fond
Model Checking Contest 2023
13th edition, Paris, France, April 26, 2023 (at TOOLympics II)
Execution of r522-tall-167987247300398
Last Updated
May 14, 2023

About the Execution of Marcie+red for PGCD-COL-D02N100

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
12851.495 3600000.00 3630429.00 13033.20 TTFFTFFFTTTTFTTF normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Formatting '/data/fkordon/mcc2023-input.r522-tall-167987247300398.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2023-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
........................................................
=====================================================================
Generated by BenchKit 2-5348
Executing tool marciexred
Input is PGCD-COL-D02N100, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r522-tall-167987247300398
=====================================================================

--------------------
preparation of the directory to be used:
/home/mcc/execution
total 376K
-rw-r--r-- 1 mcc users 5.8K Mar 23 15:25 CTLCardinality.txt
-rw-r--r-- 1 mcc users 59K Mar 23 15:25 CTLCardinality.xml
-rw-r--r-- 1 mcc users 4.7K Mar 23 15:21 CTLFireability.txt
-rw-r--r-- 1 mcc users 43K Mar 23 15:21 CTLFireability.xml
-rw-r--r-- 1 mcc users 3.3K Mar 23 07:07 LTLCardinality.txt
-rw-r--r-- 1 mcc users 24K Mar 23 07:07 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.0K Mar 23 07:07 LTLFireability.txt
-rw-r--r-- 1 mcc users 17K Mar 23 07:07 LTLFireability.xml
-rw-r--r-- 1 mcc users 1 Mar 26 22:42 NewModel
-rw-r--r-- 1 mcc users 7.5K Mar 23 15:28 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 77K Mar 23 15:28 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 7.7K Mar 23 15:27 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 71K Mar 23 15:27 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.6K Mar 23 07:07 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.6K Mar 23 07:07 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Mar 26 22:42 equiv_pt
-rw-r--r-- 1 mcc users 8 Mar 26 22:42 instance
-rw-r--r-- 1 mcc users 5 Mar 26 22:42 iscolored
-rw-r--r-- 1 mcc users 11K Mar 31 16:48 model.pnml

--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME PGCD-COL-D02N100-ReachabilityCardinality-00
FORMULA_NAME PGCD-COL-D02N100-ReachabilityCardinality-01
FORMULA_NAME PGCD-COL-D02N100-ReachabilityCardinality-02
FORMULA_NAME PGCD-COL-D02N100-ReachabilityCardinality-03
FORMULA_NAME PGCD-COL-D02N100-ReachabilityCardinality-04
FORMULA_NAME PGCD-COL-D02N100-ReachabilityCardinality-05
FORMULA_NAME PGCD-COL-D02N100-ReachabilityCardinality-06
FORMULA_NAME PGCD-COL-D02N100-ReachabilityCardinality-07
FORMULA_NAME PGCD-COL-D02N100-ReachabilityCardinality-08
FORMULA_NAME PGCD-COL-D02N100-ReachabilityCardinality-09
FORMULA_NAME PGCD-COL-D02N100-ReachabilityCardinality-10
FORMULA_NAME PGCD-COL-D02N100-ReachabilityCardinality-11
FORMULA_NAME PGCD-COL-D02N100-ReachabilityCardinality-12
FORMULA_NAME PGCD-COL-D02N100-ReachabilityCardinality-13
FORMULA_NAME PGCD-COL-D02N100-ReachabilityCardinality-14
FORMULA_NAME PGCD-COL-D02N100-ReachabilityCardinality-15

=== Now, execution of the tool begins

BK_START 1680810951771

bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marciexred
BK_EXAMINATION=ReachabilityCardinality
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=PGCD-COL-D02N100
Applying reductions before tool marcie
Invoking reducer
Running Version 202304061127
[2023-04-06 19:55:53] [INFO ] Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, ReachabilityCardinality, -timeout, 360, -rebuildPNML]
[2023-04-06 19:55:53] [INFO ] Parsing pnml file : /home/mcc/execution/model.pnml
[2023-04-06 19:55:53] [INFO ] Detected file is not PT type :http://www.pnml.org/version-2009/grammar/symmetricnet
log4j:WARN No appenders could be found for logger (org.apache.axiom.locator.DefaultOMMetaFactoryLocator).
log4j:WARN Please initialize the log4j system properly.
log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.
[2023-04-06 19:55:53] [WARNING] Using fallBack plugin, rng conformance not checked
[2023-04-06 19:55:53] [INFO ] Load time of PNML (colored model parsed with PNMLFW) : 397 ms
[2023-04-06 19:55:53] [INFO ] Imported 3 HL places and 3 HL transitions for a total of 9 PT places and 9.0 transition bindings in 21 ms.
Parsed 16 properties from file /home/mcc/execution/ReachabilityCardinality.xml in 20 ms.
Working with output stream class java.io.PrintStream
[2023-04-06 19:55:53] [INFO ] Built PT skeleton of HLPN with 3 places and 3 transitions 14 arcs in 4 ms.
[2023-04-06 19:55:53] [INFO ] Skeletonized 16 HLPN properties in 2 ms.
Remains 16 properties that can be checked using skeleton over-approximation.
Initial state reduction rules removed 7 formulas.
FORMULA PGCD-COL-D02N100-ReachabilityCardinality-01 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA PGCD-COL-D02N100-ReachabilityCardinality-03 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA PGCD-COL-D02N100-ReachabilityCardinality-04 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA PGCD-COL-D02N100-ReachabilityCardinality-06 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA PGCD-COL-D02N100-ReachabilityCardinality-08 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA PGCD-COL-D02N100-ReachabilityCardinality-13 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA PGCD-COL-D02N100-ReachabilityCardinality-14 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
Computed a total of 0 stabilizing places and 0 stable transitions
[2023-04-06 19:55:53] [INFO ] Flatten gal took : 12 ms
[2023-04-06 19:55:53] [INFO ] Flatten gal took : 1 ms
Arc [2:1*[(MOD (ADD $x 1) 3)]] contains successor/predecessor on variables of sort CD
[2023-04-06 19:55:53] [INFO ] Unfolded HLPN to a Petri net with 9 places and 9 transitions 42 arcs in 5 ms.
[2023-04-06 19:55:53] [INFO ] Unfolded 9 HLPN properties in 1 ms.
Incomplete random walk after 10089 steps, including 2 resets, run finished after 33 ms. (steps per millisecond=305 ) properties (out of 9) seen :6
FORMULA PGCD-COL-D02N100-ReachabilityCardinality-12 FALSE TECHNIQUES TOPOLOGICAL RANDOM_WALK
FORMULA PGCD-COL-D02N100-ReachabilityCardinality-11 TRUE TECHNIQUES TOPOLOGICAL RANDOM_WALK
FORMULA PGCD-COL-D02N100-ReachabilityCardinality-07 FALSE TECHNIQUES TOPOLOGICAL RANDOM_WALK
FORMULA PGCD-COL-D02N100-ReachabilityCardinality-05 FALSE TECHNIQUES TOPOLOGICAL RANDOM_WALK
FORMULA PGCD-COL-D02N100-ReachabilityCardinality-02 FALSE TECHNIQUES TOPOLOGICAL RANDOM_WALK
FORMULA PGCD-COL-D02N100-ReachabilityCardinality-00 TRUE TECHNIQUES TOPOLOGICAL RANDOM_WALK
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 74 ms. (steps per millisecond=135 ) properties (out of 3) seen :2
FORMULA PGCD-COL-D02N100-ReachabilityCardinality-15 FALSE TECHNIQUES TOPOLOGICAL BESTFIRST_WALK
FORMULA PGCD-COL-D02N100-ReachabilityCardinality-09 TRUE TECHNIQUES TOPOLOGICAL BESTFIRST_WALK
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 56 ms. (steps per millisecond=178 ) properties (out of 1) seen :0
Running SMT prover for 1 properties.
// Phase 1: matrix 9 rows 9 cols
[2023-04-06 19:55:54] [INFO ] Computed 4 invariants in 5 ms
[2023-04-06 19:55:54] [INFO ] After 129ms SMT Verify possible using all constraints in real domain returned unsat :0 sat :0 real:1
[2023-04-06 19:55:54] [INFO ] [Nat]Absence check using 2 positive place invariants in 1 ms returned sat
[2023-04-06 19:55:54] [INFO ] [Nat]Absence check using 2 positive and 2 generalized place invariants in 1 ms returned sat
[2023-04-06 19:55:54] [INFO ] After 33ms SMT Verify possible using all constraints in natural domain returned unsat :1 sat :0
FORMULA PGCD-COL-D02N100-ReachabilityCardinality-10 TRUE TECHNIQUES STRUCTURAL_REDUCTION TOPOLOGICAL SAT_SMT
Fused 1 Parikh solutions to 0 different solutions.
Parikh walk visited 0 properties in 1 ms.
All properties solved without resorting to model-checking.
Total runtime 1105 ms.
timeout --kill-after=10s --signal=SIGINT 1m for testing only

Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets

authors: Alex Tovchigrechko (IDD package and CTL model checking)

Martin Schwarick (Symbolic numerical analysis and CSL model checking)

Christian Rohr (Simulative and approximative numerical model checking)

marcie@informatik.tu-cottbus.de

called as: /home/mcc/BenchKit/bin//../reducer/bin//../../marcie/bin/marcie --net-file=model.pnml --mcc-file=ReachabilityCardinality.xml --memory=6 --mcc-mode

parse successfull
net created successfully

Unfolding complete |P|=9|T|=9|A|=42
Time for unfolding: 0m 0.203sec

Net: PGCD_COL_D02N100
(NrP: 9 NrTr: 9 NrArc: 42)

parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec

net check time: 0m 0.000sec

init dd package: 0m 2.736sec


RS generation: 0m11.634sec


-> reachability set: #nodes 49631 (5.0e+04) #states 5,588,167,526 (9)



starting MCC model checker
--------------------------

checking: EF [~ [sum(p2_c2, p2_c1, p2_c0)<=90]]
normalized: E [true U ~ [sum(p2_c2, p2_c1, p2_c0)<=90]]

abstracting: (sum(p2_c2, p2_c1, p2_c0)<=90)
states: 916,003,431 (8)
-> the formula is TRUE

FORMULA PGCD-COL-D02N100-ReachabilityCardinality-00 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m51.426sec

checking: AG [sum(p0_c2, p0_c1, p0_c0)<=0]
normalized: ~ [E [true U ~ [sum(p0_c2, p0_c1, p0_c0)<=0]]]

abstracting: (sum(p0_c2, p0_c1, p0_c0)<=0)
states: 0
-> the formula is FALSE

FORMULA PGCD-COL-D02N100-ReachabilityCardinality-03 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 2.887sec

checking: AG [39<=sum(p2_c2, p2_c1, p2_c0)]
normalized: ~ [E [true U ~ [39<=sum(p2_c2, p2_c1, p2_c0)]]]

abstracting: (39<=sum(p2_c2, p2_c1, p2_c0))
states: 5,486,673,206 (9)
MC time: 4m16.084sec

checking: AG [sum(p2_c2, p2_c1, p2_c0)<=9]
normalized: ~ [E [true U ~ [sum(p2_c2, p2_c1, p2_c0)<=9]]]

abstracting: (sum(p2_c2, p2_c1, p2_c0)<=9)
states: 2,387,046 (6)
-> the formula is FALSE

FORMULA PGCD-COL-D02N100-ReachabilityCardinality-07 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 3.842sec

checking: EF [34<=sum(p1_c2, p1_c1, p1_c0)]
normalized: E [true U 34<=sum(p1_c2, p1_c1, p1_c0)]

abstracting: (34<=sum(p1_c2, p1_c1, p1_c0))
states: 5,518,312,214 (9)
-> the formula is TRUE

FORMULA PGCD-COL-D02N100-ReachabilityCardinality-08 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m11.711sec

checking: EF [22<=sum(p0_c2, p0_c1, p0_c0)]
normalized: E [true U 22<=sum(p0_c2, p0_c1, p0_c0)]

abstracting: (22<=sum(p0_c2, p0_c1, p0_c0))
states: 5,567,130,448 (9)
-> the formula is TRUE

FORMULA PGCD-COL-D02N100-ReachabilityCardinality-11 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 4.804sec

checking: AG [~ [83<=sum(p2_c2, p2_c1, p2_c0)]]
normalized: ~ [E [true U 83<=sum(p2_c2, p2_c1, p2_c0)]]

abstracting: (83<=sum(p2_c2, p2_c1, p2_c0))
states: 4,856,085,017 (9)
-> the formula is FALSE

FORMULA PGCD-COL-D02N100-ReachabilityCardinality-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m25.176sec

checking: EF [sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0)]
normalized: E [true U sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0)]

abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0))
MC time: 5m24.000sec

checking: EF [sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)]
normalized: E [true U sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)]

abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0))
MC time: 4m51.000sec

checking: EF [sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0)]
normalized: E [true U sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0)]

abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0))
MC time: 4m22.000sec

checking: AG [[54<=sum(p1_c2, p1_c1, p1_c0) & ~ [[[~ [[[sum(p0_c2, p0_c1, p0_c0)<=38 | [sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0) & sum(p1_c2, p1_c1, p1_c0)<=19]] | 33<=sum(p0_c2, p0_c1, p0_c0)]] & ~ [sum(p0_c2, p0_c1, p0_c0)<=86]] | 62<=sum(p2_c2, p2_c1, p2_c0)]]]]
normalized: ~ [E [true U ~ [[54<=sum(p1_c2, p1_c1, p1_c0) & ~ [[62<=sum(p2_c2, p2_c1, p2_c0) | [~ [[33<=sum(p0_c2, p0_c1, p0_c0) | [sum(p0_c2, p0_c1, p0_c0)<=38 | [sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0) & sum(p1_c2, p1_c1, p1_c0)<=19]]]] & ~ [sum(p0_c2, p0_c1, p0_c0)<=86]]]]]]]]

abstracting: (sum(p0_c2, p0_c1, p0_c0)<=86)
states: 821,550,220 (8)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=19)
states: 16,208,236 (7)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 5,588,167,526 (9)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=38)
states: 101,494,320 (8)
abstracting: (33<=sum(p0_c2, p0_c1, p0_c0))
states: 5,523,840,532 (9)
abstracting: (62<=sum(p2_c2, p2_c1, p2_c0))
states: 5,238,856,656 (9)
abstracting: (54<=sum(p1_c2, p1_c1, p1_c0))
states: 5,344,981,478 (9)
-> the formula is FALSE

FORMULA PGCD-COL-D02N100-ReachabilityCardinality-05 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m33.091sec

checking: AG [~ [[[[[[[[sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0) | sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0)] | ~ [sum(p2_c2, p2_c1, p2_c0)<=60]] | ~ [[sum(p2_c2, p2_c1, p2_c0)<=58 | sum(p0_c2, p0_c1, p0_c0)<=92]]] & ~ [[sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0) & ~ [sum(p1_c2, p1_c1, p1_c0)<=86]]]] | [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) & [[[sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) | sum(p1_c2, p1_c1, p1_c0)<=8] | [sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0) & 30<=sum(p2_c2, p2_c1, p2_c0)]] & [[51<=sum(p0_c2, p0_c1, p0_c0) & sum(p0_c2, p0_c1, p0_c0)<=74] | ~ [sum(p0_c2, p0_c1, p0_c0)<=39]]]]] | sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0)] & 69<=sum(p2_c2, p2_c1, p2_c0)]]]
normalized: ~ [E [true U [69<=sum(p2_c2, p2_c1, p2_c0) & [sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0) | [[sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) & [[~ [sum(p0_c2, p0_c1, p0_c0)<=39] | [51<=sum(p0_c2, p0_c1, p0_c0) & sum(p0_c2, p0_c1, p0_c0)<=74]] & [[sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0) & 30<=sum(p2_c2, p2_c1, p2_c0)] | [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) | sum(p1_c2, p1_c1, p1_c0)<=8]]]] | [~ [[sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0) & ~ [sum(p1_c2, p1_c1, p1_c0)<=86]]] & [~ [[sum(p2_c2, p2_c1, p2_c0)<=58 | sum(p0_c2, p0_c1, p0_c0)<=92]] | [~ [sum(p2_c2, p2_c1, p2_c0)<=60] | [sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0) | sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0)]]]]]]]]]

abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0))
MC time: 4m18.000sec

checking: EF [~ [[[[[sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0) & ~ [[~ [49<=sum(p0_c2, p0_c1, p0_c0)] | 50<=sum(p0_c2, p0_c1, p0_c0)]]] & [sum(p0_c2, p0_c1, p0_c0)<=58 & [[~ [[sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0) & sum(p1_c2, p1_c1, p1_c0)<=25]] & ~ [sum(p2_c2, p2_c1, p2_c0)<=11]] & sum(p1_c2, p1_c1, p1_c0)<=58]]] | ~ [[[~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0)] & sum(p1_c2, p1_c1, p1_c0)<=0] & [~ [[sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0) & sum(p1_c2, p1_c1, p1_c0)<=62]] | ~ [[98<=sum(p0_c2, p0_c1, p0_c0) & sum(p2_c2, p2_c1, p2_c0)<=23]]]]]] | [~ [[21<=sum(p1_c2, p1_c1, p1_c0) | [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) | ~ [[[sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0) & sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0)] & sum(p2_c2, p2_c1, p2_c0)<=86]]]]] | sum(p2_c2, p2_c1, p2_c0)<=88]]]]
normalized: E [true U ~ [[[sum(p2_c2, p2_c1, p2_c0)<=88 | ~ [[21<=sum(p1_c2, p1_c1, p1_c0) | [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) | ~ [[sum(p2_c2, p2_c1, p2_c0)<=86 & [sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0) & sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0)]]]]]]] | [~ [[[~ [[98<=sum(p0_c2, p0_c1, p0_c0) & sum(p2_c2, p2_c1, p2_c0)<=23]] | ~ [[sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0) & sum(p1_c2, p1_c1, p1_c0)<=62]]] & [sum(p1_c2, p1_c1, p1_c0)<=0 & ~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0)]]]] | [[sum(p0_c2, p0_c1, p0_c0)<=58 & [sum(p1_c2, p1_c1, p1_c0)<=58 & [~ [sum(p2_c2, p2_c1, p2_c0)<=11] & ~ [[sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0) & sum(p1_c2, p1_c1, p1_c0)<=25]]]]] & [sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0) & ~ [[50<=sum(p0_c2, p0_c1, p0_c0) | ~ [49<=sum(p0_c2, p0_c1, p0_c0)]]]]]]]]]

abstracting: (49<=sum(p0_c2, p0_c1, p0_c0))
states: 5,400,371,008 (9)
abstracting: (50<=sum(p0_c2, p0_c1, p0_c0))
states: 5,389,969,408 (9)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0))
MC time: 3m50.000sec

checking: AG [[sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) | [[[~ [[[12<=sum(p0_c2, p0_c1, p0_c0) | ~ [sum(p0_c2, p0_c1, p0_c0)<=63]] & ~ [[[sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0) & sum(p2_c2, p2_c1, p2_c0)<=34] & [sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0) & sum(p2_c2, p2_c1, p2_c0)<=85]]]]] & sum(p2_c2, p2_c1, p2_c0)<=14] & [sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0) | [[~ [[[sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) & sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)] | ~ [sum(p2_c2, p2_c1, p2_c0)<=19]]] & [[[sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0) & 49<=sum(p0_c2, p0_c1, p0_c0)] | [43<=sum(p0_c2, p0_c1, p0_c0) & sum(p2_c2, p2_c1, p2_c0)<=7]] | [39<=sum(p1_c2, p1_c1, p1_c0) & [sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0) | sum(p2_c2, p2_c1, p2_c0)<=35]]]] & [sum(p1_c2, p1_c1, p1_c0)<=15 | sum(p1_c2, p1_c1, p1_c0)<=24]]]] & ~ [[[~ [sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0)] & 39<=sum(p0_c2, p0_c1, p0_c0)] | ~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)]]]]]]
normalized: ~ [E [true U ~ [[sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) | [~ [[~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)] | [39<=sum(p0_c2, p0_c1, p0_c0) & ~ [sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0)]]]] & [[sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0) | [[sum(p1_c2, p1_c1, p1_c0)<=15 | sum(p1_c2, p1_c1, p1_c0)<=24] & [[[39<=sum(p1_c2, p1_c1, p1_c0) & [sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0) | sum(p2_c2, p2_c1, p2_c0)<=35]] | [[43<=sum(p0_c2, p0_c1, p0_c0) & sum(p2_c2, p2_c1, p2_c0)<=7] | [sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0) & 49<=sum(p0_c2, p0_c1, p0_c0)]]] & ~ [[~ [sum(p2_c2, p2_c1, p2_c0)<=19] | [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) & sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)]]]]]] & [sum(p2_c2, p2_c1, p2_c0)<=14 & ~ [[~ [[[sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0) & sum(p2_c2, p2_c1, p2_c0)<=85] & [sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0) & sum(p2_c2, p2_c1, p2_c0)<=34]]] & [12<=sum(p0_c2, p0_c1, p0_c0) | ~ [sum(p0_c2, p0_c1, p0_c0)<=63]]]]]]]]]]]

abstracting: (sum(p0_c2, p0_c1, p0_c0)<=63)
states: 379,287,894 (8)
abstracting: (12<=sum(p0_c2, p0_c1, p0_c0))
states: 5,584,226,396 (9)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=34)
states: 75,567,905 (7)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0))
MC time: 3m24.000sec

checking: EF [[[~ [[~ [95<=sum(p0_c2, p0_c1, p0_c0)] & ~ [[[~ [[sum(p2_c2, p2_c1, p2_c0)<=95 & 17<=sum(p2_c2, p2_c1, p2_c0)]] | [~ [sum(p1_c2, p1_c1, p1_c0)<=71] | [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) & sum(p2_c2, p2_c1, p2_c0)<=47]]] | ~ [64<=sum(p2_c2, p2_c1, p2_c0)]]]]] | ~ [[sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0) & [~ [[36<=sum(p1_c2, p1_c1, p1_c0) & sum(p2_c2, p2_c1, p2_c0)<=76]] & [~ [sum(p0_c2, p0_c1, p0_c0)<=13] | sum(p0_c2, p0_c1, p0_c0)<=1]]]]] | ~ [[[~ [[sum(p0_c2, p0_c1, p0_c0)<=70 & [sum(p1_c2, p1_c1, p1_c0)<=31 | [sum(p1_c2, p1_c1, p1_c0)<=88 | [sum(p2_c2, p2_c1, p2_c0)<=88 | sum(p0_c2, p0_c1, p0_c0)<=53]]]]] | 79<=sum(p2_c2, p2_c1, p2_c0)] | [sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0) | [[~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0)] | [[[sum(p0_c2, p0_c1, p0_c0)<=84 & sum(p2_c2, p2_c1, p2_c0)<=26] & sum(p1_c2, p1_c1, p1_c0)<=62] | ~ [[35<=sum(p0_c2, p0_c1, p0_c0) & 53<=sum(p2_c2, p2_c1, p2_c0)]]]] & [[sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0) | [[sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0) | 70<=sum(p2_c2, p2_c1, p2_c0)] & [sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0) | sum(p1_c2, p1_c1, p1_c0)<=22]]] & ~ [[[sum(p0_c2, p0_c1, p0_c0)<=92 & sum(p0_c2, p0_c1, p0_c0)<=45] & ~ [sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0)]]]]]]]]]]
normalized: E [true U [~ [[[sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0) | [[~ [[[sum(p0_c2, p0_c1, p0_c0)<=92 & sum(p0_c2, p0_c1, p0_c0)<=45] & ~ [sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0)]]] & [sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0) | [[sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0) | sum(p1_c2, p1_c1, p1_c0)<=22] & [sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0) | 70<=sum(p2_c2, p2_c1, p2_c0)]]]] & [[~ [[35<=sum(p0_c2, p0_c1, p0_c0) & 53<=sum(p2_c2, p2_c1, p2_c0)]] | [sum(p1_c2, p1_c1, p1_c0)<=62 & [sum(p0_c2, p0_c1, p0_c0)<=84 & sum(p2_c2, p2_c1, p2_c0)<=26]]] | ~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0)]]]] | [79<=sum(p2_c2, p2_c1, p2_c0) | ~ [[sum(p0_c2, p0_c1, p0_c0)<=70 & [sum(p1_c2, p1_c1, p1_c0)<=31 | [sum(p1_c2, p1_c1, p1_c0)<=88 | [sum(p2_c2, p2_c1, p2_c0)<=88 | sum(p0_c2, p0_c1, p0_c0)<=53]]]]]]]] | [~ [[sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0) & [[sum(p0_c2, p0_c1, p0_c0)<=1 | ~ [sum(p0_c2, p0_c1, p0_c0)<=13]] & ~ [[36<=sum(p1_c2, p1_c1, p1_c0) & sum(p2_c2, p2_c1, p2_c0)<=76]]]]] | ~ [[~ [[~ [64<=sum(p2_c2, p2_c1, p2_c0)] | [[[sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) & sum(p2_c2, p2_c1, p2_c0)<=47] | ~ [sum(p1_c2, p1_c1, p1_c0)<=71]] | ~ [[sum(p2_c2, p2_c1, p2_c0)<=95 & 17<=sum(p2_c2, p2_c1, p2_c0)]]]]] & ~ [95<=sum(p0_c2, p0_c1, p0_c0)]]]]]]

abstracting: (95<=sum(p0_c2, p0_c1, p0_c0))
states: 4,572,909,208 (9)
abstracting: (17<=sum(p2_c2, p2_c1, p2_c0))
states: 5,577,859,752 (9)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=95)
states: 1,040,798,518 (9)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=71)
states: 513,002,040 (8)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=47)
states: 177,724,518 (8)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0))
MC time: 3m 0.999sec

checking: AG [[[[[[sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0) & [[[~ [sum(p2_c2, p2_c1, p2_c0)<=2] | sum(p0_c2, p0_c1, p0_c0)<=81] & sum(p0_c2, p0_c1, p0_c0)<=76] & [[~ [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0)] | [sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0) & 47<=sum(p0_c2, p0_c1, p0_c0)]] | sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0)]]] & [[[[sum(p0_c2, p0_c1, p0_c0)<=7 | [sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0) & 36<=sum(p0_c2, p0_c1, p0_c0)]] | ~ [[sum(p1_c2, p1_c1, p1_c0)<=2 & 12<=sum(p2_c2, p2_c1, p2_c0)]]] & 83<=sum(p1_c2, p1_c1, p1_c0)] | [~ [[[sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0) & sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)] | [sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0) | 55<=sum(p0_c2, p0_c1, p0_c0)]]] | [~ [[sum(p0_c2, p0_c1, p0_c0)<=52 | sum(p2_c2, p2_c1, p2_c0)<=95]] & [[sum(p1_c2, p1_c1, p1_c0)<=83 | 28<=sum(p1_c2, p1_c1, p1_c0)] | 24<=sum(p0_c2, p0_c1, p0_c0)]]]]] & ~ [28<=sum(p0_c2, p0_c1, p0_c0)]] | [sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0) & 24<=sum(p1_c2, p1_c1, p1_c0)]] | [45<=sum(p0_c2, p0_c1, p0_c0) & ~ [[[[[[[sum(p1_c2, p1_c1, p1_c0)<=60 | 18<=sum(p0_c2, p0_c1, p0_c0)] & [86<=sum(p1_c2, p1_c1, p1_c0) & sum(p0_c2, p0_c1, p0_c0)<=6]] | sum(p2_c2, p2_c1, p2_c0)<=0] & ~ [[[sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0) & sum(p2_c2, p2_c1, p2_c0)<=52] & [sum(p0_c2, p0_c1, p0_c0)<=99 & sum(p2_c2, p2_c1, p2_c0)<=27]]]] | [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) & [~ [[11<=sum(p0_c2, p0_c1, p0_c0) & sum(p2_c2, p2_c1, p2_c0)<=72]] | sum(p2_c2, p2_c1, p2_c0)<=36]]] & [sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0) & sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0)]]]]]]
normalized: ~ [E [true U ~ [[[45<=sum(p0_c2, p0_c1, p0_c0) & ~ [[[sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0) & sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0)] & [[sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) & [sum(p2_c2, p2_c1, p2_c0)<=36 | ~ [[11<=sum(p0_c2, p0_c1, p0_c0) & sum(p2_c2, p2_c1, p2_c0)<=72]]]] | [~ [[[sum(p0_c2, p0_c1, p0_c0)<=99 & sum(p2_c2, p2_c1, p2_c0)<=27] & [sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0) & sum(p2_c2, p2_c1, p2_c0)<=52]]] & [sum(p2_c2, p2_c1, p2_c0)<=0 | [[86<=sum(p1_c2, p1_c1, p1_c0) & sum(p0_c2, p0_c1, p0_c0)<=6] & [sum(p1_c2, p1_c1, p1_c0)<=60 | 18<=sum(p0_c2, p0_c1, p0_c0)]]]]]]]] | [[sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0) & 24<=sum(p1_c2, p1_c1, p1_c0)] | [~ [28<=sum(p0_c2, p0_c1, p0_c0)] & [[[[[24<=sum(p0_c2, p0_c1, p0_c0) | [sum(p1_c2, p1_c1, p1_c0)<=83 | 28<=sum(p1_c2, p1_c1, p1_c0)]] & ~ [[sum(p0_c2, p0_c1, p0_c0)<=52 | sum(p2_c2, p2_c1, p2_c0)<=95]]] | ~ [[[sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0) | 55<=sum(p0_c2, p0_c1, p0_c0)] | [sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0) & sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)]]]] | [83<=sum(p1_c2, p1_c1, p1_c0) & [~ [[sum(p1_c2, p1_c1, p1_c0)<=2 & 12<=sum(p2_c2, p2_c1, p2_c0)]] | [sum(p0_c2, p0_c1, p0_c0)<=7 | [sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0) & 36<=sum(p0_c2, p0_c1, p0_c0)]]]]] & [sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0) & [[sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0) | [[sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0) & 47<=sum(p0_c2, p0_c1, p0_c0)] | ~ [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0)]]] & [sum(p0_c2, p0_c1, p0_c0)<=76 & [sum(p0_c2, p0_c1, p0_c0)<=81 | ~ [sum(p2_c2, p2_c1, p2_c0)<=2]]]]]]]]]]]]

abstracting: (sum(p2_c2, p2_c1, p2_c0)<=2)
states: 67,050 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=81)
states: 710,513,766 (8)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=76)
states: 607,569,067 (8)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0))
MC time: 2m40.999sec

checking: AG [39<=sum(p2_c2, p2_c1, p2_c0)]
normalized: ~ [E [true U ~ [39<=sum(p2_c2, p2_c1, p2_c0)]]]

abstracting: (39<=sum(p2_c2, p2_c1, p2_c0))
states: 5,486,673,206 (9)
-> the formula is FALSE

FORMULA PGCD-COL-D02N100-ReachabilityCardinality-06 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

TIME LIMIT: Killed by timeout after 3600 seconds
MemTotal: 16393232 kB
MemFree: 3299988 kB
After kill :
MemTotal: 16393232 kB
MemFree: 16105020 kB

BK_TIME_CONFINEMENT_REACHED

--------------------
content from stderr:

+ ulimit -s 65536
+ [[ -z '' ]]
+ export LTSMIN_MEM_SIZE=8589934592
+ LTSMIN_MEM_SIZE=8589934592
+ export PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ export LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
+ LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
++ sed s/.jar//
++ ls /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/plugins/fr.lip6.move.gal.application.pnmcc_1.0.0.202304061127.jar
++ perl -pe 's/.*\.//g'
+ VERSION=202304061127
+ echo 'Running Version 202304061127'
+ /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/its-tools -pnfolder /home/mcc/execution -examination ReachabilityCardinality -timeout 360 -rebuildPNML
check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok


initing FirstDep: 0m 0.000sec


iterations count:9204 (1022), effective:3130 (347)

initing FirstDep: 0m 0.000sec


iterations count:1287 (143), effective:441 (49)

iterations count:9 (1), effective:0 (0)

sat_reach.icc:155: Timeout: after 252 sec


iterations count:104 (11), effective:33 (3)

iterations count:351 (39), effective:107 (11)

iterations count:278 (30), effective:93 (10)

iterations count:1171 (130), effective:401 (44)

idd.h:1025: Timeout: after 323 sec


idd.h:1025: Timeout: after 290 sec


idd.h:1025: Timeout: after 261 sec


iterations count:858 (95), effective:293 (32)

idd.h:1025: Timeout: after 257 sec


idd.h:1025: Timeout: after 229 sec


idd.h:1025: Timeout: after 203 sec


idd.h:1025: Timeout: after 180 sec


idd.h:1025: Timeout: after 160 sec


iterations count:2529 (281), effective:796 (88)

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="PGCD-COL-D02N100"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="marciexred"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marciexred"
echo " Input is PGCD-COL-D02N100, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r522-tall-167987247300398"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"

tar xzf /home/mcc/BenchKit/INPUTS/PGCD-COL-D02N100.tgz
mv PGCD-COL-D02N100 execution
cd execution
if [ "ReachabilityCardinality" = "ReachabilityDeadlock" ] || [ "ReachabilityCardinality" = "UpperBounds" ] || [ "ReachabilityCardinality" = "QuasiLiveness" ] || [ "ReachabilityCardinality" = "StableMarking" ] || [ "ReachabilityCardinality" = "Liveness" ] || [ "ReachabilityCardinality" = "OneSafe" ] || [ "ReachabilityCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh

echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' ReachabilityCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ "ReachabilityCardinality" = "ReachabilityDeadlock" ] || [ "ReachabilityCardinality" = "QuasiLiveness" ] || [ "ReachabilityCardinality" = "StableMarking" ] || [ "ReachabilityCardinality" = "Liveness" ] || [ "ReachabilityCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME ReachabilityCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;