About the Execution of GreatSPN+red for BART-PT-060
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
15738.052 | 1481939.00 | 2381163.00 | 4552.90 | TFF?FFFFFFFFTFFF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fkordon/mcc2024-input.r025-smll-171620166700500.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2024-input.qcow2 backing_fmt=qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
=====================================================================
Generated by BenchKit 2-5568
Executing tool greatspnxred
Input is BART-PT-060, examination is LTLFireability
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r025-smll-171620166700500
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 134M
-rw-r--r-- 1 mcc users 4.6M Apr 13 01:14 CTLCardinality.txt
-rw-r--r-- 1 mcc users 16M Apr 13 01:14 CTLCardinality.xml
-rw-r--r-- 1 mcc users 3.7M Apr 12 22:55 CTLFireability.txt
-rw-r--r-- 1 mcc users 12M Apr 12 22:55 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K May 18 16:42 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.4K May 18 16:42 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 2.1M Apr 22 14:29 LTLCardinality.txt
-rw-r--r-- 1 mcc users 5.5M Apr 22 14:29 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.2M Apr 22 14:29 LTLFireability.txt
-rw-r--r-- 1 mcc users 5.3M Apr 22 14:29 LTLFireability.xml
-rw-r--r-- 1 mcc users 6.3M Apr 13 06:35 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 23M Apr 13 06:34 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 9.9M Apr 13 03:26 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 32M Apr 13 03:25 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 10K Apr 22 14:29 UpperBounds.txt
-rw-r--r-- 1 mcc users 21K Apr 22 14:29 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 May 18 16:42 equiv_col
-rw-r--r-- 1 mcc users 4 May 18 16:42 instance
-rw-r--r-- 1 mcc users 6 May 18 16:42 iscolored
-rw-r--r-- 1 mcc users 15M May 18 16:42 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME BART-PT-060-LTLFireability-00
FORMULA_NAME BART-PT-060-LTLFireability-01
FORMULA_NAME BART-PT-060-LTLFireability-02
FORMULA_NAME BART-PT-060-LTLFireability-03
FORMULA_NAME BART-PT-060-LTLFireability-04
FORMULA_NAME BART-PT-060-LTLFireability-05
FORMULA_NAME BART-PT-060-LTLFireability-06
FORMULA_NAME BART-PT-060-LTLFireability-07
FORMULA_NAME BART-PT-060-LTLFireability-08
FORMULA_NAME BART-PT-060-LTLFireability-09
FORMULA_NAME BART-PT-060-LTLFireability-10
FORMULA_NAME BART-PT-060-LTLFireability-11
FORMULA_NAME BART-PT-060-LTLFireability-12
FORMULA_NAME BART-PT-060-LTLFireability-13
FORMULA_NAME BART-PT-060-LTLFireability-14
FORMULA_NAME BART-PT-060-LTLFireability-15
=== Now, execution of the tool begins
BK_START 1716390319170
Invoking MCC driver with
BK_TOOL=greatspnxred
BK_EXAMINATION=LTLFireability
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=BART-PT-060
BK_MEMORY_CONFINEMENT=16384
Applying reductions before tool greatspn
Invoking reducer
Running Version 202405141337
[2024-05-22 15:05:20] [INFO ] Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, LTLFireability, -timeout, 360, -rebuildPNML]
[2024-05-22 15:05:20] [INFO ] Parsing pnml file : /home/mcc/execution/model.pnml
[2024-05-22 15:05:22] [INFO ] Load time of PNML (sax parser for PT used): 1185 ms
[2024-05-22 15:05:22] [INFO ] Transformed 8130 places.
[2024-05-22 15:05:22] [INFO ] Transformed 12120 transitions.
[2024-05-22 15:05:22] [INFO ] Found NUPN structural information;
[2024-05-22 15:05:22] [INFO ] Parsed PT model containing 8130 places and 12120 transitions and 97200 arcs in 1461 ms.
Parsed 16 properties from file /home/mcc/execution/LTLFireability.xml in 263 ms.
Working with output stream class java.io.PrintStream
Initial state reduction rules removed 3 formulas.
Reduce places removed 210 places and 0 transitions.
FORMULA BART-PT-060-LTLFireability-00 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA BART-PT-060-LTLFireability-07 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA BART-PT-060-LTLFireability-12 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
Support contains 7920 out of 7920 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 7920/7920 places, 12120/12120 transitions.
Applied a total of 0 rules in 100 ms. Remains 7920 /7920 variables (removed 0) and now considering 12120/12120 (removed 0) transitions.
// Phase 1: matrix 12120 rows 7920 cols
[2024-05-22 15:05:24] [INFO ] Computed 60 invariants in 154 ms
[2024-05-22 15:05:27] [INFO ] Implicit Places using invariants in 3296 ms returned []
Implicit Place search using SMT only with invariants took 3344 ms to find 0 implicit places.
Running 9960 sub problems to find dead transitions.
[2024-05-22 15:05:28] [INFO ] Invariant cache hit.
At refinement iteration 0 (INCLUDED_ONLY) 0/7860 variables, 7860/7860 constraints. Problems are: Problem set: 0 solved, 9960 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 7860/20040 variables, and 7860 constraints, problems are : Problem set: 0 solved, 9960 unsolved in 30320 ms.
Refiners :[Domain max(s): 7860/7920 constraints, Positive P Invariants (semi-flows): 0/60 constraints, State Equation: 0/7920 constraints, PredecessorRefiner: 9960/9960 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 9960 unsolved
At refinement iteration 0 (INCLUDED_ONLY) 0/7860 variables, 7860/7860 constraints. Problems are: Problem set: 0 solved, 9960 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 7860/20040 variables, and 7860 constraints, problems are : Problem set: 0 solved, 9960 unsolved in 30178 ms.
Refiners :[Domain max(s): 7860/7920 constraints, Positive P Invariants (semi-flows): 0/60 constraints, State Equation: 0/7920 constraints, PredecessorRefiner: 0/9960 constraints, Known Traps: 0/0 constraints]
After SMT, in 71557ms problems are : Problem set: 0 solved, 9960 unsolved
Search for dead transitions found 0 dead transitions in 72112ms
Finished structural reductions in LTL mode , in 1 iterations and 75685 ms. Remains : 7920/7920 places, 12120/12120 transitions.
Support contains 7920 out of 7920 places after structural reductions.
[2024-05-22 15:06:41] [INFO ] Flatten gal took : 746 ms
[2024-05-22 15:06:43] [INFO ] Flatten gal took : 585 ms
[2024-05-22 15:06:45] [INFO ] Input system was already deterministic with 12120 transitions.
Reduction of identical properties reduced properties to check from 23 to 16
RANDOM walk for 40000 steps (8 resets) in 4845 ms. (8 steps per ms) remains 2/16 properties
BEST_FIRST walk for 40004 steps (8 resets) in 7943 ms. (5 steps per ms) remains 2/2 properties
BEST_FIRST walk for 40004 steps (8 resets) in 100 ms. (396 steps per ms) remains 2/2 properties
[2024-05-22 15:06:49] [INFO ] Invariant cache hit.
All remaining problems are real, not stopping.
At refinement iteration 0 (INCLUDED_ONLY) 0/5820 variables, 5820/5820 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 1 (INCLUDED_ONLY) 0/5820 variables, 0/5820 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 2 (OVERLAPS) 2100/7920 variables, 60/5880 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 3 (INCLUDED_ONLY) 0/7920 variables, 2100/7980 constraints. Problems are: Problem set: 0 solved, 2 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 7920/20040 variables, and 7980 constraints, problems are : Problem set: 0 solved, 2 unsolved in 5009 ms.
Refiners :[Domain max(s): 7920/7920 constraints, Positive P Invariants (semi-flows): 60/60 constraints, State Equation: 0/7920 constraints, PredecessorRefiner: 2/1 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 2 unsolved
At refinement iteration 0 (INCLUDED_ONLY) 0/5820 variables, 5820/5820 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 1 (INCLUDED_ONLY) 0/5820 variables, 0/5820 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 2 (OVERLAPS) 2100/7920 variables, 60/5880 constraints. Problems are: Problem set: 0 solved, 2 unsolved
At refinement iteration 3 (INCLUDED_ONLY) 0/7920 variables, 2100/7980 constraints. Problems are: Problem set: 0 solved, 2 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 7920/20040 variables, and 7980 constraints, problems are : Problem set: 0 solved, 2 unsolved in 5007 ms.
Refiners :[Domain max(s): 7920/7920 constraints, Positive P Invariants (semi-flows): 60/60 constraints, State Equation: 0/7920 constraints, PredecessorRefiner: 1/1 constraints, Known Traps: 0/0 constraints]
After SMT, in 12650ms problems are : Problem set: 0 solved, 2 unsolved
Skipping Parikh replay, no witness traces provided.
Support contains 5820 out of 7920 places. Attempting structural reductions.
Starting structural reductions in REACHABILITY mode, iteration 0 : 7920/7920 places, 12120/12120 transitions.
Graph (trivial) has 1560 edges and 7920 vertex of which 360 / 7920 are part of one of the 60 SCC in 21 ms
Free SCC test removed 300 places
Drop transitions (Empty/Sink Transition effects.) removed 360 transitions
Reduce isomorphic transitions removed 360 transitions.
Performed 480 Post agglomeration using F-continuation condition.Transition count delta: 480
Iterating post reduction 0 with 480 rules applied. Total rules applied 481 place count 7620 transition count 11280
Reduce places removed 480 places and 0 transitions.
Iterating post reduction 1 with 480 rules applied. Total rules applied 961 place count 7140 transition count 11280
Performed 720 Post agglomeration using F-continuation condition.Transition count delta: 720
Deduced a syphon composed of 720 places in 7 ms
Reduce places removed 720 places and 0 transitions.
Iterating global reduction 2 with 1440 rules applied. Total rules applied 2401 place count 6420 transition count 10560
Drop transitions (Redundant composition of simpler transitions.) removed 2100 transitions
Redundant transition composition rules discarded 2100 transitions
Iterating global reduction 2 with 2100 rules applied. Total rules applied 4501 place count 6420 transition count 8460
Applied a total of 4501 rules in 1305 ms. Remains 6420 /7920 variables (removed 1500) and now considering 8460/12120 (removed 3660) transitions.
Finished structural reductions in REACHABILITY mode , in 1 iterations and 1306 ms. Remains : 6420/7920 places, 8460/12120 transitions.
RANDOM walk for 40000 steps (8 resets) in 1491 ms. (26 steps per ms) remains 1/2 properties
BEST_FIRST walk for 1410 steps (0 resets) in 405 ms. (3 steps per ms) remains 0/1 properties
FORMULA BART-PT-060-LTLFireability-01 FALSE TECHNIQUES REACHABILITY_KNOWLEDGE
Computed a total of 0 stabilizing places and 0 stable transitions
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202405141337/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(X(G((X((!p1 U (G(!p1)||p2)))&&p0))))'
Support contains 5820 out of 7920 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 7920/7920 places, 12120/12120 transitions.
Applied a total of 0 rules in 162 ms. Remains 7920 /7920 variables (removed 0) and now considering 12120/12120 (removed 0) transitions.
[2024-05-22 15:07:05] [INFO ] Invariant cache hit.
[2024-05-22 15:07:07] [INFO ] Implicit Places using invariants in 2437 ms returned []
Implicit Place search using SMT only with invariants took 2439 ms to find 0 implicit places.
Running 9960 sub problems to find dead transitions.
[2024-05-22 15:07:07] [INFO ] Invariant cache hit.
Error getting values : (error "ParserException while parsing response: ((s60 1.0)
(s61 1.0)
(s62 1.0)
(s63 1.0)
(s64 1.0)
(s65 1.0)
(s66 1.0)
(s67 1.0)
(s68 1.0)
(s69 1.0)
(s70 1.0)
(s71 1.0)
(s72 1.0)
(s73 1.0)
(s74 1.0)
(s75 1.0)
(s76 1.0)
(s77 1.0)
(s78 1.0)
(s79 1.0)
(s80 1.0)
(s81 1.0)
(s82 1.0)
(s83 1.0)
(s84 1.0)
(s85 1.0)
(s86 1.0)
(s87 1.0)
(s88 1.0)
(s89 1.0)
(s90 1.0)
(s91 1.0)
(s92 1.0)
(s93 1.0)
(s94 1.0)
(s95 1.0)
(s96 1.0)
(s97 1.0)
(s98 1.0)
(s99 1.0)
(s100 1.0)
(s101 1.0)
(s102 1.0)
(s103 1.0)
(s104 1.0)
(s105 1.0)
(s106 1.0)
(s107 1.0)
(s108 1.0)
(s109 1.0)
(s110 1.0)
(s111 1.0)
(s112 1.0)
(s113 1.0)
(s114 1.0)
(s115 1.0)
(s116 1.0)
(s117 1.0)
(s118 1.0)
(s119 1.0)
(s120 1.0)
(s121 1.0)
(s122 1.0)
(s123 1.0)
(s124 1.0)
(s125 1.0)
(s126 1.0)
(s127 1.0)
(s128 1.0)
(s129 1.0)
(s130 1.0)
(s131 1.0)
(s132 1.0)
(s133 1.0)
(s134 1.0)
(s135 1.0)
(s136 1.0)
(s137 1.0)
(s138 1.0)
(s139 1.0)
(s140 1.0)
(s141 1.0)
(s142 1.0)
(s143 1.0)
(s144 1.0)
(s145 1.0)
(s146 1.0)
(s147 1.0)
(s148 1.0)
(s149 1.0)
(s150 1.0)
(s151 1.0)
(s152 1.0)
(s153 1.0)
(s154 1.0)
(s155 1.0)
(s156 1.0)
(s157 1.0)
(s158 1.0)
(s159 1.0)
(s160 1.0)
(s161 1.0)
(s162 1.0)
(s163 1.0)
(s164 1.0)
(s165 1.0)
(s166 1.0)
(s167 1.0)
(s168 1.0)
(s169 1.0)
(s170 1.0)
(s171 1.0)
(s172 1.0)
(s173 1.0)
(s174 1.0)
(s175 1.0)
(s176 1.0)
(s177 1.0)
(s178 1.0)
(s179 1.0)
(s180 1.0)
(s181 1.0)
(s182 1.0)
(s183 1.0)
(s184 1.0)
(s185 1.0)
(s186 1.0)
(s187 1.0)
(s188 1.0)
(s189 1.0)
(s190 1.0)
(s191 1.0)
(s192 1.0)
(s193 1.0)
(s194 1.0)
(s195 1.0)
(s196 1.0)
(s197 1.0)
(s198 1.0)
(s199 1.0)
(s200 1.0)
(s201 1.0)
(s202 1.0)
(s203 1.0)
(s204 1.0)
(s205 1.0)
(s206 1.0)
(s207 1.0)
(s208 1.0)
(s209 1.0)
(s210 1.0)
(s211 1.0)
(s212 1.0)
(s213 1.0)
(s214 1.0)
(s215 1.0)
(s216 1.0)
(s217 1.0)
(s218 1.0)
(s219 1.0)
(s220 1.0)
(s221 1.0)
(s222 1.0)
(s223 1.0)
(s224 1.0)
(s225 1.0)
(s226 1.0)
(s227 1.0)
(s228 1.0)
(s229 1.0)
(s230 1.0)
(s231 1.0)
(s232 1.0)
(s233 1.0)
(s234 1.0)
(s235 1.0)
(s236 1.0)
(s237 1.0)
(s238 1.0)
(s239 1.0)
(s240 1.0)
(s241 1.0)
(s242 1.0)
(s243 1.0)
(s244 1.0)
(s245 1.0)
(s246 1.0)
(s247 1.0)
(s248 1.0)
(s249 1.0)
(s250 1.0)
(s251 1.0)
(s252 1.0)
(s253 1.0)
(s254 1.0)
(s255 1.0)
(s256 1.0)
(s257 1.0)
(s258 1.0)
(s259 1.0)
(s260 1.0)
(s261 1.0)
(s262 1.0)
(s263 1.0)
(s264 1.0)
(s265 1.0)
(s266 1.0)
(s267 1.0)
(s268 1.0)
(s269 1.0)
(s270 1.0)
(s271 1.0)
(s272 1.0)
(s273 1.0)
(s274 1.0)
(s275 1.0)
(s276 1.0)
(s277 1.0)
(s278 1.0)
(s279 1.0)
(s280 1.0)
(s281 1.0)
(s282 1.0)
(s283 1.0)
(s284 1.0)
(s285 1.0)
(s286 1.0)
(s287 1.0)
(s288 1.0)
(s289 1.0)
(s290 1.0)
(s291 1.0)
(s292 1.0)
(s293 1.0)
(s294 1.0)
(s295 1.0)
(s296 1.0)
(s297 1.0)
(s298 1.0)
(s299 1.0)
(s300 1.0)
(s301 1.0)
(s302 1.0)
(s303 1.0)
(s304 1.0)
(s305 1.0)
(s306 1.0)
(s307 1.0)
(s308 1.0)
(s309 1.0)
(s310 1.0)
(s311 1.0)
(s312 1.0)
(s313 1.0)
(s314 1.0)
(s315 1.0)
(s316 1.0)
(s317 1.0)
(s318 1.0)
(s319 1.0)
(s320 1.0)
(s321 1.0)
(s322 1.0)
(s323 1.0)
(s324 1.0)
(s325 1.0)
(s326 1.0)
(s327 1.0)
(s328 1.0)
(s329 1.0)
(s330 1.0)
(s331 1.0)
(s332 1.0)
(s333 1.0)
(s334 1.0)
(s335 1.0)
(s336 1.0)
(s337 1.0)
(s338 1.0)
(s339 1.0)
(s340 1.0)
(s341 1.0)
(s342 1.0)
(s343 1.0)
(s344 1.0)
(s345 1.0)
(s346 1.0)
(s347 1.0)
(s348 1.0)
(s349 1.0)
(s350 1.0)
(s351 1.0)
(s352 1.0)
(s353 1.0)
(s354 1.0)
(s355 1.0)
(s356 1.0)
(s357 1.0)
(s358 1.0)
(s359 1.0)
(s360 1.0)
(s361 1.0)
(s362 1.0)
(s363 1.0)
(s364 1.0)
(s365 1.0)
(s366 1.0)
(s367 1.0)
(s368 1.0)
(s369 1.0)
(s370 1.0)
(s371 1.0)
(s372 1.0)
(s373 1.0)
(s374 1.0)
(s375 1.0)
(s376 1.0)
(s377 1.0)
(s378 1.0)
(s379 1.0)
(s380 1.0)
(s381 1.0)
(s382 1.0)
(s383 1.0)
(s384 1.0)
(s385 1.0)
(s386 1.0)
(s387 1.0)
(s388 1.0)
(s389 1.0)
(s390 1.0)
(s391 1.0)
(s392 1.0)
(s393 1.0)
(s394 1.0)
(s395 1.0)
(s396 1.0)
(s397 1.0)
(s398 1.0)
(s399 1.0)
(s400 1.0)
(s401 1.0)
(s402 1.0)
(s403 1.0)
(s404 1.0)
(s405 1.0)
(s406 1.0)
(s407 1.0)
(s408 1.0)
(s409 1.0)
(s410 1.0)
(s411 1.0)
(s412 1.0)
(s413 1.0)
(s414 1.0)
(s415 1.0)
(s416 1.0)
(s417 1.0)
(s418 1.0)
(s419 1.0)
(s420 1.0)
(s421 1.0)
(s422 1.0)
(s423 1.0)
(s424 1.0)
(s425 1.0)
(s426 1.0)
(s427 1.0)
(s428 1.0)
(s429 1.0)
(s430 1.0)
(s431 1.0)
(s432 1.0)
(s433 1.0)
(s434 1.0)
(s435 1.0)
(s436 1.0)
(s437 1.0)
(s438 1.0)
(s439 1.0)
(s440 1.0)
(s441 1.0)
(s442 1.0)
(s443 1.0)
(s444 1.0)
(s445 1.0)
(s446 1.0)
(s447 1.0)
(s448 1.0)
(s449 1.0)
(s450 1.0)
(s451 1.0)
(s452 1.0)
(s453 1.0)
(s454 1.0)
(s455 1.0)
(s456 1.0)
(s457 1.0)
(s458 1.0)
(s459 1.0)
(s460 1.0)
(s461 1.0)
(s462 1.0)
(s463 1.0)
(s464 1.0)
(s465 1.0)
(s466 1.0)
(s467 1.0)
(s468 1.0)
(s469 1.0)
(s470 1.0)
(s471 1.0)
(s472 1.0)
(s473 1.0)
(s474 1.0)
(s475 1.0)
(s476 1.0)
(s477 1.0)
(s478 1.0)
(s479 1.0)
(s480 1.0)
(s481 1.0)
(s482 1.0)
(s483 1.0)
(s484 1.0)
(s485 1.0)
(s486 1.0)
(s487 1.0)
(s488 1.0)
(s489 1.0)
(s490 1.0)
(s491 1.0)
(s492 1.0)
(s493 1.0)
(s494 1.0)
(s495 1.0)
(s496 1.0)
(s497 1.0)
(s498 1.0)
(s499 1.0)
(s500 1.0)
(s501 1.0)
(s502 1.0)
(s503 1.0)
(s504 1.0)
(s505 1.0)
(s506 1.0)
(s507 1.0)
(s508 1.0)
(s509 1.0)
(s510 1.0)
(s511 1.0)
(s512 1.0)
(s513 1.0)
(s514 1.0)
(s515 1.0)
(s516 1.0)
(s517 1.0)
(s518 1.0)
(s519 1.0)
(s520 1.0)
(s521 1.0)
(s522 1.0)
(s523 1.0)
(s524 1.0)
(s525 1.0)
(s526 1.0)
(s527 1.0)
(s528 1.0)
(s529 1.0)
(s530 1.0)
(s531 1.0)
(s532 1.0)
(s533 1.0)
(s534 1.0)
(s535 1.0)
(s536 1.0)
(s537 1.0)
(s538 1.0)
(s539 1.0)
(s540 1.0)
(s541 1.0)
(s542 1.0)
(s543 1.0)
(s544 1.0)
(s545 1.0)
(s546 1.0)
(s547 1.0)
(s548 1.0)
(s549 1.0)
(s550 1.0)
(s551 1.0)
(s552 1.0)
(s553 1.0)
(s554 1.0)
(s555 1.0)
(s556 1.0)
(s557 1.0)
(s558 1.0)
(s559 1.0)
(s560 1.0)
(s561 1.0)
(s562 1.0)
(s563 1.0)
(s564 1.0)
(s565 1.0)
(s566 1.0)
(s567 1.0)
(s568 1.0)
(s569 1.0)
(s570 1.0)
(s571 1.0)
(s572 1.0)
(s573 1.0)
(s574 1.0)
(s575 1.0)
(s576 1.0)
(s577 1.0)
(s578 1.0)
(s579 1.0)
(s580 1.0)
(s581 1.0)
(s582 1.0)
(s583 1.0)
(s584 1.0)
(s585 1.0)
(s586 1.0)
(s587 1.0)
(s588 1.0)
(s589 1.0)
(s590 1.0)
(s591 1.0)
(s592 1.0)
(s593 1.0)
(s594 1.0)
(s595 1.0)
(s596 1.0)
(s597 1.0)
(s598 1.0)
(s599 1.0)
(s600 1.0)
(s601 1.0)
(s602 1.0)
(s603 1.0)
(s604 1.0)
(s605 1.0)
(s606 1.0)
(s607 1.0)
(s608 1.0)
(s609 1.0)
(s610 1.0)
(s611 1.0)
(s612 1.0)
(s613 1.0)
(s614 1.0)
(s615 1.0)
(s616 1.0)
(s617 1.0)
(s618 1.0)
(s619 1.0)
(s620 1.0)
(s621 1.0)
(s622 1.0)
(s623 1.0)
(s624 1.0)
(s625 1.0)
(s626 1.0)
(s627 1.0)
(s628 1.0)
(s629 1.0)
(s630 1.0)
(s631 1.0)
(s632 1.0)
(s633 1.0)
(s634 1.0)
(s635 1.0)
(s636 1.0)
(s637 1.0)
(s638 1.0)
(s639 1.0)
(s640 1.0)
(s641 1.0)
(s642 1.0)
(s643 1.0)
(s644 1.0)
(s645 1.0)
(s646 1.0)
(s647 1.0)
(s648 1.0)
(s649 1.0)
(s650 1.0)
(s651 1.0)
(s652 1.0)
(s653 1.0)
(s654 1.0)
(s655 1.0)
(s656 1.0)
(s657 1.0)
(s658 1.0)
(s659 1.0)
(s660 1.0)
(s661 1.0)
(s662 1.0)
(s663 1.0)
(s664 1.0)
(s665 1.0)
(s666 1.0)
(s667 1.0)
(s668 1.0)
(s669 1.0)
(s670 1.0)
(s671 1.0)
(s672 1.0)
(s673 1.0)
(s674 1.0)
(s675 1.0)
(s676 1.0)
(s677 1.0)
(s678 1.0)
(s679 1.0)
(s680 1.0)
(s681 1.0)
(s682 1.0)
(s683 1.0)
(s684 1.0)
(s685 1.0)
(s686 1.0)
(s687 1.0)
(s688 1.0)
(s689 1.0)
(s690 1.0)
(s691 1.0)
(s692 1.0)
(s693 1.0)
(s694 1.0)
(s695 1.0)
(s696 1.0)
(s697 1.0)
(s698 1.0)
(s699 1.0)
(s700 1.0)
(s701 1.0)
(s702 1.0)
(s703 1.0)
(s704 1.0)
(s705 1.0)
(s706 1.0)
(s707 1.0)
(s708 1.0)
(s709 1.0)
(s710 1.0)
(s711 1.0)
(s712 1.0)
(s713 1.0)
(s714 1.0)
(s715 1.0)
(s716 1.0)
(s717 1.0)
(s718 1.0)
(s719 1.0)
(s720 1.0)
(s721 1.0)
(s722 1.0)
(s723 1.0)
(s724 1.0)
(s725 1.0)
(s726 1.0)
(s727 1.0)
(s728 1.0)
(s729 1.0)
(s730 1.0)
(s731 1.0)
(s732 1.0)
(s733 1.0)
(s734 1.0)
(s735 1.0)
(s736 1.0)
(s737 1.0)
(s738 1.0)
(s739 1.0)
(s740 1.0)
(s741 1.0)
(s742 1.0)
(s743 1.0)
(s744 1.0)
(s745 1.0)
(s746 1.0)
(s747 1.0)
(s748 1.0)
(s749 1.0)
(s750 1.0)
(s751 1.0)
(s752 1.0)
(s753 1.0)
(s754 1.0)
(s755 1.0)
(s756 1.0)
(s757 1.0)
(s758 1.0)
(s759 1.0)
(s760 1.0)
(s761 1.0)
(s762 1.0)
(s763 1.0)
(s764 1.0)
(s765 1.0)
(s766 1.0)
(s767 1.0)
(s768 1.0)
(s769 1.0)
(s770 1.0)
(s771 1.0)
(s772 1.0)
(s773 1.0)
(s774 1.0)
(s775 1.0)
(s776 1.0)
(s777 1.0)
(s778 1.0)
(s779 1.0)
(s780 1.0)
(s781 1.0)
(s782 1.0)
(s783 1.0)
(s784 1.0)
(s785 1.0)
(s786 1.0)
(s787 1.0)
(s788 1.0)
(s789 1.0)
(s790 1.0)
(s791 1.0)
(s792 1.0)
(s793 1.0)
(s794 1.0)
(s795 1.0)
(s796 1.0)
(s797 1.0)
(s798 1.0)
(s799 1.0)
(s800 1.0)
(s801 1.0)
(s802 1.0)
(s803 1.0)
(s804 1.0)
(s805 1.0)
(s806 1.0)
(s807 1.0)
(s808 1.0)
(s809 1.0)
(s810 1.0)
(s811 1.0)
(s812 1.0)
(s813 1.0)
(s814 1.0)
(s815 1.0)
(s816 1.0)
(s817 1.0)
(s818 1.0)
(s819 1.0)
(s820 1.0)
(s821 1.0)
(s822 1.0)
(s823 1.0)
(s824 1.0)
(s825 1.0)
(s826 1.0)
(s827 1.0)
(s828 1.0)
(s829 1.0)
(s830 1.0)
(s831 1.0)
(s832 1.0)
(s833 1.0)
(s834 1.0)
(s835 1.0)
(s836 1.0)
(s837 1.0)
(s838 1.0)
(s839 1.0)
(s840 1.0)
(s841 1.0)
(s842 1.0)
(s843 1.0)
(s844 1.0)
(s845 1.0)
(s846 1.0)
(s847 1.0)
(s848 1.0)
(s849 timeout
1.0) org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
At refinement iteration 0 (INCLUDED_ONLY) 0/7860 variables, 7860/7860 constraints. Problems are: Problem set: 0 solved, 9960 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 7860/20040 variables, and 7860 constraints, problems are : Problem set: 0 solved, 9960 unsolved in 30160 ms.
Refiners :[Domain max(s): 7860/7920 constraints, Positive P Invariants (semi-flows): 0/60 constraints, State Equation: 0/7920 constraints, PredecessorRefiner: 9960/9960 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 9960 unsolved
At refinement iteration 0 (INCLUDED_ONLY) 0/7860 variables, 7860/7860 constraints. Problems are: Problem set: 0 solved, 9960 unsolved
Error getting values : (error "Error writing to Z3 solver: java.io.IOException: Broken pipe")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 7860/20040 variables, and 7860 constraints, problems are : Problem set: 0 solved, 9960 unsolved in 30151 ms.
Refiners :[Domain max(s): 7860/7920 constraints, Positive P Invariants (semi-flows): 0/60 constraints, State Equation: 0/7920 constraints, PredecessorRefiner: 0/9960 constraints, Known Traps: 0/0 constraints]
After SMT, in 71078ms problems are : Problem set: 0 solved, 9960 unsolved
Search for dead transitions found 0 dead transitions in 71223ms
Finished structural reductions in LTL mode , in 1 iterations and 73860 ms. Remains : 7920/7920 places, 12120/12120 transitions.
Stuttering acceptance computed with spot in 355 ms :[true, (OR (NOT p0) (AND p1 (NOT p2))), (OR (NOT p0) (AND p1 (NOT p2))), (OR (NOT p0) (AND p1 (NOT p2)))]
Running random walk in product with property : BART-PT-060-LTLFireability-02
Entered a terminal (fully accepting) state of product in 1 steps with 0 reset in 5 ms.
FORMULA BART-PT-060-LTLFireability-02 FALSE TECHNIQUES STUTTER_TEST
Treatment of property BART-PT-060-LTLFireability-02 finished in 74360 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202405141337/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(F((G(p0)||G((F(p0)&&F(G(p1)))))))'
Support contains 7260 out of 7920 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 7920/7920 places, 12120/12120 transitions.
Performed 120 Post agglomeration using F-continuation condition.Transition count delta: 120
Iterating post reduction 0 with 120 rules applied. Total rules applied 120 place count 7920 transition count 12000
Reduce places removed 120 places and 0 transitions.
Iterating post reduction 1 with 120 rules applied. Total rules applied 240 place count 7800 transition count 12000
Performed 240 Post agglomeration using F-continuation condition.Transition count delta: 240
Deduced a syphon composed of 240 places in 3 ms
Reduce places removed 240 places and 0 transitions.
Iterating global reduction 2 with 480 rules applied. Total rules applied 720 place count 7560 transition count 11760
Applied a total of 720 rules in 422 ms. Remains 7560 /7920 variables (removed 360) and now considering 11760/12120 (removed 360) transitions.
// Phase 1: matrix 11760 rows 7560 cols
[2024-05-22 15:08:19] [INFO ] Computed 60 invariants in 82 ms
[2024-05-22 15:08:22] [INFO ] Implicit Places using invariants in 2474 ms returned []
Implicit Place search using SMT only with invariants took 2476 ms to find 0 implicit places.
Running 9600 sub problems to find dead transitions.
[2024-05-22 15:08:22] [INFO ] Invariant cache hit.
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
At refinement iteration 0 (INCLUDED_ONLY) 0/7500 variables, 7500/7500 constraints. Problems are: Problem set: 0 solved, 9600 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 7500/19320 variables, and 7500 constraints, problems are : Problem set: 0 solved, 9600 unsolved in 30152 ms.
Refiners :[Domain max(s): 7500/7560 constraints, Positive P Invariants (semi-flows): 0/60 constraints, State Equation: 0/7560 constraints, PredecessorRefiner: 9600/9600 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 9600 unsolved
At refinement iteration 0 (INCLUDED_ONLY) 0/7500 variables, 7500/7500 constraints. Problems are: Problem set: 0 solved, 9600 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 7500/19320 variables, and 7500 constraints, problems are : Problem set: 0 solved, 9600 unsolved in 30145 ms.
Refiners :[Domain max(s): 7500/7560 constraints, Positive P Invariants (semi-flows): 0/60 constraints, State Equation: 0/7560 constraints, PredecessorRefiner: 0/9600 constraints, Known Traps: 0/0 constraints]
After SMT, in 69450ms problems are : Problem set: 0 solved, 9600 unsolved
Search for dead transitions found 0 dead transitions in 69555ms
Starting structural reductions in SI_LTL mode, iteration 1 : 7560/7920 places, 11760/12120 transitions.
Finished structural reductions in SI_LTL mode , in 1 iterations and 72475 ms. Remains : 7560/7920 places, 11760/12120 transitions.
Stuttering acceptance computed with spot in 127 ms :[(NOT p0), (NOT p0), (AND (NOT p0) (NOT p1))]
Running random walk in product with property : BART-PT-060-LTLFireability-03
Product exploration explored 100000 steps with 1 reset in 3838 ms.
Product exploration explored 100000 steps with 0 reset in 3643 ms.
Computed a total of 0 stabilizing places and 0 stable transitions
Computed a total of 0 stabilizing places and 0 stable transitions
Knowledge obtained : [(AND (NOT p0) (NOT p1)), (X (NOT (AND p0 (NOT p1)))), (X (NOT (AND (NOT p0) (NOT p1)))), (X p1)]
False Knowledge obtained : [(X (AND p0 p1)), (X (NOT (AND p0 p1))), (X (AND (NOT p0) p1)), (X (NOT (AND (NOT p0) p1))), (X (NOT p0)), (X p0)]
Knowledge based reduction with 4 factoid took 240 ms. Reduced automaton from 3 states, 8 edges and 2 AP (stutter insensitive) to 3 states, 8 edges and 2 AP (stutter insensitive).
Stuttering acceptance computed with spot in 110 ms :[(NOT p0), (NOT p0), (AND (NOT p0) (NOT p1))]
RANDOM walk for 40000 steps (8 resets) in 2439 ms. (16 steps per ms) remains 2/6 properties
BEST_FIRST walk for 40004 steps (8 resets) in 14363 ms. (2 steps per ms) remains 1/2 properties
BEST_FIRST walk for 8644 steps (0 resets) in 3009 ms. (2 steps per ms) remains 0/1 properties
Knowledge obtained : [(AND (NOT p0) (NOT p1)), (X (NOT (AND p0 (NOT p1)))), (X (NOT (AND (NOT p0) (NOT p1)))), (X p1)]
False Knowledge obtained : [(X (AND p0 p1)), (X (NOT (AND p0 p1))), (X (AND (NOT p0) p1)), (X (NOT (AND (NOT p0) p1))), (X (NOT p0)), (X p0), (F p0), (F (NOT (OR p0 (NOT p1)))), (F (NOT (AND (NOT p0) (NOT p1)))), (F (NOT (OR (NOT p0) (NOT p1)))), (F (NOT (OR (NOT p0) p1))), (F p1)]
Knowledge based reduction with 4 factoid took 383 ms. Reduced automaton from 3 states, 8 edges and 2 AP (stutter insensitive) to 3 states, 8 edges and 2 AP (stutter insensitive).
Stuttering acceptance computed with spot in 115 ms :[(NOT p0), (NOT p0), (AND (NOT p0) (NOT p1))]
Stuttering acceptance computed with spot in 105 ms :[(NOT p0), (NOT p0), (AND (NOT p0) (NOT p1))]
[2024-05-22 15:10:13] [INFO ] Invariant cache hit.
Could not prove EG (NOT p0)
Support contains 7260 out of 7560 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 7560/7560 places, 11760/11760 transitions.
Applied a total of 0 rules in 82 ms. Remains 7560 /7560 variables (removed 0) and now considering 11760/11760 (removed 0) transitions.
[2024-05-22 15:10:28] [INFO ] Invariant cache hit.
[2024-05-22 15:10:30] [INFO ] Implicit Places using invariants in 2322 ms returned []
Implicit Place search using SMT only with invariants took 2323 ms to find 0 implicit places.
Running 9600 sub problems to find dead transitions.
[2024-05-22 15:10:31] [INFO ] Invariant cache hit.
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
At refinement iteration 0 (INCLUDED_ONLY) 0/7500 variables, 7500/7500 constraints. Problems are: Problem set: 0 solved, 9600 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 7500/19320 variables, and 7500 constraints, problems are : Problem set: 0 solved, 9600 unsolved in 30139 ms.
Refiners :[Domain max(s): 7500/7560 constraints, Positive P Invariants (semi-flows): 0/60 constraints, State Equation: 0/7560 constraints, PredecessorRefiner: 9600/9600 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 9600 unsolved
At refinement iteration 0 (INCLUDED_ONLY) 0/7500 variables, 7500/7500 constraints. Problems are: Problem set: 0 solved, 9600 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 7500/19320 variables, and 7500 constraints, problems are : Problem set: 0 solved, 9600 unsolved in 30139 ms.
Refiners :[Domain max(s): 7500/7560 constraints, Positive P Invariants (semi-flows): 0/60 constraints, State Equation: 0/7560 constraints, PredecessorRefiner: 0/9600 constraints, Known Traps: 0/0 constraints]
After SMT, in 70675ms problems are : Problem set: 0 solved, 9600 unsolved
Search for dead transitions found 0 dead transitions in 70784ms
Finished structural reductions in SI_LTL mode , in 1 iterations and 73210 ms. Remains : 7560/7560 places, 11760/11760 transitions.
Computed a total of 0 stabilizing places and 0 stable transitions
Computed a total of 0 stabilizing places and 0 stable transitions
Knowledge obtained : [(AND (NOT p0) (NOT p1)), (X (NOT (AND p0 (NOT p1)))), (X (NOT (AND (NOT p0) (NOT p1)))), (X p1)]
False Knowledge obtained : [(X (AND p0 p1)), (X (NOT (AND p0 p1))), (X (AND (NOT p0) p1)), (X (NOT (AND (NOT p0) p1))), (X (NOT p0)), (X p0)]
Knowledge based reduction with 4 factoid took 236 ms. Reduced automaton from 3 states, 8 edges and 2 AP (stutter insensitive) to 3 states, 8 edges and 2 AP (stutter insensitive).
Stuttering acceptance computed with spot in 109 ms :[(NOT p0), (NOT p0), (AND (NOT p0) (NOT p1))]
RANDOM walk for 40000 steps (8 resets) in 2031 ms. (19 steps per ms) remains 2/6 properties
BEST_FIRST walk for 40004 steps (8 resets) in 15291 ms. (2 steps per ms) remains 1/2 properties
BEST_FIRST walk for 8644 steps (0 resets) in 2791 ms. (3 steps per ms) remains 0/1 properties
Knowledge obtained : [(AND (NOT p0) (NOT p1)), (X (NOT (AND p0 (NOT p1)))), (X (NOT (AND (NOT p0) (NOT p1)))), (X p1)]
False Knowledge obtained : [(X (AND p0 p1)), (X (NOT (AND p0 p1))), (X (AND (NOT p0) p1)), (X (NOT (AND (NOT p0) p1))), (X (NOT p0)), (X p0), (F p0), (F (NOT (OR p0 (NOT p1)))), (F (NOT (AND (NOT p0) (NOT p1)))), (F (NOT (OR (NOT p0) (NOT p1)))), (F (NOT (OR (NOT p0) p1))), (F p1)]
Knowledge based reduction with 4 factoid took 380 ms. Reduced automaton from 3 states, 8 edges and 2 AP (stutter insensitive) to 3 states, 8 edges and 2 AP (stutter insensitive).
Stuttering acceptance computed with spot in 106 ms :[(NOT p0), (NOT p0), (AND (NOT p0) (NOT p1))]
Stuttering acceptance computed with spot in 109 ms :[(NOT p0), (NOT p0), (AND (NOT p0) (NOT p1))]
[2024-05-22 15:12:17] [INFO ] Invariant cache hit.
Could not prove EG (NOT p0)
Stuttering acceptance computed with spot in 124 ms :[(NOT p0), (NOT p0), (AND (NOT p0) (NOT p1))]
Product exploration explored 100000 steps with 1 reset in 3720 ms.
Product exploration explored 100000 steps with 1 reset in 8771 ms.
Support contains 7260 out of 7560 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 7560/7560 places, 11760/11760 transitions.
Applied a total of 0 rules in 82 ms. Remains 7560 /7560 variables (removed 0) and now considering 11760/11760 (removed 0) transitions.
[2024-05-22 15:12:44] [INFO ] Invariant cache hit.
[2024-05-22 15:12:47] [INFO ] Implicit Places using invariants in 2425 ms returned []
Implicit Place search using SMT only with invariants took 2427 ms to find 0 implicit places.
Running 9600 sub problems to find dead transitions.
[2024-05-22 15:12:47] [INFO ] Invariant cache hit.
Error getting values : (error "ParserException while parsing response: ((s60 1.0)
(s61 1.0)
(s62 1.0)
(s63 1.0)
(s64 1.0)
(s65 1.0)
(s66 1.0)
(s67 1.0)
(s68 1.0)
(s69 1.0)
(s70 1.0)
(s71 1.0)
(s72 1.0)
(s73 1.0)
(s74 1.0)
(s75 1.0)
(s76 1.0)
(s77 1.0)
(s78 1.0)
(s79 1.0)
(s80 1.0)
(s81 1.0)
(s82 1.0)
(s83 1.0)
(s84 1.0)
(s85 1.0)
(s86 1.0)
(s87 1.0)
(s88 1.0)
(s89 1.0)
(s90 1.0)
(s91 1.0)
(s92 1.0)
(s93 1.0)
(s94 1.0)
(s95 1.0)
(s96 1.0)
(s97 1.0)
(s98 1.0)
(s99 1.0)
(s100 1.0)
(s101 1.0)
(s102 1.0)
(s103 1.0)
(s104 1.0)
(s105 1.0)
(s106 1.0)
(s107 1.0)
(s108 1.0)
(s109 1.0)
(s110 1.0)
(s111 1.0)
(s112 1.0)
(s113 1.0)
(s114 1.0)
(s115 1.0)
(s116 1.0)
(s117 1.0)
(s118 1.0)
(s119 1.0)
(s120 1.0)
(s121 1.0)
(s122 1.0)
(s123 1.0)
(s124 1.0)
(s125 1.0)
(s126 1.0)
(s127 1.0)
(s128 1.0)
(s129 1.0)
(s130 1.0)
(s131 1.0)
(s132 1.0)
(s133 1.0)
(s134 1.0)
(s135 1.0)
(s136 1.0)
(s137 1.0)
(s138 1.0)
(s139 1.0)
(s140 1.0)
(s141 1.0)
(s142 1.0)
(s143 1.0)
(s144 1.0)
(s145 1.0)
(s146 1.0)
(s147 1.0)
(s148 1.0)
(s149 1.0)
(s150 1.0)
(s151 1.0)
(s152 1.0)
(s153 1.0)
(s154 1.0)
(s155 1.0)
(s156 1.0)
(s157 1.0)
(s158 1.0)
(s159 1.0)
(s160 1.0)
(s161 1.0)
(s162 1.0)
(s163 1.0)
(s164 1.0)
(s165 1.0)
(s166 1.0)
(s167 1.0)
(s168 1.0)
(s169 1.0)
(s170 1.0)
(s171 1.0)
(s172 1.0)
(s173 1.0)
(s174 1.0)
(s175 1.0)
(s176 1.0)
(s177 1.0)
(s178 1.0)
(s179 1.0)
(s180 1.0)
(s181 1.0)
(s182 1.0)
(s183 1.0)
(s184 1.0)
(s185 1.0)
(s186 1.0)
(s187 1.0)
(s188 1.0)
(s189 1.0)
(s190 1.0)
(s191 1.0)
(s192 1.0)
(s193 1.0)
(s194 1.0)
(s195 1.0)
(s196 1.0)
(s197 1.0)
(s198 1.0)
(s199 1.0)
(s200 1.0)
(s201 1.0)
(s202 1.0)
(s203 1.0)
(s204 1.0)
(s205 1.0)
(s206 1.0)
(s207 1.0)
(s208 1.0)
(s209 1.0)
(s210 1.0)
(s211 1.0)
(s212 1.0)
(s213 1.0)
(s214 1.0)
(s215 1.0)
(s216 1.0)
(s217 1.0)
(s218 1.0)
(s219 1.0)
(s220 1.0)
(s221 1.0)
(s222 1.0)
(s223 1.0)
(s224 1.0)
(s225 1.0)
(s226 1.0)
(s227 1.0)
(s228 1.0)
(s229 1.0)
(s230 1.0)
(s231 1.0)
(s232 1.0)
(s233 1.0)
(s234 1.0)
(s235 1.0)
(s236 1.0)
(s237 1.0)
(s238 1.0)
(s239 1.0)
(s240 1.0)
(s241 1.0)
(s242 1.0)
(s243 1.0)
(s244 1.0)
(s245 1.0)
(s246 1.0)
(s247 1.0)
(s248 1.0)
(s249 1.0)
(s250 1.0)
(s251 1.0)
(s252 1.0)
(s253 1.0)
(s254 1.0)
(s255 1.0)
(s256 1.0)
(s257 1.0)
(s258 1.0)
(s259 1.0)
(s260 1.0)
(s261 1.0)
(s262 1.0)
(s263 1.0)
(s264 1.0)
(s265 1.0)
(s266 1.0)
(s267 1.0)
(s268 1.0)
(s269 1.0)
(s270 1.0)
(s271 1.0)
(s272 1.0)
(s273 1.0)
(s274 1.0)
(s275 1.0)
(s276 1.0)
(s277 1.0)
(s278 1.0)
(s279 1.0)
(s280 1.0)
(s281 1.0)
(s282 1.0)
(s283 1.0)
(s284 1.0)
(s285 1.0)
(s286 1.0)
(s287 1.0)
(s288 1.0)
(s289 1.0)
(s290 1.0)
(s291 1.0)
(s292 1.0)
(s293 1.0)
(s294 1.0)
(s295 1.0)
(s296 1.0)
(s297 1.0)
(s298 1.0)
(s299 1.0)
(s300 1.0)
(s301 1.0)
(s302 1.0)
(s303 1.0)
(s304 1.0)
(s305 1.0)
(s306 1.0)
(s307 1.0)
(s308 1.0)
(s309 1.0)
(s310 1.0)
(s311 1.0)
(s312 1.0)
(s313 1.0)
(s314 1.0)
(s315 1.0)
(s316 1.0)
(s317 1.0)
(s318 1.0)
(s319 1.0)
(s320 1.0)
(s321 1.0)
(s322 1.0)
(s323 1.0)
(s324 1.0)
(s325 1.0)
(s326 1.0)
(s327 1.0)
(s328 1.0)
(s329 1.0)
(s330 1.0)
(s331 1.0)
(s332 1.0)
(s333 1.0)
(s334 1.0)
(s335 1.0)
(s336 1.0)
(s337 1.0)
(s338 1.0)
(s339 1.0)
(s340 1.0)
(s341 1.0)
(s342 1.0)
(s343 1.0)
(s344 1.0)
(s345 1.0)
(s346 1.0)
(s347 1.0)
(s348 1.0)
(s349 1.0)
(s350 1.0)
(s351 1.0)
(s352 1.0)
(s353 1.0)
(s354 1.0)
(s355 1.0)
(s356 1.0)
(s357 1.0)
(s358 1.0)
(s359 1.0)
(s360 1.0)
(s361 1.0)
(s362 1.0)
(s363 1.0)
(s364 1.0)
(s365 1.0)
(s366 1.0)
(s367 1.0)
(s368 1.0)
(s369 1.0)
(s370 1.0)
(s371 1.0)
(s372 1.0)
(s373 1.0)
(s374 1.0)
(s375 1.0)
(s376 1.0)
(s377 1.0)
(s378 1.0)
(s379 1.0)
(s380 1.0)
(s381 1.0)
(s382 1.0)
(s383 1.0)
(s384 1.0)
(s385 1.0)
(s386 1.0)
(s387 1.0)
(s388 1.0)
(s389 1.0)
(s390 1.0)
(s391 1.0)
(s392 1.0)
(s393 1.0)
(s394 1.0)
(s395 1.0)
(s396 1.0)
(s397 1.0)
(s398 1.0)
(s399 1.0)
(s400 1.0)
(s401 1.0)
(s402 1.0)
(s403 1.0)
(s404 1.0)
(s405 1.0)
(s406 1.0)
(s407 1.0)
(s408 1.0)
(s409 1.0)
(s410 1.0)
(s411 1.0)
(s412 1.0)
(s413 1.0)
(s414 1.0)
(s415 1.0)
(s416 1.0)
(s417 1.0)
(s418 1.0)
(s419 1.0)
(s420 1.0)
(s421 1.0)
(s422 1.0)
(s423 1.0)
(s424 1.0)
(s425 1.0)
(s426 1.0)
(s427 1.0)
(s428 1.0)
(s429 1.0)
(s430 1.0)
(s431 1.0)
(s432 1.0)
(s433 1.0)
(s434 1.0)
(s435 1.0)
(s436 1.0)
(s437 1.0)
(s438 1.0)
(s439 1.0)
(s440 1.0)
(s441 1.0)
(s442 1.0)
(s443 1.0)
(s444 1.0)
(s445 1.0)
(s446 1.0)
(s447 1.0)
(s448 1.0)
(s449 1.0)
(s450 1.0)
(s451 1.0)
(s452 1.0)
(s453 1.0)
(s454 1.0)
(s455 1.0)
(s456 1.0)
(s457 1.0)
(s458 1.0)
(s459 1.0)
(s460 1.0)
(s461 1.0)
(s462 1.0)
(s463 1.0)
(s464 1.0)
(s465 1.0)
(s466 1.0)
(s467 1.0)
(s468 1.0)
(s469 1.0)
(s470 1.0)
(s471 1.0)
(s472 1.0)
(s473 1.0)
(s474 1.0)
(s475 1.0)
(s476 1.0)
(s477 1.0)
(s478 1.0)
(s479 1.0)
(s480 1.0)
(s481 1.0)
(s482 1.0)
(s483 1.0)
(s484 1.0)
(s485 1.0)
(s486 1.0)
(s487 1.0)
(s488 1.0)
(s489 1.0)
(s490 1.0)
(s491 1.0)
(s492 1.0)
(s493 1.0)
(s494 1.0)
(s495 1.0)
(s496 1.0)
(s497 1.0)
(s498 1.0)
(s499 1.0)
(s500 1.0)
(s501 1.0)
(s502 1.0)
(s503 1.0)
(s504 1.0)
(s505 1.0)
(s506 1.0)
(s507 1.0)
(s508 1.0)
(s509 1.0)
(s510 1.0)
(s511 1.0)
(s512 1.0)
(s513 1.0)
(s514 1.0)
(s515 1.0)
(s516 1.0)
(s517 1.0)
(s518 1.0)
(s519 1.0)
(s520 1.0)
(s521 1.0)
(s522 1.0)
(s523 1.0)
(s524 1.0)
(s525 1.0)
(s526 1.0)
(s527 1.0)
(s528 1.0)
(s529 1.0)
(s530 1.0)
(s531 1.0)
(s532 1.0)
(s533 1.0)
(s534 1.0)
(s535 1.0)
(s536 1.0)
(s537 1.0)
(s538 1.0)
(s539 1.0)
(s540 1.0)
(s541 1.0)
(s542 1.0)
(s543 1.0)
(s544 1.0)
(s545 1.0)
(s546 1.0)
(s547 1.0)
(s548 1.0)
(s549 1.0)
(s550 1.0)
(s551 1.0)
(s552 1.0)
(s553 1.0)
(s554 1.0)
(s555 1.0)
(s556 1.0)
(s557 1.0)
(s558 1.0)
(s559 1.0)
(s560 1.0)
(s561 1.0)
(s562 1.0)
(s563 1.0)
(s564 1.0)
(s565 1.0)
(s566 1.0)
(s567 1.0)
(s568 1.0)
(s569 1.0)
(s570 1.0)
(s571 1.0)
(s572 1.0)
(s573 1.0)
(s574 1.0)
(s575 1.0)
(s576 1.0)
(s577 1.0)
(s578 1.0)
(s579 1.0)
(s580 1.0)
(s581 1.0)
(s582 1.0)
(s583 1.0)
(s584 1.0)
(s585 1.0)
(s586 1.0)
(s587 1.0)
(s588 1.0)
(s589 1.0)
(s590 1.0)
(s591 1.0)
(s592 1.0)
(s593 1.0)
(s594 1.0)
(s595 1.0)
(s596 1.0)
(s597 1.0)
(s598 1.0)
(s599 1.0)
(s600 1.0)
(s601 1.0)
(s602 1.0)
(s603 1.0)
(s604 1.0)
(s605 1.0)
(s606 1.0)
(s607 1.0)
(s608 1.0)
(s609 1.0)
(s610 1.0)
(s611 1.0)
(s612 1.0)
(s613 1.0)
(s614 1.0)
(s615 1.0)
(s616 1.0)
(s617 1.0)
(s618 1.0)
(s619 1.0)
(s620 1.0)
(s621 1.0)
(s622 1.0)
(s623 1.0)
(s624 1.0)
(s625 1.0)
(s626 1.0)
(s627 1.0)
(s628 1.0)
(s629 1.0)
(s630 1.0)
(s631 1.0)
(s632 1.0)
(s633 1.0)
(s634 1.0)
(s635 1.0)
(s636 1.0)
(s637 1.0)
(s638 1.0)
(s639 1.0)
(s640 1.0)
(s641 1.0)
(s642 1.0)
(s643 1.0)
(s644 1.0)
(s645 1.0)
(s646 1.0)
(s647 1.0)
(s648 1.0)
(s649 1.0)
(s650 1.0)
(s651 1.0)
(s652 1.0)
(s653 1.0)
(s654 1.0)
(s655 1.0)
(s656 1.0)
(s657 1.0)
(s658 1.0)
(s659 1.0)
(s660 1.0)
(s661 1.0)
(s662 1.0)
(s663 1.0)
(s664 1.0)
(s665 1.0)
(s666 1.0)
(s667 1.0)
(s668 1.0)
(s669 1.0)
(s670 1.0)
(s671 1.0)
(s672 1.0)
(s673 1.0)
(s674 1.0)
(s675 1.0)
(s676 1.0)
(s677 1.0)
(s678 1.0)
(s679 1.0)
(s680 1.0)
(s681 1.0)
(s682 1.0)
(s683 1.0)
(s684 1.0)
(s685 1.0)
(s686 1.0)
(s687 1.0)
(s688 1.0)
(s689 1.0)
(s690 1.0)
(s691 1.0)
(s692 1.0)
(s693 1.0)
(s694 1.0)
(s695 1.0)
(s696 1.0)
(s697 1.0)
(s698 1.0)
(s699 1.0)
(s700 1.0)
(s701 1.0)
(s702 1.0)
(s703 1.0)
(s704 1.0)
(s705 1.0)
(s706 1.0)
(s707 1.0)
(s708 1.0)
(s709 1.0)
(s710 1.0)
(s711 1.0)
(s712 1.0)
(s713 1.0)
(s714 1.0)
(s715 1.0)
(s716 1.0)
(s717 1.0)
(s718 1.0)
(s719 1.0)
(s720 1.0)
(s721 1.0)
(s722 1.0)
(s723 1.0)
(s724 1.0)
(s725 1.0)
(s726 1.0)
(s727 1.0)
(s728 1.0)
(s729 1.0)
(s730 1.0)
(s731 1.0)
(s732 1.0)
(s733 1.0)
(s734 1.0)
(s735 1.0)
(s736 1.0)
(s737 1.0)
(s738 1.0)
(s739 1.0)
(s740 1.0)
(s741 1.0)
(s742 1.0)
(s743 1.0)
(s744 1.0)
(s745 1.0)
(s746 1.0)
(s747 1.0)
(s748 1.0)
(s749 1.0)
(s750 1.0)
(s751 1.0)
(s752 1.0)
(s753 1.0)
(s754 1.0)
(s755 1.0)
(s756 1.0)
(s757 1.0)
(s758 1.0)
(s759 1.0)
(s760 1.0)
(s761 1.0)
(s762 1.0)
(s763 1.0)
(s764 1.0)
(s765 1.0)
(s766 1.0)
(s767 1.0)
(s768 1.0)
(s769 1.0)
(s770 1.0)
(s771 1.0)
(s772 1.0)
(s773 1.0)
(s774 1.0)
(s775 1.0)
(s776 1.0)
(s777 1.0)
(s778 1.0)
(s779 1.0)
(s780 1.0)
(s781 1.0)
(s782 1.0)
(s783 1.0)
(s784 1.0)
(s785 1.0)
(s786 1.0)
(s787 1.0)
(s788 1.0)
(s789 1.0)
(s790 1.0)
(s791 1.0)
(s792 1.0)
(s793 1.0)
(s794 1.0)
(s795 1.0)
(s796 1.0)
(s797 1.0)
(s798 1.0)
(s799 1.0)
(s800 1.0)
(s801 1.0)
(s802 1.0)
(s803 1.0)
(s804 1.0)
(s805 1.0)
(s806 1.0)
(s807 1.0)
(s808 1.0)
(s809 1.0)
(s810 1.0)
(s811 1.0)
(s812 1.0)
(s813 1.0)
(s814 1.0)
(s815 1.0)
(s816 1.0)
(s817 1.0)
(s818 1.0)
(s819 1.0)
(s820 1.0)
(s821 1.0)
(s822 1.0)
(s823 1.0)
(s824 1.0)
(s825 1.0)
(s826 1.0)
(s827 1.0)
(s828 1.0)
(s829 1.0)
(s830 1.0)
(s831 1.0)
(s832 1.0)
(s833 1.0)
(s834 1.0)
(s835 1.0)
(s836 1.0)
(s837 1.0)
(s838 1.0)
(s839 1.0)
(s840 1.0)
(s841 1.0)
(s842 1.0)
(s843 1.0)
(s844 1.0)
(s845 1.0)
(s846 1.0)
(s847 1.0)
(s848 1.0)
(s849 1.0)
(s850 1.0)
(s851 1.0)
(s852 1.0)
(s853 1.0)
(s854 1.0)
(s855 1.0)
(s856 1.0)
(s857 1.0)
(s858 1.0)
(s859 1.0)
(s860 1.0)
(s861 1.0)
(s862 1.0)
(s863 1.0)
(s864 1.0)
(s865 1.0)
(s866 1.0)
(s867 1.0)
(s868 1.0)
(s869 1.0)
(s870 1.0)
(s871 1.0)
(s872 1.0)
(s873 1.0)
(s874 1.0)
(s875 1.0)
(s876 1.0)
(s877 1.0)
(s878 1.0)
(s879 1.0)
(s880 1.0)
(s881 1.0)
(s882 1.0)
(s883 1.0)
(s884 1.0)
(s885 1.0)
(s886 1.0)
(s887 1.0)
(s888 1.0)
(s889 1.0)
(s890 1.0)
(s891 1.0)
(s892 1.0)
(s893 1.0)
(s894 1.0)
(s895 1.0)
(s896 1.0)
(s897 1.0)
(s898 1.0)
(s899 1.0)
(s900 1.0)
(s901 1.0)
(s902 1.0)
(s903 1.0)
(s904 1.0)
(s905 1.0)
(s906 1.0)
(s907 1.0)
(s908 1.0)
(s909 1.0)
(s910 1.0)
(s911 1.0)
(s912 1.0)
(s913 1.0)
(s914 1.0)
(s915 1.0)
(s916 1.0)
(s917 1.0)
(s918 1.0)
(s919 1.0)
(s920 1.0)
(s921 1.0)
(s922 1.0)
(s923 1.0)
(s924 1.0)
(s925 1.0)
(s926 1.0)
(s927 1.0)
(s928 1.0)
(s929 1.0)
(s930 1.0)
(s931 1.0)
(s932 1.0)
(s933 1.0)
(s934 1.0)
(s935 1.0)
(s936 1.0)
(s937 1.0)
(s938 1.0)
(s939 1.0)
(s940 1.0)
(s941 1.0)
(s942 1.0)
(s943 1.0)
(s944 1.0)
(s945 1.0)
(s946 1.0)
(s947 1.0)
(s948 1.0)
(s949 1.0)
(s950 1.0)
(s951 1.0)
(s952 1.0)
(s953 1.0)
(s954 1.0)
(s955 1.0)
(s956 1.0)
(s957 1.0)
(s958 1.0)
(s959 1.0)
(s960 1.0)
(s961 1.0)
(s962 1.0)
(s963 1.0)
(s964 1.0)
(s965 1.0)
(s966 1.0)
(s967 1.0)
(s968 1.0)
(s969 1.0)
(s970 1.0)
(s971 1.0)
(s972 1.0)
(s973 1.0)
(s974 1.0)
(s975 1.0)
(s976 1.0)
(s977 1.0)
(s978 1.0)
(s979 1.0)
(s980 1.0)
(s981 1.0)
(s982 1.0)
(s983 1.0)
(s984 1.0)
(s985 1.0)
(s986 1.0)
(s987 1.0)
(s988 1.0)
(s989 1.0)
(s990 1.0)
(s991 1.0)
(s992 1.0)
(s993 1.0)
(s994 1.0)
(s995 1.0)
(s996 1.0)
(s997 1.0)
(s998 1.0)
(s999 1.0)
(s1000 1.0)
(s1001 1.0)
(s1002 1.0)
(s1003 1.0)
(s1004 1.0)
(s1005 1.0)
(s1006 1.0)
(s1007 1.0)
(s1008 1.0)
(s1009 1.0)
(s1010 1.0)
(s1011 1.0)
(s1012 1.0)
(s1013 1.0)
(s1014 1.0)
(s1015 1.0)
(s1016 1.0)
(s1017 1.0)
(s1018 1.0)
(s1019 1.0)
(s1020 1.0)
(s1021 1.0)
(s1022 1.0)
(s1023 1.0)
(s1024 1.0)
(s1025 1.0)
(s1026 1.0)
(s1027 1.0)
(s1028 1.0)
(s1029 1.0)
(s1030 1.0)
(s1031 1.0)
(s1032 1.0)
(s1033 1.0)
(s1034 1.0)
(s1035 1.0)
(s1036 1.0)
(s1037 1.0)
(s1038 1.0)
(s1039 1.0)
(s1040 1.0)
(s1041 1.0)
(s1042 1.0)
(s1043 1.0)
(s1044 1.0)
(s1045 1.0)
(s1046 1.0)
(s1047 1.0)
(s1048 1.0)
(s1049 1.0)
(s1050 1.0)
(s1051 1.0)
(s1052 1.0)
(s1053 1.0)
(s1054 1.0)
(s1055 1.0)
(s1056 1.0)
(s1057 1.0)
(s1058 1.0)
(s1059 1.0)
(s1060 1.0)
(s1061 1.0)
(s1062 1.0)
(s1063 1.0)
(s1064 1.0)
(s1065 1.0)
(s1066 1.0)
(s1067 1.0)
(s1068 1.0)
(s1069 1.0)
(s1070 1.0)
(s1071 1.0)
(s1072 1.0)
(s1073 1.0)
(s1074 1.0)
(s1075 1.0)
(s1076 1.0)
(s1077 1.0)
(s1078 1.0)
(s1079 1.0)
(s1080 1.0)
(s1081 1.0)
(s1082 1.0)
(s1083 1.0)
(s1084 1.0)
(s1085 1.0)
(s1086 1.0)
(s1087 1.0)
(s1088 1.0)
(s1089 1.0)
(s1090 1.0)
(s1091 1.0)
(s1092 1.0)
(s1093 1.0)
(s1094 1.0)
(s1095 1.0)
(s1096 1.0)
(s1097 1.0)
(s1098 1.0)
(s1099 1.0)
(s1100 1.0)
(s1101 1.0)
(s1102 1.0)
(s1103 1.0)
(s1104 1.0)
(s1105 1.0)
(s1106 1.0)
(s1107 1.0)
(s1108 1.0)
(s1109 1.0)
(s1110 1.0)
(s1111 1.0)
(s1112 1.0)
(s1113 1.0)
(s1114 1.0)
(s1115 1.0)
(s1116 1.0)
(s1117 1.0)
(s1118 1.0)
(s1119 1.0)
(s1120 1.0)
(s1121 1.0)
(s1122 1.0)
(s1123 1.0)
(s1124 1.0)
(s1125 1.0)
(s1126 1.0)
(s1127 1.0)
(s1128 1.0)
(s1129 1.0)
(s1130 1.0)
(s1131 1.0)
(s1132 1.0)
(s1133 1.0)
(s1134 1.0)
(s1135 1.0)
(s1136 1.0)
(s1137 1.0)
(s1138 1.0)
(s1139 1.0)
(s1140 1.0)
(s1141 1.0)
(s1142 1.0)
(s1143 1.0)
(s1144 1.0)
(s1145 1.0)
(s1146 1.0)
(s1147 1.0)
(s1148 1.0)
(s1149 1.0)
(s1150 1.0)
(s1151 1.0)
(s1152 1.0)
(s1153 1.0)
(s1154 1.0)
(s1155 1.0)
(s1156 1.0)
(s1157 1.0)
(s1158 1.0)
(s1159 1.0)
(s1160 1.0)
(s1161 1.0)
(s1162 1.0)
(s1163 1.0)
(s1164 1.0)
(s1165 1.0)
(s1166 1.0)
(s1167 1.0)
(s1168 1.0)
(s1169 1.0)
(s1170 1.0)
(s1171 1.0)
(s1172 1.0)
(s1173 1.0)
(s1174 1.0)
(s1175 1.0)
(s1176 1.0)
(s1177 1.0)
(s1178 1.0)
(s1179 1.0)
(s1180 1.0)
(s1181 1.0)
(s1182 1.0)
(s1183 1.0)
(s1184 1.0)
(s1185 1.0)
(s1186 1.0)
(s1187 1.0)
(s1188 1.0)
(s1189 1.0)
(s1190 1.0)
(s1191 1.0)
(s1192 1.0)
(s1193 1.0)
(s1194 1.0)
(s1195 1.0)
(s1196 1.0)
(s1197 1.0)
(s1198 1.0)
(s1199 1.0)
(s1200 1.0)
(s1201 1.0)
(s1202 1.0)
(s1203 1.0)
(s1204 1.0)
(s1205 1.0)
(s1206 1.0)
(s1207 1.0)
(s1208 1.0)
(s1209 1.0)
(s1210 1.0)
(s1211 1.0)
(s1212 1.0)
(s1213 1.0)
(s1214 1.0)
(s1215 1.0)
(s1216 1.0)
(s1217 1.0)
(s1218 1.0)
(s1219 1.0)
(s1220 1.0)
(s1221 1.0)
(s1222 1.0)
(s1223 1.0)
(s1224 1.0)
(s1225 1.0)
(s1226 1.0)
(s1227 1.0)
(s1228 1.0)
(s1229 1.0)
(s1230 1.0)
(s1231 1.0)
(s1232 1.0)
(s1233 1.0)
(s1234 1.0)
(s1235 1.0)
(s1236 1.0)
(s1237 1.0)
(s1238 1.0)
(s1239 1.0)
(s1240 1.0)
(s1241 1.0)
(s1242 1.0)
(s1243 1.0)
(s1244 1.0)
(s1245 1.0)
(s1246 1.0)
(s1247 1.0)
(s1248 1.0)
(s1249 1.0)
(s1250 1.0)
(s1251 1.0)
(s1252 1.0)
(s1253 1.0)
(s1254 1.0)
(s1255 1.0)
(s1256 1.0)
(s1257 1.0)
(s1258 1.0)
(s1259 1.0)
(s1260 1.0)
(s1261 1.0)
(s1262 1.0)
(s1263 1.0)
(s1264 1.0)
(s1265 1.0)
(s1266 1.0)
(s1267 1.0)
(s1268 1.0)
(s1269 1.0)
(s1270 1.0)
(s1271 1.0)
(s1272 1.0)
(s1273 1.0)
(s1274 1.0)
(s1275 1.0)
(s1276 1.0)
(s1277 1.0)
(s1278 1.0)
(s1279 1.0)
(s1280 1.0)
(s1281 1.0)
(s1282 1.0)
(s1283 1.0)
(s1284 1.0)
(s1285 1.0)
(s1286 1.0)
(s1287 1.0)
(s1288 1.0)
(s1289 1.0)
(s1290 1.0)
(s1291 1.0)
(s1292 1.0)
(s1293 1.0)
(s1294 1.0)
(s1295 1.0)
(s1296 1.0)
(s1297 1.0)
(s1298 1.0)
(s1299 1.0)
(s1300 1.0)
(s1301 1.0)
(s1302 1.0)
(s1303 1.0)
(s1304 1.0)
(s1305 1.0)
(s1306 1.0)
(s1307 1.0)
(s1308 1.0)
(s1309 1.0)
(s1310 1.0)
(s1311 1.0)
(s1312 1.0)
(s1313 1.0)
(s1314 1.0)
(s1315 1.0)
(s1316 1.0)
(s1317 1.0)
(s1318 1.0)
(s1319 1.0)
(s1320 1.0)
(s1321 1.0)
(s1322 1.0)
(s1323 1.0)
(s1324 1.0)
(s1325 1.0)
(s1326 1.0)
(s1327 1.0)
(s1328 1.0)
(s1329 1.0)
(s1330 1.0)
(s1331 1.0)
(s1332 1.0)
(s1333 1.0)
(s1334 1.0)
(s1335 1.0)
(s1336 1.0)
(s1337 1.0)
(s1338 1.0)
(s1339 1.0)
(s1340 1.0)
(s1341 1.0)
(s1342 1.0)
(s1343 1.0)
(s1344 1.0)
(s1345 1.0)
(s1346 1.0)
(s1347 1.0)
(s1348 1.0)
(s1349 1.0)
(s1350 1.0)
(s1351 1.0)
(s1352 1.0)
(s1353 1.0)
(s1354 1.0)
(s1355 1.0)
(s1356 1.0)
(s1357 1.0)
(s1358 1.0)
(s1359 1.0)
(s1360 1.0)
(s1361 1.0)
(s1362 1.0)
(s1363 1.0)
(s1364 1.0)
(s1365 1.0)
(s1366 1.0)
(s1367 1.0)
(s1368 1.0)
(s1369 1.0)
(s1370 1.0)
(s1371 1.0)
(s1372 1.0)
(s1373 1.0)
(s1374 1.0)
(s1375 1.0)
(s1376 1.0)
(s1377 1.0)
(s1378 1.0)
(s1379 1.0)
(s1380 1.0)
(s1381 1.0)
(s1382 1.0)
(s1383 1.0)
(s1384 1.0)
(s1385 1.0)
(s1386 1.0)
(s1387 1.0)
(s1388 1.0)
(s1389 1.0)
(s1390 1.0)
(s1391 1.0)
(s1392 1.0)
(s1393 1.0)
(s1394 1.0)
(s1395 1.0)
(s1396 1.0)
(s1397 1.0)
(s1398 1.0)
(s1399 1.0)
(s1400 1.0)
(s1401 1.0)
(s1402 1.0)
(s1403 1.0)
(s1404 1.0)
(s1405 1.0)
(s1406 1.0)
(s1407 1.0)
(s1408 1.0)
(s1409 1.0)
(s1410 1.0)
(s1411 1.0)
(s1412 1.0)
(s1413 1.0)
(s1414 1.0)
(s1415 1.0)
(s1416 1.0)
(s1417 1.0)
(s1418 1.0)
(s1419 1.0)
(s1420 1.0)
(s1421 1.0)
(s1422 1.0)
(s1423 1.0)
(s1424 1.0)
(s1425 1.0)
(s1426 1.0)
(s1427 1.0)
(s1428 1.0)
(s1429 1.0)
(s1430 1.0)
(s1431 1.0)
(s1432 1.0)
(s1433 1.0)
(s1434 1.0)
(s1435 1.0)
(s1436 1.0)
(s1437 1.0)
(s1438 1.0)
(s1439 1.0)
(s1440 1.0)
(s1441 1.0)
(s1442 1.0)
(s1443 1.0)
(s1444 1.0)
(s1445 1.0)
(s1446 1.0)
(s1447 1.0)
(s1448 1.0)
(s1449 1.0)
(s1450 1.0)
(s1451 1.0)
(s1452 1.0)
(s1453 1.0)
(s1454 1.0)
(s1455 1.0)
(s1456 1.0)
(s1457 1.0)
(s1458 1.0)
(s1459 1.0)
(s1460 1.0)
(s1461 1.0)
(s1462 1.0)
(s1463 1.0)
(s1464 1.0)
(s1465 1.0)
(s1466 1.0)
(s1467 1.0)
(s1468 1.0)
(s1469 1.0)
(s1470 1.0)
(s1471 1.0)
(s1472 1.0)
(s1473 1.0)
(s1474 1.0)
(s1475 1.0)
(s1476 1.0)
(s1477 1.0)
(s1478 1.0)
(s1479 1.0)
(s1480 1.0)
(s1481 1.0)
(s1482 1.0)
(s1483 1.0)
(s1484 1.0)
(s1485 1.0)
(s1486 1.0)
(s1487 1.0)
(s1488 1.0)
(s1489 1.0)
(s1490 1.0)
(s1491 1.0)
(s1492 1.0)
(s1493 1.0)
(s1494 1.0)
(s1495 1.0)
(s1496 1.0)
(s1497 1.0)
(s1498 1.0)
(s1499 1.0)
(s1500 1.0)
(s1501 1.0)
(s1502 1.0)
(s1503 1.0)
(s1504 1.0)
(s1505 1.0)
(s1506 1.0)
(s1507 1.0)
(s1508 1.0)
(s1509 1.0)
(s1510 1.0)
(s1511 1.0)
(s1512 1.0)
(s1513 1.0)
(s1514 1.0)
(s1515 1.0)
(s1516 1.0)
(s1517 1.0)
(s1518 1.0)
(s1519 1.0)
(s1520 1.0)
(s1521 1.0)
(s1522 1.0)
(s1523 1.0)
(s1524 1.0)
(s1525 1.0)
(s1526 1.0)
(s1527 1.0)
(s1528 1.0)
(s1529 1.0)
(s1530 1.0)
(s1531 1.0)
(s1532 1.0)
(s1533 1.0)
(s1534 1.0)
(s1535 1.0)
(s1536 1.0)
(s1537 1.0)
(s1538 1.0)
(s1539 1.0)
(s1540 1.0)
(s1541 1.0)
(s1542 1.0)
(s1543 1.0)
(s1544 1.0)
(s1545 1.0)
(s1546 1.0)
(s1547 1.0)
(s1548 1.0)
(s1549 1.0)
(s1550 1.0)
(s1551 1.0)
(s1552 1.0)
(s1553 1.0)
(s1554 1.0)
(s1555 1.0)
(s1556 1.0)
(s1557 1.0)
(s1558 1.0)
(s1559 1.0)
(s1560 1.0)
(s1561 1.0)
(s1562 1.0)
(s1563 1.0)
(s1564 1.0)
(s1565 1.0)
(s1566 1.0)
(s1567 1.0)
(s1568 1.0)
(s1569 1.0)
(s1570 1.0)
(s1571 1.0)
(s1572 1.0)
(s1573 1.0)
(s1574 1.0)
(s1575 1.0)
(s1576 1.0)
(s1577 1.0)
(s1578 1.0)
(s1579 1.0)
(s1580 1.0)
(s1581 1.0)
(s1582 1.0)
(s1583 1.0)
(s1584 1.0)
(s1585 1.0)
(s1586 1.0)
(s1587 1.0)
(s1588 1.0)
(s1589 1.0)
(s1590 1.0)
(s1591 1.0)
(s1592 1.0)
(s1593 1.0)
(s1594 1.0)
(s1595 1.0)
(s1596 1.0)
(s1597 1.0)
(s1598 1.0)
(s1599 1.0)
(s1600 1.0)
(s1601 1.0)
(s1602 1.0)
(s1603 1.0)
(s1604 1.0)
(s1605 1.0)
(s1606 1.0)
(s1607 1.0)
(s1608 1.0)
(s1609 1.0)
(s1610 1.0)
(s1611 1.0)
(s1612 1.0)
(s1613 1.0)
(s1614 1.0)
(s1615 1.0)
(s1616 1.0)
(s1617 1.0)
(s1618 1.0)
(s1619 1.0)
(s1620 1.0)
(s1621 1.0)
(s1622 1.0)
(s1623 1.0)
(s1624 1.0)
(s1625 1.0)
(s1626 1.0)
(s1627 1.0)
(s1628 1.0)
(s1629 1.0)
(s1630 1.0)
(s1631 1.0)
(s1632 1.0)
(s1633 1.0)
(s1634 1.0)
(s1635 1.0)
(s1636 1.0)
(s1637 1.0)
(s1638 1.0)
(s1639 1.0)
(s1640 1.0)
(s1641 1.0)
(s1642 1.0)
(s1643 1.0)
(s1644 1.0)
(s1645 1.0)
(s1646 1.0)
(s1647 1.0)
(s1648 1.0)
(s1649 1.0)
(s1650 1.0)
(s1651 1.0)
(s1652 1.0)
(s1653 1.0)
(s1654 1.0)
(s1655 1.0)
(s1656 1.0)
(s1657 1.0)
(s1658 1.0)
(s1659 1.0)
(s1660 1.0)
(s1661 1.0)
(s1662 1.0)
(s1663 1.0)
(s1664 1.0)
(s1665 1.0)
(s1666 1.0)
(s1667 1.0)
(s1668 1.0)
(s1669 1.0)
(s1670 1.0)
(s1671 1.0)
(s1672 1.0)
(s1673 1.0)
(s1674 1.0)
(s1675 1.0)
(s1676 1.0)
(s1677 1.0)
(s1678 1.0)
(s1679 1.0)
(s1680 1.0)
(s1681 1.0)
(s1682 1.0)
(s1683 1.0)
(s1684 1.0)
(s1685 1.0)
(s1686 1.0)
(s1687 1.0)
(s1688 1.0)
(s1689 1.0)
(s1690 1.0)
(s1691 1.0)
(s1692 1.0)
(s1693 1.0)
(s1694 1.0)
(s1695 1.0)
(s1696 1.0)
(s1697 1.0)
(s1698 1.0)
(s1699 1.0)
(s1700 1.0)
(s1701 1.0)
(s1702 1.0)
(s1703 1.0)
(s1704 1.0)
(s1705 1.0)
(s1706 1.0)
(s1707 1.0)
(s1708 1.0)
(s1709 1.0)
(s1710 1.0)
(s1711 1.0)
(s1712 1.0)
(s1713 1.0)
(s1714 1.0)
(s1715 1.0)
(s1716 1.0)
(s1717 1.0)
(s1718 1.0)
(s1719 1.0)
(s1720 1.0)
(s1721 1.0)
(s1722 1.0)
(s1723 1.0)
(s1724 1.0)
(s1725 1.0)
(s1726 1.0)
(s1727 1.0)
(s1728 1.0)
(s1729 1.0)
(s1730 1.0)
(s1731 1.0)
(s1732 1.0)
(s1733 1.0)
(s1734 1.0)
(s1735 1.0)
(s1736 1.0)
(s1737 1.0)
(s1738 1.0)
(s1739 1.0)
(s1740 1.0)
(s1741 1.0)
(s1742 1.0)
(s1743 1.0)
(s1744 1.0)
(s1745 1.0)
(s1746 1.0)
(s1747 1.0)
(s1748 1.0)
(s1749 1.0)
(s1750 1.0)
(s1751 1.0)
(s1752 1.0)
(s1753 1.0)
(s1754 1.0)
(s1755 1.0)
(s1756 1.0)
(s1757 1.0)
(s1758 1.0)
(s1759 1.0)
(s1760 1.0)
(s1761 1.0)
(s1762 1.0)
(s1763 1.0)
(s1764 1.0)
(s1765 1.0)
(s1766 1.0)
(s1767 1.0)
(s1768 1.0)
(s1769 1.0)
(s1770 1.0)
(s1771 1.0)
(s1772 1.0)
(s1773 1.0)
(s1774 1.0)
(s1775 1.0)
(s1776 1.0)
(s1777 1.0)
(s1778 1.0)
(s1779 1.0)
(s1780 1.0)
(s1781 1.0)
(s1782 1.0)
(s1783 1.0)
(s1784 1.0)
(s1785 1.0)
(s1786 1.0)
(s1787 1.0)
(s1788 1.0)
(s1789 1.0)
(s1790 1.0)
(s1791 1.0)
(s1792 1.0)
(s1793 1.0)
(s1794 1.0)
(s1795 1.0)
(s1796 1.0)
(s1797 1.0)
(s1798 1.0)
(s1799 1.0)
(s1800 1.0)
(s1801 1.0)
(s1802 1.0)
(s1803 1.0)
(s1804 1.0)
(s1805 1.0)
(s1806 1.0)
(s1807 1.0)
(s1808 1.0)
(s1809 1.0)
(s1810 1.0)
(s1811 1.0)
(s1812 1.0)
(s1813 1.0)
(s1814 1.0)
(s1815 1.0)
(s1816 1.0)
(s1817 1.0)
(s1818 1.0)
(s1819 1.0)
(s1820 1.0)
(s1821 1.0)
(s1822 1.0)
(s1823 1.0)
(s1824 1.0)
(s1825 1.0)
(s1826 1.0)
(s1827 1.0)
(s1828 1.0)
(s1829 1.0)
(s1830 1.0)
(s1831 1.0)
(s1832 1.0)
(s1833 1.0)
(s1834 1.0)
(s1835 1.0)
(s1836 1.0)
(s1837 1.0)
(s1838 1.0)
(s1839 1.0)
(s1840 1.0)
(s1841 1.0)
(s1842 1.0)
(s1843 1.0)
(s1844 1.0)
(s1845 1.0)
(s1846 1.0)
(s1847 1.0)
(s1848 1.0)
(s1849 1.0)
(s1850 1.0)
(s1851 1.0)
(s1852 1.0)
(s1853 1.0)
(s1854 1.0)
(s1855 1.0)
(s1856 1.0)
(s1857 1.0)
(s1858 1.0)
(s1859 1.0)
(s1860 1.0)
(s1861 1.0)
(s1862 1.0)
(s1863 1.0)
(s1864 1.0)
(s1865 1.0)
(s1866 1.0)
(s1867 1.0)
(s1868 1.0)
(s1869 1.0)
(s1870 1.0)
(s1871 1.0)
(s1872 1.0)
(s1873 1.0)
(s1874 1.0)
(s1875 1.0)
(s1876 1.0)
(s1877 1.0)
(s1878 1.0)
(s1879 1.0)
(s1880 1.0)
(s1881 1.0)
(s1882 1.0)
(s1883 1.0)
(s1884 1.0)
(s1885 1.0)
(s1886 1.0)
(s1887 1.0)
(s1888 1.0)
(s1889 1.0)
(s1890 1.0)
(s1891 1.0)
(s1892 1.0)
(s1893 1.0)
(s1894 1.0)
(s1895 1.0)
(s1896 1.0)
(s1897 1.0)
(s1898 1.0)
(s1899 1.0)
(s1900 1.0)
(s1901 1.0)
(s1902 1.0)
(s1903 1.0)
(s1904 1.0)
(s1905 1.0)
(s1906 1.0)
(s1907 1.0)
(s1908 1.0)
(s1909 1.0)
(s1910 1.0)
(s1911 1.0)
(s1912 1.0)
(s1913 1.0)
(s1914 1.0)
(s1915 1.0)
(s1916 1.0)
(s1917 1.0)
(s1918 1.0)
(s1919 1.0)
(s1920 1.0)
(s1921 1.0)
(s1922 1.0)
(s1923 1.0)
(s1924 1.0)
(s1925 1.0)
(s1926 1.0)
(s1927 1.0)
(s1928 1.0)
(s1929 1.0)
(s1930 1.0)
(s1931 1.0)
(s1932 1.0)
(s1933 1.0)
(s1934 1.0)
(s1935 1.0)
(s1936 1.0)
(s1937 1.0)
(s1938 1.0)
(s1939 1.0)
(s1940 1.0)
(s1941 1.0)
(s1942 1.0)
(s1943 1.0)
(s1944 1.0)
(s1945 1.0)
(s1946 1.0)
(s1947 1.0)
(s1948 1.0)
(s1949 1.0)
(s1950 1.0)
(s1951 1.0)
(s1952 1.0)
(s1953 1.0)
(s1954 1.0)
(s1955 1.0)
(s1956 1.0)
(s1957 1.0)
(s1958 1.0)
(s1959 1.0)
(s1960 1.0)
(s1961 1.0)
(s1962 1.0)
(s1963 1.0)
(s1964 1.0)
(s1965 1.0)
(s1966 1.0)
(s1967 1.0)
(s1968 1.0)
(s1969 1.0)
(s1970 1.0)
(s1971 1.0)
(s1972 1.0)
(s1973 1.0)
(s1974 1.0)
(s1975 1.0)
(s1976 1.0)
(s1977 1.0)
(s1978 1.0)
(s1979 1.0)
(s1980 1.0)
(s1981 1.0)
(s1982 1.0)
(s1983 1.0)
(s1984 1.0)
(s1985 1.0)
(s1986 1.0)
(s1987 1.0)
(s1988 1.0)
(s1989 1.0)
(s1990 1.0)
(s1991 1.0)
(s1992 1.0)
(s1993 1.0)
(s1994 1.0)
(s1995 1.0)
(s1996 1.0)
(s1997 1.0)
(s1998 1.0)
(s1999 1.0)
(s2000 1.0)
(s2001 1.0)
(s2002 1.0)
(s2003 1.0)
(s2004 1.0)
(s2005 1.0)
(s2006 1.0)
(s2007 1.0)
(s2008 1.0)
(s2009 1.0)
(s2010 1.0)
(s2011 1.0)
(s2012 1.0)
(s2013 1.0)
(s2014 1.0)
(s2015 1.0)
(s2016 1.0)
(s2017 1.0)
(s2018 1.0)
(s2019 1.0)
(s2020 1.0)
(s2021 1.0)
(s2022 1.0)
(s2023 1.0)
(s2024 1.0)
(s2025 1.0)
(s2026 1.0)
(s2027 1.0)
(s2028 1.0)
(s2029 1.0)
(s2030 1.0)
(s2031 1.0)
(s2032 1.0)
(s2033 1.0)
(s2034 1.0)
(s2035 1.0)
(s2036 1.0)
(s2037 1.0)
(s2038 1.0)
(s2039 1.0)
(s2040 1.0)
(s2041 1.0)
(s2042 1.0)
(s2043 1.0)
(s2044 1.0)
(s2045 1.0)
(s2046 1.0)
(s2047 1.0)
(s2048 1.0)
(s2049 1.0)
(s2050 1.0)
(s2051 1.0)
(s2052 1.0)
(s2053 1.0)
(s2054 1.0)
(s2055 1.0)
(s2056 1.0)
(s2057 1.0)
(s2058 1.0)
(s2059 1.0)
(s2060 1.0)
(s2061 1.0)
(s2062 1.0)
(s2063 1.0)
(s2064 1.0)
(s2065 1.0)
(s2066 1.0)
(s2067 1.0)
(s2068 1.0)
(s2069 1.0)
(s2070 1.0)
(s2071 1.0)
(s2072 1.0)
(s2073 1.0)
(s2074 1.0)
(s2075 1.0)
(s2076 1.0)
(s2077 1.0)
(s2078 1.0)
(s2079 1.0)
(s2080 1.0)
(s2081 1.0)
(s2082 1.0)
(s2083 1.0)
(s2084 1.0)
(s2085 1.0)
(s2086 1.0)
(s2087 1.0)
(s2088 1.0)
(s2089 1.0)
(s2090 1.0)
(s2091 1.0)
(s2092 1.0)
(s2093 1.0)
(s2094 1.0)
(s2095 1.0)
(s2096 1.0)
(s2097 1.0)
(s2098 1.0)
(s2099 1.0)
(s2100 1.0)
(s2101 1.0)
(s2102 1.0)
(s2103 1.0)
(s2104 1.0)
(s2105 1.0)
(s2106 1.0)
(s2107 1.0)
(s2108 1.0)
(s2109 1.0)
(s2110 1.0)
(s2111 1.0)
(s2112 1.0)
(s2113 1.0)
(s2114 1.0)
(s2115 1.0)
(s2116 1.0)
(s2117 1.0)
(s2118 1.0)
(s2119 1.0)
(s2120 1.0)
(s2121 1.0)
(s2122 1.0)
(s2123 1.0)
(s2124 1.0)
(s2125 1.0)
(s2126 1.0)
(s2127 1.0)
(s2128 1.0)
(s2129 1.0)
(s2130 1.0)
(s2131 1.0)
(s2132 1.0)
(s2133 1.0)
(s2134 1.0)
(s2135 1.0)
(s2136 1.0)
(s2137 1.0)
(s2138 1.0)
(s2139 1.0)
(s2140 1.0)
(s2141 1.0)
(s2142 1.0)
(s2143 1.0)
(s2144 1.0)
(s2145 1.0)
(s2146 1.0)
(s2147 1.0)
(s2148 1.0)
(s2149 1.0)
(s2150 1.0)
(s2151 1.0)
(s2152 1.0)
(s2153 1.0)
(s2154 1.0)
(s2155 1.0)
(s2156 1.0)
(s2157 1.0)
(s2158 1.0)
(s2159 1.0)
(s2160 1.0)
(s2161 1.0)
(s2162 1.0)
(s2163 1.0)
(s2164 1.0)
(s2165 1.0)
(s2166 1.0)
(s2167 1.0)
(s2168 1.0)
(s2169 1.0)
(s2170 1.0)
(s2171 1.0)
(s2172 1.0)
(s2173 1.0)
(s2174 1.0)
(s2175 1.0)
(s2176 1.0)
(s2177 1.0)
(s2178 1.0)
(s2179 1.0)
(s2180 1.0)
(s2181 1.0)
(s2182 1.0)
(s2183 1.0)
(s2184 1.0)
(s2185 1.0)
(s2186 1.0)
(s2187 1.0)
(s2188 1.0)
(s2189 1.0)
(s2190 1.0)
(s2191 1.0)
(s2192 1.0)
(s2193 1.0)
(s2194 1.0)
(s2195 1.0)
(s2196 1.0)
(s2197 1.0)
(s2198 1.0)
(s2199 1.0)
(s2200 1.0)
(s2201 1.0)
(s2202 1.0)
(s2203 1.0)
(s2204 1.0)
(s2205 1.0)
(s2206 1.0)
(s2207 1.0)
(s2208 1.0)
(s2209 1.0)
(s2210 1.0)
(s2211 1.0)
(s2212 1.0)
(s2213 1.0)
(s2214 1.0)
(s2215 1.0)
(s2216 1.0)
(s2217 1.0)
(s2218 1.0)
(s2219 1.0)
(s2220 1.0)
(s2221 1.0)
(s2222 1.0)
(s2223 1.0)
(s2224 1.0)
(s2225 1.0)
(s2226 1.0)
(s2227 1.0)
(s2228 1.0)
(s2229 1.0)
(s2230 1.0)
(s2231 1.0)
(s2232 1.0)
(s2233 1.0)
(s2234 1.0)
(s2235 1.0)
(s2236 1.0)
(s2237 1.0)
(s2238 1.0)
(s2239 1.0)
(s2240 1.0)
(s2241 1.0)
(s2242 1.0)
(s2243 1.0)
(s2244 1.0)
(s2245 1.0)
(s2246 1.0)
(s2247 1.0)
(s2248 1.0)
(s2249 1.0)
(s2250 1.0)
(s2251 1.0)
(s2252 1.0)
(s2253 1.0)
(s2254 1.0)
(s2255 1.0)
(s2256 1.0)
(s2257 1.0)
(s2258 1.0)
(s2259 1.0)
(s2260 1.0)
(s2261 1.0)
(s2262 1.0)
(s2263 1.0)
(s2264 1.0)
(s2265 1.0)
(s2266 1.0)
(s2267 1.0)
(s2268 1.0)
(s2269 1.0)
(s2270 1.0)
(s2271 1.0)
(s2272 1.0)
(s2273 1.0)
(s2274 1.0)
(s2275 1.0)
(s2276 1.0)
(s2277 1.0)
(s2278 1.0)
(s2279 1.0)
(s2280 1.0)
(s2281 1.0)
(s2282 1.0)
(s2283 1.0)
(s2284 1.0)
(s2285 1.0)
(s2286 1.0)
(s2287 1.0)
(s2288 1.0)
(s2289 1.0)
(s2290 1.0)
(s2291 1.0)
(s2292 1.0)
(s2293 1.0)
(s2294 1.0)
(s2295 1.0)
(s2296 1.0)
(s2297 1.0)
(s2298 1.0)
(s2299 1.0)
(s2300 1.0)
(s2301 1.0)
(s2302 1.0)
(s2303 1.0)
(s2304 1.0)
(s2305 1.0)
(s2306 1.0)
(s2307 1.0)
(s2308 1.0)
(s2309 1.0)
(s2310 1.0)
(s2311 1.0)
(s2312 1.0)
(s2313 1.0)
(s2314 1.0)
(s2315 1.0)
(s2316 1.0)
(s2317 1.0)
(s2318 1.0)
(s2319 1.0)
(s2320 1.0)
(s2321 1.0)
(s2322 1.0)
(s2323 1.0)
(s2324 1.0)
(s2325 1.0)
(s2326 1.0)
(s2327 1.0)
(s2328 1.0)
(s2329 1.0)
(s2330 1.0)
(s2331 1.0)
(s2332 1.0)
(s2333 1.0)
(s2334 1.0)
(s2335 1.0)
(s2336 1.0)
(s2337 1.0)
(s2338 1.0)
(s2339 1.0)
(s2340 1.0)
(s2341 1.0)
(s2342 1.0)
(s2343 1.0)
(s2344 1.0)
(s2345 1.0)
(s2346 1.0)
(s2347 1.0)
(s2348 1.0)
(s2349 1.0)
(s2350 1.0)
(s2351 1.0)
(s2352 1.0)
(s2353 1.0)
(s2354 1.0)
(s2355 1.0)
(s2356 1.0)
(s2357 1.0)
(s2358 1.0)
(s2359 1.0)
(s2360 1.0)
(s2361 1.0)
(s2362 1.0)
(s2363 1.0)
(s2364 1.0)
(s2365 1.0)
(s2366 1.0)
(s2367 1.0)
(s2368 1.0)
(s2369 1.0)
(s2370 1.0)
(s2371 1.0)
(s2372 1.0)
(s2373 1.0)
(s2374 1.0)
(s2375 1.0)
(s2376 1.0)
(s2377 1.0)
(s2378 1.0)
(s2379 1.0)
(s2380 1.0)
(s2381 1.0)
(s2382 1.0)
(s2383 1.0)
(s2384 1.0)
(s2385 1.0)
(s2386 1.0)
(s2387 1.0)
(s2388 1.0)
(s2389 1.0)
(s2390 1.0)
(s2391 1.0)
(s2392 1.0)
(s2393 1.0)
(s2394 1.0)
(s2395 1.0)
(s2396 1.0)
(s2397 1.0)
(s2398 1.0)
(s2399 1.0)
(s2400 1.0)
(s2401 1.0)
(s2402 1.0)
(s2403 1.0)
(s2404 1.0)
(s2405 1.0)
(s2406 1.0)
(s2407 1.0)
(s2408 1.0)
(s2409 1.0)
(s2410 1.0)
(s2411 1.0)
(s2412 1.0)
(s2413 1.0)
(s2414 1.0)
(s2415 1.0)
(s2416 1.0)
(s2417 1.0)
(s2418 1.0)
(s2419 1.0)
(s2420 1.0)
(s2421 1.0)
(s2422 1.0)
(s2423 1.0)
(s2424 1.0)
(s2425 1.0)
(s2426 1.0)
(s2427 1.0)
(s2428 1.0)
(s2429 1.0)
(s2430 1.0)
(s2431 1.0)
(s2432 1.0)
(s2433 1.0)
(s2434 1.0)
(s2435 1.0)
(s2436 1.0)
(s2437 1.0)
(s2438 1.0)
(s2439 1.0)
(s2440 1.0)
(s2441 1.0)
(s2442 1.0)
(s2443 1.0)
(s2444 1.0)
(s2445 1.0)
(s2446 1.0)
(s2447 1.0)
(s2448 1.0)
(s2449 1.0)
(s2450 1.0)
(s2451 1.0)
(s2452 1.0)
(s2453 1.0)
(s2454 1.0)
(s2455 1.0)
(s2456 1.0)
(s2457 1.0)
(s2458 1.0)
(s2459 1.0)
(s2460 1.0)
(s2461 1.0)
(s2462 1.0)
(s2463 1.0)
(s2464 1.0)
(s2465 1.0)
(s2466 1.0)
(s2467 1.0)
(s2468 1.0)
(s2469 1.0)
(s2470 1.0)
(s2471 1.0)
(s2472 1.0)
(s2473 1.0)
(s2474 1.0)
(s2475 1.0)
(s2476 1.0)
(s2477 1.0)
(s2478 1.0)
(s2479 1.0)
(s2480 1.0)
(s2481 1.0)
(s2482 1.0)
(s2483 1.0)
(s2484 1.0)
(s2485 1.0)
(s2486 1.0)
(s2487 1.0)
(s2488 1.0)
(s2489 1.0)
(s2490 1.0)
(s2491 1.0)
(s2492 1.0)
(s2493 1.0)
(s2494 1.0)
(s2495 1.0)
(s2496 1.0)
(s2497 1.0)
(s2498 1.0)
(s2499 1.0)
(s2500 1.0)
(s2501 1.0)
(s2502 1.0)
(s2503 1.0)
(s2504 1.0)
(s2505 1.0)
(s2506 1.0)
(s2507 1.0)
(s2508 1.0)
(s2509 1.0)
(s2510 1.0)
(s2511 1.0)
(s2512 1.0)
(s2513 1.0)
(s2514 1.0)
(s2515 1.0)
(s2516 1.0)
(s2517 1.0)
(s2518 1.0)
(s2519 1.0)
(s2520 1.0)
(s2521 1.0)
(s2522 1.0)
(s2523 1.0)
(s2524 1.0)
(s2525 1.0)
(s2526 1.0)
(s2527 1.0)
(s2528 1.0)
(s2529 1.0)
(s2530 1.0)
(s2531 1.0)
(s2532 1.0)
(s2533 1.0)
(s2534 1.0)
(s2535 1.0)
(s2536 1.0)
(s2537 1.0)
(s2538 1.0)
(s2539 1.0)
(s2540 1.0)
(s2541 1.0)
(s2542 1.0)
(s2543 1.0)
(s2544 1.0)
(s2545 1.0)
(s2546 1.0)
(s2547 1.0)
(s2548 1.0)
(s2549 1.0)
(s2550 1.0)
(s2551 1.0)
(s2552 1.0)
(s2553 1.0)
(s2554 1.0)
(s2555 1.0)
(s2556 1.0)
(s2557 1.0)
(s2558 1.0)
(s2559 1.0)
(s2560 1.0)
(s2561 1.0)
(s2562 1.0)
(s2563 1.0)
(s2564 1.0)
(s2565 1.0)
(s2566 1.0)
(s2567 1.0)
(s2568 1.0)
(s2569 1.0)
(s2570 1.0)
(s2571 1.0)
(s2572 1.0)
(s2573 1.0)
(s2574 1.0)
(s2575 1.0)
(s2576 1.0)
(s2577 1.0)
(s2578 1.0)
(s2579 1.0)
(s2580 1.0)
(s2581 1.0)
(s2582 1.0)
(s2583 1.0)
(s2584 1.0)
(s2585 1.0)
(s2586 1.0)
(s2587 1.0)
(s2588 1.0)
(s2589 1.0)
(s2590 1.0)
(s2591 1.0)
(s2592 1.0)
(s2593 1.0)
(s2594 1.0)
(s2595 1.0)
(s2596 1.0)
(s2597 1.0)
(s2598 1.0)
(s2599 1.0)
(s2600 1.0)
(s2601 1.0)
(s2602 1.0)
(s2603 1.0)
(s2604 1.0)
(s2605 1.0)
(s2606 1.0)
(s2607 1.0)
(s2608 1.0)
(s2609 1.0)
(s2610 1.0)
(s2611 1.0)
(s2612 1.0)
(s2613 1.0)
(s2614 1.0)
(s2615 1.0)
(s2616 1.0)
(s2617 1.0)
(s2618 1.0)
(s2619 1.0)
(s2620 1.0)
(s2621 1.0)
(s2622 1.0)
(s2623 1.0)
(s2624 1.0)
(s2625 1.0)
(s2626 1.0)
(s2627 1.0)
(s2628 1.0)
(s2629 1.0)
(s2630 1.0)
(s2631 1.0)
(s2632 1.0)
(s2633 1.0)
(s2634 1.0)
(s2635 1.0)
(s2636 1.0)
(s2637 1.0)
(s2638 1.0)
(s2639 1.0)
(s2640 1.0)
(s2641 1.0)
(s2642 1.0)
(s2643 1.0)
(s2644 1.0)
(s2645 1.0)
(s2646 1.0)
(s2647 1.0)
(s2648 1.0)
(s2649 1.0)
(s2650 1.0)
(s2651 1.0)
(s2652 1.0)
(s2653 1.0)
(s2654 1.0)
(s2655 1.0)
(s2656 1.0)
(s2657 1.0)
(s2658 1.0)
(s2659 1.0)
(s2660 1.0)
(s2661 1.0)
(s2662 1.0)
(s2663 1.0)
(s2664 1.0)
(s2665 1.0)
(s2666 1.0)
(s2667 1.0)
(s2668 1.0)
(s2669 1.0)
(s2670 1.0)
(s2671 1.0)
(s2672 1.0)
(s2673 1.0)
(s2674 1.0)
(s2675 1.0)
(s2676 1.0)
(s2677 1.0)
(s2678 1.0)
(s2679 1.0)
(s2680 1.0)
(s2681 1.0)
(s2682 1.0)
(s2683 1.0)
(s2684 1.0)
(s2685 1.0)
(s2686 1.0)
(s2687 1.0)
(s2688 1.0)
(s2689 1.0)
(s2690 1.0)
(s2691 1.0)
(s2692 1.0)
(s2693 1.0)
(s2694 1.0)
(s2695 1.0)
(s2696 1.0)
(s2697 1.0)
(s2698 1.0)
(s2699 1.0)
(s2700 1.0)
(s2701 1.0)
(s2702 1.0)
(s2703 1.0)
(s2704 1.0)
(s2705 1.0)
(s2706 1.0)
(s2707 1.0)
(s2708 1.0)
(s2709 1.0)
(s2710 1.0)
(s2711 1.0)
(s2712 1.0)
(s2713 1.0)
(s2714 1.0)
(s2715 1.0)
(s2716 1.0)
(s2717 1.0)
(s2718 1.0)
(s2719 1.0)
(s2720 1.0)
(s2721 1.0)
(s2722 1.0)
(s2723 1.0)
(s2724 1.0)
(s2725 1.0)
(s2726 1.0)
(s2727 1.0)
(s2728 1.0)
(s2729 1.0)
(s2730 1.0)
(s2731 1.0)
(s2732 1.0)
(s2733 1.0)
(s2734 1.0)
(s2735 1.0)
(s2736 1.0)
(s2737 1.0)
(s2738 1.0)
(s2739 1.0)
(s2740 1.0)
(s2741 1.0)
(s2742 1.0)
(s2743 1.0)
(s2744 1.0)
(s2745 1.0)
(s2746 1.0)
(s2747 1.0)
(s2748 1.0)
(s2749 1.0)
(s2750 1.0)
(s2751 1.0)
(s2752 1.0)
(s2753 1.0)
(s2754 1.0)
(s2755 1.0)
(s2756 1.0)
(s2757 1.0)
(s2758 1.0)
(s2759 1.0)
(s2760 1.0)
(s2761 1.0)
(s2762 1.0)
(s2763 1.0)
(s2764 1.0)
(s2765 1.0)
(s2766 1.0)
(s2767 1.0)
(s2768 1.0)
(s2769 1.0)
(s2770 1.0)
(s2771 1.0)
(s2772 1.0)
(s2773 1.0)
(s2774 1.0)
(s2775 1.0)
(s2776 1.0)
(s2777 1.0)
(s2778 1.0)
(s2779 1.0)
(s2780 1.0)
(s2781 1.0)
(s2782 1.0)
(s2783 1.0)
(s2784 1.0)
(s2785 1.0)
(s2786 1.0)
(s2787 1.0)
(s2788 1.0)
(s2789 1.0)
(s2790 1.0)
(s2791 1.0)
(s2792 1.0)
(s2793 1.0)
(s2794 1.0)
(s2795 1.0)
(s2796 1.0)
(s2797 1.0)
(s2798 1.0)
(s2799 1.0)
(s2800 1.0)
(s2801 1.0)
(s2802 1.0)
(s2803 1.0)
(s2804 1.0)
(s2805 1.0)
(s2806 1.0)
(s2807 1.0)
(s2808 1.0)
(s2809 1.0)
(s2810 1.0)
(s2811 1.0)
(s2812 1.0)
(s2813 1.0)
(s2814 1.0)
(s2815 1.0)
(s2816 1.0)
(s2817 1.0)
(s2818 1.0)
(s2819 1.0)
(s2820 1.0)
(s2821 1.0)
(s2822 1.0)
(s2823 1.0)
(s2824 1.0)
(s2825 1.0)
(s2826 1.0)
(s2827 1.0)
(s2828 1.0)
(s2829 1.0)
(s2830 1.0)
(s2831 1.0)
(s2832 1.0)
(s2833 1.0)
(s2834 1.0)
(s2835 1.0)
(s2836 1.0)
(s2837 1.0)
(s2838 1.0)
(s2839 1.0)
(s2840 1.0)
(s2841 1.0)
(s2842 1.0)
(s2843 1.0)
(s2844 1.0)
(s2845 1.0)
(s2846 1.0)
(s2847 1.0)
(s2848 1.0)
(s2849 1.0)
(s2850 1.0)
(s2851 1.0)
(s2852 1.0)
(s2853 1.0)
(s2854 1.0)
(s2855 1.0)
(s2856 1.0)
(s2857 1.0)
(s2858 1.0)
(s2859 1.0)
(s2860 timeout
1.0 org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
At refinement iteration 0 (INCLUDED_ONLY) 0/7500 variables, 7500/7500 constraints. Problems are: Problem set: 0 solved, 9600 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 7500/19320 variables, and 7500 constraints, problems are : Problem set: 0 solved, 9600 unsolved in 30187 ms.
Refiners :[Domain max(s): 7500/7560 constraints, Positive P Invariants (semi-flows): 0/60 constraints, State Equation: 0/7560 constraints, PredecessorRefiner: 9600/9600 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 9600 unsolved
At refinement iteration 0 (INCLUDED_ONLY) 0/7500 variables, 7500/7500 constraints. Problems are: Problem set: 0 solved, 9600 unsolved
Error getting values : (error "ParserException while parsing response: ((s60 1)
(s61 1)
(s62 1)
(s63 1)
(s64 1)
(s65 1)
(s66 1)
(s67 1)
(s68 1)
(s69 1)
(s70 1)
(s71 1)
(s72 1)
(s73 1)
(s74 1)
(s75 1)
(s76 1)
(s77 1)
(s78 1)
(s79 1)
(s80 1)
(s81 1)
(s82 1)
(s83 1)
(s84 1)
(s85 1)
(s86 1)
(s87 1)
(s88 1)
(s89 1)
(s90 1)
(s91 1)
(s92 1)
(s93 1)
(s94 1)
(s95 1)
(s96 1)
(s97 1)
(s98 1)
(s99 1)
(s100 1)
(s101 1)
(s102 1)
(s103 1)
(s104 1)
(s105 1)
(s106 1)
(s107 1)
(s108 1)
(s109 1)
(s110 1)
(s111 1)
(s112 1)
(s113 1)
(s114 1)
(s115 1)
(s116 1)
(s117 1)
(s118 1)
(s119 1)
(s120 1)
(s121 1)
(s122 1)
(s123 1)
(s124 1)
(s125 1)
(s126 1)
(s127 1)
(s128 1)
(s129 1)
(s130 1)
(s131 1)
(s132 1)
(s133 1)
(s134 1)
(s135 1)
(s136 1)
(s137 1)
(s138 1)
(s139 1)
(s140 1)
(s141 1)
(s142 1)
(s143 1)
(s144 1)
(s145 1)
(s146 1)
(s147 1)
(s148 1)
(s149 1)
(s150 1)
(s151 1)
(s152 1)
(s153 1)
(s154 1)
(s155 1)
(s156 1)
(s157 1)
(s158 1)
(s159 1)
(s160 1)
(s161 1)
(s162 1)
(s163 1)
(s164 1)
(s165 1)
(s166 1)
(s167 1)
(s168 1)
(s169 1)
(s170 1)
(s171 1)
(s172 1)
(s173 1)
(s174 1)
(s175 1)
(s176 1)
(s177 1)
(s178 1)
(s179 1)
(s180 1)
(s181 1)
(s182 1)
(s183 1)
(s184 1)
(s185 1)
(s186 1)
(s187 1)
(s188 1)
(s189 1)
(s190 1)
(s191 1)
(s192 1)
(s193 1)
(s194 1)
(s195 1)
(s196 1)
(s197 1)
(s198 1)
(s199 1)
(s200 1)
(s201 1)
(s202 1)
(s203 1)
(s204 1)
(s205 1)
(s206 1)
(s207 1)
(s208 1)
(s209 1)
(s210 1)
(s211 1)
(s212 1)
(s213 1)
(s214 1)
(s215 1)
(s216 1)
(s217 1)
(s218 1)
(s219 1)
(s220 1)
(s221 1)
(s222 1)
(s223 1)
(s224 1)
(s225 1)
(s226 1)
(s227 1)
(s228 1)
(s229 1)
(s230 1)
(s231 1)
(s232 1)
(s233 1)
(s234 1)
(s235 1)
(s236 1)
(s237 1)
(s238 1)
(s239 1)
(s240 1)
(s241 1)
(s242 1)
(s243 1)
(s244 1)
(s245 1)
(s246 1)
(s247 1)
(s248 1)
(s249 1)
(s250 1)
(s251 1)
(s252 1)
(s253 1)
(s254 1)
(s255 1)
(s256 1)
(s257 1)
(s258 1)
(s259 1)
(s260 1)
(s261 1)
(s262 1)
(s263 1)
(s264 1)
(s265 1)
(s266 1)
(s267 1)
(s268 1)
(s269 1)
(s270 1)
(s271 1)
(s272 1)
(s273 1)
(s274 1)
(s275 1)
(s276 1)
(s277 1)
(s278 1)
(s279 1)
(s280 1)
(s281 1)
(s282 1)
(s283 1)
(s284 1)
(s285 1)
(s286 1)
(s287 1)
(s288 1)
(s289 1)
(s290 1)
(s291 1)
(s292 1)
(s293 1)
(s294 1)
(s295 1)
(s296 1)
(s297 1)
(s298 1)
(s299 1)
(s300 1)
(s301 1)
(s302 1)
(s303 1)
(s304 1)
(s305 1)
(s306 1)
(s307 1)
(s308 1)
(s309 1)
(s310 1)
(s311 1)
(s312 1)
(s313 1)
(s314 1)
(s315 1)
(s316 1)
(s317 1)
(s318 1)
(s319 1)
(s320 1)
(s321 1)
(s322 1)
(s323 1)
(s324 1)
(s325 1)
(s326 1)
(s327 1)
(s328 1)
(s329 1)
(s330 1)
(s331 1)
(s332 1)
(s333 1)
(s334 1)
(s335 1)
(s336 1)
(s337 1)
(s338 1)
(s339 1)
(s340 1)
(s341 1)
(s342 1)
(s343 1)
(s344 1)
(s345 1)
(s346 1)
(s347 1)
(s348 1)
(s349 1)
(s350 1)
(s351 1)
(s352 1)
(s353 1)
(s354 1)
(s355 1)
(s356 1)
(s357 1)
(s358 1)
(s359 1)
(s360 1)
(s361 1)
(s362 1)
(s363 1)
(s364 1)
(s365 1)
(s366 1)
(s367 1)
(s368 1)
(s369 1)
(s370 1)
(s371 1)
(s372 1)
(s373 1)
(s374 1)
(s375 1)
(s376 1)
(s377 1)
(s378 1)
(s379 1)
(s380 1)
(s381 1)
(s382 1)
(s383 1)
(s384 1)
(s385 1)
(s386 1)
(s387 1)
(s388 1)
(s389 1)
(s390 1)
(s391 1)
(s392 1)
(s393 1)
(s394 1)
(s395 1)
(s396 1)
(s397 1)
(s398 1)
(s399 1)
(s400 1)
(s401 1)
(s402 1)
(s403 1)
(s404 1)
(s405 1)
(s406 1)
(s407 1)
(s408 1)
(s409 1)
(s410 1)
(s411 1)
(s412 1)
(s413 1)
(s414 1)
(s415 1)
(s416 1)
(s417 1)
(s418 1)
(s419 1)
(s420 1)
(s421 1)
(s422 1)
(s423 1)
(s424 1)
(s425 1)
(s426 1)
(s427 1)
(s428 1)
(s429 1)
(s430 1)
(s431 1)
(s432 1)
(s433 1)
(s434 1)
(s435 1)
(s436 1)
(s437 1)
(s438 1)
(s439 1)
(s440 1)
(s441 1)
(s442 1)
(s443 1)
(s444 1)
(s445 1)
(s446 1)
(s447 1)
(s448 1)
(s449 1)
(s450 1)
(s451 1)
(s452 1)
(s453 1)
(s454 1)
(s455 1)
(s456 1)
(s457 1)
(s458 1)
(s459 1)
(s460 1)
(s461 1)
(s462 1)
(s463 1)
(s464 1)
(s465 1)
(s466 1)
(s467 1)
(s468 1)
(s469 1)
(s470 1)
(s471 1)
(s472 1)
(s473 1)
(s474 1)
(s475 1)
(s476 1)
(s477 1)
(s478 1)
(s479 1)
(s480 1)
(s481 1)
(s482 1)
(s483 1)
(s484 1)
(s485 1)
(s486 1)
(s487 1)
(s488 1)
(s489 1)
(s490 1)
(s491 1)
(s492 1)
(s493 1)
(s494 1)
(s495 1)
(s496 1)
(s497 1)
(s498 1)
(s499 1)
(s500 1)
(s501 1)
(s502 1)
(s503 1)
(s504 1)
(s505 1)
(s506 1)
(s507 1)
(s508 1)
(s509 1)
(s510 1)
(s511 1)
(s512 1)
(s513 1)
(s514 1)
(s515 1)
(s516 1)
(s517 1)
(s518 1)
(s519 1)
(s520 1)
(s521 1)
(s522 1)
(s523 1)
(s524 1)
(s525 1)
(s526 1)
(s527 1)
(s528 1)
(s529 1)
(s530 1)
(s531 1)
(s532 1)
(s533 1)
(s534 1)
(s535 1)
(s536 1)
(s537 1)
(s538 1)
(s539 1)
(s540 1)
(s541 1)
(s542 1)
(s543 1)
(s544 1)
(s545 1)
(s546 1)
(s547 1)
(s548 1)
(s549 1)
(s550 1)
(s551 1)
(s552 1)
(s553 1)
(s554 1)
(s555 1)
(s556 1)
(s557 1)
(s558 1)
(s559 1)
(s560 1)
(s561 1)
(s562 1)
(s563 1)
(s564 1)
(s565 1)
(s566 1)
(s567 1)
(s568 1)
(s569 1)
(s570 1)
(s571 1)
(s572 1)
(s573 1)
(s574 1)
(s575 1)
(s576 1)
(s577 1)
(s578 1)
(s579 1)
(s580 1)
(s581 1)
(s582 1)
(s583 1)
(s584 1)
(s585 1)
(s586 1)
(s587 1)
(s588 1)
(s589 1)
(s590 1)
(s591 1)
(s592 1)
(s593 1)
(s594 1)
(s595 1)
(s596 1)
(s597 1)
(s598 1)
(s599 1)
(s600 1)
(s601 1)
(s602 1)
(s603 1)
(s604 1)
(s605 1)
(s606 1)
(s607 1)
(s608 1)
(s609 1)
(s610 1)
(s611 1)
(s612 1)
(s613 1)
(s614 1)
(s615 1)
(s616 1)
(s617 1)
(s618 1)
(s619 1)
(s620 1)
(s621 1)
(s622 1)
(s623 1)
(s624 1)
(s625 1)
(s626 1)
(s627 1)
(s628 1)
(s629 1)
(s630 1)
(s631 1)
(s632 1)
(s633 1)
(s634 1)
(s635 1)
(s636 1)
(s637 1)
(s638 1)
(s639 1)
(s640 1)
(s641 1)
(s642 1)
(s643 1)
(s644 1)
(s645 1)
(s646 1)
(s647 1)
(s648 1)
(s649 1)
(s650 1)
(s651 1)
(s652 1)
(s653 1)
(s654 1)
(s655 1)
(s656 1)
(s657 1)
(s658 1)
(s659 1)
(s660 1)
(s661 1)
(s662 1)
(s663 1)
(s664 1)
(s665 1)
(s666 1)
(s667 1)
(s668 1)
(s669 1)
(s670 1)
(s671 1)
(s672 1)
(s673 1)
(s674 1)
(s675 1)
(s676 1)
(s677 1)
(s678 1)
(s679 1)
(s680 1)
(s681 1)
(s682 1)
(s683 1)
(s684 1)
(s685 1)
(s686 1)
(s687 1)
(s688 1)
(s689 1)
(s690 1)
(s691 1)
(s692 1)
(s693 1)
(s694 1)
(s695 1)
(s696 1)
(s697 1)
(s698 1)
(s699 1)
(s700 1)
(s701 1)
(s702 1)
(s703 1)
(s704 1)
(s705 1)
(s706 1)
(s707 1)
(s708 1)
(s709 1)
(s710 1)
(s711 1)
(s712 1)
(s713 1)
(s714 1)
(s715 1)
(s716 1)
(s717 1)
(s718 1)
(s719 1)
(s720 1)
(s721 1)
(s722 1)
(s723 1)
(s724 1)
(s725 1)
(s726 1)
(s727 1)
(s728 1)
(s729 1)
(s730 1)
(s731 1)
(s732 1)
(s733 1)
(s734 1)
(s735 1)
(s736 1)
(s737 1)
(s738 1)
(s739 1)
(s740 1)
(s741 1)
(s742 1)
(s743 1)
(s744 1)
(s745 1)
(s746 1)
(s747 1)
(s748 1)
(s749 1)
(s750 1)
(s751 1)
(s752 1)
(s753 1)
(s754 1)
(s755 1)
(s756 1)
(s757 1)
(s758 1)
(s759 1)
(s760 1)
(s761 1)
(s762 1)
(s763 1)
(s764 1)
(s765 1)
(s766 1)
(s767 1)
(s768 1)
(s769 1)
(s770 1)
(s771 1)
(s772 1)
(s773 1)
(s774 1)
(s775 1)
(s776 1)
(s777 1)
(s778 1)
(s779 1)
(s780 1)
(s781 1)
(s782 1)
(s783 1)
(s784 1)
(s785 1)
(s786 1)
(s787 1)
(s788 1)
(s789 1)
(s790 1)
(s791 1)
(s792 1)
(s793 1)
(s794 1)
(s795 1)
(s796 1)
(s797 1)
(s798 1)
(s799 1)
(s800 1)
(s801 1)
(s802 1)
(s803 1)
(s804 1)
(s805 1)
(s806 1)
(s807 1)
(s808 1)
(s809 1)
(s810 1)
(s811 1)
(s812 1)
(s813 1)
(s814 1)
(s815 1)
(s816 1)
(s817 1)
(s818 1)
(s819 1)
(s820 1)
(s821 1)
(s822 1)
(s823 1)
(s824 1)
(s825 1)
(s826 1)
(s827 1)
(s828 1)
(s829 1)
(s830 1)
(s831 1)
(s832 1)
(s833 1)
(s834 1)
(s835 1)
(s836 1)
(s837 1)
(s838 1)
(s839 1)
(s840 1)
(s841 1)
(s842 1)
(s843 1)
(s844 1)
(s845 1)
(s846 1)
(s847 1)
(s848 1)
(s849 1)
(s850 1)
(s851 1)
(s852 1)
(s853 1)
(s854 1)
(s855 1)
(s856 1)
(s857 1)
(s858 1)
(s859 1)
(s860 1)
(s861 1)
(s862 1)
(s863 1)
(s864 1)
(s865 1)
(s866 1)
(s867 1)
(s868 1)
(s869 1)
(s870 1)
(s871 1)
(s872 1)
(s873 1)
(s874 1)
(s875 1)
(s876 1)
(s877 1)
(s878 1)
(s879 1)
(s880 1)
(s881 1)
(s882 1)
(s883 1)
(s884 1)
(s885 1)
(s886 1)
(s887 1)
(s888 1)
(s889 1)
(s890 1)
(s891 1)
(s892 1)
(s893 1)
(s894 1)
(s895 1)
(s896 1)
(s897 1)
(s898 1)
(s899 1)
(s900 1)
(s901 1)
(s902 1)
(s903 1)
(s904 1)
(s905 1)
(s906 1)
(s907 1)
(s908 1)
(s909 1)
(s910 1)
(s911 1)
(s912 1)
(s913 1)
(s914 1)
(s915 1)
(s916 1)
(s917 1)
(s918 1)
(s919 1)
(s920 1)
(s921 1)
(s922 1)
(s923 1)
(s924 1)
(s925 1)
(s926 1)
(s927 1)
(s928 1)
(s929 1)
(s930 1)
(s931 1)
(s932 1)
(s933 1)
(s934 1)
(s935 1)
(s936 1)
(s937 1)
(s938 1)
(s939 1)
(s940 1)
(s941 1)
(s942 1)
(s943 1)
(s944 1)
(s945 1)
(s946 1)
(s947 1)
(s948 1)
(s949 1)
(s950 1)
(s951 1)
(s952 1)
(s953 1)
(s954 1)
(s955 1)
(s956 1)
(s957 1)
(s958 1)
(s959 1)
(s960 1)
(s961 1)
(s962 1)
(s963 1)
(s964 1)
(s965 1)
(s966 1)
(s967 1)
(s968 1)
(s969 1)
(s970 1)
(s971 1)
(s972 1)
(s973 1)
(s974 1)
(s975 1)
(s976 1)
(s977 1)
(s978 1)
(s979 1)
(s980 1)
(s981 1)
(s982 1)
(s983 1)
(s984 1)
(s985 1)
(s986 1)
(s987 1)
(s988 1)
(s989 1)
(s990 1)
(s991 1)
(s992 1)
(s993 1)
(s994 1)
(s995 1)
(s996 1)
(s997 1)
(s998 1)
(s999 1)
(s1000 1)
(s1001 1)
(s1002 1)
(s1003 1)
(s1004 1)
(s1005 1)
(s1006 1)
(s1007 1)
(s1008 1)
(s1009 1)
(s1010 1)
(s1011 1)
(s1012 1)
(s1013 1)
(s1014 1)
(s1015 1)
(s1016 1)
(s1017 1)
(s1018 1)
(s1019 1)
(s1020 1)
(s1021 1)
(s1022 1)
(s1023 1)
(s1024 1)
(s1025 1)
(s1026 1)
(s1027 1)
(s1028 1)
(s1029 1)
(s1030 1)
(s1031 1)
(s1032 1)
(s1033 1)
(s1034 1)
(s1035 1)
(s1036 1)
(s1037 1)
(s1038 1)
(s1039 1)
(s1040 1)
(s1041 1)
(s1042 1)
(s1043 1)
(s1044 1)
(s1045 1)
(s1046 1)
(s1047 1)
(s1048 1)
(s1049 1)
(s1050 1)
(s1051 1)
(s1052 1)
(s1053 1)
(s1054 1)
(s1055 1)
(s1056 1)
(s1057 1)
(s1058 1)
(s1059 1)
(s1060 1)
(s1061 1)
(s1062 1)
(s1063 1)
(s1064 1)
(s1065 1)
(s1066 1)
(s1067 1)
(s1068 1)
(s1069 1)
(s1070 1)
(s1071 1)
(s1072 1)
(s1073 1)
(s1074 1)
(s1075 1)
(s1076 1)
(s1077 1)
(s1078 1)
(s1079 1)
(s1080 1)
(s1081 1)
(s1082 1)
(s1083 1)
(s1084 1)
(s1085 1)
(s1086 1)
(s1087 1)
(s1088 1)
(s1089 1)
(s1090 1)
(s1091 1)
(s1092 1)
(s1093 1)
(s1094 1)
(s1095 1)
(s1096 1)
(s1097 1)
(s1098 1)
(s1099 1)
(s1100 1)
(s1101 1)
(s1102 1)
(s1103 1)
(s1104 1)
(s1105 1)
(s1106 1)
(s1107 1)
(s1108 1)
(s1109 1)
(s1110 1)
(s1111 1)
(s1112 1)
(s1113 1)
(s1114 1)
(s1115 1)
(s1116 1)
(s1117 1)
(s1118 1)
(s1119 1)
(s1120 1)
(s1121 1)
(s1122 1)
(s1123 1)
(s1124 1)
(s1125 1)
(s1126 1)
(s1127 1)
(s1128 1)
(s1129 1)
(s1130 1)
(s1131 1)
(s1132 1)
(s1133 1)
(s1134 1)
(s1135 1)
(s1136 1)
(s1137 1)
(s1138 1)
(s1139 1)
(s1140 1)
(s1141 1)
(s1142 1)
(s1143 1)
(s1144 1)
(s1145 1)
(s1146 1)
(s1147 1)
(s1148 1)
(s1149 1)
(s1150 1)
(s1151 1)
(s1152 1)
(s1153 1)
(s1154 1)
(s1155 1)
(s1156 1)
(s1157 1)
(s1158 1)
(s1159 1)
(s1160 1)
(s1161 1)
(s1162 1)
(s1163 1)
(s1164 1)
(s1165 1)
(s1166 1)
(s1167 1)
(s1168 1)
(s1169 1)
(s1170 1)
(s1171 1)
(s1172 1)
(s1173 1)
(s1174 1)
(s1175 1)
(s1176 1)
(s1177 1)
(s1178 1)
(s1179 1)
(s1180 1)
(s1181 1)
(s1182 1)
(s1183 1)
(s1184 1)
(s1185 1)
(s1186 1)
(s1187 1)
(s1188 1)
(s1189 1)
(s1190 1)
(s1191 1)
(s1192 1)
(s1193 1)
(s1194 1)
(s1195 1)
(s1196 1)
(s1197 1)
(s1198 1)
(s1199 1)
(s1200 1)
(s1201 1)
(s1202 1)
(s1203 1)
(s1204 1)
(s1205 1)
(s1206 1)
(s1207 1)
(s1208 1)
(s1209 1)
(s1210 1)
(s1211 1)
(s1212 1)
(s1213 1)
(s1214 1)
(s1215 1)
(s1216 1)
(s1217 1)
(s1218 1)
(s1219 1)
(s1220 1)
(s1221 1)
(s1222 1)
(s1223 1)
(s1224 1)
(s1225 1)
(s1226 1)
(s1227 1)
(s1228 1)
(s1229 1)
(s1230 1)
(s1231 1)
(s1232 1)
(s1233 1)
(s1234 1)
(s1235 1)
(s1236 1)
(s1237 1)
(s1238 1)
(s1239 1)
(s1240 1)
(s1241 1)
(s1242 1)
(s1243 1)
(s1244 1)
(s1245 1)
(s1246 1)
(s1247 1)
(s1248 1)
(s1249 1)
(s1250 1)
(s1251 1)
(s1252 1)
(s1253 1)
(s1254 1)
(s1255 1)
(s1256 1)
(s1257 1)
(s1258 1)
(s1259 1)
(s1260 1)
(s1261 1)
(s1262 1)
(s1263 1)
(s1264 1)
(s1265 1)
(s1266 1)
(s1267 1)
(s1268 1)
(s1269 1)
(s1270 1)
(s1271 1)
(s1272 1)
(s1273 1)
(s1274 1)
(s1275 1)
(s1276 1)
(s1277 1)
(s1278 1)
(s1279 1)
(s1280 1)
(s1281 1)
(s1282 1)
(s1283 1)
(s1284 1)
(s1285 1)
(s1286 1)
(s1287 1)
(s1288 1)
(s1289 1)
(s1290 1)
(s1291 1)
(s1292 1)
(s1293 1)
(s1294 1)
(s1295 1)
(s1296 1)
(s1297 1)
(s1298 1)
(s1299 1)
(s1300 1)
(s1301 1)
(s1302 1)
(s1303 1)
(s1304 1)
(s1305 1)
(s1306 1)
(s1307 1)
(s1308 1)
(s1309 1)
(s1310 1)
(s1311 1)
(s1312 1)
(s1313 1)
(s1314 1)
(s1315 1)
(s1316 1)
(s1317 1)
(s1318 1)
(s1319 1)
(s1320 1)
(s1321 1)
(s1322 1)
(s1323 1)
(s1324 1)
(s1325 1)
(s1326 1)
(s1327 1)
(s1328 1)
(s1329 1)
(s1330 1)
(s1331 1)
(s1332 1)
(s1333 1)
(s1334 1)
(s1335 1)
(s1336 1)
(s1337 1)
(s1338 1)
(s1339 1)
(s1340 1)
(s1341 1)
(s1342 1)
(s1343 1)
(s1344 1)
(s1345 1)
(s1346 1)
(s1347 1)
(s1348 1)
(s1349 1)
(s1350 1)
(s1351 1)
(s1352 1)
(s1353 1)
(s1354 1)
(s1355 1)
(s1356 1)
(s1357 1)
(s1358 1)
(s1359 1)
(s1360 1)
(s1361 1)
(s1362 1)
(s1363 1)
(s1364 1)
(s1365 1)
(s1366 1)
(s1367 1)
(s1368 1)
(s1369 1)
(s1370 1)
(s1371 1)
(s1372 1)
(s1373 1)
(s1374 1)
(s1375 1)
(s1376 1)
(s1377 1)
(s1378 1)
(s1379 1)
(s1380 1)
(s1381 1)
(s1382 1)
(s1383 1)
(s1384 1)
(s1385 1)
(s1386 1)
(s1387 1)
(s1388 1)
(s1389 1)
(s1390 1)
(s1391 1)
(s1392 1)
(s1393 1)
(s1394 1)
(s1395 1)
(s1396 1)
(s1397 1)
(s1398 1)
(s1399 1)
(s1400 1)
(s1401 1)
(s1402 1)
(s1403 1)
(s1404 1)
(s1405 1)
(s1406 1)
(s1407 1)
(s1408 1)
(s1409 1)
(s1410 1)
(s1411 1)
(s1412 1)
(s1413 1)
(s1414 1)
(s1415 1)
(s1416 1)
(s1417 1)
(s1418 1)
(s1419 1)
(s1420 1)
(s1421 1)
(s1422 1)
(s1423 1)
(s1424 1)
(s1425 1)
(s1426 1)
(s1427 1)
(s1428 1)
(s1429 1)
(s1430 1)
(s1431 1)
(s1432 1)
(s1433 1)
(s1434 1)
(s1435 1)
(s1436 1)
(s1437 1)
(s1438 1)
(s1439 1)
(s1440 1)
(s1441 1)
(s1442 1)
(s1443 1)
(s1444 1)
(s1445 1)
(s1446 1)
(s1447 1)
(s1448 1)
(s1449 1)
(s1450 1)
(s1451 1)
(s1452 1)
(s1453 1)
(s1454 1)
(s1455 1)
(s1456 1)
(s1457 1)
(s1458 1)
(s1459 1)
(s1460 1)
(s1461 1)
(s1462 1)
(s1463 1)
(s1464 1)
(s1465 1)
(s1466 1)
(s1467 1)
(s1468 1)
(s1469 1)
(s1470 1)
(s1471 1)
(s1472 1)
(s1473 1)
(s1474 1)
(s1475 1)
(s1476 1)
(s1477 1)
(s1478 1)
(s1479 1)
(s1480 1)
(s1481 1)
(s1482 1)
(s1483 1)
(s1484 1)
(s1485 1)
(s1486 1)
(s1487 1)
(s1488 1)
(s1489 1)
(s1490 1)
(s1491 1)
(s1492 1)
(s1493 1)
(s1494 1)
(s1495 1)
(s1496 1)
(s1497 1)
(s1498 1)
(s1499 1)
(s1500 1)
(s1501 1)
(s1502 1)
(s1503 1)
(s1504 1)
(s1505 1)
(s1506 1)
(s1507 1)
(s1508 1)
(s1509 1)
(s1510 1)
(s1511 1)
(s1512 1)
(s1513 1)
(s1514 1)
(s1515 1)
(s1516 1)
(s1517 1)
(s1518 1)
(s1519 1)
(s1520 1)
(s1521 1)
(s1522 1)
(s1523 1)
(s1524 1)
(s1525 1)
(s1526 1)
(s1527 1)
(s1528 1)
(s1529 1)
(s1530 1)
(s1531 1)
(s1532 1)
(s1533 1)
(s1534 1)
(s1535 1)
(s1536 1)
(s1537 1)
(s1538 1)
(s1539 1)
(s1540 1)
(s1541 1)
(s1542 1)
(s1543 1)
(s1544 1)
(s1545 1)
(s1546 1)
(s1547 1)
(s1548 1)
(s1549 1)
(s1550 1)
(s1551 1)
(s1552 1)
(s1553 1)
(s1554 1)
(s1555 1)
(s1556 1)
(s1557 1)
(s1558 1)
(s1559 1)
(s1560 1)
(s1561 1)
(s1562 1)
(s1563 1)
(s1564 1)
(s1565 1)
(s1566 1)
(s1567 1)
(s1568 1)
(s1569 1)
(s1570 1)
(s1571 1)
(s1572 1)
(s1573 1)
(s1574 1)
(s1575 1)
(s1576 1)
(s1577 1)
(s1578 1)
(s1579 1)
(s1580 1)
(s1581 1)
(s1582 1)
(s1583 1)
(s1584 1)
(s1585 1)
(s1586 1)
(s1587 1)
(s1588 1)
(s1589 1)
(s1590 1)
(s1591 1)
(s1592 1)
(s1593 1)
(s1594 1)
(s1595 1)
(s1596 1)
(s1597 1)
(s1598 1)
(s1599 1)
(s1600 1)
(s1601 1)
(s1602 1)
(s1603 1)
(s1604 1)
(s1605 1)
(s1606 1)
(s1607 1)
(s1608 1)
(s1609 1)
(s1610 1)
(s1611 1)
(s1612 1)
(s1613 1)
(s1614 1)
(s1615 1)
(s1616 1)
(s1617 1)
(s1618 1)
(s1619 1)
(s1620 1)
(s1621 1)
(s1622 1)
(s1623 1)
(s1624 1)
(s1625 1)
(s1626 1)
(s1627 1)
(s1628 1)
(s1629 1)
(s1630 1)
(s1631 1)
(s1632 1)
(s1633 1)
(s1634 1)
(s1635 1)
(s1636 1)
(s1637 1)
(s1638 1)
(s1639 1)
(s1640 1)
(s1641 1)
(s1642 1)
(s1643 1)
(s1644 1)
(s1645 1)
(s1646 1)
(s1647 1)
(s1648 1)
(s1649 1)
(s1650 1)
(s1651 1)
(s1652 1)
(s1653 1)
(s1654 1)
(s1655 1)
(s1656 1)
(s1657 1)
(s1658 1)
(s1659 1)
(s1660 1)
(s1661 1)
(s1662 1)
(s1663 1)
(s1664 1)
(s1665 1)
(s1666 1)
(s1667 1)
(s1668 1)
(s1669 1)
(s1670 1)
(s1671 1)
(s1672 1)
(s1673 1)
(s1674 1)
(s1675 1)
(s1676 1)
(s1677 1)
(s1678 1)
(s1679 1)
(s1680 1)
(s1681 1)
(s1682 1)
(s1683 1)
(s1684 1)
(s1685 1)
(s1686 1)
(s1687 1)
(s1688 1)
(s1689 1)
(s1690 1)
(s1691 1)
(s1692 1)
(s1693 1)
(s1694 1)
(s1695 1)
(s1696 1)
(s1697 1)
(s1698 1)
(s1699 1)
(s1700 1)
(s1701 1)
(s1702 1)
(s1703 1)
(s1704 1)
(s1705 1)
(s1706 1)
(s1707 1)
(s1708 1)
(s1709 1)
(s1710 1)
(s1711 1)
(s1712 1)
(s1713 1)
(s1714 1)
(s1715 1)
(s1716 1)
(s1717 1)
(s1718 1)
(s1719 1)
(s1720 1)
(s1721 1)
(s1722 1)
(s1723 1)
(s1724 1)
(s1725 1)
(s1726 1)
(s1727 1)
(s1728 1)
(s1729 1)
(s1730 1)
(s1731 1)
(s1732 1)
(s1733 1)
(s1734 1)
(s1735 1)
(s1736 1)
(s1737 1)
(s1738 1)
(s1739 1)
(s1740 1)
(s1741 1)
(s1742 1)
(s1743 1)
(s1744 1)
(s1745 1)
(s1746 1)
(s1747 1)
(s1748 1)
(s1749 1)
(s1750 1)
(s1751 1)
(s1752 1)
(s1753 1)
(s1754 1)
(s1755 1)
(s1756 1)
(s1757 1)
(s1758 1)
(s1759 1)
(s1760 1)
(s1761 1)
(s1762 1)
(s1763 1)
(s1764 1)
(s1765 1)
(s1766 1)
(s1767 1)
(s1768 1)
(s1769 1)
(s1770 1)
(s1771 1)
(s1772 1)
(s1773 1)
(s1774 1)
(s1775 1)
(s1776 1)
(s1777 1)
(s1778 1)
(s1779 1)
(s1780 1)
(s1781 1)
(s1782 1)
(s1783 1)
(s1784 1)
(s1785 1)
(s1786 1)
(s1787 1)
(s1788 1)
(s1789 1)
(s1790 1)
(s1791 1)
(s1792 1)
(s1793 1)
(s1794 1)
(s1795 1)
(s1796 1)
(s1797 1)
(s1798 1)
(s1799 1)
(s1800 1)
(s1801 1)
(s1802 1)
(s1803 1)
(s1804 1)
(s1805 1)
(s1806 1)
(s1807 1)
(s1808 1)
(s1809 1)
(s1810 1)
(s1811 1)
(s1812 1)
(s1813 1)
(s1814 1)
(s1815 1)
(s1816 1)
(s1817 1)
(s1818 1)
(s1819 1)
(s1820 1)
(s1821 1)
(s1822 1)
(s1823 1)
(s1824 1)
(s1825 1)
(s1826 1)
(s1827 1)
(s1828 1)
(s1829 1)
(s1830 1)
(s1831 1)
(s1832 1)
(s1833 1)
(s1834 1)
(s1835 1)
(s1836 1)
(s1837 1)
(s1838 1)
(s1839 1)
(s1840 1)
(s1841 1)
(s1842 1)
(s1843 1)
(s1844 1)
(s1845 1)
(s1846 1)
(s1847 1)
(s1848 1)
(s1849 1)
(s1850 1)
(s1851 1)
(s1852 1)
(s1853 1)
(s1854 1)
(s1855 1)
(s1856 1)
(s1857 1)
(s1858 1)
(s1859 1)
(s1860 1)
(s1861 1)
(s1862 1)
(s1863 1)
(s1864 1)
(s1865 1)
(s1866 1)
(s1867 1)
(s1868 1)
(s1869 1)
(s1870 1)
(s1871 1)
(s1872 1)
(s1873 1)
(s1874 1)
(s1875 1)
(s1876 1)
(s1877 1)
(s1878 1)
(s1879 1)
(s1880 1)
(s1881 1)
(s1882 1)
(s1883 1)
(s1884 1)
(s1885 1)
(s1886 1)
(s1887 1)
(s1888 1)
(s1889 1)
(s1890 1)
(s1891 1)
(s1892 1)
(s1893 1)
(s1894 1)
(s1895 1)
(s1896 1)
(s1897 1)
(s1898 1)
(s1899 1)
(s1900 1)
(s1901 1)
(s1902 1)
(s1903 1)
(s1904 1)
(s1905 1)
(s1906 1)
(s1907 1)
(s1908 1)
(s1909 1)
(s1910 1)
(s1911 1)
(s1912 1)
(s1913 1)
(s1914 1)
(s1915 1)
(s1916 1)
(s1917 1)
(s1918 1)
(s1919 1)
(s1920 1)
(s1921 1)
(s1922 1)
(s1923 1)
(s1924 1)
(s1925 1)
(s1926 1)
(s1927 1)
(s1928 1)
(s1929 1)
(s1930 1)
(s1931 1)
(s1932 1)
(s1933 1)
(s1934 1)
(s1935 1)
(s1936 1)
(s1937 1)
(s1938 1)
(s1939 1)
(s1940 1)
(s1941 1)
(s1942 1)
(s1943 1)
(s1944 1)
(s1945 1)
(s1946 1)
(s1947 1)
(s1948 1)
(s1949 1)
(s1950 1)
(s1951 1)
(s1952 1)
(s1953 1)
(s1954 1)
(s1955 1)
(s1956 1)
(s1957 1)
(s1958 1)
(s1959 1)
(s1960 1)
(s1961 1)
(s1962 1)
(s1963 1)
(s1964 1)
(s1965 1)
(s1966 1)
(s1967 1)
(s1968 1)
(s1969 1)
(s1970 1)
(s1971 1)
(s1972 1)
(s1973 1)
(s1974 1)
(s1975 1)
(s1976 1)
(s1977 1)
(s1978 1)
(s1979 1)
(s1980 1)
(s1981 1)
(s1982 1)
(s1983 1)
(s1984 1)
(s1985 1)
(s1986 1)
(s1987 1)
(s1988 1)
(s1989 1)
(s1990 1)
(s1991 1)
(s1992 1)
(s1993 1)
(s1994 1)
(s1995 1)
(s1996 1)
(s1997 1)
(s1998 1)
(s1999 1)
(s2000 1)
(s2001 1)
(s2002 1)
(s2003 1)
(s2004 1)
(s2005 1)
(s2006 1)
(s2007 1)
(s2008 1)
(s2009 1)
(s2010 1)
(s2011 1)
(s2012 1)
(s2013 1)
(s2014 1)
(s2015 1)
(s2016 1)
(s2017 1)
(s2018 1)
(s2019 1)
(s2020 1)
(s2021 1)
(s2022 1)
(s2023 1)
(s2024 1)
(s2025 1)
(s2026 1)
(s2027 1)
(s2028 1)
(s2029 1)
(s2030 1)
(s2031 1)
(s2032 1)
(s2033 1)
(s2034 1)
(s2035 1)
(s2036 1)
(s2037 1)
(s2038 1)
(s2039 1)
(s2040 1)
(s2041 1)
(s2042 1)
(s2043 1)
(s2044 1)
(s2045 1)
(s2046 1)
(s2047 1)
(s2048 1)
(s2049 1)
(s2050 1)
(s2051 1)
(s2052 1)
(s2053 1)
(s2054 1)
(s2055 1)
(s2056 1)
(s2057 1)
(s2058 1)
(s2059 1)
(s2060 1)
(s2061 1)
(s2062 1)
(s2063 1)
(s2064 1)
(s2065 1)
(s2066 1)
(s2067 1)
(s2068 1)
(s2069 1)
(s2070 1)
(s2071 1)
(s2072 1)
(s2073 1)
(s2074 1)
(s2075 1)
(s2076 1)
(s2077 1)
(s2078 1)
(s2079 1)
(s2080 1)
(s2081 1)
(s2082 1)
(s2083 1)
(s2084 1)
(s2085 1)
(s2086 1)
(s2087 1)
(s2088 1)
(s2089 1)
(s2090 1)
(s2091 1)
(s2092 1)
(s2093 1)
(s2094 1)
(s2095 1)
(s2096 1)
(s2097 1)
(s2098 1)
(s2099 1)
(s2100 1)
(s2101 1)
(s2102 1)
(s2103 1)
(s2104 1)
(s2105 1)
(s2106 1)
(s2107 1)
(s2108 1)
(s2109 1)
(s2110 1)
(s2111 1)
(s2112 1)
(s2113 1)
(s2114 1)
(s2115 1)
(s2116 1)
(s2117 1)
(s2118 1)
(s2119 1)
(s2120 1)
(s2121 1)
(s2122 1)
(s2123 1)
(s2124 1)
(s2125 1)
(s2126 1)
(s2127 1)
(s2128 1)
(s2129 1)
(s2130 1)
(s2131 1)
(s2132 1)
(s2133 1)
(s2134 1)
(s2135 1)
(s2136 1)
(s2137 1)
(s2138 1)
(s2139 1)
(s2140 1)
(s2141 1)
(s2142 1)
(s2143 1)
(s2144 1)
(s2145 1)
(s2146 1)
(s2147 1)
(s2148 1)
(s2149 1)
(s2150 1)
(s2151 1)
(s2152 1)
(s2153 1)
(s2154 1)
(s2155 1)
(s2156 1)
(s2157 1)
(s2158 1)
(s2159 1)
(s2160 1)
(s2161 1)
(s2162 1)
(s2163 1)
(s2164 1)
(s2165 1)
(s2166 1)
(s2167 1)
(s2168 1)
(s2169 1)
(s2170 1)
(s2171 1)
(s2172 1)
(s2173 1)
(s2174 1)
(s2175 1)
(s2176 1)
(s2177 1)
(s2178 1)
(s2179 1)
(s2180 1)
(s2181 1)
(s2182 1)
(s2183 1)
(s2184 1)
(s2185 1)
(s2186 1)
(s2187 1)
(s2188 1)
(s2189 1)
(s2190 1)
(s2191 1)
(s2192 1)
(s2193 1)
(s2194 1)
(s2195 1)
(s2196 1)
(s2197 1)
(s2198 1)
(s2199 1)
(s2200 1)
(s2201 1)
(s2202 1)
(s2203 1)
(s2204 1)
(s2205 1)
(s2206 1)
(s2207 1)
(s2208 1)
(s2209 1)
(s2210 1)
(s2211 1)
(s2212 1)
(s2213 1)
(s2214 1)
(s2215 1)
(s2216 1)
(s2217 1)
(s2218 1)
(s2219 1)
(s2220 1)
(s2221 1)
(s2222 1)
(s2223 1)
(s2224 1)
(s2225 1)
(s2226 1)
(s2227 1)
(s2228 1)
(s2229 1)
(s2230 1)
(s2231 1)
(s2232 1)
(s2233 1)
(s2234 1)
(s2235 1)
(s2236 1)
(s2237 1)
(s2238 1)
(s2239 1)
(s2240 1)
(s2241 1)
(s2242 1)
(s2243 1)
(s2244 1)
(s2245 1)
(s2246 1)
(s2247 1)
(s2248 1)
(s2249 1)
(s2250 1)
(s2251 1)
(s2252 1)
(s2253 1)
(s2254 1)
(s2255 1)
(s2256 1)
(s2257 1)
(s2258 1)
(s2259 1)
(s2260 1)
(s2261 1)
(s2262 1)
(s2263 1)
(s2264 1)
(s2265 1)
(s2266 1)
(s2267 1)
(s2268 1)
(s2269 1)
(s2270 1)
(s2271 1)
(s2272 1)
(s2273 1)
(s2274 1)
(s2275 1)
(s2276 1)
(s2277 1)
(s2278 1)
(s2279 1)
(s2280 1)
(s2281 1)
(s2282 1)
(s2283 1)
(s2284 1)
(s2285 1)
(s2286 1)
(s2287 1)
(s2288 1)
(s2289 1)
(s2290 1)
(s2291 1)
(s2292 1)
(s2293 1)
(s2294 1)
(s2295 1)
(s2296 1)
(s2297 1)
(s2298 1)
(s2299 1)
(s2300 1)
(s2301 1)
(s2302 1)
(s2303 1)
(s2304 1)
(s2305 1)
(s2306 1)
(s2307 1)
(s2308 1)
(s2309 1)
(s2310 1)
(s2311 1)
(s2312 1)
(s2313 1)
(s2314 1)
(s2315 1)
(s2316 1)
(s2317 1)
(s2318 1)
(s2319 1)
(s2320 1)
(s2321 1)
(s2322 1)
(s2323 1)
(s2324 1)
(s2325 1)
(s2326 1)
(s2327 1)
(s2328 1)
(s2329 1)
(s2330 1)
(s2331 1)
(s2332 1)
(s2333 1)
(s2334 1)
(s2335 1)
(s2336 1)
(s2337 1)
(s2338 1)
(s2339 1)
(s2340 1)
(s2341 1)
(s2342 1)
(s2343 1)
(s2344 1)
(s2345 1)
(s2346 1)
(s2347 1)
(s2348 1)
(s2349 1)
(s2350 1)
(s2351 1)
(s2352 1)
(s2353 1)
(s2354 1)
(s2355 1)
(s2356 1)
(s2357 1)
(s2358 1)
(s2359 1)
(s2360 1)
(s2361 1)
(s2362 1)
(s2363 1)
(s2364 1)
(s2365 1)
(s2366 1)
(s2367 1)
(s2368 1)
(s2369 1)
(s2370 1)
(s2371 1)
(s2372 1)
(s2373 1)
(s2374 1)
(s2375 1)
(s2376 1)
(s2377 1)
(s2378 1)
(s2379 1)
(s2380 1)
(s2381 1)
(s2382 1)
(s2383 1)
(s2384 1)
(s2385 1)
(s2386 1)
(s2387 1)
(s2388 1)
(s2389 1)
(s2390 1)
(s2391 1)
(s2392 1)
(s2393 1)
(s2394 1)
(s2395 1)
(s2396 1)
(s2397 1)
(s2398 1)
(s2399 1)
(s2400 1)
(s2401 1)
(s2402 1)
(s2403 1)
(s2404 1)
(s2405 1)
(s2406 1)
(s2407 1)
(s2408 1)
(s2409 1)
(s2410 1)
(s2411 1)
(s2412 1)
(s2413 1)
(s2414 1)
(s2415 1)
(s2416 1)
(s2417 1)
(s2418 1)
(s2419 1)
(s2420 1)
(s2421 1)
(s2422 1)
(s2423 1)
(s2424 1)
(s2425 1)
(s2426 1)
(s2427 1)
(s2428 1)
(s2429 1)
(s2430 1)
(s2431 1)
(s2432 1)
(s2433 1)
(s2434 1)
(s2435 1)
(s2436 1)
(s2437 1)
(s2438 1)
(s2439 1)
(s2440 1)
(s2441 1)
(s2442 1)
(s2443 1)
(s2444 1)
(s2445 1)
(s2446 1)
(s2447 1)
(s2448 1)
(s2449 1)
(s2450 1)
(s2451 1)
(s2452 1)
(s2453 1)
(s2454 1)
(s2455 1)
(s2456 1)
(s2457 1)
(s2458 1)
(s2459 1)
(s2460 1)
(s2461 1)
(s2462 1)
(s2463 1)
(s2464 1)
(s2465 1)
(s2466 1)
(s2467 1)
(s2468 1)
(s2469 1)
(s2470 1)
(s2471 1)
(s2472 1)
(s2473 1)
(s2474 1)
(s2475 1)
(s2476 1)
(s2477 1)
(s2478 1)
(s2479 1)
(s2480 1)
(s2481 1)
(s2482 1)
(s2483 1)
(s2484 1)
(s2485 1)
(s2486 1)
(s2487 1)
(s2488 1)
(s2489 1)
(s2490 1)
(s2491 1)
(s2492 1)
(s2493 1)
(s2494 1)
(s2495 1)
(s2496 1)
(s2497 1)
(s2498 1)
(s2499 1)
(s2500 1)
(s2501 1)
(s2502 1)
(s2503 1)
(s2504 1)
(s2505 1)
(s2506 1)
(s2507 1)
(s2508 1)
(s2509 1)
(s2510 1)
(s2511 1)
(s2512 1)
(s2513 1)
(s2514 1)
(s2515 1)
(s2516 1)
(s2517 1)
(s2518 1)
(s2519 1)
(s2520 1)
(s2521 1)
(s2522 1)
(s2523 1)
(s2524 1)
(s2525 1)
(s2526 1)
(s2527 1)
(s2528 1)
(s2529 1)
(s2530 1)
(s2531 1)
(s2532 1)
(s2533 1)
(s2534 1)
(s2535 1)
(s2536 1)
(s2537 1)
(s2538 1)
(s2539 1)
(s2540 1)
(s2541 1)
(s2542 1)
(s2543 1)
(s2544 1)
(s2545 1)
(s2546 1)
(s2547 1)
(s2548 1)
(s2549 1)
(s2550 1)
(s2551 1)
(s2552 1)
(s2553 1)
(s2554 1)
(s2555 1)
(s2556 1)
(s2557 1)
(s2558 1)
(s2559 1)
(s2560 1)
(s2561 1)
(s2562 1)
(s2563 1)
(s2564 1)
(s2565 1)
(s2566 1)
(s2567 1)
(s2568 1)
(s2569 1)
(s2570 1)
(s2571 1)
(s2572 1)
(s2573 1)
(s2574 1)
(s2575 1)
(s2576 1)
(s2577 1)
(s2578 1)
(s2579 1)
(s2580 1)
(s2581 1)
(s2582 1)
(s2583 1)
(s2584 1)
(s2585 1)
(s2586 1)
(s2587 1)
(s2588 1)
(s2589 1)
(s2590 1)
(s2591 1)
(s2592 1)
(s2593 1)
(s2594 1)
(s2595 1)
(s2596 1)
(s2597 1)
(s2598 1)
(s2599 1)
(s2600 1)
(s2601 1)
(s2602 1)
(s2603 1)
(s2604 1)
(s2605 1)
(s2606 1)
(s2607 1)
(s2608 1)
(s2609 1)
(s2610 1)
(s2611 1)
(s2612 1)
(s2613 1)
(s2614 1)
(s2615 1)
(s2616 1)
(s2617 1)
(s2618 1)
(s2619 1)
(s2620 1)
(s2621 1)
(s2622 1)
(s2623 1)
(s2624 1)
(s2625 1)
(s2626 1)
(s2627 1)
(s2628 1)
(s2629 1)
(s2630 1)
(s2631 1)
(s2632 1)
(s2633 1)
(s2634 1)
(s2635 1)
(s2636 1)
(s2637 1)
(s2638 1)
(s2639 1)
(s2640 1)
(s2641 1)
(s2642 1)
(s2643 1)
(s2644 1)
(s2645 1)
(s2646 1)
(s2647 1)
(s2648 1)
(s2649 1)
(s2650 1)
(s2651 1)
(s2652 1)
(s2653 1)
(s2654 1)
(s2655 1)
(s2656 1)
(s2657 1)
(s2658 1)
(s2659 1)
(s2660 1)
(s2661 1)
(s2662 1)
(s2663 1)
(s2664 1)
(s2665 1)
(s2666 1)
(s2667 1)
(s2668 1)
(s2669 1)
(s2670 1)
(s2671 1)
(s2672 1)
(s2673 1)
(s2674 1)
(s2675 1)
(s2676 1)
(s2677 1)
(s2678 1)
(s2679 1)
(s2680 1)
(s2681 1)
(s2682 1)
(s2683 1)
(s2684 1)
(s2685 1)
(s2686 1)
(s2687 1)
(s2688 1)
(s2689 1)
(s2690 1)
(s2691 1)
(s2692 1)
(s2693 1)
(s2694 1)
(s2695 1)
(s2696 1)
(s2697 1)
(s2698 1)
(s2699 1)
(s2700 1)
(s2701 1)
(s2702 1)
(s2703 1)
(s2704 1)
(s2705 1)
(s2706 1)
(s2707 1)
(s2708 1)
(s2709 1)
(s2710 1)
(s2711 1)
(s2712 1)
(s2713 1)
(s2714 1)
(s2715 1)
(s2716 1)
(s2717 1)
(s2718 1)
(s2719 1)
(s2720 1)
(s2721 1)
(s2722 1)
(s2723 1)
(s2724 1)
(s2725 1)
(s2726 1)
(s2727 1)
(s2728 1)
(s2729 1)
(s2730 1)
(s2731 1)
(s2732 1)
(s2733 1)
(s2734 1)
(s2735 1)
(s2736 1)
(s2737 1)
(s2738 1)
(s2739 1)
(s2740 1)
(s2741 1)
(s2742 1)
(s2743 1)
(s2744 1)
(s2745 1)
(s2746 1)
(s2747 1)
(s2748 1)
(s2749 1)
(s2750 1)
(s2751 1)
(s2752 1)
(s2753 1)
(s2754 1)
(s2755 1)
(s2756 1)
(s2757 1)
(s2758 1)
(s2759 1)
(s2760 1)
(s2761 1)
(s2762 1)
(s2763 1)
(s2764 1)
(s2765 1)
(s2766 1)
(s2767 1)
(s2768 1)
(s2769 1)
(s2770 1)
(s2771 1)
(s2772 1)
(s2773 1)
(s2774 1)
(s2775 1)
(s2776 1)
(s2777 1)
(s2778 1)
(s2779 1)
(s2780 1)
(s2781 1)
(s2782 1)
(s2783 1)
(s2784 1)
(s2785 1)
(s2786 1)
(s2787 1)
(s2788 1)
(s2789 1)
(s2790 1)
(s2791 1)
(s2792 1)
(s2793 1)
(s2794 1)
(s2795 1)
(s2796 1)
(s2797 1)
(s2798 1)
(s2799 1)
(s2800 1)
(s2801 1)
(s2802 1)
(s2803 1)
(s2804 1)
(s2805 1)
(s2806 1)
(s2807 1)
(s2808 1)
(s2809 1)
(s2810 1)
(s2811 1)
(s2812 1)
(s2813 1)
(s2814 1)
(s2815 1)
(s2816 1)
(s2817 1)
(s2818 1)
(s2819 1)
(s2820 1)
(s2821 1)
(s2822 1)
(s2823 1)
(s2824 1)
(s2825 1)
(s2826 1)
(s2827 1)
(s2828 1)
(s2829 1)
(s2830 1)
(s2831 1)
(s2832 1)
(s2833 1)
(s2834 1)
(s2835 1)
(s2836 1)
(s2837 1)
(s2838 1)
(s2839 1)
(s2840 1)
(s2841 1)
(s2842 1)
(s2843 1)
(s2844 1)
(s2845 1)
(s2846 1)
(s2847 1)
(s2848 1)
(s2849 1)
(s2850 1)
(s2851 1)
(s2852 1)
(s2853 1)
(s2854 1)
(s2855 1)
(s2856 1)
(s2857 1)
(s2858 1)
(s2859 1)
(s2860 1)
(s2861 1)
(s2862 1)
(s2863 1)
(s2864 1)
(s2865 1)
(s2866 1)
(s2867 1)
(s2868 1)
(s2869 1)
(s2870 1)
(s2871 1)
(s2872 1)
(s2873 1)
(s2874 1)
(s2875 1)
(s2876 1)
(s2877 1)
(s2878 1)
(s2879 1)
(s2880 1)
(s2881 1)
(s2882 1)
(s2883 1)
(s2884 1)
(s2885 1)
(s2886 1)
(s2887 1)
(s2888 1)
(s2889 1)
(s2890 1)
(s2891 1)
(s2892 1)
(s2893 1)
(s2894 1)
(s2895 1)
(s2896 1)
(s2897 1)
(s2898 1)
(s2899 1)
(s2900 1)
(s2901 1)
(s2902 1)
(s2903 1)
(s2904 1)
(s2905 1)
(s2906 1)
(s2907 1)
(s2908 1)
(s2909 1)
(s2910 1)
(s2911 1)
(s2912 1)
(s2913 1)
(s2914 1)
(s2915 1)
(s2916 1)
(s2917 1)
(s2918 1)
(s2919 1)
(s2920 1)
(s2921 1)
(s2922 1)
(s2923 1)
(s2924 1)
(s2925 1)
(s2926 1)
(s2927 1)
(s2928 1)
(s2929 1)
(s2930 1)
(s2931 1)
(s2932 1)
(s2933 1)
(s2934 1)
(s2935 1)
(s2936 1)
(s2937 1)
(s2938 1)
(s2939 1)
(s2940 1)
(s2941 1)
(s2942 1)
(s2943 1)
(s2944 1)
(s2945 1)
(s2946 1)
(s2947 1)
(s2948 1)
(s2949 1)
(s2950 1)
(s2951 1)
(s2952 1)
(s2953 1)
(s2954 1)
(s2955 1)
(s2956 1)
(s2957 1)
(s2958 1)
(s2959 1)
(s2960 1)
(s2961 1)
(s2962 1)
(s2963 1)
(s2964 1)
(s2965 1)
(s2966 1)
(s2967 1)
(s2968 1)
(s2969 1)
(s2970 1)
(s2971 1)
(s2972 1)
(s2973 1)
(s2974 1)
(s2975 1)
(s2976 1)
(s2977 1)
(s2978 1)
(s2979 1)
(s2980 1)
(s2981 1)
(s2982 1)
(s2983 1)
(s2984 1)
(s2985 1)
(s2986 1)
(s2987 1)
(s2988 1)
(s2989 1)
(s2990 1)
(s2991 1)
(s2992 1)
(s2993 1)
(s2994 1)
(s2995 1)
(s2996 1)
(s2997 1)
(s2998 1)
(s2999 1)
(s3000 1)
(s3001 1)
(s3002 1)
(s3003 1)
(s3004 1)
(s3005 1)
(s3006 1)
(s3007 1)
(s3008 1)
(s3009 1)
(s3010 1)
(s3011 1)
(s3012 1)
(s3013 1)
(s3014 1)
(s3015 1)
(s3016 1)
(s3017 1)
(s3018 1)
(s3019 1)
(s3020 1)
(s3021 1)
(s3022 1)
(s3023 1)
(s3024 1)
(s3025 1)
(s3026 1)
(s3027 1)
(s3028 1)
(s3029 1)
(s3030 1)
(s3031 1)
(s3032 1)
(s3033 1)
(s3034 1)
(s3035 1)
(s3036 1)
(s3037 1)
(s3038 1)
(s3039 1)
(s3040 1)
(s3041 1)
(s3042 1)
(s3043 1)
(s3044 1)
(s3045 1)
(s3046 1)
(s3047 1)
(s3048 1)
(s3049 1)
(s3050 1)
(s3051 1)
(s3052 1)
(s3053 1)
(s3054 1)
(s3055 1)
(s3056 1)
(s3057 1)
(s3058 1)
(s3059 1)
(s3060 1)
(s3061 1)
(s3062 1)
(s3063 1)
(s3064 1)
(s3065 1)
(s3066 1)
(s3067 1)
(s3068 1)
(s3069 1)
(s3070 1)
(s3071 1)
(s3072 1)
(s3073 1)
(s3074 1)
(s3075 1)
(s3076 1)
(s3077 1)
(s3078 1)
(s3079 1)
(s3080 1)
(s3081 1)
(s3082 1)
(s3083 1)
(s3084 1)
(s3085 1)
(s3086 1)
(s3087 1)
(s3088 1)
(s3089 1)
(s3090 1)
(s3091 1)
(s3092 1)
(s3093 1)
(s3094 1)
(s3095 1)
(s3096 1)
(s3097 1)
(s3098 1)
(s3099 1)
(s3100 1)
(s3101 1)
(s3102 1)
(s3103 1)
(s3104 1)
(s3105 1)
(s3106 1)
(s3107 1)
(s3108 1)
(s3109 1)
(s3110 1)
(s3111 1)
(s3112 1)
(s3113 1)
(s3114 1)
(s3115 1)
(s3116 1)
(s3117 1)
(s3118 1)
(s3119 1)
(s3120 1)
(s3121 1)
(s3122 1)
(s3123 1)
(s3124 1)
(s3125 1)
(s3126 1)
(s3127 1)
(s3128 1)
(s3129 1)
(s3130 1)
(s3131 1)
(s3132 1)
(s3133 1)
(s3134 1)
(s3135 1)
(s3136 1)
(s3137 1)
(s3138 1)
(s3139 1)
(s3140 1)
(s3141 1)
(s3142 1)
(s3143 1)
(s3144 1)
(s3145 1)
(s3146 1)
(s3147 1)
(s3148 1)
(s3149 1)
(s3150 1)
(s3151 1)
(s3152 1)
(s3153 1)
(s3154 1)
(s3155 1)
(s3156 1)
(s3157 1)
(s3158 1)
(s3159 1)
(s3160 1)
(s3161 1)
(s3162 1)
(s3163 1)
(s3164 1)
(s3165 1)
(s3166 1)
(s3167 1)
(s3168 1)
(s3169 1)
(s3170 1)
(s3171 1)
(s3172 1)
(s3173 1)
(s3174 1)
(s3175 1)
(s3176 1)
(s3177 1)
(s3178 1)
(s3179 1)
(s3180 1)
(s3181 1)
(s3182 1)
(s3183 1)
(s3184 1)
(s3185 1)
(s3186 1)
(s3187 1)
(s3188 1)
(s3189 1)
(s3190 1)
(s3191 1)
(s3192 1)
(s3193 1)
(s3194 1)
(s3195 1)
(s3196 1)
(s3197 1)
(s3198 1)
(s3199 1)
(s3200 1)
(s3201 1)
(s3202 1)
(s3203 1)
(s3204 1)
(s3205 1)
(s3206 1)
(s3207 1)
(s3208 1)
(s3209 1)
(s3210 1)
(s3211 1)
(s3212 1)
(s3213 1)
(s3214 1)
(s3215 1)
(s3216 1)
(s3217 1)
(s3218 1)
(s3219 1)
(s3220 1)
(s3221 1)
(s3222 1)
(s3223 1)
(s3224 1)
(s3225 1)
(s3226 1)
(s3227 1)
(s3228 1)
(s3229 1)
(s3230 1)
(s3231 1)
(s3232 1)
(s3233 1)
(s3234 1)
(s3235 1)
(s3236 1)
(s3237 1)
(s3238 1)
(s3239 1)
(s3240 1)
(s3241 1)
(s3242 1)
(s3243 1)
(s3244 1)
(s3245 1)
(s3246 1)
(s3247 1)
(s3248 1)
(s3249 1)
(s3250 1)
(s3251 1)
(s3252 1)
(s3253 1)
(s3254 1)
(s3255 1)
(s3256 1)
(s3257 1)
(s3258 1)
(s3259 1)
(s3260 1)
(s3261 1)
(s3262 1)
(s3263 1)
(s3264 1)
(s3265 1)
(s3266 1)
(s3267 1)
(s3268 1)
(s3269 1)
(s3270 1)
(s3271 1)
(s3272 1)
(s3273 1)
(s3274 1)
(s3275 1)
(s3276 1)
(s3277 1)
(s3278 1)
(s3279 1)
(s3280 1)
(s3281 1)
(s3282 1)
(s3283 1)
(s3284 1)
(s3285 1)
(s3286 1)
(s3287 1)
(s3288 1)
(s3289 1)
(s3290 1)
(s3291 1)
(s3292 1)
(s3293 1)
(s3294 1)
(s3295 1)
(s3296 1)
(s3297 1)
(s3298 1)
(s3299 1)
(s3300 1)
(s3301 1)
(s3302 1)
(s3303 1)
(s3304 1)
(s3305 1)
(s3306 1)
(s3307 1)
(s3308 1)
(s3309 1)
(s3310 1)
(s3311 1)
(s3312 1)
(s3313 1)
(s3314 1)
(s3315 1)
(s3316 1)
(s3317 1)
(s3318 1)
(s3319 1)
(s3320 1)
(s3321 1)
(s3322 1)
(s3323 1)
(s3324 1)
(s3325 1)
(s3326 1)
(s3327 1)
(s3328 1)
(s3329 1)
(s3330 1)
(s3331 1)
(s3332 1)
(s3333 1)
(s3334 1)
(s3335 1)
(s3336 1)
(s3337 1)
(s3338 1)
(s3339 1)
(s3340 1)
(s3341 1)
(s3342 1)
(s3343 1)
(s3344 1)
(s3345 1)
(s3346 1)
(s3347 1)
(s3348 1)
(s3349 1)
(s3350 1)
(s3351 1)
(s3352 1)
(s3353 1)
(s3354 1)
(s3355 1)
(s3356 1)
(s3357 1)
(s3358 1)
(s3359 1)
(s3360 1)
(s3361 1)
(s3362 1)
(s3363 1)
(s3364 1)
(s3365 1)
(s3366 1)
(s3367 1)
(s3368 1)
(s3369 1)
(s3370 1)
(s3371 1)
(s3372 1)
(s3373 1)
(s3374 1)
(s3375 1)
(s3376 1)
(s3377 1)
(s3378 1)
(s3379 1)
(s3380 1)
(s3381 1)
(s3382 1)
(s3383 1)
(s3384 1)
(s3385 1)
(s3386 1)
(s3387 1)
(s3388 1)
(s3389 1)
(s3390 1)
(s3391 1)
(s3392 1)
(s3393 1)
(s3394 1)
(s3395 1)
(s3396 1)
(s3397 1)
(s3398 1)
(s3399 1)
(s3400 1)
(s3401 1)
(s3402 1)
(s3403 1)
(s3404 1)
(s3405 1)
(s3406 1)
(s3407 1)
(s3408 1)
(s3409 1)
(s3410 1)
(s3411 1)
(s3412 1)
(s3413 1)
(s3414 1)
(s3415 1)
(s3416 1)
(s3417 1)
(s3418 1)
(s3419 1)
(s3420 1)
(s3421 1)
(s3422 1)
(s3423 1)
(s3424 1)
(s3425 1)
(s3426 1)
(s3427 1)
(s3428 1)
(s3429 1)
(s3430 1)
(s3431 1)
(s3432 1)
(s3433 1)
(s3434 1)
(s3435 1)
(s3436 1)
(s3437 1)
(s3438 1)
(s3439 1)
(s3440 1)
(s3441 1)
(s3442 1)
(s3443 1)
(s3444 1)
(s3445 1)
(s3446 1)
(s3447 1)
(s3448 1)
(s3449 1)
(s3450 1)
(s3451 1)
(s3452 1)
(s3453 1)
(s3454 1)
(s3455 1)
(s3456 1)
(s3457 1)
(s3458 1)
(s3459 1)
(s3460 1)
(s3461 1)
(s3462 1)
(s3463 1)
(s3464 1)
(s3465 1)
(s3466 1)
(s3467 1)
(s3468 1)
(s3469 1)
(s3470 1)
(s3471 1)
(s3472 1)
(s3473 1)
(s3474 1)
(s3475 1)
(s3476 1)
(s3477 1)
(s3478 1)
(s3479 1)
(s3480 1)
(s3481 1)
(s3482 1)
(s3483 1)
(s3484 1)
(s3485 1)
(s3486 1)
(s3487 1)
(s3488 1)
(s3489 1)
(s3490 1)
(s3491 1)
(s3492 1)
(s3493 1)
(s3494 1)
(s3495 1)
(s3496 1)
(s3497 1)
(s3498 1)
(s3499 1)
(s3500 1)
(s3501 1)
(s3502 1)
(s3503 1)
(s3504 1)
(s3505 1)
(s3506 1)
(s3507 1)
(s3508 1)
(s3509 1)
(s3510 1)
(s3511 1)
(s3512 1)
(s3513 1)
(s3514 1)
(s3515 1)
(s3516 1)
(s3517 1)
(s3518 1)
(s3519 1)
(s3520 1)
(s3521 1)
(s3522 1)
(s3523 1)
(s3524 1)
(s3525 1)
(s3526 1)
(s3527 1)
(s3528 1)
(s3529 1)
(s3530 1)
(s3531 1)
(s3532 1)
(s3533 1)
(s3534 1)
(s3535 1)
(s3536 1)
(s3537 1)
(s3538 1)
(s3539 1)
(s3540 1)
(s3541 1)
(s3542 1)
(s3543 1)
(s3544 1)
(s3545 1)
(s3546 1)
(s3547 1)
(s3548 1)
(s3549 1)
(s3550 1)
(s3551 1)
(s3552 1)
(s3553 1)
(s3554 1)
(s3555 1)
(s3556 1)
(s3557 1)
(s3558 1)
(s3559 1)
(s3560 1)
(s3561 1)
(s3562 1)
(s3563 1)
(s3564 1)
(s3565 1)
(s3566 1)
(s3567 1)
(s3568 1)
(s3569 1)
(s3570 1)
(s3571 1)
(s3572 1)
(s3573 1)
(s3574 1)
(s3575 1)
(s3576 1)
(s3577 1)
(s3578 1)
(s3579 1)
(s3580 1)
(s3581 1)
(s3582 1)
(s3583 1)
(s3584 1)
(s3585 1)
(s3586 1)
(s3587 1)
(s3588 1)
(s3589 1)
(s3590 1)
(s3591 1)
(s3592 1)
(s3593 1)
(s3594 1)
(s3595 1)
(s3596 1)
(s3597 1)
(s3598 1)
(s3599 1)
(s3600 1)
(s3601 1)
(s3602 1)
(s3603 1)
(s3604 1)
(s3605 1)
(s3606 1)
(s3607 1)
(s3608 1)
(s3609 1)
(s3610 1)
(s3611 1)
(s3612 1)
(s3613 1)
(s3614 1)
(s3615 1)
(s3616 1)
(s3617 1)
(s3618 1)
(s3619 1)
(s3620 1)
(s3621 1)
(s3622 1)
(s3623 1)
(s3624 1)
(s3625 1)
(s3626 1)
(s3627 1)
(s3628 1)
(s3629 1)
(s3630 1)
(s3631 1)
(s3632 1)
(s3633 1)
(s3634 1)
(s3635 1)
(s3636 1)
(s3637 1)
(s3638 1)
(s3639 1)
(s3640 1)
(s3641 1)
(s3642 1)
(s3643 1)
(s3644 1)
(s3645 1)
(s3646 1)
(s3647 1)
(s3648 1)
(s3649 1)
(s3650 1)
(s3651 1)
(s3652 1)
(s3653 1)
(s3654 1)
(s3655 1)
(s3656 1)
(s3657 1)
(s3658 1)
(s3659 1)
(s3660 1)
(s3661 1)
(s3662 1)
(s3663 1)
(s3664 1)
(s3665 1)
(s3666 1)
(s3667 1)
(s3668 1)
(s3669 1)
(s3670 1)
(s3671 1)
(s3672 1)
(s3673 1)
(s3674 1)
(s3675 1)
(s3676 1)
(s3677 1)
(s3678 1)
(s3679 1)
(s3680 1)
(s3681 1)
(s3682 1)
(s3683 1)
(s3684 1)
(s3685 1)
(s3686 1)
(s3687 1)
(s3688 1)
(s3689 1)
(s3690 1)
(s3691 1)
(s3692 1)
(s3693 1)
(s3694 1)
(s3695 1)
(s3696 1)
(s3697 1)
(s3698 1)
(s3699 1)
(s3700 1)
(s3701 1)
(s3702 1)
(s3703 1)
(s3704 1)
(s3705 1)
(s3706 1)
(s3707 1)
(s3708 1)
(s3709 1)
(s3710 1)
(s3711 1)
(s3712 1)
(s3713 1)
(s3714 1)
(s3715 1)
(s3716 1)
(s3717 1)
(s3718 1)
(s3719 1)
(s3720 1)
(s3721 1)
(s3722 1)
(s3723 1)
(s3724 1)
(s3725 1)
(s3726 1)
(s3727 1)
(s3728 1)
(s3729 1)
(s3730 1)
(s3731 1)
(s3732 1)
(s3733 1)
(s3734 1)
(s3735 1)
(s3736 1)
(s3737 1)
(s3738 1)
(s3739 1)
(s3740 1)
(s3741 1)
(s3742 1)
(s3743 1)
(s3744 1)
(s3745 1)
(s3746 1)
(s3747 1)
(s3748 1)
(s3749 1)
(s3750 1)
(s3751 1)
(s3752 1)
(s3753 1)
(s3754 1)
(s3755 1)
(s3756 1)
(s3757 1)
(s3758 1)
(s3759 1)
(s3760 1)
(s3761 1)
(s3762 1)
(s3763 1)
(s3764 1)
(s3765 1)
(s3766 1)
(s3767 1)
(s3768 1)
(s3769 1)
(s3770 1)
(s3771 1)
(s3772 1)
(s3773 1)
(s3774 1)
(s3775 1)
(s3776 1)
(s3777 1)
(s3778 1)
(s3779 1)
(s3780 1)
(s3781 1)
(s3782 1)
(s3783 1)
(s3784 1)
(s3785 1)
(s3786 1)
(s3787 1)
(s3788 1)
(s3789 1)
(s3790 1)
(s3791 1)
(s3792 1)
(s3793 1)
(s3794 1)
(s3795 1)
(s3796 1)
(s3797 1)
(s3798 1)
(s3799 1)
(s3800 1)
(s3801 1)
(s3802 1)
(s3803 1)
(s3804 1)
(s3805 1)
(s3806 1)
(s3807 1)
(s3808 1)
(s3809 1)
(s3810 1)
(s3811 1)
(s3812 1)
(s3813 1)
(s3814 1)
(s3815 1)
(s3816 1)
(s3817 1)
(s3818 1)
(s3819 1)
(s3820 1)
(s3821 1)
(s3822 1)
(s3823 1)
(s3824 1)
(s3825 1)
(s3826 1)
(s3827 1)
(s3828 1)
(s3829 1)
(s3830 1)
(s3831 1)
(s3832 1)
(s3833 1)
(s3834 1)
(s3835 1)
(s3836 1)
(s3837 1)
(s3838 1)
(s3839 1)
(s3840 1)
(s3841 1)
(s3842 1)
(s3843 1)
(s3844 1)
(s3845 1)
(s3846 1)
(s3847 1)
(s3848 1)
(s3849 1)
(s3850 1)
(s3851 1)
(s3852 1)
(s3853 1)
(s3854 1)
(s3855 1)
(s3856 1)
(s3857 1)
(s3858 1)
(s3859 1)
(s3860 1)
(s3861 1)
(s3862 1)
(s3863 1)
(s3864 1)
(s3865 1)
(s3866 1)
(s3867 1)
(s3868 1)
(s3869 1)
(s3870 1)
(s3871 1)
(s3872 1)
(s3873 1)
(s3874 1)
(s3875 1)
(s3876 1)
(s3877 1)
(s3878 1)
(s3879 1)
(s3880 1)
(s3881 1)
(s3882 1)
(s3883 1)
(s3884 1)
(s3885 1)
(s3886 1)
(s3887 1)
(s3888 1)
(s3889 1)
(s3890 1)
(s3891 1)
(s3892 1)
(s3893 1)
(s3894 1)
(s3895 1)
(s3896 1)
(s3897 1)
(s3898 1)
(s3899 1)
(s3900 1)
(s3901 1)
(s3902 1)
(s3903 1)
(s3904 1)
(s3905 1)
(s3906 1)
(s3907 1)
(s3908 1)
(s3909 1)
(s3910 1)
(s3911 1)
(s3912 1)
(s3913 1)
(s3914 1)
(s3915 1)
(s3916 1)
(s3917 1)
(s3918 1)
(s3919 1)
(s3920 1)
(s3921 1)
(s3922 1)
(s3923 1)
(s3924 1)
(s3925 1)
(s3926 1)
(s3927 1)
(s3928 1)
(s3929 1)
(s3930 1)
(s3931 1)
(s3932 1)
(s3933 1)
(s3934 1)
(s3935 1)
(s3936 1)
(s3937 1)
(s3938 1)
(s3939 1)
(s3940 1)
(s3941 1)
(s3942 1)
(s3943 1)
(s3944 1)
(s3945 1)
(s3946 1)
(s3947 1)
(s3948 1)
(s3949 1)
(s3950 1)
(s3951 1)
(s3952 1)
(s3953 1)
(s3954 1)
(s3955 1)
(s3956 1)
(s3957 1)
(s3958 1)
(s3959 1)
(s3960 1)
(s3961 1)
(s3962 1)
(s3963 1)
(s3964 1)
(s3965 1)
(s3966 1)
(s3967 1)
(s3968 1)
(s3969 1)
(s3970 1)
(s3971 1)
(s3972 1)
(s3973 1)
(s3974 1)
(s3975 1)
(s3976 1)
(s3977 1)
(s3978 1)
(s3979 1)
(s3980 1)
(s3981 1)
(s3982 1)
(s3983 1)
(s3984 1)
(s3985 1)
(s3986 1)
(s3987 1)
(s3988 1)
(s3989 1)
(s3990 1)
(s3991 1)
(s3992 1)
(s3993 1)
(s3994 1)
(s3995 1)
(s3996 1)
(s3997 1)
(s3998 1)
(s3999 1)
(s4000 1)
(s4001 1)
(s4002 1)
(s4003 1)
(s4004 1)
(s4005 1)
(s4006 1)
(s4007 1)
(s4008 1)
(s4009 1)
(s4010 1)
(s4011 1)
(s4012 1)
(s4013 1)
(s4014 1)
(s4015 1)
(s4016 1)
(s4017 1)
(s4018 1)
(s4019 1)
(s4020 1)
(s4021 1)
(s4022 1)
(s4023 1)
(s4024 1)
(s4025 1)
(s4026 1)
(s4027 1)
(s4028 1)
(s4029 1)
(s4030 1)
(s4031 1)
(s4032 1)
(s4033 1)
(s4034 1)
(s4035 1)
(s4036 1)
(s4037 1)
(s4038 1)
(s4039 1)
(s4040 1)
(s4041 1)
(s4042 1)
(s4043 1)
(s4044 1)
(s4045 1)
(s4046 1)
(s4047 1)
(s4048 1)
(s4049 1)
(s4050 1)
(s4051 1)
(s4052 1)
(s4053 1)
(s4054 1)
(s4055 1)
(s4056 1)
(s4057 1)
(s4058 1)
(s4059 1)
(s4060 1)
(s4061 1)
(s4062 1)
(s4063 1)
(s4064 1)
(s4065 1)
(s4066 1)
(s4067 1)
(s4068 1)
(s4069 1)
(s4070 1)
(s4071 1)
(s4072 1)
(s4073 1)
(s4074 1)
(s4075 1)
(s4076 1)
(s4077 1)
(s4078 1)
(s4079 1)
(s4080 1)
(s4081 1)
(s4082 1)
(s4083 1)
(s4084 1)
(s4085 1)
(s4086 1)
(s4087 1)
(s4088 1)
(s4089 1)
(s4090 1)
(s4091 1)
(s4092 1)
(s4093 1)
(s4094 1)
(s4095 1)
(s4096 1)
(s4097 1)
(s4098 1)
(s4099 1)
(s4100 1)
(s4101 1)
(s4102 1)
(s4103 1)
(s4104 1)
(s4105 1)
(s4106 1)
(s4107 1)
(s4108 1)
(s4109 1)
(s4110 1)
(s4111 1)
(s4112 1)
(s4113 1)
(s4114 1)
(s4115 1)
(s4116 1)
(s4117 1)
(s4118 1)
(s4119 1)
(s4120 1)
(s4121 1)
(s4122 1)
(s4123 1)
(s4124 1)
(s4125 1)
(s4126 1)
(s4127 1)
(s4128 1)
(s4129 1)
(s4130 1)
(s4131 1)
(s4132 1)
(s4133 1)
(s4134 1)
(s4135 1)
(s4136 1)
(s4137 1)
(s4138 1)
(s4139 1)
(s4140 1)
(s4141 1)
(s4142 1)
(s4143 1)
(s4144 1)
(s4145 1)
(s4146 1)
(s4147 1)
(s4148 1)
(s4149 1)
(s4150 1)
(s4151 1)
(s4152 1)
(s4153 1)
(s4154 1)
(s4155 1)
(s4156 1)
(s4157 1)
(s4158 1)
(s4159 1)
(s4160 1)
(s4161 1)
(s4162 1)
(s4163 1)
(s4164 1)
(s4165 1)
(s4166 1)
(s4167 1)
(s4168 1)
(s4169 1)
(s4170 1)
(s4171 1)
(s4172 1)
(s4173 1)
(s4174 1)
(s4175 1)
(s4176 1)
(s4177 1)
(s4178 1)
(s4179 1)
(s4180 1)
(s4181 1)
(s4182 1)
(s4183 1)
(s4184 1)
(s4185 1)
(s4186 1)
(s4187 1)
(s4188 1)
(s4189 1)
(s4190 1)
(s4191 1)
(s4192 1)
(s4193 1)
(s4194 1)
(s4195 1)
(s4196 1)
(s4197 1)
(s4198 1)
(s4199 1)
(s4200 1)
(s4201 1)
(s4202 1)
(s4203 1)
(s4204 1)
(s4205 1)
(s4206 1)
(s4207 1)
(s4208 1)
(s4209 1)
(s4210 1)
(s4211 1)
(s4212 1)
(s4213 1)
(s4214 1)
(s4215 1)
(s4216 1)
(s4217 1)
(s4218 1)
(s4219 1)
(s4220 1)
(s4221 1)
(s4222 1)
(s4223 1)
(s4224 1)
(s4225 1)
(s4226 1)
(s4227 1)
(s4228 1)
(s4229 1)
(s4230 1)
(s4231 1)
(s4232 1)
(s4233 1)
(s4234 1)
(s4235 1)
(s4236 1)
(s4237 1)
(s4238 1)
(s4239 1)
(s4240 1)
(s4241 1)
(s4242 1)
(s4243 1)
(s4244 1)
(s4245 1)
(s4246 1)
(s4247 1)
(s4248 1)
(s4249 1)
(s4250 1)
(s4251 1)
(s4252 1)
(s4253 1)
(s4254 1)
(s4255 1)
(s4256 1)
(s4257 1)
(s4258 1)
(s4259 1)
(s4260 1)
(s4261 1)
(s4262 1)
(s4263 1)
(s4264 1)
(s4265 1)
(s4266 1)
(s4267 1)
(s4268 1)
(s4269 1)
(s4270 1)
(s4271 1)
(s4272 1)
(s4273 1)
(s4274 1)
(s4275 1)
(s4276 1)
(s4277 1)
(s4278 1)
(s4279 1)
(s4280 1)
(s4281 1)
(s4282 1)
(s4283 1)
(s4284 1)
(s4285 1)
(s4286 1)
(s4287 1)
(s4288 1)
(s4289 1)
(s4290 1)
(s4291 1)
(s4292 1)
(s4293 1)
(s4294 1)
(s4295 1)
(s4296 1)
(s4297 1)
(s4298 1)
(s4299 1)
(s4300 1)
(s4301 1)
(s4302 1)
(s4303 1)
(s4304 1)
(s4305 1)
(s4306 1)
(s4307 1)
(s4308 1)
(s4309 1)
(s4310 1)
(s4311 1)
(s4312 1)
(s4313 1)
(s4314 1)
(s4315 1)
(s4316 1)
(s4317 1)
(s4318 1)
(s4319 1)
(s4320 1)
(s4321 1)
(s4322 1)
(s4323 1)
(s4324 1)
(s4325 1)
(s4326 1)
(s4327 1)
(s4328 1)
(s4329 1)
(s4330 1)
(s4331 1)
(s4332 1)
(s4333 1)
(s4334 1)
(s4335 1)
(s4336 1)
(s4337 1)
(s4338 1)
(s4339 1)
(s4340 1)
(s4341 1)
(s4342 1)
(s4343 1)
(s4344 1)
(s4345 1)
(s4346 1)
(s4347 1)
(s4348 1)
(s4349 1)
(s4350 1)
(s4351 1)
(s4352 1)
(s4353 1)
(s4354 1)
(s4355 1)
(s4356 1)
(s4357 1)
(s4358 1)
(s4359 1)
(s4360 1)
(s4361 1)
(s4362 1)
(s4363 1)
(s4364 1)
(s4365 1)
(s4366 1)
(s4367 1)
(s4368 1)
(s4369 1)
(s4370 1)
(s4371 1)
(s4372 1)
(s4373 1)
(s4374 1)
(s4375 1)
(s4376 1)
(s4377 1)
(s4378 1)
(s4379 1)
(s4380 1)
(s4381 1)
(s4382 1)
(s4383 1)
(s4384 1)
(s4385 1)
(s4386 1)
(s4387 1)
(s4388 1)
(s4389 1)
(s4390 1)
(s4391 1)
(s4392 1)
(s4393 1)
(s4394 1)
(s4395 1)
(s4396 1)
(s4397 1)
(s4398 1)
(s4399 1)
(s4400 1)
(s4401 1)
(s4402 1)
(s4403 1)
(s4404 1)
(s4405 1)
(s4406 1)
(s4407 1)
(s4408 1)
(s4409 1)
(s4410 1)
(s4411 1)
(s4412 1)
(s4413 1)
(s4414 1)
(s4415 1)
(s4416 1)
(s4417 1)
(s4418 1)
(s4419 1)
(s4420 1)
(s4421 1)
(s4422 1)
(s4423 1)
(s4424 1)
(s4425 1)
(s4426 1)
(s4427 1)
(s4428 1)
(s4429 1)
(s4430 1)
(s4431 1)
(s4432 1)
(s4433 1)
(s4434 1)
(s4435 1)
(s4436 1)
(s4437 1)
(s4438 1)
(s4439 1)
(s4440 1)
(s4441 1)
(s4442 1)
(s4443 1)
(s4444 1)
(s4445 1)
(s4446 1)
(s4447 1)
(s4448 1)
(s4449 1)
(s4450 1)
(s4451 1)
(s4452 1)
(s4453 1)
(s4454 1)
(s4455 1)
(s4456 1)
(s4457 1)
(s4458 1)
(s4459 1)
(s4460 1)
(s4461 1)
(s4462 1)
(s4463 1)
(s4464 1)
(s4465 1)
(s4466 1)
(s4467 1)
(s4468 1)
(s4469 1)
(s4470 1)
(s4471 1)
(s4472 1)
(s4473 1)
(s4474 1)
(s4475 1)
(s4476 1)
(s4477 1)
(s4478 1)
(s4479 1)
(s4480 1)
(s4481 1)
(s4482 1)
(s4483 1)
(s4484 1)
(s4485 1)
(s4486 1)
(s4487 1)
(s4488 1)
(s4489 1)
(s4490 1)
(s4491 1)
(s4492 1)
(s4493 1)
(s4494 1)
(s4495 1)
(s4496 1)
(s4497 1)
(s4498 1)
(s4499 1)
(s4500 1)
(s4501 1)
(s4502 1)
(s4503 1)
(s4504 1)
(s4505 1)
(s4506 1)
(s4507 1)
(s4508 1)
(s4509 1)
(s4510 1)
(s4511 1)
(s4512 1)
(s4513 1)
(s4514 1)
(s4515 1)
(s4516 1)
(s4517 1)
(s4518 1)
(s4519 1)
(s4520 1)
(s4521 1)
(s4522 1)
(s4523 1)
(s4524 1)
(s4525 1)
(s4526 1)
(s4527 1)
(s4528 1)
(s4529 1)
(s4530 1)
(s4531 1)
(s4532 1)
(s4533 1)
(s4534 1)
(s4535 1)
(s4536 1)
(s4537 1)
(s4538 1)
(s4539 1)
(s4540 1)
(s4541 1)
(s4542 1)
(s4543 1)
(s4544 1)
(s4545 1)
(s4546 1)
(s4547 1)
(s4548 1)
(s4549 1)
(s4550 1)
(s4551 1)
(s4552 1)
(s4553 1)
(s4554 1)
(s4555 1)
(s4556 1)
(s4557 1)
(s4558 1)
(s4559 1)
(s4560 1)
(s4561 1)
(s4562 1)
(s4563 1)
(s4564 1)
(s4565 1)
(s4566 1)
(s4567 1)
(s4568 1)
(s4569 1)
(s4570 1)
(s4571 1)
(s4572 1)
(s4573 1)
(s4574 1)
(s4575 1)
(s4576 1)
(s4577 1)
(s4578 1)
(s4579 1)
(s4580 1)
(s4581 1)
(s4582 1)
(s4583 1)
(s4584 1)
(s4585 1)
(s4586 1)
(s4587 1)
(s4588 1)
(s4589 1)
(s4590 1)
(s4591 1)
(s4592 1)
(s4593 1)
(s4594 1)
(s4595 1)
(s4596 1)
(s4597 1)
(s4598 1)
(s4599 1)
(s4600 1)
(s4601 1)
(s4602 1)
(s4603 1)
(s4604 1)
(s4605 1)
(s4606 1)
(s4607 1)
(s4608 1)
(s4609 1)
(s4610 1)
(s4611 1)
(s4612 1)
(s4613 1)
(s4614 1)
(s4615 1)
(s4616 1)
(s4617 1)
(s4618 1)
(s4619 1)
(s4620 1)
(s4621 1)
(s4622 1)
(s4623 1)
(s4624 1)
(s4625 1)
(s4626 1)
(s4627 1)
(s4628 1)
(s4629 1)
(s4630 1)
(s4631 1)
(s4632 1)
(s4633 1)
(s4634 1)
(s4635 1)
(s4636 1)
(s4637 1)
(s4638 1)
(s4639 1)
(s4640 1)
(s4641 1)
(s4642 1)
(s4643 1)
(s4644 1)
(s4645 1)
(s4646 1)
(s4647 1)
(s4648 1)
(s4649 1)
(s4650 1)
(s4651 1)
(s4652 1)
(s4653 1)
(s4654 1)
(s4655 1)
(s4656 1)
(s4657 1)
(s4658 1)
(s4659 1)
(s4660 1)
(s4661 1)
(s4662 1)
(s4663 1)
(s4664 1)
(s4665 1)
(s4666 1)
(s4667 1)
(s4668 1)
(s4669 1)
(s4670 1)
(s4671 1)
(s4672 1)
(s4673 1)
(s4674 1)
(s4675 1)
(s4676 1)
(s4677 1)
(s4678 1)
(s4679 1)
(s4680 1)
(s4681 1)
(s4682 1)
(s4683 1)
(s4684 1)
(s4685 1)
(s4686 1)
(s4687 1)
(s4688 1)
(s4689 1)
(s4690 1)
(s4691 1)
(s4692 1)
(s4693 1)
(s4694 1)
(s4695 1)
(s4696 1)
(s4697 1)
(s4698 1)
(s4699 1)
(s4700 1)
(s4701 1)
(s4702 1)
(s4703 1)
(s4704 1)
(s4705 1)
(s4706 1)
(s4707 1)
(s4708 1)
(s4709 1)
(s4710 1)
(s4711 1)
(s4712 1)
(s4713 1)
(s4714 1)
(s4715 1)
(s4716 1)
(s4717 1)
(s4718 1)
(s4719 1)
(s4720 1)
(s4721 1)
(s4722 1)
(s4723 1)
(s4724 1)
(s4725 1)
(s4726 1)
(s4727 1)
(s4728 1)
(s4729 1)
(s4730 1)
(s4731 1)
(s4732 1)
(s4733 1)
(s4734 1)
(s4735 1)
(s4736 1)
(s4737 1)
(s4738 1)
(s4739 1)
(s4740 1)
(s4741 1)
(s4742 1)
(s4743 1)
(s4744 1)
(s4745 1)
(s4746 1)
(s4747 1)
(s4748 1)
(s4749 1)
(s4750 1)
(s4751 1)
(s4752 1)
(s4753 1)
(s4754 1)
(s4755 1)
(s4756 1)
(s4757 1)
(s4758 1)
(s4759 1)
(s4760 1)
(s4761 1)
(s4762 1)
(s4763 1)
(s4764 1)
(s4765 1)
(s4766 1)
(s4767 1)
(s4768 1)
(s4769 1)
(s4770 1)
(s4771 1)
(s4772 1)
(s4773 1)
(s4774 1)
(s4775 1)
(s4776 1)
(s4777 1)
(s4778 1)
(s4779 1)
(s4780 1)
(s4781 1)
(s4782 1)
(s4783 1)
(s4784 1)
(s4785 1)
(s4786 1)
(s4787 1)
(s4788 1)
(s4789 1)
(s4790 1)
(s4791 1)
(s4792 1)
(s4793 1)
(s4794 1)
(s4795 1)
(s4796 1)
(s4797 1)
(s4798 1)
(s4799 1)
(s4800 1)
(s4801 1)
(s4802 1)
(s4803 1)
(s4804 1)
(s4805 1)
(s4806 1)
(s4807 1)
(s4808 1)
(s4809 1)
(s4810 1)
(s4811 1)
(s4812 1)
(s4813 1)
(s4814 1)
(s4815 1)
(s4816 1)
(s4817 1)
(s4818 1)
(s4819 1)
(s4820 1)
(s4821 1)
(s4822 1)
(s4823 1)
(s4824 1)
(s4825 1)
(s4826 1)
(s4827 1)
(s4828 1)
(s4829 1)
(s4830 1)
(s4831 1)
(s4832 1)
(s4833 1)
(s4834 1)
(s4835 1)
(s4836 1)
(s4837 1)
(s4838 1)
(s4839 1)
(s4840 1)
(s4841 1)
(s4842 1)
(s4843 1)
(s4844 1)
(s4845 1)
(s4846 1)
(s4847 1)
(s4848 1)
(s4849 1)
(s4850 1)
(s4851 1)
(s4852 1)
(s4853 1)
(s4854 1)
(s4855 1)
(s4856 1)
(s4857 1)
(s4858 1)
(s4859 1)
(s4860 1)
(s4861 1)
(s4862 1)
(s4863 1)
(s4864 1)
(s4865 1)
(s4866 1)
(s4867 1)
(s4868 1)
(s4869 1)
(s4870 1)
(s4871 1)
(s4872 1)
(s4873 1)
(s4874 1)
(s4875 1)
(s4876 1)
(s4877 1)
(s4878 1)
(s4879 1)
(s4880 1)
(s4881 1)
(s4882 1)
(s4883 1)
(s4884 1)
(s4885 1)
(s4886 1)
(s4887 1)
(s4888 1)
(s4889 1)
(s4890 1)
(s4891 1)
(s4892 1)
(s4893 1)
(s4894 1)
(s4895 1)
(s4896 1)
(s4897 1)
(s4898 1)
(s4899 1)
(s4900 1)
(s4901 1)
(s4902 1)
(s4903 1)
(s4904 1)
(s4905 1)
(s4906 1)
(s4907 1)
(s4908 1)
(s4909 1)
(s4910 1)
(s4911 1)
(s4912 1)
(s4913 1)
(s4914 1)
(s4915 1)
(s4916 1)
(s4917 1)
(s4918 1)
(s4919 1)
(s4920 1)
(s4921 1)
(s4922 1)
(s4923 1)
(s4924 1)
(s4925 1)
(s4926 1)
(s4927 1)
(s4928 1)
(s4929 1)
(s4930 1)
(s4931 1)
(s4932 1)
(s4933 1)
(s4934 1)
(s4935 1)
(s4936 1)
(s4937 1)
(s4938 1)
(s4939 1)
(s4940 1)
(s4941 1)
(s4942 1)
(s4943 1)
(s4944 1)
(s4945 1)
(s4946 1)
(s4947 1)
(s4948 1)
(s4949 1)
(s4950 1)
(s4951 1)
(s4952 1)
(s4953 1)
(s4954 1)
(s4955 1)
(s4956 1)
(s4957 1)
(s4958 1)
(s4959 1)
(s4960 1)
(s4961 1)
(s4962 1)
(s4963 1)
(s4964 1)
(s4965 1)
(s4966 1)
(s4967 1)
(s4968 1)
(s4969 1)
(s4970 1)
(s4971 1)
(s4972 1)
(s4973 1)
(s4974 1)
(s4975 1)
(s4976 1)
(s4977 1)
(s4978 1)
(s4979 1)
(s4980 1)
(s4981 1)
(s4982 1)
(s4983 1)
(s4984 1)
(s4985 1)
(s4986 1)
(s4987 1)
(s4988 1)
(s4989 1)
(s4990 1)
(s4991 1)
(s4992 1)
(s4993 1)
(s4994 1)
(s4995 1)
(s4996 1)
(s4997 1)
(s4998 1)
(s4999 1)
(s5000 1)
(s5001 1)
(s5002 1)
(s5003 1)
(s5004 1)
(s5005 1)
(s5006 1)
(s5007 1)
(s5008 1)
(s5009 1)
(s5010 1)
(s5011 1)
(s5012 1)
(s5013 1)
(s5014 1)
(s5015 1)
(s5016 1)
(s5017 1)
(s5018 1)
(s5019 1)
(s5020 1)
(s5021 1)
(s5022 1)
(s5023 1)
(s5024 1)
(s5025 1)
(s5026 1)
(s5027 1)
(s5028 1)
(s5029 1)
(s5030 1)
(s5031 1)
(s5032 1)
(s5033 1)
(s5034 1)
(s5035 1)
(s5036 1)
(s5037 1)
(s5038 1)
(s5039 1)
(s5040 1)
(s5041 1)
(s5042 1)
(s5043 1)
(s5044 1)
(s5045 1)
(s5046 1)
(s5047 1)
(s5048 1)
(s5049 1)
(s5050 1)
(s5051 1)
(s5052 1)
(s5053 1)
(s5054 1)
(s5055 1)
(s5056 1)
(s5057 1)
(s5058 1)
(s5059 1)
(s5060 1)
(s5061 1)
(s5062 1)
(s5063 1)
(s5064 1)
(s5065 1)
(s5066 1)
(s5067 1)
(s5068 1)
(s5069 1)
(s5070 1)
(s5071 1)
(s5072 1)
(s5073 1)
(s5074 1)
(s5075 1)
(s5076 1)
(s5077 1)
(s5078 1)
(s5079 1)
(s5080 1)
(s5081 1)
(s5082 1)
(s5083 1)
(s5084 1)
(s5085 1)
(s5086 1)
(s5087 1)
(s5088 1)
(s5089 1)
(s5090 1)
(s5091 1)
(s5092 1)
(s5093 1)
(s5094 1)
(s5095 1)
(s5096 1)
(s5097 1)
(s5098 1)
(s5099 1)
(s5100 1)
(s5101 1)
(s5102 1)
(s5103 1)
(s5104 1)
(s5105 1)
(s5106 1)
(s5107 1)
(s5108 1)
(s5109 1)
(s5110 1)
(s5111 1)
(s5112 1)
(s5113 1)
(s5114 1)
(s5115 1)
(s5116 1)
(s5117 1)
(s5118 1)
(s5119 1)
(s5120 1)
(s5121 1)
(s5122 1)
(s5123 1)
(s5124 1)
(s5125 1)
(s5126 1)
(s5127 1)
(s5128 1)
(s5129 1)
(s5130 1)
(s5131 1)
(s5132 1)
(s5133 1)
(s5134 1)
(s5135 1)
(s5136 1)
(s5137 1)
(s5138 1)
(s5139 1)
(s5140 1)
(s5141 1)
(s5142 1)
(s5143 1)
(s5144 1)
(s5145 1)
(s5146 1)
(s5147 1)
(s5148 1)
(s5149 1)
(s5150 1)
(s5151 1)
(s5152 1)
(s5153 1)
(s5154 1)
(s5155 1)
(s5156 1)
(s5157 1)
(s5158 1)
(s5159 1)
(s5160 1)
(s5161 1)
(s5162 1)
(s5163 1)
(s5164 1)
(s5165 1)
(s5166 1)
(s5167 1)
(s5168 1)
(s5169 1)
(s5170 1)
(s5171 1)
(s5172 1)
(s5173 1)
(s5174 1)
(s5175 1)
(s5176 1)
(s5177 1)
(s5178 1)
(s5179 1)
(s5180 1)
(s5181 1)
(s5182 1)
(s5183 1)
(s5184 1)
(s5185 1)
(s5186 1)
(s5187 1)
(s5188 1)
(s5189 1)
(s5190 1)
(s5191 1)
(s5192 1)
(s5193 1)
(s5194 1)
(s5195 1)
(s5196 1)
(s5197 1)
(s5198 1)
(s5199 1)
(s5200 1)
(s5201 1)
(s5202 1)
(s5203 1)
(s5204 1)
(s5205 1)
(s5206 1)
(s5207 1)
(s5208 1)
(s5209 1)
(s5210 1)
(s5211 1)
(s5212 1)
(s5213 1)
(s5214 1)
(s5215 1)
(s5216 1)
(s5217 1)
(s5218 1)
(s5219 1)
(s5220 1)
(s5221 1)
(s5222 1)
(s5223 1)
(s5224 1)
(s5225 1)
(s5226 1)
(s5227 1)
(s5228 1)
(s5229 1)
(s5230 1)
(s5231 1)
(s5232 1)
(s5233 1)
(s5234 1)
(s5235 1)
(s5236 1)
(s5237 1)
(s5238 1)
(s5239 1)
(s5240 1)
(s5241 1)
(s5242 1)
(s5243 1)
(s5244 1)
(s5245 1)
(s5246 1)
(s5247 1)
(s5248 1)
(s5249 1)
(s5250 1)
(s5251 1)
(s5252 1)
(s5253 1)
(s5254 1)
(s5255 1)
(s5256 1)
(s5257 1)
(s5258 1)
(s5259 1)
(s5260 1)
(s5261 1)
(s5262 1)
(s5263 1)
(s5264 1)
(s5265 1)
(s5266 1)
(s5267 1)
(s5268 1)
(s5269 1)
(s5270 1)
(s5271 1)
(s5272 1)
(s5273 1)
(s5274 1)
(s5275 1)
(s5276 1)
(s5277 1)
(s5278 1)
(s5279 1)
(s5280 1)
(s5281 1)
(s5282 1)
(s5283 1)
(s5284 1)
(s5285 1)
(s5286 1)
(s5287 1)
(s5288 1)
(s5289 1)
(s5290 1)
(s5291 1)
(s5292 1)
(s5293 1)
(s5294 1)
(s5295 1)
(s5296 1)
(s5297 1)
(s5298 1)
(s5299 1)
(s5300 1)
(s5301 1)
(s5302 1)
(s5303 1)
(s5304 1)
(s5305 1)
(s5306 1)
(s5307 1)
(s5308 1)
(s5309 1)
(s5310 1)
(s5311 1)
(s5312 1)
(s5313 1)
(s5314 1)
(s5315 1)
(s5316 1)
(s5317 1)
(s5318 1)
(s5319 1)
(s5320 1)
(s5321 1)
(s5322 1)
(s5323 1)
(s5324 1)
(s5325 1)
(s5326 1)
(s5327 1)
(s5328 1)
(s5329 1)
(s5330 1)
(s5331 1)
(s5332 1)
(s5333 1)
(s5334 1)
(s5335 1)
(s5336 1)
(s5337 1)
(s5338 1)
(s5339 1)
(s5340 1)
(s5341 1)
(s5342 1)
(s5343 1)
(s5344 1)
(s5345 1)
(s5346 1)
(s5347 1)
(s5348 1)
(s5349 1)
(s5350 1)
(s5351 1)
(s5352 1)
(s5353 1)
(s5354 1)
(s5355 1)
(s5356 1)
(s5357 1)
(s5358 1)
(s5359 1)
(s5360 1)
(s5361 1)
(s5362 1)
(s5363 1)
(s5364 1)
(s5365 1)
(s5366 1)
(s5367 1)
(s5368 1)
(s5369 1)
(s5370 1)
(s5371 1)
(s5372 1)
(s5373 1)
(s5374 1)
(s5375 1)
(s5376 1)
(s5377 1)
(s5378 1)
(s5379 1)
(s5380 1)
(s5381 1)
(s5382 1)
(s5383 1)
(s5384 1)
(s5385 1)
(s5386 1)
(s5387 1)
(s5388 1)
(s5389 1)
(s5390 1)
(s5391 1)
(s5392 1)
(s5393 1)
(s5394 1)
(s5395 1)
(s5396 1)
(s5397 1)
(s5398 1)
(s5399 1)
(s5400 1)
(s5401 1)
(s5402 1)
(s5403 1)
(s5404 1)
(s5405 1)
(s5406 1)
(s5407 1)
(s5408 1)
(s5409 1)
(s5410 1)
(s5411 1)
(s5412 1)
(s5413 1)
(s5414 1)
(s5415 1)
(s5416 1)
(s5417 1)
(s5418 1)
(s5419 1)
(s5420 1)
(s5421 1)
(s5422 1)
(s5423 1)
(s5424 1)
(s5425 1)
(s5426 1)
(s5427 1)
(s5428 1)
(s5429 1)
(s5430 1)
(s5431 1)
(s5432 1)
(s5433 1)
(s5434 1)
(s5435 1)
(s5436 1)
(s5437 1)
(s5438 1)
(s5439 1)
(s5440 1)
(s5441 1)
(s5442 1)
(s5443 1)
(s5444 1)
(s5445 1)
(s5446 1)
(s5447 1)
(s5448 1)
(s5449 1)
(s5450 1)
(s5451 1)
(s5452 1)
(s5453 1)
(s5454 1)
(s5455 1)
(s5456 1)
(s5457 1)
(s5458 1)
(s5459 1)
(s5460 1)
(s5461 1)
(s5462 1)
(s5463 1)
(s5464 1)
(s5465 1)
(s5466 1)
(s5467 1)
(s5468 1)
(s5469 1)
(s5470 1)
(s5471 1)
(s5472 1)
(s5473 1)
(s5474 1)
(s5475 1)
(s5476 1)
(s5477 1)
(s5478 1)
(s5479 1)
(s5480 1)
(s5481 1)
(s5482 1)
(s5483 1)
(s5484 1)
(s5485 1)
(s5486 1)
(s5487 1)
(s5488 1)
(s5489 1)
(s5490 1)
(s5491 1)
(s5492 1)
(s5493 1)
(s5494 1)
(s5495 1)
(s5496 1)
(s5497 1)
(s5498 1)
(s5499 1)
(s5500 1)
(s5501 1)
(s5502 1)
(s5503 1)
(s5504 1)
(s5505 1)
(s5506 1)
(s5507 1)
(s5508 1)
(s5509 1)
(s5510 1)
(s5511 1)
(s5512 1)
(s5513 1)
(s5514 1)
(s5515 1)
(s5516 1)
(s5517 1)
(s5518 1)
(s5519 1)
(s5520 1)
(s5521 1)
(s5522 1)
(s5523 1)
(s5524 1)
(s5525 1)
(s5526 1)
(s5527 1)
(s5528 1)
(s5529 1)
(s5530 1)
(s5531 1)
(s5532 1)
(s5533 1)
(s5534 1)
(s5535 1)
(s5536 1)
(s5537 1)
(s5538 1)
(s5539 1)
(s5540 1)
(s5541 1)
(s5542 1)
(s5543 1)
(s5544 1)
(s5545 1)
(s5546 1)
(s5547 1)
(s5548 1)
(s5549 1)
(s5550 1)
(s5551 1)
(s5552 1)
(s5553 1)
(s5554 1)
(s5555 1)
(s5556 1)
(s5557 1)
(s5558 1)
(s5559 1)
(s5560 1)
(s5561 1)
(s5562 1)
(s5563 1)
(s5564 1)
(s5565 1)
(s5566 1)
(s5567 1)
(s5568 1)
(s5569 1)
(s5570 1)
(s5571 1)
(s5572 1)
(s5573 1)
(s5574 1)
(s5575 1)
(s5576 1)
(s5577 1)
(s5578 1)
(s5579 1)
(s5580 1)
(s5581 1)
(s5582 1)
(s5583 1)
(s5584 1)
(s5585 1)
(s5586 1)
(s5587 1)
(s5588 1)
(s5589 1)
(s5590 1)
(s5591 1)
(s5592 1)
(s5593 1)
(s5594 1)
(s5595 1)
(s5596 1)
(s5597 1)
(s5598 1)
(s5599 1)
(s5600 1)
(s5601 1)
(s5602 1)
(s5603 1)
(s5604 1)
(s5605 1)
(s5606 1)
(s5607 1)
(s5608 1)
(s5609 1)
(s5610 1)
(s5611 1)
(s5612 1)
(s5613 1)
(s5614 1)
(s5615 1)
(s5616 1)
(s5617 1)
(s5618 1)
(s5619 1)
(s5620 1)
(s5621 1)
(s5622 1)
(s5623 1)
(s5624 1)
(s5625 1)
(s5626 1)
(s5627 1)
(s5628 1)
(s5629 1)
(s5630 1)
(s5631 1)
(s5632 1)
(s5633 1)
(s5634 1)
(s5635 1)
(s5636 1)
(s5637 1)
(s5638 1)
(s5639 1)
(s5640 1)
(s5641 1)
(s5642 1)
(s5643 1)
(s5644 1)
(s5645 1)
(s5646 1)
(s5647 1)
(s5648 1)
(s5649 1)
(s5650 1)
(s5651 1)
(s5652 1)
(s5653 1)
(s5654 1)
(s5655 1)
(s5656 1)
(s5657 1)
(s5658 1)
(s5659 1)
(s5660 1)
(s5661 1)
(s5662 1)
(s5663 1)
(s5664 1)
(s5665 1)
(s5666 1)
(s5667 1)
(s5668 1)
(s5669 1)
(s5670 1)
(s5671 1)
(s5672 1)
(s5673 1)
(s5674 1)
(s5675 1)
(s5676 1)
(s5677 1)
(s5678 1)
(s5679 1)
(s5680 1)
(s5681 1)
(s5682 1)
(s5683 1)
(s5684 1)
(s5685 1)
(s5686 1)
(s5687 1)
(s5688 1)
(s5689 1)
(s5690 1)
(s5691 1)
(s5692 1)
(s5693 1)
(s5694 1)
(s5695 1)
(s5696 1)
(s5697 1)
(s5698 1)
(s5699 1)
(s5700 1)
(s5701 1)
(s5702 1)
(s5703 1)
(s5704 1)
(s5705 1)
(s5706 1)
(s5707 1)
(s5708 1)
(s5709 1)
(s5710 1)
(s5711 1)
(s5712 1)
(s5713 1)
(s5714 1)
(s5715 1)
(s5716 1)
(s5717 1)
(s5718 1)
(s5719 1)
(s5720 1)
(s5721 1)
(s5722 1)
(s5723 1)
(s5724 1)
(s5725 1)
(s5726 1)
(s5727 1)
(s5728 1)
(s5729 1)
(s5730 1)
(s5731 1)
(s5732 1)
(s5733 1)
(s5734 1)
(s5735 1)
(s5736 1)
(s5737 1)
(s5738 1)
(s5739 1)
(s5740 1)
(s5741 1)
(s5742 1)
(s5743 1)
(s5744 1)
(s5745 1)
(s5746 1)
(s5747 1)
(s5748 1)
(s5749 1)
(s5750 1)
(s5751 1)
(s5752 1)
(s5753 1)
(s5754 1)
(s5755 1)
(s5756 1)
(s5757 1)
(s5758 1)
(s5759 1)
(s5760 1)
(s5761 1)
(s5762 1)
(s5763 1)
(s5764 1)
(s5765 1)
(s5766 1)
(s5767 1)
(s5768 1)
(s5769 1)
(s5770 1)
(s5771 1)
(s5772 1)
(s5773 1)
(s5774 1)
(s5775 1)
(s5776 1)
(s5777 1)
(s5778 1)
(s5779 1)
(s5780 1)
(s5781 1)
(s5782 1)
(s5783 1)
(s5784 1)
(s5785 1)
(s5786 1)
(s5787 1)
(s5788 1)
(s5789 1)
(s5790 1)
(s5791 1)
(s5792 1)
(s5793 1)
(s5794 1)
(s5795 1)
(s5796 1)
(s5797 1)
(s5798 1)
(s5799 1)
(s5800 1)
(s5801 1)
(s5802 1)
(s5803 1)
(s5804 1)
(s5805 1)
(s5806 1)
(s5807 1)
(s5808 1)
(s5809 1)
(s5810 1)
(s5811 1)
(s5812 1)
(s5813 1)
(s5814 1)
(s5815 1)
(s5816 1)
(s5817 1)
(s5818 1)
(s5819 1)
(s5820 1)
(s5821 1)
(s5822 1)
(s5823 1)
(s5824 1)
(s5825 1)
(s5826 1)
(s5827 1)
(s5828 1)
(s5829 1)
(s5830 1)
(s5831 1)
(s5832 1)
(s5833 1)
(s5834 1)
(s5835 1)
(s5836 1)
(s5837 1)
(s5838 1)
(s5839 1)
(s5840 1)
(s5841 1)
(s5842 1)
(s5843 1)
(s5844 1)
(s5845 1)
(s5846 1)
(s5847 1)
(s5848 1)
(s5849 1)
(s5850 1)
(s5851 1)
(s5852 1)
(s5853 1)
(s5854 1)
(s5855 1)
(s5856 1)
(s5857 1)
(s5858 1)
(s5859 1)
(s5860 1)
(s5861 1)
(s5862 1)
(s5863 1)
(s5864 1)
(s5865 1)
(s5866 1)
(s5867 1)
(s5868 1)
(s5869 1)
(s5870 1)
(s5871 1)
(s5872 1)
(s5873 1)
(s5874 1)
(s5875 1)
(s5876 1)
(s5877 1)
(s5878 1)
(s5879 1)
(s5880 1)
(s5881 1)
(s5882 1)
(s5883 1)
(s5884 1)
(s5885 1)
(s5886 1)
(s5887 1)
(s5888 1)
(s5889 1)
(s5890 1)
(s5891 1)
(s5892 1)
(s5893 1)
(s5894 1)
(s5895 1)
(s5896 1)
(s5897 1)
(s5898 1)
(s5899 1)
(s5900 1)
(s5901 1)
(s5902 1)
(s5903 1)
(s5904 1)
(s5905 1)
(s5906 1)
(s5907 1)
(s5908 1)
(s5909 1)
(s5910 1)
(s5911 1)
(s5912 1)
(s5913 1)
(s5914 1)
(s5915 1)
(s5916 1)
(s5917 1)
(s5918 1)
(s5919 1)
(s5920 1)
(s5921 1)
(s5922 1)
(s5923 1)
(s5924 1)
(s5925 1)
(s5926 1)
(s5927 1)
(s5928 1)
(s5929 1)
(s5930 1)
(s5931 1)
(s5932 1)
(s5933 1)
(s5934 1)
(s5935 1)
(s5936 1)
(s5937 1)
(s5938 1)
(s5939 1)
(s5940 1)
(s5941 1)
(s5942 1)
(s5943 1)
(s5944 1)
(s5945 1)
(s5946 1)
(s5947 1)
(s5948 1)
(s5949 1)
(s5950 1)
(s5951 1)
(s5952 1)
(s5953 1)
(s5954 1)
(s5955 1)
(s5956 1)
(s5957 1)
(s5958 1)
(s5959 1)
(s5960 1)
(s5961 1)
(s5962 1)
(s5963 1)
(s5964 1)
(s5965 1)
(s5966 1)
(s5967 1)
(s5968 1)
(s5969 1)
(s5970 1)
(s5971 1)
(s5972 1)
(s5973 1)
(s5974 1)
(s5975 1)
(s5976 1)
(s5977 1)
(s5978 1)
(s5979 1)
(s5980 1)
(s5981 1)
(s5982 1)
(s5983 1)
(s5984 1)
(s5985 1)
(s5986 1)
(s5987 1)
(s5988 1)
(s5989 1)
(s5990 1)
(s5991 1)
(s5992 1)
(s5993 1)
(s5994 1)
(s5995 1)
(s5996 1)
(s5997 1)
(s5998 1)
(s5999 1)
(s6000 1)
(s6001 1)
(s6002 1)
(s6003 1)
(s6004 1)
(s6005 1)
(s6006 1)
(s6007 1)
(s6008 1)
(s6009 1)
(s6010 1)
(s6011 1)
(s6012 1)
(s6013 1)
(s6014 1)
(s6015 1)
(s6016 1)
(s6017 1)
(s6018 1)
(s6019 1)
(s6020 1)
(s6021 1)
(s6022 1)
(s6023 1)
(s6024 1)
(s6025 1)
(s6026 1)
(s6027 1)
(s6028 1)
(s6029 1)
(s6030 1)
(s6031 1)
(s6032 1)
(s6033 1)
(s6034 1)
(s6035 1)
(s6036 1)
(s6037 1)
(s6038 1)
(s6039 1)
(s6040 1)
(s6041 1)
(s6042 1)
(s6043 1)
(s6044 1)
(s6045 1)
(s6046 1)
(s6047 1)
(s6048 1)
(s6049 1)
(s6050 1)
(s6051 1)
(s6052 1)
(s6053 1)
(s6054 1)
(s6055 1)
(s6056 1)
(s6057 1)
(s6058 1)
(s6059 1)
(s6060 1)
(s6061 1)
(s6062 1)
(s6063 1)
(s6064 1)
(s6065 1)
(s6066 1)
(s6067 1)
(s6068 1)
(s6069 1)
(s6070 1)
(s6071 1)
(s6072 1)
(s6073 1)
(s6074 1)
(s6075 1)
(s6076 1)
(s6077 1)
(s6078 1)
(s6079 1)
(s6080 1)
(s6081 1)
(s6082 1)
(s6083 1)
(s6084 1)
(s6085 1)
(s6086 1)
(s6087 1)
(s6088 1)
(s6089 1)
(s6090 1)
(s6091 1)
(s6092 1)
(s6093 1)
(s6094 1)
(s6095 1)
(s6096 1)
(s6097 1)
(s6098 1)
(s6099 1)
(s6100 1)
(s6101 1)
(s6102 1)
(s6103 1)
(s6104 1)
(s6105 1)
(s6106 1)
(s6107 1)
(s6108 1)
(s6109 1)
(s6110 1)
(s6111 1)
(s6112 1)
(s6113 1)
(s6114 1)
(s6115 1)
(s6116 1)
(s6117 1)
(s6118 1)
(s6119 1)
(s6120 1)
(s6121 1)
(s6122 1)
(s6123 1)
(s6124 1)
(s6125 1)
(s6126 1)
(s6127 1)
(s6128 1)
(s6129 1)
(s6130 1)
(s6131 1)
(s6132 1)
(s6133 1)
(s6134 1)
(s6135 1)
(s6136 1)
(s6137 1)
(s6138 1)
(s6139 1)
(s6140 1)
(s6141 1)
(s6142 1)
(s6143 1)
(s6144 1)
(s6145 1)
(s6146 1)
(s6147 1)
(s6148 1)
(s6149 1)
(s6150 1)
(s6151 1)
(s6152 1)
(s6153 1)
(s6154 1)
(s6155 1)
(s6156 1)
(s6157 1)
(s6158 1)
(s6159 1)
(s6160 1)
(s6161 1)
(s6162 1)
(s6163 1)
(s6164 1)
(s6165 1)
(s6166 1)
(s6167 1)
(s6168 1)
(s6169 1)
(s6170 1)
(s6171 1)
(s6172 1)
(s6173 1)
(s6174 1)
(s6175 1)
(s6176 1)
(s6177 1)
(s6178 1)
(s6179 1)
(s6180 1)
(s6181 1)
(s6182 1)
(s6183 1)
(s6184 1)
(s6185 1)
(s6186 1)
(s6187 1)
(s6188 1)
(s6189 1)
(s6190 1)
(s6191 1)
(s6192 1)
(s6193 1)
(s6194 1)
(s6195 1)
(s6196 1)
(s6197 1)
(s6198 1)
(s6199 1)
(s6200 1)
(s6201 1)
(s6202 1)
(s6203 1)
(s6204 1)
(s6205 1)
(s6206 1)
(s6207 1)
(s6208 1)
(s6209 1)
(s6210 1)
(s6211 1)
(s6212 1)
(s6213 1)
(s6214 1)
(s6215 1)
(s6216 1)
(s6217 1)
(s6218 1)
(s6219 1)
(s6220 1)
(s6221 1)
(s6222 1)
(s6223 1)
(s6224 1)
(s6225 1)
(s6226 1)
(s6227 1)
(s6228 1)
(s6229 1)
(s6230 1)
(s6231 1)
(s6232 1)
(s6233 1)
(s6234 1)
(s6235 1)
(s6236 1)
(s6237 1)
(s6238 1)
(s6239 1)
(s6240 1)
(s6241 1)
(s6242 1)
(s6243 1)
(s6244 1)
(s6245 1)
(s6246 1)
(s6247 1)
(s6248 1)
(s6249 1)
(s6250 1)
(s6251 1)
(s6252 1)
(s6253 1)
(s6254 1)
(s6255 1)
(s6256 1)
(s6257 1)
(s6258 1)
(s6259 1)
(s6260 1)
(s6261 1)
(s6262 1)
(s6263 1)
(s6264 1)
(s6265 1)
(s6266 1)
(s6267 1)
(s6268 1)
(s6269 1)
(s6270 1)
(s6271 1)
(s6272 1)
(s6273 1)
(s6274 1)
(s6275 1)
(s6276 1)
(s6277 1)
(s6278 1)
(s6279 1)
(s6280 1)
(s6281 1)
(s6282 1)
(s6283 1)
(s6284 1)
(s6285 1)
(s6286 1)
(s6287 1)
(s6288 1)
(s6289 1)
(s6290 1)
(s6291 1)
(s6292 1)
(s6293 1)
(s6294 1)
(s6295 1)
(s6296 1)
(s6297 1)
(s6298 1)
(s6299 1)
(s6300 1)
(s6301 1)
(s6302 1)
(s6303 1)
(s6304 1)
(s6305 1)
(s6306 1)
(s6307 1)
(s6308 1)
(s6309 1)
(s6310 1)
(s6311 1)
(s6312 1)
(s6313 1)
(s6314 1)
(s6315 1)
(s6316 1)
(s6317 1)
(s6318 1)
(s6319 1)
(s6320 1)
(s6321 1)
(s6322 1)
(s6323 1)
(s6324 1)
(s6325 1)
(s6326 1)
(s6327 1)
(s6328 1)
(s6329 1)
(s6330 1)
(s6331 1)
(s6332 1)
(s6333 1)
(s6334 1)
(s6335 1)
(s6336 1)
(s6337 1)
(s6338 1)
(s6339 1)
(s6340 1)
(s6341 1)
(s6342 1)
(s6343 1)
(s6344 1)
(s6345 1)
(s6346 1)
(s6347 1)
(s6348 1)
(s6349 1)
(s6350 1)
(s6351 1)
(s6352 1)
(s6353 1)
(s6354 1)
(s6355 1)
(s6356 1)
(s6357 1)
(s6358 1)
(s6359 1)
(s6360 1)
(s6361 1)
(s6362 1)
(s6363 1)
(s6364 1)
(s6365 1)
(s6366 1)
(s6367 1)
(s6368 1)
(s6369 1)
(s6370 1)
(s6371 1)
(s6372 1)
(s6373 1)
(s6374 1)
(s6375 1)
(s6376 1)
(s6377 1)
(s6378 1)
(s6379 1)
(s6380 1)
(s6381 1)
(s6382 1)
(s6383 1)
(s6384 1)
(s6385 1)
(s6386 1)
(s6387 1)
(s6388 1)
(s6389 1)
(s6390 1)
(s6391 1)
(s6392 1)
(s6393 1)
(s6394 1)
(s6395 1)
(s6396 1)
(s6397 1)
(s6398 1)
(s6399 1)
(s6400 1)
(s6401 1)
(s6402 1)
(s6403 1)
(s6404 1)
(s6405 1)
(s6406 1)
(s6407 1)
(s6408 1)
(s6409 1)
(s6410 1)
(s6411 1)
(s6412 1)
(s6413 1)
(s6414 1)
(s6415 1)
(s6416 1)
(s6417 1)
(s6418 1)
(s6419 1)
(s6420 1)
(s6421 1)
(s6422 1)
(s6423 1)
(s6424 1)
(s6425 1)
(s6426 1)
(s6427 1)
(s6428 1)
(s6429 1)
(s6430 1)
(s6431 1)
(s6432 1)
(s6433 1)
(s6434 1)
(s6435 1)
(s6436 1)
(s6437 1)
(s6438 1)
(s6439 1)
(s6440 1)
(s6441 1)
(s6442 1)
(s6443 1)
(s6444 1)
(s6445 1)
(s6446 1)
(s6447 1)
(s6448 1)
(s6449 1)
(s6450 1)
(s6451 1)
(s6452 1)
(s6453 1)
(s6454 1)
(s6455 1)
(s6456 1)
(s6457 1)
(s6458 1)
(s6459 1)
(s6460 1)
(s6461 1)
(s6462 1)
(s6463 1)
(s6464 1)
(s6465 1)
(s6466 1)
(s6467 1)
(s6468 1)
(s6469 1)
(s6470 1)
(s6471 1)
(s6472 1)
(s6473 1)
(s6474 1)
(s6475 1)
(s6476 1)
(s6477 1)
(s6478 1)
(s6479 1)
(s6480 1)
(s6481 1)
(s6482 1)
(s6483 1)
(s6484 1)
(s6485 1)
(s6486 1)
(s6487 1)
(s6488 1)
(s6489 1)
(s6490 1)
(s6491 1)
(s6492 1)
(s6493 1)
(s6494 1)
(s6495 1)
(s6496 1)
(s6497 1)
(s6498 1)
(s6499 1)
(s6500 1)
(s6501 1)
(s6502 1)
(s6503 1)
(s6504 1)
(s6505 1)
(s6506 1)
(s6507 1)
(s6508 1)
(s6509 1)
(s6510 1)
(s6511 1)
(s6512 1)
(s6513 1)
(s6514 1)
(s6515 1)
(s6516 1)
(s6517 1)
(s6518 1)
(s6519 1)
(s6520 1)
(s6521 1)
(s6522 1)
(s6523 1)
(s6524 1)
(s6525 1)
(s6526 1)
(s6527 1)
(s6528 1)
(s6529 1)
(s6530 1)
(s6531 1)
(s6532 1)
(s6533 1)
(s6534 1)
(s6535 1)
(s6536 1)
(s6537 1)
(s6538 1)
(s6539 1)
(s6540 1)
(s6541 1)
(s6542 1)
(s6543 1)
(s6544 1)
(s6545 1)
(s6546 1)
(s6547 1)
(s6548 1)
(s6549 1)
(s6550 1)
(s6551 1)
(s6552 1)
(s6553 1)
(s6554 1)
(s6555 1)
(s6556 1)
(s6557 1)
(s6558 1)
(s6559 1)
(s6560 1)
(s6561 1)
(s6562 1)
(s6563 1)
(s6564 1)
(s6565 1)
(s6566 1)
(s6567 1)
(s6568 1)
(s6569 1)
(s6570 1)
(s6571 1)
(s6572 1)
(s6573 1)
(s6574 1)
(s6575 1)
(s6576 1)
(s6577 1)
(s6578 1)
(s6579 1)
(s6580 1)
(s6581 1)
(s6582 1)
(s6583 1)
(s6584 1)
(s6585 1)
(s6586 1)
(s6587 1)
(s6588 1)
(s6589 1)
(s6590 1)
(s6591 1)
(s6592 1)
(s6593 1)
(s6594 1)
(s6595 1)
(s6596 1)
(s6597 1)
(s6598 1)
(s6599 1)
(s6600 1)
(s6601 1)
(s6602 1)
(s6603 1)
(s6604 1)
(s6605 1)
(s6606 1)
(s6607 1)
(s6608 1)
(s6609 1)
(s6610 1)
(s6611 1)
(s6612 1)
(s6613 1)
(s6614 1)
(s6615 1)
(s6616 1)
(s6617 1)
(s6618 1)
(s6619 1)
(s6620 1)
(s6621 1)
(s6622 1)
(s6623 1)
(s6624 1)
(s6625 1)
(s6626 1)
(s6627 1)
(s6628 1)
(s6629 1)
(s6630 1)
(s6631 1)
(s6632 1)
(s6633 1)
(s6634 1)
(s6635 1)
(s6636 1)
(s6637 1)
(s6638 1)
(s6639 1)
(s6640 1)
(s6641 1)
(s6642 1)
(s6643 1)
(s6644 1)
(s6645 1)
(s6646 1)
(s6647 1)
(s6648 1)
(s6649 1)
(s6650 1)
(s6651 1)
(s6652 1)
(s6653 1)
(s6654 1)
(s6655 1)
(s6656 1)
(s6657 1)
(s6658 1)
(s6659 1)
(s6660 1)
(s6661 1)
(s6662 1)
(s6663 1)
(s6664 1)
(s6665 1)
(s6666 1)
(s6667 1)
(s6668 1)
(s6669 1)
(s6670 1)
(s6671 1)
(s6672 1)
(s6673 1)
(s6674 1)
(s6675 1)
(s6676 1)
(s6677 1)
(s6678 1)
(s6679 1)
(s6680 1)
(s6681 1)
(s6682 1)
(s6683 1)
(s6684 1)
(s6685 1)
(s6686 1)
(s6687 1)
(s6688 1)
(s6689 1)
(s6690 1)
(s6691 1)
(s6692 1)
(s6693 1)
(s6694 1)
(s6695 1)
(s6696 1)
(s6697 1)
(s6698 1)
(s6699 1)
(s6700 1)
(s6701 1)
(s6702 1)
(s6703 1)
(s6704 1)
(s6705 1)
(s6706 1)
(s6707 1)
(s6708 1)
(s6709 1)
(s6710 1)
(s6711 1)
(s6712 1)
(s6713 1)
(s6714 1)
(s6715 1)
(s6716 1)
(s6717 1)
(s6718 1)
(s6719 1)
(s6720 1)
(s6721 1)
(s6722 1)
(s6723 1)
(s6724 1)
(s6725 1)
(s6726 1)
(s6727 1)
(s6728 1)
(s6729 1)
(s6730 1)
(s6731 1)
(s6732 1)
(s6733 1)
(s6734 1)
(s6735 1)
(s6736 1)
(s6737 1)
(s6738 1)
(s6739 1)
(s6740 1)
(s6741 1)
(s6742 1)
(s6743 1)
(s6744 1)
(s6745 1)
(s6746 1)
(s6747 1)
(s6748 1)
(s6749 1)
(s6750 1)
(s6751 1)
(s6752 1)
(s6753 1)
(s6754 1)
(s6755 1)
(s6756 1)
(s6757 1)
(s6758 1)
(s6759 1)
(s6760 1)
(s6761 1)
(s6762 1)
(s6763 1)
(s6764 1)
(s6765 1)
(s6766 1)
(s6767 1)
(s6768 1)
(s6769 1)
(s6770 1)
(s6771 1)
(s6772 1)
(s6773 1)
(s6774 1)
(s6775 1)
(s6776 1)
(s6777 1)
(s6778 1)
(s6779 1)
(s6780 1)
(s6781 1)
(s6782 1)
(s6783 1)
(s6784 1)
(s6785 1)
(s6786 1)
(s6787 1)
(s6788 1)
(s6789 1)
(s6790 1)
(s6791 1)
(s6792 1)
(s6793 1)
(s6794 1)
(s6795 1)
(s6796 1)
(s6797 1)
(s6798 1)
(s6799 1)
(s6800 1)
(s6801 1)
(s6802 1)
(s6803 1)
(s6804 1)
(s6805 1)
(s6806 1)
(s6807 1)
(s6808 1)
(s6809 1)
(s6810 1)
(s6811 1)
(s6812 1)
(s6813 1)
(s6814 1)
(s6815 1)
(s6816 1)
(s6817 1)
(s6818 1)
(s6819 1)
(s6820 1)
(s6821 1)
(s6822 1)
(s6823 1)
(s6824 1)
(s6825 1)
(s6826 1)
(s6827 1)
(s6828 1)
(s6829 1)
(s6830 1)
(s6831 timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 7500/19320 variables, and 7500 constraints, problems are : Problem set: 0 solved, 9600 unsolved in 30161 ms.
Refiners :[Domain max(s): 7500/7560 constraints, Positive P Invariants (semi-flows): 0/60 constraints, State Equation: 0/7560 constraints, PredecessorRefiner: 0/9600 constraints, Known Traps: 0/0 constraints]
After SMT, in 70783ms problems are : Problem set: 0 solved, 9600 unsolved
Search for dead transitions found 0 dead transitions in 70891ms
Finished structural reductions in SI_LTL mode , in 1 iterations and 73424 ms. Remains : 7560/7560 places, 11760/11760 transitions.
Treatment of property BART-PT-060-LTLFireability-03 finished in 341322 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202405141337/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(G(F(p0)))'
Support contains 5280 out of 7920 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 7920/7920 places, 12120/12120 transitions.
Graph (trivial) has 2640 edges and 7920 vertex of which 360 / 7920 are part of one of the 60 SCC in 4 ms
Free SCC test removed 300 places
Ensure Unique test removed 300 transitions
Reduce isomorphic transitions removed 300 transitions.
Drop transitions (Trivial Post-Agglo cleanup.) removed 60 transitions
Trivial Post-agglo rules discarded 60 transitions
Performed 60 trivial Post agglomeration. Transition count delta: 60
Iterating post reduction 0 with 60 rules applied. Total rules applied 61 place count 7620 transition count 11760
Reduce places removed 60 places and 0 transitions.
Performed 540 Post agglomeration using F-continuation condition.Transition count delta: 540
Iterating post reduction 1 with 600 rules applied. Total rules applied 661 place count 7560 transition count 11220
Reduce places removed 540 places and 0 transitions.
Iterating post reduction 2 with 540 rules applied. Total rules applied 1201 place count 7020 transition count 11220
Performed 120 Pre agglomeration using Quasi-Persistent + Divergent Free condition..
Pre-agglomeration after 3 with 120 Pre rules applied. Total rules applied 1201 place count 7020 transition count 11100
Deduced a syphon composed of 120 places in 2 ms
Reduce places removed 120 places and 0 transitions.
Iterating global reduction 3 with 240 rules applied. Total rules applied 1441 place count 6900 transition count 11100
Discarding 300 places :
Symmetric choice reduction at 3 with 300 rule applications. Total rules 1741 place count 6600 transition count 10800
Iterating global reduction 3 with 300 rules applied. Total rules applied 2041 place count 6600 transition count 10800
Discarding 180 places :
Symmetric choice reduction at 3 with 180 rule applications. Total rules 2221 place count 6420 transition count 10620
Iterating global reduction 3 with 180 rules applied. Total rules applied 2401 place count 6420 transition count 10620
Discarding 180 places :
Symmetric choice reduction at 3 with 180 rule applications. Total rules 2581 place count 6240 transition count 10440
Iterating global reduction 3 with 180 rules applied. Total rules applied 2761 place count 6240 transition count 10440
Discarding 180 places :
Symmetric choice reduction at 3 with 180 rule applications. Total rules 2941 place count 6060 transition count 10260
Iterating global reduction 3 with 180 rules applied. Total rules applied 3121 place count 6060 transition count 10260
Discarding 120 places :
Symmetric choice reduction at 3 with 120 rule applications. Total rules 3241 place count 5940 transition count 10140
Iterating global reduction 3 with 120 rules applied. Total rules applied 3361 place count 5940 transition count 10140
Discarding 120 places :
Symmetric choice reduction at 3 with 120 rule applications. Total rules 3481 place count 5820 transition count 10020
Iterating global reduction 3 with 120 rules applied. Total rules applied 3601 place count 5820 transition count 10020
Discarding 60 places :
Symmetric choice reduction at 3 with 60 rule applications. Total rules 3661 place count 5760 transition count 9960
Iterating global reduction 3 with 60 rules applied. Total rules applied 3721 place count 5760 transition count 9960
Performed 420 Post agglomeration using F-continuation condition.Transition count delta: 420
Deduced a syphon composed of 420 places in 2 ms
Reduce places removed 420 places and 0 transitions.
Iterating global reduction 3 with 840 rules applied. Total rules applied 4561 place count 5340 transition count 9540
Ensure Unique test removed 60 transitions
Reduce isomorphic transitions removed 60 transitions.
Iterating post reduction 3 with 60 rules applied. Total rules applied 4621 place count 5340 transition count 9480
Applied a total of 4621 rules in 1812 ms. Remains 5340 /7920 variables (removed 2580) and now considering 9480/12120 (removed 2640) transitions.
[2024-05-22 15:14:02] [INFO ] Flow matrix only has 9421 transitions (discarded 59 similar events)
// Phase 1: matrix 9421 rows 5340 cols
[2024-05-22 15:14:02] [INFO ] Computed 60 invariants in 64 ms
[2024-05-22 15:14:03] [INFO ] Implicit Places using invariants in 1041 ms returned []
[2024-05-22 15:14:03] [INFO ] Flow matrix only has 9421 transitions (discarded 59 similar events)
[2024-05-22 15:14:03] [INFO ] Invariant cache hit.
[2024-05-22 15:14:09] [INFO ] Implicit Places using invariants and state equation in 5843 ms returned []
Implicit Place search using SMT with State Equation took 6890 ms to find 0 implicit places.
[2024-05-22 15:14:11] [INFO ] Redundant transitions in 1777 ms returned []
Running 7320 sub problems to find dead transitions.
[2024-05-22 15:14:11] [INFO ] Flow matrix only has 9421 transitions (discarded 59 similar events)
[2024-05-22 15:14:11] [INFO ] Invariant cache hit.
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 5280/14761 variables, and 0 constraints, problems are : Problem set: 0 solved, 7320 unsolved in 30144 ms.
Refiners :[Positive P Invariants (semi-flows): 0/60 constraints, State Equation: 0/5340 constraints, PredecessorRefiner: 7320/7320 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 7320 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 5280/14761 variables, and 0 constraints, problems are : Problem set: 0 solved, 7320 unsolved in 30122 ms.
Refiners :[Positive P Invariants (semi-flows): 0/60 constraints, State Equation: 0/5340 constraints, PredecessorRefiner: 0/7320 constraints, Known Traps: 0/0 constraints]
After SMT, in 67168ms problems are : Problem set: 0 solved, 7320 unsolved
Search for dead transitions found 0 dead transitions in 67264ms
Starting structural reductions in SI_LTL mode, iteration 1 : 5340/7920 places, 9480/12120 transitions.
Finished structural reductions in SI_LTL mode , in 1 iterations and 77777 ms. Remains : 5340/7920 places, 9480/12120 transitions.
Stuttering acceptance computed with spot in 76 ms :[(NOT p0), (NOT p0)]
Running random walk in product with property : BART-PT-060-LTLFireability-04
Stuttering criterion allowed to conclude after 0 steps with 0 reset in 1 ms.
FORMULA BART-PT-060-LTLFireability-04 FALSE TECHNIQUES STUTTER_TEST
Treatment of property BART-PT-060-LTLFireability-04 finished in 77900 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202405141337/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(X((X((F(p2)&&p1))&&p0)))'
Support contains 5280 out of 7920 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 7920/7920 places, 12120/12120 transitions.
Discarding 540 places :
Symmetric choice reduction at 0 with 540 rule applications. Total rules 540 place count 7380 transition count 11580
Iterating global reduction 0 with 540 rules applied. Total rules applied 1080 place count 7380 transition count 11580
Discarding 360 places :
Symmetric choice reduction at 0 with 360 rule applications. Total rules 1440 place count 7020 transition count 11220
Iterating global reduction 0 with 360 rules applied. Total rules applied 1800 place count 7020 transition count 11220
Discarding 180 places :
Symmetric choice reduction at 0 with 180 rule applications. Total rules 1980 place count 6840 transition count 11040
Iterating global reduction 0 with 180 rules applied. Total rules applied 2160 place count 6840 transition count 11040
Discarding 180 places :
Symmetric choice reduction at 0 with 180 rule applications. Total rules 2340 place count 6660 transition count 10860
Iterating global reduction 0 with 180 rules applied. Total rules applied 2520 place count 6660 transition count 10860
Discarding 180 places :
Symmetric choice reduction at 0 with 180 rule applications. Total rules 2700 place count 6480 transition count 10680
Iterating global reduction 0 with 180 rules applied. Total rules applied 2880 place count 6480 transition count 10680
Discarding 180 places :
Symmetric choice reduction at 0 with 180 rule applications. Total rules 3060 place count 6300 transition count 10500
Iterating global reduction 0 with 180 rules applied. Total rules applied 3240 place count 6300 transition count 10500
Discarding 120 places :
Symmetric choice reduction at 0 with 120 rule applications. Total rules 3360 place count 6180 transition count 10380
Iterating global reduction 0 with 120 rules applied. Total rules applied 3480 place count 6180 transition count 10380
Discarding 120 places :
Symmetric choice reduction at 0 with 120 rule applications. Total rules 3600 place count 6060 transition count 10260
Iterating global reduction 0 with 120 rules applied. Total rules applied 3720 place count 6060 transition count 10260
Discarding 60 places :
Symmetric choice reduction at 0 with 60 rule applications. Total rules 3780 place count 6000 transition count 10200
Iterating global reduction 0 with 60 rules applied. Total rules applied 3840 place count 6000 transition count 10200
Applied a total of 3840 rules in 1110 ms. Remains 6000 /7920 variables (removed 1920) and now considering 10200/12120 (removed 1920) transitions.
// Phase 1: matrix 10200 rows 6000 cols
[2024-05-22 15:15:19] [INFO ] Computed 60 invariants in 44 ms
[2024-05-22 15:15:20] [INFO ] Implicit Places using invariants in 1205 ms returned []
Implicit Place search using SMT only with invariants took 1210 ms to find 0 implicit places.
Running 8040 sub problems to find dead transitions.
[2024-05-22 15:15:20] [INFO ] Invariant cache hit.
Error getting values : (error "Error writing to Z3 solver: java.io.IOException: Broken pipe")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 5940/16200 variables, and 0 constraints, problems are : Problem set: 0 solved, 8040 unsolved in 30117 ms.
Refiners :[Positive P Invariants (semi-flows): 0/60 constraints, State Equation: 0/6000 constraints, PredecessorRefiner: 8040/8040 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 8040 unsolved
Error getting values : (error "ParserException while parsing response: ((s60 1)
(s61 1)
(s62 1)
(s63 1)
(s64 1)
(s65 1)
(s66 1)
(s67 1)
(s68 1)
(s69 1)
(s70 1)
(s71 1)
(s72 1)
(s73 1)
(s74 1)
(s75 1)
(s76 1)
(s77 1)
(s78 1)
(s79 1)
(s80 1)
(s81 1)
(s82 1)
(s83 1)
(s84 1)
(s85 1)
(s86 1)
(s87 1)
(s88 1)
(s89 1)
(s90 1)
(s91 1)
(s92 1)
(s93 1)
(s94 1)
(s95 1)
(s96 1)
(s97 1)
(s98 1)
(s99 1)
(s100 1)
(s101 1)
(s102 1)
(s103 1)
(s104 1)
(s105 1)
(s106 1)
(s107 1)
(s108 1)
(s109 1)
(s110 1)
(s111 1)
(s112 1)
(s113 1)
(s114 1)
(s115 1)
(s116 1)
(s117 1)
(s118 1)
(s119 1)
(s120 1)
(s121 1)
(s122 1)
(s123 1)
(s124 1)
(s125 1)
(s126 1)
(s127 1)
(s128 1)
(s129 1)
(s130 1)
(s131 1)
(s132 1)
(s133 1)
(s134 1)
(s135 1)
(s136 1)
(s137 1)
(s138 1)
(s139 1)
(s140 1)
(s141 1)
(s142 1)
(s143 1)
(s144 1)
(s145 1)
(s146 1)
(s147 1)
(s148 1)
(s149 1)
(s150 1)
(s151 1)
(s152 1)
(s153 1)
(s154 1)
(s155 1)
(s156 1)
(s157 1)
(s158 1)
(s159 1)
(s160 1)
(s161 1)
(s162 1)
(s163 1)
(s164 1)
(s165 1)
(s166 1)
(s167 1)
(s168 1)
(s169 1)
(s170 1)
(s171 1)
(s172 1)
(s173 1)
(s174 1)
(s175 1)
(s176 1)
(s177 1)
(s178 1)
(s179 1)
(s180 1)
(s181 1)
(s182 1)
(s183 1)
(s184 1)
(s185 1)
(s186 1)
(s187 1)
(s188 1)
(s189 1)
(s190 1)
(s191 1)
(s192 1)
(s193 1)
(s194 1)
(s195 1)
(s196 1)
(s197 1)
(s198 1)
(s199 1)
(s200 1)
(s201 1)
(s202 1)
(s203 1)
(s204 1)
(s205 1)
(s206 1)
(s207 1)
(s208 1)
(s209 1)
(s210 1)
(s211 1)
(s212 1)
(s213 1)
(s214 1)
(s215 1)
(s216 1)
(s217 1)
(s218 1)
(s219 1)
(s220 1)
(s221 1)
(s222 1)
(s223 1)
(s224 1)
(s225 1)
(s226 1)
(s227 1)
(s228 1)
(s229 1)
(s230 1)
(s231 1)
(s232 1)
(s233 1)
(s234 1)
(s235 1)
(s236 1)
(s237 1)
(s238 1)
(s239 1)
(s240 1)
(s241 1)
(s242 1)
(s243 1)
(s244 1)
(s245 1)
(s246 1)
(s247 1)
(s248 1)
(s249 1)
(s250 1)
(s251 1)
(s252 1)
(s253 1)
(s254 1)
(s255 1)
(s256 1)
(s257 1)
(s258 1)
(s259 1)
(s260 1)
(s261 1)
(s262 1)
(s263 1)
(s264 1)
(s265 1)
(s266 1)
(s267 1)
(s268 1)
(s269 1)
(s270 1)
(s271 1)
(s272 1)
(s273 1)
(s274 1)
(s275 1)
(s276 1)
(s277 1)
(s278 1)
(s279 1)
(s280 1)
(s281 1)
(s282 1)
(s283 1)
(s284 1)
(s285 1)
(s286 1)
(s287 1)
(s288 1)
(s289 1)
(s290 1)
(s291 1)
(s292 1)
(s293 1)
(s294 1)
(s295 1)
(s296 1)
(s297 1)
(s298 1)
(s299 1)
(s300 1)
(s301 1)
(s302 1)
(s303 1)
(s304 1)
(s305 1)
(s306 1)
(s307 1)
(s308 1)
(s309 1)
(s310 1)
(s311 1)
(s312 1)
(s313 1)
(s314 1)
(s315 1)
(s316 1)
(s317 1)
(s318 1)
(s319 1)
(s320 1)
(s321 1)
(s322 1)
(s323 1)
(s324 1)
(s325 1)
(s326 1)
(s327 1)
(s328 1)
(s329 1)
(s330 1)
(s331 1)
(s332 1)
(s333 1)
(s334 1)
(s335 1)
(s336 1)
(s337 1)
(s338 1)
(s339 1)
(s340 1)
(s341 1)
(s342 1)
(s343 1)
(s344 1)
(s345 1)
(s346 1)
(s347 1)
(s348 1)
(s349 1)
(s350 1)
(s351 1)
(s352 1)
(s353 1)
(s354 1)
(s355 1)
(s356 1)
(s357 1)
(s358 1)
(s359 1)
(s360 1)
(s361 1)
(s362 1)
(s363 1)
(s364 1)
(s365 1)
(s366 1)
(s367 1)
(s368 1)
(s369 1)
(s370 1)
(s371 1)
(s372 1)
(s373 1)
(s374 1)
(s375 1)
(s376 1)
(s377 1)
(s378 1)
(s379 1)
(s380 1)
(s381 1)
(s382 1)
(s383 1)
(s384 1)
(s385 1)
(s386 1)
(s387 1)
(s388 1)
(s389 1)
(s390 1)
(s391 1)
(s392 1)
(s393 1)
(s394 1)
(s395 1)
(s396 1)
(s397 1)
(s398 1)
(s399 1)
(s400 1)
(s401 1)
(s402 1)
(s403 1)
(s404 1)
(s405 1)
(s406 1)
(s407 1)
(s408 1)
(s409 1)
(s410 1)
(s411 1)
(s412 1)
(s413 1)
(s414 1)
(s415 1)
(s416 1)
(s417 1)
(s418 1)
(s419 1)
(s420 1)
(s421 1)
(s422 1)
(s423 1)
(s424 1)
(s425 1)
(s426 1)
(s427 1)
(s428 1)
(s429 1)
(s430 1)
(s431 1)
(s432 1)
(s433 1)
(s434 1)
(s435 1)
(s436 1)
(s437 1)
(s438 1)
(s439 1)
(s440 1)
(s441 1)
(s442 1)
(s443 1)
(s444 1)
(s445 1)
(s446 1)
(s447 1)
(s448 1)
(s449 1)
(s450 1)
(s451 1)
(s452 1)
(s453 1)
(s454 1)
(s455 1)
(s456 1)
(s457 1)
(s458 1)
(s459 1)
(s460 1)
(s461 1)
(s462 1)
(s463 1)
(s464 1)
(s465 1)
(s466 1)
(s467 1)
(s468 1)
(s469 1)
(s470 1)
(s471 1)
(s472 1)
(s473 1)
(s474 1)
(s475 1)
(s476 1)
(s477 1)
(s478 1)
(s479 1)
(s480 1)
(s481 1)
(s482 1)
(s483 1)
(s484 1)
(s485 1)
(s486 1)
(s487 1)
(s488 1)
(s489 1)
(s490 1)
(s491 1)
(s492 1)
(s493 1)
(s494 1)
(s495 1)
(s496 1)
(s497 1)
(s498 1)
(s499 1)
(s500 1)
(s501 1)
(s502 1)
(s503 1)
(s504 1)
(s505 1)
(s506 1)
(s507 1)
(s508 1)
(s509 1)
(s510 1)
(s511 1)
(s512 1)
(s513 1)
(s514 1)
(s515 1)
(s516 1)
(s517 1)
(s518 1)
(s519 1)
(s520 1)
(s521 1)
(s522 1)
(s523 1)
(s524 1)
(s525 1)
(s526 1)
(s527 1)
(s528 1)
(s529 1)
(s530 1)
(s531 1)
(s532 1)
(s533 1)
(s534 1)
(s535 1)
(s536 1)
(s537 1)
(s538 1)
(s539 1)
(s540 1)
(s541 1)
(s542 1)
(s543 1)
(s544 1)
(s545 1)
(s546 1)
(s547 1)
(s548 1)
(s549 1)
(s550 1)
(s551 1)
(s552 1)
(s553 1)
(s554 1)
(s555 1)
(s556 1)
(s557 1)
(s558 1)
(s559 1)
(s560 1)
(s561 1)
(s562 1)
(s563 1)
(s564 1)
(s565 1)
(s566 1)
(s567 1)
(s568 1)
(s569 1)
(s570 1)
(s571 1)
(s572 1)
(s573 1)
(s574 1)
(s575 1)
(s576 1)
(s577 1)
(s578 1)
(s579 1)
(s580 1)
(s581 1)
(s582 1)
(s583 1)
(s584 1)
(s585 1)
(s586 1)
(s587 1)
(s588 1)
(s589 1)
(s590 1)
(s591 1)
(s592 1)
(s593 1)
(s594 1)
(s595 1)
(s596 1)
(s597 1)
(s598 1)
(s599 1)
(s600 1)
(s601 1)
(s602 1)
(s603 1)
(s604 1)
(s605 1)
(s606 1)
(s607 1)
(s608 1)
(s609 1)
(s610 1)
(s611 1)
(s612 1)
(s613 1)
(s614 1)
(s615 1)
(s616 1)
(s617 1)
(s618 1)
(s619 1)
(s620 1)
(s621 1)
(s622 1)
(s623 1)
(s624 1)
(s625 1)
(s626 1)
(s627 1)
(s628 1)
(s629 1)
(s630 1)
(s631 1)
(s632 1)
(s633 1)
(s634 1)
(s635 1)
(s636 1)
(s637 1)
(s638 1)
(s639 1)
(s640 1)
(s641 1)
(s642 1)
(s643 1)
(s644 1)
(s645 1)
(s646 1)
(s647 1)
(s648 1)
(s649 1)
(s650 1)
(s651 1)
(s652 1)
(s653 1)
(s654 1)
(s655 1)
(s656 1)
(s657 1)
(s658 1)
(s659 1)
(s660 1)
(s661 1)
(s662 1)
(s663 1)
(s664 1)
(s665 1)
(s666 1)
(s667 1)
(s668 1)
(s669 1)
(s670 1)
(s671 1)
(s672 1)
(s673 1)
(s674 1)
(s675 1)
(s676 1)
(s677 1)
(s678 1)
(s679 1)
(s680 1)
(s681 1)
(s682 1)
(s683 1)
(s684 1)
(s685 1)
(s686 1)
(s687 1)
(s688 1)
(s689 1)
(s690 1)
(s691 1)
(s692 1)
(s693 1)
(s694 1)
(s695 1)
(s696 1)
(s697 1)
(s698 1)
(s699 1)
(s700 1)
(s701 1)
(s702 1)
(s703 1)
(s704 1)
(s705 1)
(s706 1)
(s707 1)
(s708 1)
(s709 1)
(s710 1)
(s711 1)
(s712 1)
(s713 1)
(s714 1)
(s715 1)
(s716 1)
(s717 1)
(s718 1)
(s719 1)
(s720 1)
(s721 1)
(s722 1)
(s723 1)
(s724 1)
(s725 1)
(s726 1)
(s727 1)
(s728 1)
(s729 1)
(s730 1)
(s731 1)
(s732 1)
(s733 1)
(s734 1)
(s735 1)
(s736 1)
(s737 1)
(s738 1)
(s739 1)
(s740 1)
(s741 1)
(s742 1)
(s743 1)
(s744 1)
(s745 1)
(s746 1)
(s747 1)
(s748 1)
(s749 1)
(s750 1)
(s751 1)
(s752 1)
(s753 1)
(s754 1)
(s755 1)
(s756 1)
(s757 1)
(s758 1)
(s759 1)
(s760 1)
(s761 1)
(s762 1)
(s763 1)
(s764 1)
(s765 1)
(s766 1)
(s767 1)
(s768 1)
(s769 1)
(s770 1)
(s771 1)
(s772 1)
(s773 1)
(s774 1)
(s775 1)
(s776 1)
(s777 1)
(s778 1)
(s779 1)
(s780 1)
(s781 1)
(s782 1)
(s783 1)
(s784 1)
(s785 1)
(s786 1)
(s787 1)
(s788 1)
(s789 1)
(s790 1)
(s791 1)
(s792 1)
(s793 1)
(s794 1)
(s795 1)
(s796 1)
(s797 1)
(s798 1)
(s799 1)
(s800 1)
(s801 1)
(s802 1)
(s803 1)
(s804 1)
(s805 1)
(s806 1)
(s807 1)
(s808 1)
(s809 1)
(s810 1)
(s811 1)
(s812 1)
(s813 1)
(s814 1)
(s815 1)
(s816 1)
(s817 1)
(s818 1)
(s819 1)
(s820 1)
(s821 1)
(s822 1)
(s823 1)
(s824 1)
(s825 1)
(s826 1)
(s827 1)
(s828 1)
(s829 1)
(s830 1)
(s831 1)
(s832 1)
(s833 1)
(s834 1)
(s835 1)
(s836 1)
(s837 1)
(s838 1)
(s839 1)
(s840 1)
(s841 1)
(s842 1)
(s843 1)
(s844 1)
(s845 1)
(s846 1)
(s847 1)
(s848 1)
(s849 1)
(s850 1)
(s851 1)
(s852 1)
(s853 1)
(s854 1)
(s855 1)
(s856 1)
(s857 1)
(s858 1)
(s859 1)
(s860 1)
(s861 1)
(s862 1)
(s863 1)
(s864 1)
(s865 1)
(s866 1)
(s867 1)
(s868 1)
(s869 1)
(s870 1)
(s871 1)
(s872 1)
(s873 1)
(s874 1)
(s875 1)
(s876 1)
(s877 1)
(s878 1)
(s879 1)
(s880 1)
(s881 1)
(s882 1)
(s883 1)
(s884 1)
(s885 1)
(s886 1)
(s887 1)
(s888 1)
(s889 1)
(s890 1)
(s891 1)
(s892 1)
(s893 1)
(s894 1)
(s895 1)
(s896 1)
(s897 1)
(s898 1)
(s899 1)
(s900 1)
(s901 1)
(s902 1)
(s903 1)
(s904 1)
(s905 1)
(s906 1)
(s907 1)
(s908 1)
(s909 1)
(s910 1)
(s911 1)
(s912 1)
(s913 1)
(s914 1)
(s915 1)
(s916 1)
(s917 1)
(s918 1)
(s919 1)
(s920 1)
(s921 1)
(s922 1)
(s923 1)
(s924 1)
(s925 1)
(s926 1)
(s927 1)
(s928 1)
(s929 1)
(s930 1)
(s931 1)
(s932 1)
(s933 1)
(s934 1)
(s935 1)
(s936 1)
(s937 1)
(s938 1)
(s939 1)
(s940 1)
(s941 1)
(s942 1)
(s943 1)
(s944 1)
(s945 1)
(s946 1)
(s947 1)
(s948 1)
(s949 1)
(s950 1)
(s951 1)
(s952 1)
(s953 1)
(s954 1)
(s955 1)
(s956 1)
(s957 1)
(s958 1)
(s959 1)
(s960 1)
(s961 1)
(s962 1)
(s963 1)
(s964 1)
(s965 1)
(s966 1)
(s967 1)
(s968 1)
(s969 1)
(s970 1)
(s971 1)
(s972 1)
(s973 1)
(s974 1)
(s975 1)
(s976 1)
(s977 1)
(s978 1)
(s979 1)
(s980 1)
(s981 1)
(s982 1)
(s983 1)
(s984 1)
(s985 1)
(s986 1)
(s987 1)
(s988 1)
(s989 1)
(s990 1)
(s991 1)
(s992 1)
(s993 1)
(s994 1)
(s995 1)
(s996 1)
(s997 1)
(s998 1)
(s999 1)
(s1000 1)
(s1001 1)
(s1002 1)
(s1003 1)
(s1004 1)
(s1005 1)
(s1006 1)
(s1007 1)
(s1008 1)
(s1009 1)
(s1010 1)
(s1011 1)
(s1012 1)
(s1013 1)
(s1014 1)
(s1015 1)
(s1016 1)
(s1017 1)
(s1018 1)
(s1019 1)
(s1020 1)
(s1021 1)
(s1022 1)
(s1023 1)
(s1024 1)
(s1025 1)
(s1026 1)
(s1027 1)
(s1028 1)
(s1029 1)
(s1030 1)
(s1031 1)
(s1032 1)
(s1033 1)
(s1034 1)
(s1035 1)
(s1036 1)
(s1037 1)
(s1038 1)
(s1039 1)
(s1040 1)
(s1041 1)
(s1042 1)
(s1043 1)
(s1044 1)
(s1045 1)
(s1046 1)
(s1047 1)
(s1048 1)
(s1049 1)
(s1050 1)
(s1051 1)
(s1052 1)
(s1053 1)
(s1054 1)
(s1055 1)
(s1056 1)
(s1057 1)
(s1058 1)
(s1059 1)
(s1060 1)
(s1061 1)
(s1062 1)
(s1063 1)
(s1064 1)
(s1065 1)
(s1066 1)
(s1067 1)
(s1068 1)
(s1069 1)
(s1070 1)
(s1071 1)
(s1072 1)
(s1073 1)
(s1074 1)
(s1075 1)
(s1076 1)
(s1077 1)
(s1078 1)
(s1079 1)
(s1080 1)
(s1081 1)
(s1082 1)
(s1083 1)
(s1084 1)
(s1085 1)
(s1086 1)
(s1087 1)
(s1088 1)
(s1089 1)
(s1090 1)
(s1091 1)
(s1092 1)
(s1093 1)
(s1094 1)
(s1095 1)
(s1096 1)
(s1097 1)
(s1098 1)
(s1099 1)
(s1100 1)
(s1101 1)
(s1102 1)
(s1103 1)
(s1104 1)
(s1105 1)
(s1106 1)
(s1107 1)
(s1108 1)
(s1109 1)
(s1110 1)
(s1111 1)
(s1112 1)
(s1113 1)
(s1114 1)
(s1115 1)
(s1116 1)
(s1117 1)
(s1118 1)
(s1119 1)
(s1120 1)
(s1121 1)
(s1122 1)
(s1123 1)
(s1124 1)
(s1125 1)
(s1126 1)
(s1127 1)
(s1128 1)
(s1129 1)
(s1130 1)
(s1131 1)
(s1132 1)
(s1133 1)
(s1134 1)
(s1135 1)
(s1136 1)
(s1137 1)
(s1138 1)
(s1139 1)
(s1140 1)
(s1141 1)
(s1142 1)
(s1143 1)
(s1144 1)
(s1145 1)
(s1146 1)
(s1147 1)
(s1148 1)
(s1149 1)
(s1150 1)
(s1151 1)
(s1152 1)
(s1153 1)
(s1154 1)
(s1155 1)
(s1156 1)
(s1157 1)
(s1158 1)
(s1159 1)
(s1160 1)
(s1161 1)
(s1162 1)
(s1163 1)
(s1164 1)
(s1165 1)
(s1166 1)
(s1167 1)
(s1168 1)
(s1169 1)
(s1170 1)
(s1171 1)
(s1172 1)
(s1173 1)
(s1174 1)
(s1175 1)
(s1176 1)
(s1177 1)
(s1178 1)
(s1179 1)
(s1180 1)
(s1181 1)
(s1182 1)
(s1183 1)
(s1184 1)
(s1185 1)
(s1186 1)
(s1187 1)
(s1188 1)
(s1189 1)
(s1190 1)
(s1191 1)
(s1192 1)
(s1193 1)
(s1194 1)
(s1195 1)
(s1196 1)
(s1197 1)
(s1198 1)
(s1199 1)
(s1200 1)
(s1201 1)
(s1202 1)
(s1203 1)
(s1204 1)
(s1205 1)
(s1206 1)
(s1207 1)
(s1208 1)
(s1209 1)
(s1210 1)
(s1211 1)
(s1212 1)
(s1213 1)
(s1214 1)
(s1215 1)
(s1216 1)
(s1217 1)
(s1218 1)
(s1219 1)
(s1220 1)
(s1221 1)
(s1222 1)
(s1223 1)
(s1224 1)
(s1225 1)
(s1226 1)
(s1227 1)
(s1228 1)
(s1229 1)
(s1230 1)
(s1231 1)
(s1232 1)
(s1233 1)
(s1234 1)
(s1235 1)
(s1236 1)
(s1237 1)
(s1238 1)
(s1239 1)
(s1240 1)
(s1241 1)
(s1242 1)
(s1243 1)
(s1244 1)
(s1245 1)
(s1246 1)
(s1247 1)
(s1248 1)
(s1249 1)
(s1250 1)
(s1251 1)
(s1252 1)
(s1253 1)
(s1254 1)
(s1255 1)
(s1256 1)
(s1257 1)
(s1258 1)
(s1259 1)
(s1260 1)
(s1261 1)
(s1262 1)
(s1263 1)
(s1264 1)
(s1265 1)
(s1266 1)
(s1267 1)
(s1268 1)
(s1269 1)
(s1270 1)
(s1271 1)
(s1272 1)
(s1273 1)
(s1274 1)
(s1275 1)
(s1276 1)
(s1277 1)
(s1278 1)
(s1279 1)
(s1280 1)
(s1281 1)
(s1282 1)
(s1283 1)
(s1284 1)
(s1285 1)
(s1286 1)
(s1287 1)
(s1288 1)
(s1289 1)
(s1290 1)
(s1291 1)
(s1292 1)
(s1293 1)
(s1294 1)
(s1295 1)
(s1296 1)
(s1297 1)
(s1298 1)
(s1299 1)
(s1300 1)
(s1301 1)
(s1302 1)
(s1303 1)
(s1304 1)
(s1305 1)
(s1306 1)
(s1307 1)
(s1308 1)
(s1309 1)
(s1310 1)
(s1311 1)
(s1312 1)
(s1313 1)
(s1314 1)
(s1315 1)
(s1316 1)
(s1317 1)
(s1318 1)
(s1319 1)
(s1320 1)
(s1321 1)
(s1322 1)
(s1323 1)
(s1324 1)
(s1325 1)
(s1326 1)
(s1327 1)
(s1328 1)
(s1329 1)
(s1330 1)
(s1331 1)
(s1332 1)
(s1333 1)
(s1334 1)
(s1335 1)
(s1336 1)
(s1337 1)
(s1338 1)
(s1339 1)
(s1340 1)
(s1341 1)
(s1342 1)
(s1343 1)
(s1344 1)
(s1345 1)
(s1346 1)
(s1347 1)
(s1348 1)
(s1349 1)
(s1350 1)
(s1351 1)
(s1352 1)
(s1353 1)
(s1354 1)
(s1355 1)
(s1356 1)
(s1357 1)
(s1358 1)
(s1359 1)
(s1360 1)
(s1361 1)
(s1362 1)
(s1363 1)
(s1364 1)
(s1365 1)
(s1366 1)
(s1367 1)
(s1368 1)
(s1369 1)
(s1370 1)
(s1371 1)
(s1372 1)
(s1373 1)
(s1374 1)
(s1375 1)
(s1376 1)
(s1377 1)
(s1378 1)
(s1379 1)
(s1380 1)
(s1381 1)
(s1382 1)
(s1383 1)
(s1384 1)
(s1385 1)
(s1386 1)
(s1387 1)
(s1388 1)
(s1389 1)
(s1390 1)
(s1391 1)
(s1392 1)
(s1393 1)
(s1394 1)
(s1395 1)
(s1396 1)
(s1397 1)
(s1398 1)
(s1399 1)
(s1400 1)
(s1401 1)
(s1402 1)
(s1403 1)
(s1404 1)
(s1405 1)
(s1406 1)
(s1407 1)
(s1408 1)
(s1409 1)
(s1410 1)
(s1411 1)
(s1412 1)
(s1413 1)
(s1414 1)
(s1415 1)
(s1416 1)
(s1417 1)
(s1418 1)
(s1419 1)
(s1420 1)
(s1421 1)
(s1422 1)
(s1423 1)
(s1424 1)
(s1425 1)
(s1426 1)
(s1427 1)
(s1428 1)
(s1429 1)
(s1430 1)
(s1431 1)
(s1432 1)
(s1433 1)
(s1434 1)
(s1435 1)
(s1436 1)
(s1437 1)
(s1438 1)
(s1439 1)
(s1440 1)
(s1441 1)
(s1442 1)
(s1443 1)
(s1444 1)
(s1445 1)
(s1446 1)
(s1447 1)
(s1448 1)
(s1449 1)
(s1450 1)
(s1451 1)
(s1452 1)
(s1453 1)
(s1454 1)
(s1455 1)
(s1456 1)
(s1457 1)
(s1458 1)
(s1459 1)
(s1460 1)
(s1461 1)
(s1462 1)
(s1463 1)
(s1464 1)
(s1465 1)
(s1466 1)
(s1467 1)
(s1468 1)
(s1469 1)
(s1470 1)
(s1471 1)
(s1472 1)
(s1473 1)
(s1474 1)
(s1475 1)
(s1476 1)
(s1477 1)
(s1478 1)
(s1479 1)
(s1480 1)
(s1481 1)
(s1482 1)
(s1483 1)
(s1484 1)
(s1485 1)
(s1486 1)
(s1487 1)
(s1488 1)
(s1489 1)
(s1490 1)
(s1491 1)
(s1492 1)
(s1493 1)
(s1494 1)
(s1495 1)
(s1496 1)
(s1497 1)
(s1498 1)
(s1499 1)
(s1500 1)
(s1501 1)
(s1502 1)
(s1503 1)
(s1504 1)
(s1505 1)
(s1506 1)
(s1507 1)
(s1508 1)
(s1509 1)
(s1510 1)
(s1511 1)
(s1512 1)
(s1513 1)
(s1514 1)
(s1515 1)
(s1516 1)
(s1517 1)
(s1518 1)
(s1519 1)
(s1520 1)
(s1521 1)
(s1522 1)
(s1523 1)
(s1524 1)
(s1525 1)
(s1526 1)
(s1527 1)
(s1528 1)
(s1529 1)
(s1530 1)
(s1531 1)
(s1532 1)
(s1533 1)
(s1534 1)
(s1535 1)
(s1536 1)
(s1537 1)
(s1538 1)
(s1539 1)
(s1540 1)
(s1541 1)
(s1542 1)
(s1543 1)
(s1544 1)
(s1545 1)
(s1546 1)
(s1547 1)
(s1548 1)
(s1549 1)
(s1550 1)
(s1551 1)
(s1552 1)
(s1553 1)
(s1554 1)
(s1555 1)
(s1556 1)
(s1557 1)
(s1558 1)
(s1559 1)
(s1560 1)
(s1561 1)
(s1562 1)
(s1563 1)
(s1564 1)
(s1565 1)
(s1566 1)
(s1567 1)
(s1568 1)
(s1569 1)
(s1570 1)
(s1571 1)
(s1572 1)
(s1573 1)
(s1574 1)
(s1575 1)
(s1576 1)
(s1577 1)
(s1578 1)
(s1579 1)
(s1580 1)
(s1581 1)
(s1582 1)
(s1583 1)
(s1584 1)
(s1585 1)
(s1586 1)
(s1587 1)
(s1588 1)
(s1589 1)
(s1590 1)
(s1591 1)
(s1592 1)
(s1593 1)
(s1594 1)
(s1595 1)
(s1596 1)
(s1597 1)
(s1598 1)
(s1599 1)
(s1600 1)
(s1601 1)
(s1602 1)
(s1603 1)
(s1604 1)
(s1605 1)
(s1606 1)
(s1607 1)
(s1608 1)
(s1609 1)
(s1610 1)
(s1611 1)
(s1612 1)
(s1613 1)
(s1614 1)
(s1615 1)
(s1616 1)
(s1617 1)
(s1618 1)
(s1619 1)
(s1620 1)
(s1621 1)
(s1622 1)
(s1623 1)
(s1624 1)
(s1625 1)
(s1626 1)
(s1627 1)
(s1628 1)
(s1629 1)
(s1630 1)
(s1631 1)
(s1632 1)
(s1633 1)
(s1634 1)
(s1635 1)
(s1636 1)
(s1637 1)
(s1638 1)
(s1639 1)
(s1640 1)
(s1641 1)
(s1642 1)
(s1643 1)
(s1644 1)
(s1645 1)
(s1646 1)
(s1647 1)
(s1648 1)
(s1649 1)
(s1650 1)
(s1651 1)
(s1652 1)
(s1653 1)
(s1654 1)
(s1655 1)
(s1656 1)
(s1657 1)
(s1658 1)
(s1659 1)
(s1660 1)
(s1661 1)
(s1662 1)
(s1663 1)
(s1664 1)
(s1665 1)
(s1666 1)
(s1667 1)
(s1668 1)
(s1669 1)
(s1670 1)
(s1671 1)
(s1672 1)
(s1673 1)
(s1674 1)
(s1675 1)
(s1676 1)
(s1677 1)
(s1678 1)
(s1679 1)
(s1680 1)
(s1681 1)
(s1682 1)
(s1683 1)
(s1684 1)
(s1685 1)
(s1686 1)
(s1687 1)
(s1688 1)
(s1689 1)
(s1690 1)
(s1691 1)
(s1692 1)
(s1693 1)
(s1694 1)
(s1695 1)
(s1696 1)
(s1697 1)
(s1698 1)
(s1699 1)
(s1700 1)
(s1701 1)
(s1702 1)
(s1703 1)
(s1704 1)
(s1705 1)
(s1706 1)
(s1707 1)
(s1708 1)
(s1709 1)
(s1710 1)
(s1711 1)
(s1712 1)
(s1713 1)
(s1714 1)
(s1715 1)
(s1716 1)
(s1717 1)
(s1718 1)
(s1719 1)
(s1720 1)
(s1721 1)
(s1722 1)
(s1723 1)
(s1724 1)
(s1725 1)
(s1726 1)
(s1727 1)
(s1728 1)
(s1729 1)
(s1730 1)
(s1731 1)
(s1732 1)
(s1733 1)
(s1734 1)
(s1735 1)
(s1736 1)
(s1737 1)
(s1738 1)
(s1739 1)
(s1740 1)
(s1741 1)
(s1742 1)
(s1743 1)
(s1744 1)
(s1745 1)
(s1746 1)
(s1747 1)
(s1748 1)
(s1749 1)
(s1750 1)
(s1751 1)
(s1752 1)
(s1753 1)
(s1754 1)
(s1755 1)
(s1756 1)
(s1757 1)
(s1758 1)
(s1759 1)
(s1760 1)
(s1761 1)
(s1762 1)
(s1763 1)
(s1764 1)
(s1765 1)
(s1766 1)
(s1767 1)
(s1768 1)
(s1769 1)
(s1770 1)
(s1771 1)
(s1772 1)
(s1773 1)
(s1774 1)
(s1775 1)
(s1776 1)
(s1777 1)
(s1778 1)
(s1779 1)
(s1780 1)
(s1781 1)
(s1782 1)
(s1783 1)
(s1784 1)
(s1785 1)
(s1786 1)
(s1787 1)
(s1788 1)
(s1789 1)
(s1790 1)
(s1791 1)
(s1792 1)
(s1793 1)
(s1794 1)
(s1795 1)
(s1796 1)
(s1797 1)
(s1798 1)
(s1799 1)
(s1800 1)
(s1801 1)
(s1802 1)
(s1803 1)
(s1804 1)
(s1805 1)
(s1806 1)
(s1807 1)
(s1808 1)
(s1809 1)
(s1810 1)
(s1811 1)
(s1812 1)
(s1813 1)
(s1814 1)
(s1815 1)
(s1816 1)
(s1817 1)
(s1818 1)
(s1819 1)
(s1820 1)
(s1821 1)
(s1822 1)
(s1823 1)
(s1824 1)
(s1825 1)
(s1826 1)
(s1827 1)
(s1828 1)
(s1829 1)
(s1830 1)
(s1831 1)
(s1832 1)
(s1833 1)
(s1834 1)
(s1835 1)
(s1836 1)
(s1837 1)
(s1838 1)
(s1839 1)
(s1840 1)
(s1841 1)
(s1842 1)
(s1843 1)
(s1844 1)
(s1845 1)
(s1846 1)
(s1847 1)
(s1848 1)
(s1849 1)
(s1850 1)
(s1851 1)
(s1852 1)
(s1853 1)
(s1854 1)
(s1855 1)
(s1856 1)
(s1857 1)
(s1858 1)
(s1859 1)
(s1860 1)
(s1861 1)
(s1862 1)
(s1863 1)
(s1864 1)
(s1865 1)
(s1866 1)
(s1867 1)
(s1868 1)
(s1869 1)
(s1870 1)
(s1871 1)
(s1872 1)
(s1873 1)
(s1874 1)
(s1875 1)
(s1876 1)
(s1877 1)
(s1878 1)
(s1879 1)
(s1880 1)
(s1881 1)
(s1882 1)
(s1883 1)
(s1884 1)
(s1885 1)
(s1886 1)
(s1887 1)
(s1888 1)
(s1889 1)
(s1890 1)
(s1891 1)
(s1892 1)
(s1893 1)
(s1894 1)
(s1895 1)
(s1896 1)
(s1897 1)
(s1898 1)
(s1899 1)
(s1900 1)
(s1901 1)
(s1902 1)
(s1903 1)
(s1904 1)
(s1905 1)
(s1906 1)
(s1907 1)
(s1908 1)
(s1909 1)
(s1910 1)
(s1911 1)
(s1912 1)
(s1913 1)
(s1914 1)
(s1915 1)
(s1916 1)
(s1917 1)
(s1918 1)
(s1919 1)
(s1920 1)
(s1921 1)
(s1922 1)
(s1923 1)
(s1924 1)
(s1925 1)
(s1926 1)
(s1927 1)
(s1928 1)
(s1929 1)
(s1930 1)
(s1931 1)
(s1932 1)
(s1933 1)
(s1934 1)
(s1935 1)
(s1936 1)
(s1937 1)
(s1938 1)
(s1939 1)
(s1940 1)
(s1941 1)
(s1942 1)
(s1943 1)
(s1944 1)
(s1945 1)
(s1946 1)
(s1947 1)
(s1948 1)
(s1949 1)
(s1950 1)
(s1951 1)
(s1952 1)
(s1953 1)
(s1954 1)
(s1955 1)
(s1956 1)
(s1957 1)
(s1958 1)
(s1959 1)
(s1960 1)
(s1961 1)
(s1962 1)
(s1963 1)
(s1964 1)
(s1965 1)
(s1966 1)
(s1967 1)
(s1968 1)
(s1969 1)
(s1970 1)
(s1971 1)
(s1972 1)
(s1973 1)
(s1974 1)
(s1975 1)
(s1976 1)
(s1977 1)
(s1978 1)
(s1979 1)
(s1980 1)
(s1981 1)
(s1982 1)
(s1983 1)
(s1984 1)
(s1985 1)
(s1986 1)
(s1987 1)
(s1988 1)
(s1989 1)
(s1990 1)
(s1991 1)
(s1992 1)
(s1993 1)
(s1994 1)
(s1995 1)
(s1996 1)
(s1997 1)
(s1998 1)
(s1999 1)
(s2000 1)
(s2001 1)
(s2002 1)
(s2003 1)
(s2004 1)
(s2005 1)
(s2006 1)
(s2007 1)
(s2008 1)
(s2009 1)
(s2010 1)
(s2011 1)
(s2012 1)
(s2013 1)
(s2014 1)
(s2015 1)
(s2016 1)
(s2017 1)
(s2018 1)
(s2019 1)
(s2020 1)
(s2021 1)
(s2022 1)
(s2023 1)
(s2024 1)
(s2025 1)
(s2026 1)
(s2027 1)
(s2028 1)
(s2029 1)
(s2030 1)
(s2031 1)
(s2032 1)
(s2033 1)
(s2034 1)
(s2035 1)
(s2036 1)
(s2037 1)
(s2038 1)
(s2039 1)
(s2040 1)
(s2041 1)
(s2042 1)
(s2043 1)
(s2044 1)
(s2045 1)
(s2046 1)
(s2047 1)
(s2048 1)
(s2049 1)
(s2050 1)
(s2051 1)
(s2052 1)
(s2053 1)
(s2054 1)
(s2055 1)
(s2056 1)
(s2057 1)
(s2058 1)
(s2059 1)
(s2060 1)
(s2061 1)
(s2062 1)
(s2063 1)
(s2064 1)
(s2065 1)
(s2066 1)
(s2067 1)
(s2068 1)
(s2069 1)
(s2070 1)
(s2071 1)
(s2072 1)
(s2073 1)
(s2074 1)
(s2075 1)
(s2076 1)
(s2077 1)
(s2078 1)
(s2079 1)
(s2080 1)
(s2081 1)
(s2082 1)
(s2083 1)
(s2084 1)
(s2085 1)
(s2086 1)
(s2087 1)
(s2088 1)
(s2089 1)
(s2090 1)
(s2091 1)
(s2092 1)
(s2093 1)
(s2094 1)
(s2095 1)
(s2096 1)
(s2097 1)
(s2098 1)
(s2099 1)
(s2100 1)
(s2101 1)
(s2102 1)
(s2103 1)
(s2104 1)
(s2105 1)
(s2106 1)
(s2107 1)
(s2108 1)
(s2109 1)
(s2110 1)
(s2111 1)
(s2112 1)
(s2113 1)
(s2114 1)
(s2115 1)
(s2116 1)
(s2117 1)
(s2118 1)
(s2119 1)
(s2120 1)
(s2121 1)
(s2122 1)
(s2123 1)
(s2124 1)
(s2125 1)
(s2126 1)
(s2127 1)
(s2128 1)
(s2129 1)
(s2130 1)
(s2131 1)
(s2132 1)
(s2133 1)
(s2134 1)
(s2135 1)
(s2136 1)
(s2137 1)
(s2138 1)
(s2139 1)
(s2140 1)
(s2141 1)
(s2142 1)
(s2143 1)
(s2144 1)
(s2145 1)
(s2146 1)
(s2147 1)
(s2148 1)
(s2149 1)
(s2150 1)
(s2151 1)
(s2152 1)
(s2153 1)
(s2154 1)
(s2155 1)
(s2156 1)
(s2157 1)
(s2158 1)
(s2159 1)
(s2160 1)
(s2161 1)
(s2162 1)
(s2163 1)
(s2164 1)
(s2165 1)
(s2166 1)
(s2167 1)
(s2168 1)
(s2169 1)
(s2170 1)
(s2171 1)
(s2172 1)
(s2173 1)
(s2174 1)
(s2175 1)
(s2176 1)
(s2177 1)
(s2178 1)
(s2179 1)
(s2180 1)
(s2181 1)
(s2182 1)
(s2183 1)
(s2184 1)
(s2185 1)
(s2186 1)
(s2187 1)
(s2188 1)
(s2189 1)
(s2190 1)
(s2191 1)
(s2192 1)
(s2193 1)
(s2194 1)
(s2195 1)
(s2196 1)
(s2197 1)
(s2198 1)
(s2199 1)
(s2200 1)
(s2201 1)
(s2202 1)
(s2203 1)
(s2204 1)
(s2205 1)
(s2206 1)
(s2207 1)
(s2208 1)
(s2209 1)
(s2210 1)
(s2211 1)
(s2212 1)
(s2213 1)
(s2214 1)
(s2215 1)
(s2216 1)
(s2217 1)
(s2218 1)
(s2219 1)
(s2220 1)
(s2221 1)
(s2222 1)
(s2223 1)
(s2224 1)
(s2225 1)
(s2226 1)
(s2227 1)
(s2228 1)
(s2229 1)
(s2230 1)
(s2231 1)
(s2232 1)
(s2233 1)
(s2234 1)
(s2235 1)
(s2236 1)
(s2237 1)
(s2238 1)
(s2239 1)
(s2240 1)
(s2241 1)
(s2242 1)
(s2243 1)
(s2244 1)
(s2245 1)
(s2246 1)
(s2247 1)
(s2248 1)
(s2249 1)
(s2250 1)
(s2251 1)
(s2252 1)
(s2253 1)
(s2254 1)
(s2255 1)
(s2256 1)
(s2257 1)
(s2258 1)
(s2259 1)
(s2260 1)
(s2261 1)
(s2262 1)
(s2263 1)
(s2264 1)
(s2265 1)
(s2266 1)
(s2267 1)
(s2268 1)
(s2269 1)
(s2270 1)
(s2271 1)
(s2272 1)
(s2273 1)
(s2274 1)
(s2275 1)
(s2276 1)
(s2277 1)
(s2278 1)
(s2279 1)
(s2280 1)
(s2281 1)
(s2282 1)
(s2283 timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 5940/16200 variables, and 0 constraints, problems are : Problem set: 0 solved, 8040 unsolved in 30157 ms.
Refiners :[Positive P Invariants (semi-flows): 0/60 constraints, State Equation: 0/6000 constraints, PredecessorRefiner: 0/8040 constraints, Known Traps: 0/0 constraints]
After SMT, in 68042ms problems are : Problem set: 0 solved, 8040 unsolved
Search for dead transitions found 0 dead transitions in 68125ms
Starting structural reductions in LTL mode, iteration 1 : 6000/7920 places, 10200/12120 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 70456 ms. Remains : 6000/7920 places, 10200/12120 transitions.
Stuttering acceptance computed with spot in 180 ms :[(NOT p2), (OR (NOT p1) (NOT p2)), (OR (NOT p2) (NOT p0) (NOT p1)), (OR (NOT p2) (NOT p1) (NOT p0)), true]
Running random walk in product with property : BART-PT-060-LTLFireability-05
Entered a terminal (fully accepting) state of product in 1 steps with 0 reset in 1 ms.
FORMULA BART-PT-060-LTLFireability-05 FALSE TECHNIQUES STUTTER_TEST
Treatment of property BART-PT-060-LTLFireability-05 finished in 70689 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202405141337/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!((G((G(p1)||p0))&&F(p2)))'
Support contains 5820 out of 7920 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 7920/7920 places, 12120/12120 transitions.
Graph (trivial) has 1560 edges and 7920 vertex of which 360 / 7920 are part of one of the 60 SCC in 3 ms
Free SCC test removed 300 places
Ensure Unique test removed 300 transitions
Reduce isomorphic transitions removed 300 transitions.
Performed 480 Post agglomeration using F-continuation condition.Transition count delta: 480
Iterating post reduction 0 with 480 rules applied. Total rules applied 481 place count 7620 transition count 11340
Reduce places removed 480 places and 0 transitions.
Iterating post reduction 1 with 480 rules applied. Total rules applied 961 place count 7140 transition count 11340
Performed 720 Post agglomeration using F-continuation condition.Transition count delta: 720
Deduced a syphon composed of 720 places in 3 ms
Reduce places removed 720 places and 0 transitions.
Iterating global reduction 2 with 1440 rules applied. Total rules applied 2401 place count 6420 transition count 10620
Applied a total of 2401 rules in 654 ms. Remains 6420 /7920 variables (removed 1500) and now considering 10620/12120 (removed 1500) transitions.
[2024-05-22 15:16:29] [INFO ] Flow matrix only has 10561 transitions (discarded 59 similar events)
// Phase 1: matrix 10561 rows 6420 cols
[2024-05-22 15:16:29] [INFO ] Computed 60 invariants in 45 ms
[2024-05-22 15:16:31] [INFO ] Implicit Places using invariants in 1885 ms returned []
Implicit Place search using SMT only with invariants took 1892 ms to find 0 implicit places.
Running 8460 sub problems to find dead transitions.
[2024-05-22 15:16:31] [INFO ] Flow matrix only has 10561 transitions (discarded 59 similar events)
[2024-05-22 15:16:31] [INFO ] Invariant cache hit.
At refinement iteration 0 (INCLUDED_ONLY) 0/6360 variables, 6360/6360 constraints. Problems are: Problem set: 0 solved, 8460 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 6360/16981 variables, and 6360 constraints, problems are : Problem set: 0 solved, 8460 unsolved in 30123 ms.
Refiners :[Domain max(s): 6360/6420 constraints, Positive P Invariants (semi-flows): 0/60 constraints, State Equation: 0/6420 constraints, PredecessorRefiner: 8460/8460 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 8460 unsolved
At refinement iteration 0 (INCLUDED_ONLY) 0/6360 variables, 6360/6360 constraints. Problems are: Problem set: 0 solved, 8460 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 6360/16981 variables, and 6360 constraints, problems are : Problem set: 0 solved, 8460 unsolved in 30133 ms.
Refiners :[Domain max(s): 6360/6420 constraints, Positive P Invariants (semi-flows): 0/60 constraints, State Equation: 0/6420 constraints, PredecessorRefiner: 0/8460 constraints, Known Traps: 0/0 constraints]
After SMT, in 68461ms problems are : Problem set: 0 solved, 8460 unsolved
Search for dead transitions found 0 dead transitions in 68545ms
Starting structural reductions in SI_LTL mode, iteration 1 : 6420/7920 places, 10620/12120 transitions.
Finished structural reductions in SI_LTL mode , in 1 iterations and 71101 ms. Remains : 6420/7920 places, 10620/12120 transitions.
Stuttering acceptance computed with spot in 167 ms :[true, (OR (NOT p1) (NOT p2)), (NOT p1), (AND (NOT p1) (NOT p0)), (OR (NOT p2) (AND (NOT p0) (NOT p1)))]
Running random walk in product with property : BART-PT-060-LTLFireability-06
Stuttering criterion allowed to conclude after 0 steps with 0 reset in 2 ms.
FORMULA BART-PT-060-LTLFireability-06 FALSE TECHNIQUES STUTTER_TEST
Treatment of property BART-PT-060-LTLFireability-06 finished in 71317 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202405141337/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(F(p0))'
Support contains 1 out of 7920 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 7920/7920 places, 12120/12120 transitions.
Graph (trivial) has 12118 edges and 7920 vertex of which 7918 / 7920 are part of one of the 60 SCC in 4 ms
Free SCC test removed 7858 places
Ensure Unique test removed 12057 transitions
Reduce isomorphic transitions removed 12057 transitions.
Reduce places removed 59 places and 0 transitions.
Ensure Unique test removed 58 transitions
Reduce isomorphic transitions removed 58 transitions.
Performed 1 Post agglomeration using F-continuation condition.Transition count delta: 1
Iterating post reduction 0 with 59 rules applied. Total rules applied 60 place count 3 transition count 4
Reduce places removed 1 places and 0 transitions.
Iterating post reduction 1 with 1 rules applied. Total rules applied 61 place count 2 transition count 4
Drop transitions (Redundant composition of simpler transitions.) removed 1 transitions
Redundant transition composition rules discarded 1 transitions
Iterating global reduction 2 with 1 rules applied. Total rules applied 62 place count 2 transition count 3
Applied a total of 62 rules in 26 ms. Remains 2 /7920 variables (removed 7918) and now considering 3/12120 (removed 12117) transitions.
// Phase 1: matrix 3 rows 2 cols
[2024-05-22 15:17:40] [INFO ] Computed 1 invariants in 0 ms
[2024-05-22 15:17:40] [INFO ] Implicit Places using invariants in 19 ms returned []
[2024-05-22 15:17:40] [INFO ] Invariant cache hit.
[2024-05-22 15:17:40] [INFO ] Implicit Places using invariants and state equation in 19 ms returned []
Implicit Place search using SMT with State Equation took 41 ms to find 0 implicit places.
[2024-05-22 15:17:40] [INFO ] Redundant transitions in 1 ms returned []
Running 1 sub problems to find dead transitions.
[2024-05-22 15:17:40] [INFO ] Invariant cache hit.
At refinement iteration 0 (INCLUDED_ONLY) 0/1 variables, 1/1 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 1 (INCLUDED_ONLY) 0/1 variables, 0/1 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 2 (OVERLAPS) 1/2 variables, 1/2 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 3 (INCLUDED_ONLY) 0/2 variables, 1/3 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 4 (INCLUDED_ONLY) 0/2 variables, 0/3 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 5 (OVERLAPS) 2/4 variables, 2/5 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 6 (INCLUDED_ONLY) 0/4 variables, 0/5 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 7 (OVERLAPS) 0/4 variables, 0/5 constraints. Problems are: Problem set: 0 solved, 1 unsolved
No progress, stopping.
After SMT solving in domain Real declared 4/5 variables, and 5 constraints, problems are : Problem set: 0 solved, 1 unsolved in 31 ms.
Refiners :[Domain max(s): 2/2 constraints, Positive P Invariants (semi-flows): 1/1 constraints, State Equation: 2/2 constraints, PredecessorRefiner: 1/1 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 1 unsolved
At refinement iteration 0 (INCLUDED_ONLY) 0/1 variables, 1/1 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 1 (INCLUDED_ONLY) 0/1 variables, 0/1 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 2 (OVERLAPS) 1/2 variables, 1/2 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 3 (INCLUDED_ONLY) 0/2 variables, 1/3 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 4 (INCLUDED_ONLY) 0/2 variables, 0/3 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 5 (OVERLAPS) 2/4 variables, 2/5 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 6 (INCLUDED_ONLY) 0/4 variables, 1/6 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 7 (INCLUDED_ONLY) 0/4 variables, 0/6 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 8 (OVERLAPS) 0/4 variables, 0/6 constraints. Problems are: Problem set: 0 solved, 1 unsolved
No progress, stopping.
After SMT solving in domain Int declared 4/5 variables, and 6 constraints, problems are : Problem set: 0 solved, 1 unsolved in 29 ms.
Refiners :[Domain max(s): 2/2 constraints, Positive P Invariants (semi-flows): 1/1 constraints, State Equation: 2/2 constraints, PredecessorRefiner: 1/1 constraints, Known Traps: 0/0 constraints]
After SMT, in 62ms problems are : Problem set: 0 solved, 1 unsolved
Search for dead transitions found 0 dead transitions in 63ms
Starting structural reductions in SI_LTL mode, iteration 1 : 2/7920 places, 3/12120 transitions.
Finished structural reductions in SI_LTL mode , in 1 iterations and 136 ms. Remains : 2/7920 places, 3/12120 transitions.
Stuttering acceptance computed with spot in 35 ms :[(NOT p0)]
Running random walk in product with property : BART-PT-060-LTLFireability-08
Stuttering criterion allowed to conclude after 0 steps with 0 reset in 0 ms.
FORMULA BART-PT-060-LTLFireability-08 FALSE TECHNIQUES STUTTER_TEST
Treatment of property BART-PT-060-LTLFireability-08 finished in 188 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202405141337/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(X(F(p0)))'
Support contains 1 out of 7920 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 7920/7920 places, 12120/12120 transitions.
Discarding 1919 places :
Symmetric choice reduction at 0 with 1919 rule applications. Total rules 1919 place count 6001 transition count 10201
Iterating global reduction 0 with 1919 rules applied. Total rules applied 3838 place count 6001 transition count 10201
Discarding 1619 places :
Symmetric choice reduction at 0 with 1619 rule applications. Total rules 5457 place count 4382 transition count 8582
Iterating global reduction 0 with 1619 rules applied. Total rules applied 7076 place count 4382 transition count 8582
Discarding 240 places :
Symmetric choice reduction at 0 with 240 rule applications. Total rules 7316 place count 4142 transition count 8342
Iterating global reduction 0 with 240 rules applied. Total rules applied 7556 place count 4142 transition count 8342
Discarding 180 places :
Symmetric choice reduction at 0 with 180 rule applications. Total rules 7736 place count 3962 transition count 8162
Iterating global reduction 0 with 180 rules applied. Total rules applied 7916 place count 3962 transition count 8162
Discarding 180 places :
Symmetric choice reduction at 0 with 180 rule applications. Total rules 8096 place count 3782 transition count 7982
Iterating global reduction 0 with 180 rules applied. Total rules applied 8276 place count 3782 transition count 7982
Discarding 180 places :
Symmetric choice reduction at 0 with 180 rule applications. Total rules 8456 place count 3602 transition count 7802
Iterating global reduction 0 with 180 rules applied. Total rules applied 8636 place count 3602 transition count 7802
Discarding 179 places :
Symmetric choice reduction at 0 with 179 rule applications. Total rules 8815 place count 3423 transition count 7623
Iterating global reduction 0 with 179 rules applied. Total rules applied 8994 place count 3423 transition count 7623
Discarding 179 places :
Symmetric choice reduction at 0 with 179 rule applications. Total rules 9173 place count 3244 transition count 7444
Iterating global reduction 0 with 179 rules applied. Total rules applied 9352 place count 3244 transition count 7444
Discarding 119 places :
Symmetric choice reduction at 0 with 119 rule applications. Total rules 9471 place count 3125 transition count 7325
Iterating global reduction 0 with 119 rules applied. Total rules applied 9590 place count 3125 transition count 7325
Discarding 119 places :
Symmetric choice reduction at 0 with 119 rule applications. Total rules 9709 place count 3006 transition count 7206
Iterating global reduction 0 with 119 rules applied. Total rules applied 9828 place count 3006 transition count 7206
Discarding 59 places :
Symmetric choice reduction at 0 with 59 rule applications. Total rules 9887 place count 2947 transition count 7147
Iterating global reduction 0 with 59 rules applied. Total rules applied 9946 place count 2947 transition count 7147
Applied a total of 9946 rules in 6609 ms. Remains 2947 /7920 variables (removed 4973) and now considering 7147/12120 (removed 4973) transitions.
// Phase 1: matrix 7147 rows 2947 cols
[2024-05-22 15:17:47] [INFO ] Computed 60 invariants in 22 ms
[2024-05-22 15:17:47] [INFO ] Implicit Places using invariants in 581 ms returned []
[2024-05-22 15:17:47] [INFO ] Invariant cache hit.
[2024-05-22 15:17:51] [INFO ] Implicit Places using invariants and state equation in 3347 ms returned []
Implicit Place search using SMT with State Equation took 3947 ms to find 0 implicit places.
Running 4987 sub problems to find dead transitions.
[2024-05-22 15:17:51] [INFO ] Invariant cache hit.
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 2887/10094 variables, and 0 constraints, problems are : Problem set: 0 solved, 4987 unsolved in 30086 ms.
Refiners :[Positive P Invariants (semi-flows): 0/60 constraints, State Equation: 0/2947 constraints, PredecessorRefiner: 4987/4987 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 4987 unsolved
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 2887/10094 variables, and 0 constraints, problems are : Problem set: 0 solved, 4987 unsolved in 30131 ms.
Refiners :[Positive P Invariants (semi-flows): 0/60 constraints, State Equation: 0/2947 constraints, PredecessorRefiner: 0/4987 constraints, Known Traps: 0/0 constraints]
After SMT, in 63536ms problems are : Problem set: 0 solved, 4987 unsolved
Search for dead transitions found 0 dead transitions in 63590ms
Starting structural reductions in LTL mode, iteration 1 : 2947/7920 places, 7147/12120 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 74153 ms. Remains : 2947/7920 places, 7147/12120 transitions.
Stuttering acceptance computed with spot in 143 ms :[(NOT p0), (NOT p0)]
Running random walk in product with property : BART-PT-060-LTLFireability-09
Product exploration explored 100000 steps with 25 reset in 1519 ms.
Product exploration explored 100000 steps with 24 reset in 1160 ms.
Computed a total of 0 stabilizing places and 0 stable transitions
Computed a total of 0 stabilizing places and 0 stable transitions
Knowledge obtained : [(NOT p0), (X (NOT p0))]
False Knowledge obtained : []
Knowledge sufficient to adopt a stutter insensitive property.
Knowledge based reduction with 2 factoid took 77 ms. Reduced automaton from 2 states, 2 edges and 1 AP (stutter sensitive) to 2 states, 3 edges and 1 AP (stutter insensitive).
Stuttering acceptance computed with spot in 76 ms :[(NOT p0), (NOT p0)]
RANDOM walk for 8057 steps (1 resets) in 134 ms. (59 steps per ms) remains 0/1 properties
Knowledge obtained : [(NOT p0), (X (NOT p0))]
False Knowledge obtained : [(F p0)]
Knowledge based reduction with 2 factoid took 134 ms. Reduced automaton from 2 states, 3 edges and 1 AP (stutter insensitive) to 2 states, 3 edges and 1 AP (stutter insensitive).
Stuttering acceptance computed with spot in 96 ms :[(NOT p0), (NOT p0)]
Stuttering acceptance computed with spot in 138 ms :[(NOT p0), (NOT p0)]
[2024-05-22 15:18:58] [INFO ] Invariant cache hit.
[2024-05-22 15:19:04] [INFO ] [Real]Absence check using 60 positive place invariants in 11 ms returned unsat
Proved EG (NOT p0)
Knowledge obtained : [(NOT p0), (X (NOT p0))]
False Knowledge obtained : [(F p0), (G (NOT p0))]
Property proved to be false thanks to negative knowledge :(G (NOT p0))
Knowledge based reduction with 2 factoid took 157 ms. Reduced automaton from 2 states, 3 edges and 1 AP (stutter insensitive) to 1 states, 1 edges and 0 AP (stutter insensitive).
FORMULA BART-PT-060-LTLFireability-09 FALSE TECHNIQUES KNOWLEDGE
Treatment of property BART-PT-060-LTLFireability-09 finished in 83613 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202405141337/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(G(F(((p0&&X(p1))||(p1&&G(p2))))))'
Support contains 3 out of 7920 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 7920/7920 places, 12120/12120 transitions.
Discarding 1920 places :
Symmetric choice reduction at 0 with 1920 rule applications. Total rules 1920 place count 6000 transition count 10200
Iterating global reduction 0 with 1920 rules applied. Total rules applied 3840 place count 6000 transition count 10200
Discarding 1620 places :
Symmetric choice reduction at 0 with 1620 rule applications. Total rules 5460 place count 4380 transition count 8580
Iterating global reduction 0 with 1620 rules applied. Total rules applied 7080 place count 4380 transition count 8580
Discarding 240 places :
Symmetric choice reduction at 0 with 240 rule applications. Total rules 7320 place count 4140 transition count 8340
Iterating global reduction 0 with 240 rules applied. Total rules applied 7560 place count 4140 transition count 8340
Discarding 180 places :
Symmetric choice reduction at 0 with 180 rule applications. Total rules 7740 place count 3960 transition count 8160
Iterating global reduction 0 with 180 rules applied. Total rules applied 7920 place count 3960 transition count 8160
Discarding 180 places :
Symmetric choice reduction at 0 with 180 rule applications. Total rules 8100 place count 3780 transition count 7980
Iterating global reduction 0 with 180 rules applied. Total rules applied 8280 place count 3780 transition count 7980
Discarding 180 places :
Symmetric choice reduction at 0 with 180 rule applications. Total rules 8460 place count 3600 transition count 7800
Iterating global reduction 0 with 180 rules applied. Total rules applied 8640 place count 3600 transition count 7800
Discarding 180 places :
Symmetric choice reduction at 0 with 180 rule applications. Total rules 8820 place count 3420 transition count 7620
Iterating global reduction 0 with 180 rules applied. Total rules applied 9000 place count 3420 transition count 7620
Discarding 180 places :
Symmetric choice reduction at 0 with 180 rule applications. Total rules 9180 place count 3240 transition count 7440
Iterating global reduction 0 with 180 rules applied. Total rules applied 9360 place count 3240 transition count 7440
Discarding 120 places :
Symmetric choice reduction at 0 with 120 rule applications. Total rules 9480 place count 3120 transition count 7320
Iterating global reduction 0 with 120 rules applied. Total rules applied 9600 place count 3120 transition count 7320
Discarding 120 places :
Symmetric choice reduction at 0 with 120 rule applications. Total rules 9720 place count 3000 transition count 7200
Iterating global reduction 0 with 120 rules applied. Total rules applied 9840 place count 3000 transition count 7200
Discarding 60 places :
Symmetric choice reduction at 0 with 60 rule applications. Total rules 9900 place count 2940 transition count 7140
Iterating global reduction 0 with 60 rules applied. Total rules applied 9960 place count 2940 transition count 7140
Applied a total of 9960 rules in 6469 ms. Remains 2940 /7920 variables (removed 4980) and now considering 7140/12120 (removed 4980) transitions.
// Phase 1: matrix 7140 rows 2940 cols
[2024-05-22 15:19:10] [INFO ] Computed 60 invariants in 36 ms
[2024-05-22 15:19:11] [INFO ] Implicit Places using invariants in 859 ms returned []
[2024-05-22 15:19:11] [INFO ] Invariant cache hit.
[2024-05-22 15:19:15] [INFO ] Implicit Places using invariants and state equation in 3566 ms returned []
Implicit Place search using SMT with State Equation took 4432 ms to find 0 implicit places.
Running 4980 sub problems to find dead transitions.
[2024-05-22 15:19:15] [INFO ] Invariant cache hit.
(s1012 1.0timeout
^^^^^^^^^^
(error "Invalid token: 1.0timeout")
Error getting values : (error "ParserException while parsing response: ((s60 1.0)
(s61 1.0)
(s62 1.0)
(s63 1.0)
(s64 1.0)
(s65 1.0)
(s66 1.0)
(s67 1.0)
(s68 1.0)
(s69 1.0)
(s70 1.0)
(s71 1.0)
(s72 1.0)
(s73 1.0)
(s74 1.0)
(s75 1.0)
(s76 1.0)
(s77 1.0)
(s78 1.0)
(s79 1.0)
(s80 1.0)
(s81 1.0)
(s82 1.0)
(s83 1.0)
(s84 1.0)
(s85 1.0)
(s86 1.0)
(s87 1.0)
(s88 1.0)
(s89 1.0)
(s90 1.0)
(s91 1.0)
(s92 1.0)
(s93 1.0)
(s94 1.0)
(s95 1.0)
(s96 1.0)
(s97 1.0)
(s98 1.0)
(s99 1.0)
(s100 1.0)
(s101 1.0)
(s102 1.0)
(s103 1.0)
(s104 1.0)
(s105 1.0)
(s106 1.0)
(s107 1.0)
(s108 1.0)
(s109 1.0)
(s110 1.0)
(s111 1.0)
(s112 1.0)
(s113 1.0)
(s114 1.0)
(s115 1.0)
(s116 1.0)
(s117 1.0)
(s118 1.0)
(s119 1.0)
(s120 1.0)
(s121 1.0)
(s122 1.0)
(s123 1.0)
(s124 1.0)
(s125 1.0)
(s126 1.0)
(s127 1.0)
(s128 1.0)
(s129 1.0)
(s130 1.0)
(s131 1.0)
(s132 1.0)
(s133 1.0)
(s134 1.0)
(s135 1.0)
(s136 1.0)
(s137 1.0)
(s138 1.0)
(s139 1.0)
(s140 1.0)
(s141 1.0)
(s142 1.0)
(s143 1.0)
(s144 1.0)
(s145 1.0)
(s146 1.0)
(s147 1.0)
(s148 1.0)
(s149 1.0)
(s150 1.0)
(s151 1.0)
(s152 1.0)
(s153 1.0)
(s154 1.0)
(s155 1.0)
(s156 1.0)
(s157 1.0)
(s158 1.0)
(s159 1.0)
(s160 1.0)
(s161 1.0)
(s162 1.0)
(s163 1.0)
(s164 1.0)
(s165 1.0)
(s166 1.0)
(s167 1.0)
(s168 1.0)
(s169 1.0)
(s170 1.0)
(s171 1.0)
(s172 1.0)
(s173 1.0)
(s174 1.0)
(s175 1.0)
(s176 1.0)
(s177 1.0)
(s178 1.0)
(s179 1.0)
(s180 1.0)
(s181 1.0)
(s182 1.0)
(s183 1.0)
(s184 1.0)
(s185 1.0)
(s186 1.0)
(s187 1.0)
(s188 1.0)
(s189 1.0)
(s190 1.0)
(s191 1.0)
(s192 1.0)
(s193 1.0)
(s194 1.0)
(s195 1.0)
(s196 1.0)
(s197 1.0)
(s198 1.0)
(s199 1.0)
(s200 1.0)
(s201 1.0)
(s202 1.0)
(s203 1.0)
(s204 1.0)
(s205 1.0)
(s206 1.0)
(s207 1.0)
(s208 1.0)
(s209 1.0)
(s210 1.0)
(s211 1.0)
(s212 1.0)
(s213 1.0)
(s214 1.0)
(s215 1.0)
(s216 1.0)
(s217 1.0)
(s218 1.0)
(s219 1.0)
(s220 1.0)
(s221 1.0)
(s222 1.0)
(s223 1.0)
(s224 1.0)
(s225 1.0)
(s226 1.0)
(s227 1.0)
(s228 1.0)
(s229 1.0)
(s230 1.0)
(s231 1.0)
(s232 1.0)
(s233 1.0)
(s234 1.0)
(s235 1.0)
(s236 1.0)
(s237 1.0)
(s238 1.0)
(s239 1.0)
(s240 1.0)
(s241 1.0)
(s242 1.0)
(s243 1.0)
(s244 1.0)
(s245 1.0)
(s246 1.0)
(s247 1.0)
(s248 1.0)
(s249 1.0)
(s250 1.0)
(s251 1.0)
(s252 1.0)
(s253 1.0)
(s254 1.0)
(s255 1.0)
(s256 1.0)
(s257 1.0)
(s258 1.0)
(s259 1.0)
(s260 1.0)
(s261 1.0)
(s262 1.0)
(s263 1.0)
(s264 1.0)
(s265 1.0)
(s266 1.0)
(s267 1.0)
(s268 1.0)
(s269 1.0)
(s270 1.0)
(s271 1.0)
(s272 1.0)
(s273 1.0)
(s274 1.0)
(s275 1.0)
(s276 1.0)
(s277 1.0)
(s278 1.0)
(s279 1.0)
(s280 1.0)
(s281 1.0)
(s282 1.0)
(s283 1.0)
(s284 1.0)
(s285 1.0)
(s286 1.0)
(s287 1.0)
(s288 1.0)
(s289 1.0)
(s290 1.0)
(s291 1.0)
(s292 1.0)
(s293 1.0)
(s294 1.0)
(s295 1.0)
(s296 1.0)
(s297 1.0)
(s298 1.0)
(s299 1.0)
(s300 1.0)
(s301 1.0)
(s302 1.0)
(s303 1.0)
(s304 1.0)
(s305 1.0)
(s306 1.0)
(s307 1.0)
(s308 1.0)
(s309 1.0)
(s310 1.0)
(s311 1.0)
(s312 1.0)
(s313 1.0)
(s314 1.0)
(s315 1.0)
(s316 1.0)
(s317 1.0)
(s318 1.0)
(s319 1.0)
(s320 1.0)
(s321 1.0)
(s322 1.0)
(s323 1.0)
(s324 1.0)
(s325 1.0)
(s326 1.0)
(s327 1.0)
(s328 1.0)
(s329 1.0)
(s330 1.0)
(s331 1.0)
(s332 1.0)
(s333 1.0)
(s334 1.0)
(s335 1.0)
(s336 1.0)
(s337 1.0)
(s338 1.0)
(s339 1.0)
(s340 1.0)
(s341 1.0)
(s342 1.0)
(s343 1.0)
(s344 1.0)
(s345 1.0)
(s346 1.0)
(s347 1.0)
(s348 1.0)
(s349 1.0)
(s350 1.0)
(s351 1.0)
(s352 1.0)
(s353 1.0)
(s354 1.0)
(s355 1.0)
(s356 1.0)
(s357 1.0)
(s358 1.0)
(s359 1.0)
(s360 1.0)
(s361 1.0)
(s362 1.0)
(s363 1.0)
(s364 1.0)
(s365 1.0)
(s366 1.0)
(s367 1.0)
(s368 1.0)
(s369 1.0)
(s370 1.0)
(s371 1.0)
(s372 1.0)
(s373 1.0)
(s374 1.0)
(s375 1.0)
(s376 1.0)
(s377 1.0)
(s378 1.0)
(s379 1.0)
(s380 1.0)
(s381 1.0)
(s382 1.0)
(s383 1.0)
(s384 1.0)
(s385 1.0)
(s386 1.0)
(s387 1.0)
(s388 1.0)
(s389 1.0)
(s390 1.0)
(s391 1.0)
(s392 1.0)
(s393 1.0)
(s394 1.0)
(s395 1.0)
(s396 1.0)
(s397 1.0)
(s398 1.0)
(s399 1.0)
(s400 1.0)
(s401 1.0)
(s402 1.0)
(s403 1.0)
(s404 1.0)
(s405 1.0)
(s406 1.0)
(s407 1.0)
(s408 1.0)
(s409 1.0)
(s410 1.0)
(s411 1.0)
(s412 1.0)
(s413 1.0)
(s414 1.0)
(s415 1.0)
(s416 1.0)
(s417 1.0)
(s418 1.0)
(s419 1.0)
(s420 1.0)
(s421 1.0)
(s422 1.0)
(s423 1.0)
(s424 1.0)
(s425 1.0)
(s426 1.0)
(s427 1.0)
(s428 1.0)
(s429 1.0)
(s430 1.0)
(s431 1.0)
(s432 1.0)
(s433 1.0)
(s434 1.0)
(s435 1.0)
(s436 1.0)
(s437 1.0)
(s438 1.0)
(s439 1.0)
(s440 1.0)
(s441 1.0)
(s442 1.0)
(s443 1.0)
(s444 1.0)
(s445 1.0)
(s446 1.0)
(s447 1.0)
(s448 1.0)
(s449 1.0)
(s450 1.0)
(s451 1.0)
(s452 1.0)
(s453 1.0)
(s454 1.0)
(s455 1.0)
(s456 1.0)
(s457 1.0)
(s458 1.0)
(s459 1.0)
(s460 1.0)
(s461 1.0)
(s462 1.0)
(s463 1.0)
(s464 1.0)
(s465 1.0)
(s466 1.0)
(s467 1.0)
(s468 1.0)
(s469 1.0)
(s470 1.0)
(s471 1.0)
(s472 1.0)
(s473 1.0)
(s474 1.0)
(s475 1.0)
(s476 1.0)
(s477 1.0)
(s478 1.0)
(s479 1.0)
(s480 1.0)
(s481 1.0)
(s482 1.0)
(s483 1.0)
(s484 1.0)
(s485 1.0)
(s486 1.0)
(s487 1.0)
(s488 1.0)
(s489 1.0)
(s490 1.0)
(s491 1.0)
(s492 1.0)
(s493 1.0)
(s494 1.0)
(s495 1.0)
(s496 1.0)
(s497 1.0)
(s498 1.0)
(s499 1.0)
(s500 1.0)
(s501 1.0)
(s502 1.0)
(s503 1.0)
(s504 1.0)
(s505 1.0)
(s506 1.0)
(s507 1.0)
(s508 1.0)
(s509 1.0)
(s510 1.0)
(s511 1.0)
(s512 1.0)
(s513 1.0)
(s514 1.0)
(s515 1.0)
(s516 1.0)
(s517 1.0)
(s518 1.0)
(s519 1.0)
(s520 1.0)
(s521 1.0)
(s522 1.0)
(s523 1.0)
(s524 1.0)
(s525 1.0)
(s526 1.0)
(s527 1.0)
(s528 1.0)
(s529 1.0)
(s530 1.0)
(s531 1.0)
(s532 1.0)
(s533 1.0)
(s534 1.0)
(s535 1.0)
(s536 1.0)
(s537 1.0)
(s538 1.0)
(s539 1.0)
(s540 1.0)
(s541 1.0)
(s542 1.0)
(s543 1.0)
(s544 1.0)
(s545 1.0)
(s546 1.0)
(s547 1.0)
(s548 1.0)
(s549 1.0)
(s550 1.0)
(s551 1.0)
(s552 1.0)
(s553 1.0)
(s554 1.0)
(s555 1.0)
(s556 1.0)
(s557 1.0)
(s558 1.0)
(s559 1.0)
(s560 1.0)
(s561 1.0)
(s562 1.0)
(s563 1.0)
(s564 1.0)
(s565 1.0)
(s566 1.0)
(s567 1.0)
(s568 1.0)
(s569 1.0)
(s570 1.0)
(s571 1.0)
(s572 1.0)
(s573 1.0)
(s574 1.0)
(s575 1.0)
(s576 1.0)
(s577 1.0)
(s578 1.0)
(s579 1.0)
(s580 1.0)
(s581 1.0)
(s582 1.0)
(s583 1.0)
(s584 1.0)
(s585 1.0)
(s586 1.0)
(s587 1.0)
(s588 1.0)
(s589 1.0)
(s590 1.0)
(s591 1.0)
(s592 1.0)
(s593 1.0)
(s594 1.0)
(s595 1.0)
(s596 1.0)
(s597 1.0)
(s598 1.0)
(s599 1.0)
(s600 1.0)
(s601 1.0)
(s602 1.0)
(s603 1.0)
(s604 1.0)
(s605 1.0)
(s606 1.0)
(s607 1.0)
(s608 1.0)
(s609 1.0)
(s610 1.0)
(s611 1.0)
(s612 1.0)
(s613 1.0)
(s614 1.0)
(s615 1.0)
(s616 1.0)
(s617 1.0)
(s618 1.0)
(s619 1.0)
(s620 1.0)
(s621 1.0)
(s622 1.0)
(s623 1.0)
(s624 1.0)
(s625 1.0)
(s626 1.0)
(s627 1.0)
(s628 1.0)
(s629 1.0)
(s630 1.0)
(s631 1.0)
(s632 1.0)
(s633 1.0)
(s634 1.0)
(s635 1.0)
(s636 1.0)
(s637 1.0)
(s638 1.0)
(s639 1.0)
(s640 1.0)
(s641 1.0)
(s642 1.0)
(s643 1.0)
(s644 1.0)
(s645 1.0)
(s646 1.0)
(s647 1.0)
(s648 1.0)
(s649 1.0)
(s650 1.0)
(s651 1.0)
(s652 1.0)
(s653 1.0)
(s654 1.0)
(s655 1.0)
(s656 1.0)
(s657 1.0)
(s658 1.0)
(s659 1.0)
(s660 1.0)
(s661 1.0)
(s662 1.0)
(s663 1.0)
(s664 1.0)
(s665 1.0)
(s666 1.0)
(s667 1.0)
(s668 1.0)
(s669 1.0)
(s670 1.0)
(s671 1.0)
(s672 1.0)
(s673 1.0)
(s674 1.0)
(s675 1.0)
(s676 1.0)
(s677 1.0)
(s678 1.0)
(s679 1.0)
(s680 1.0)
(s681 1.0)
(s682 1.0)
(s683 1.0)
(s684 1.0)
(s685 1.0)
(s686 1.0)
(s687 1.0)
(s688 1.0)
(s689 1.0)
(s690 1.0)
(s691 1.0)
(s692 1.0)
(s693 1.0)
(s694 1.0)
(s695 1.0)
(s696 1.0)
(s697 1.0)
(s698 1.0)
(s699 1.0)
(s700 1.0)
(s701 1.0)
(s702 1.0)
(s703 1.0)
(s704 1.0)
(s705 1.0)
(s706 1.0)
(s707 1.0)
(s708 1.0)
(s709 1.0)
(s710 1.0)
(s711 1.0)
(s712 1.0)
(s713 1.0)
(s714 1.0)
(s715 1.0)
(s716 1.0)
(s717 1.0)
(s718 1.0)
(s719 1.0)
(s720 1.0)
(s721 1.0)
(s722 1.0)
(s723 1.0)
(s724 1.0)
(s725 1.0)
(s726 1.0)
(s727 1.0)
(s728 1.0)
(s729 1.0)
(s730 1.0)
(s731 1.0)
(s732 1.0)
(s733 1.0)
(s734 1.0)
(s735 1.0)
(s736 1.0)
(s737 1.0)
(s738 1.0)
(s739 1.0)
(s740 1.0)
(s741 1.0)
(s742 1.0)
(s743 1.0)
(s744 1.0)
(s745 1.0)
(s746 1.0)
(s747 1.0)
(s748 1.0)
(s749 1.0)
(s750 1.0)
(s751 1.0)
(s752 1.0)
(s753 1.0)
(s754 1.0)
(s755 1.0)
(s756 1.0)
(s757 1.0)
(s758 1.0)
(s759 1.0)
(s760 1.0)
(s761 1.0)
(s762 1.0)
(s763 1.0)
(s764 1.0)
(s765 1.0)
(s766 1.0)
(s767 1.0)
(s768 1.0)
(s769 1.0)
(s770 1.0)
(s771 1.0)
(s772 1.0)
(s773 1.0)
(s774 1.0)
(s775 1.0)
(s776 1.0)
(s777 1.0)
(s778 1.0)
(s779 1.0)
(s780 1.0)
(s781 1.0)
(s782 1.0)
(s783 1.0)
(s784 1.0)
(s785 1.0)
(s786 1.0)
(s787 1.0)
(s788 1.0)
(s789 1.0)
(s790 1.0)
(s791 1.0)
(s792 1.0)
(s793 1.0)
(s794 1.0)
(s795 1.0)
(s796 1.0)
(s797 1.0)
(s798 1.0)
(s799 1.0)
(s800 1.0)
(s801 1.0)
(s802 1.0)
(s803 1.0)
(s804 1.0)
(s805 1.0)
(s806 1.0)
(s807 1.0)
(s808 1.0)
(s809 1.0)
(s810 1.0)
(s811 1.0)
(s812 1.0)
(s813 1.0)
(s814 1.0)
(s815 1.0)
(s816 1.0)
(s817 1.0)
(s818 1.0)
(s819 1.0)
(s820 1.0)
(s821 1.0)
(s822 1.0)
(s823 1.0)
(s824 1.0)
(s825 1.0)
(s826 1.0)
(s827 1.0)
(s828 1.0)
(s829 1.0)
(s830 1.0)
(s831 1.0)
(s832 1.0)
(s833 1.0)
(s834 1.0)
(s835 1.0)
(s836 1.0)
(s837 1.0)
(s838 1.0)
(s839 1.0)
(s840 1.0)
(s841 1.0)
(s842 1.0)
(s843 1.0)
(s844 1.0)
(s845 1.0)
(s846 1.0)
(s847 1.0)
(s848 1.0)
(s849 1.0)
(s850 1.0)
(s851 1.0)
(s852 1.0)
(s853 1.0)
(s854 1.0)
(s855 1.0)
(s856 1.0)
(s857 1.0)
(s858 1.0)
(s859 1.0)
(s860 1.0)
(s861 1.0)
(s862 1.0)
(s863 1.0)
(s864 1.0)
(s865 1.0)
(s866 1.0)
(s867 1.0)
(s868 1.0)
(s869 1.0)
(s870 1.0)
(s871 1.0)
(s872 1.0)
(s873 1.0)
(s874 1.0)
(s875 1.0)
(s876 1.0)
(s877 1.0)
(s878 1.0)
(s879 1.0)
(s880 1.0)
(s881 1.0)
(s882 1.0)
(s883 1.0)
(s884 1.0)
(s885 1.0)
(s886 1.0)
(s887 1.0)
(s888 1.0)
(s889 1.0)
(s890 1.0)
(s891 1.0)
(s892 1.0)
(s893 1.0)
(s894 1.0)
(s895 1.0)
(s896 1.0)
(s897 1.0)
(s898 1.0)
(s899 1.0)
(s900 1.0)
(s901 1.0)
(s902 1.0)
(s903 1.0)
(s904 1.0)
(s905 1.0)
(s906 1.0)
(s907 1.0)
(s908 1.0)
(s909 1.0)
(s910 1.0)
(s911 1.0)
(s912 1.0)
(s913 1.0)
(s914 1.0)
(s915 1.0)
(s916 1.0)
(s917 1.0)
(s918 1.0)
(s919 1.0)
(s920 1.0)
(s921 1.0)
(s922 1.0)
(s923 1.0)
(s924 1.0)
(s925 1.0)
(s926 1.0)
(s927 1.0)
(s928 1.0)
(s929 1.0)
(s930 1.0)
(s931 1.0)
(s932 1.0)
(s933 1.0)
(s934 1.0)
(s935 1.0)
(s936 1.0)
(s937 1.0)
(s938 1.0)
(s939 1.0)
(s940 1.0)
(s941 1.0)
(s942 1.0)
(s943 1.0)
(s944 1.0)
(s945 1.0)
(s946 1.0)
(s947 1.0)
(s948 1.0)
(s949 1.0)
(s950 1.0)
(s951 1.0)
(s952 1.0)
(s953 1.0)
(s954 1.0)
(s955 1.0)
(s956 1.0)
(s957 1.0)
(s958 1.0)
(s959 1.0)
(s960 1.0)
(s961 1.0)
(s962 1.0)
(s963 1.0)
(s964 1.0)
(s965 1.0)
(s966 1.0)
(s967 1.0)
(s968 1.0)
(s969 1.0)
(s970 1.0)
(s971 1.0)
(s972 1.0)
(s973 1.0)
(s974 1.0)
(s975 1.0)
(s976 1.0)
(s977 1.0)
(s978 1.0)
(s979 1.0)
(s980 1.0)
(s981 1.0)
(s982 1.0)
(s983 1.0)
(s984 1.0)
(s985 1.0)
(s986 1.0)
(s987 1.0)
(s988 1.0)
(s989 1.0)
(s990 1.0)
(s991 1.0)
(s992 1.0)
(s993 1.0)
(s994 1.0)
(s995 1.0)
(s996 1.0)
(s997 1.0)
(s998 1.0)
(s999 1.0)
(s1000 1.0)
(s1001 1.0)
(s1002 1.0)
(s1003 1.0)
(s1004 1.0)
(s1005 1.0)
(s1006 1.0)
(s1007 1.0)
(s1008 1.0)
(s1009 1.0)
(s1010 1.0)
(s1011 1.0)
(s1012 1.0timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 2880/10080 variables, and 0 constraints, problems are : Problem set: 0 solved, 4980 unsolved in 30137 ms.
Refiners :[Positive P Invariants (semi-flows): 0/60 constraints, State Equation: 0/2940 constraints, PredecessorRefiner: 4980/4980 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 4980 unsolved
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 2880/10080 variables, and 0 constraints, problems are : Problem set: 0 solved, 4980 unsolved in 30109 ms.
Refiners :[Positive P Invariants (semi-flows): 0/60 constraints, State Equation: 0/2940 constraints, PredecessorRefiner: 0/4980 constraints, Known Traps: 0/0 constraints]
After SMT, in 63867ms problems are : Problem set: 0 solved, 4980 unsolved
Search for dead transitions found 0 dead transitions in 63945ms
Starting structural reductions in LTL mode, iteration 1 : 2940/7920 places, 7140/12120 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 74855 ms. Remains : 2940/7920 places, 7140/12120 transitions.
Stuttering acceptance computed with spot in 275 ms :[(OR (NOT p1) (AND (NOT p0) (NOT p2))), (OR (NOT p1) (AND (NOT p0) (NOT p2))), (OR (AND (NOT p0) (NOT p2)) (AND (NOT p1) (NOT p2))), (NOT p1), (AND (NOT p1) (NOT p2))]
Running random walk in product with property : BART-PT-060-LTLFireability-10
Product exploration explored 100000 steps with 2049 reset in 6688 ms.
Product exploration explored 100000 steps with 1941 reset in 6411 ms.
Computed a total of 0 stabilizing places and 0 stable transitions
Computed a total of 0 stabilizing places and 0 stable transitions
Knowledge obtained : [(AND p0 (NOT p1) p2), (X p2), (X (NOT (AND (NOT p0) p1 p2)))]
False Knowledge obtained : [(X (AND p0 (NOT p1))), (X (NOT (AND p0 (NOT p1)))), (X (OR (AND (NOT p0) (NOT p1)) (AND (NOT p0) (NOT p2)))), (X (NOT (OR (AND (NOT p0) (NOT p1)) (AND (NOT p0) (NOT p2))))), (X (OR (AND p0 (NOT p1)) (AND p0 (NOT p2)))), (X (NOT (OR (AND p0 (NOT p1)) (AND p0 (NOT p2))))), (X (AND (NOT p0) (NOT p1))), (X (NOT (AND (NOT p0) (NOT p1)))), (X (AND p0 p1 p2)), (X (NOT (AND p0 p1 p2))), (X p0), (X (NOT p0)), (X p1), (X (NOT p1))]
Knowledge based reduction with 3 factoid took 452 ms. Reduced automaton from 5 states, 17 edges and 3 AP (stutter sensitive) to 5 states, 17 edges and 3 AP (stutter sensitive).
Stuttering acceptance computed with spot in 291 ms :[(OR (NOT p1) (AND (NOT p0) (NOT p2))), (OR (NOT p1) (AND (NOT p0) (NOT p2))), (OR (AND (NOT p0) (NOT p2)) (AND (NOT p1) (NOT p2))), (NOT p1), (AND (NOT p1) (NOT p2))]
Reduction of identical properties reduced properties to check from 17 to 15
RANDOM walk for 40000 steps (8 resets) in 1169 ms. (34 steps per ms) remains 1/15 properties
BEST_FIRST walk for 40004 steps (8 resets) in 99 ms. (400 steps per ms) remains 1/1 properties
[2024-05-22 15:20:33] [INFO ] Invariant cache hit.
All remaining problems are real, not stopping.
At refinement iteration 0 (INCLUDED_ONLY) 0/3 variables, 0/0 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 1 (OVERLAPS) 144/147 variables, 3/3 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 2 (INCLUDED_ONLY) 0/147 variables, 0/3 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 3 (OVERLAPS) 357/504 variables, 147/150 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 4 (INCLUDED_ONLY) 0/504 variables, 0/150 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 5 (OVERLAPS) 0/504 variables, 0/150 constraints. Problems are: Problem set: 0 solved, 1 unsolved
No progress, stopping.
After SMT solving in domain Real declared 504/10080 variables, and 150 constraints, problems are : Problem set: 0 solved, 1 unsolved in 266 ms.
Refiners :[Positive P Invariants (semi-flows): 3/60 constraints, State Equation: 147/2940 constraints, PredecessorRefiner: 1/1 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 1 unsolved
At refinement iteration 0 (INCLUDED_ONLY) 0/3 variables, 0/0 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 1 (OVERLAPS) 144/147 variables, 3/3 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 2 (INCLUDED_ONLY) 0/147 variables, 0/3 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 3 (OVERLAPS) 357/504 variables, 147/150 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 4 (INCLUDED_ONLY) 0/504 variables, 1/151 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 5 (INCLUDED_ONLY) 0/504 variables, 0/151 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 6 (OVERLAPS) 0/504 variables, 0/151 constraints. Problems are: Problem set: 0 solved, 1 unsolved
No progress, stopping.
After SMT solving in domain Int declared 504/10080 variables, and 151 constraints, problems are : Problem set: 0 solved, 1 unsolved in 331 ms.
Refiners :[Positive P Invariants (semi-flows): 3/60 constraints, State Equation: 147/2940 constraints, PredecessorRefiner: 1/1 constraints, Known Traps: 0/0 constraints]
After SMT, in 627ms problems are : Problem set: 0 solved, 1 unsolved
Finished Parikh walk after 56 steps, including 0 resets, run visited all 1 properties in 2 ms. (steps per millisecond=28 )
Parikh walk visited 1 properties in 14 ms.
Knowledge obtained : [(AND p0 (NOT p1) p2), (X p2), (X (NOT (AND (NOT p0) p1 p2)))]
False Knowledge obtained : [(X (AND p0 (NOT p1))), (X (NOT (AND p0 (NOT p1)))), (X (OR (AND (NOT p0) (NOT p1)) (AND (NOT p0) (NOT p2)))), (X (NOT (OR (AND (NOT p0) (NOT p1)) (AND (NOT p0) (NOT p2))))), (X (OR (AND p0 (NOT p1)) (AND p0 (NOT p2)))), (X (NOT (OR (AND p0 (NOT p1)) (AND p0 (NOT p2))))), (X (AND (NOT p0) (NOT p1))), (X (NOT (AND (NOT p0) (NOT p1)))), (X (AND p0 p1 p2)), (X (NOT (AND p0 p1 p2))), (X p0), (X (NOT p0)), (X p1), (X (NOT p1)), (F (NOT (OR (NOT p0) p2 p1))), (F (NOT (OR (AND p0 (NOT p2)) (AND p0 (NOT p1))))), (F (NOT (AND p0 p2 (NOT p1)))), (F (NOT (AND (OR p0 p2) (OR p0 p1)))), (F (NOT (OR (NOT p0) (NOT p2) (NOT p1)))), (F (NOT p0)), (F (NOT (OR (NOT p0) p2))), (F (NOT (OR p0 (NOT p2)))), (F (NOT (OR p0 p2 p1))), (F (NOT (OR p0 p1))), (F (NOT (OR p0 (NOT p2) p1))), (F (NOT p2)), (F (NOT (AND p0 (NOT p1)))), (F p1), (F (NOT (OR p0 p2))), (F (NOT (OR p0 (NOT p2) (NOT p1)))), (F (NOT (AND p0 p2)))]
Knowledge based reduction with 3 factoid took 1099 ms. Reduced automaton from 5 states, 17 edges and 3 AP (stutter sensitive) to 5 states, 17 edges and 3 AP (stutter sensitive).
Stuttering acceptance computed with spot in 305 ms :[(OR (NOT p1) (AND (NOT p0) (NOT p2))), (OR (NOT p1) (AND (NOT p0) (NOT p2))), (OR (AND (NOT p0) (NOT p2)) (AND (NOT p1) (NOT p2))), (NOT p1), (AND (NOT p1) (NOT p2))]
Stuttering acceptance computed with spot in 291 ms :[(OR (NOT p1) (AND (NOT p0) (NOT p2))), (OR (NOT p1) (AND (NOT p0) (NOT p2))), (OR (AND (NOT p0) (NOT p2)) (AND (NOT p1) (NOT p2))), (NOT p1), (AND (NOT p1) (NOT p2))]
[2024-05-22 15:20:36] [INFO ] Invariant cache hit.
[2024-05-22 15:20:40] [INFO ] [Real]Absence check using 60 positive place invariants in 3 ms returned unsat
Proved EG (NOT p1)
Knowledge obtained : [(AND p0 (NOT p1) p2), (X p2), (X (NOT (AND (NOT p0) p1 p2)))]
False Knowledge obtained : [(X (AND p0 (NOT p1))), (X (NOT (AND p0 (NOT p1)))), (X (OR (AND (NOT p0) (NOT p1)) (AND (NOT p0) (NOT p2)))), (X (NOT (OR (AND (NOT p0) (NOT p1)) (AND (NOT p0) (NOT p2))))), (X (OR (AND p0 (NOT p1)) (AND p0 (NOT p2)))), (X (NOT (OR (AND p0 (NOT p1)) (AND p0 (NOT p2))))), (X (AND (NOT p0) (NOT p1))), (X (NOT (AND (NOT p0) (NOT p1)))), (X (AND p0 p1 p2)), (X (NOT (AND p0 p1 p2))), (X p0), (X (NOT p0)), (X p1), (X (NOT p1)), (F (NOT (OR (NOT p0) p2 p1))), (F (NOT (OR (AND p0 (NOT p2)) (AND p0 (NOT p1))))), (F (NOT (AND p0 p2 (NOT p1)))), (F (NOT (AND (OR p0 p2) (OR p0 p1)))), (F (NOT (OR (NOT p0) (NOT p2) (NOT p1)))), (F (NOT p0)), (F (NOT (OR (NOT p0) p2))), (F (NOT (OR p0 (NOT p2)))), (F (NOT (OR p0 p2 p1))), (F (NOT (OR p0 p1))), (F (NOT (OR p0 (NOT p2) p1))), (F (NOT p2)), (F (NOT (AND p0 (NOT p1)))), (F p1), (F (NOT (OR p0 p2))), (F (NOT (OR p0 (NOT p2) (NOT p1)))), (F (NOT (AND p0 p2))), (G (NOT p1))]
Property proved to be false thanks to negative knowledge :(G (NOT p1))
Knowledge based reduction with 3 factoid took 1216 ms. Reduced automaton from 5 states, 17 edges and 3 AP (stutter sensitive) to 1 states, 1 edges and 0 AP (stutter insensitive).
FORMULA BART-PT-060-LTLFireability-10 FALSE TECHNIQUES KNOWLEDGE
Treatment of property BART-PT-060-LTLFireability-10 finished in 97810 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202405141337/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(X(X(F(p0))))'
Support contains 1 out of 7920 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 7920/7920 places, 12120/12120 transitions.
Discarding 1920 places :
Symmetric choice reduction at 0 with 1920 rule applications. Total rules 1920 place count 6000 transition count 10200
Iterating global reduction 0 with 1920 rules applied. Total rules applied 3840 place count 6000 transition count 10200
Discarding 1620 places :
Symmetric choice reduction at 0 with 1620 rule applications. Total rules 5460 place count 4380 transition count 8580
Iterating global reduction 0 with 1620 rules applied. Total rules applied 7080 place count 4380 transition count 8580
Discarding 240 places :
Symmetric choice reduction at 0 with 240 rule applications. Total rules 7320 place count 4140 transition count 8340
Iterating global reduction 0 with 240 rules applied. Total rules applied 7560 place count 4140 transition count 8340
Discarding 180 places :
Symmetric choice reduction at 0 with 180 rule applications. Total rules 7740 place count 3960 transition count 8160
Iterating global reduction 0 with 180 rules applied. Total rules applied 7920 place count 3960 transition count 8160
Discarding 180 places :
Symmetric choice reduction at 0 with 180 rule applications. Total rules 8100 place count 3780 transition count 7980
Iterating global reduction 0 with 180 rules applied. Total rules applied 8280 place count 3780 transition count 7980
Discarding 180 places :
Symmetric choice reduction at 0 with 180 rule applications. Total rules 8460 place count 3600 transition count 7800
Iterating global reduction 0 with 180 rules applied. Total rules applied 8640 place count 3600 transition count 7800
Discarding 180 places :
Symmetric choice reduction at 0 with 180 rule applications. Total rules 8820 place count 3420 transition count 7620
Iterating global reduction 0 with 180 rules applied. Total rules applied 9000 place count 3420 transition count 7620
Discarding 180 places :
Symmetric choice reduction at 0 with 180 rule applications. Total rules 9180 place count 3240 transition count 7440
Iterating global reduction 0 with 180 rules applied. Total rules applied 9360 place count 3240 transition count 7440
Discarding 120 places :
Symmetric choice reduction at 0 with 120 rule applications. Total rules 9480 place count 3120 transition count 7320
Iterating global reduction 0 with 120 rules applied. Total rules applied 9600 place count 3120 transition count 7320
Discarding 119 places :
Symmetric choice reduction at 0 with 119 rule applications. Total rules 9719 place count 3001 transition count 7201
Iterating global reduction 0 with 119 rules applied. Total rules applied 9838 place count 3001 transition count 7201
Discarding 60 places :
Symmetric choice reduction at 0 with 60 rule applications. Total rules 9898 place count 2941 transition count 7141
Iterating global reduction 0 with 60 rules applied. Total rules applied 9958 place count 2941 transition count 7141
Applied a total of 9958 rules in 6788 ms. Remains 2941 /7920 variables (removed 4979) and now considering 7141/12120 (removed 4979) transitions.
// Phase 1: matrix 7141 rows 2941 cols
[2024-05-22 15:20:48] [INFO ] Computed 60 invariants in 21 ms
[2024-05-22 15:20:49] [INFO ] Implicit Places using invariants in 669 ms returned []
[2024-05-22 15:20:49] [INFO ] Invariant cache hit.
[2024-05-22 15:20:53] [INFO ] Implicit Places using invariants and state equation in 3537 ms returned []
Implicit Place search using SMT with State Equation took 4210 ms to find 0 implicit places.
Running 4981 sub problems to find dead transitions.
[2024-05-22 15:20:53] [INFO ] Invariant cache hit.
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 2881/10082 variables, and 0 constraints, problems are : Problem set: 0 solved, 4981 unsolved in 30132 ms.
Refiners :[Positive P Invariants (semi-flows): 0/60 constraints, State Equation: 0/2941 constraints, PredecessorRefiner: 4981/4981 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 4981 unsolved
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 2881/10082 variables, and 0 constraints, problems are : Problem set: 0 solved, 4981 unsolved in 30131 ms.
Refiners :[Positive P Invariants (semi-flows): 0/60 constraints, State Equation: 0/2941 constraints, PredecessorRefiner: 0/4981 constraints, Known Traps: 0/0 constraints]
After SMT, in 63523ms problems are : Problem set: 0 solved, 4981 unsolved
Search for dead transitions found 0 dead transitions in 63581ms
Starting structural reductions in LTL mode, iteration 1 : 2941/7920 places, 7141/12120 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 74587 ms. Remains : 2941/7920 places, 7141/12120 transitions.
Stuttering acceptance computed with spot in 161 ms :[(NOT p0), (NOT p0), (NOT p0)]
Running random walk in product with property : BART-PT-060-LTLFireability-11
Product exploration explored 100000 steps with 2 reset in 1375 ms.
Product exploration explored 100000 steps with 1 reset in 1032 ms.
Computed a total of 0 stabilizing places and 0 stable transitions
Computed a total of 0 stabilizing places and 0 stable transitions
Knowledge obtained : [(NOT p0)]
False Knowledge obtained : []
Knowledge based reduction with 1 factoid took 74 ms. Reduced automaton from 3 states, 3 edges and 1 AP (stutter sensitive) to 3 states, 3 edges and 1 AP (stutter sensitive).
Stuttering acceptance computed with spot in 113 ms :[(NOT p0), (NOT p0), (NOT p0)]
RANDOM walk for 38154 steps (8 resets) in 532 ms. (71 steps per ms) remains 0/1 properties
Knowledge obtained : [(NOT p0)]
False Knowledge obtained : [(F p0)]
Knowledge based reduction with 1 factoid took 88 ms. Reduced automaton from 3 states, 3 edges and 1 AP (stutter sensitive) to 3 states, 3 edges and 1 AP (stutter sensitive).
Stuttering acceptance computed with spot in 108 ms :[(NOT p0), (NOT p0), (NOT p0)]
Stuttering acceptance computed with spot in 137 ms :[(NOT p0), (NOT p0), (NOT p0)]
[2024-05-22 15:22:00] [INFO ] Invariant cache hit.
[2024-05-22 15:22:04] [INFO ] [Real]Absence check using 60 positive place invariants in 4 ms returned unsat
Proved EG (NOT p0)
Knowledge obtained : [(NOT p0)]
False Knowledge obtained : [(F p0), (G (NOT p0))]
Property proved to be false thanks to negative knowledge :(G (NOT p0))
Knowledge based reduction with 1 factoid took 108 ms. Reduced automaton from 3 states, 3 edges and 1 AP (stutter sensitive) to 1 states, 1 edges and 0 AP (stutter insensitive).
FORMULA BART-PT-060-LTLFireability-11 FALSE TECHNIQUES KNOWLEDGE
Treatment of property BART-PT-060-LTLFireability-11 finished in 82713 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202405141337/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(X(F((!p0 U (p1||G(!p0))))))'
Support contains 3 out of 7920 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 7920/7920 places, 12120/12120 transitions.
Discarding 1919 places :
Symmetric choice reduction at 0 with 1919 rule applications. Total rules 1919 place count 6001 transition count 10201
Iterating global reduction 0 with 1919 rules applied. Total rules applied 3838 place count 6001 transition count 10201
Discarding 1619 places :
Symmetric choice reduction at 0 with 1619 rule applications. Total rules 5457 place count 4382 transition count 8582
Iterating global reduction 0 with 1619 rules applied. Total rules applied 7076 place count 4382 transition count 8582
Discarding 239 places :
Symmetric choice reduction at 0 with 239 rule applications. Total rules 7315 place count 4143 transition count 8343
Iterating global reduction 0 with 239 rules applied. Total rules applied 7554 place count 4143 transition count 8343
Discarding 180 places :
Symmetric choice reduction at 0 with 180 rule applications. Total rules 7734 place count 3963 transition count 8163
Iterating global reduction 0 with 180 rules applied. Total rules applied 7914 place count 3963 transition count 8163
Discarding 180 places :
Symmetric choice reduction at 0 with 180 rule applications. Total rules 8094 place count 3783 transition count 7983
Iterating global reduction 0 with 180 rules applied. Total rules applied 8274 place count 3783 transition count 7983
Discarding 180 places :
Symmetric choice reduction at 0 with 180 rule applications. Total rules 8454 place count 3603 transition count 7803
Iterating global reduction 0 with 180 rules applied. Total rules applied 8634 place count 3603 transition count 7803
Discarding 179 places :
Symmetric choice reduction at 0 with 179 rule applications. Total rules 8813 place count 3424 transition count 7624
Iterating global reduction 0 with 179 rules applied. Total rules applied 8992 place count 3424 transition count 7624
Discarding 179 places :
Symmetric choice reduction at 0 with 179 rule applications. Total rules 9171 place count 3245 transition count 7445
Iterating global reduction 0 with 179 rules applied. Total rules applied 9350 place count 3245 transition count 7445
Discarding 119 places :
Symmetric choice reduction at 0 with 119 rule applications. Total rules 9469 place count 3126 transition count 7326
Iterating global reduction 0 with 119 rules applied. Total rules applied 9588 place count 3126 transition count 7326
Discarding 119 places :
Symmetric choice reduction at 0 with 119 rule applications. Total rules 9707 place count 3007 transition count 7207
Iterating global reduction 0 with 119 rules applied. Total rules applied 9826 place count 3007 transition count 7207
Discarding 59 places :
Symmetric choice reduction at 0 with 59 rule applications. Total rules 9885 place count 2948 transition count 7148
Iterating global reduction 0 with 59 rules applied. Total rules applied 9944 place count 2948 transition count 7148
Applied a total of 9944 rules in 6112 ms. Remains 2948 /7920 variables (removed 4972) and now considering 7148/12120 (removed 4972) transitions.
// Phase 1: matrix 7148 rows 2948 cols
[2024-05-22 15:22:10] [INFO ] Computed 60 invariants in 20 ms
[2024-05-22 15:22:11] [INFO ] Implicit Places using invariants in 530 ms returned []
[2024-05-22 15:22:11] [INFO ] Invariant cache hit.
[2024-05-22 15:22:14] [INFO ] Implicit Places using invariants and state equation in 3049 ms returned []
Implicit Place search using SMT with State Equation took 3587 ms to find 0 implicit places.
Running 4988 sub problems to find dead transitions.
[2024-05-22 15:22:14] [INFO ] Invariant cache hit.
Error getting values : (error "ParserException while parsing response: ((s60 1.0)
(s61 1.0)
(s62 1.0)
(s63 1.0)
(s64 1.0)
(s65 1.0)
(s66 1.0)
(s67 1.0)
(s68 1.0)
(s69 1.0)
(s70 1.0)
(s71 1.0)
(s72 1.0)
(s73 1.0)
(s74 1.0)
(s75 1.0)
(s76 1.0)
(s77 1.0)
(s78 1.0)
(s79 1.0)
(s80 1.0)
(s81 1.0)
(s82 1.0)
(s83 1.0)
(s84 1.0)
(s85 1.0)
(s86 1.0)
(s87 1.0)
(s88 1.0)
(s89 1.0)
(s90 1.0)
(s91 1.0)
(s92 1.0)
(s93 1.0)
(s94 1.0)
(s95 1.0)
(s96 1.0)
(s97 1.0)
(s98 1.0)
(s99 1.0)
(s100 1.0)
(s101 1.0)
(s102 1.0)
(s103 1.0)
(s104 1.0)
(s105 1.0)
(s106 1.0)
(s107 1.0)
(s108 1.0)
(s109 1.0)
(s110 1.0)
(s111 1.0)
(s112 1.0)
(s113 1.0)
(s114 1.0)
(s115 1.0)
(s116 1.0)
(s117 1.0)
(s118 1.0)
(s119 1.0)
(s120 1.0)
(s121 1.0)
(s122 1.0)
(s123 1.0)
(s124 1.0)
(s125 1.0)
(s126 1.0)
(s127 1.0)
(s128 1.0)
(s129 1.0)
(s130 1.0)
(s131 1.0)
(s132 1.0)
(s133 1.0)
(s134 1.0)
(s135 1.0)
(s136 1.0)
(s137 1.0)
(s138 1.0)
(s139 1.0)
(s140 1.0)
(s141 1.0)
(s142 1.0)
(s143 1.0)
(s144 1.0)
(s145 1.0)
(s146 1.0)
(s147 1.0)
(s148 1.0)
(s149 1.0)
(s150 1.0)
(s151 1.0)
(s152 1.0)
(s153 1.0)
(s154 1.0)
(s155 1.0)
(s156 1.0)
(s157 1.0)
(s158 1.0)
(s159 1.0)
(s160 1.0)
(s161 1.0)
(s162 1.0)
(s163 1.0)
(s164 1.0)
(s165 1.0)
(s166 1.0)
(s167 1.0)
(s168 1.0)
(s169 1.0)
(s170 1.0)
(s171 1.0)
(s172 1.0)
(s173 1.0)
(s174 1.0)
(s175 1.0)
(s176 1.0)
(s177 1.0)
(s178 1.0)
(s179 1.0)
(s180 1.0)
(s181 1.0)
(s182 1.0)
(s183 1.0)
(s184 1.0)
(s185 1.0)
(s186 1.0)
(s187 1.0)
(s188 1.0)
(s189 1.0)
(s190 1.0)
(s191 1.0)
(s192 1.0)
(s193 1.0)
(s194 1.0)
(s195 1.0)
(s196 1.0)
(s197 1.0)
(s198 1.0)
(s199 1.0)
(s200 1.0)
(s201 1.0)
(s202 1.0)
(s203 1.0)
(s204 1.0)
(s205 1.0)
(s206 1.0)
(s207 1.0)
(s208 1.0)
(s209 1.0)
(s210 1.0)
(s211 1.0)
(s212 1.0)
(s213 1.0)
(s214 1.0)
(s215 1.0)
(s216 1.0)
(s217 1.0)
(s218 1.0)
(s219 1.0)
(s220 1.0)
(s221 1.0)
(s222 1.0)
(s223 1.0)
(s224 1.0)
(s225 1.0)
(s226 1.0)
(s227 1.0)
(s228 1.0)
(s229 1.0)
(s230 1.0)
(s231 1.0)
(s232 1.0)
(s233 1.0)
(s234 1.0)
(s235 1.0)
(s236 1.0)
(s237 1.0)
(s238 1.0)
(s239 1.0)
(s240 1.0)
(s241 1.0)
(s242 1.0)
(s243 1.0)
(s244 1.0)
(s245 1.0)
(s246 1.0)
(s247 1.0)
(s248 1.0)
(s249 1.0)
(s250 1.0)
(s251 1.0)
(s252 1.0)
(s253 1.0)
(s254 1.0)
(s255 1.0)
(s256 1.0)
(s257 1.0)
(s258 1.0)
(s259 1.0)
(s260 1.0)
(s261 1.0)
(s262 1.0)
(s263 1.0)
(s264 1.0)
(s265 1.0)
(s266 1.0)
(s267 1.0)
(s268 1.0)
(s269 1.0)
(s270 1.0)
(s271 1.0)
(s272 1.0)
(s273 1.0)
(s274 1.0)
(s275 1.0)
(s276 1.0)
(s277 1.0)
(s278 1.0)
(s279 1.0)
(s280 1.0)
(s281 1.0)
(s282 1.0)
(s283 1.0)
(s284 1.0)
(s285 1.0)
(s286 1.0)
(s287 1.0)
(s288 1.0)
(s289 1.0)
(s290 1.0)
(s291 1.0)
(s292 1.0)
(s293 1.0)
(s294 1.0)
(s295 1.0)
(s296 1.0)
(s297 1.0)
(s298 1.0)
(s299 1.0)
(s300 1.0)
(s301 1.0)
(s302 1.0)
(s303 1.0)
(s304 1.0)
(s305 1.0)
(s306 1.0)
(s307 1.0)
(s308 1.0)
(s309 1.0)
(s310 1.0)
(s311 1.0)
(s312 1.0)
(s313 1.0)
(s314 1.0)
(s315 1.0)
(s316 1.0)
(s317 1.0)
(s318 1.0)
(s319 1.0)
(s320 1.0)
(s321 1.0)
(s322 1.0)
(s323 1.0)
(s324 1.0)
(s325 1.0)
(s326 1.0)
(s327 1.0)
(s328 1.0)
(s329 1.0)
(s330 1.0)
(s331 1.0)
(s332 1.0)
(s333 1.0)
(s334 1.0)
(s335 1.0)
(s336 1.0)
(s337 1.0)
(s338 1.0)
(s339 1.0)
(s340 1.0)
(s341 1.0)
(s342 1.0)
(s343 1.0)
(s344 1.0)
(s345 1.0)
(s346 1.0)
(s347 1.0)
(s348 1.0)
(s349 1.0)
(s350 1.0)
(s351 1.0)
(s352 1.0)
(s353 1.0)
(s354 1.0)
(s355 1.0)
(s356 1.0)
(s357 1.0)
(s358 1.0)
(s359 1.0)
(s360 1.0)
(s361 1.0)
(s362 1.0)
(s363 1.0)
(s364 1.0)
(s365 1.0)
(s366 1.0)
(s367 1.0)
(s368 1.0)
(s369 1.0)
(s370 1.0)
(s371 1.0)
(s372 1.0)
(s373 1.0)
(s374 1.0)
(s375 1.0)
(s376 1.0)
(s377 1.0)
(s378 1.0)
(s379 1.0)
(s380 1.0)
(s381 1.0)
(s382 1.0)
(s383 1.0)
(s384 1.0)
(s385 1.0)
(s386 1.0)
(s387 1.0)
(s388 1.0)
(s389 1.0)
(s390 1.0)
(s391 1.0)
(s392 1.0)
(s393 1.0)
(s394 1.0)
(s395 1.0)
(s396 1.0)
(s397 1.0)
(s398 1.0)
(s399 1.0)
(s400 1.0)
(s401 1.0)
(s402 1.0)
(s403 1.0)
(s404 1.0)
(s405 1.0)
(s406 1.0)
(s407 1.0)
(s408 1.0)
(s409 1.0)
(s410 1.0)
(s411 1.0)
(s412 1.0)
(s413 1.0)
(s414 1.0)
(s415 1.0)
(s416 1.0)
(s417 1.0)
(s418 1.0)
(s419 1.0)
(s420 1.0)
(s421 1.0)
(s422 1.0)
(s423 1.0)
(s424 1.0)
(s425 1.0)
(s426 1.0)
(s427 1.0)
(s428 1.0)
(s429 1.0)
(s430 1.0)
(s431 1.0)
(s432 1.0)
(s433 1.0)
(s434 1.0)
(s435 1.0)
(s436 1.0)
(s437 1.0)
(s438 1.0)
(s439 1.0)
(s440 1.0)
(s441 1.0)
(s442 1.0)
(s443 1.0)
(s444 1.0)
(s445 1.0)
(s446 1.0)
(s447 1.0)
(s448 1.0)
(s449 1.0)
(s450 1.0)
(s451 1.0)
(s452 1.0)
(s453 1.0)
(s454 1.0)
(s455 1.0)
(s456 1.0)
(s457 1.0)
(s458 1.0)
(s459 1.0)
(s460 1.0)
(s461 1.0)
(s462 1.0)
(s463 1.0)
(s464 1.0)
(s465 1.0)
(s466 1.0)
(s467 1.0)
(s468 1.0)
(s469 1.0)
(s470 1.0)
(s471 1.0)
(s472 1.0)
(s473 1.0)
(s474 1.0)
(s475 1.0)
(s476 1.0)
(s477 1.0)
(s478 1.0)
(s479 1.0)
(s480 1.0)
(s481 1.0)
(s482 1.0)
(s483 1.0)
(s484 1.0)
(s485 1.0)
(s486 1.0)
(s487 1.0)
(s488 1.0)
(s489 1.0)
(s490 1.0)
(s491 1.0)
(s492 1.0)
(s493 1.0)
(s494 1.0)
(s495 1.0)
(s496 1.0)
(s497 1.0)
(s498 1.0)
(s499 1.0)
(s500 1.0)
(s501 1.0)
(s502 1.0)
(s503 1.0)
(s504 1.0)
(s505 1.0)
(s506 1.0)
(s507 1.0)
(s508 1.0)
(s509 1.0)
(s510 1.0)
(s511 1.0)
(s512 1.0)
(s513 1.0)
(s514 1.0)
(s515 1.0)
(s516 1.0)
(s517 1.0)
(s518 1.0)
(s519 1.0)
(s520 1.0)
(s521 1.0)
(s522 1.0)
(s523 1.0)
(s524 1.0)
(s525 1.0)
(s526 1.0)
(s527 1.0)
(s528 1.0)
(s529 1.0)
(s530 1.0)
(s531 1.0)
(s532 1.0)
(s533 1.0)
(s534 1.0)
(s535 1.0)
(s536 1.0)
(s537 1.0)
(s538 1.0)
(s539 1.0)
(s540 1.0)
(s541 1.0)
(s542 1.0)
(s543 1.0)
(s544 1.0)
(s545 1.0)
(s546 1.0)
(s547 1.0)
(s548 1.0)
(s549 1.0)
(s550 1.0)
(s551 1.0)
(s552 1.0)
(s553 1.0)
(s554 1.0)
(s555 1.0)
(s556 1.0)
(s557 1.0)
(s558 1.0)
(s559 1.0)
(s560 1.0)
(s561 1.0)
(s562 1.0)
(s563 1.0)
(s564 1.0)
(s565 1.0)
(s566 1.0)
(s567 1.0)
(s568 1.0)
(s569 1.0)
(s570 1.0)
(s571 1.0)
(s572 1.0)
(s573 1.0)
(s574 1.0)
(s575 1.0)
(s576 1.0)
(s577 1.0)
(s578 1.0)
(s579 1.0)
(s580 1.0)
(s581 1.0)
(s582 1.0)
(s583 1.0)
(s584 1.0)
(s585 1.0)
(s586 1.0)
(s587 1.0)
(s588 1.0)
(s589 1.0)
(s590 1.0)
(s591 1.0)
(s592 1.0)
(s593 1.0)
(s594 1.0)
(s595 1.0)
(s596 1.0)
(s597 1.0)
(s598 1.0)
(s599 1.0)
(s600 1.0)
(s601 1.0)
(s602 1.0)
(s603 1.0)
(s604 1.0)
(s605 1.0)
(s606 1.0)
(s607 1.0)
(s608 1.0)
(s609 1.0)
(s610 1.0)
(s611 1.0)
(s612 1.0)
(s613 1.0)
(s614 1.0)
(s615 1.0)
(s616 1.0)
(s617 1.0)
(s618 1.0)
(s619 1.0)
(s620 1.0)
(s621 1.0)
(s622 1.0)
(s623 1.0)
(s624 1.0)
(s625 1.0)
(s626 1.0)
(s627 1.0)
(s628 1.0)
(s629 1.0)
(s630 1.0)
(s631 1.0)
(s632 1.0)
(s633 1.0)
(s634 1.0)
(s635 1.0)
(s636 1.0)
(s637 1.0)
(s638 1.0)
(s639 1.0)
(s640 1.0)
(s641 1.0)
(s642 1.0)
(s643 1.0)
(s644 1.0)
(s645 1.0)
(s646 1.0)
(s647 1.0)
(s648 1.0)
(s649 1.0)
(s650 1.0)
(s651 1.0)
(s652 1.0)
(s653 1.0)
(s654 1.0)
(s655 1.0)
(s656 1.0)
(s657 1.0)
(s658 1.0)
(s659 1.0)
(s660 1.0)
(s661 1.0)
(s662 1.0)
(s663 1.0)
(s664 1.0)
(s665 1.0)
(s666 1.0)
(s667 1.0)
(s668 1.0)
(s669 1.0)
(s670 1.0)
(s671 1.0)
(s672 1.0)
(s673 1.0)
(s674 1.0)
(s675 1.0)
(s676 1.0)
(s677 1.0)
(s678 1.0)
(s679 1.0)
(s680 1.0)
(s681 1.0)
(s682 1.0)
(s683 1.0)
(s684 1.0)
(s685 1.0)
(s686 1.0)
(s687 1.0)
(s688 1.0)
(s689 1.0)
(s690 1.0)
(s691 1.0)
(s692 1.0)
(s693 1.0)
(s694 1.0)
(s695 1.0)
(s696 1.0)
(s697 1.0)
(s698 1.0)
(s699 1.0)
(s700 1.0)
(s701 1.0)
(s702 1.0)
(s703 1.0)
(s704 1.0)
(s705 1.0)
(s706 1.0)
(s707 1.0)
(s708 1.0)
(s709 1.0)
(s710 1.0)
(s711 1.0)
(s712 1.0)
(s713 1.0)
(s714 1.0)
(s715 1.0)
(s716 1.0)
(s717 1.0)
(s718 1.0)
(s719 1.0)
(s720 1.0)
(s721 1.0)
(s722 1.0)
(s723 1.0)
(s724 1.0)
(s725 1.0)
(s726 1.0)
(s727 1.0)
(s728 1.0)
(s729 1.0)
(s730 1.0)
(s731 1.0)
(s732 1.0)
(s733 1.0)
(s734 1.0)
(s735 1.0)
(s736 1.0)
(s737 1.0)
(s738 1.0)
(s739 1.0)
(s740 1.0)
(s741 1.0)
(s742 1.0)
(s743 1.0)
(s744 1.0)
(s745 1.0)
(s746 1.0)
(s747 1.0)
(s748 1.0)
(s749 1.0)
(s750 1.0)
(s751 1.0)
(s752 1.0)
(s753 1.0)
(s754 1.0)
(s755 1.0)
(s756 1.0)
(s757 1.0)
(s758 1.0)
(s759 1.0)
(s760 1.0)
(s761 1.0)
(s762 1.0)
(s763 1.0)
(s764 1.0)
(s765 1.0)
(s766 1.0)
(s767 1.0)
(s768 1.0)
(s769 1.0)
(s770 1.0)
(s771 1.0)
(s772 1.0)
(s773 1.0)
(s774 1.0)
(s775 1.0)
(s776 1.0)
(s777 1.0)
(s778 1.0)
(s779 1.0)
(s780 1.0)
(s781 1.0)
(s782 1.0)
(s783 1.0)
(s784 1.0)
(s785 1.0)
(s786 1.0)
(s787 1.0)
(s788 1.0)
(s789 1.0)
(s790 1.0)
(s791 1.0)
(s792 1.0)
(s793 1.0)
(s794 1.0)
(s795 1.0)
(s796 1.0)
(s797 1.0)
(s798 1.0)
(s799 1.0)
(s800 1.0)
(s801 1.0)
(s802 1.0)
(s803 1.0)
(s804 1.0)
(s805 1.0)
(s806 1.0)
(s807 1.0)
(s808 1.0)
(s809 1.0)
(s810 1.0)
(s811 1.0)
(s812 1.0)
(s813 1.0)
(s814 1.0)
(s815 1.0)
(s816 1.0)
(s817 1.0)
(s818 1.0)
(s819 1.0)
(s820 1.0)
(s821 1.0)
(s822 1.0)
(s823 1.0)
(s824 1.0)
(s825 1.0)
(s826 1.0)
(s827 1.0)
(s828 1.0)
(s829 1.0)
(s830 1.0)
(s831 1.0)
(s832 1.0)
(s833 1.0)
(s834 1.0)
(s835 1.0)
(s836 1.0)
(s837 1.0)
(s838 1.0)
(s839 1.0)
(s840 1.0)
(s841 1.0)
(s842 1.0)
(s843 1.0)
(s844 1.0)
(s845 1.0)
(s846 1.0)
(s847 1.0)
(s848 1.0)
(s849 1.0)
(s850 1.0)
(s851 1.0)
(s852 1.0)
(s853 1.0)
(s854 1.0)
(s855 1.0)
(s856 1.0)
(s857 1.0)
(s858 1.0)
(s859 1.0)
(s860 1.0)
(s861 1.0)
(s862 1.0)
(s863 1.0)
(s864 1.0)
(s865 1.0)
(s866 1.0)
(s867 1.0)
(s868 1.0)
(s869 1.0)
(s870 1.0)
(s871 1.0)
(s872 1.0)
(s873 1.0)
(s874 1.0)
(s875 1.0)
(s876 1.0)
(s877 1.0)
(s878 1.0)
(s879 1.0)
(s880 1.0)
(s881 1.0)
(s882 1.0)
(s883 1.0)
(s884 1.0)
(s885 1.0)
(s886 1.0)
(s887 1.0)
(s888 1.0)
(s889 1.0)
(s890 1.0)
(s891 1.0)
(s892 1.0)
(s893 1.0)
(s894 1.0)
(s895 1.0)
(s896 1.0)
(s897 1.0)
(s898 1.0)
(s899 1.0)
(s900 1.0)
(s901 1.0)
(s902 1.0)
(s903 1.0)
(s904 1.0)
(s905 1.0)
(s906 1.0)
(s907 1.0)
(s908 1.0)
(s909 1.0)
(s910 1.0)
(s911 1.0)
(s912 1.0)
(s913 1.0)
(s914 1.0)
(s915 1.0)
(s916 1.0)
(s917 1.0)
(s918 1.0)
(s919 1.0)
(s920 1.0)
(s921 1.0)
(s922 1.0)
(s923 1.0)
(s924 1.0)
(s925 1.0)
(s926 1.0)
(s927 1.0)
(s928 1.0)
(s929 1.0)
(s930 1.0)
(s931 1.0)
(s932 1.0)
(s933 1.0)
(s934 1.0)
(s935 1.0)
(s936 1.0)
(s937 1.0)
(s938 1.0)
(s939 1.0)
(s940 1.0)
(s941 1.0)
(s942 1.0)
(s943 1.0)
(s944 1.0)
(s945 1.0)
(s946 1.0)
(s947 1.0)
(s948 1.0)
(s949 1.0)
(s950 1.0)
(s951 1.0)
(s952 1.0)
(s953 1.0)
(s954 1.0)
(s955 1.0)
(s956 1.0)
(s957 1.0)
(s958 1.0)
(s959 1.0)
(s960 1.0)
(s961 1.0)
(s962 1.0)
(s963 1.0)
(s964 1.0)
(s965 1.0)
(s966 1.0)
(s967 1.0)
(s968 1.0)
(s969 1.0)
(s970 1.0)
(s971 1.0)
(s972 1.0)
(s973 1.0)
(s974 1.0)
(s975 1.0)
(s976 1.0)
(s977 1.0)
(s978 1.0)
(s979 1.0)
(s980 1.0)
(s981 1.0)
(s982 1.0)
(s983 1.0)
(s984 1.0)
(s985 1.0)
(s986 1.0)
(s987 1.0)
(s988 1.0)
(s989 1.0)
(s990 1.0)
(s991 1.0)
(s992 1.0)
(s993 1.0)
(s994 1.0)
(s995 1.0)
(s996 1.0)
(s997 1.0)
(s998 1.0)
(s999 1.0)
(s1000 1.0)
(s1001 1.0)
(s1002 1.0)
(s1003 1.0)
(s1004 1.0)
(s1005 1.0)
(s1006 1.0)
(s1007 1.0)
(s1008 1.0)
(s1009 1.0)
(s1010 1.0)
(s1011 1.0)
(s1012 1.0)
(s1013 1.0)
(s1014 1.0)
(s1015 1.0)
(s1016 1.0)
(s1017 1.0)
(s1018 1.0)
(s1019 1.0)
(s1020 1.0)
(s1021 1.0)
(s1022 1.0)
(s1023 1.0)
(s1024 1.0)
(s1025 1.0)
(s1026 1.0)
(s1027 1.0)
(s1028 1.0)
(s1029 1.0)
(s1030 1.0)
(s1031 1.0)
(s1032 1.0)
(s1033 1.0)
(s1034 1.0)
(s1035 1.0)
(s1036 1.0)
(s1037 1.0)
(s1038 1.0)
(s1039 1.0)
(s1040 1.0)
(s1041 1.0)
(s1042 1.0)
(s1043 1.0)
(s1044 1.0)
(s1045 1.0)
(s1046 1.0)
(s1047 1.0)
(s1048 1.0)
(s1049 1.0)
(s1050 1.0)
(s1051 1.0)
(s1052 1.0)
(s1053 1.0)
(s1054 1.0)
(s1055 1.0)
(s1056 1.0)
(s1057 1.0)
(s1058 1.0)
(s1059 1.0)
(s1060 1.0)
(s1061 1.0)
(s1062 1.0)
(s1063 1.0)
(s1064 1.0)
(s1065 1.0)
(s1066 1.0)
(s1067 1.0)
(s1068 1.0)
(s1069 1.0)
(s1070 1.0)
(s1071 1.0)
(s1072 1.0)
(s1073 1.0)
(s1074 1.0)
(s1075 1.0)
(s1076 1.0)
(s1077 1.0)
(s1078 1.0)
(s1079 1.0)
(s1080 1.0)
(s1081 1.0)
(s1082 1.0)
(s1083 1.0)
(s1084 1.0)
(s1085 1.0)
(s1086 1.0)
(s1087 1.0)
(s1088 1.0)
(s1089 1.0)
(s1090 1.0)
(s1091 1.0)
(s1092 1.0)
(s1093 1.0)
(s1094 1.0)
(s1095 1.0)
(s1096 1.0)
(s1097 1.0)
(s1098 1.0)
(s1099 1.0)
(s1100 1.0)
(s1101 1.0)
(s1102 1.0)
(s1103 1.0)
(s1104 1.0)
(s1105 1.0)
(s1106 1.0)
(s1107 1.0)
(s1108 1.0)
(s1109 1.0)
(s1110 1.0)
(s1111 1.0)
(s1112 1.0)
(s1113 1.0)
(s1114 1.0)
(s1115 1.0)
(s1116 1.0)
(s1117 1.0)
(s1118 1.0)
(s1119 1.0)
(s1120 1.0)
(s1121 1.0)
(s1122 1.0)
(s1123 1.0)
(s1124 1.0)
(s1125 1.0)
(s1126 1.0)
(s1127 1.0)
(s1128 1.0)
(s1129 1.0)
(s1130 1.0)
(s1131 1.0)
(s1132 1.0)
(s1133 1.0)
(s1134 1.0)
(s1135 1.0)
(s1136 1.0)
(s1137 1.0)
(s1138 1.0)
(s1139 1.0)
(s1140 1.0)
(s1141 1.0)
(s1142 1.0)
(s1143 1.0)
(s1144 1.0)
(s1145 1.0)
(s1146 1.0)
(s1147 1.0)
(s1148 1.0)
(s1149 1.0)
(s1150 1.0)
(s1151 1.0)
(s1152 1.0)
(s1153 1.0)
(s1154 1.0)
(s1155 1.0)
(s1156 1.0)
(s1157 1.0)
(s1158 1.0)
(s1159 1.0)
(s1160 1.0)
(s1161 1.0)
(s1162 1.0)
(s1163 1.0)
(s1164 1.0)
(s1165 1.0)
(s1166 1.0)
(s1167 1.0)
(s1168 1.0)
(s1169 1.0)
(s1170 1.0)
(s1171 1.0)
(s1172 1.0)
(s1173 1.0)
(s1174 1.0)
(s1175 1.0)
(s1176 1.0)
(s1177 1.0)
(s1178 1.0)
(s1179 1.0)
(s1180 1.0)
(s1181 1.0)
(s1182 1.0)
(s1183 1.0)
(s1184 1.0)
(s1185 1.0)
(s1186 1.0)
(s1187 1.0)
(s1188 1.0)
(s1189 1.0)
(s1190 1.0)
(s1191 1.0)
(s1192 1.0)
(s1193 1.0)
(s1194 1.0)
(s1195 1.0)
(s1196 1.0)
(s1197 1.0)
(s1198 1.0)
(s1199 1.0)
(s1200 1.0)
(s1201 1.0)
(s1202 1.0)
(s1203 1.0)
(s1204 1.0)
(s1205 1.0)
(s1206 1.0)
(s1207 1.0)
(s1208 1.0)
(s1209 1.0)
(s1210 1.0)
(s1211 1.0)
(s1212 1.0)
(s1213 1.0)
(s1214 1.0)
(s1215 1.0)
(s1216 1.0)
(s1217 1.0)
(s1218 1.0)
(s1219 1.0)
(s1220 1.0)
(s1221 1.0)
(s1222 1.0)
(s1223 1.0)
(s1224 1.0)
(s1225 1.0)
(s1226 1.0)
(s1227 1.0)
(s1228 1.0)
(s1229 1.0)
(s1230 1.0)
(s1231 1.0)
(s1232 1.0)
(s1233 1.0)
(s1234 1.0)
(s1235 1.0)
(s1236 1.0)
(s1237 1.0)
(s1238 1.0)
(s1239 1.0)
(s1240 1.0)
(s1241 1.0)
(s1242 1.0)
(s1243 1.0)
(s1244 1.0)
(s1245 1.0)
(s1246 1.0)
(s1247 1.0)
(s1248 1.0)
(s1249 1.0)
(s1250 1.0)
(s1251 1.0)
(s1252 1.0)
(s1253 1.0)
(s1254 1.0)
(s1255 1.0)
(s1256 1.0)
(s1257 1.0)
(s1258 1.0)
(s1259 1.0)
(s1260 1.0)
(s1261 1.0)
(s1262 1.0)
(s1263 1.0)
(s1264 1.0)
(s1265 1.0)
(s1266 1.0)
(s1267 1.0)
(s1268 1.0)
(s1269 1.0)
(s1270 1.0)
(s1271 1.0)
(s1272 1.0)
(s1273 1.0)
(s1274 1.0)
(s1275 1.0)
(s1276 1.0)
(s1277 1.0)
(s1278 1.0)
(s1279 1.0)
(s1280 1.0)
(s1281 1.0)
(s1282 1.0)
(s1283 1.0)
(s1284 1.0)
(s1285 1.0)
(s1286 1.0)
(s1287 1.0)
(s1288 1.0)
(s1289 1.0)
(s1290 1.0)
(s1291 1.0)
(s1292 1.0)
(s1293 1.0)
(s1294 1.0)
(s1295 1.0)
(s1296 1.0)
(s1297 1.0)
(s1298 1.0)
(s1299 1.0)
(s1300 1.0)
(s1301 1.0)
(s1302 1.0)
(s1303 1.0)
(s1304 1.0)
(s1305 1.0)
(s1306 1.0)
(s1307 1.0)
(s1308 1.0)
(s1309 1.0)
(s1310 1.0)
(s1311 1.0)
(s1312 1.0)
(s1313 1.0)
(s1314 1.0)
(s1315 1.0)
(s1316 1.0)
(s1317 1.0)
(s1318 1.0)
(s1319 1.0)
(s1320 1.0)
(s1321 1.0)
(s1322 1.0)
(s1323 1.0)
(s1324 1.0)
(s1325 1.0)
(s1326 1.0)
(s1327 1.0)
(s1328 1.0)
(s1329 1.0)
(s1330 1.0)
(s1331 1.0)
(s1332 1.0)
(s1333 1.0)
(s1334 1.0)
(s1335 1.0)
(s1336 1.0)
(s1337 1.0)
(s1338 1.0)
(s1339 1.0)
(s1340 1.0)
(s1341 1.0)
(s1342 1.0)
(s1343 1.0)
(s1344 1.0)
(s1345 1.0)
(s1346 1.0)
(s1347 1.0)
(s1348 1.0)
(s1349 1.0)
(s1350 1.0)
(s1351 1.0)
(s1352 1.0)
(s1353 1.0)
(s1354 1.0)
(s1355 1.0)
(s1356 1.0)
(s1357 1.0)
(s1358 1.0)
(s1359 1.0)
(s1360 1.0)
(s1361 1.0)
(s1362 1.0)
(s1363 1.0)
(s1364 1.0)
(s1365 1.0)
(s1366 1.0)
(s1367 1.0)
(s1368 1.0)
(s1369 1.0)
(s1370 1.0)
(s1371 1.0)
(s1372 1.0)
(s1373 1.0)
(s1374 1.0)
(s1375 1.0)
(s1376 1.0)
(s1377 1.0)
(s1378 1.0)
(s1379 1.0)
(s1380 1.0)
(s1381 1.0)
(s1382 1.0)
(s1383 1.0)
(s1384 1.0)
(s1385 1.0)
(s1386 1.0)
(s1387 1.0)
(s1388 1.0)
(s1389 1.0)
(s1390 1.0)
(s1391 1.0)
(s1392 1.0)
(s1393 1.0)
(s1394 1.0)
(s1395 1.0)
(s1396 1.0)
(s1397 1.0)
(s1398 1.0)
(s1399 1.0)
(s1400 1.0)
(s1401 1.0)
(s1402 1.0)
(s1403 1.0)
(s1404 1.0)
(s1405 1.0)
(s1406 1.0)
(s1407 1.0)
(s1408 1.0)
(s1409 1.0)
(s1410 1.0)
(s1411 1.0)
(s1412 1.0)
(s1413 1.0)
(s1414 1.0)
(s1415 1.0)
(s1416 1.0)
(s1417 1.0)
(s1418 1.0)
(s1419 1.0)
(s1420 1.0)
(s1421 1.0)
(s1422 1.0)
(s1423 1.0)
(s1424 1.0)
(s1425 1.0)
(s1426 1.0)
(s1427 1.0)
(s1428 1.0)
(s1429 1.0)
(s1430 1.0)
(s1431 1.0)
(s1432 1.0)
(s1433 1.0)
(s1434 1.0)
(s1435 1.0)
(s1436 1.0)
(s1437 1.0)
(s1438 1.0)
(s1439 1.0)
(s1440 1.0)
(s1441 1.0)
(s1442 1.0)
(s1443 1.0)
(s1444 1.0)
(s1445 1.0)
(s1446 1.0)
(s1447 1.0)
(s1448 1.0)
(s1449 1.0)
(s1450 1.0)
(s1451 1.0)
(s1452 1.0)
(s1453 1.0)
(s1454 1.0)
(s1455 1.0)
(s1456 1.0)
(s1457 1.0)
(s1458 1.0)
(s1459 1.0)
(s1460 1.0)
(s1461 1.0)
(s1462 1.0)
(s1463 1.0)
(s1464 1.0)
(s1465 1.0)
(s1466 1.0)
(s1467 1.0)
(s1468 1.0)
(s1469 1.0)
(s1470 1.0)
(s1471 1.0)
(s1472 1.0)
(s1473 1.0)
(s1474 1.0)
(s1475 1.0)
(s1476 1.0)
(s1477 1.0)
(s1478 1.0)
(s1479 1.0)
(s1480 1.0)
(s1481 1.0)
(s1482 1.0)
(s1483 1.0)
(s1484 1.0)
(s1485 1.0)
(s1486 1.0)
(s1487 1.0)
(s1488 1.0)
(s1489 1.0)
(s1490 1.0)
(s1491 1.0)
(s1492 1.0)
(s1493 1.0)
(s1494 1.0)
(s1495 1.0)
(s1496 1.0)
(s1497 1.0)
(s1498 1.0)
(s1499 1.0)
(s1500 1.0)
(s1501 1.0)
(s1502 1.0)
(s1503 1.0)
(s1504 1.0)
(s1505 1.0)
(s1506 1.0)
(s1507 1.0)
(s1508 1.0)
(s1509 1.0)
(s1510 1.0)
(s1511 1.0)
(s1512 1.0)
(s1513 1.0)
(s1514 1.0)
(s1515 1.0)
(s1516 1.0)
(s1517 1.0)
(s1518 1.0)
(s1519 1.0)
(s1520 1.0)
(s1521 1.0)
(s1522 1.0)
(s1523 1.0)
(s1524 1.0)
(s1525 1.0)
(s1526 1.0)
(s1527 1.0)
(s1528 1.0)
(s1529 1.0)
(s1530 1.0)
(s1531 1.0)
(s1532 1.0)
(s1533 1.0)
(s1534 1.0)
(s1535 1.0)
(s1536 1.0)
(s1537 1.0)
(s1538 1.0)
(s1539 1.0)
(s1540 1.0)
(s1541 1.0)
(s1542 1.0)
(s1543 1.0)
(s1544 1.0)
(s1545 1.0)
(s1546 1.0)
(s1547 1.0)
(s1548 1.0)
(s1549 1.0)
(s1550 1.0)
(s1551 1.0)
(s1552 1.0)
(s1553 1.0)
(s1554 1.0)
(s1555 1.0)
(s1556 1.0)
(s1557 1.0)
(s1558 1.0)
(s1559 1.0)
(s1560 1.0)
(s1561 1.0)
(s1562 1.0)
(s1563 1.0)
(s1564 1.0)
(s1565 1.0)
(s1566 1.0)
(s1567 1.0)
(s1568 1.0)
(s1569 1.0)
(s1570 1.0)
(s1571 1.0)
(s1572 1.0)
(s1573 1.0)
(s1574 1.0)
(s1575 1.0)
(s1576 1.0)
(s1577 1.0)
(s1578 1.0)
(s1579 1.0)
(s1580 1.0)
(s1581 1.0)
(s1582 1.0)
(s1583 1.0)
(s1584 1.0)
(s1585 1.0)
(s1586 1.0)
(s1587 1.0)
(s1588 1.0)
(s1589 1.0)
(s1590 1.0)
(s1591 1.0)
(s1592 1.0)
(s1593 1.0)
(s1594 1.0)
(s1595 1.0)
(s1596 1.0)
(s1597 1.0)
(s1598 1.0)
(s1599 1.0)
(s1600 1.0)
(s1601 1.0)
(s1602 1.0)
(s1603 1.0)
(s1604 1.0)
(s1605 1.0)
(s1606 1.0)
(s1607 1.0)
(s1608 1.0)
(s1609 1.0)
(s1610 1.0)
(s1611 1.0)
(s1612 1.0)
(s1613 1.0)
(s1614 1.0)
(s1615 1.0)
(s1616 1.0)
(s1617 1.0)
(s1618 1.0)
(s1619 1.0)
(s1620 1.0)
(s1621 1.0)
(s1622 1.0)
(s1623 1.0)
(s1624 1.0)
(s1625 1.0)
(s1626 1.0)
(s1627 1.0)
(s1628 1.0)
(s1629 1.0)
(s1630 1.0)
(s1631 1.0)
(s1632 1.0)
(s1633 1.0)
(s1634 1.0)
(s1635 1.0)
(s1636 1.0)
(s1637 1.0)
(s1638 1.0)
(s1639 1.0)
(s1640 1.0)
(s1641 1.0)
(s1642 1.0)
(s1643 1.0)
(s1644 1.0)
(s1645 1.0)
(s1646 1.0)
(s1647 1.0)
(s1648 1.0)
(s1649 1.0)
(s1650 1.0)
(s1651 1.0)
(s1652 1.0)
(s1653 1.0)
(s1654 1.0)
(s1655 1.0)
(s1656 1.0)
(s1657 1.0)
(s1658 1.0)
(s1659 1.0)
(s1660 1.0)
(s1661 1.0)
(s1662 1.0)
(s1663 1.0)
(s1664 1.0)
(s1665 1.0)
(s1666 1.0)
(s1667 1.0)
(s1668 1.0)
(s1669 1.0)
(s1670 1.0)
(s1671 1.0)
(s1672 1.0)
(s1673 1.0)
(s1674 1.0)
(s1675 1.0)
(s1676 1.0)
(s1677 1.0)
(s1678 1.0)
(s1679 1.0)
(s1680 1.0)
(s1681 1.0)
(s1682 1.0)
(s1683 1.0)
(s1684 1.0)
(s1685 1.0)
(s1686 1.0)
(s1687 1.0)
(s1688 1.0)
(s1689 1.0)
(s1690 1.0)
(s1691 1.0)
(s1692 1.0)
(s1693 1.0)
(s1694 1.0)
(s1695 1.0)
(s1696 1.0)
(s1697 1.0)
(s1698 1.0)
(s1699 1.0)
(s1700 1.0)
(s1701 1.0)
(s1702 1.0)
(s1703 1.0)
(s1704 1.0)
(s1705 1.0)
(s1706 1.0)
(s1707 1.0)
(s1708 1.0)
(s1709 1.0)
(s1710 1.0)
(s1711 1.0)
(s1712 1.0)
(s1713 1.0)
(s1714 1.0)
(s1715 1.0)
(s1716 1.0)
(s1717 1.0)
(s1718 1.0)
(s1719 1.0)
(s1720 1.0)
(s1721 1.0)
(s1722 1.0)
(s1723 1.0)
(s1724 1.0)
(s1725 1.0)
(s1726 1.0)
(s1727 1.0)
(s1728 1.0)
(s1729 1.0)
(s1730 1.0)
(s1731 1.0)
(s1732 1.0)
(s1733 1.0)
(s1734 1.0)
(s1735 1.0)
(s1736 1.0)
(s1737 1.0)
(s1738 1.0)
(s1739 1.0)
(s1740 1.0)
(s1741 1.0)
(s1742 1.0)
(s1743 1.0)
(s1744 1.0)
(s1745 1.0)
(s1746 1.0)
(s1747 1.0)
(s1748 1.0)
(s1749 1.0)
(s1750 1.0)
(s1751 1.0)
(s1752 1.0)
(s1753 1.0)
(s1754 1.0)
(s1755 1.0)
(s1756 1.0)
(s1757 1.0)
(s1758 1.0)
(s1759 1.0)
(s1760 1.0)
(s1761 1.0)
(s1762 1.0)
(s1763 1.0)
(s1764 1.0)
(s1765 1.0)
(s1766 1.0)
(s1767 1.0)
(s1768 1.0)
(s1769 1.0)
(s1770 1.0)
(s1771 1.0)
(s1772 1.0)
(s1773 1.0)
(s1774 1.0)
(s1775 1.0)
(s1776 1.0)
(s1777 1.0)
(s1778 1.0)
(s1779 1.0)
(s1780 1.0)
(s1781 1.0)
(s1782 1.0)
(s1783 1.0)
(s1784 1.0)
(s1785 1.0)
(s1786 1.0)
(s1787 1.0)
(s1788 1.0)
(s1789 1.0)
(s1790 1.0)
(s1791 1.0)
(s1792 1.0)
(s1793 1.0)
(s1794 1.0)
(s1795 1.0)
(s1796 1.0)
(s1797 1.0)
(s1798 1.0)
(s1799 1.0)
(s1800 1.0)
(s1801 1.0)
(s1802 1.0)
(s1803 1.0)
(s1804 1.0)
(s1805 1.0)
(s1806 1.0)
(s1807 1.0)
(s1808 1.0)
(s1809 1.0)
(s1810 1.0)
(s1811 1.0)
(s1812 1.0)
(s1813 1.0)
(s1814 1.0)
(s1815 1.0)
(s1816 1.0)
(s1817 1.0)
(s1818 1.0)
(s1819 1.0)
(s1820 1.0)
(s1821 1.0)
(s1822 1.0)
(s1823 1.0)
(s1824 1.0)
(s1825 1.0)
(s1826 1.0)
(s1827 1.0)
(s1828 1.0)
(s1829 1.0)
(s1830 1.0)
(s1831 1.0)
(s1832 1.0)
(s1833 1.0)
(s1834 1.0)
(s1835 1.0)
(s1836 1.0)
(s1837 1.0)
(s1838 1.0)
(s1839 1.0)
(s1840 1.0)
(s1841 1.0)
(s1842 1.0)
(s1843 1.0)
(s1844 1.0)
(s1845 1.0)
(s1846 1.0)
(s1847 1.0)
(s1848 1.0)
(s1849 1.0)
(s1850 1.0)
(s1851 1.0)
(s1852 1.0)
(s1853 1.0)
(s1854 1.0)
(s1855 1.0)
(s1856 1.0)
(s1857 1.0)
(s1858 1.0)
(s1859 1.0)
(s1860 1.0)
(s1861 1.0)
(s1862 1.0)
(s1863 1.0)
(s1864 1.0)
(s1865 1.0)
(s1866 1.0)
(s1867 1.0)
(s1868 1.0)
(s1869 1.0)
(s1870 1.0)
(s1871 1.0)
(s1872 1.0)
(s1873 1.0)
(s1874 1.0)
(s1875 1.0)
(s1876 1.0)
(s1877 1.0)
(s1878 1.0)
(s1879 1.0)
(s1880 1.0)
(s1881 1.0)
(s1882 1.0)
(s1883 1.0)
(s1884 1.0)
(s1885 1.0)
(s1886 1.0)
(s1887 1.0)
(s1888 1.0)
(s1889 1.0)
(s1890 1.0)
(s1891 1.0)
(s1892 1.0)
(s1893 1.0)
(s1894 1.0)
(s1895 1.0)
(s1896 1.0)
(s1897 1.0)
(s1898 1.0)
(s1899 1.0)
(s1900 1.0)
(s1901 1.0)
(s1902 1.0)
(s1903 1.0)
(s1904 1.0)
(s1905 1.0)
(s1906 1.0)
(s1907 1.0)
(s1908 1.0)
(s1909 1.0)
(s1910 1.0)
(s1911 1.0)
(s1912 1.0)
(s1913 1.0)
(s1914 1.0)
(s1915 1.0)
(s1916 1.0)
(s1917 1.0)
(s1918 1.0)
(s1919 1.0)
(s1920 1.0)
(s1921 1.0)
(s1922 1.0)
(s1923 1.0)
(s1924 1.0)
(s1925 1.0)
(s1926 1.0)
(s1927 1.0)
(s1928 1.0)
(s1929 1.0)
(s1930 1.0)
(s1931 1.0)
(s1932 1.0)
(s1933 1.0)
(s1934 1.0)
(s1935 1.0)
(s1936 1.0)
(s1937 1.0)
(s1938 1.0)
(s1939 1.0)
(s1940 1.0)
(s1941 1.0)
(s1942 1.0)
(s1943 1.0)
(s1944 1.0)
(s1945 1.0)
(s1946 1.0)
(s1947 1.0)
(s1948 1.0)
(s1949 1.0)
(s1950 1.0)
(s1951 1.0)
(s1952 1.0)
(s1953 1.0)
(s1954 1.0)
(s1955 1.0)
(s1956 1.0)
(s1957 1.0)
(s1958 1.0)
(s1959 1.0)
(s1960 1.0)
(s1961 1.0)
(s1962 1.0)
(s1963 1.0)
(s1964 1.0)
(s1965 1.0)
(s1966 1.0)
(s1967 1.0)
(s1968 1.0)
(s1969 1.0)
(s1970 1.0)
(s1971 1.0)
(s1972 1.0)
(s1973 1.0)
(s1974 1.0)
(s1975 1.0)
(s1976 1.0)
(s1977 1.0)
(s1978 1.0)
(s1979 1.0)
(s1980 1.0)
(s1981 1.0)
(s1982 1.0)
(s1983 1.0)
(s1984 1.0)
(s1985 1.0)
(s1986 1.0)
(s1987 1.0)
(s1988 1.0)
(s1989 1.0)
(s1990 1.0)
(s1991 1.0)
(s1992 1.0)
(s1993 1.0)
(s1994 1.0)
(s1995 1.0)
(s1996 1.0)
(s1997 1.0)
(s1998 1.0)
(s1999 1.0)
(s2000 1.0)
(s2001 1.0)
(s2002 1.0)
(s2003 1.0)
(s2004 1.0)
(s2005 1.0)
(s2006 1.0)
(s2007 1.0)
(s2008 1.0)
(s2009 1.0)
(s2010 1.0)
(s2011 1.0)
(s2012 1.0)
(s2013 1.0)
(s2014 1.0)
(s2015 1.0)
(s2016 1.0)
(s2017 1.0)
(s2018 1.0)
(s2019 1.0)
(s2020 1.0)
(s2021 1.0)
(s2022 1.0)
(s2023 1.0)
(s2024 1.0)
(s2025 1.0)
(s2026 1.0)
(s2027 1.0)
(s2028 1.0)
(s2029 1.0)
(s2030 1.0)
(s2031 1.0)
(s2032 timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 2888/10096 variables, and 0 constraints, problems are : Problem set: 0 solved, 4988 unsolved in 30084 ms.
Refiners :[Positive P Invariants (semi-flows): 0/60 constraints, State Equation: 0/2948 constraints, PredecessorRefiner: 4988/4988 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 4988 unsolved
Error getting values : (error "ParserException while parsing response: (timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 2888/10096 variables, and 0 constraints, problems are : Problem set: 0 solved, 4988 unsolved in 30077 ms.
Refiners :[Positive P Invariants (semi-flows): 0/60 constraints, State Equation: 0/2948 constraints, PredecessorRefiner: 0/4988 constraints, Known Traps: 0/0 constraints]
After SMT, in 63772ms problems are : Problem set: 0 solved, 4988 unsolved
Search for dead transitions found 0 dead transitions in 63821ms
Starting structural reductions in LTL mode, iteration 1 : 2948/7920 places, 7148/12120 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 73526 ms. Remains : 2948/7920 places, 7148/12120 transitions.
Stuttering acceptance computed with spot in 78 ms :[(AND (NOT p1) p0), (AND (NOT p1) p0)]
Running random walk in product with property : BART-PT-060-LTLFireability-13
Product exploration explored 100000 steps with 131 reset in 1587 ms.
Product exploration explored 100000 steps with 135 reset in 1639 ms.
Computed a total of 0 stabilizing places and 0 stable transitions
Computed a total of 0 stabilizing places and 0 stable transitions
Knowledge obtained : [(AND (NOT p1) p0), (X (AND (NOT p1) p0)), (X (NOT (AND (NOT p1) (NOT p0)))), (X p0), (X (NOT p1))]
False Knowledge obtained : []
Knowledge sufficient to adopt a stutter insensitive property.
Knowledge based reduction with 5 factoid took 86 ms. Reduced automaton from 2 states, 3 edges and 2 AP (stutter sensitive) to 4 states, 9 edges and 2 AP (stutter insensitive).
Stuttering acceptance computed with spot in 143 ms :[(AND p0 (NOT p1)), (AND p0 (NOT p1)), false, false]
RANDOM walk for 40000 steps (8 resets) in 753 ms. (53 steps per ms) remains 1/6 properties
BEST_FIRST walk for 40004 steps (8 resets) in 157 ms. (253 steps per ms) remains 1/1 properties
[2024-05-22 15:23:22] [INFO ] Invariant cache hit.
Problem apf0 is UNSAT
After SMT solving in domain Real declared 3/10096 variables, and 0 constraints, problems are : Problem set: 1 solved, 0 unsolved in 16 ms.
Refiners :[Positive P Invariants (semi-flows): 0/60 constraints, State Equation: 0/2948 constraints, PredecessorRefiner: 1/1 constraints, Known Traps: 0/0 constraints]
After SMT, in 29ms problems are : Problem set: 1 solved, 0 unsolved
Skipping Parikh replay, no witness traces provided.
Found 1 invariant AP formulas.
Knowledge obtained : [(AND (NOT p1) p0), (X (AND (NOT p1) p0)), (X (NOT (AND (NOT p1) (NOT p0)))), (X p0), (X (NOT p1)), (G (OR (NOT p0) (NOT p1)))]
False Knowledge obtained : [(F (NOT p0)), (F (NOT (OR p0 p1))), (F p1), (F (NOT (OR p0 (NOT p1)))), (F (NOT (AND p0 (NOT p1))))]
Knowledge based reduction with 6 factoid took 217 ms. Reduced automaton from 4 states, 9 edges and 2 AP (stutter insensitive) to 3 states, 6 edges and 2 AP (stutter insensitive).
Stuttering acceptance computed with spot in 107 ms :[p0, p0, false]
Stuttering acceptance computed with spot in 103 ms :[p0, p0, false]
[2024-05-22 15:23:22] [INFO ] Invariant cache hit.
[2024-05-22 15:23:27] [INFO ] [Real]Absence check using 60 positive place invariants in 4 ms returned unsat
Proved EG p0
Knowledge obtained : [(AND (NOT p1) p0), (X (AND (NOT p1) p0)), (X (NOT (AND (NOT p1) (NOT p0)))), (X p0), (X (NOT p1)), (G (OR (NOT p0) (NOT p1)))]
False Knowledge obtained : [(F (NOT p0)), (F (NOT (OR p0 p1))), (F p1), (F (NOT (OR p0 (NOT p1)))), (F (NOT (AND p0 (NOT p1)))), (G p0)]
Property proved to be false thanks to negative knowledge :(G p0)
Knowledge based reduction with 6 factoid took 251 ms. Reduced automaton from 3 states, 6 edges and 2 AP (stutter insensitive) to 1 states, 1 edges and 0 AP (stutter insensitive).
FORMULA BART-PT-060-LTLFireability-13 FALSE TECHNIQUES KNOWLEDGE
Treatment of property BART-PT-060-LTLFireability-13 finished in 82800 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202405141337/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(X(X((F(G(p0))&&F(p1)))))'
Support contains 1 out of 7920 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 7920/7920 places, 12120/12120 transitions.
Discarding 1920 places :
Symmetric choice reduction at 0 with 1920 rule applications. Total rules 1920 place count 6000 transition count 10200
Iterating global reduction 0 with 1920 rules applied. Total rules applied 3840 place count 6000 transition count 10200
Discarding 1620 places :
Symmetric choice reduction at 0 with 1620 rule applications. Total rules 5460 place count 4380 transition count 8580
Iterating global reduction 0 with 1620 rules applied. Total rules applied 7080 place count 4380 transition count 8580
Discarding 240 places :
Symmetric choice reduction at 0 with 240 rule applications. Total rules 7320 place count 4140 transition count 8340
Iterating global reduction 0 with 240 rules applied. Total rules applied 7560 place count 4140 transition count 8340
Discarding 180 places :
Symmetric choice reduction at 0 with 180 rule applications. Total rules 7740 place count 3960 transition count 8160
Iterating global reduction 0 with 180 rules applied. Total rules applied 7920 place count 3960 transition count 8160
Discarding 180 places :
Symmetric choice reduction at 0 with 180 rule applications. Total rules 8100 place count 3780 transition count 7980
Iterating global reduction 0 with 180 rules applied. Total rules applied 8280 place count 3780 transition count 7980
Discarding 180 places :
Symmetric choice reduction at 0 with 180 rule applications. Total rules 8460 place count 3600 transition count 7800
Iterating global reduction 0 with 180 rules applied. Total rules applied 8640 place count 3600 transition count 7800
Discarding 180 places :
Symmetric choice reduction at 0 with 180 rule applications. Total rules 8820 place count 3420 transition count 7620
Iterating global reduction 0 with 180 rules applied. Total rules applied 9000 place count 3420 transition count 7620
Discarding 180 places :
Symmetric choice reduction at 0 with 180 rule applications. Total rules 9180 place count 3240 transition count 7440
Iterating global reduction 0 with 180 rules applied. Total rules applied 9360 place count 3240 transition count 7440
Discarding 120 places :
Symmetric choice reduction at 0 with 120 rule applications. Total rules 9480 place count 3120 transition count 7320
Iterating global reduction 0 with 120 rules applied. Total rules applied 9600 place count 3120 transition count 7320
Discarding 120 places :
Symmetric choice reduction at 0 with 120 rule applications. Total rules 9720 place count 3000 transition count 7200
Iterating global reduction 0 with 120 rules applied. Total rules applied 9840 place count 3000 transition count 7200
Discarding 60 places :
Symmetric choice reduction at 0 with 60 rule applications. Total rules 9900 place count 2940 transition count 7140
Iterating global reduction 0 with 60 rules applied. Total rules applied 9960 place count 2940 transition count 7140
Applied a total of 9960 rules in 5927 ms. Remains 2940 /7920 variables (removed 4980) and now considering 7140/12120 (removed 4980) transitions.
// Phase 1: matrix 7140 rows 2940 cols
[2024-05-22 15:23:33] [INFO ] Computed 60 invariants in 20 ms
[2024-05-22 15:23:34] [INFO ] Implicit Places using invariants in 542 ms returned []
[2024-05-22 15:23:34] [INFO ] Invariant cache hit.
[2024-05-22 15:23:37] [INFO ] Implicit Places using invariants and state equation in 3239 ms returned []
Implicit Place search using SMT with State Equation took 3793 ms to find 0 implicit places.
Running 4980 sub problems to find dead transitions.
[2024-05-22 15:23:37] [INFO ] Invariant cache hit.
Error getting values : (error "Error writing to Z3 solver: java.io.IOException: Broken pipe")
Solver is answering 'unknown', stopping.
After SMT solving in domain Real declared 2880/10080 variables, and 0 constraints, problems are : Problem set: 0 solved, 4980 unsolved in 30079 ms.
Refiners :[Positive P Invariants (semi-flows): 0/60 constraints, State Equation: 0/2940 constraints, PredecessorRefiner: 4980/4980 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 4980 unsolved
Error getting values : (error "ParserException while parsing response: ((s60 1)
(s61 1)
(s62 1)
(s63 1)
(s64 1)
(s65 1)
(s66 1)
(s67 1)
(s68 1)
(s69 1)
(s70 1)
(s71 1)
(s72 1)
(s73 1)
(s74 1)
(s75 1)
(s76 1)
(s77 1)
(s78 1)
(s79 1)
(s80 1)
(s81 1)
(s82 1)
(s83 1)
(s84 1)
(s85 1)
(s86 1)
(s87 1)
(s88 1)
(s89 1)
(s90 1)
(s91 1)
(s92 1)
(s93 1)
(s94 1)
(s95 1)
(s96 1)
(s97 1)
(s98 1)
(s99 1)
(s100 1)
(s101 1)
(s102 1)
(s103 1)
(s104 1)
(s105 1)
(s106 1)
(s107 1)
(s108 1)
(s109 1)
(s110 1)
(s111 1)
(s112 1)
(s113 1)
(s114 1)
(s115 1)
(s116 1)
(s117 1)
(s118 1)
(s119 1)
(s120 1)
(s121 1)
(s122 1)
(s123 1)
(s124 1)
(s125 1)
(s126 1)
(s127 1)
(s128 1)
(s129 1)
(s130 1)
(s131 1)
(s132 1)
(s133 1)
(s134 1)
(s135 1)
(s136 1)
(s137 1)
(s138 1)
(s139 1)
(s140 1)
(s141 1)
(s142 1)
(s143 1)
(s144 1)
(s145 1)
(s146 1)
(s147 1)
(s148 1)
(s149 1)
(s150 1)
(s151 1)
(s152 1)
(s153 1)
(s154 1)
(s155 1)
(s156 1)
(s157 1)
(s158 1)
(s159 1)
(s160 1)
(s161 1)
(s162 1)
(s163 1)
(s164 1)
(s165 1)
(s166 1)
(s167 1)
(s168 1)
(s169 1)
(s170 1)
(s171 1)
(s172 1)
(s173 1)
(s174 1)
(s175 1)
(s176 1)
(s177 1)
(s178 1)
(s179 1)
(s180 1)
(s181 1)
(s182 1)
(s183 1)
(s184 1)
(s185 1)
(s186 1)
(s187 1)
(s188 1)
(s189 1)
(s190 1)
(s191 1)
(s192 1)
(s193 1)
(s194 1)
(s195 1)
(s196 1)
(s197 1)
(s198 1)
(s199 1)
(s200 1)
(s201 1)
(s202 1)
(s203 1)
(s204 1)
(s205 1)
(s206 1)
(s207 1)
(s208 1)
(s209 1)
(s210 1)
(s211 1)
(s212 1)
(s213 1)
(s214 1)
(s215 1)
(s216 1)
(s217 1)
(s218 1)
(s219 1)
(s220 1)
(s221 1)
(s222 1)
(s223 1)
(s224 1)
(s225 1)
(s226 1)
(s227 1)
(s228 1)
(s229 1)
(s230 1)
(s231 1)
(s232 1)
(s233 1)
(s234 1)
(s235 1)
(s236 1)
(s237 1)
(s238 1)
(s239 1)
(s240 1)
(s241 1)
(s242 1)
(s243 1)
(s244 1)
(s245 1)
(s246 1)
(s247 1)
(s248 1)
(s249 1)
(s250 1)
(s251 1)
(s252 1)
(s253 1)
(s254 1)
(s255 1)
(s256 1)
(s257 1)
(s258 1)
(s259 1)
(s260 1)
(s261 1)
(s262 1)
(s263 1)
(s264 1)
(s265 1)
(s266 1)
(s267 1)
(s268 1)
(s269 1)
(s270 1)
(s271 1)
(s272 1)
(s273 1)
(s274 1)
(s275 1)
(s276 1)
(s277 1)
(s278 1)
(s279 1)
(s280 1)
(s281 1)
(s282 1)
(s283 1)
(s284 1)
(s285 1)
(s286 1)
(s287 1)
(s288 1)
(s289 1)
(s290 1)
(s291 1)
(s292 1)
(s293 1)
(s294 1)
(s295 1)
(s296 1)
(s297 1)
(s298 1)
(s299 1)
(s300 1)
(s301 1)
(s302 1)
(s303 1)
(s304 1)
(s305 1)
(s306 1)
(s307 1)
(s308 1)
(s309 1)
(s310 1)
(s311 1)
(s312 1)
(s313 1)
(s314 1)
(s315 1)
(s316 1)
(s317 1)
(s318 1)
(s319 1)
(s320 1)
(s321 1)
(s322 1)
(s323 1)
(s324 1)
(s325 1)
(s326 1)
(s327 1)
(s328 1)
(s329 1)
(s330 1)
(s331 1)
(s332 1)
(s333 1)
(s334 1)
(s335 1)
(s336 1)
(s337 1)
(s338 1)
(s339 1)
(s340 1)
(s341 1)
(s342 1)
(s343 1)
(s344 1)
(s345 1)
(s346 1)
(s347 1)
(s348 1)
(s349 1)
(s350 1)
(s351 1)
(s352 1)
(s353 1)
(s354 1)
(s355 1)
(s356 1)
(s357 1)
(s358 1)
(s359 1)
(s360 1)
(s361 1)
(s362 1)
(s363 1)
(s364 1)
(s365 1)
(s366 1)
(s367 1)
(s368 1)
(s369 1)
(s370 1)
(s371 1)
(s372 1)
(s373 1)
(s374 1)
(s375 1)
(s376 1)
(s377 1)
(s378 1)
(s379 1)
(s380 1)
(s381 1)
(s382 1)
(s383 1)
(s384 1)
(s385 1)
(s386 1)
(s387 1)
(s388 1)
(s389 1)
(s390 1)
(s391 1)
(s392 1)
(s393 1)
(s394 1)
(s395 1)
(s396 1)
(s397 1)
(s398 1)
(s399 1)
(s400 1)
(s401 1)
(s402 1)
(s403 1)
(s404 1)
(s405 1)
(s406 1)
(s407 1)
(s408 1)
(s409 1)
(s410 1)
(s411 1)
(s412 1)
(s413 1)
(s414 1)
(s415 1)
(s416 1)
(s417 1)
(s418 1)
(s419 1)
(s420 1)
(s421 1)
(s422 1)
(s423 1)
(s424 1)
(s425 1)
(s426 1)
(s427 1)
(s428 1)
(s429 1)
(s430 1)
(s431 1)
(s432 1)
(s433 1)
(s434 1)
(s435 1)
(s436 1)
(s437 1)
(s438 1)
(s439 1)
(s440 1)
(s441 1)
(s442 1)
(s443 1)
(s444 1)
(s445 1)
(s446 1)
(s447 1)
(s448 1)
(s449 1)
(s450 1)
(s451 1)
(s452 1)
(s453 1)
(s454 1)
(s455 1)
(s456 1)
(s457 1)
(s458 1)
(s459 1)
(s460 1)
(s461 1)
(s462 1)
(s463 1)
(s464 1)
(s465 1)
(s466 1)
(s467 1)
(s468 1)
(s469 1)
(s470 1)
(s471 1)
(s472 1)
(s473 1)
(s474 1)
(s475 1)
(s476 1)
(s477 1)
(s478 1)
(s479 1)
(s480 1)
(s481 1)
(s482 1)
(s483 1)
(s484 1)
(s485 1)
(s486 1)
(s487 1)
(s488 1)
(s489 1)
(s490 1)
(s491 1)
(s492 1)
(s493 1)
(s494 1)
(s495 1)
(s496 1)
(s497 1)
(s498 1)
(s499 1)
(s500 1)
(s501 1)
(s502 1)
(s503 1)
(s504 1)
(s505 1)
(s506 1)
(s507 1)
(s508 1)
(s509 1)
(s510 1)
(s511 1)
(s512 1)
(s513 1)
(s514 1)
(s515 1)
(s516 1)
(s517 1)
(s518 1)
(s519 1)
(s520 1)
(s521 1)
(s522 1)
(s523 1)
(s524 1)
(s525 1)
(s526 1)
(s527 1)
(s528 1)
(s529 1)
(s530 1)
(s531 1)
(s532 1)
(s533 1)
(s534 1)
(s535 1)
(s536 1)
(s537 1)
(s538 1)
(s539 1)
(s540 1)
(s541 1)
(s542 1)
(s543 1)
(s544 1)
(s545 1)
(s546 1)
(s547 1)
(s548 1)
(s549 1)
(s550 1)
(s551 1)
(s552 1)
(s553 1)
(s554 1)
(s555 1)
(s556 1)
(s557 1)
(s558 1)
(s559 1)
(s560 1)
(s561 1)
(s562 1)
(s563 1)
(s564 1)
(s565 1)
(s566 1)
(s567 1)
(s568 1)
(s569 1)
(s570 1)
(s571 1)
(s572 1)
(s573 1)
(s574 1)
(s575 1)
(s576 1)
(s577 1)
(s578 1)
(s579 1)
(s580 1)
(s581 1)
(s582 1)
(s583 1)
(s584 1)
(s585 1)
(s586 1)
(s587 1)
(s588 1)
(s589 1)
(s590 1)
(s591 1)
(s592 1)
(s593 1)
(s594 1)
(s595 1)
(s596 1)
(s597 1)
(s598 1)
(s599 1)
(s600 1)
(s601 1)
(s602 1)
(s603 1)
(s604 1)
(s605 1)
(s606 1)
(s607 1)
(s608 1)
(s609 1)
(s610 1)
(s611 1)
(s612 1)
(s613 1)
(s614 1)
(s615 1)
(s616 1)
(s617 1)
(s618 1)
(s619 1)
(s620 1)
(s621 1)
(s622 1)
(s623 1)
(s624 1)
(s625 1)
(s626 1)
(s627 1)
(s628 1)
(s629 1)
(s630 1)
(s631 1)
(s632 1)
(s633 1)
(s634 1)
(s635 1)
(s636 1)
(s637 1)
(s638 1)
(s639 1)
(s640 1)
(s641 1)
(s642 1)
(s643 1)
(s644 1)
(s645 1)
(s646 1)
(s647 1)
(s648 1)
(s649 1)
(s650 1)
(s651 1)
(s652 1)
(s653 1)
(s654 1)
(s655 1)
(s656 1)
(s657 1)
(s658 1)
(s659 1)
(s660 1)
(s661 1)
(s662 1)
(s663 1)
(s664 1)
(s665 1)
(s666 1)
(s667 1)
(s668 1)
(s669 1)
(s670 1)
(s671 1)
(s672 1)
(s673 1)
(s674 1)
(s675 1)
(s676 1)
(s677 1)
(s678 1)
(s679 1)
(s680 1)
(s681 1)
(s682 1)
(s683 1)
(s684 1)
(s685 1)
(s686 1)
(s687 1)
(s688 1)
(s689 1)
(s690 1)
(s691 1)
(s692 1)
(s693 1)
(s694 1)
(s695 1)
(s696 1)
(s697 1)
(s698 1)
(s699 1)
(s700 1)
(s701 1)
(s702 1)
(s703 1)
(s704 1)
(s705 1)
(s706 1)
(s707 1)
(s708 1)
(s709 1)
(s710 1)
(s711 1)
(s712 1)
(s713 1)
(s714 1)
(s715 1)
(s716 1)
(s717 1)
(s718 1)
(s719 1)
(s720 1)
(s721 1)
(s722 1)
(s723 1)
(s724 1)
(s725 1)
(s726 1)
(s727 1)
(s728 1)
(s729 1)
(s730 1)
(s731 1)
(s732 1)
(s733 1)
(s734 1)
(s735 1)
(s736 1)
(s737 1)
(s738 1)
(s739 1)
(s740 1)
(s741 1)
(s742 1)
(s743 1)
(s744 1)
(s745 1)
(s746 1)
(s747 1)
(s748 1)
(s749 1)
(s750 1)
(s751 1)
(s752 1)
(s753 1)
(s754 1)
(s755 1)
(s756 1)
(s757 1)
(s758 1)
(s759 1)
(s760 1)
(s761 1)
(s762 1)
(s763 1)
(s764 1)
(s765 1)
(s766 1)
(s767 1)
(s768 1)
(s769 1)
(s770 1)
(s771 1)
(s772 1)
(s773 1)
(s774 1)
(s775 1)
(s776 1)
(s777 1)
(s778 1)
(s779 1)
(s780 1)
(s781 1)
(s782 1)
(s783 1)
(s784 1)
(s785 1)
(s786 1)
(s787 1)
(s788 1)
(s789 1)
(s790 1)
(s791 1)
(s792 1)
(s793 1)
(s794 1)
(s795 1)
(s796 1)
(s797 1)
(s798 1)
(s799 1)
(s800 1)
(s801 1)
(s802 1)
(s803 1)
(s804 1)
(s805 1)
(s806 1)
(s807 1)
(s808 1)
(s809 1)
(s810 1)
(s811 1)
(s812 1)
(s813 1)
(s814 1)
(s815 1)
(s816 1)
(s817 1)
(s818 1)
(s819 1)
(s820 1)
(s821 1)
(s822 1)
(s823 1)
(s824 1)
(s825 1)
(s826 1)
(s827 1)
(s828 1)
(s829 1)
(s830 1)
(s831 1)
(s832 1)
(s833 1)
(s834 1)
(s835 1)
(s836 1)
(s837 1)
(s838 1)
(s839 1)
(s840 1)
(s841 1)
(s842 1)
(s843 1)
(s844 1)
(s845 1)
(s846 1)
(s847 1)
(s848 1)
(s849 1)
(s850 1)
(s851 1)
(s852 1)
(s853 1)
(s854 1)
(s855 1)
(s856 1)
(s857 1)
(s858 1)
(s859 1)
(s860 1)
(s861 1)
(s862 1)
(s863 1)
(s864 1)
(s865 1)
(s866 1)
(s867 1)
(s868 1)
(s869 1)
(s870 1)
(s871 1)
(s872 1)
(s873 1)
(s874 1)
(s875 1)
(s876 1)
(s877 1)
(s878 1)
(s879 1)
(s880 1)
(s881 1)
(s882 1)
(s883 1)
(s884 1)
(s885 1)
(s886 1)
(s887 1)
(s888 1)
(s889 1)
(s890 1)
(s891 1)
(s892 1)
(s893 1)
(s894 1)
(s895 1)
(s896 1)
(s897 1)
(s898 1)
(s899 1)
(s900 1)
(s901 1)
(s902 1)
(s903 1)
(s904 1)
(s905 1)
(s906 1)
(s907 1)
(s908 1)
(s909 1)
(s910 1)
(s911 1)
(s912 1)
(s913 1)
(s914 1)
(s915 1)
(s916 1)
(s917 1)
(s918 1)
(s919 1)
(s920 1)
(s921 1)
(s922 1)
(s923 1)
(s924 1)
(s925 1)
(s926 1)
(s927 1)
(s928 1)
(s929 1)
(s930 1)
(s931 1)
(s932 1)
(s933 1)
(s934 1)
(s935 1)
(s936 1)
(s937 1)
(s938 1)
(s939 1)
(s940 1)
(s941 1)
(s942 1)
(s943 1)
(s944 1)
(s945 1)
(s946 1)
(s947 1)
(s948 1)
(s949 1)
(s950 1)
(s951 1)
(s952 1)
(s953 1)
(s954 1)
(s955 1)
(s956 1)
(s957 1)
(s958 1)
(s959 1)
(s960 1)
(s961 1)
(s962 1)
(s963 1)
(s964 1)
(s965 1)
(s966 1)
(s967 1)
(s968 1)
(s969 1)
(s970 1)
(s971 1)
(s972 1)
(s973 1)
(s974 1)
(s975 1)
(s976 1)
(s977 1)
(s978 1)
(s979 1)
(s980 1)
(s981 1)
(s982 1)
(s983 1)
(s984 1)
(s985 1)
(s986 1)
(s987 1)
(s988 1)
(s989 1)
(s990 1)
(s991 1)
(s992 1)
(s993 1)
(s994 1)
(s995 1)
(s996 1)
(s997 1)
(s998 1)
(s999 1)
(s1000 1)
(s1001 1)
(s1002 1)
(s1003 1)
(s1004 1)
(s1005 1)
(s1006 1)
(s1007 1)
(s1008 1)
(s1009 1)
(s1010 1)
(s1011 1)
(s1012 1)
(s1013 1)
(s1014 1)
(s1015 1)
(s1016 1)
(s1017 1)
(s1018 1)
(s1019 1)
(s1020 1)
(s1021 1)
(s1022 1)
(s1023 1)
(s1024 1)
(s1025 1)
(s1026 1)
(s1027 1)
(s1028 1)
(s1029 1)
(s1030 1)
(s1031 1)
(s1032 1)
(s1033 1)
(s1034 1)
(s1035 1)
(s1036 1)
(s1037 1)
(s1038 1)
(s1039 1)
(s1040 1)
(s1041 1)
(s1042 1)
(s1043 1)
(s1044 1)
(s1045 1)
(s1046 1)
(s1047 1)
(s1048 1)
(s1049 1)
(s1050 1)
(s1051 1)
(s1052 1)
(s1053 1)
(s1054 1)
(s1055 1)
(s1056 1)
(s1057 1)
(s1058 1)
(s1059 1)
(s1060 1)
(s1061 1)
(s1062 1)
(s1063 1)
(s1064 1)
(s1065 1)
(s1066 1)
(s1067 1)
(s1068 1)
(s1069 1)
(s1070 1)
(s1071 1)
(s1072 1)
(s1073 1)
(s1074 1)
(s1075 1)
(s1076 1)
(s1077 1)
(s1078 1)
(s1079 1)
(s1080 1)
(s1081 1)
(s1082 1)
(s1083 1)
(s1084 1)
(s1085 1)
(s1086 1)
(s1087 1)
(s1088 1)
(s1089 1)
(s1090 1)
(s1091 1)
(s1092 1)
(s1093 1)
(s1094 1)
(s1095 1)
(s1096 1)
(s1097 1)
(s1098 1)
(s1099 1)
(s1100 1)
(s1101 1)
(s1102 1)
(s1103 1)
(s1104 1)
(s1105 1)
(s1106 1)
(s1107 1)
(s1108 1)
(s1109 1)
(s1110 1)
(s1111 1)
(s1112 1)
(s1113 1)
(s1114 1)
(s1115 1)
(s1116 1)
(s1117 1)
(s1118 1)
(s1119 1)
(s1120 1)
(s1121 1)
(s1122 1)
(s1123 1)
(s1124 1)
(s1125 1)
(s1126 1)
(s1127 1)
(s1128 1)
(s1129 1)
(s1130 1)
(s1131 1)
(s1132 1)
(s1133 1)
(s1134 1)
(s1135 1)
(s1136 1)
(s1137 1)
(s1138 1)
(s1139 1)
(s1140 1)
(s1141 1)
(s1142 1)
(s1143 1)
(s1144 1)
(s1145 1)
(s1146 1)
(s1147 1)
(s1148 1)
(s1149 1)
(s1150 1)
(s1151 1)
(s1152 1)
(s1153 1)
(s1154 1)
(s1155 1)
(s1156 1)
(s1157 1)
(s1158 1)
(s1159 1)
(s1160 1)
(s1161 1)
(s1162 1)
(s1163 1)
(s1164 1)
(s1165 1)
(s1166 1)
(s1167 1)
(s1168 1)
(s1169 1)
(s1170 1)
(s1171 1)
(s1172 1)
(s1173 1)
(s1174 1)
(s1175 1)
(s1176 1)
(s1177 1)
(s1178 1)
(s1179 1)
(s1180 1)
(s1181 1)
(s1182 1)
(s1183 1)
(s1184 1)
(s1185 1)
(s1186 1)
(s1187 1)
(s1188 1)
(s1189 1)
(s1190 1)
(s1191 1)
(s1192 1)
(s1193 1)
(s1194 1)
(s1195 1)
(s1196 1)
(s1197 1)
(s1198 1)
(s1199 1)
(s1200 1)
(s1201 1)
(s1202 1)
(s1203 1)
(s1204 1)
(s1205 1)
(s1206 1)
(s1207 1)
(s1208 1)
(s1209 1)
(s1210 1)
(s1211 1)
(s1212 1)
(s1213 1)
(s1214 1)
(s1215 1)
(s1216 1)
(s1217 1)
(s1218 1)
(s1219 1)
(s1220 1)
(s1221 1)
(s1222 1)
(s1223 1)
(s1224 1)
(s1225 1)
(s1226 1)
(s1227 1)
(s1228 1)
(s1229 1)
(s1230 1)
(s1231 1)
(s1232 1)
(s1233 1)
(s1234 1)
(s1235 1)
(s1236 1)
(s1237 1)
(s1238 1)
(s1239 1)
(s1240 1)
(s1241 1)
(s1242 1)
(s1243 1)
(s1244 1)
(s1245 1)
(s1246 1)
(s1247 1)
(s1248 1)
(s1249 1)
(s1250 1)
(s1251 1)
(s1252 1)
(s1253 1)
(s1254 1)
(s1255 1)
(s1256 1)
(s1257 1)
(s1258 1)
(s1259 1)
(s1260 1)
(s1261 1)
(s1262 1)
(s1263 1)
(s1264 1)
(s1265 1)
(s1266 1)
(s1267 1)
(s1268 1)
(s1269 1)
(s1270 1)
(s1271 1)
(s1272 1)
(s1273 1)
(s1274 1)
(s1275 1)
(s1276 1)
(s1277 1)
(s1278 1)
(s1279 1)
(s1280 1)
(s1281 1)
(s1282 1)
(s1283 1)
(s1284 1)
(s1285 1)
(s1286 1)
(s1287 1)
(s1288 1)
(s1289 1)
(s1290 1)
(s1291 1)
(s1292 1)
(s1293 1)
(s1294 1)
(s1295 1)
(s1296 1)
(s1297 1)
(s1298 1)
(s1299 1)
(s1300 1)
(s1301 1)
(s1302 1)
(s1303 1)
(s1304 1)
(s1305 1)
(s1306 1)
(s1307 1)
(s1308 1)
(s1309 1)
(s1310 1)
(s1311 1)
(s1312 1)
(s1313 1)
(s1314 1)
(s1315 1)
(s1316 1)
(s1317 1)
(s1318 1)
(s1319 1)
(s1320 1)
(s1321 1)
(s1322 1)
(s1323 1)
(s1324 1)
(s1325 1)
(s1326 1)
(s1327 1)
(s1328 1)
(s1329 1)
(s1330 1)
(s1331 1)
(s1332 1)
(s1333 1)
(s1334 1)
(s1335 1)
(s1336 1)
(s1337 1)
(s1338 1)
(s1339 1)
(s1340 1)
(s1341 1)
(s1342 1)
(s1343 1)
(s1344 1)
(s1345 1)
(s1346 1)
(s1347 1)
(s1348 1)
(s1349 1)
(s1350 1)
(s1351 1)
(s1352 1)
(s1353 1)
(s1354 1)
(s1355 1)
(s1356 1)
(s1357 1)
(s1358 1)
(s1359 1)
(s1360 1)
(s1361 1)
(s1362 1)
(s1363 1)
(s1364 1)
(s1365 1)
(s1366 1)
(s1367 1)
(s1368 1)
(s1369 1)
(s1370 1)
(s1371 1)
(s1372 1)
(s1373 1)
(s1374 1)
(s1375 1)
(s1376 1)
(s1377 1)
(s1378 1)
(s1379 1)
(s1380 1)
(s1381 1)
(s1382 1)
(s1383 1)
(s1384 1)
(s1385 1)
(s1386 1)
(s1387 1)
(s1388 1)
(s1389 1)
(s1390 1)
(s1391 1)
(s1392 1)
(s1393 1)
(s1394 1)
(s1395 1)
(s1396 1)
(s1397 1)
(s1398 1)
(s1399 1)
(s1400 1)
(s1401 1)
(s1402 1)
(s1403 1)
(s1404 1)
(s1405 1)
(s1406 1)
(s1407 1)
(s1408 1)
(s1409 1)
(s1410 1)
(s1411 1)
(s1412 1)
(s1413 1)
(s1414 1)
(s1415 1)
(s1416 1)
(s1417 1)
(s1418 1)
(s1419 1)
(s1420 1)
(s1421 1)
(s1422 1)
(s1423 1)
(s1424 1)
(s1425 1)
(s1426 1)
(s1427 1)
(s1428 1)
(s1429 1)
(s1430 1)
(s1431 1)
(s1432 1)
(s1433 1)
(s1434 1)
(s1435 1)
(s1436 1)
(s1437 1)
(s1438 1)
(s1439 1)
(s1440 1)
(s1441 1)
(s1442 1)
(s1443 1)
(s1444 1)
(s1445 1)
(s1446 1)
(s1447 1)
(s1448 1)
(s1449 1)
(s1450 1)
(s1451 1)
(s1452 1)
(s1453 1)
(s1454 1)
(s1455 1)
(s1456 1)
(s1457 1)
(s1458 1)
(s1459 1)
(s1460 1)
(s1461 1)
(s1462 1)
(s1463 1)
(s1464 1)
(s1465 1)
(s1466 1)
(s1467 1)
(s1468 1)
(s1469 1)
(s1470 1)
(s1471 1)
(s1472 1)
(s1473 1)
(s1474 1)
(s1475 1)
(s1476 1)
(s1477 1)
(s1478 1)
(s1479 1)
(s1480 1)
(s1481 1)
(s1482 1)
(s1483 1)
(s1484 1)
(s1485 1)
(s1486 1)
(s1487 1)
(s1488 1)
(s1489 1)
(s1490 1)
(s1491 1)
(s1492 1)
(s1493 1)
(s1494 1)
(s1495 1)
(s1496 1)
(s1497 1)
(s1498 1)
(s1499 1)
(s1500 1)
(s1501 1)
(s1502 1)
(s1503 1)
(s1504 1)
(s1505 1)
(s1506 1)
(s1507 1)
(s1508 1)
(s1509 1)
(s1510 1)
(s1511 1)
(s1512 1)
(s1513 1)
(s1514 1)
(s1515 1)
(s1516 1)
(s1517 1)
(s1518 1)
(s1519 1)
(s1520 1)
(s1521 1)
(s1522 1)
(s1523 1)
(s1524 1)
(s1525 1)
(s1526 1)
(s1527 1)
(s1528 1)
(s1529 1)
(s1530 1)
(s1531 1)
(s1532 1)
(s1533 1)
(s1534 1)
(s1535 1)
(s1536 1)
(s1537 1)
(s1538 1)
(s1539 1)
(s1540 1)
(s1541 1)
(s1542 1)
(s1543 1)
(s1544 1)
(s1545 1)
(s1546 1)
(s1547 1)
(s1548 1)
(s1549 1)
(s1550 1)
(s1551 1)
(s1552 1)
(s1553 1)
(s1554 1)
(s1555 1)
(s1556 1)
(s1557 1)
(s1558 1)
(s1559 1)
(s1560 1)
(s1561 1)
(s1562 1)
(s1563 1)
(s1564 1)
(s1565 1)
(s1566 1)
(s1567 1)
(s1568 1)
(s1569 1)
(s1570 1)
(s1571 1)
(s1572 1)
(s1573 1)
(s1574 1)
(s1575 1)
(s1576 1)
(s1577 1)
(s1578 1)
(s1579 1)
(s1580 1)
(s1581 1)
(s1582 1)
(s1583 1)
(s1584 1)
(s1585 1)
(s1586 1)
(s1587 1)
(s1588 1)
(s1589 1)
(s1590 1)
(s1591 1)
(s1592 1)
(s1593 1)
(s1594 1)
(s1595 1)
(s1596 1)
(s1597 1)
(s1598 1)
(s1599 1)
(s1600 1)
(s1601 1)
(s1602 1)
(s1603 1)
(s1604 1)
(s1605 1)
(s1606 1)
(s1607 1)
(s1608 1)
(s1609 1)
(s1610 1)
(s1611 1)
(s1612 1)
(s1613 1)
(s1614 1)
(s1615 1)
(s1616 1)
(s1617 1)
(s1618 1)
(s1619 1)
(s1620 1)
(s1621 1)
(s1622 1)
(s1623 1)
(s1624 1)
(s1625 1)
(s1626 1)
(s1627 1)
(s1628 1)
(s1629 1)
(s1630 1)
(s1631 1)
(s1632 1)
(s1633 1)
(s1634 1)
(s1635 1)
(s1636 1)
(s1637 1)
(s1638 1)
(s1639 1)
(s1640 1)
(s1641 1)
(s1642 1)
(s1643 1)
(s1644 1)
(s1645 1)
(s1646 1)
(s1647 1)
(s1648 1)
(s1649 1)
(s1650 1)
(s1651 1)
(s1652 1)
(s1653 1)
(s1654 1)
(s1655 1)
(s1656 1)
(s1657 1)
(s1658 1)
(s1659 1)
(s1660 1)
(s1661 1)
(s1662 1)
(s1663 1)
(s1664 1)
(s1665 1)
(s1666 1)
(s1667 1)
(s1668 1)
(s1669 1)
(s1670 1)
(s1671 1)
(s1672 1)
(s1673 1)
(s1674 1)
(s1675 1)
(s1676 1)
(s1677 1)
(s1678 1)
(s1679 1)
(s1680 1)
(s1681 1)
(s1682 1)
(s1683 1)
(s1684 1)
(s1685 1)
(s1686 1)
(s1687 1)
(s1688 1)
(s1689 1)
(s1690 1)
(s1691 1)
(s1692 1)
(s1693 1)
(s1694 1)
(s1695 1)
(s1696 1)
(s1697 1)
(s1698 1)
(s1699 1)
(s1700 1)
(s1701 1)
(s1702 1)
(s1703 1)
(s1704 1)
(s1705 1)
(s1706 1)
(s1707 1)
(s1708 1)
(s1709 1)
(s1710 1)
(s1711 1)
(s1712 1)
(s1713 1)
(s1714 1)
(s1715 1)
(s1716 1)
(s1717 1)
(s1718 1)
(s1719 1)
(s1720 1)
(s1721 1)
(s1722 1)
(s1723 1)
(s1724 1)
(s1725 1)
(s1726 1)
(s1727 1)
(s1728 1)
(s1729 1)
(s1730 1)
(s1731 1)
(s1732 1)
(s1733 1)
(s1734 1)
(s1735 1)
(s1736 1)
(s1737 1)
(s1738 1)
(s1739 1)
(s1740 1)
(s1741 1)
(s1742 1)
(s1743 1)
(s1744 1)
(s1745 1)
(s1746 1)
(s1747 1)
(s1748 1)
(s1749 1)
(s1750 1)
(s1751 1)
(s1752 1)
(s1753 1)
(s1754 1)
(s1755 1)
(s1756 1)
(s1757 1)
(s1758 1)
(s1759 1)
(s1760 1)
(s1761 1)
(s1762 1)
(s1763 1)
(s1764 1)
(s1765 1)
(s1766 1)
(s1767 1)
(s1768 1)
(s1769 1)
(s1770 1)
(s1771 1)
(s1772 1)
(s1773 1)
(s1774 1)
(s1775 1)
(s1776 1)
(s1777 1)
(s1778 1)
(s1779 1)
(s1780 1)
(s1781 1)
(s1782 1)
(s1783 1)
(s1784 1)
(s1785 1)
(s1786 1)
(s1787 1)
(s1788 1)
(s1789 1)
(s1790 1)
(s1791 1)
(s1792 1)
(s1793 1)
(s1794 1)
(s1795 1)
(s1796 1)
(s1797 1)
(s1798 1)
(s1799 1)
(s1800 1)
(s1801 1)
(s1802 1)
(s1803 1)
(s1804 1)
(s1805 1)
(s1806 1)
(s1807 1)
(s1808 1)
(s1809 1)
(s1810 1)
(s1811 1)
(s1812 1)
(s1813 1)
(s1814 1)
(s1815 1)
(s1816 1)
(s1817 1)
(s1818 1)
(s1819 1)
(s1820 1)
(s1821 1)
(s1822 1)
(s1823 1)
(s1824 1)
(s1825 1)
(s1826 1)
(s1827 1)
(s1828 1)
(s1829 1)
(s1830 1)
(s1831 1)
(s1832 1)
(s1833 1)
(s1834 1)
(s1835 1)
(s1836 1)
(s1837 1)
(s1838 1)
(s1839 1)
(s1840 1)
(s1841 1)
(s1842 1)
(s1843 1)
(s1844 1)
(s1845 1)
(s1846 1)
(s1847 1)
(s1848 1)
(s1849 1)
(s1850 1)
(s1851 1)
(s1852 1)
(s1853 1)
(s1854 1)
(s1855 1)
(s1856 1)
(s1857 1)
(s1858 1)
(s1859 1)
(s1860 1)
(s1861 1)
(s1862 1)
(s1863 1)
(s1864 1)
(s1865 1)
(s1866 1)
(s1867 1)
(s1868 1)
(s1869 1)
(s1870 1)
(s1871 1)
(s1872 1)
(s1873 1)
(s1874 1)
(s1875 1)
(s1876 1)
(s1877 1)
(s1878 1)
(s1879 1)
(s1880 1)
(s1881 1)
(s1882 1)
(s1883 1)
(s1884 1)
(s1885 1)
(s1886 1)
(s1887 1)
(s1888 1)
(s1889 1)
(s1890 1)
(s1891 1)
(s1892 1)
(s1893 1)
(s1894 1)
(s1895 1)
(s1896 1)
(s1897 1)
(s1898 1)
(s1899 1)
(s1900 1)
(s1901 1)
(s1902 1)
(s1903 1)
(s1904 1)
(s1905 1)
(s1906 1)
(s1907 1)
(s1908 1)
(s1909 1)
(s1910 1)
(s1911 1)
(s1912 1)
(s1913 1)
(s1914 1)
(s1915 1)
(s1916 1)
(s1917 1)
(s1918 1)
(s1919 1)
(s1920 1)
(s1921 1)
(s1922 1)
(s1923 1)
(s1924 1)
(s1925 1)
(s1926 1)
(s1927 1)
(s1928 1)
(s1929 1)
(s1930 1)
(s1931 1)
(s1932 1)
(s1933 1)
(s1934 1)
(s1935 1)
(s1936 1)
(s1937 1)
(s1938 1)
(s1939 1)
(s1940 1)
(s1941 1)
(s1942 1)
(s1943 1)
(s1944 1)
(s1945 1)
(s1946 1)
(s1947 1)
(s1948 1)
(s1949 1)
(s1950 1)
(s1951 1)
(s1952 1)
(s1953 1)
(s1954 1)
(s1955 1)
(s1956 1)
(s1957 1)
(s1958 1)
(s1959 1)
(s1960 1)
(s1961 1)
(s1962 1)
(s1963 1)
(s1964 1)
(s1965 1)
(s1966 1)
(s1967 1)
(s1968 1)
(s1969 1)
(s1970 1)
(s1971 1)
(s1972 1)
(s1973 1)
(s1974 1)
(s1975 1)
(s1976 1)
(s1977 1)
(s1978 1)
(s1979 1)
(s1980 1)
(s1981 1)
(s1982 1)
(s1983 1)
(s1984 1)
(s1985 1)
(s1986 1)
(s1987 1)
(s1988 1)
(s1989 1)
(s1990 1)
(s1991 1)
(s1992 1)
(s1993 1)
(s1994 1)
(s1995 1)
(s1996 1)
(s1997 1)
(s1998 1)
(s1999 1)
(s2000 1)
(s2001 1)
(s2002 1)
(s2003 1)
(s2004 1)
(s2005 1)
(s2006 1)
(s2007 1)
(s2008 1)
(s2009 1)
(s2010 1)
(s2011 1)
(s2012 1)
(s2013 1)
(s2014 1)
(s2015 1)
(s2016 1)
(s2017 1)
(s2018 1)
(s2019 1)
(s2020 1)
(s2021 1)
(s2022 1)
(s2023 1)
(s2024 1)
(s2025 1)
(s2026 1)
(s2027 1)
(s2028 1)
(s2029 1)
(s2030 1)
(s2031 1)
(s2032 1)
(s2033 1)
(s2034 1)
(s2035 1)
(s2036 1)
(s2037 1)
(s2038 1)
(s2039 1)
(s2040 1)
(s2041 1)
(s2042 1)
(s2043 1)
(s2044 1)
(s2045 1)
(s2046 1)
(s2047 1)
(s2048 1)
(s2049 1)
(s2050 1)
(s2051 1)
(s2052 1)
(s2053 1)
(s2054 1)
(s2055 1)
(s2056 1)
(s2057 1)
(s2058 1)
(s2059 1)
(s2060 1)
(s2061 1)
(s2062 1)
(s2063 1)
(s2064 1)
(s2065 1)
(s2066 1)
(s2067 1)
(s2068 1)
(s2069 1)
(s2070 1)
(s2071 1)
(s2072 1)
(s2073 1)
(s2074 1)
(s2075 1)
(s2076 1)
(s2077 1)
(s2078 1)
(s2079 1)
(s2080 1)
(s2081 1)
(s2082 1)
(s2083 1)
(s2084 1)
(s2085 1)
(s2086 1)
(s2087 1)
(s2088 1)
(s2089 1)
(s2090 1)
(s2091 1)
(s2092 1)
(s2093 1)
(s2094 1)
(s2095 1)
(s2096 1)
(s2097 1)
(s2098 1)
(s2099 1)
(s2100 1)
(s2101 1)
(s2102 1)
(s2103 1)
(s2104 1)
(s2105 1)
(s2106 1)
(s2107 1)
(s2108 1)
(s2109 1)
(s2110 1)
(s2111 1)
(s2112 1)
(s2113 1)
(s2114 1)
(s2115 1)
(s2116 1)
(s2117 1)
(s2118 1)
(s2119 1)
(s2120 1)
(s2121 1)
(s2122 1)
(s2123 1)
(s2124 1)
(s2125 1)
(s2126 1)
(s2127 1)
(s2128 1)
(s2129 1)
(s2130 1)
(s2131 1)
(s2132 1)
(s2133 1)
(s2134 1)
(s2135 1)
(s2136 1)
(s2137 1)
(s2138 1)
(s2139 1)
(s2140 1)
(s2141 1)
(s2142 1)
(s2143 1)
(s2144 1)
(s2145 1)
(s2146 1)
(s2147 1)
(s2148 1)
(s2149 1)
(s2150 1)
(s2151 1)
(s2152 1)
(s2153 1)
(s2154 1)
(s2155 1)
(s2156 1)
(s2157 1)
(s2158 1)
(s2159 1)
(s2160 1)
(s2161 1)
(s2162 1)
(s2163 1)
(s2164 1)
(s2165 1)
(s2166 1)
(s2167 1)
(s2168 1)
(s2169 1)
(s2170 1)
(s2171 1)
(s2172 1)
(s2173 1)
(s2174 1)
(s2175 1)
(s2176 1)
(s2177 1)
(s2178 1)
(s2179 1)
(s2180 1)
(s2181 1)
(s2182 1)
(s2183 1)
(s2184 1)
(s2185 1)
(s2186 1)
(s2187 1)
(s2188 1)
(s2189 1)
(s2190 1)
(s2191 1)
(s2192 1)
(s2193 1)
(s2194 1)
(s2195 1)
(s2196 1)
(s2197 1)
(s2198 1)
(s2199 1)
(s2200 1)
(s2201 1)
(s2202 1)
(s2203 1)
(s2204 1)
(s2205 1)
(s2206 1)
(s2207 1)
(s2208 1)
(s2209 1)
(s2210 1)
(s2211 1)
(s2212 1)
(s2213 1)
(s2214 1)
(s2215 1)
(s2216 1)
(s2217 1)
(s2218 1)
(s2219 1)
(s2220 1)
(s2221 1)
(s2222 1)
(s2223 1)
(s2224 1)
(s2225 1)
(s2226 1)
(s2227 1)
(s2228 1)
(s2229 1)
(s2230 1)
(s2231 1)
(s2232 1)
(s2233 1)
(s2234 1)
(s2235 1)
(s2236 1)
(s2237 1)
(s2238 1)
(s2239 1)
(s2240 1)
(s2241 1)
(s2242 1)
(s2243 1)
(s2244 1)
(s2245 1)
(s2246 1)
(s2247 1)
(s2248 1)
(s2249 1)
(s2250 1)
(s2251 1)
(s2252 1)
(s2253 1)
(s2254 1)
(s2255 1)
(s2256 1)
(s2257 1)
(s2258 1)
(s2259 1)
(s2260 1)
(s2261 1)
(s2262 1)
(s2263 1)
(s2264 1)
(s2265 1)
(s2266 1)
(s2267 1)
(s2268 1)
(s2269 1)
(s2270 1)
(s2271 1)
(s2272 1)
(s2273 1)
(s2274 1)
(s2275 1)
(s2276 1)
(s2277 1)
(s2278 1)
(s2279 1)
(s2280 1)
(s2281 1)
(s2282 1)
(s2283 1)
(s2284 1)
(s2285 1)
(s2286 1)
(s2287 1)
(s2288 1)
(s2289 1)
(s2290 1)
(s2291 1)
(s2292 1)
(s2293 1)
(s2294 1)
(s2295 1)
(s2296 1)
(s2297 1)
(s2298 1)
(s2299 1)
(s2300 1)
(s2301 1)
(s2302 1)
(s2303 1)
(s2304 1)
(s2305 1)
(s2306 1)
(s2307 1)
(s2308 1)
(s2309 1)
(s2310 1)
(s2311 1)
(s2312 1)
(s2313 1)
(s2314 1)
(s2315 1)
(s2316 1)
(s2317 1)
(s2318 1)
(s2319 1)
(s2320 1)
(s2321 1)
(s2322 1)
(s2323 1)
(s2324 1)
(s2325 1)
(s2326 1)
(s2327 1)
(s2328 1)
(s2329 1)
(s2330 1)
(s2331 1)
(s2332 1)
(s2333 1)
(s2334 1)
(s2335 1)
(s2336 1)
(s2337 1)
(s2338 1)
(s2339 1)
(s2340 1)
(s2341 1)
(s2342 1)
(s2343 1)
(s2344 1)
(s2345 1)
(s2346 1)
(s2347 1)
(s2348 1)
(s2349 1)
(s2350 1)
(s2351 1)
(s2352 1)
(s2353 1)
(s2354 1)
(s2355 1)
(s2356 1)
(s2357 1)
(s2358 1)
(s2359 1)
(s2360 1)
(s2361 1)
(s2362 1)
(s2363 1)
(s2364 1)
(s2365 1)
(s2366 1)
(s2367 1)
(s2368 1)
(s2369 1)
(s2370 1)
(s2371 1)
(s2372 1)
(s2373 1)
(s2374 1)
(s2375 1)
(s2376 1)
(s2377 1)
(s2378 1)
(s2379 1)
(s2380 1)
(s2381 1)
(s2382 1)
(s2383 1)
(s2384 1)
(s2385 1)
(s2386 1)
(s2387 1)
(s2388 1)
(s2389 1)
(s2390 1)
(s2391 1)
(s2392 1)
(s2393 1)
(s2394 1)
(s2395 1)
(s2396 1)
(s2397 1)
(s2398 1)
(s2399 1)
(s2400 1)
(s2401 1)
(s2402 1)
(s2403 1)
(s2404 1)
(s2405 1)
(s2406 1)
(s2407 1)
(s2408 1)
(s2409 1)
(s2410 1)
(s2411 1)
(s2412 1)
(s2413 1)
(s2414 1)
(s2415 1)
(s2416 1)
(s2417 1)
(s2418 1)
(s2419 1)
(s2420 1)
(s2421 1)
(s2422 1)
(s2423 1)
(s2424 1)
(s2425 1)
(s2426 1)
(s2427 1)
(s2428 1)
(s2429 1)
(s2430 1)
(s2431 1)
(s2432 1)
(s2433 1)
(s2434 1)
(s2435 1)
(s2436 1)
(s2437 1)
(s2438 1)
(s2439 1)
(s2440 1)
(s2441 1)
(s2442 1)
(s2443 1)
(s2444 1)
(s2445 1)
(s2446 1)
(s2447 1)
(s2448 1)
(s2449 1)
(s2450 1)
(s2451 1)
(s2452 1)
(s2453 1)
(s2454 1)
(s2455 1)
(s2456 1)
(s2457 1)
(s2458 1)
(s2459 1)
(s2460 1)
(s2461 1)
(s2462 1)
(s2463 1)
(s2464 1)
(s2465 1)
(s2466 1)
(s2467 1)
(s2468 1)
(s2469 1)
(s2470 1)
(s2471 1)
(s2472 1)
(s2473 1)
(s2474 1)
(s2475 1)
(s2476 1)
(s2477 1)
(s2478 1)
(s2479 1)
(s2480 1)
(s2481 1)
(s2482 1)
(s2483 1)
(s2484 1)
(s2485 1)
(s2486 1)
(s2487 1)
(s2488 1)
(s2489 1)
(s2490 1)
(s2491 1)
(s2492 1)
(s2493 1)
(s2494 1)
(s2495 1)
(s2496 1)
(s2497 1)
(s2498 1)
(s2499 1)
(s2500 1)
(s2501 1)
(s2502 1)
(s2503 1)
(s2504 1)
(s2505 1)
(s2506 1)
(s2507 1)
(s2508 1)
(s2509 1)
(s2510 1)
(s2511 1)
(s2512 1)
(s2513 1)
(s2514 1)
(s2515 1)
(s2516 1)
(s2517 1)
(s2518 1)
(s2519 1)
(s2520 1)
(s2521 1)
(s2522 1)
(s2523 1)
(s2524 1)
(s2525 1)
(s2526 1)
(s2527 1)
(s2528 1)
(s2529 1)
(s2530 1)
(s2531 1)
(s2532 1)
(s2533 1)
(s2534 1)
(s2535 1)
(s2536 1)
(s2537 1)
(s2538 1)
(s2539 1)
(s2540 1)
(s2541 1)
(s2542 1)
(s2543 1)
(s2544 1)
(s2545 1)
(s2546 1)
(s2547 1)
(s2548 1)
(s2549 1)
(s2550 1)
(s2551 1)
(s2552 1)
(s2553 1)
(s2554 1)
(s2555 1)
(s2556 1)
(s2557 1)
(s2558 1)
(s2559 1)
(s2560 1)
(s2561 1)
(s2562 1)
(s2563 1)
(s2564 1)
(s2565 1)
(s2566 1)
(s2567 1)
(s2568 1)
(s2569 1)
(s2570 1)
(s2571 1)
(s2572 1)
(s2573 1)
(s2574 1)
(s2575 1)
(s2576 1)
(s2577 1)
(s2578 1)
(s2579 1)
(s2580 1)
(s2581 1)
(s2582 1)
(s2583 1)
(s2584 1)
(s2585 1)
(s2586 1)
(s2587 1)
(s2588 1)
(s2589 1)
(s2590 1)
(s2591 1)
(s2592 1)
(s2593 1)
(s2594 1)
(s2595 1)
(s2596 1)
(s2597 1)
(s2598 1)
(s2599 1)
(s2600 1)
(s2601 1)
(s2602 1)
(s2603 1)
(s2604 1)
(s2605 1)
(s2606 1)
(s2607 1)
(s2608 1)
(s2609 1)
(s2610 1)
(s2611 1)
(s2612 1)
(s2613 1)
(s2614 1)
(s2615 1)
(s2616 1)
(s2617 1)
(s2618 1)
(s2619 1)
(s2620 1)
(s2621 1)
(s2622 1)
(s2623 1)
(s2624 1)
(s2625 1)
(s2626 1)
(s2627 1)
(s2628 1)
(s2629 1)
(s2630 1)
(s2631 1)
(s2632 1)
(s2633 1)
(s2634 1)
(s2635 1)
(s2636 1)
(s2637 1)
(s2638 1)
(s2639 1)
(s2640 1)
(s2641 1)
(s2642 1)
(s2643 1)
(s2644 1)
(s2645 1)
(s2646 1)
(s2647 1)
(s2648 1)
(s2649 1)
(s2650 1)
(s2651 1)
(s2652 1)
(s2653 1)
(s2654 1)
(s2655 1)
(s2656 1)
(s2657 1)
(s2658 1)
(s2659 1)
(s2660 1)
(s2661 1)
(s2662 1)
(s2663 1)
(s2664 1)
(s2665 1)
(s2666 1)
(s2667 1)
(s2668 1)
(s2669 1)
(s2670 1)
(s2671 1)
(s2672 1)
(s2673 1)
(s2674 1)
(s2675 1)
(s2676 1)
(s2677 1)
(s2678 1)
(s2679 1)
(s2680 1)
(s2681 1)
(s2682 1)
(s2683 1)
(s2684 1)
(s2685 1)
(s2686 1)
(s2687 1)
(s2688 1)
(s2689 1)
(s2690 1)
(s2691 1)
(s2692 1)
(s2693 1)
(s2694 1)
(s2695 1)
(s2696 1)
(s2697 1)
(s2698 1)
(s2699 1)
(s2700 1)
(s2701 1)
(s2702 1)
(s2703 1)
(s2704 1)
(s2705 1)
(s2706 1)
(s2707 1)
(s2708 1)
(s2709 1)
(s2710 1)
(s2711 1)
(s2712 1)
(s2713 1)
(s2714 1)
(s2715 1)
(s2716 1)
(s2717 1)
(s2718 1)
(s2719 1)
(s2720 1)
(s2721 1)
(s2722 1)
(s2723 1)
(s2724 1)
(s2725 1)
(s2726 1)
(s2727 timeout
org.smtlib.IParser$ParserException: Unbalanced parentheses at end of input")
Solver is answering 'unknown', stopping.
After SMT solving in domain Int declared 2880/10080 variables, and 0 constraints, problems are : Problem set: 0 solved, 4980 unsolved in 30087 ms.
Refiners :[Positive P Invariants (semi-flows): 0/60 constraints, State Equation: 0/2940 constraints, PredecessorRefiner: 0/4980 constraints, Known Traps: 0/0 constraints]
After SMT, in 63635ms problems are : Problem set: 0 solved, 4980 unsolved
Search for dead transitions found 0 dead transitions in 63692ms
Starting structural reductions in LTL mode, iteration 1 : 2940/7920 places, 7140/12120 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 73420 ms. Remains : 2940/7920 places, 7140/12120 transitions.
Stuttering acceptance computed with spot in 197 ms :[(OR (NOT p1) (NOT p0)), (OR (NOT p1) (NOT p0)), (OR (NOT p1) (NOT p0)), (NOT p0), (NOT p1)]
Running random walk in product with property : BART-PT-060-LTLFireability-14
Product exploration explored 100000 steps with 6 reset in 992 ms.
Product exploration explored 100000 steps with 0 reset in 1049 ms.
Computed a total of 0 stabilizing places and 0 stable transitions
Computed a total of 0 stabilizing places and 0 stable transitions
Knowledge obtained : [(AND (NOT p1) p0)]
False Knowledge obtained : []
Knowledge based reduction with 1 factoid took 79 ms. Reduced automaton from 5 states, 7 edges and 2 AP (stutter sensitive) to 5 states, 7 edges and 2 AP (stutter sensitive).
Stuttering acceptance computed with spot in 185 ms :[(OR (NOT p1) (NOT p0)), (OR (NOT p1) (NOT p0)), (OR (NOT p1) (NOT p0)), (NOT p0), (NOT p1)]
RANDOM walk for 20051 steps (4 resets) in 594 ms. (33 steps per ms) remains 0/2 properties
Knowledge obtained : [(AND (NOT p1) p0)]
False Knowledge obtained : [(F p1), (F (NOT p0))]
Knowledge based reduction with 1 factoid took 120 ms. Reduced automaton from 5 states, 7 edges and 2 AP (stutter sensitive) to 5 states, 7 edges and 2 AP (stutter sensitive).
Stuttering acceptance computed with spot in 184 ms :[(OR (NOT p1) (NOT p0)), (OR (NOT p1) (NOT p0)), (OR (NOT p1) (NOT p0)), (NOT p0), (NOT p1)]
Stuttering acceptance computed with spot in 181 ms :[(OR (NOT p1) (NOT p0)), (OR (NOT p1) (NOT p0)), (OR (NOT p1) (NOT p0)), (NOT p0), (NOT p1)]
[2024-05-22 15:24:44] [INFO ] Invariant cache hit.
[2024-05-22 15:24:48] [INFO ] [Real]Absence check using 60 positive place invariants in 4 ms returned unsat
Proved EG (NOT p1)
Knowledge obtained : [(AND (NOT p1) p0)]
False Knowledge obtained : [(F p1), (F (NOT p0)), (G (NOT p1))]
Property proved to be false thanks to negative knowledge :(G (NOT p1))
Knowledge based reduction with 1 factoid took 145 ms. Reduced automaton from 5 states, 7 edges and 2 AP (stutter sensitive) to 1 states, 1 edges and 0 AP (stutter insensitive).
FORMULA BART-PT-060-LTLFireability-14 FALSE TECHNIQUES KNOWLEDGE
Treatment of property BART-PT-060-LTLFireability-14 finished in 81494 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202405141337/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(F(G(p0)))'
Support contains 1 out of 7920 places. Attempting structural reductions.
Starting structural reductions in SI_LTL mode, iteration 0 : 7920/7920 places, 12120/12120 transitions.
Graph (trivial) has 12118 edges and 7920 vertex of which 7919 / 7920 are part of one of the 60 SCC in 12 ms
Free SCC test removed 7859 places
Ensure Unique test removed 12058 transitions
Reduce isomorphic transitions removed 12058 transitions.
Reduce places removed 59 places and 0 transitions.
Ensure Unique test removed 58 transitions
Reduce isomorphic transitions removed 58 transitions.
Iterating post reduction 0 with 58 rules applied. Total rules applied 59 place count 2 transition count 4
Drop transitions (Redundant composition of simpler transitions.) removed 1 transitions
Redundant transition composition rules discarded 1 transitions
Iterating global reduction 1 with 1 rules applied. Total rules applied 60 place count 2 transition count 3
Applied a total of 60 rules in 40 ms. Remains 2 /7920 variables (removed 7918) and now considering 3/12120 (removed 12117) transitions.
// Phase 1: matrix 3 rows 2 cols
[2024-05-22 15:24:49] [INFO ] Computed 1 invariants in 0 ms
[2024-05-22 15:24:49] [INFO ] Implicit Places using invariants in 17 ms returned []
[2024-05-22 15:24:49] [INFO ] Invariant cache hit.
[2024-05-22 15:24:49] [INFO ] Implicit Places using invariants and state equation in 18 ms returned []
Implicit Place search using SMT with State Equation took 38 ms to find 0 implicit places.
[2024-05-22 15:24:49] [INFO ] Redundant transitions in 0 ms returned []
Running 1 sub problems to find dead transitions.
[2024-05-22 15:24:49] [INFO ] Invariant cache hit.
At refinement iteration 0 (INCLUDED_ONLY) 0/1 variables, 1/1 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 1 (INCLUDED_ONLY) 0/1 variables, 0/1 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 2 (OVERLAPS) 1/2 variables, 1/2 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 3 (INCLUDED_ONLY) 0/2 variables, 1/3 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 4 (INCLUDED_ONLY) 0/2 variables, 0/3 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 5 (OVERLAPS) 2/4 variables, 2/5 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 6 (INCLUDED_ONLY) 0/4 variables, 0/5 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 7 (OVERLAPS) 0/4 variables, 0/5 constraints. Problems are: Problem set: 0 solved, 1 unsolved
No progress, stopping.
After SMT solving in domain Real declared 4/5 variables, and 5 constraints, problems are : Problem set: 0 solved, 1 unsolved in 25 ms.
Refiners :[Domain max(s): 2/2 constraints, Positive P Invariants (semi-flows): 1/1 constraints, State Equation: 2/2 constraints, PredecessorRefiner: 1/1 constraints, Known Traps: 0/0 constraints]
Escalating to Integer solving :Problem set: 0 solved, 1 unsolved
At refinement iteration 0 (INCLUDED_ONLY) 0/1 variables, 1/1 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 1 (INCLUDED_ONLY) 0/1 variables, 0/1 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 2 (OVERLAPS) 1/2 variables, 1/2 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 3 (INCLUDED_ONLY) 0/2 variables, 1/3 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 4 (INCLUDED_ONLY) 0/2 variables, 0/3 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 5 (OVERLAPS) 2/4 variables, 2/5 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 6 (INCLUDED_ONLY) 0/4 variables, 1/6 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 7 (INCLUDED_ONLY) 0/4 variables, 0/6 constraints. Problems are: Problem set: 0 solved, 1 unsolved
At refinement iteration 8 (OVERLAPS) 0/4 variables, 0/6 constraints. Problems are: Problem set: 0 solved, 1 unsolved
No progress, stopping.
After SMT solving in domain Int declared 4/5 variables, and 6 constraints, problems are : Problem set: 0 solved, 1 unsolved in 27 ms.
Refiners :[Domain max(s): 2/2 constraints, Positive P Invariants (semi-flows): 1/1 constraints, State Equation: 2/2 constraints, PredecessorRefiner: 1/1 constraints, Known Traps: 0/0 constraints]
After SMT, in 58ms problems are : Problem set: 0 solved, 1 unsolved
Search for dead transitions found 0 dead transitions in 58ms
Starting structural reductions in SI_LTL mode, iteration 1 : 2/7920 places, 3/12120 transitions.
Finished structural reductions in SI_LTL mode , in 1 iterations and 141 ms. Remains : 2/7920 places, 3/12120 transitions.
Stuttering acceptance computed with spot in 35 ms :[(NOT p0)]
Running random walk in product with property : BART-PT-060-LTLFireability-15
Stuttering criterion allowed to conclude after 0 steps with 0 reset in 0 ms.
FORMULA BART-PT-060-LTLFireability-15 FALSE TECHNIQUES STUTTER_TEST
Treatment of property BART-PT-060-LTLFireability-15 finished in 191 ms.
Running Spot : '/home/mcc/BenchKit/itstools/itstools/plugins/fr.lip6.ltl.spot.binaries_1.0.0.202405141337/bin/ltl2tgba-linux64' '--check=stutter' '--hoaf=tv' '-f' '!(F((G(p0)||G((F(p0)&&F(G(p1)))))))'
[2024-05-22 15:24:49] [INFO ] Flatten gal took : 318 ms
[2024-05-22 15:24:49] [INFO ] Export to MCC of 1 properties in file /home/mcc/execution/LTLFireability.sr.xml took 59 ms.
[2024-05-22 15:24:50] [INFO ] Export to PNML in file /home/mcc/execution/model.sr.pnml of net with 7920 places, 12120 transitions and 24240 arcs took 55 ms.
Total runtime 1169178 ms.
There are residual formulas that ITS could not solve within timeout
----------------------------------------------------------------------
GreatSPN-meddly tool, MCC 2023
----------------------------------------------------------------------
Running BART-PT-060
IS_COLORED=
IS_NUPN=
LOADING PETRI NET FILE /home/mcc/execution/412/model.pnml (PNML) ...
PNML VERSION 2009, P/T NET.
COLOR CLASSES: 0
CONSTANTS: 0
PLACES: 7920
TRANSITIONS: 12120
COLOR VARS: 0
MEASURES: 0
LOADING TIME: [User 0.213s, Sys 0.019s]
SAVING FILE /home/mcc/execution/412/model (.net / .def) ...
EXPORT TIME: [User 0.056s, Sys 0.000s]
----------------------------------------------------------------------
GreatSPN/Meddly.
Copyright (C) 1987-2022, University of Torino, Italy.
website: https://github.com/greatspn/SOURCES
Based on MEDDLY version 0.16.0
Copyright (C) 2009, Iowa State University Research Foundation, Inc.
website: http://meddly.sourceforge.net
Process ID: 1731
MODEL NAME: /home/mcc/execution/412/model
7920 places, 12120 transitions.
Creating all event NSFs..
Creating all event NSFs..
Creating all event NSFs..
Creating all event NSFs..
Split: SplitSubtract
Start RS construction.
Split: SplitSubtract
Start RS construction.
Split: SplitSubtract
Start RS construction.
Split: SplitSubtract
Start RS construction.
Building monolithic NSF...
FORMULA BART-PT-060-LTLFireability-03 CANNOT_COMPUTE
Ok.
EXITCODE: 0
----------------------------------------------------------------------
BK_STOP 1716391801109
--------------------
content from stderr:
+ ulimit -s 65536
+ [[ -z '' ]]
+ export LTSMIN_MEM_SIZE=8589934592
+ LTSMIN_MEM_SIZE=8589934592
+ export PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ export LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
+ LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
++ sed s/.jar//
++ perl -pe 's/.*\.//g'
++ ls /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/plugins/fr.lip6.move.gal.application.pnmcc_1.0.0.202405141337.jar
+ VERSION=202405141337
+ echo 'Running Version 202405141337'
+ /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/its-tools -pnfolder /home/mcc/execution -examination LTLFireability -timeout 360 -rebuildPNML
ERROR: std::bad_alloc
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="BART-PT-060"
export BK_EXAMINATION="LTLFireability"
export BK_TOOL="greatspnxred"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5568"
echo " Executing tool greatspnxred"
echo " Input is BART-PT-060, examination is LTLFireability"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r025-smll-171620166700500"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/BART-PT-060.tgz
mv BART-PT-060 execution
cd execution
if [ "LTLFireability" = "ReachabilityDeadlock" ] || [ "LTLFireability" = "UpperBounds" ] || [ "LTLFireability" = "QuasiLiveness" ] || [ "LTLFireability" = "StableMarking" ] || [ "LTLFireability" = "Liveness" ] || [ "LTLFireability" = "OneSafe" ] || [ "LTLFireability" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "LTLFireability" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "LTLFireability" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "LTLFireability.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property LTLFireability.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "LTLFireability.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "LTLFireability" = "ReachabilityDeadlock" ] || [ "LTLFireability" = "QuasiLiveness" ] || [ "LTLFireability" = "StableMarking" ] || [ "LTLFireability" = "Liveness" ] || [ "LTLFireability" = "OneSafe" ] ; then
echo "FORMULA_NAME LTLFireability"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;