p0)]
Knowledge based reduction with 4 factoid took 256 ms. Reduced automaton from 4 states, 5 edges and 2 AP (stutter sensitive) to 4 states, 5 edges and 2 AP (stutter sensitive).
Stuttering acceptance computed with spot in 196 ms :[(NOT p1), (OR (NOT p0) (NOT p1)), (OR (NOT p0) (NOT p1)), (OR (NOT p0) (NOT p1))]
Stuttering acceptance computed with spot in 190 ms :[(NOT p1), (OR (NOT p0) (NOT p1)), (OR (NOT p0) (NOT p1)), (OR (NOT p0) (NOT p1))]
// Phase 1: matrix 3518 rows 3866 cols
[2024-05-23 11:09:47] [INFO ] Invariants computation overflowed in 8672 ms
[2024-05-23 11:10:02] [INFO ] [Real]Absence check using state equation in 1166 ms returned unknown
Could not prove EG (NOT p0)
// Phase 1: matrix 3518 rows 3866 cols
[2024-05-23 11:10:11] [INFO ] Invariants computation overflowed in 8840 ms
[2024-05-23 11:10:26] [INFO ] [Real]Absence check using state equation in 1772 ms returned unknown
Could not prove EG (NOT p1)
Stuttering acceptance computed with spot in 144 ms :[(NOT p1), (OR (NOT p0) (NOT p1)), (OR (NOT p0) (NOT p1)), (OR (NOT p0) (NOT p1))]
Product exploration explored 100000 steps with 393 reset in 5297 ms.
Product exploration explored 100000 steps with 414 reset in 5339 ms.
Applying partial POR strategy [true, false, false, false]
Stuttering acceptance computed with spot in 143 ms :[(NOT p1), (OR (NOT p0) (NOT p1)), (OR (NOT p0) (NOT p1)), (OR (NOT p0) (NOT p1))]
Support contains 2 out of 3866 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 3866/3866 places, 3518/3518 transitions.
Graph (complete) has 14527 edges and 3866 vertex of which 3859 are kept as prefixes of interest. Removing 7 places using SCC suffix rule.8 ms
Discarding 7 places :
Also discarding 1 output transitions
Drop transitions (Output transitions of discarded places.) removed 1 transitions
Applied a total of 1 rules in 429 ms. Remains 3859 /3866 variables (removed 7) and now considering 3517/3518 (removed 1) transitions.
[2024-05-23 11:10:38] [INFO ] Redundant transitions in 150 ms returned []
Running 3516 sub problems to find dead transitions.
// Phase 1: matrix 3517 rows 3859 cols
[2024-05-23 11:10:51] [INFO ] Invariants computation overflowed in 12848 ms
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
At refinement iteration 0 (INCLUDED_ONLY) 0/3858 variables, 3858/3858 constraints. Problems are: Problem set: 0 solved, 3516 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 3858/7376 variables, and 3858 constraints, problems are : Problem set: 0 solved, 3516 unsolved in 30092 ms.
Refiners :[Domain max(s): 3858/3859 constraints, State Equation: 0/3859 constraints, PredecessorRefiner: 3516/3516 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 3516 unsolved
At refinement iteration 0 (INCLUDED_ONLY) 0/3858 variables, 3858/3858 constraints. Problems are: Problem set: 0 solved, 3516 unsolved
Error getting values : (error "ParserException while parsing response: ((s0 1)
(s1 1)
(s2 1)
(s3 1)
(s4 1)
(s5 1)
(s6 1)
(s7 1)
(s8 1)
(s9 1)
(s10 1)
(s11 1)
(s12 1)
(s13 1)
(s14 1)
(s15 1)
(s16 1)
(s17 1)
(s18 1)
(s19 1)
(s20 1)
(s21 1)
(s22 1)
(s23 1)
(s24 1)
(s25 1)
(s26 1)
(s27 1)
(s28 1)
(s29 1)
(s30 1)
(s31 1)
(s32 1)
(s33 1)
(s34 1)
(s35 1)
(s36 1)
(s37 1)
(s38 1)
(s39 1)
(s40 1)
(s41 1)
(s42 1)
(s43 1)
(s44 1)
(s45 1)
(s46 1)
(s47 1)
(s48 1)
(s49 1)
(s50 1)
(s51 1)
(s52 1)
(s53 1)
(s54 1)
(s55 1)
(s56 1)
(s57 1)
(s58 1)
(s59 1)
(s60 1)
(s61 1)
(s62 1)
(s63 1)
(s64 1)
(s65 1)
(s66 1)
(s67 1)
(s68 1)
(s69 1)
(s70 1)
(s71 1)
(s72 1)
(s73 1)
(s74 1)
(s75 1)
(s76 1)
(s77 1)
(s78 1)
(s79 1)
(s80 1)
(s81 1)
(s82 1)
(s83 1)
(s84 1)
(s85 1)
(s86 1)
(s87 1)
(s88 1)
(s89 1)
(s90 1)
(s91 1)
(s92 1)
(s93 1)
(s94 1)
(s95 1)
(s96 1)
(s97 1)
(s98 1)
(s99 1)
(s100 1)
(s101 1)
(s102 1)
(s103 1)
(s104 1)
(s105 1)
(s106 1)
(s107 1)
(s108 1)
(s109 1)
(s110 1)
(s111 1)
(s112 1)
(s113 1)
(s114 1)
(s115 1)
(s116 1)
(s117 1)
(s118 1)
(s119 1)
(s120 1)
(s121 1)
(s122 1)
(s123 1)
(s124 1)
(s125 1)
(s126 1)
(s127 1)
(s128 1)
(s129 1)
(s130 1)
(s131 1)
(s132 1)
(s133 1)
(s134 1)
(s135 1)
(s136 1)
(s137 1)
(s138 1)
(s139 1)
(s140 1)
(s141 1)
(s142 1)
(s143 1)
(s144 1)
(s145 1)
(s146 1)
(s147 1)
(s148 1)
(s149 1)
(s150 1)
(s151 1)
(s152 1)
(s153 1)
(s154 1)
(s155 1)
(s156 1)
(s157 1)
(s158 1)
(s159 1)
(s160 1)
(s161 1)
(s162 1)
(s163 1)
(s164 1)
(s165 1)
(s166 1)
(s167 1)
(s168 1)
(s169 1)
(s170 1)
(s171 1)
(s172 1)
(s173 1)
(s174 1)
(s175 1)
(s176 1)
(s177 1)
(s178 1)
(s179 1)
(s180 1)
(s181 1)
(s182 1)
(s183 1)
(s184 1)
(s185 1)
(s186 1)
(s187 1)
(s188 1)
(s189 1)
(s190 1)
(s191 1)
(s192 1)
(s193 1)
(s194 1)
(s195 1)
(s196 1)
(s197 1)
(s198 1)
(s199 1)
(s200 1)
(s201 1)
(s202 1)
(s203 1)
(s204 1)
(s205 1)
(s206 1)
(s207 1)
(s208 1)
(s209 1)
(s210 1)
(s211 1)
(s212 1)
(s213 1)
(s214 1)
(s215 1)
(s216 1)
(s217 1)
(s218 1)
(s219 1)
(s220 1)
(s221 1)
(s222 1)
(s223 1)
(s224 1)
(s225 1)
(s226 1)
(s227 1)
(s228 1)
(s229 1)
(s230 1)
(s231 1)
(s232 1)
(s233 1)
(s234 1)
(s235 1)
(s236 1)
(s237 1)
(s238 1)
(s239 1)
(s240 1)
(s241 1)
(s242 1)
(s243 1)
(s244 1)
(s245 1)
(s246 1)
(s247 1)
(s248 1)
(s249 1)
(s250 1)
(s251 1)
(s252 1)
(s253 1)
(s254 1)
(s255 1)
(s256 1)
(s257 1)
(s258 1)
(s259 1)
(s260 1)
(s261 1)
(s262 1)
(s263 1)
(s264 1)
(s265 1)
(s266 1)
(s267 1)
(s268 1)
(s269 1)
(s270 1)
(s271 1)
(s272 1)
(s273 1)
(s274 1)
(s275 1)
(s276 1)
(s277 1)
(s278 1)
(s279 1)
(s280 1)
(s281 1)
(s282 1)
(s283 1)
(s284 1)
(s285 1)
(s286 1)
(s287 1)
(s288 1)
(s289 1)
(s290 1)
(s291 1)
(s292 1)
(s293 1)
(s294 1)
(s295 1)
(s296 1)
(s297 1)
(s298 1)
(s299 1)
(s300 1)
(s301 1)
(s302 1)
(s303 1)
(s304 1)
(s305 1)
(s306 1)
(s307 1)
(s308 1)
(s309 1)
(s310 1)
(s311 1)
(s312 1)
(s313 1)
(s314 1)
(s315 1)
(s316 1)
(s317 1)
(s318 1)
(s319 1)
(s320 1)
(s321 1)
(s322 1)
(s323 1)
(s324 1)
(s325 1)
(s326 1)
(s327 1)
(s328 1)
(s329 1)
(s330 1)
(s331 1)
(s332 1)
(s333 1)
(s334 1)
(s335 1)
(s336 1)
(s337 1)
(s338 1)
(s339 1)
(s340 1)
(s341 1)
(s342 1)
(s343 1)
(s344 1)
(s345 1)
(s346 1)
(s347 1)
(s348 1)
(s349 1)
(s350 1)
(s351 1)
(s352 1)
(s353 1)
(s354 1)
(s355 1)
(s356 1)
(s357 1)
(s358 1)
(s359 1)
(s360 1)
(s361 1)
(s362 1)
(s363 1)
(s364 1)
(s365 1)
(s366 1)
(s367 1)
(s368 1)
(s369 1)
(s370 1)
(s371 1)
(s372 1)
(s373 1)
(s374 1)
(s375 1)
(s376 1)
(s377 1)
(s378 1)
(s379 1)
(s380 1)
(s381 1)
(s382 1)
(s383 1)
(s384 1)
(s385 1)
(s386 1)
(s387 1)
(s388 1)
(s389 1)
(s390 1)
(s391 1)
(s392 1)
(s393 1)
(s394 1)
(s395 1)
(s396 1)
(s397 1)
(s398 1)
(s399 1)
(s400 1)
(s401 1)
(s402 1)
(s403 1)
(s404 1)
(s405 1)
(s406 1)
(s407 1)
(s408 1)
(s409 1)
(s410 1)
(s411 1)
(s412 1)
(s413 1)
(s414 1)
(s415 1)
(s416 1)
(s417 1)
(s418 1)
(s419 1)
(s420 1)
(s421 1)
(s422 1)
(s423 1)
(s424 1)
(s425 1)
(s426 1)
(s427 1)
(s428 1)
(s429 1)
(s430 1)
(s431 1)
(s432 1)
(s433 1)
(s434 1)
(s435 1)
(s436 1)
(s437 1)
(s438 1)
(s439 1)
(s440 1)
(s441 1)
(s442 1)
(s443 1)
(s444 1)
(s445 1)
(s446 1)
(s447 1)
(s448 1)
(s449 1)
(s450 1)
(s451 1)
(s452 1)
(s453 1)
(s454 1)
(s455 1)
(s456 1)
(s457 1)
(s458 1)
(s459 1)
(s460 1)
(s461 1)
(s462 1)
(s463 1)
(s464 1)
(s465 1)
(s466 1)
(s467 1)
(s468 1)
(s469 1)
(s470 1)
(s471 1)
(s472 1)
(s473 1)
(s474 1)
(s475 1)
(s476 1)
(s477 1)
(s478 1)
(s479 1)
(s480 1)
(s481 1)
(s482 1)
(s483 1)
(s484 1)
(s485 1)
(s486 1)
(s487 1)
(s488 1)
(s489 1)
(s490 1)
(s491 1)
(s492 1)
(s493 1)
(s494 1)
(s495 1)
(s496 1)
(s497 1)
(s498 1)
(s499 1)
(s500 1)
(s501 1)
(s502 1)
(s503 1)
(s504 1)
(s505 1)
(s506 1)
(s507 1)
(s508 1)
(s509 1)
(s510 1)
(s511 1)
(s512 1)
(s513 1)
(s514 1)
(s515 1)
(s516 1)
(s517 1)
(s518 1)
(s519 1)
(s520 1)
(s521 1)
(s522 1)
(s523 1)
(s524 1)
(s525 1)
(s526 1)
(s527 1)
(s528 1)
(s529 1)
(s530 1)
(s531 1)
(s532 1)
(s533 1)
(s534 1)
(s535 1)
(s536 1)
(s537 1)
(s538 1)
(s539 1)
(s540 1)
(s541 1)
(s542 1)
(s543 1)
(s544 1)
(s545 1)
(s546 1)
(s547 1)
(s548 1)
(s549 1)
(s550 1)
(s551 1)
(s552 1)
(s553 1)
(s554 1)
(s555 1)
(s556 1)
(s557 1)
(s558 1)
(s559 1)
(s560 1)
(s561 1)
(s562 1)
(s563 1)
(s564 1)
(s565 1)
(s566 1)
(s567 1)
(s568 1)
(s569 1)
(s570 1)
(s571 1)
(s572 1)
(s573 1)
(s574 1)
(s575 1)
(s576 1)
(s577 1)
(s578 1)
(s579 1)
(s580 1)
(s581 1)
(s582 1)
(s583 1)
(s584 1)
(s585 1)
(s586 1)
(s587 1)
(s588 1)
(s589 1)
(s590 1)
(s591 1)
(s592 1)
(s593 1)
(s594 1)
(s595 1)
(s596 1)
(s597 1)
(s598 1)
(s599 1)
(s600 1)
(s601 1)
(s602 1)
(s603 1)
(s604 1)
(s605 1)
(s606 1)
(s607 1)
(s608 1)
(s609 1)
(s610 1)
(s611 1)
(s612 1)
(s613 1)
(s614 1)
(s615 1)
(s616 1)
(s617 1)
(s618 1)
(s619 1)
(s620 1)
(s621 1)
(s622 1)
(s623 1)
(s624 1)
(s625 1)
(s626 1)
(s627 1)
(s628 1)
(s629 1)
(s630 1)
(s631 1)
(s632 1)
(s633 1)
(s634 1)
(s635 1)
(s636 1)
(s637 1)
(s638 1)
(s639 1)
(s640 1)
(s641 1)
(s642 1)
(s643 1)
(s644 1)
(s645 1)
(s646 1)
(s647 1)
(s648 1)
(s649 1)
(s650 1)
(s651 1)
(s652 1)
(s653 1)
(s654 1)
(s655 1)
(s656 1)
(s657 1)
(s658 1)
(s659 1)
(s660 1)
(s661 1)
(s662 1)
(s663 1)
(s664 1)
(s665 1)
(s666 1)
(s667 1)
(s668 1)
(s669 1)
(s670 1)
(s671 1)
(s672 1)
(s673 1)
(s674 1)
(s675 1)
(s676 1)
(s677 1)
(s678 1)
(s679 1)
(s680 1)
(s681 1)
(s682 1)
(s683 1)
(s684 1)
(s685 1)
(s686 1)
(s687 1)
(s688 1)
(s689 1)
(s690 1)
(s691 1)
(s692 1)
(s693 1)
(s694 1)
(s695 1)
(s696 1)
(s697 1)
(s698 1)
(s699 1)
(s700 1)
(s701 1)
(s702 1)
(s703 1)
(s704 1)
(s705 1)
(s706 1)
(s707 1)
(s708 1)
(s709 1)
(s710 1)
(s711 1)
(s712 1)
(s713 1)
(s714 1)
(s715 1)
(s716 1)
(s717 1)
(s718 1)
(s719 1)
(s720 1)
(s721 1)
(s722 1)
(s723 1)
(s724 1)
(s725 1)
(s726 1)
(s727 1)
(s728 1)
(s729 1)
(s730 1)
(s731 1)
(s732 1)
(s733 1)
(s734 1)
(s735 1)
(s736 1)
(s737 1)
(s738 1)
(s739 1)
(s740 1)
(s741 1)
(s742 1)
(s743 1)
(s744 1)
(s745 1)
(s746 1)
(s747 1)
(s748 1)
(s749 1)
(s750 1)
(s751 1)
(s752 1)
(s753 1)
(s754 1)
(s755 1)
(s756 1)
(s757 1)
(s758 1)
(s759 1)
(s760 1)
(s761 1)
(s762 1)
(s763 1)
(s764 1)
(s765 1)
(s766 1)
(s767 1)
(s768 1)
(s769 1)
(s770 1)
(s771 1)
(s772 1)
(s773 1)
(s774 1)
(s775 1)
(s776 1)
(s777 1)
(s778 1)
(s779 1)
(s780 1)
(s781 1)
(s782 1)
(s783 1)
(s784 1)
(s785 1)
(s786 1)
(s787 1)
(s788 1)
(s789 1)
(s790 1)
(s791 1)
(s792 1)
(s793 1)
(s794 1)
(s795 1)
(s796 1)
(s797 1)
(s798 1)
(s799 1)
(s800 1)
(s801 1)
(s802 1)
(s803 1)
(s804 1)
(s805 1)
(s806 1)
(s807 1)
(s808 1)
(s809 1)
(s810 1)
(s811 1)
(s812 1)
(s813 1)
(s814 1)
(s815 1)
(s816 1)
(s817 1)
(s818 1)
(s819 1)
(s820 1)
(s821 1)
(s822 1)
(s823 1)
(s824 1)
(s825 1)
(s826 1)
(s827 1)
(s828 1)
(s829 1)
(s830 1)
(s831 1)
(s832 1)
(s833 1)
(s834 1)
(s835 1)
(s836 1)
(s837 1)
(s838 1)
(s839 1)
(s840 1)
(s841 1)
(s842 1)
(s843 1)
(s844 1)
(s845 1)
(s846 1)
(s847 1)
(s848 1)
(s849 1)
(s850 1)
(s851 1)
(s852 1)
(s853 1)
(s854 1)
(s855 1)
(s856 1)
(s857 1)
(s858 1)
(s859 1)
(s860 1)
(s861 1)
(s862 1)
(s863 1)
(s864 1)
(s865 1)
(s866 1)
(s867 1)
(s868 1)
(s869 1)
(s870 1)
(s871 1)
(s872 1)
(s873 1)
(s874 1)
(s875 1)
(s876 1)
(s877 1)
(s878 1)
(s879 1)
(s880 1)
(s881 1)
(s882 1)
(s883 1)
(s884 1)
(s885 1)
(s886 1)
(s887 1)
(s888 1)
(s889 1)
(s890 1)
(s891 1)
(s892 1)
(s893 1)
(s894 1)
(s895 1)
(s896 1)
(s897 1)
(s898 1)
(s899 1)
(s900 1)
(s901 1)
(s902 1)
(s903 1)
(s904 1)
(s905 1)
(s906 1)
(s907 1)
(s908 1)
(s909 1)
(s910 1)
(s911 1)
(s912 1)
(s913 1)
(s914 1)
(s915 1)
(s916 1)
(s917 1)
(s918 1)
(s919 1)
(s920 1)
(s921 1)
(s922 1)
(s923 1)
(s924 1)
(s925 1)
(s926 1)
(s927 1)
(s928 1)
(s929 1)
(s930 1)
(s931 1)
(s932 1)
(s933 1)
(s934 1)
(s935 1)
(s936 1)
(s937 1)
(s938 1)
(s939 1)
(s940 1)
(s941 1)
(s942 1)
(s943 1)
(s944 1)
(s945 1)
(s946 1)
(s947 1)
(s948 1)
(s949 1)
(s950 1)
(s951 1)
(s952 1)
(s953 1)
(s954 1)
(s955 1)
(s956 1)
(s957 1)
(s958 1)
(s959 1)
(s960 1)
(s961 1)
(s962 1)
(s963 1)
(s964 1)
(s965 1)
(s966 1)
(s967 1)
(s968 1)
(s969 1)
(s970 1)
(s971 1)
(s972 1)
(s973 1)
(s974 1)
(s975 1)
(s976 1)
(s977 1)
(s978 1)
(s979 1)
(s980 1)
(s981 1)
(s982 1)
(s983 1)
(s984 1)
(s985 1)
(s986 1)
(s987 1)
(s988 1)
(s989 1)
(s990 1)
(s991 1)
(s992 1)
(s993 1)
(s994 1)
(s995 1)
(s996 1)
(s997 1)
(s998 1)
(s999 1)
(s1000 1)
(s1001 1)
(s1002 1)
(s1003 1)
(s1004 1)
(s1005 1)
(s1006 1)
(s1007 1)
(s1008 1)
(s1009 1)
(s1010 1)
(s1011 1)
(s1012 1)
(s1013 1)
(s1014 1)
(s1015 1)
(s1016 1)
(s1017 1)
(s1018 1)
(s1019 1)
(s1020 1)
(s1021 1)
(s1022 1)
(s1023 1)
(s1024 1)
(s1025 1)
(s1026 1)
(s1027 1)
(s1028 1)
(s1029 1)
(s1030 1)
(s1031 1)
(s1032 1)
(s1033 1)
(s1034 1)
(s1035 1)
(s1036 1)
(s1037 1)
(s1038 1)
(s1039 1)
(s1040 1)
(s1041 1)
(s1042 1)
(s1043 1)
(s1044 1)
(s1045 1)
(s1046 1)
(s1047 1)
(s1048 1)
(s1049 1)
(s1050 1)
(s1051 1)
(s1052 1)
(s1053 1)
(s1054 1)
(s1055 1)
(s1056 1)
(s1057 1)
(s1058 1)
(s1059 1)
(s1060 1)
(s1061 1)
(s1062 1)
(s1063 1)
(s1064 1)
(s1065 1)
(s1066 1)
(s1067 1)
(s1068 1)
(s1069 1)
(s1070 1)
(s1071 1)
(s1072 1)
(s1073 1)
(s1074 1)
(s1075 1)
(s1076 1)
(s1077 1)
(s1078 1)
(s1079 1)
(s1080 1)
(s1081 1)
(s1082 1)
(s1083 1)
(s1084 1)
(s1085 1)
(s1086 1)
(s1087 1)
(s1088 1)
(s1089 1)
(s1090 1)
(s1091 1)
(s1092 1)
(s1093 1)
(s1094 1)
(s1095 1)
(s1096 1)
(s1097 1)
(s1098 1)
(s1099 1)
(s1100 1)
(s1101 1)
(s1102 1)
(s1103 1)
(s1104 1)
(s1105 1)
(s1106 1)
(s1107 1)
(s1108 1)
(s1109 1)
(s1110 1)
(s1111 1)
(s1112 1)
(s1113 1)
(s1114 1)
(s1115 1)
(s1116 1)
(s1117 1)
(s1118 1)
(s1119 1)
(s1120 1)
(s1121 1)
(s1122 1)
(s1123 1)
(s1124 1)
(s1125 1)
(s1126 1)
(s1127 1)
(s1128 1)
(s1129 1)
(s1130 1)
(s1131 1)
(s1132 1)
(s1133 1)
(s1134 1)
(s1135 1)
(s1136 1)
(s1137 1)
(s1138 1)
(s1139 1)
(s1140 1)
(s1141 1)
(s1142 1)
(s1143 1)
(s1144 1)
(s1145 1)
(s1146 1)
(s1147 1)
(s1148 1)
(s1149 1)
(s1150 1)
(s1151 1)
(s1152 1)
(s1153 1)
(s1154 1)
(s1155 1)
(s1156 1)
(s1157 1)
(s1158 1)
(s1159 1)
(s1160 1)
(s1161 1)
(s1162 1)
(s1163 1)
(s1164 1)
(s1165 1)
(s1166 1)
(s1167 1)
(s1168 1)
(s1169 1)
(s1170 1)
(s1171 1)
(s1172 1)
(s1173 1)
(s1174 1)
(s1175 1)
(s1176 1)
(s1177 1)
(s1178 1)
(s1179 1)
(s1180 1)
(s1181 1)
(s1182 1)
(s1183 1)
(s1184 1)
(s1185 1)
(s1186 1)
(s1187 1)
(s1188 1)
(s1189 1)
(s1190 1)
(s1191 1)
(s1192 1)
(s1193 1)
(s1194 1)
(s1195 1)
(s1196 1)
(s1197 1)
(s1198 1)
(s1199 1)
(s1200 1)
(s1201 1)
(s1202 1)
(s1203 1)
(s1204 1)
(s1205 1)
(s1206 1)
(s1207 1)
(s1208 1)
(s1209 1)
(s1210 1)
(s1211 1)
(s1212 1)
(s1213 1)
(s1214 1)
(s1215 1)
(s1216 1)
(s1217 1)
(s1218 1)
(s1219 1)
(s1220 1)
(s1221 1)
(s1222 1)
(s1223 1)
(s1224 1)
(s1225 1)
(s1226 1)
(s1227 1)
(s1228 1)
(s1229 1)
(s1230 1)
(s1231 1)
(s1232 1)
(s1233 1)
(s1234 1)
(s1235 1)
(s1236 1)
(s1237 1)
(s1238 1)
(s1239 1)
(s1240 1)
(s1241 1)
(s1242 1)
(s1243 1)
(s1244 1)
(s1245 1)
(s1246 1)
(s1247 1)
(s1248 1)
(s1249 1)
(s1250 1)
(s1251 1)
(s1252 1)
(s1253 1)
(s1254 1)
(s1255 1)
(s1256 1)
(s1257 1)
(s1258 1)
(s1259 1)
(s1260 1)
(s1261 1)
(s1262 1)
(s1263 1)
(s1264 1)
(s1265 1)
(s1266 1)
(s1267 1)
(s1268 1)
(s1269 1)
(s1270 1)
(s1271 1)
(s1272 1)
(s1273 1)
(s1274 1)
(s1275 1)
(s1276 1)
(s1277 1)
(s1278 1)
(s1279 1)
(s1280 1)
(s1281 1)
(s1282 1)
(s1283 1)
(s1284 1)
(s1285 1)
(s1286 1)
(s1287 1)
(s1288 1)
(s1289 1)
(s1290 1)
(s1291 1)
(s1292 1)
(s1293 1)
(s1294 1)
(s1295 1)
(s1296 1)
(s1297 1)
(s1298 1)
(s1299 1)
(s1300 1)
(s1301 1)
(s1302 1)
(s1303 1)
(s1304 1)
(s1305 1)
(s1306 1)
(s1307 1)
(s1308 1)
(s1309 1)
(s1310 1)
(s1311 1)
(s1312 1)
(s1313 1)
(s1314 1)
(s1315 1)
(s1316 1)
(s1317 1)
(s1318 1)
(s1319 1)
(s1320 1)
(s1321 1)
(s1322 1)
(s1323 1)
(s1324 1)
(s1325 1)
(s1326 1)
(s1327 1)
(s1328 1)
(s1329 1)
(s1330 1)
(s1331 1)
(s1332 1)
(s1333 1)
(s1334 1)
(s1335 1)
(s1336 1)
(s1337 1)
(s1338 1)
(s1339 1)
(s1340 1)
(s1341 1)
(s1342 1)
(s1343 1)
(s1344 1)
(s1345 1)
(s1346 1)
(s1347 1)
(s1348 1)
(s1349 1)
(s1350 1)
(s1351 1)
(s1352 1)
(s1353 1)
(s1354 1)
(s1355 1)
(s1356 1)
(s1357 1)
(s1358 1)
(s1359 1)
(s1360 1)
(s1361 1)
(s1362 1)
(s1363 1)
(s1364 1)
(s1365 1)
(s1366 1)
(s1367 1)
(s1368 1)
(s1369 1)
(s1370 1)
(s1371 1)
(s1372 1)
(s1373 1)
(s1374 1)
(s1375 1)
(s1376 1)
(s1377 1)
(s1378 1)
(s1379 1)
(s1380 1)
(s1381 1)
(s1382 1)
(s1383 1)
(s1384 1)
(s1385 1)
(s1386 1)
(s1387 1)
(s1388 1)
(s1389 1)
(s1390 1)
(s1391 1)
(s1392 1)
(s1393 1)
(s1394 1)
(s1395 1)
(s1396 1)
(s1397 1)
(s1398 1)
(s1399 1)
(s1400 1)
(s1401 1)
(s1402 1)
(s1403 1)
(s1404 1)
(s1405 1)
(s1406 1)
(s1407 1)
(s1408 1)
(s1409 1)
(s1410 1)
(s1411 1)
(s1412 1)
(s1413 1)
(s1414 1)
(s1415 1)
(s1416 1)
(s1417 1)
(s1418 1)
(s1419 1)
(s1420 1)
(s1421 1)
(s1422 1)
(s1423 1)
(s1424 1)
(s1425 1)
(s1426 1)
(s1427 1)
(s1428 1)
(s1429 1)
(s1430 1)
(s1431 1)
(s1432 1)
(s1433 1)
(s1434 timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 3858/7376 variables, and 3858 constraints, problems are : Problem set: 0 solved, 3516 unsolved in 30106 ms.
Refiners :[Domain max(s): 3858/3859 constraints, State Equation: 0/3859 constraints, PredecessorRefiner: 0/3516 constraints, Known Traps: 0/0 constraints]
After SMT, in 76492ms problems are : Problem set: 0 solved, 3516 unsolved
Search for dead transitions found 0 dead transitions in 76536ms
Starting structural reductions in SI_LTL mode, iteration 1 : 3859/3866 places, 3517/3518 transitions.
Finished structural reductions in SI_LTL mode , in 1 iterations and 77138 ms. Remains : 3859/3866 places, 3517/3518 transitions.
Support contains 2 out of 3866 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 3866/3866 places, 3518/3518 transitions.
Applied a total of 0 rules in 443 ms. Remains 3866 /3866 variables (removed 0) and now considering 3518/3518 (removed 0) transitions.
// Phase 1: matrix 3518 rows 3866 cols
[2024-05-23 11:12:04] [INFO ] Invariants computation overflowed in 9015 ms
[2024-05-23 11:12:11] [INFO ] Implicit Places using invariants in 16463 ms returned []
// Phase 1: matrix 3518 rows 3866 cols
[2024-05-23 11:12:20] [INFO ] Invariants computation overflowed in 8698 ms
[2024-05-23 11:13:39] [INFO ] Performed 1/3866 implicitness test of which 0 returned IMPLICIT in 32 seconds.
[2024-05-23 11:14:11] [INFO ] Performed 3/3866 implicitness test of which 0 returned IMPLICIT in 64 seconds.
[2024-05-23 11:14:44] [INFO ] Performed 5/3866 implicitness test of which 0 returned IMPLICIT in 96 seconds.
[2024-05-23 11:15:00] [INFO ] Implicit Places using invariants and state equation in 168748 ms returned []
Implicit Place search using SMT with State Equation took 185213 ms to find 0 implicit places.
Running 3517 sub problems to find dead transitions.
// Phase 1: matrix 3518 rows 3866 cols
[2024-05-23 11:15:08] [INFO ] Invariants computation overflowed in 8376 ms
(s2849 1.0timeout
^^^^^^^^^^
(error "Invalid token: 1.0timeout")
Error getting values : (error "ParserException while parsing response: ((s0 1.0)
(s1 1.0)
(s2 1.0)
(s3 1.0)
(s4 1.0)
(s5 1.0)
(s6 1.0)
(s7 1.0)
(s8 1.0)
(s9 1.0)
(s10 1.0)
(s11 1.0)
(s12 1.0)
(s13 1.0)
(s14 1.0)
(s15 1.0)
(s16 1.0)
(s17 1.0)
(s18 1.0)
(s19 1.0)
(s20 1.0)
(s21 1.0)
(s22 1.0)
(s23 1.0)
(s24 1.0)
(s25 1.0)
(s26 1.0)
(s27 1.0)
(s28 1.0)
(s29 1.0)
(s30 1.0)
(s31 1.0)
(s32 1.0)
(s33 1.0)
(s34 1.0)
(s35 1.0)
(s36 1.0)
(s37 1.0)
(s38 1.0)
(s39 1.0)
(s40 1.0)
(s41 1.0)
(s42 1.0)
(s43 1.0)
(s44 1.0)
(s45 1.0)
(s46 1.0)
(s47 1.0)
(s48 1.0)
(s49 1.0)
(s50 1.0)
(s51 1.0)
(s52 1.0)
(s53 1.0)
(s54 1.0)
(s55 1.0)
(s56 1.0)
(s57 1.0)
(s58 1.0)
(s59 1.0)
(s60 1.0)
(s61 1.0)
(s62 1.0)
(s63 1.0)
(s64 1.0)
(s65 1.0)
(s66 1.0)
(s67 1.0)
(s68 1.0)
(s69 1.0)
(s70 1.0)
(s71 1.0)
(s72 1.0)
(s73 1.0)
(s74 1.0)
(s75 1.0)
(s76 1.0)
(s77 1.0)
(s78 1.0)
(s79 1.0)
(s80 1.0)
(s81 1.0)
(s82 1.0)
(s83 1.0)
(s84 1.0)
(s85 1.0)
(s86 1.0)
(s87 1.0)
(s88 1.0)
(s89 1.0)
(s90 1.0)
(s91 1.0)
(s92 1.0)
(s93 1.0)
(s94 1.0)
(s95 1.0)
(s96 1.0)
(s97 1.0)
(s98 1.0)
(s99 1.0)
(s100 1.0)
(s101 1.0)
(s102 1.0)
(s103 1.0)
(s104 1.0)
(s105 1.0)
(s106 1.0)
(s107 1.0)
(s108 1.0)
(s109 1.0)
(s110 1.0)
(s111 1.0)
(s112 1.0)
(s113 1.0)
(s114 1.0)
(s115 1.0)
(s116 1.0)
(s117 1.0)
(s118 1.0)
(s119 1.0)
(s120 1.0)
(s121 1.0)
(s122 1.0)
(s123 1.0)
(s124 1.0)
(s125 1.0)
(s126 1.0)
(s127 1.0)
(s128 1.0)
(s129 1.0)
(s130 1.0)
(s131 1.0)
(s132 1.0)
(s133 1.0)
(s134 1.0)
(s135 1.0)
(s136 1.0)
(s137 1.0)
(s138 1.0)
(s139 1.0)
(s140 1.0)
(s141 1.0)
(s142 1.0)
(s143 1.0)
(s144 1.0)
(s145 1.0)
(s146 1.0)
(s147 1.0)
(s148 1.0)
(s149 1.0)
(s150 1.0)
(s151 1.0)
(s152 1.0)
(s153 1.0)
(s154 1.0)
(s155 1.0)
(s156 1.0)
(s157 1.0)
(s158 1.0)
(s159 1.0)
(s160 1.0)
(s161 1.0)
(s162 1.0)
(s163 1.0)
(s164 1.0)
(s165 1.0)
(s166 1.0)
(s167 1.0)
(s168 1.0)
(s169 1.0)
(s170 1.0)
(s171 1.0)
(s172 1.0)
(s173 1.0)
(s174 1.0)
(s175 1.0)
(s176 1.0)
(s177 1.0)
(s178 1.0)
(s179 1.0)
(s180 1.0)
(s181 1.0)
(s182 1.0)
(s183 1.0)
(s184 1.0)
(s185 1.0)
(s186 1.0)
(s187 1.0)
(s188 1.0)
(s189 1.0)
(s190 1.0)
(s191 1.0)
(s192 1.0)
(s193 1.0)
(s194 1.0)
(s195 1.0)
(s196 1.0)
(s197 1.0)
(s198 1.0)
(s199 1.0)
(s200 1.0)
(s201 1.0)
(s202 1.0)
(s203 1.0)
(s204 1.0)
(s205 1.0)
(s206 1.0)
(s207 1.0)
(s208 1.0)
(s209 1.0)
(s210 1.0)
(s211 1.0)
(s212 1.0)
(s213 1.0)
(s214 1.0)
(s215 1.0)
(s216 1.0)
(s217 1.0)
(s218 1.0)
(s219 1.0)
(s220 1.0)
(s221 1.0)
(s222 1.0)
(s223 1.0)
(s224 1.0)
(s225 1.0)
(s226 1.0)
(s227 1.0)
(s228 1.0)
(s229 1.0)
(s230 1.0)
(s231 1.0)
(s232 1.0)
(s233 1.0)
(s234 1.0)
(s235 1.0)
(s236 1.0)
(s237 1.0)
(s238 1.0)
(s239 1.0)
(s240 1.0)
(s241 1.0)
(s242 1.0)
(s243 1.0)
(s244 1.0)
(s245 1.0)
(s246 1.0)
(s247 1.0)
(s248 1.0)
(s249 1.0)
(s250 1.0)
(s251 1.0)
(s252 1.0)
(s253 1.0)
(s254 1.0)
(s255 1.0)
(s256 1.0)
(s257 1.0)
(s258 1.0)
(s259 1.0)
(s260 1.0)
(s261 1.0)
(s262 1.0)
(s263 1.0)
(s264 1.0)
(s265 1.0)
(s266 1.0)
(s267 1.0)
(s268 1.0)
(s269 1.0)
(s270 1.0)
(s271 1.0)
(s272 1.0)
(s273 1.0)
(s274 1.0)
(s275 1.0)
(s276 1.0)
(s277 1.0)
(s278 1.0)
(s279 1.0)
(s280 1.0)
(s281 1.0)
(s282 1.0)
(s283 1.0)
(s284 1.0)
(s285 1.0)
(s286 1.0)
(s287 1.0)
(s288 1.0)
(s289 1.0)
(s290 1.0)
(s291 1.0)
(s292 1.0)
(s293 1.0)
(s294 1.0)
(s295 1.0)
(s296 1.0)
(s297 1.0)
(s298 1.0)
(s299 1.0)
(s300 1.0)
(s301 1.0)
(s302 1.0)
(s303 1.0)
(s304 1.0)
(s305 1.0)
(s306 1.0)
(s307 1.0)
(s308 1.0)
(s309 1.0)
(s310 1.0)
(s311 1.0)
(s312 1.0)
(s313 1.0)
(s314 1.0)
(s315 1.0)
(s316 1.0)
(s317 1.0)
(s318 1.0)
(s319 1.0)
(s320 1.0)
(s321 1.0)
(s322 1.0)
(s323 1.0)
(s324 1.0)
(s325 1.0)
(s326 1.0)
(s327 1.0)
(s328 1.0)
(s329 1.0)
(s330 1.0)
(s331 1.0)
(s332 1.0)
(s333 1.0)
(s334 1.0)
(s335 1.0)
(s336 1.0)
(s337 1.0)
(s338 1.0)
(s339 1.0)
(s340 1.0)
(s341 1.0)
(s342 1.0)
(s343 1.0)
(s344 1.0)
(s345 1.0)
(s346 1.0)
(s347 1.0)
(s348 1.0)
(s349 1.0)
(s350 1.0)
(s351 1.0)
(s352 1.0)
(s353 1.0)
(s354 1.0)
(s355 1.0)
(s356 1.0)
(s357 1.0)
(s358 1.0)
(s359 1.0)
(s360 1.0)
(s361 1.0)
(s362 1.0)
(s363 1.0)
(s364 1.0)
(s365 1.0)
(s366 1.0)
(s367 1.0)
(s368 1.0)
(s369 1.0)
(s370 1.0)
(s371 1.0)
(s372 1.0)
(s373 1.0)
(s374 1.0)
(s375 1.0)
(s376 1.0)
(s377 1.0)
(s378 1.0)
(s379 1.0)
(s380 1.0)
(s381 1.0)
(s382 1.0)
(s383 1.0)
(s384 1.0)
(s385 1.0)
(s386 1.0)
(s387 1.0)
(s388 1.0)
(s389 1.0)
(s390 1.0)
(s391 1.0)
(s392 1.0)
(s393 1.0)
(s394 1.0)
(s395 1.0)
(s396 1.0)
(s397 1.0)
(s398 1.0)
(s399 1.0)
(s400 1.0)
(s401 1.0)
(s402 1.0)
(s403 1.0)
(s404 1.0)
(s405 1.0)
(s406 1.0)
(s407 1.0)
(s408 1.0)
(s409 1.0)
(s410 1.0)
(s411 1.0)
(s412 1.0)
(s413 1.0)
(s414 1.0)
(s415 1.0)
(s416 1.0)
(s417 1.0)
(s418 1.0)
(s419 1.0)
(s420 1.0)
(s421 1.0)
(s422 1.0)
(s423 1.0)
(s424 1.0)
(s425 1.0)
(s426 1.0)
(s427 1.0)
(s428 1.0)
(s429 1.0)
(s430 1.0)
(s431 1.0)
(s432 1.0)
(s433 1.0)
(s434 1.0)
(s435 1.0)
(s436 1.0)
(s437 1.0)
(s438 1.0)
(s439 1.0)
(s440 1.0)
(s441 1.0)
(s442 1.0)
(s443 1.0)
(s444 1.0)
(s445 1.0)
(s446 1.0)
(s447 1.0)
(s448 1.0)
(s449 1.0)
(s450 1.0)
(s451 1.0)
(s452 1.0)
(s453 1.0)
(s454 1.0)
(s455 1.0)
(s456 1.0)
(s457 1.0)
(s458 1.0)
(s459 1.0)
(s460 1.0)
(s461 1.0)
(s462 1.0)
(s463 1.0)
(s464 1.0)
(s465 1.0)
(s466 1.0)
(s467 1.0)
(s468 1.0)
(s469 1.0)
(s470 1.0)
(s471 1.0)
(s472 1.0)
(s473 1.0)
(s474 1.0)
(s475 1.0)
(s476 1.0)
(s477 1.0)
(s478 1.0)
(s479 1.0)
(s480 1.0)
(s481 1.0)
(s482 1.0)
(s483 1.0)
(s484 1.0)
(s485 1.0)
(s486 1.0)
(s487 1.0)
(s488 1.0)
(s489 1.0)
(s490 1.0)
(s491 1.0)
(s492 1.0)
(s493 1.0)
(s494 1.0)
(s495 1.0)
(s496 1.0)
(s497 1.0)
(s498 1.0)
(s499 1.0)
(s500 1.0)
(s501 1.0)
(s502 1.0)
(s503 1.0)
(s504 1.0)
(s505 1.0)
(s506 1.0)
(s507 1.0)
(s508 1.0)
(s509 1.0)
(s510 1.0)
(s511 1.0)
(s512 1.0)
(s513 1.0)
(s514 1.0)
(s515 1.0)
(s516 1.0)
(s517 1.0)
(s518 1.0)
(s519 1.0)
(s520 1.0)
(s521 1.0)
(s522 1.0)
(s523 1.0)
(s524 1.0)
(s525 1.0)
(s526 1.0)
(s527 1.0)
(s528 1.0)
(s529 1.0)
(s530 1.0)
(s531 1.0)
(s532 1.0)
(s533 1.0)
(s534 1.0)
(s535 1.0)
(s536 1.0)
(s537 1.0)
(s538 1.0)
(s539 1.0)
(s540 1.0)
(s541 1.0)
(s542 1.0)
(s543 1.0)
(s544 1.0)
(s545 1.0)
(s546 1.0)
(s547 1.0)
(s548 1.0)
(s549 1.0)
(s550 1.0)
(s551 1.0)
(s552 1.0)
(s553 1.0)
(s554 1.0)
(s555 1.0)
(s556 1.0)
(s557 1.0)
(s558 1.0)
(s559 1.0)
(s560 1.0)
(s561 1.0)
(s562 1.0)
(s563 1.0)
(s564 1.0)
(s565 1.0)
(s566 1.0)
(s567 1.0)
(s568 1.0)
(s569 1.0)
(s570 1.0)
(s571 1.0)
(s572 1.0)
(s573 1.0)
(s574 1.0)
(s575 1.0)
(s576 1.0)
(s577 1.0)
(s578 1.0)
(s579 1.0)
(s580 1.0)
(s581 1.0)
(s582 1.0)
(s583 1.0)
(s584 1.0)
(s585 1.0)
(s586 1.0)
(s587 1.0)
(s588 1.0)
(s589 1.0)
(s590 1.0)
(s591 1.0)
(s592 1.0)
(s593 1.0)
(s594 1.0)
(s595 1.0)
(s596 1.0)
(s597 1.0)
(s598 1.0)
(s599 1.0)
(s600 1.0)
(s601 1.0)
(s602 1.0)
(s603 1.0)
(s604 1.0)
(s605 1.0)
(s606 1.0)
(s607 1.0)
(s608 1.0)
(s609 1.0)
(s610 1.0)
(s611 1.0)
(s612 1.0)
(s613 1.0)
(s614 1.0)
(s615 1.0)
(s616 1.0)
(s617 1.0)
(s618 1.0)
(s619 1.0)
(s620 1.0)
(s621 1.0)
(s622 1.0)
(s623 1.0)
(s624 1.0)
(s625 1.0)
(s626 1.0)
(s627 1.0)
(s628 1.0)
(s629 1.0)
(s630 1.0)
(s631 1.0)
(s632 1.0)
(s633 1.0)
(s634 1.0)
(s635 1.0)
(s636 1.0)
(s637 1.0)
(s638 1.0)
(s639 1.0)
(s640 1.0)
(s641 1.0)
(s642 1.0)
(s643 1.0)
(s644 1.0)
(s645 1.0)
(s646 1.0)
(s647 1.0)
(s648 1.0)
(s649 1.0)
(s650 1.0)
(s651 1.0)
(s652 1.0)
(s653 1.0)
(s654 1.0)
(s655 1.0)
(s656 1.0)
(s657 1.0)
(s658 1.0)
(s659 1.0)
(s660 1.0)
(s661 1.0)
(s662 1.0)
(s663 1.0)
(s664 1.0)
(s665 1.0)
(s666 1.0)
(s667 1.0)
(s668 1.0)
(s669 1.0)
(s670 1.0)
(s671 1.0)
(s672 1.0)
(s673 1.0)
(s674 1.0)
(s675 1.0)
(s676 1.0)
(s677 1.0)
(s678 1.0)
(s679 1.0)
(s680 1.0)
(s681 1.0)
(s682 1.0)
(s683 1.0)
(s684 1.0)
(s685 1.0)
(s686 1.0)
(s687 1.0)
(s688 1.0)
(s689 1.0)
(s690 1.0)
(s691 1.0)
(s692 1.0)
(s693 1.0)
(s694 1.0)
(s695 1.0)
(s696 1.0)
(s697 1.0)
(s698 1.0)
(s699 1.0)
(s700 1.0)
(s701 1.0)
(s702 1.0)
(s703 1.0)
(s704 1.0)
(s705 1.0)
(s706 1.0)
(s707 1.0)
(s708 1.0)
(s709 1.0)
(s710 1.0)
(s711 1.0)
(s712 1.0)
(s713 1.0)
(s714 1.0)
(s715 1.0)
(s716 1.0)
(s717 1.0)
(s718 1.0)
(s719 1.0)
(s720 1.0)
(s721 1.0)
(s722 1.0)
(s723 1.0)
(s724 1.0)
(s725 1.0)
(s726 1.0)
(s727 1.0)
(s728 1.0)
(s729 1.0)
(s730 1.0)
(s731 1.0)
(s732 1.0)
(s733 1.0)
(s734 1.0)
(s735 1.0)
(s736 1.0)
(s737 1.0)
(s738 1.0)
(s739 1.0)
(s740 1.0)
(s741 1.0)
(s742 1.0)
(s743 1.0)
(s744 1.0)
(s745 1.0)
(s746 1.0)
(s747 1.0)
(s748 1.0)
(s749 1.0)
(s750 1.0)
(s751 1.0)
(s752 1.0)
(s753 1.0)
(s754 1.0)
(s755 1.0)
(s756 1.0)
(s757 1.0)
(s758 1.0)
(s759 1.0)
(s760 1.0)
(s761 1.0)
(s762 1.0)
(s763 1.0)
(s764 1.0)
(s765 1.0)
(s766 1.0)
(s767 1.0)
(s768 1.0)
(s769 1.0)
(s770 1.0)
(s771 1.0)
(s772 1.0)
(s773 1.0)
(s774 1.0)
(s775 1.0)
(s776 1.0)
(s777 1.0)
(s778 1.0)
(s779 1.0)
(s780 1.0)
(s781 1.0)
(s782 1.0)
(s783 1.0)
(s784 1.0)
(s785 1.0)
(s786 1.0)
(s787 1.0)
(s788 1.0)
(s789 1.0)
(s790 1.0)
(s791 1.0)
(s792 1.0)
(s793 1.0)
(s794 1.0)
(s795 1.0)
(s796 1.0)
(s797 1.0)
(s798 1.0)
(s799 1.0)
(s800 1.0)
(s801 1.0)
(s802 1.0)
(s803 1.0)
(s804 1.0)
(s805 1.0)
(s806 1.0)
(s807 1.0)
(s808 1.0)
(s809 1.0)
(s810 1.0)
(s811 1.0)
(s812 1.0)
(s813 1.0)
(s814 1.0)
(s815 1.0)
(s816 1.0)
(s817 1.0)
(s818 1.0)
(s819 1.0)
(s820 1.0)
(s821 1.0)
(s822 1.0)
(s823 1.0)
(s824 1.0)
(s825 1.0)
(s826 1.0)
(s827 1.0)
(s828 1.0)
(s829 1.0)
(s830 1.0)
(s831 1.0)
(s832 1.0)
(s833 1.0)
(s834 1.0)
(s835 1.0)
(s836 1.0)
(s837 1.0)
(s838 1.0)
(s839 1.0)
(s840 1.0)
(s841 1.0)
(s842 1.0)
(s843 1.0)
(s844 1.0)
(s845 1.0)
(s846 1.0)
(s847 1.0)
(s848 1.0)
(s849 1.0)
(s850 1.0)
(s851 1.0)
(s852 1.0)
(s853 1.0)
(s854 1.0)
(s855 1.0)
(s856 1.0)
(s857 1.0)
(s858 1.0)
(s859 1.0)
(s860 1.0)
(s861 1.0)
(s862 1.0)
(s863 1.0)
(s864 1.0)
(s865 1.0)
(s866 1.0)
(s867 1.0)
(s868 1.0)
(s869 1.0)
(s870 1.0)
(s871 1.0)
(s872 1.0)
(s873 1.0)
(s874 1.0)
(s875 1.0)
(s876 1.0)
(s877 1.0)
(s878 1.0)
(s879 1.0)
(s880 1.0)
(s881 1.0)
(s882 1.0)
(s883 1.0)
(s884 1.0)
(s885 1.0)
(s886 1.0)
(s887 1.0)
(s888 1.0)
(s889 1.0)
(s890 1.0)
(s891 1.0)
(s892 1.0)
(s893 1.0)
(s894 1.0)
(s895 1.0)
(s896 1.0)
(s897 1.0)
(s898 1.0)
(s899 1.0)
(s900 1.0)
(s901 1.0)
(s902 1.0)
(s903 1.0)
(s904 1.0)
(s905 1.0)
(s906 1.0)
(s907 1.0)
(s908 1.0)
(s909 1.0)
(s910 1.0)
(s911 1.0)
(s912 1.0)
(s913 1.0)
(s914 1.0)
(s915 1.0)
(s916 1.0)
(s917 1.0)
(s918 1.0)
(s919 1.0)
(s920 1.0)
(s921 1.0)
(s922 1.0)
(s923 1.0)
(s924 1.0)
(s925 1.0)
(s926 1.0)
(s927 1.0)
(s928 1.0)
(s929 1.0)
(s930 1.0)
(s931 1.0)
(s932 1.0)
(s933 1.0)
(s934 1.0)
(s935 1.0)
(s936 1.0)
(s937 1.0)
(s938 1.0)
(s939 1.0)
(s940 1.0)
(s941 1.0)
(s942 1.0)
(s943 1.0)
(s944 1.0)
(s945 1.0)
(s946 1.0)
(s947 1.0)
(s948 1.0)
(s949 1.0)
(s950 1.0)
(s951 1.0)
(s952 1.0)
(s953 1.0)
(s954 1.0)
(s955 1.0)
(s956 1.0)
(s957 1.0)
(s958 1.0)
(s959 1.0)
(s960 1.0)
(s961 1.0)
(s962 1.0)
(s963 1.0)
(s964 1.0)
(s965 1.0)
(s966 1.0)
(s967 1.0)
(s968 1.0)
(s969 1.0)
(s970 1.0)
(s971 1.0)
(s972 1.0)
(s973 1.0)
(s974 1.0)
(s975 1.0)
(s976 1.0)
(s977 1.0)
(s978 1.0)
(s979 1.0)
(s980 1.0)
(s981 1.0)
(s982 1.0)
(s983 1.0)
(s984 1.0)
(s985 1.0)
(s986 1.0)
(s987 1.0)
(s988 1.0)
(s989 1.0)
(s990 1.0)
(s991 1.0)
(s992 1.0)
(s993 1.0)
(s994 1.0)
(s995 1.0)
(s996 1.0)
(s997 1.0)
(s998 1.0)
(s999 1.0)
(s1000 1.0)
(s1001 1.0)
(s1002 1.0)
(s1003 1.0)
(s1004 1.0)
(s1005 1.0)
(s1006 1.0)
(s1007 1.0)
(s1008 1.0)
(s1009 1.0)
(s1010 1.0)
(s1011 1.0)
(s1012 1.0)
(s1013 1.0)
(s1014 1.0)
(s1015 1.0)
(s1016 1.0)
(s1017 1.0)
(s1018 1.0)
(s1019 1.0)
(s1020 1.0)
(s1021 1.0)
(s1022 1.0)
(s1023 1.0)
(s1024 1.0)
(s1025 1.0)
(s1026 1.0)
(s1027 1.0)
(s1028 1.0)
(s1029 1.0)
(s1030 1.0)
(s1031 1.0)
(s1032 1.0)
(s1033 1.0)
(s1034 1.0)
(s1035 1.0)
(s1036 1.0)
(s1037 1.0)
(s1038 1.0)
(s1039 1.0)
(s1040 1.0)
(s1041 1.0)
(s1042 1.0)
(s1043 1.0)
(s1044 1.0)
(s1045 1.0)
(s1046 1.0)
(s1047 1.0)
(s1048 1.0)
(s1049 1.0)
(s1050 1.0)
(s1051 1.0)
(s1052 1.0)
(s1053 1.0)
(s1054 1.0)
(s1055 1.0)
(s1056 1.0)
(s1057 1.0)
(s1058 1.0)
(s1059 1.0)
(s1060 1.0)
(s1061 1.0)
(s1062 1.0)
(s1063 1.0)
(s1064 1.0)
(s1065 1.0)
(s1066 1.0)
(s1067 1.0)
(s1068 1.0)
(s1069 1.0)
(s1070 1.0)
(s1071 1.0)
(s1072 1.0)
(s1073 1.0)
(s1074 1.0)
(s1075 1.0)
(s1076 1.0)
(s1077 1.0)
(s1078 1.0)
(s1079 1.0)
(s1080 1.0)
(s1081 1.0)
(s1082 1.0)
(s1083 1.0)
(s1084 1.0)
(s1085 1.0)
(s1086 1.0)
(s1087 1.0)
(s1088 1.0)
(s1089 1.0)
(s1090 1.0)
(s1091 1.0)
(s1092 1.0)
(s1093 1.0)
(s1094 1.0)
(s1095 1.0)
(s1096 1.0)
(s1097 1.0)
(s1098 1.0)
(s1099 1.0)
(s1100 1.0)
(s1101 1.0)
(s1102 1.0)
(s1103 1.0)
(s1104 1.0)
(s1105 1.0)
(s1106 1.0)
(s1107 1.0)
(s1108 1.0)
(s1109 1.0)
(s1110 1.0)
(s1111 1.0)
(s1112 1.0)
(s1113 1.0)
(s1114 1.0)
(s1115 1.0)
(s1116 1.0)
(s1117 1.0)
(s1118 1.0)
(s1119 1.0)
(s1120 1.0)
(s1121 1.0)
(s1122 1.0)
(s1123 1.0)
(s1124 1.0)
(s1125 1.0)
(s1126 1.0)
(s1127 1.0)
(s1128 1.0)
(s1129 1.0)
(s1130 1.0)
(s1131 1.0)
(s1132 1.0)
(s1133 1.0)
(s1134 1.0)
(s1135 1.0)
(s1136 1.0)
(s1137 1.0)
(s1138 1.0)
(s1139 1.0)
(s1140 1.0)
(s1141 1.0)
(s1142 1.0)
(s1143 1.0)
(s1144 1.0)
(s1145 1.0)
(s1146 1.0)
(s1147 1.0)
(s1148 1.0)
(s1149 1.0)
(s1150 1.0)
(s1151 1.0)
(s1152 1.0)
(s1153 1.0)
(s1154 1.0)
(s1155 1.0)
(s1156 1.0)
(s1157 1.0)
(s1158 1.0)
(s1159 1.0)
(s1160 1.0)
(s1161 1.0)
(s1162 1.0)
(s1163 1.0)
(s1164 1.0)
(s1165 1.0)
(s1166 1.0)
(s1167 1.0)
(s1168 1.0)
(s1169 1.0)
(s1170 1.0)
(s1171 1.0)
(s1172 1.0)
(s1173 1.0)
(s1174 1.0)
(s1175 1.0)
(s1176 1.0)
(s1177 1.0)
(s1178 1.0)
(s1179 1.0)
(s1180 1.0)
(s1181 1.0)
(s1182 1.0)
(s1183 1.0)
(s1184 1.0)
(s1185 1.0)
(s1186 1.0)
(s1187 1.0)
(s1188 1.0)
(s1189 1.0)
(s1190 1.0)
(s1191 1.0)
(s1192 1.0)
(s1193 1.0)
(s1194 1.0)
(s1195 1.0)
(s1196 1.0)
(s1197 1.0)
(s1198 1.0)
(s1199 1.0)
(s1200 1.0)
(s1201 1.0)
(s1202 1.0)
(s1203 1.0)
(s1204 1.0)
(s1205 1.0)
(s1206 1.0)
(s1207 1.0)
(s1208 1.0)
(s1209 1.0)
(s1210 1.0)
(s1211 1.0)
(s1212 1.0)
(s1213 1.0)
(s1214 1.0)
(s1215 1.0)
(s1216 1.0)
(s1217 1.0)
(s1218 1.0)
(s1219 1.0)
(s1220 1.0)
(s1221 1.0)
(s1222 1.0)
(s1223 1.0)
(s1224 1.0)
(s1225 1.0)
(s1226 1.0)
(s1227 1.0)
(s1228 1.0)
(s1229 1.0)
(s1230 1.0)
(s1231 1.0)
(s1232 1.0)
(s1233 1.0)
(s1234 1.0)
(s1235 1.0)
(s1236 1.0)
(s1237 1.0)
(s1238 1.0)
(s1239 1.0)
(s1240 1.0)
(s1241 1.0)
(s1242 1.0)
(s1243 1.0)
(s1244 1.0)
(s1245 1.0)
(s1246 1.0)
(s1247 1.0)
(s1248 1.0)
(s1249 1.0)
(s1250 1.0)
(s1251 1.0)
(s1252 1.0)
(s1253 1.0)
(s1254 1.0)
(s1255 1.0)
(s1256 1.0)
(s1257 1.0)
(s1258 1.0)
(s1259 1.0)
(s1260 1.0)
(s1261 1.0)
(s1262 1.0)
(s1263 1.0)
(s1264 1.0)
(s1265 1.0)
(s1266 1.0)
(s1267 1.0)
(s1268 1.0)
(s1269 1.0)
(s1270 1.0)
(s1271 1.0)
(s1272 1.0)
(s1273 1.0)
(s1274 1.0)
(s1275 1.0)
(s1276 1.0)
(s1277 1.0)
(s1278 1.0)
(s1279 1.0)
(s1280 1.0)
(s1281 1.0)
(s1282 1.0)
(s1283 1.0)
(s1284 1.0)
(s1285 1.0)
(s1286 1.0)
(s1287 1.0)
(s1288 1.0)
(s1289 1.0)
(s1290 1.0)
(s1291 1.0)
(s1292 1.0)
(s1293 1.0)
(s1294 1.0)
(s1295 1.0)
(s1296 1.0)
(s1297 1.0)
(s1298 1.0)
(s1299 1.0)
(s1300 1.0)
(s1301 1.0)
(s1302 1.0)
(s1303 1.0)
(s1304 1.0)
(s1305 1.0)
(s1306 1.0)
(s1307 1.0)
(s1308 1.0)
(s1309 1.0)
(s1310 1.0)
(s1311 1.0)
(s1312 1.0)
(s1313 1.0)
(s1314 1.0)
(s1315 1.0)
(s1316 1.0)
(s1317 1.0)
(s1318 1.0)
(s1319 1.0)
(s1320 1.0)
(s1321 1.0)
(s1322 1.0)
(s1323 1.0)
(s1324 1.0)
(s1325 1.0)
(s1326 1.0)
(s1327 1.0)
(s1328 1.0)
(s1329 1.0)
(s1330 1.0)
(s1331 1.0)
(s1332 1.0)
(s1333 1.0)
(s1334 1.0)
(s1335 1.0)
(s1336 1.0)
(s1337 1.0)
(s1338 1.0)
(s1339 1.0)
(s1340 1.0)
(s1341 1.0)
(s1342 1.0)
(s1343 1.0)
(s1344 1.0)
(s1345 1.0)
(s1346 1.0)
(s1347 1.0)
(s1348 1.0)
(s1349 1.0)
(s1350 1.0)
(s1351 1.0)
(s1352 1.0)
(s1353 1.0)
(s1354 1.0)
(s1355 1.0)
(s1356 1.0)
(s1357 1.0)
(s1358 1.0)
(s1359 1.0)
(s1360 1.0)
(s1361 1.0)
(s1362 1.0)
(s1363 1.0)
(s1364 1.0)
(s1365 1.0)
(s1366 1.0)
(s1367 1.0)
(s1368 1.0)
(s1369 1.0)
(s1370 1.0)
(s1371 1.0)
(s1372 1.0)
(s1373 1.0)
(s1374 1.0)
(s1375 1.0)
(s1376 1.0)
(s1377 1.0)
(s1378 1.0)
(s1379 1.0)
(s1380 1.0)
(s1381 1.0)
(s1382 1.0)
(s1383 1.0)
(s1384 1.0)
(s1385 1.0)
(s1386 1.0)
(s1387 1.0)
(s1388 1.0)
(s1389 1.0)
(s1390 1.0)
(s1391 1.0)
(s1392 1.0)
(s1393 1.0)
(s1394 1.0)
(s1395 1.0)
(s1396 1.0)
(s1397 1.0)
(s1398 1.0)
(s1399 1.0)
(s1400 1.0)
(s1401 1.0)
(s1402 1.0)
(s1403 1.0)
(s1404 1.0)
(s1405 1.0)
(s1406 1.0)
(s1407 1.0)
(s1408 1.0)
(s1409 1.0)
(s1410 1.0)
(s1411 1.0)
(s1412 1.0)
(s1413 1.0)
(s1414 1.0)
(s1415 1.0)
(s1416 1.0)
(s1417 1.0)
(s1418 1.0)
(s1419 1.0)
(s1420 1.0)
(s1421 1.0)
(s1422 1.0)
(s1423 1.0)
(s1424 1.0)
(s1425 1.0)
(s1426 1.0)
(s1427 1.0)
(s1428 1.0)
(s1429 1.0)
(s1430 1.0)
(s1431 1.0)
(s1432 1.0)
(s1433 1.0)
(s1434 1.0)
(s1435 1.0)
(s1436 1.0)
(s1437 1.0)
(s1438 1.0)
(s1439 1.0)
(s1440 1.0)
(s1441 1.0)
(s1442 1.0)
(s1443 1.0)
(s1444 1.0)
(s1445 1.0)
(s1446 1.0)
(s1447 1.0)
(s1448 1.0)
(s1449 1.0)
(s1450 1.0)
(s1451 1.0)
(s1452 1.0)
(s1453 1.0)
(s1454 1.0)
(s1455 1.0)
(s1456 1.0)
(s1457 1.0)
(s1458 1.0)
(s1459 1.0)
(s1460 1.0)
(s1461 1.0)
(s1462 1.0)
(s1463 1.0)
(s1464 1.0)
(s1465 1.0)
(s1466 1.0)
(s1467 1.0)
(s1468 1.0)
(s1469 1.0)
(s1470 1.0)
(s1471 1.0)
(s1472 1.0)
(s1473 1.0)
(s1474 1.0)
(s1475 1.0)
(s1476 1.0)
(s1477 1.0)
(s1478 1.0)
(s1479 1.0)
(s1480 1.0)
(s1481 1.0)
(s1482 1.0)
(s1483 1.0)
(s1484 1.0)
(s1485 1.0)
(s1486 1.0)
(s1487 1.0)
(s1488 1.0)
(s1489 1.0)
(s1490 1.0)
(s1491 1.0)
(s1492 1.0)
(s1493 1.0)
(s1494 1.0)
(s1495 1.0)
(s1496 1.0)
(s1497 1.0)
(s1498 1.0)
(s1499 1.0)
(s1500 1.0)
(s1501 1.0)
(s1502 1.0)
(s1503 1.0)
(s1504 1.0)
(s1505 1.0)
(s1506 1.0)
(s1507 1.0)
(s1508 1.0)
(s1509 1.0)
(s1510 1.0)
(s1511 1.0)
(s1512 1.0)
(s1513 1.0)
(s1514 1.0)
(s1515 1.0)
(s1516 1.0)
(s1517 1.0)
(s1518 1.0)
(s1519 1.0)
(s1520 1.0)
(s1521 1.0)
(s1522 1.0)
(s1523 1.0)
(s1524 1.0)
(s1525 1.0)
(s1526 1.0)
(s1527 1.0)
(s1528 1.0)
(s1529 1.0)
(s1530 1.0)
(s1531 1.0)
(s1532 1.0)
(s1533 1.0)
(s1534 1.0)
(s1535 1.0)
(s1536 1.0)
(s1537 1.0)
(s1538 1.0)
(s1539 1.0)
(s1540 1.0)
(s1541 1.0)
(s1542 1.0)
(s1543 1.0)
(s1544 1.0)
(s1545 1.0)
(s1546 1.0)
(s1547 1.0)
(s1548 1.0)
(s1549 1.0)
(s1550 1.0)
(s1551 1.0)
(s1552 1.0)
(s1553 1.0)
(s1554 1.0)
(s1555 1.0)
(s1556 1.0)
(s1557 1.0)
(s1558 1.0)
(s1559 1.0)
(s1560 1.0)
(s1561 1.0)
(s1562 1.0)
(s1563 1.0)
(s1564 1.0)
(s1565 1.0)
(s1566 1.0)
(s1567 1.0)
(s1568 1.0)
(s1569 1.0)
(s1570 1.0)
(s1571 1.0)
(s1572 1.0)
(s1573 1.0)
(s1574 1.0)
(s1575 1.0)
(s1576 1.0)
(s1577 1.0)
(s1578 1.0)
(s1579 1.0)
(s1580 1.0)
(s1581 1.0)
(s1582 1.0)
(s1583 1.0)
(s1584 1.0)
(s1585 1.0)
(s1586 1.0)
(s1587 1.0)
(s1588 1.0)
(s1589 1.0)
(s1590 1.0)
(s1591 1.0)
(s1592 1.0)
(s1593 1.0)
(s1594 1.0)
(s1595 1.0)
(s1596 1.0)
(s1597 1.0)
(s1598 1.0)
(s1599 1.0)
(s1600 1.0)
(s1601 1.0)
(s1602 1.0)
(s1603 1.0)
(s1604 1.0)
(s1605 1.0)
(s1606 1.0)
(s1607 1.0)
(s1608 1.0)
(s1609 1.0)
(s1610 1.0)
(s1611 1.0)
(s1612 1.0)
(s1613 1.0)
(s1614 1.0)
(s1615 1.0)
(s1616 1.0)
(s1617 1.0)
(s1618 1.0)
(s1619 1.0)
(s1620 1.0)
(s1621 1.0)
(s1622 1.0)
(s1623 1.0)
(s1624 1.0)
(s1625 1.0)
(s1626 1.0)
(s1627 1.0)
(s1628 1.0)
(s1629 1.0)
(s1630 1.0)
(s1631 1.0)
(s1632 1.0)
(s1633 1.0)
(s1634 1.0)
(s1635 1.0)
(s1636 1.0)
(s1637 1.0)
(s1638 1.0)
(s1639 1.0)
(s1640 1.0)
(s1641 1.0)
(s1642 1.0)
(s1643 1.0)
(s1644 1.0)
(s1645 1.0)
(s1646 1.0)
(s1647 1.0)
(s1648 1.0)
(s1649 1.0)
(s1650 1.0)
(s1651 1.0)
(s1652 1.0)
(s1653 1.0)
(s1654 1.0)
(s1655 1.0)
(s1656 1.0)
(s1657 1.0)
(s1658 1.0)
(s1659 1.0)
(s1660 1.0)
(s1661 1.0)
(s1662 1.0)
(s1663 1.0)
(s1664 1.0)
(s1665 1.0)
(s1666 1.0)
(s1667 1.0)
(s1668 1.0)
(s1669 1.0)
(s1670 1.0)
(s1671 1.0)
(s1672 1.0)
(s1673 1.0)
(s1674 1.0)
(s1675 1.0)
(s1676 1.0)
(s1677 1.0)
(s1678 1.0)
(s1679 1.0)
(s1680 1.0)
(s1681 1.0)
(s1682 1.0)
(s1683 1.0)
(s1684 1.0)
(s1685 1.0)
(s1686 1.0)
(s1687 1.0)
(s1688 1.0)
(s1689 1.0)
(s1690 1.0)
(s1691 1.0)
(s1692 1.0)
(s1693 1.0)
(s1694 1.0)
(s1695 1.0)
(s1696 1.0)
(s1697 1.0)
(s1698 1.0)
(s1699 1.0)
(s1700 1.0)
(s1701 1.0)
(s1702 1.0)
(s1703 1.0)
(s1704 1.0)
(s1705 1.0)
(s1706 1.0)
(s1707 1.0)
(s1708 1.0)
(s1709 1.0)
(s1710 1.0)
(s1711 1.0)
(s1712 1.0)
(s1713 1.0)
(s1714 1.0)
(s1715 1.0)
(s1716 1.0)
(s1717 1.0)
(s1718 1.0)
(s1719 1.0)
(s1720 1.0)
(s1721 1.0)
(s1722 1.0)
(s1723 1.0)
(s1724 1.0)
(s1725 1.0)
(s1726 1.0)
(s1727 1.0)
(s1728 1.0)
(s1729 1.0)
(s1730 1.0)
(s1731 1.0)
(s1732 1.0)
(s1733 1.0)
(s1734 1.0)
(s1735 1.0)
(s1736 1.0)
(s1737 1.0)
(s1738 1.0)
(s1739 1.0)
(s1740 1.0)
(s1741 1.0)
(s1742 1.0)
(s1743 1.0)
(s1744 1.0)
(s1745 1.0)
(s1746 1.0)
(s1747 1.0)
(s1748 1.0)
(s1749 1.0)
(s1750 1.0)
(s1751 1.0)
(s1752 1.0)
(s1753 1.0)
(s1754 1.0)
(s1755 1.0)
(s1756 1.0)
(s1757 1.0)
(s1758 1.0)
(s1759 1.0)
(s1760 1.0)
(s1761 1.0)
(s1762 1.0)
(s1763 1.0)
(s1764 1.0)
(s1765 1.0)
(s1766 1.0)
(s1767 1.0)
(s1768 1.0)
(s1769 1.0)
(s1770 1.0)
(s1771 1.0)
(s1772 1.0)
(s1773 1.0)
(s1774 1.0)
(s1775 1.0)
(s1776 1.0)
(s1777 1.0)
(s1778 1.0)
(s1779 1.0)
(s1780 1.0)
(s1781 1.0)
(s1782 1.0)
(s1783 1.0)
(s1784 1.0)
(s1785 1.0)
(s1786 1.0)
(s1787 1.0)
(s1788 1.0)
(s1789 1.0)
(s1790 1.0)
(s1791 1.0)
(s1792 1.0)
(s1793 1.0)
(s1794 1.0)
(s1795 1.0)
(s1796 1.0)
(s1797 1.0)
(s1798 1.0)
(s1799 1.0)
(s1800 1.0)
(s1801 1.0)
(s1802 1.0)
(s1803 1.0)
(s1804 1.0)
(s1805 1.0)
(s1806 1.0)
(s1807 1.0)
(s1808 1.0)
(s1809 1.0)
(s1810 1.0)
(s1811 1.0)
(s1812 1.0)
(s1813 1.0)
(s1814 1.0)
(s1815 1.0)
(s1816 1.0)
(s1817 1.0)
(s1818 1.0)
(s1819 1.0)
(s1820 1.0)
(s1821 1.0)
(s1822 1.0)
(s1823 1.0)
(s1824 1.0)
(s1825 1.0)
(s1826 1.0)
(s1827 1.0)
(s1828 1.0)
(s1829 1.0)
(s1830 1.0)
(s1831 1.0)
(s1832 1.0)
(s1833 1.0)
(s1834 1.0)
(s1835 1.0)
(s1836 1.0)
(s1837 1.0)
(s1838 1.0)
(s1839 1.0)
(s1840 1.0)
(s1841 1.0)
(s1842 1.0)
(s1843 1.0)
(s1844 1.0)
(s1845 1.0)
(s1846 1.0)
(s1847 1.0)
(s1848 1.0)
(s1849 1.0)
(s1850 1.0)
(s1851 1.0)
(s1852 1.0)
(s1853 1.0)
(s1854 1.0)
(s1855 1.0)
(s1856 1.0)
(s1857 1.0)
(s1858 1.0)
(s1859 1.0)
(s1860 1.0)
(s1861 1.0)
(s1862 1.0)
(s1863 1.0)
(s1864 1.0)
(s1865 1.0)
(s1866 1.0)
(s1867 1.0)
(s1868 1.0)
(s1869 1.0)
(s1870 1.0)
(s1871 1.0)
(s1872 1.0)
(s1873 1.0)
(s1874 1.0)
(s1875 1.0)
(s1876 1.0)
(s1877 1.0)
(s1878 1.0)
(s1879 1.0)
(s1880 1.0)
(s1881 1.0)
(s1882 1.0)
(s1883 1.0)
(s1884 1.0)
(s1885 1.0)
(s1886 1.0)
(s1887 1.0)
(s1888 1.0)
(s1889 1.0)
(s1890 1.0)
(s1891 1.0)
(s1892 1.0)
(s1893 1.0)
(s1894 1.0)
(s1895 1.0)
(s1896 1.0)
(s1897 1.0)
(s1898 1.0)
(s1899 1.0)
(s1900 1.0)
(s1901 1.0)
(s1902 1.0)
(s1903 1.0)
(s1904 1.0)
(s1905 1.0)
(s1906 1.0)
(s1907 1.0)
(s1908 1.0)
(s1909 1.0)
(s1910 1.0)
(s1911 1.0)
(s1912 1.0)
(s1913 1.0)
(s1914 1.0)
(s1915 1.0)
(s1916 1.0)
(s1917 1.0)
(s1918 1.0)
(s1919 1.0)
(s1920 1.0)
(s1921 1.0)
(s1922 1.0)
(s1923 1.0)
(s1924 1.0)
(s1925 1.0)
(s1926 1.0)
(s1927 1.0)
(s1928 1.0)
(s1929 1.0)
(s1930 1.0)
(s1931 1.0)
(s1932 1.0)
(s1933 1.0)
(s1934 1.0)
(s1935 1.0)
(s1936 1.0)
(s1937 1.0)
(s1938 1.0)
(s1939 1.0)
(s1940 1.0)
(s1941 1.0)
(s1942 1.0)
(s1943 1.0)
(s1944 1.0)
(s1945 1.0)
(s1946 1.0)
(s1947 1.0)
(s1948 1.0)
(s1949 1.0)
(s1950 1.0)
(s1951 1.0)
(s1952 1.0)
(s1953 1.0)
(s1954 1.0)
(s1955 1.0)
(s1956 1.0)
(s1957 1.0)
(s1958 1.0)
(s1959 1.0)
(s1960 1.0)
(s1961 1.0)
(s1962 1.0)
(s1963 1.0)
(s1964 1.0)
(s1965 1.0)
(s1966 1.0)
(s1967 1.0)
(s1968 1.0)
(s1969 1.0)
(s1970 1.0)
(s1971 1.0)
(s1972 1.0)
(s1973 1.0)
(s1974 1.0)
(s1975 1.0)
(s1976 1.0)
(s1977 1.0)
(s1978 1.0)
(s1979 1.0)
(s1980 1.0)
(s1981 1.0)
(s1982 1.0)
(s1983 1.0)
(s1984 1.0)
(s1985 1.0)
(s1986 1.0)
(s1987 1.0)
(s1988 1.0)
(s1989 1.0)
(s1990 1.0)
(s1991 1.0)
(s1992 1.0)
(s1993 1.0)
(s1994 1.0)
(s1995 1.0)
(s1996 1.0)
(s1997 1.0)
(s1998 1.0)
(s1999 1.0)
(s2000 1.0)
(s2001 1.0)
(s2002 1.0)
(s2003 1.0)
(s2004 1.0)
(s2005 1.0)
(s2006 1.0)
(s2007 1.0)
(s2008 1.0)
(s2009 1.0)
(s2010 1.0)
(s2011 1.0)
(s2012 1.0)
(s2013 1.0)
(s2014 1.0)
(s2015 1.0)
(s2016 1.0)
(s2017 1.0)
(s2018 1.0)
(s2019 1.0)
(s2020 1.0)
(s2021 1.0)
(s2022 1.0)
(s2023 1.0)
(s2024 1.0)
(s2025 1.0)
(s2026 1.0)
(s2027 1.0)
(s2028 1.0)
(s2029 1.0)
(s2030 1.0)
(s2031 1.0)
(s2032 1.0)
(s2033 1.0)
(s2034 1.0)
(s2035 1.0)
(s2036 1.0)
(s2037 1.0)
(s2038 1.0)
(s2039 1.0)
(s2040 1.0)
(s2041 1.0)
(s2042 1.0)
(s2043 1.0)
(s2044 1.0)
(s2045 1.0)
(s2046 1.0)
(s2047 1.0)
(s2048 1.0)
(s2049 1.0)
(s2050 1.0)
(s2051 1.0)
(s2052 1.0)
(s2053 1.0)
(s2054 1.0)
(s2055 1.0)
(s2056 1.0)
(s2057 1.0)
(s2058 1.0)
(s2059 1.0)
(s2060 1.0)
(s2061 1.0)
(s2062 1.0)
(s2063 1.0)
(s2064 1.0)
(s2065 1.0)
(s2066 1.0)
(s2067 1.0)
(s2068 1.0)
(s2069 1.0)
(s2070 1.0)
(s2071 1.0)
(s2072 1.0)
(s2073 1.0)
(s2074 1.0)
(s2075 1.0)
(s2076 1.0)
(s2077 1.0)
(s2078 1.0)
(s2079 1.0)
(s2080 1.0)
(s2081 1.0)
(s2082 1.0)
(s2083 1.0)
(s2084 1.0)
(s2085 1.0)
(s2086 1.0)
(s2087 1.0)
(s2088 1.0)
(s2089 1.0)
(s2090 1.0)
(s2091 1.0)
(s2092 1.0)
(s2093 1.0)
(s2094 1.0)
(s2095 1.0)
(s2096 1.0)
(s2097 1.0)
(s2098 1.0)
(s2099 1.0)
(s2100 1.0)
(s2101 1.0)
(s2102 1.0)
(s2103 1.0)
(s2104 1.0)
(s2105 1.0)
(s2106 1.0)
(s2107 1.0)
(s2108 1.0)
(s2109 1.0)
(s2110 1.0)
(s2111 1.0)
(s2112 1.0)
(s2113 1.0)
(s2114 1.0)
(s2115 1.0)
(s2116 1.0)
(s2117 1.0)
(s2118 1.0)
(s2119 1.0)
(s2120 1.0)
(s2121 1.0)
(s2122 1.0)
(s2123 1.0)
(s2124 1.0)
(s2125 1.0)
(s2126 1.0)
(s2127 1.0)
(s2128 1.0)
(s2129 1.0)
(s2130 1.0)
(s2131 1.0)
(s2132 1.0)
(s2133 1.0)
(s2134 1.0)
(s2135 1.0)
(s2136 1.0)
(s2137 1.0)
(s2138 1.0)
(s2139 1.0)
(s2140 1.0)
(s2141 1.0)
(s2142 1.0)
(s2143 1.0)
(s2144 1.0)
(s2145 1.0)
(s2146 1.0)
(s2147 1.0)
(s2148 1.0)
(s2149 1.0)
(s2150 1.0)
(s2151 1.0)
(s2152 1.0)
(s2153 1.0)
(s2154 1.0)
(s2155 1.0)
(s2156 1.0)
(s2157 1.0)
(s2158 1.0)
(s2159 1.0)
(s2160 1.0)
(s2161 1.0)
(s2162 1.0)
(s2163 1.0)
(s2164 1.0)
(s2165 1.0)
(s2166 1.0)
(s2167 1.0)
(s2168 1.0)
(s2169 1.0)
(s2170 1.0)
(s2171 1.0)
(s2172 1.0)
(s2173 1.0)
(s2174 1.0)
(s2175 1.0)
(s2176 1.0)
(s2177 1.0)
(s2178 1.0)
(s2179 1.0)
(s2180 1.0)
(s2181 1.0)
(s2182 1.0)
(s2183 1.0)
(s2184 1.0)
(s2185 1.0)
(s2186 1.0)
(s2187 1.0)
(s2188 1.0)
(s2189 1.0)
(s2190 1.0)
(s2191 1.0)
(s2192 1.0)
(s2193 1.0)
(s2194 1.0)
(s2195 1.0)
(s2196 1.0)
(s2197 1.0)
(s2198 1.0)
(s2199 1.0)
(s2200 1.0)
(s2201 1.0)
(s2202 1.0)
(s2203 1.0)
(s2204 1.0)
(s2205 1.0)
(s2206 1.0)
(s2207 1.0)
(s2208 1.0)
(s2209 1.0)
(s2210 1.0)
(s2211 1.0)
(s2212 1.0)
(s2213 1.0)
(s2214 1.0)
(s2215 1.0)
(s2216 1.0)
(s2217 1.0)
(s2218 1.0)
(s2219 1.0)
(s2220 1.0)
(s2221 1.0)
(s2222 1.0)
(s2223 1.0)
(s2224 1.0)
(s2225 1.0)
(s2226 1.0)
(s2227 1.0)
(s2228 1.0)
(s2229 1.0)
(s2230 1.0)
(s2231 1.0)
(s2232 1.0)
(s2233 1.0)
(s2234 1.0)
(s2235 1.0)
(s2236 1.0)
(s2237 1.0)
(s2238 1.0)
(s2239 1.0)
(s2240 1.0)
(s2241 1.0)
(s2242 1.0)
(s2243 1.0)
(s2244 1.0)
(s2245 1.0)
(s2246 1.0)
(s2247 1.0)
(s2248 1.0)
(s2249 1.0)
(s2250 1.0)
(s2251 1.0)
(s2252 1.0)
(s2253 1.0)
(s2254 1.0)
(s2255 1.0)
(s2256 1.0)
(s2257 1.0)
(s2258 1.0)
(s2259 1.0)
(s2260 1.0)
(s2261 1.0)
(s2262 1.0)
(s2263 1.0)
(s2264 1.0)
(s2265 1.0)
(s2266 1.0)
(s2267 1.0)
(s2268 1.0)
(s2269 1.0)
(s2270 1.0)
(s2271 1.0)
(s2272 1.0)
(s2273 1.0)
(s2274 1.0)
(s2275 1.0)
(s2276 1.0)
(s2277 1.0)
(s2278 1.0)
(s2279 1.0)
(s2280 1.0)
(s2281 1.0)
(s2282 1.0)
(s2283 1.0)
(s2284 1.0)
(s2285 1.0)
(s2286 1.0)
(s2287 1.0)
(s2288 1.0)
(s2289 1.0)
(s2290 1.0)
(s2291 1.0)
(s2292 1.0)
(s2293 1.0)
(s2294 1.0)
(s2295 1.0)
(s2296 1.0)
(s2297 1.0)
(s2298 1.0)
(s2299 1.0)
(s2300 1.0)
(s2301 1.0)
(s2302 1.0)
(s2303 1.0)
(s2304 1.0)
(s2305 1.0)
(s2306 1.0)
(s2307 1.0)
(s2308 1.0)
(s2309 1.0)
(s2310 1.0)
(s2311 1.0)
(s2312 1.0)
(s2313 1.0)
(s2314 1.0)
(s2315 1.0)
(s2316 1.0)
(s2317 1.0)
(s2318 1.0)
(s2319 1.0)
(s2320 1.0)
(s2321 1.0)
(s2322 1.0)
(s2323 1.0)
(s2324 1.0)
(s2325 1.0)
(s2326 1.0)
(s2327 1.0)
(s2328 1.0)
(s2329 1.0)
(s2330 1.0)
(s2331 1.0)
(s2332 1.0)
(s2333 1.0)
(s2334 1.0)
(s2335 1.0)
(s2336 1.0)
(s2337 1.0)
(s2338 1.0)
(s2339 1.0)
(s2340 1.0)
(s2341 1.0)
(s2342 1.0)
(s2343 1.0)
(s2344 1.0)
(s2345 1.0)
(s2346 1.0)
(s2347 1.0)
(s2348 1.0)
(s2349 1.0)
(s2350 1.0)
(s2351 1.0)
(s2352 1.0)
(s2353 1.0)
(s2354 1.0)
(s2355 1.0)
(s2356 1.0)
(s2357 1.0)
(s2358 1.0)
(s2359 1.0)
(s2360 1.0)
(s2361 1.0)
(s2362 1.0)
(s2363 1.0)
(s2364 1.0)
(s2365 1.0)
(s2366 1.0)
(s2367 1.0)
(s2368 1.0)
(s2369 1.0)
(s2370 1.0)
(s2371 1.0)
(s2372 1.0)
(s2373 1.0)
(s2374 1.0)
(s2375 1.0)
(s2376 1.0)
(s2377 1.0)
(s2378 1.0)
(s2379 1.0)
(s2380 1.0)
(s2381 1.0)
(s2382 1.0)
(s2383 1.0)
(s2384 1.0)
(s2385 1.0)
(s2386 1.0)
(s2387 1.0)
(s2388 1.0)
(s2389 1.0)
(s2390 1.0)
(s2391 1.0)
(s2392 1.0)
(s2393 1.0)
(s2394 1.0)
(s2395 1.0)
(s2396 1.0)
(s2397 1.0)
(s2398 1.0)
(s2399 1.0)
(s2400 1.0)
(s2401 1.0)
(s2402 1.0)
(s2403 1.0)
(s2404 1.0)
(s2405 1.0)
(s2406 1.0)
(s2407 1.0)
(s2408 1.0)
(s2409 1.0)
(s2410 1.0)
(s2411 1.0)
(s2412 1.0)
(s2413 1.0)
(s2414 1.0)
(s2415 1.0)
(s2416 1.0)
(s2417 1.0)
(s2418 1.0)
(s2419 1.0)
(s2420 1.0)
(s2421 1.0)
(s2422 1.0)
(s2423 1.0)
(s2424 1.0)
(s2425 1.0)
(s2426 1.0)
(s2427 1.0)
(s2428 1.0)
(s2429 1.0)
(s2430 1.0)
(s2431 1.0)
(s2432 1.0)
(s2433 1.0)
(s2434 1.0)
(s2435 1.0)
(s2436 1.0)
(s2437 1.0)
(s2438 1.0)
(s2439 1.0)
(s2440 1.0)
(s2441 1.0)
(s2442 1.0)
(s2443 1.0)
(s2444 1.0)
(s2445 1.0)
(s2446 1.0)
(s2447 1.0)
(s2448 1.0)
(s2449 1.0)
(s2450 1.0)
(s2451 1.0)
(s2452 1.0)
(s2453 1.0)
(s2454 1.0)
(s2455 1.0)
(s2456 1.0)
(s2457 1.0)
(s2458 1.0)
(s2459 1.0)
(s2460 1.0)
(s2461 1.0)
(s2462 1.0)
(s2463 1.0)
(s2464 1.0)
(s2465 1.0)
(s2466 1.0)
(s2467 1.0)
(s2468 1.0)
(s2469 1.0)
(s2470 1.0)
(s2471 1.0)
(s2472 1.0)
(s2473 1.0)
(s2474 1.0)
(s2475 1.0)
(s2476 1.0)
(s2477 1.0)
(s2478 1.0)
(s2479 1.0)
(s2480 1.0)
(s2481 1.0)
(s2482 1.0)
(s2483 1.0)
(s2484 1.0)
(s2485 1.0)
(s2486 1.0)
(s2487 1.0)
(s2488 1.0)
(s2489 1.0)
(s2490 1.0)
(s2491 1.0)
(s2492 1.0)
(s2493 1.0)
(s2494 1.0)
(s2495 1.0)
(s2496 1.0)
(s2497 1.0)
(s2498 1.0)
(s2499 1.0)
(s2500 1.0)
(s2501 1.0)
(s2502 1.0)
(s2503 1.0)
(s2504 1.0)
(s2505 1.0)
(s2506 1.0)
(s2507 1.0)
(s2508 1.0)
(s2509 1.0)
(s2510 1.0)
(s2511 1.0)
(s2512 1.0)
(s2513 1.0)
(s2514 1.0)
(s2515 1.0)
(s2516 1.0)
(s2517 1.0)
(s2518 1.0)
(s2519 1.0)
(s2520 1.0)
(s2521 1.0)
(s2522 1.0)
(s2523 1.0)
(s2524 1.0)
(s2525 1.0)
(s2526 1.0)
(s2527 1.0)
(s2528 1.0)
(s2529 1.0)
(s2530 1.0)
(s2531 1.0)
(s2532 1.0)
(s2533 1.0)
(s2534 1.0)
(s2535 1.0)
(s2536 1.0)
(s2537 1.0)
(s2538 1.0)
(s2539 1.0)
(s2540 1.0)
(s2541 1.0)
(s2542 1.0)
(s2543 1.0)
(s2544 1.0)
(s2545 1.0)
(s2546 1.0)
(s2547 1.0)
(s2548 1.0)
(s2549 1.0)
(s2550 1.0)
(s2551 1.0)
(s2552 1.0)
(s2553 1.0)
(s2554 1.0)
(s2555 1.0)
(s2556 1.0)
(s2557 1.0)
(s2558 1.0)
(s2559 1.0)
(s2560 1.0)
(s2561 1.0)
(s2562 1.0)
(s2563 1.0)
(s2564 1.0)
(s2565 1.0)
(s2566 1.0)
(s2567 1.0)
(s2568 1.0)
(s2569 1.0)
(s2570 1.0)
(s2571 1.0)
(s2572 1.0)
(s2573 1.0)
(s2574 1.0)
(s2575 1.0)
(s2576 1.0)
(s2577 1.0)
(s2578 1.0)
(s2579 1.0)
(s2580 1.0)
(s2581 1.0)
(s2582 1.0)
(s2583 1.0)
(s2584 1.0)
(s2585 1.0)
(s2586 1.0)
(s2587 1.0)
(s2588 1.0)
(s2589 1.0)
(s2590 1.0)
(s2591 1.0)
(s2592 1.0)
(s2593 1.0)
(s2594 1.0)
(s2595 1.0)
(s2596 1.0)
(s2597 1.0)
(s2598 1.0)
(s2599 1.0)
(s2600 1.0)
(s2601 1.0)
(s2602 1.0)
(s2603 1.0)
(s2604 1.0)
(s2605 1.0)
(s2606 1.0)
(s2607 1.0)
(s2608 1.0)
(s2609 1.0)
(s2610 1.0)
(s2611 1.0)
(s2612 1.0)
(s2613 1.0)
(s2614 1.0)
(s2615 1.0)
(s2616 1.0)
(s2617 1.0)
(s2618 1.0)
(s2619 1.0)
(s2620 1.0)
(s2621 1.0)
(s2622 1.0)
(s2623 1.0)
(s2624 1.0)
(s2625 1.0)
(s2626 1.0)
(s2627 1.0)
(s2628 1.0)
(s2629 1.0)
(s2630 1.0)
(s2631 1.0)
(s2632 1.0)
(s2633 1.0)
(s2634 1.0)
(s2635 1.0)
(s2636 1.0)
(s2637 1.0)
(s2638 1.0)
(s2639 1.0)
(s2640 1.0)
(s2641 1.0)
(s2642 1.0)
(s2643 1.0)
(s2644 1.0)
(s2645 1.0)
(s2646 1.0)
(s2647 1.0)
(s2648 1.0)
(s2649 1.0)
(s2650 1.0)
(s2651 1.0)
(s2652 1.0)
(s2653 1.0)
(s2654 1.0)
(s2655 1.0)
(s2656 1.0)
(s2657 1.0)
(s2658 1.0)
(s2659 1.0)
(s2660 1.0)
(s2661 1.0)
(s2662 1.0)
(s2663 1.0)
(s2664 1.0)
(s2665 1.0)
(s2666 1.0)
(s2667 1.0)
(s2668 1.0)
(s2669 1.0)
(s2670 1.0)
(s2671 1.0)
(s2672 1.0)
(s2673 1.0)
(s2674 1.0)
(s2675 1.0)
(s2676 1.0)
(s2677 1.0)
(s2678 1.0)
(s2679 1.0)
(s2680 1.0)
(s2681 1.0)
(s2682 1.0)
(s2683 1.0)
(s2684 1.0)
(s2685 1.0)
(s2686 1.0)
(s2687 1.0)
(s2688 1.0)
(s2689 1.0)
(s2690 1.0)
(s2691 1.0)
(s2692 1.0)
(s2693 1.0)
(s2694 1.0)
(s2695 1.0)
(s2696 1.0)
(s2697 1.0)
(s2698 1.0)
(s2699 1.0)
(s2700 1.0)
(s2701 1.0)
(s2702 1.0)
(s2703 1.0)
(s2704 1.0)
(s2705 1.0)
(s2706 1.0)
(s2707 1.0)
(s2708 1.0)
(s2709 1.0)
(s2710 1.0)
(s2711 1.0)
(s2712 1.0)
(s2713 1.0)
(s2714 1.0)
(s2715 1.0)
(s2716 1.0)
(s2717 1.0)
(s2718 1.0)
(s2719 1.0)
(s2720 1.0)
(s2721 1.0)
(s2722 1.0)
(s2723 1.0)
(s2724 1.0)
(s2725 1.0)
(s2726 1.0)
(s2727 1.0)
(s2728 1.0)
(s2729 1.0)
(s2730 1.0)
(s2731 1.0)
(s2732 1.0)
(s2733 1.0)
(s2734 1.0)
(s2735 1.0)
(s2736 1.0)
(s2737 1.0)
(s2738 1.0)
(s2739 1.0)
(s2740 1.0)
(s2741 1.0)
(s2742 1.0)
(s2743 1.0)
(s2744 1.0)
(s2745 1.0)
(s2746 1.0)
(s2747 1.0)
(s2748 1.0)
(s2749 1.0)
(s2750 1.0)
(s2751 1.0)
(s2752 1.0)
(s2753 1.0)
(s2754 1.0)
(s2755 1.0)
(s2756 1.0)
(s2757 1.0)
(s2758 1.0)
(s2759 1.0)
(s2760 1.0)
(s2761 1.0)
(s2762 1.0)
(s2763 1.0)
(s2764 1.0)
(s2765 1.0)
(s2766 1.0)
(s2767 1.0)
(s2768 1.0)
(s2769 1.0)
(s2770 1.0)
(s2771 1.0)
(s2772 1.0)
(s2773 1.0)
(s2774 1.0)
(s2775 1.0)
(s2776 1.0)
(s2777 1.0)
(s2778 1.0)
(s2779 1.0)
(s2780 1.0)
(s2781 1.0)
(s2782 1.0)
(s2783 1.0)
(s2784 1.0)
(s2785 1.0)
(s2786 1.0)
(s2787 1.0)
(s2788 1.0)
(s2789 1.0)
(s2790 1.0)
(s2791 1.0)
(s2792 1.0)
(s2793 1.0)
(s2794 1.0)
(s2795 1.0)
(s2796 1.0)
(s2797 1.0)
(s2798 1.0)
(s2799 1.0)
(s2800 1.0)
(s2801 1.0)
(s2802 1.0)
(s2803 1.0)
(s2804 1.0)
(s2805 1.0)
(s2806 1.0)
(s2807 1.0)
(s2808 1.0)
(s2809 1.0)
(s2810 1.0)
(s2811 1.0)
(s2812 1.0)
(s2813 1.0)
(s2814 1.0)
(s2815 1.0)
(s2816 1.0)
(s2817 1.0)
(s2818 1.0)
(s2819 1.0)
(s2820 1.0)
(s2821 1.0)
(s2822 1.0)
(s2823 1.0)
(s2824 1.0)
(s2825 1.0)
(s2826 1.0)
(s2827 1.0)
(s2828 1.0)
(s2829 1.0)
(s2830 1.0)
(s2831 1.0)
(s2832 1.0)
(s2833 1.0)
(s2834 1.0)
(s2835 1.0)
(s2836 1.0)
(s2837 1.0)
(s2838 1.0)
(s2839 1.0)
(s2840 1.0)
(s2841 1.0)
(s2842 1.0)
(s2843 1.0)
(s2844 1.0)
(s2845 1.0)
(s2846 1.0)
(s2847 1.0)
(s2848 1.0)
(s2849 1.0timeout
) org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
At refinement iteration 0 (INCLUDED_ONLY) 0/3865 variables, 3865/3865 constraints. Problems are: Problem set: 0 solved, 3517 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 3865/7384 variables, and 3865 constraints, problems are : Problem set: 0 solved, 3517 unsolved in 30106 ms.
Refiners :[Domain max(s): 3865/3866 constraints, State Equation: 0/3866 constraints, PredecessorRefiner: 3517/3517 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 3517 unsolved
At refinement iteration 0 (INCLUDED_ONLY) 0/3865 variables, 3865/3865 constraints. Problems are: Problem set: 0 solved, 3517 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 3865/7384 variables, and 3865 constraints, problems are : Problem set: 0 solved, 3517 unsolved in 30090 ms.
Refiners :[Domain max(s): 3865/3866 constraints, State Equation: 0/3866 constraints, PredecessorRefiner: 0/3517 constraints, Known Traps: 0/0 constraints]
After SMT, in 71828ms problems are : Problem set: 0 solved, 3517 unsolved
Search for dead transitions found 0 dead transitions in 71870ms
Finished structural reductions in LTL mode , in 1 iterations and 257534 ms. Remains : 3866/3866 places, 3518/3518 transitions.
Treatment of property Echo-PT-d03r07-LTLCardinality-07 finished in 972090 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202405141337/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!((F(p0)&&F(p1)))'
Support contains 3 out of 3869 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 3869/3869 places, 3518/3518 transitions.
Graph (complete) has 14563 edges and 3869 vertex of which 3860 are kept as prefixes of interest. Removing 9 places using SCC suffix rule.13 ms
Discarding 9 places :
Also discarding 1 output transitions
Drop transitions (Output transitions of discarded places.) removed 1 transitions
Reduce places removed 1 places and 1 transitions.
Applied a total of 1 rules in 445 ms. Remains 3859 /3869 variables (removed 10) and now considering 3516/3518 (removed 2) transitions.
// Phase 1: matrix 3516 rows 3859 cols
[2024-05-23 11:16:19] [INFO ] Invariants computation overflowed in 6878 ms
[2024-05-23 11:16:25] [INFO ] Implicit Places using invariants in 12199 ms returned []
// Phase 1: matrix 3516 rows 3859 cols
[2024-05-23 11:16:31] [INFO ] Invariants computation overflowed in 6645 ms
[2024-05-23 11:17:29] [INFO ] Performed 26/3859 implicitness test of which 0 returned IMPLICIT in 38 seconds.
[2024-05-23 11:18:02] [INFO ] Performed 31/3859 implicitness test of which 0 returned IMPLICIT in 71 seconds.
[2024-05-23 11:18:34] [INFO ] Performed 55/3859 implicitness test of which 0 returned IMPLICIT in 104 seconds.
[2024-05-23 11:19:10] [INFO ] Performed 183/3859 implicitness test of which 0 returned IMPLICIT in 140 seconds.
[2024-05-23 11:19:10] [INFO ] Timeout of Implicit test with SMT after 140 seconds.
[2024-05-23 11:19:10] [INFO ] Implicit Places using invariants and state equation in 165279 ms returned []
Implicit Place search using SMT with State Equation took 177480 ms to find 0 implicit places.
[2024-05-23 11:19:10] [INFO ] Redundant transitions in 147 ms returned []
Running 3510 sub problems to find dead transitions.
// Phase 1: matrix 3516 rows 3859 cols
[2024-05-23 11:19:17] [INFO ] Invariants computation overflowed in 6827 ms
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
At refinement iteration 0 (INCLUDED_ONLY) 0/3858 variables, 3858/3858 constraints. Problems are: Problem set: 0 solved, 3510 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 3858/7375 variables, and 3858 constraints, problems are : Problem set: 0 solved, 3510 unsolved in 30089 ms.
Refiners :[Domain max(s): 3858/3859 constraints, State Equation: 0/3859 constraints, PredecessorRefiner: 3510/3510 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 3510 unsolved
At refinement iteration 0 (INCLUDED_ONLY) 0/3858 variables, 3858/3858 constraints. Problems are: Problem set: 0 solved, 3510 unsolved
Error getting values : (error "ParserException while parsing response: ((s0 1)
(s1 1)
(s2 1)
(s3 1)
(s4 1)
(s5 1)
(s6 1)
(s7 1)
(s8 1)
(s9 1)
(s10 1)
(s11 1)
(s12 1)
(s13 1)
(s14 1)
(s15 1)
(s16 1)
(s17 1)
(s18 1)
(s19 1)
(s20 1)
(s21 1)
(s22 1)
(s23 1)
(s24 1)
(s25 1)
(s26 1)
(s27 1)
(s28 1)
(s29 1)
(s30 1)
(s31 1)
(s32 1)
(s33 1)
(s34 1)
(s35 1)
(s36 1)
(s37 1)
(s38 1)
(s39 1)
(s40 1)
(s41 1)
(s42 1)
(s43 1)
(s44 1)
(s45 1)
(s46 1)
(s47 1)
(s48 1)
(s49 1)
(s50 1)
(s51 1)
(s52 1)
(s53 1)
(s54 1)
(s55 1)
(s56 1)
(s57 1)
(s58 1)
(s59 1)
(s60 1)
(s61 1)
(s62 1)
(s63 1)
(s64 1)
(s65 1)
(s66 1)
(s67 1)
(s68 1)
(s69 1)
(s70 1)
(s71 1)
(s72 1)
(s73 1)
(s74 1)
(s75 1)
(s76 1)
(s77 1)
(s78 1)
(s79 1)
(s80 1)
(s81 1)
(s82 1)
(s83 1)
(s84 1)
(s85 1)
(s86 1)
(s87 1)
(s88 1)
(s89 1)
(s90 1)
(s91 1)
(s92 1)
(s93 1)
(s94 1)
(s95 1)
(s96 1)
(s97 1)
(s98 1)
(s99 1)
(s100 1)
(s101 1)
(s102 1)
(s103 1)
(s104 1)
(s105 1)
(s106 1)
(s107 1)
(s108 1)
(s109 1)
(s110 1)
(s111 1)
(s112 1)
(s113 1)
(s114 1)
(s115 1)
(s116 1)
(s117 1)
(s118 1)
(s119 1)
(s120 1)
(s121 1)
(s122 1)
(s123 1)
(s124 1)
(s125 1)
(s126 1)
(s127 1)
(s128 1)
(s129 1)
(s130 1)
(s131 1)
(s132 1)
(s133 1)
(s134 1)
(s135 1)
(s136 1)
(s137 1)
(s138 1)
(s139 1)
(s140 1)
(s141 1)
(s142 1)
(s143 1)
(s144 1)
(s145 1)
(s146 1)
(s147 1)
(s148 1)
(s149 1)
(s150 1)
(s151 1)
(s152 1)
(s153 1)
(s154 1)
(s155 1)
(s156 1)
(s157 1)
(s158 1)
(s159 1)
(s160 1)
(s161 1)
(s162 1)
(s163 1)
(s164 1)
(s165 1)
(s166 1)
(s167 1)
(s168 1)
(s169 1)
(s170 1)
(s171 1)
(s172 1)
(s173 1)
(s174 1)
(s175 1)
(s176 1)
(s177 1)
(s178 1)
(s179 1)
(s180 1)
(s181 1)
(s182 1)
(s183 1)
(s184 1)
(s185 1)
(s186 1)
(s187 1)
(s188 1)
(s189 1)
(s190 1)
(s191 1)
(s192 1)
(s193 1)
(s194 1)
(s195 1)
(s196 1)
(s197 1)
(s198 1)
(s199 1)
(s200 1)
(s201 1)
(s202 1)
(s203 1)
(s204 1)
(s205 1)
(s206 1)
(s207 1)
(s208 1)
(s209 1)
(s210 1)
(s211 1)
(s212 1)
(s213 1)
(s214 1)
(s215 1)
(s216 1)
(s217 1)
(s218 1)
(s219 1)
(s220 1)
(s221 1)
(s222 1)
(s223 1)
(s224 1)
(s225 1)
(s226 1)
(s227 1)
(s228 1)
(s229 1)
(s230 1)
(s231 1)
(s232 1)
(s233 1)
(s234 1)
(s235 1)
(s236 1)
(s237 1)
(s238 1)
(s239 1)
(s240 1)
(s241 1)
(s242 1)
(s243 1)
(s245 1)
(s246 1)
(s247 1)
(s248 1)
(s249 1)
(s250 1)
(s251 1)
(s252 1)
(s253 1)
(s254 1)
(s255 1)
(s256 1)
(s257 1)
(s258 1)
(s259 1)
(s260 1)
(s261 1)
(s262 1)
(s263 1)
(s264 1)
(s265 1)
(s266 1)
(s267 1)
(s268 1)
(s269 1)
(s270 1)
(s271 1)
(s272 1)
(s273 1)
(s274 1)
(s275 1)
(s276 1)
(s277 1)
(s278 1)
(s279 1)
(s280 1)
(s281 1)
(s282 1)
(s283 1)
(s284 1)
(s285 1)
(s286 1)
(s287 1)
(s288 1)
(s289 1)
(s290 1)
(s291 1)
(s292 1)
(s293 1)
(s294 1)
(s295 1)
(s296 1)
(s297 1)
(s298 1)
(s299 1)
(s300 1)
(s301 1)
(s302 1)
(s303 1)
(s304 1)
(s305 1)
(s306 1)
(s307 1)
(s308 1)
(s309 1)
(s310 1)
(s311 1)
(s312 1)
(s313 1)
(s314 1)
(s315 1)
(s316 1)
(s317 1)
(s318 1)
(s319 1)
(s320 1)
(s321 1)
(s322 1)
(s323 1)
(s324 1)
(s325 1)
(s326 1)
(s327 1)
(s328 1)
(s329 1)
(s330 1)
(s331 1)
(s332 1)
(s333 1)
(s334 1)
(s335 1)
(s336 1)
(s337 1)
(s338 1)
(s339 1)
(s340 1)
(s341 1)
(s342 1)
(s343 1)
(s344 1)
(s345 1)
(s346 1)
(s347 1)
(s348 1)
(s349 1)
(s350 1)
(s351 1)
(s352 1)
(s353 1)
(s354 1)
(s355 1)
(s356 1)
(s357 1)
(s358 1)
(s359 1)
(s360 1)
(s361 1)
(s362 1)
(s363 1)
(s364 1)
(s365 1)
(s366 1)
(s367 1)
(s368 1)
(s369 1)
(s370 1)
(s371 1)
(s372 1)
(s373 1)
(s374 1)
(s375 1)
(s376 1)
(s377 1)
(s378 1)
(s379 1)
(s380 1)
(s381 1)
(s382 1)
(s383 1)
(s384 1)
(s385 1)
(s386 1)
(s387 1)
(s388 1)
(s389 1)
(s390 1)
(s391 1)
(s392 1)
(s393 1)
(s394 1)
(s395 1)
(s396 1)
(s397 1)
(s398 1)
(s399 1)
(s400 1)
(s401 1)
(s402 1)
(s403 1)
(s404 1)
(s405 1)
(s406 1)
(s407 1)
(s408 1)
(s409 1)
(s410 1)
(s411 1)
(s412 1)
(s413 1)
(s414 1)
(s415 1)
(s416 1)
(s417 1)
(s418 1)
(s419 1)
(s420 1)
(s421 1)
(s422 1)
(s423 1)
(s424 1)
(s425 1)
(s426 1)
(s427 1)
(s428 1)
(s429 1)
(s430 1)
(s431 1)
(s432 1)
(s433 1)
(s434 1)
(s435 1)
(s436 1)
(s437 1)
(s438 1)
(s439 1)
(s440 1)
(s441 1)
(s442 1)
(s443 1)
(s444 1)
(s445 1)
(s446 1)
(s447 1)
(s448 1)
(s449 1)
(s450 1)
(s451 1)
(s452 1)
(s453 1)
(s454 1)
(s455 1)
(s456 1)
(s457 1)
(s458 1)
(s459 1)
(s460 1)
(s461 1)
(s462 1)
(s463 1)
(s464 1)
(s465 1)
(s466 1)
(s467 1)
(s468 1)
(s469 1)
(s470 1)
(s471 1)
(s472 1)
(s473 1)
(s474 1)
(s475 1)
(s476 1)
(s477 1)
(s478 1)
(s479 1)
(s480 1)
(s481 1)
(s482 1)
(s483 1)
(s484 1)
(s485 1)
(s486 1)
(s487 1)
(s488 1)
(s489 1)
(s490 1)
(s491 1)
(s492 1)
(s493 1)
(s494 1)
(s495 1)
(s496 1)
(s497 1)
(s498 1)
(s499 1)
(s500 1)
(s501 1)
(s502 1)
(s503 1)
(s504 1)
(s505 1)
(s506 1)
(s507 1)
(s508 1)
(s509 1)
(s510 1)
(s511 1)
(s512 1)
(s513 1)
(s514 1)
(s515 1)
(s516 1)
(s517 1)
(s518 1)
(s519 1)
(s520 1)
(s521 1)
(s522 1)
(s523 1)
(s524 1)
(s525 1)
(s526 1)
(s527 1)
(s528 1)
(s529 1)
(s530 1)
(s531 1)
(s532 1)
(s533 1)
(s534 1)
(s535 1)
(s536 1)
(s537 1)
(s538 1)
(s539 1)
(s540 1)
(s541 1)
(s542 1)
(s543 1)
(s544 1)
(s545 1)
(s546 1)
(s547 1)
(s548 1)
(s549 1)
(s550 1)
(s551 1)
(s552 1)
(s553 1)
(s554 1)
(s555 1)
(s556 1)
(s557 1)
(s558 1)
(s559 1)
(s560 1)
(s561 1)
(s562 1)
(s563 1)
(s564 1)
(s565 1)
(s566 1)
(s567 1)
(s568 1)
(s569 1)
(s570 1)
(s571 1)
(s572 1)
(s573 1)
(s574 1)
(s575 1)
(s576 1)
(s577 1)
(s578 1)
(s579 1)
(s580 1)
(s581 1)
(s582 1)
(s583 1)
(s584 1)
(s585 1)
(s586 1)
(s587 1)
(s588 1)
(s589 1)
(s590 1)
(s591 1)
(s592 1)
(s593 1)
(s594 1)
(s595 1)
(s596 1)
(s597 1)
(s598 1)
(s599 1)
(s600 1)
(s601 1)
(s602 1)
(s603 1)
(s604 1)
(s605 1)
(s606 1)
(s607 1)
(s608 1)
(s609 1)
(s610 1)
(s611 1)
(s612 1)
(s613 1)
(s614 1)
(s615 1)
(s616 1)
(s617 1)
(s618 1)
(s619 1)
(s620 1)
(s621 1)
(s622 1)
(s623 1)
(s624 1)
(s625 1)
(s626 1)
(s627 1)
(s628 1)
(s629 1)
(s630 1)
(s631 1)
(s632 1)
(s633 1)
(s634 1)
(s635 1)
(s636 1)
(s637 1)
(s638 1)
(s639 1)
(s640 1)
(s641 1)
(s642 1)
(s643 1)
(s644 1)
(s645 1)
(s646 1)
(s647 1)
(s648 1)
(s649 1)
(s650 1)
(s651 1)
(s652 1)
(s653 1)
(s654 1)
(s655 1)
(s656 1)
(s657 1)
(s658 1)
(s659 1)
(s660 1)
(s661 1)
(s662 1)
(s663 1)
(s664 1)
(s665 1)
(s666 1)
(s667 1)
(s668 1)
(s669 1)
(s670 1)
(s671 1)
(s672 1)
(s673 1)
(s674 1)
(s675 1)
(s676 1)
(s677 1)
(s678 1)
(s679 1)
(s680 1)
(s681 1)
(s682 1)
(s683 1)
(s684 1)
(s685 1)
(s686 1)
(s687 1)
(s688 1)
(s689 1)
(s690 1)
(s691 1)
(s692 1)
(s693 1)
(s694 1)
(s695 1)
(s696 1)
(s697 1)
(s698 1)
(s699 1)
(s700 1)
(s701 1)
(s702 1)
(s703 1)
(s704 1)
(s705 1)
(s706 1)
(s707 1)
(s708 1)
(s709 1)
(s710 1)
(s711 1)
(s712 1)
(s713 1)
(s714 1)
(s715 1)
(s716 1)
(s717 1)
(s718 1)
(s719 1)
(s720 1)
(s721 1)
(s722 1)
(s723 1)
(s724 1)
(s725 1)
(s726 1)
(s727 1)
(s728 1)
(s729 1)
(s730 1)
(s731 1)
(s732 1)
(s733 1)
(s734 1)
(s735 1)
(s736 1)
(s737 1)
(s738 1)
(s739 1)
(s740 1)
(s741 1)
(s742 1)
(s743 1)
(s744 1)
(s745 1)
(s746 1)
(s747 1)
(s748 1)
(s749 1)
(s750 1)
(s751 1)
(s752 1)
(s753 1)
(s754 1)
(s755 1)
(s756 1)
(s757 1)
(s758 1)
(s759 1)
(s760 1)
(s761 1)
(s762 1)
(s763 1)
(s764 1)
(s765 1)
(s766 1)
(s767 1)
(s768 1)
(s769 1)
(s770 1)
(s771 1)
(s772 1)
(s773 1)
(s774 1)
(s775 1)
(s776 1)
(s777 1)
(s778 1)
(s779 1)
(s780 1)
(s781 1)
(s782 1)
(s783 1)
(s784 1)
(s785 1)
(s786 1)
(s787 1)
(s788 1)
(s789 1)
(s790 1)
(s791 1)
(s792 1)
(s793 1)
(s794 1)
(s795 1)
(s796 1)
(s797 1)
(s798 1)
(s799 1)
(s800 1)
(s801 1)
(s802 1)
(s803 1)
(s804 1)
(s805 1)
(s806 1)
(s807 1)
(s808 1)
(s809 1)
(s810 1)
(s811 1)
(s812 1)
(s813 1)
(s814 1)
(s815 1)
(s816 1)
(s817 1)
(s818 1)
(s819 1)
(s820 1)
(s821 1)
(s822 1)
(s823 1)
(s824 1)
(s825 1)
(s826 1)
(s827 1)
(s828 1)
(s829 1)
(s830 1)
(s831 1)
(s832 1)
(s833 1)
(s834 1)
(s835 1)
(s836 1)
(s837 1)
(s838 1)
(s839 1)
(s840 1)
(s841 1)
(s842 1)
(s843 1)
(s844 1)
(s845 1)
(s846 1)
(s847 1)
(s848 1)
(s849 1)
(s850 1)
(s851 1)
(s852 1)
(s853 1)
(s854 1)
(s855 1)
(s856 1)
(s857 1)
(s858 1)
(s859 1)
(s860 1)
(s861 1)
(s862 1)
(s863 1)
(s864 1)
(s865 1)
(s866 1)
(s867 1)
(s868 1)
(s869 1)
(s870 1)
(s871 1)
(s872 1)
(s873 1)
(s874 1)
(s875 1)
(s876 1)
(s877 1)
(s878 1)
(s879 1)
(s880 1)
(s881 1)
(s882 1)
(s883 1)
(s884 1)
(s885 1)
(s886 1)
(s887 1)
(s888 1)
(s889 1)
(s890 1)
(s891 1)
(s892 1)
(s893 1)
(s894 1)
(s895 1)
(s896 1)
(s897 1)
(s898 1)
(s899 1)
(s900 1)
(s901 1)
(s902 1)
(s903 1)
(s904 1)
(s905 1)
(s906 1)
(s907 1)
(s908 1)
(s909 1)
(s910 1)
(s911 1)
(s912 1)
(s913 1)
(s914 1)
(s915 1)
(s916 1)
(s917 1)
(s918 1)
(s919 1)
(s920 1)
(s921 1)
(s922 1)
(s923 1)
(s924 1)
(s925 1)
(s926 1)
(s927 1)
(s928 1)
(s929 1)
(s930 1)
(s931 1)
(s932 1)
(s933 1)
(s934 1)
(s935 1)
(s936 1)
(s937 1)
(s938 1)
(s939 1)
(s940 1)
(s941 1)
(s942 1)
(s943 1)
(s944 1)
(s945 1)
(s946 1)
(s947 1)
(s948 1)
(s949 1)
(s950 1)
(s951 1)
(s952 1)
(s953 1)
(s954 1)
(s955 1)
(s956 1)
(s957 1)
(s958 1)
(s959 1)
(s960 1)
(s961 1)
(s962 1)
(s963 1)
(s964 1)
(s965 1)
(s966 1)
(s967 1)
(s968 1)
(s969 1)
(s970 1)
(s971 1)
(s972 1)
(s973 1)
(s974 1)
(s975 1)
(s976 1)
(s977 1)
(s978 1)
(s979 1)
(s980 1)
(s981 1)
(s982 1)
(s983 1)
(s984 1)
(s985 1)
(s986 1)
(s987 1)
(s988 1)
(s989 1)
(s990 1)
(s991 1)
(s992 1)
(s993 1)
(s994 1)
(s995 1)
(s996 1)
(s997 1)
(s998 1)
(s999 1)
(s1000 1)
(s1001 1)
(s1002 1)
(s1003 1)
(s1004 1)
(s1005 1)
(s1006 1)
(s1007 1)
(s1008 1)
(s1009 1)
(s1010 1)
(s1011 1)
(s1012 1)
(s1013 1)
(s1014 1)
(s1015 1)
(s1016 1)
(s1017 1)
(s1018 1)
(s1019 1)
(s1020 1)
(s1021 1)
(s1022 1)
(s1023 1)
(s1024 1)
(s1025 1)
(s1026 1)
(s1027 1)
(s1028 1)
(s1029 1)
(s1030 1)
(s1031 1)
(s1032 1)
(s1033 1)
(s1034 1)
(s1035 1)
(s1036 1)
(s1037 1)
(s1038 1)
(s1039 1)
(s1040 1)
(s1041 1)
(s1042 1)
(s1043 1)
(s1044 1)
(s1045 1)
(s1046 1)
(s1047 1)
(s1048 1)
(s1049 1)
(s1050 1)
(s1051 1)
(s1052 1)
(s1053 1)
(s1054 1)
(s1055 1)
(s1056 1)
(s1057 1)
(s1058 1)
(s1059 1)
(s1060 1)
(s1061 1)
(s1062 1)
(s1063 1)
(s1064 1)
(s1065 1)
(s1066 1)
(s1067 1)
(s1068 1)
(s1069 1)
(s1070 1)
(s1071 1)
(s1072 1)
(s1073 1)
(s1074 1)
(s1075 1)
(s1076 1)
(s1077 1)
(s1078 1)
(s1079 1)
(s1080 1)
(s1081 1)
(s1082 1)
(s1083 1)
(s1084 1)
(s1085 1)
(s1086 1)
(s1087 1)
(s1088 1)
(s1089 1)
(s1090 1)
(s1091 1)
(s1092 1)
(s1093 1)
(s1094 1)
(s1095 1)
(s1096 1)
(s1097 1)
(s1098 1)
(s1099 1)
(s1100 1)
(s1101 1)
(s1102 1)
(s1103 1)
(s1104 1)
(s1105 1)
(s1106 1)
(s1107 1)
(s1108 1)
(s1109 1)
(s1110 1)
(s1111 1)
(s1112 1)
(s1113 1)
(s1114 1)
(s1115 1)
(s1116 1)
(s1117 1)
(s1118 1)
(s1119 1)
(s1120 1)
(s1121 1)
(s1122 1)
(s1123 1)
(s1124 1)
(s1125 1)
(s1126 1)
(s1127 1)
(s1128 1)
(s1129 1)
(s1130 1)
(s1131 1)
(s1132 1)
(s1133 1)
(s1134 1)
(s1135 1)
(s1136 1)
(s1137 1)
(s1138 1)
(s1139 1)
(s1140 1)
(s1141 1)
(s1142 1)
(s1143 1)
(s1144 1)
(s1145 1)
(s1146 1)
(s1147 1)
(s1148 1)
(s1149 1)
(s1150 1)
(s1151 1)
(s1152 1)
(s1153 1)
(s1154 1)
(s1155 1)
(s1156 1)
(s1157 1)
(s1158 1)
(s1159 1)
(s1160 1)
(s1161 1)
(s1162 1)
(s1163 1)
(s1164 1)
(s1165 1)
(s1166 1)
(s1167 1)
(s1168 1)
(s1169 1)
(s1170 1)
(s1171 1)
(s1172 1)
(s1173 1)
(s1174 1)
(s1175 1)
(s1176 1)
(s1177 1)
(s1178 1)
(s1179 1)
(s1180 1)
(s1181 1)
(s1182 1)
(s1183 1)
(s1184 1)
(s1185 1)
(s1186 1)
(s1187 1)
(s1188 1)
(s1189 1)
(s1190 1)
(s1191 1)
(s1192 1)
(s1193 1)
(s1194 1)
(s1195 1)
(s1196 1)
(s1197 1)
(s1198 1)
(s1199 1)
(s1200 1)
(s1201 1)
(s1202 1)
(s1203 1)
(s1204 1)
(s1205 1)
(s1206 1)
(s1207 1)
(s1208 1)
(s1209 1)
(s1210 1)
(s1211 1)
(s1212 1)
(s1213 1)
(s1214 1)
(s1215 1)
(s1216 1)
(s1217 1)
(s1218 1)
(s1219 1)
(s1220 1)
(s1221 1)
(s1222 1)
(s1223 1)
(s1224 1)
(s1225 1)
(s1226 1)
(s1227 1)
(s1228 1)
(s1229 1)
(s1230 1)
(s1231 1)
(s1232 1)
(s1233 1)
(s1234 1)
(s1235 1)
(s1236 1)
(s1237 1)
(s1238 1)
(s1239 1)
(s1240 1)
(s1241 1)
(s1242 1)
(s1243 1)
(s1244 1)
(s1245 1)
(s1246 1)
(s1247 1)
(s1248 1)
(s1249 1)
(s1250 1)
(s1251 1)
(s1252 1)
(s1253 1)
(s1254 1)
(s1255 1)
(s1256 1)
(s1257 1)
(s1258 1)
(s1259 1)
(s1260 1)
(s1261 1)
(s1262 1)
(s1263 1)
(s1264 1)
(s1265 1)
(s1266 1)
(s1267 1)
(s1268 1)
(s1269 1)
(s1270 1)
(s1271 1)
(s1272 1)
(s1273 1)
(s1274 1)
(s1275 1)
(s1276 1)
(s1277 1)
(s1278 1)
(s1279 1)
(s1280 1)
(s1281 1)
(s1282 1)
(s1283 1)
(s1284 1)
(s1285 1)
(s1286 1)
(s1287 1)
(s1288 1)
(s1289 1)
(s1290 1)
(s1291 1)
(s1292 1)
(s1293 1)
(s1294 1)
(s1295 1)
(s1296 1)
(s1297 1)
(s1298 1)
(s1299 1)
(s1300 1)
(s1301 1)
(s1302 1)
(s1303 1)
(s1304 1)
(s1305 1)
(s1306 1)
(s1307 1)
(s1308 1)
(s1309 1)
(s1310 1)
(s1311 1)
(s1312 1)
(s1313 1)
(s1314 1)
(s1315 1)
(s1316 1)
(s1317 1)
(s1318 1)
(s1319 1)
(s1320 1)
(s1321 1)
(s1322 1)
(s1323 1)
(s1324 1)
(s1325 1)
(s1326 1)
(s1327 1)
(s1328 1)
(s1329 1)
(s1330 1)
(s1331 1)
(s1332 1)
(s1333 1)
(s1334 1)
(s1335 1)
(s1336 1)
(s1337 1)
(s1338 1)
(s1339 1)
(s1340 1)
(s1341 1)
(s1342 1)
(s1343 1)
(s1344 1)
(s1345 1)
(s1346 1)
(s1347 1)
(s1348 1)
(s1349 1)
(s1350 1)
(s1351 1)
(s1352 1)
(s1353 1)
(s1354 1)
(s1355 1)
(s1356 1)
(s1357 1)
(s1358 1)
(s1359 1)
(s1360 1)
(s1361 1)
(s1362 1)
(s1363 1)
(s1364 1)
(s1365 1)
(s1366 1)
(s1367 1)
(s1368 1)
(s1369 1)
(s1370 1)
(s1371 1)
(s1372 1)
(s1373 1)
(s1374 1)
(s1375 1)
(s1376 1)
(s1377 1)
(s1378 1)
(s1379 1)
(s1380 1)
(s1381 1)
(s1382 1)
(s1383 1)
(s1384 1)
(s1385 1)
(s1386 1)
(s1387 1)
(s1388 1)
(s1389 1)
(s1390 1)
(s1391 1)
(s1392 1)
(s1393 1)
(s1394 1)
(s1395 1)
(s1396 1)
(s1397 1)
(s1398 1)
(s1399 1)
(s1400 1)
(s1401 1)
(s1402 1)
(s1403 1)
(s1404 1)
(s1405 1)
(s1406 1)
(s1407 1)
(s1408 1)
(s1409 1)
(s1410 1)
(s1411 1)
(s1412 1)
(s1413 1)
(s1414 1)
(s1415 1)
(s1416 1)
(s1417 1)
(s1418 1)
(s1419 1)
(s1420 1)
(s1421 1)
(s1422 1)
(s1423 1)
(s1424 1)
(s1425 1)
(s1426 1)
(s1427 1)
(s1428 1)
(s1429 1)
(s1430 1)
(s1431 1)
(s1432 1)
(s1433 1)
(s1434 1)
(s1435 1)
(s1436 1)
(s1437 1)
(s1438 1)
(s1439 1)
(s1440 1)
(s1441 1)
(s1442 1)
(s1443 1)
(s1444 1)
(s1445 1)
(s1446 1)
(s1447 1)
(s1448 1)
(s1449 1)
(s1450 1)
(s1451 1)
(s1452 1)
(s1453 1)
(s1454 1)
(s1455 1)
(s1456 1)
(s1457 1)
(s1458 1)
(s1459 1)
(s1460 1)
(s1461 1)
(s1462 1)
(s1463 1)
(s1464 1)
(s1465 1)
(s1466 1)
(s1467 1)
(s1468 1)
(s1469 1)
(s1470 1)
(s1471 1)
(s1472 1)
(s1473 1)
(s1474 1)
(s1475 1)
(s1476 1)
(s1477 1)
(s1478 1)
(s1479 1)
(s1480 1)
(s1481 1)
(s1482 1)
(s1483 1)
(s1484 1)
(s1485 1)
(s1486 1)
(s1487 1)
(s1488 1)
(s1489 1)
(s1490 1)
(s1491 1)
(s1492 1)
(s1493 1)
(s1494 1)
(s1495 1)
(s1496 1)
(s1497 1)
(s1498 1)
(s1499 1)
(s1500 1)
(s1501 1)
(s1502 1)
(s1503 1)
(s1504 1)
(s1505 1)
(s1506 1)
(s1507 1)
(s1508 1)
(s1509 1)
(s1510 1)
(s1511 1)
(s1512 1)
(s1513 1)
(s1514 1)
(s1515 1)
(s1516 1)
(s1517 1)
(s1518 1)
(s1519 1)
(s1520 1)
(s1521 1)
(s1522 1)
(s1523 1)
(s1524 1)
(s1525 1)
(s1526 1)
(s1527 1)
(s1528 1)
(s1529 1)
(s1530 1)
(s1531 1)
(s1532 1)
(s1533 1)
(s1534 1)
(s1535 1)
(s1536 1)
(s1537 1)
(s1538 1)
(s1539 1)
(s1540 1)
(s1541 1)
(s1542 1)
(s1543 1)
(s1544 1)
(s1545 1)
(s1546 1)
(s1547 1)
(s1548 1)
(s1549 1)
(s1550 1)
(s1551 1)
(s1552 1)
(s1553 1)
(s1554 1)
(s1555 1)
(s1556 1)
(s1557 1)
(s1558 1)
(s1559 1)
(s1560 1)
(s1561 1)
(s1562 1)
(s1563 1)
(s1564 1)
(s1565 1)
(s1566 1)
(s1567 1)
(s1568 1)
(s1569 1)
(s1570 1)
(s1571 1)
(s1572 1)
(s1573 1)
(s1574 1)
(s1575 1)
(s1576 1)
(s1577 1)
(s1578 1)
(s1579 1)
(s1580 1)
(s1581 1)
(s1582 1)
(s1583 1)
(s1584 1)
(s1585 1)
(s1586 1)
(s1587 1)
(s1588 1)
(s1589 1)
(s1590 1)
(s1591 1)
(s1592 1)
(s1593 1)
(s1594 1)
(s1595 1)
(s1596 1)
(s1597 1)
(s1598 1)
(s1599 1)
(s1600 1)
(s1601 1)
(s1602 1)
(s1603 1)
(s1604 1)
(s1605 1)
(s1606 1)
(s1607 1)
(s1608 1)
(s1609 1)
(s1610 1)
(s1611 1)
(s1612 1)
(s1613 1)
(s1614 1)
(s1615 1)
(s1616 1)
(s1617 1)
(s1618 1)
(s1619 1)
(s1620 1)
(s1621 1)
(s1622 1)
(s1623 1)
(s1624 1)
(s1625 1)
(s1626 1)
(s1627 1)
(s1628 1)
(s1629 1)
(s1630 1)
(s1631 1)
(s1632 1)
(s1633 1)
(s1634 1)
(s1635 1)
(s1636 1)
(s1637 1)
(s1638 1)
(s1639 1)
(s1640 1)
(s1641 1)
(s1642 1)
(s1643 1)
(s1644 1)
(s1645 1)
(s1646 1)
(s1647 1)
(s1648 1)
(s1649 1)
(s1650 1)
(s1651 1)
(s1652 1)
(s1653 1)
(s1654 1)
(s1655 1)
(s1656 1)
(s1657 1)
(s1658 1)
(s1659 1)
(s1660 1)
(s1661 1)
(s1662 1)
(s1663 1)
(s1664 1)
(s1665 1)
(s1666 1)
(s1667 1)
(s1668 1)
(s1669 1)
(s1670 1)
(s1671 1)
(s1672 1)
(s1673 1)
(s1674 1)
(s1675 1)
(s1676 1)
(s1677 1)
(s1678 1)
(s1679 1)
(s1680 1)
(s1681 1)
(s1682 1)
(s1683 1)
(s1684 1)
(s1685 1)
(s1686 1)
(s1687 1)
(s1688 1)
(s1689 1)
(s1690 1)
(s1691 1)
(s1692 1)
(s1693 1)
(s1694 1)
(s1695 1)
(s1696 1)
(s1697 1)
(s1698 1)
(s1699 1)
(s1700 1)
(s1701 1)
(s1702 1)
(s1703 1)
(s1704 1)
(s1705 1)
(s1706 1)
(s1707 1)
(s1708 1)
(s1709 1)
(s1710 1)
(s1711 1)
(s1712 1)
(s1713 1)
(s1714 1)
(s1715 1)
(s1716 1)
(s1717 1)
(s1718 1)
(s1719 1)
(s1720 1)
(s1721 1)
(s1722 1)
(s1723 1)
(s1724 1)
(s1725 1)
(s1726 1)
(s1727 1)
(s1728 1)
(s1729 1)
(s1730 1)
(s1731 1)
(s1732 1)
(s1733 1)
(s1734 1)
(s1735 1)
(s1736 1)
(s1737 1)
(s1738 1)
(s1739 1)
(s1740 1)
(s1741 1)
(s1742 1)
(s1743 1)
(s1744 1)
(s1745 1)
(s1746 1)
(s1747 1)
(s1748 1)
(s1749 1)
(s1750 1)
(s1751 1)
(s1752 1)
(s1753 1)
(s1754 1)
(s1755 1)
(s1756 1)
(s1757 1)
(s1758 1)
(s1759 1)
(s1760 1)
(s1761 1)
(s1762 1)
(s1763 1)
(s1764 1)
(s1765 1)
(s1766 1)
(s1767 1)
(s1768 1)
(s1769 1)
(s1770 1)
(s1771 1)
(s1772 1)
(s1773 1)
(s1774 1)
(s1775 1)
(s1776 1)
(s1777 1)
(s1778 1)
(s1779 1)
(s1780 1)
(s1781 1)
(s1782 1)
(s1783 1)
(s1784 1)
(s1785 1)
(s1786 1)
(s1787 1)
(s1788 1)
(s1789 1)
(s1790 1)
(s1791 1)
(s1792 1)
(s1793 1)
(s1794 1)
(s1795 1)
(s1796 1)
(s1797 1)
(s1798 1)
(s1799 1)
(s1800 1)
(s1801 1)
(s1802 1)
(s1803 1)
(s1804 1)
(s1805 1)
(s1806 1)
(s1807 1)
(s1808 1)
(s1809 1)
(s1810 1)
(s1811 1)
(s1812 1)
(s1813 1)
(s1814 1)
(s1815 1)
(s1816 1)
(s1817 1)
(s1818 1)
(s1819 1)
(s1820 1)
(s1821 1)
(s1822 1)
(s1823 1)
(s1824 1)
(s1825 1)
(s1826 1)
(s1827 1)
(s1828 1)
(s1829 1)
(s1830 1)
(s1831 1)
(s1832 1)
(s1833 1)
(s1834 1)
(s1835 1)
(s1836 1)
(s1837 1)
(s1838 1)
(s1839 1)
(s1840 1)
(s1841 1)
(s1842 1)
(s1843 1)
(s1844 1)
(s1845 1)
(s1846 1)
(s1847 1)
(s1848 1)
(s1849 1)
(s1850 1)
(s1851 1)
(s1852 1)
(s1853 1)
(s1854 1)
(s1855 1)
(s1856 1)
(s1857 1)
(s1858 1)
(s1859 1)
(s1860 1)
(s1861 1)
(s1862 1)
(s1863 1)
(s1864 1)
(s1865 1)
(s1866 1)
(s1867 1)
(s1868 1)
(s1869 1)
(s1870 1)
(s1871 1)
(s1872 1)
(s1873 1)
(s1874 1)
(s1875 1)
(s1876 1)
(s1877 1)
(s1878 1)
(s1879 1)
(s1880 1)
(s1881 1)
(s1882 1)
(s1883 1)
(s1884 1)
(s1885 1)
(s1886 1)
(s1887 1)
(s1888 1)
(s1889 1)
(s1890 1)
(s1891 1)
(s1892 1)
(s1893 1)
(s1894 1)
(s1895 1)
(s1896 1)
(s1897 1)
(s1898 1)
(s1899 1)
(s1900 1)
(s1901 1)
(s1902 1)
(s1903 1)
(s1904 1)
(s1905 1)
(s1906 1)
(s1907 1)
(s1908 1)
(s1909 1)
(s1910 1)
(s1911 1)
(s1912 1)
(s1913 1)
(s1914 1)
(s1915 1)
(s1916 1)
(s1917 1)
(s1918 1)
(s1919 1)
(s1920 1)
(s1921 1)
(s1922 1)
(s1923 1)
(s1924 1)
(s1925 1)
(s1926 1)
(s1927 1)
(s1928 1)
(s1929 1)
(s1930 1)
(s1931 1)
(s1932 1)
(s1933 1)
(s1934 1)
(s1935 1)
(s1936 1)
(s1937 1)
(s1938 1)
(s1939 1)
(s1940 1)
(s1941 1)
(s1942 1)
(s1943 1)
(s1944 1)
(s1945 1)
(s1946 1)
(s1947 1)
(s1948 1)
(s1949 1)
(s1950 1)
(s1951 1)
(s1952 1)
(s1953 1)
(s1954 1)
(s1955 1)
(s1956 1)
(s1957 1)
(s1958 1)
(s1959 1)
(s1960 1)
(s1961 1)
(s1962 1)
(s1963 1)
(s1964 1)
(s1965 1)
(s1966 1)
(s1967 1)
(s1968 1)
(s1969 1)
(s1970 1)
(s1971 1)
(s1972 1)
(s1973 1)
(s1974 1)
(s1975 1)
(s1976 1)
(s1977 1)
(s1978 1)
(s1979 1)
(s1980 1)
(s1981 1)
(s1982 1)
(s1983 1)
(s1984 1)
(s1985 1)
(s1986 1)
(s1987 1)
(s1988 1)
(s1989 1)
(s1990 1)
(s1991 1)
(s1992 1)
(s1993 1)
(s1994 1)
(s1995 1)
(s1996 1)
(s1997 1)
(s1998 1)
(s1999 1)
(s2000 1)
(s2001 1)
(s2002 1)
(s2003 1)
(s2004 1)
(s2005 1)
(s2006 1)
(s2007 1)
(s2008 1)
(s2009 1)
(s2010 1)
(s2011 1)
(s2012 1)
(s2013 1)
(s2014 1)
(s2015 1)
(s2016 1)
(s2017 1)
(s2018 1)
(s2019 1)
(s2020 1)
(s2021 1)
(s2022 1)
(s2023 1)
(s2024 1)
(s2025 1)
(s2026 1)
(s2027 1)
(s2028 1)
(s2029 1)
(s2030 1)
(s2031 1)
(s2032 1)
(s2033 1)
(s2034 1)
(s2035 1)
(s2036 1)
(s2037 1)
(s2038 1)
(s2039 1)
(s2040 1)
(s2041 1)
(s2042 1)
(s2043 1)
(s2044 1)
(s2045 1)
(s2046 1)
(s2047 1)
(s2048 1)
(s2049 1)
(s2050 1)
(s2051 1)
(s2052 1)
(s2053 1)
(s2054 1)
(s2055 1)
(s2056 1)
(s2057 1)
(s2058 1)
(s2059 1)
(s2060 1)
(s2061 1)
(s2062 1)
(s2063 1)
(s2064 1)
(s2065 1)
(s2066 1)
(s2067 1)
(s2068 1)
(s2069 1)
(s2070 1)
(s2071 1)
(s2072 1)
(s2073 1)
(s2074 1)
(s2075 1)
(s2076 1)
(s2077 1)
(s2078 1)
(s2079 1)
(s2080 1)
(s2081 1)
(s2082 1)
(s2083 1)
(s2084 1)
(s2085 1)
(s2086 1)
(s2087 1)
(s2088 1)
(s2089 1)
(s2090 1)
(s2091 1)
(s2092 1)
(s2093 1)
(s2094 1)
(s2095 1)
(s2096 1)
(s2097 1)
(s2098 1)
(s2099 1)
(s2100 1)
(s2101 1)
(s2102 1)
(s2103 1)
(s2104 1)
(s2105 1)
(s2106 1)
(s2107 1)
(s2108 1)
(s2109 1)
(s2110 1)
(s2111 1)
(s2112 1)
(s2113 1)
(s2114 1)
(s2115 1)
(s2116 1)
(s2117 1)
(s2118 1)
(s2119 1)
(s2120 1)
(s2121 1)
(s2122 1)
(s2123 1)
(s2124 1)
(s2125 1)
(s2126 1)
(s2127 1)
(s2128 1)
(s2129 1)
(s2130 1)
(s2131 1)
(s2132 1)
(s2133 1)
(s2134 1)
(s2135 1)
(s2136 1)
(s2137 1)
(s2138 1)
(s2139 1)
(s2140 1)
(s2141 1)
(s2142 1)
(s2143 1)
(s2144 1)
(s2145 1)
(s2146 1)
(s2147 1)
(s2148 1)
(s2149 1)
(s2150 1)
(s2151 1)
(s2152 1)
(s2153 1)
(s2154 1)
(s2155 1)
(s2156 1)
(s2157 1)
(s2158 1)
(s2159 1)
(s2160 1)
(s2161 1)
(s2162 1)
(s2163 1)
(s2164 1)
(s2165 1)
(s2166 1)
(s2167 1)
(s2168 1)
(s2169 1)
(s2170 1)
(s2171 1)
(s2172 1)
(s2173 1)
(s2174 1)
(s2175 1)
(s2176 1)
(s2177 1)
(s2178 1)
(s2179 1)
(s2180 1)
(s2181 1)
(s2182 1)
(s2183 1)
(s2184 1)
(s2185 1)
(s2186 1)
(s2187 1)
(s2188 1)
(s2189 1)
(s2190 1)
(s2191 1)
(s2192 1)
(s2193 1)
(s2194 1)
(s2195 1)
(s2196 1)
(s2197 1)
(s2198 1)
(s2199 1)
(s2200 1)
(s2201 1)
(s2202 1)
(s2203 1)
(s2204 1)
(s2205 1)
(s2206 1)
(s2207 1)
(s2208 1)
(s2209 1)
(s2210 1)
(s2211 1)
(s2212 1)
(s2213 1)
(s2214 1)
(s2215 1)
(s2216 1)
(s2217 1)
(s2218 1)
(s2219 1)
(s2220 1)
(s2221 1)
(s2222 1)
(s2223 1)
(s2224 1)
(s2225 1)
(s2226 1)
(s2227 1)
(s2228 1)
(s2229 1)
(s2230 1)
(s2231 1)
(s2232 1)
(s2233 1)
(s2234 1)
(s2235 1)
(s2236 1)
(s2237 1)
(s2238 1)
(s2239 1)
(s2240 1)
(s2241 1)
(s2242 1)
(s2243 1)
(s2244 1)
(s2245 1)
(s2246 1)
(s2247 1)
(s2248 1)
(s2249 1)
(s2250 1)
(s2251 1)
(s2252 1)
(s2253 1)
(s2254 1)
(s2255 1)
(s2256 1)
(s2257 1)
(s2258 1)
(s2259 1)
(s2260 1)
(s2261 1)
(s2262 1)
(s2263 1)
(s2264 1)
(s2265 1)
(s2266 1)
(s2267 1)
(s2268 1)
(s2269 1)
(s2270 1)
(s2271 1)
(s2272 1)
(s2273 1)
(s2274 1)
(s2275 1)
(s2276 1)
(s2277 1)
(s2278 1)
(s2279 1)
(s2280 1)
(s2281 1)
(s2282 1)
(s2283 1)
(s2284 1)
(s2285 1)
(s2286 1)
(s2287 1)
(s2288 1)
(s2289 1)
(s2290 1)
(s2291 1)
(s2292 1)
(s2293 1)
(s2294 1)
(s2295 1)
(s2296 1)
(s2297 1)
(s2298 1)
(s2299 1)
(s2300 1)
(s2301 1)
(s2302 1)
(s2303 1)
(s2304 1)
(s2305 1)
(s2306 1)
(s2307 1)
(s2308 1)
(s2309 1)
(s2310 1)
(s2311 1)
(s2312 1)
(s2313 1)
(s2314 1)
(s2315 1)
(s2316 1)
(s2317 1)
(s2318 1)
(s2319 1)
(s2320 1)
(s2321 1)
(s2322 1)
(s2323 1)
(s2324 1)
(s2325 1)
(s2326 1)
(s2327 1)
(s2328 1)
(s2329 1)
(s2330 1)
(s2331 1)
(s2332 1)
(s2333 1)
(s2334 1)
(s2335 1)
(s2336 1)
(s2337 1)
(s2338 1)
(s2339 1)
(s2340 1)
(s2341 1)
(s2342 1)
(s2343 1)
(s2344 1)
(s2345 1)
(s2346 1)
(s2347 1)
(s2348 1)
(s2349 1)
(s2350 1)
(s2351 1)
(s2352 1)
(s2353 1)
(s2354 1)
(s2355 1)
(s2356 1)
(s2357 1)
(s2358 1)
(s2359 1)
(s2360 1)
(s2361 1)
(s2362 1)
(s2363 1)
(s2364 1)
(s2365 1)
(s2366 1)
(s2367 1)
(s2368 1)
(s2369 1)
(s2370 1)
(s2371 1)
(s2372 1)
(s2373 1)
(s2374 1)
(s2375 1)
(s2376 1)
(s2377 1)
(s2378 1)
(s2379 1)
(s2380 1)
(s2381 1)
(s2382 1)
(s2383 1)
(s2384 1)
(s2385 1)
(s2386 1)
(s2387 1)
(s2388 1)
(s2389 1)
(s2390 1)
(s2391 1)
(s2392 1)
(s2393 1)
(s2394 1)
(s2395 1)
(s2396 1)
(s2397 1)
(s2398 1)
(s2399 1)
(s2400 1)
(s2401 1)
(s2402 1)
(s2403 1)
(s2404 1)
(s2405 1)
(s2406 1)
(s2407 1)
(s2408 1)
(s2409 1)
(s2410 1)
(s2411 1)
(s2412 1)
(s2413 1)
(s2414 1)
(s2415 1)
(s2416 1)
(s2417 1)
(s2418 1)
(s2419 1)
(s2420 1)
(s2421 1)
(s2422 1)
(s2423 1)
(s2424 1)
(s2425 1)
(s2426 1)
(s2427 1)
(s2428 1)
(s2429 1)
(s2430 1)
(s2431 1)
(s2432 1)
(s2433 1)
(s2434 1)
(s2435 1)
(s2436 1)
(s2437 1)
(s2438 1)
(s2439 1)
(s2440 1)
(s2441 1)
(s2442 1)
(s2443 1)
(s2444 1)
(s2445 1)
(s2446 1)
(s2447 1)
(s2448 1)
(s2449 1)
(s2450 1)
(s2451 1)
(s2452 1)
(s2453 1)
(s2454 1)
(s2455 1)
(s2456 1)
(s2457 1)
(s2458 1)
(s2459 1)
(s2460 1)
(s2461 1)
(s2462 1)
(s2463 1)
(s2464 1)
(s2465 1)
(s2466 1)
(s2467 1)
(s2468 1)
(s2469 1)
(s2470 1)
(s2471 1)
(s2472 1)
(s2473 1)
(s2474 1)
(s2475 1)
(s2476 1)
(s2477 1)
(s2478 1)
(s2479 1)
(s2480 1)
(s2481 1)
(s2482 1)
(s2483 1)
(s2484 1)
(s2485 1)
(s2486 1)
(s2487 1)
(s2488 1)
(s2489 1)
(s2490 1)
(s2491 1)
(s2492 1)
(s2493 1)
(s2494 1)
(s2495 1)
(s2496 1)
(s2497 1)
(s2498 1)
(s2499 1)
(s2500 1)
(s2501 1)
(s2502 1)
(s2503 1)
(s2504 1)
(s2505 1)
(s2506 1)
(s2507 1)
(s2508 1)
(s2509 1)
(s2510 1)
(s2511 1)
(s2512 1)
(s2513 1)
(s2514 1)
(s2515 1)
(s2516 1)
(s2517 1)
(s2518 1)
(s2519 1)
(s2520 1)
(s2521 1)
(s2522 1)
(s2523 1)
(s2524 1)
(s2525 1)
(s2526 1)
(s2527 1)
(s2528 1)
(s2529 1)
(s2530 1)
(s2531 1)
(s2532 1)
(s2533 1)
(s2534 1)
(s2535 1)
(s2536 1)
(s2537 1)
(s2538 1)
(s2539 1)
(s2540 1)
(s2541 1)
(s2542 1)
(s2543 1)
(s2544 1)
(s2545 1)
(s2546 1)
(s2547 1)
(s2548 1)
(s2549 1)
(s2550 1)
(s2551 1)
(s2552 1)
(s2553 1)
(s2554 1)
(s2555 1)
(s2556 1)
(s2557 1)
(s2558 1)
(s2559 1)
(s2560 1)
(s2561 1)
(s2562 1)
(s2563 1)
(s2564 1)
(s2565 1)
(s2566 1)
(s2567 1)
(s2568 1)
(s2569 1)
(s2570 1)
(s2571 1)
(s2572 1)
(s2573 1)
(s2574 1)
(s2575 1)
(s2576 1)
(s2577 1)
(s2578 1)
(s2579 1)
(s2580 1)
(s2581 1)
(s2582 1)
(s2583 1)
(s2584 1)
(s2585 1)
(s2586 1)
(s2587 1)
(s2588 1)
(s2589 1)
(s2590 1)
(s2591 1)
(s2592 1)
(s2593 1)
(s2594 1)
(s2595 1)
(s2596 1)
(s2597 1)
(s2598 1)
(s2599 1)
(s2600 1)
(s2601 1)
(s2602 1)
(s2603 1)
(s2604 1)
(s2605 1)
(s2606 1)
(s2607 1)
(s2608 1)
(s2609 1)
(s2610 1)
(s2611 1)
(s2612 1)
(s2613 1)
(s2614 1)
(s2615 1)
(s2616 1)
(s2617 1)
(s2618 1)
(s2619 1)
(s2620 1)
(s2621 1)
(s2622 1)
(s2623 1)
(s2624 1)
(s2625 1)
(s2626 1)
(s2627 1)
(s2628 1)
(s2629 1)
(s2630 1)
(s2631 1)
(s2632 1)
(s2633 1)
(s2634 1)
(s2635 1)
(s2636 1)
(s2637 1)
(s2638 1)
(s2639 1)
(s2640 1)
(s2641 1)
(s2642 1)
(s2643 1)
(s2644 1)
(s2645 1)
(s2646 1)
(s2647 1)
(s2648 1)
(s2649 1)
(s2650 1)
(s2651 1)
(s2652 1)
(s2653 1)
(s2654 1)
(s2655 1)
(s2656 1)
(s2657 1)
(s2658 1)
(s2659 1)
(s2660 1)
(s2661 1)
(s2662 1)
(s2663 1)
(s2664 1)
(s2665 1)
(s2666 1)
(s2667 1)
(s2668 1)
(s2669 1)
(s2670 1)
(s2671 1)
(s2672 1)
(s2673 1)
(s2674 1)
(s2675 1)
(s2676 1)
(s2677 1)
(s2678 1)
(s2679 1)
(s2680 1)
(s2681 1)
(s2682 1)
(s2683 1)
(s2684 1)
(s2685 1)
(s2686 1)
(s2687 1)
(s2688 1)
(s2689 1)
(s2690 1)
(s2691 1)
(s2692 1)
(s2693 1)
(s2694 1)
(s2695 1)
(s2696 1)
(s2697 1)
(s2698 1)
(s2699 1)
(s2700 1)
(s2701 1)
(s2702 1)
(s2703 1)
(s2704 1)
(s2705 1)
(s2706 1)
(s2707 1)
(s2708 1)
(s2709 1)
(s2710 1)
(s2711 1)
(s2712 1)
(s2713 1)
(s2714 1)
(s2715 1)
(s2716 1)
(s2717 1)
(s2718 1)
(s2719 1)
(s2720 1)
(s2721 1)
(s2722 1)
(s2723 1)
(s2724 1)
(s2725 1)
(s2726 1)
(s2727 1)
(s2728 1)
(s2729 1)
(s2730 1)
(s2731 1)
(s2732 1)
(s2733 1)
(s2734 1)
(s2735 1)
(s2736 1)
(s2737 1)
(s2738 1)
(s2739 1)
(s2740 1)
(s2741 1)
(s2742 1)
(s2743 1)
(s2744 1)
(s2745 1)
(s2746 1)
(s2747 1)
(s2748 1)
(s2749 1)
(s2750 1)
(s2751 1)
(s2752 1)
(s2753 1)
(s2754 1)
(s2755 1)
(s2756 1)
(s2757 1)
(s2758 1)
(s2759 1)
(s2760 1)
(s2761 1)
(s2762 1)
(s2763 1)
(s2764 1)
(s2765 1)
(s2766 1)
(s2767 1)
(s2768 1)
(s2769 1)
(s2770 1)
(s2771 1)
(s2772 1)
(s2773 1)
(s2774 1)
(s2775 1)
(s2776 1)
(s2777 1)
(s2778 1)
(s2779 1)
(s2780 1)
(s2781 1)
(s2782 1)
(s2783 1)
(s2784 1)
(s2785 1)
(s2786 1)
(s2787 1)
(s2788 1)
(s2789 1)
(s2790 1)
(s2791 1)
(s2792 1)
(s2793 1)
(s2794 1)
(s2795 1)
(s2796 1)
(s2797 1)
(s2798 1)
(s2799 1)
(s2800 1)
(s2801 1)
(s2802 1)
(s2803 1)
(s2804 1)
(s2805 1)
(s2806 1)
(s2807 1)
(s2808 1)
(s2809 1)
(s2810 1)
(s2811 1)
(s2812 1)
(s2813 1)
(s2814 1)
(s2815 1)
(s2816 1)
(s2817 1)
(s2818 1)
(s2819 1)
(s2820 1)
(s2821 1)
(s2822 1)
(s2823 1)
(s2824 1)
(s2825 1)
(s2826 1)
(s2827 1)
(s2828 1)
(s2829 1)
(s2830 1)
(s2831 1)
(s2832 1)
(s2833 1)
(s2834 1)
(s2835 1)
(s2836 1)
(s2837 1)
(s2838 1)
(s2839 1)
(s2840 1)
(s2841 1)
(s2842 1)
(s2843 1)
(s2844 1)
(s2845 1)
(s2846 1)
(s2847 1)
(s2848 1)
(s2849 1)
(s2850 1)
(s2851 1)
(s2852 1)
(s2853 1)
(s2854 1)
(s2855 1)
(s2856 1)
(s2857 1)
(s2858 1)
(s2859 1)
(s2860 1)
(s2861 1)
(s2862 1)
(s2863 1)
(s2864 1)
(s2865 1)
(s2866 1)
(s2867 1)
(s2868 1)
(s2869 1)
(s2870 1)
(s2871 1)
(s2872 1)
(s2873 1)
(s2874 1)
(s2875 1)
(s2876 1)
(s2877 1)
(s2878 1)
(s2879 1)
(s2880 1)
(s2881 1)
(s2882 1)
(s2883 1)
(s2884 1)
(s2885 1)
(s2886 1)
(s2887 1)
(s2888 1)
(s2889 1)
(s2890 1)
(s2891 1)
(s2892 1)
(s2893 1)
(s2894 1)
(s2895 1)
(s2896 1)
(s2897 1)
(s2898 1)
(s2899 1)
(s2900 1)
(s2901 1)
(s2902 1)
(s2903 1)
(s2904 1)
(s2905 1)
(s2906 1)
(s2907 1)
(s2908 1)
(s2909 1)
(s2910 1)
(s2911 1)
(s2912 1)
(s2913 1)
(s2914 1)
(s2915 1)
(s2916 1)
(s2917 1)
(s2918 1)
(s2919 1)
(s2920 1)
(s2921 1)
(s2922 1)
(s2923 1)
(s2924 1)
(s2925 1)
(s2926 1)
(s2927 1)
(s2928 1)
(s2929 1)
(s2930 1)
(s2931 1)
(s2932 1)
(s2933 1)
(s2934 1)
(s2935 1)
(s2936 1)
(s2937 1)
(s2938 1)
(s2939 1)
(s2940 1)
(s2941 1)
(s2942 1)
(s2943 1)
(s2944 1)
(s2945 1)
(s2946 1)
(s2947 1)
(s2948 1)
(s2949 1)
(s2950 1)
(s2951 1)
(s2952 1)
(s2953 1)
(s2954 1)
(s2955 1)
(s2956 1)
(s2957 1)
(s2958 1)
(s2959 1)
(s2960 1)
(s2961 1)
(s2962 1)
(s2963 1)
(s2964 1)
(s2965 1)
(s2966 1)
(s2967 1)
(s2968 1)
(s2969 1)
(s2970 1)
(s2971 1)
(s2972 1)
(s2973 1)
(s2974 1)
(s2975 1)
(s2976 1)
(s2977 1)
(s2978 1)
(s2979 1)
(s2980 1)
(s2981 1)
(s2982 1)
(s2983 1)
(s2984 1)
(s2985 1)
(s2986 1)
(s2987 1)
(s2988 1)
(s2989 1)
(s2990 1)
(s2991 1)
(s2992 1)
(s2993 1)
(s2994 1)
(s2995 1)
(s2996 1)
(s2997 1)
(s2998 1)
(s2999 1)
(s3000 1)
(s3001 1)
(s3002 1)
(s3003 1)
(s3004 1)
(s3005 1)
(s3006 1)
(s3007 1)
(s3008 1)
(s3009 1)
(s3010 1)
(s3011 1)
(s3012 1)
(s3013 1)
(s3014 1)
(s3015 1)
(s3016 1)
(s3017 1)
(s3018 1)
(s3019 1)
(s3020 1)
(s3021 1)
(s3022 1)
(s3023 1)
(s3024 1)
(s3025 1)
(s3026 1)
(s3027 1)
(s3028 1)
(s3029 1)
(s3030 1)
(s3031 1)
(s3032 1)
(s3033 1)
(s3034 1)
(s3035 1)
(s3036 1)
(s3037 1)
(s3038 1)
(s3039 1)
(s3040 1)
(s3041 1)
(s3042 1)
(s3043 1)
(s3044 1)
(s3045 1)
(s3046 1)
(s3047 1)
(s3048 1)
(s3049 1)
(s3050 1)
(s3051 1)
(s3052 1)
(s3053 1)
(s3054 1)
(s3055 1)
(s3056 1)
(s3057 1)
(s3058 1)
(s3059 1)
(s3060 1)
(s3061 1)
(s3062 1)
(s3063 1)
(s3064 1)
(s3065 1)
(s3066 1)
(s3067 1)
(s3068 1)
(s3069 1)
(s3070 1)
(s3071 1)
(s3072 1)
(s3073 1)
(s3074 1)
(s3075 1)
(s3076 1)
(s3077 1)
(s3078 1)
(s3079 1)
(s3080 1)
(s3081 1)
(s3082 1)
(s3083 1)
(s3084 1)
(s3085 1)
(s3086 1)
(s3087 1)
(s3088 1)
(s3089 1)
(s3090 1)
(s3091 1)
(s3092 1)
(s3093 1)
(s3094 1)
(s3095 1)
(s3096 1)
(s3097 1)
(s3098 1)
(s3099 1)
(s3100 1)
(s3101 1)
(s3102 1)
(s3103 1)
(s3104 1)
(s3105 1)
(s3106 1)
(s3107 1)
(s3108 1)
(s3109 1)
(s3110 1)
(s3111 1)
(s3112 1)
(s3113 1)
(s3114 1)
(s3115 1)
(s3116 1)
(s3117 1)
(s3118 1)
(s3119 1)
(s3120 1)
(s3121 1)
(s3122 1)
(s3123 1)
(s3124 1)
(s3125 1)
(s3126 1)
(s3127 1)
(s3128 1)
(s3129 1)
(s3130 1)
(s3131 1)
(s3132 1)
(s3133 1)
(s3134 1)
(s3135 1)
(s3136 1)
(s3137 1)
(s3138 1)
(s3139 1)
(s3140 1)
(s3141 1)
(s3142 1)
(s3143 1)
(s3144 1)
(s3145 1)
(s3146 1)
(s3147 1)
(s3148 1)
(s3149 1)
(s3150 1)
(s3151 1)
(s3152 1)
(s3153 1)
(s3154 1)
(s3155 1)
(s3156 1)
(s3157 1)
(s3158 1)
(s3159 1)
(s3160 1)
(s3161 1)
(s3162 1)
(s3163 1)
(s3164 1)
(s3165 1)
(s3166 1)
(s3167 1)
(s3168 1)
(s3169 1)
(s3170 1)
(s3171 1)
(s3172 1)
(s3173 1)
(s3174 1)
(s3175 1)
(s3176 1)
(s3177 1)
(s3178 1)
(s3179 1)
(s3180 1)
(s3181 1)
(s3182 1)
(s3183 1)
(s3184 1)
(s3185 1)
(s3186 1)
(s3187 1)
(s3188 1)
(s3189 1)
(s3190 1)
(s3191 1)
(s3192 1)
(s3193 1)
(s3194 1)
(s3195 1)
(s3196 1)
(s3197 1)
(s3198 1)
(s3199 1)
(s3200 1)
(s3201 1)
(s3202 1)
(s3203 1)
(s3204 1)
(s3205 1)
(s3206 1)
(s3207 1)
(s3208 1)
(s3209 1)
(s3210 1)
(s3211 1)
(s3212 1)
(s3213 1)
(s3214 1)
(s3215 1)
(s3216 1)
(s3217 1)
(s3218 1)
(s3219 1)
(s3220 1)
(s3221 1)
(s3222 1)
(s3223 1)
(s3224 1)
(s3225 1)
(s3226 1)
(s3227 1)
(s3228 1)
(s3229 1)
(s3230 1)
(s3231 1)
(s3232 1)
(s3233 1)
(s3234 1)
(s3235 1)
(s3236 1)
(s3237 1)
(s3238 1)
(s3239 1)
(s3240 1)
(s3241 1)
(s3242 1)
(s3243 1)
(s3244 1)
(s3245 1)
(s3246 1)
(s3247 1)
(s3248 1)
(s3249 1)
(s3250 1)
(s3251 1)
(s3252 1)
(s3253 1)
(s3254 1)
(s3255 1)
(s3256 1)
(s3257 1)
(s3258 1)
(s3259 1)
(s3260 1)
(s3261 1)
(s3262 1)
(s3263 1)
(s3264 1)
(s3265 1)
(s3266 1)
(s3267 1)
(s3268 1)
(s3269 1)
(s3270 1)
(s3271 1)
(s3272 1)
(s3273 1)
(s3274 1)
(s3275 1)
(s3276 1)
(s3277 1)
(s3278 1)
(s3279 1)
(s3280 1)
(s3281 1)
(s3282 1)
(s3283 1)
(s3284 1)
(s3285 1)
(s3286 1)
(s3287 1)
(s3288 1)
(s3289 1)
(s3290 1)
(s3291 1)
(s3292 1)
(s3293 1)
(s3294 1)
(s3295 1)
(s3296 1)
(s3297 1)
(s3298 1)
(s3299 1)
(s3300 1)
(s3301 1)
(s3302 1)
(s3303 1)
(s3304 1)
(s3305 1)
(s3306 1)
(s3307 1)
(s3308 1)
(s3309 1)
(s3310 1)
(s3311 1)
(s3312 1)
(s3313 1)
(s3314 1)
(s3315 1)
(s3316 1)
(s3317 1)
(s3318 1)
(s3319 1)
(s3320 1)
(s3321 1)
(s3322 1)
(s3323 1)
(s3324 1)
(s3325 1)
(s3326 1)
(s3327 1)
(s3328 1)
(s3329 1)
(s3330 1)
(s3331 1)
(s3332 1)
(s3333 1)
(s3334 1)
(s3335 1)
(s3336 1)
(s3337 1)
(s3338 1)
(s3339 1)
(s3340 1)
(s3341 1)
(s3342 1)
(s3343 1)
(s3344 1)
(s3345 1)
(s3346 1)
(s3347 1)
(s3348 1)
(s3349 1)
(s3350 1)
(s3351 1)
(s3352 1)
(s3353 1)
(s3354 1)
(s3355 1)
(s3356 1)
(s3357 1)
(s3358 1)
(s3359 1)
(s3360 1)
(s3361 1)
(s3362 1)
(s3363 1)
(s3364 1)
(s3365 1)
(s3366 1)
(s3367 1)
(s3368 1)
(s3369 1)
(s3370 1)
(s3371 1)
(s3372 1)
(s3373 1)
(s3374 1)
(s3375 1)
(s3376 1)
(s3377 1)
(s3378 1)
(s3379 1)
(s3380 1)
(s3381 1)
(s3382 1)
(s3383 1)
(s3384 1)
(s3385 1)
(s3386 1)
(s3387 1)
(s3388 1)
(s3389 1)
(s3390 1)
(s3391 1)
(s3392 1)
(s3393 1)
(s3394 1)
(s3395 1)
(s3396 1)
(s3397 1)
(s3398 1)
(s3399 1)
(s3400 1)
(s3401 1)
(s3402 1)
(s3403 1)
(s3404 1)
(s3405 1)
(s3406 1)
(s3407 1)
(s3408 1)
(s3409 1)
(s3410 1)
(s3411 1)
(s3412 1)
(s3413 1)
(s3414 1)
(s3415 1)
(s3416 1)
(s3417 1)
(s3418 1)
(s3419 1)
(s3420 1)
(s3421 1)
(s3422 1)
(s3423 1)
(s3424 1)
(s3425 1)
(s3426 1)
(s3427 1)
(s3428 1)
(s3429 1)
(s3430 1)
(s3431 1)
(s3432 1)
(s3433 1)
(s3434 1)
(s3435 1)
(s3436 1)
(s3437 1)
(s3438 1)
(s3439 1)
(s3440 1)
(s3441 1)
(s3442 1)
(s3443 1)
(s3444 1)
(s3445 1)
(s3446 1)
(s3447 1)
(s3448 1)
(s3449 1)
(s3450 1)
(s3451 1)
(s3452 1)
(s3453 1)
(s3454 1)
(s3455 1)
(s3456 1)
(s3457 1)
(s3458 1)
(s3459 1)
(s3460 1)
(s3461 1)
(s3462 1)
(s3463 1)
(s3464 1)
(s3465 1)
(s3466 1)
(s3467 1)
(s3468 1)
(s3469 1)
(s3470 1)
(s3471 1)
(s3472 1)
(s3473 1)
(s3474 1)
(s3475 1)
(s3476 1)
(s3477 1)
(s3478 1)
(s3479 1)
(s3480 1)
(s3481 1)
(s3482 1)
(s3483 1)
(s3484 1)
(s3485 1)
(s3486 1)
(s3487 1)
(s3488 1)
(s3489 1)
(s3490 1)
(s3491 1)
(s3492 1)
(s3493 1)
(s3494 1)
(s3495 1)
(s3496 1)
(s3497 1)
(s3498 1)
(s3499 1)
(s3500 1)
(s3501 1)
(s3502 1)
(s3503 1)
(s3504 1)
(s3505 1)
(s3506 1)
(s3507 1)
(s3508 1)
(s3509 1)
(s3510 1)
(s3511 1)
(s3512 1)
(s3513 1)
(s3514 1)
(s3515 1)
(s3516 1)
(s3517 1)
(s3518 1)
(s3519 1)
(s3520 1)
(s3521 1)
(s3522 1)
(s3523 1)
(s3524 1)
(s3525 1)
(s3526 1)
(s3527 1)
(s3528 1)
(s3529 1)
(s3530 1)
(s3531 1)
(s3532 1)
(s3533 1)
(s3534 1)
(s3535 1)
(s3536 1)
(s3537 1)
(s3538 1)
(s3539 1)
(s3540 1)
(s3541 1)
(s3542 1)
(s3543 1)
(s3544 1)
(s3545 1)
(s3546 1)
(s3547 1)
(s3548 1)
(s3549 1)
(s3550 1)
(s3551 1)
(s3552 1)
(s3553 1)
(s3554 1)
(s3555 1)
(s3556 1)
(s3557 1)
(s3558 1)
(s3559 1)
(s3560 1)
(s3561 1)
(s3562 1)
(s3563 1)
(s3564 1)
(s3565 1)
(s3566 1)
(s3567 1)
(s3568 1)
(s3569 1)
(s3570 1)
(s3571 1)
(s3572 1)
(s3573 1)
(s3574 1)
(s3575 1)
(s3576 1)
(s3577 1)
(s3578 1)
(s3579 1)
(s3580 1)
(s3581 1)
(s3582 1)
(s3583 1)
(s3584 1)
(s3585 1)
(s3586 1)
(s3587 1)
(s3588 1)
(s3589 1)
(s3590 1)
(s3591 1)
(s3592 1)
(s3593 1)
(s3594 1)
(s3595 1)
(s3596 1)
(s3597 1)
(s3598 1)
(s3599 1)
(s3600 1)
(s3601 1)
(s3602 1)
(s3603 1)
(s3604 1)
(s3605 1)
(s3606 1)
(s3607 1)
(s3608 1)
(s3609 1)
(s3610 1)
(s3611 1)
(s3612 1)
(s3613 1)
(s3614 1)
(s3615 1)
(s3616 1)
(s3617 1)
(s3618 1)
(s3619 1)
(s3620 1)
(s3621 1)
(s3622 1)
(s3623 1)
(s3624 1)
(s3625 1)
(s3626 1)
(s3627 1)
(s3628 1)
(s3629 1)
(s3630 1)
(s3631 1)
(s3632 1)
(s3633 1)
(s3634 1)
(s3635 1)
(s3636 1)
(s3637 1)
(s3638 1)
(s3639 1)
(s3640 timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 3858/7375 variables, and 3858 constraints, problems are : Problem set: 0 solved, 3510 unsolved in 30107 ms.
Refiners :[Domain max(s): 3858/3859 constraints, State Equation: 0/3859 constraints, PredecessorRefiner: 0/3510 constraints, Known Traps: 0/0 constraints]
After SMT, in 70332ms problems are : Problem set: 0 solved, 3510 unsolved
Search for dead transitions found 0 dead transitions in 70390ms
Starting structural reductions in SI_LTL mode, iteration 1 : 3859/3869 places, 3516/3518 transitions.
Finished structural reductions in SI_LTL mode , in 1 iterations and 248478 ms. Remains : 3859/3869 places, 3516/3518 transitions.
Stuttering acceptance computed with spot in 162 ms :[(NOT p1), (NOT p0), (OR (NOT p0) (NOT p1))]
Running random walk in product with property : Echo-PT-d03r07-LTLCardinality-08
Stuttering criterion allowed to conclude after 809 steps with 1 reset in 58 ms.
FORMULA Echo-PT-d03r07-LTLCardinality-08 FALSE TECHNIQUES STUTTER_TEST
Treatment of property Echo-PT-d03r07-LTLCardinality-08 finished in 248736 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202405141337/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(F(p0))'
Support contains 2 out of 3869 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 3869/3869 places, 3518/3518 transitions.
Graph (complete) has 14563 edges and 3869 vertex of which 3859 are kept as prefixes of interest. Removing 10 places using SCC suffix rule.11 ms
Discarding 10 places :
Also discarding 1 output transitions
Drop transitions (Output transitions of discarded places.) removed 1 transitions
Reduce places removed 1 places and 1 transitions.
Applied a total of 1 rules in 469 ms. Remains 3858 /3869 variables (removed 11) and now considering 3516/3518 (removed 2) transitions.
// Phase 1: matrix 3516 rows 3858 cols
[2024-05-23 11:20:29] [INFO ] Invariants computation overflowed in 7532 ms
[2024-05-23 11:20:35] [INFO ] Implicit Places using invariants in 13155 ms returned []
// Phase 1: matrix 3516 rows 3858 cols
[2024-05-23 11:20:42] [INFO ] Invariants computation overflowed in 7263 ms
[2024-05-23 11:22:07] [INFO ] Performed 30/3858 implicitness test of which 0 returned IMPLICIT in 38 seconds.
[2024-05-23 11:22:41] [INFO ] Performed 143/3858 implicitness test of which 0 returned IMPLICIT in 72 seconds.
[2024-05-23 11:23:13] [INFO ] Performed 145/3858 implicitness test of which 0 returned IMPLICIT in 104 seconds.
[2024-05-23 11:23:22] [INFO ] Implicit Places with SMT raised an exceptionSMT solver raised an error when submitting script. Raised (error "Failed to assert expression: java.io.IOException: Broken pipe ... after 167297 ms
Implicit Place search using SMT with State Equation took 180453 ms to find 0 implicit places.
[2024-05-23 11:23:22] [INFO ] Redundant transitions in 151 ms returned []
Running 3510 sub problems to find dead transitions.
// Phase 1: matrix 3516 rows 3858 cols
[2024-05-23 11:23:29] [INFO ] Invariants computation overflowed in 7325 ms
Error getting values : (error "Error writing to Z3 solver: java.io.IOException: Broken pipe")
At refinement iteration 0 (INCLUDED_ONLY) 0/3858 variables, 3858/3858 constraints. Problems are: Problem set: 0 solved, 3510 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 3858/7374 variables, and 3858 constraints, problems are : Problem set: 0 solved, 3510 unsolved in 30089 ms.
Refiners :[Domain max(s): 3858/3858 constraints, State Equation: 0/3858 constraints, PredecessorRefiner: 3510/3510 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 3510 unsolved
At refinement iteration 0 (INCLUDED_ONLY) 0/3858 variables, 3858/3858 constraints. Problems are: Problem set: 0 solved, 3510 unsolved

BK_TIME_CONFINEMENT_REACHED

--------------------
content from stderr:

+ ulimit -s 65536
+ [[ -z '' ]]
+ export LTSMIN_MEM_SIZE=8589934592
+ LTSMIN_MEM_SIZE=8589934592
+ export PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ export LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
+ LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
++ sed s/.jar//
++ perl -pe 's/.*\.//g'
++ ls /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/plugins/fr.lip6.move.gal.application.pnmcc_1.0.0.202405141337.jar
+ VERSION=202405141337
+ echo 'Running Version 202405141337'
+ /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/its-tools -pnfolder /home/mcc/execution -examination LTLCardinality -timeout 360 -rebuildPNML

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="Echo-PT-d03r07"
export BK_EXAMINATION="LTLCardinality"
export BK_TOOL="greatspnxred"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5568"
echo " Executing tool greatspnxred"
echo " Input is Echo-PT-d03r07, examination is LTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r157-smll-171636265100123"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"

tar xzf /home/mcc/BenchKit/INPUTS/Echo-PT-d03r07.tgz
mv Echo-PT-d03r07 execution
cd execution
if [ "LTLCardinality" = "ReachabilityDeadlock" ] || [ "LTLCardinality" = "UpperBounds" ] || [ "LTLCardinality" = "QuasiLiveness" ] || [ "LTLCardinality" = "StableMarking" ] || [ "LTLCardinality" = "Liveness" ] || [ "LTLCardinality" = "OneSafe" ] || [ "LTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh

echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "LTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "LTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "LTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property LTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "LTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' LTLCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ "LTLCardinality" = "ReachabilityDeadlock" ] || [ "LTLCardinality" = "QuasiLiveness" ] || [ "LTLCardinality" = "StableMarking" ] || [ "LTLCardinality" = "Liveness" ] || [ "LTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME LTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;