About the Execution of Marcie+red for PGCD-COL-D02N006
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
5474.084 | 92520.00 | 94938.00 | 911.00 | FFFFFFFFFFFTTFTF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fkordon/mcc2023-input.r522-tall-167987247300390.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2023-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
...................................................................................................................................
=====================================================================
Generated by BenchKit 2-5348
Executing tool marciexred
Input is PGCD-COL-D02N006, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r522-tall-167987247300390
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 508K
-rw-r--r-- 1 mcc users 6.9K Mar 23 15:24 CTLCardinality.txt
-rw-r--r-- 1 mcc users 78K Mar 23 15:24 CTLCardinality.xml
-rw-r--r-- 1 mcc users 5.1K Mar 23 15:21 CTLFireability.txt
-rw-r--r-- 1 mcc users 48K Mar 23 15:21 CTLFireability.xml
-rw-r--r-- 1 mcc users 3.6K Mar 23 07:07 LTLCardinality.txt
-rw-r--r-- 1 mcc users 27K Mar 23 07:07 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.0K Mar 23 07:07 LTLFireability.txt
-rw-r--r-- 1 mcc users 16K Mar 23 07:07 LTLFireability.xml
-rw-r--r-- 1 mcc users 1 Mar 26 22:42 NewModel
-rw-r--r-- 1 mcc users 14K Mar 23 15:27 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 164K Mar 23 15:27 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 8.5K Mar 23 15:27 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 82K Mar 23 15:27 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.6K Mar 23 07:07 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.6K Mar 23 07:07 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Mar 26 22:42 equiv_pt
-rw-r--r-- 1 mcc users 8 Mar 26 22:42 instance
-rw-r--r-- 1 mcc users 5 Mar 26 22:42 iscolored
-rw-r--r-- 1 mcc users 11K Mar 31 16:48 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME PGCD-COL-D02N006-ReachabilityCardinality-00
FORMULA_NAME PGCD-COL-D02N006-ReachabilityCardinality-01
FORMULA_NAME PGCD-COL-D02N006-ReachabilityCardinality-02
FORMULA_NAME PGCD-COL-D02N006-ReachabilityCardinality-03
FORMULA_NAME PGCD-COL-D02N006-ReachabilityCardinality-04
FORMULA_NAME PGCD-COL-D02N006-ReachabilityCardinality-05
FORMULA_NAME PGCD-COL-D02N006-ReachabilityCardinality-06
FORMULA_NAME PGCD-COL-D02N006-ReachabilityCardinality-07
FORMULA_NAME PGCD-COL-D02N006-ReachabilityCardinality-08
FORMULA_NAME PGCD-COL-D02N006-ReachabilityCardinality-09
FORMULA_NAME PGCD-COL-D02N006-ReachabilityCardinality-10
FORMULA_NAME PGCD-COL-D02N006-ReachabilityCardinality-11
FORMULA_NAME PGCD-COL-D02N006-ReachabilityCardinality-12
FORMULA_NAME PGCD-COL-D02N006-ReachabilityCardinality-13
FORMULA_NAME PGCD-COL-D02N006-ReachabilityCardinality-14
FORMULA_NAME PGCD-COL-D02N006-ReachabilityCardinality-15
=== Now, execution of the tool begins
BK_START 1680810916296
bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marciexred
BK_EXAMINATION=ReachabilityCardinality
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=PGCD-COL-D02N006
Applying reductions before tool marcie
Invoking reducer
Running Version 202304061127
[2023-04-06 19:55:17] [INFO ] Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, ReachabilityCardinality, -timeout, 360, -rebuildPNML]
[2023-04-06 19:55:17] [INFO ] Parsing pnml file : /home/mcc/execution/model.pnml
[2023-04-06 19:55:17] [INFO ] Detected file is not PT type :http://www.pnml.org/version-2009/grammar/symmetricnet
log4j:WARN No appenders could be found for logger (org.apache.axiom.locator.DefaultOMMetaFactoryLocator).
log4j:WARN Please initialize the log4j system properly.
log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.
[2023-04-06 19:55:18] [WARNING] Using fallBack plugin, rng conformance not checked
[2023-04-06 19:55:18] [INFO ] Load time of PNML (colored model parsed with PNMLFW) : 389 ms
[2023-04-06 19:55:18] [INFO ] Imported 3 HL places and 3 HL transitions for a total of 9 PT places and 9.0 transition bindings in 16 ms.
Parsed 16 properties from file /home/mcc/execution/ReachabilityCardinality.xml in 30 ms.
Working with output stream class java.io.PrintStream
[2023-04-06 19:55:18] [INFO ] Built PT skeleton of HLPN with 3 places and 3 transitions 14 arcs in 4 ms.
[2023-04-06 19:55:18] [INFO ] Skeletonized 16 HLPN properties in 1 ms.
Remains 16 properties that can be checked using skeleton over-approximation.
Initial state reduction rules removed 9 formulas.
FORMULA PGCD-COL-D02N006-ReachabilityCardinality-03 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA PGCD-COL-D02N006-ReachabilityCardinality-04 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA PGCD-COL-D02N006-ReachabilityCardinality-06 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA PGCD-COL-D02N006-ReachabilityCardinality-07 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA PGCD-COL-D02N006-ReachabilityCardinality-10 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA PGCD-COL-D02N006-ReachabilityCardinality-11 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA PGCD-COL-D02N006-ReachabilityCardinality-12 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA PGCD-COL-D02N006-ReachabilityCardinality-13 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA PGCD-COL-D02N006-ReachabilityCardinality-15 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
Computed a total of 0 stabilizing places and 0 stable transitions
[2023-04-06 19:55:18] [INFO ] Flatten gal took : 12 ms
[2023-04-06 19:55:18] [INFO ] Flatten gal took : 1 ms
Arc [2:1*[(MOD (ADD $x 1) 3)]] contains successor/predecessor on variables of sort CD
[2023-04-06 19:55:18] [INFO ] Unfolded HLPN to a Petri net with 9 places and 9 transitions 42 arcs in 5 ms.
[2023-04-06 19:55:18] [INFO ] Unfolded 7 HLPN properties in 0 ms.
Incomplete random walk after 10008 steps, including 2 resets, run finished after 117 ms. (steps per millisecond=85 ) properties (out of 7) seen :3
FORMULA PGCD-COL-D02N006-ReachabilityCardinality-14 TRUE TECHNIQUES TOPOLOGICAL RANDOM_WALK
FORMULA PGCD-COL-D02N006-ReachabilityCardinality-09 FALSE TECHNIQUES TOPOLOGICAL RANDOM_WALK
FORMULA PGCD-COL-D02N006-ReachabilityCardinality-00 FALSE TECHNIQUES TOPOLOGICAL RANDOM_WALK
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 73 ms. (steps per millisecond=137 ) properties (out of 4) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 46 ms. (steps per millisecond=217 ) properties (out of 4) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 45 ms. (steps per millisecond=222 ) properties (out of 4) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 64 ms. (steps per millisecond=156 ) properties (out of 4) seen :0
Running SMT prover for 4 properties.
// Phase 1: matrix 9 rows 9 cols
[2023-04-06 19:55:18] [INFO ] Computed 4 invariants in 3 ms
[2023-04-06 19:55:19] [INFO ] [Real]Absence check using 2 positive place invariants in 2 ms returned sat
[2023-04-06 19:55:19] [INFO ] [Real]Absence check using 2 positive and 2 generalized place invariants in 1 ms returned sat
[2023-04-06 19:55:19] [INFO ] After 147ms SMT Verify possible using all constraints in real domain returned unsat :3 sat :0 real:1
[2023-04-06 19:55:19] [INFO ] [Nat]Absence check using 2 positive place invariants in 0 ms returned sat
[2023-04-06 19:55:19] [INFO ] [Nat]Absence check using 2 positive and 2 generalized place invariants in 1 ms returned sat
[2023-04-06 19:55:19] [INFO ] After 36ms SMT Verify possible using all constraints in natural domain returned unsat :4 sat :0
FORMULA PGCD-COL-D02N006-ReachabilityCardinality-08 FALSE TECHNIQUES STRUCTURAL_REDUCTION TOPOLOGICAL SAT_SMT
FORMULA PGCD-COL-D02N006-ReachabilityCardinality-05 FALSE TECHNIQUES STRUCTURAL_REDUCTION TOPOLOGICAL SAT_SMT
FORMULA PGCD-COL-D02N006-ReachabilityCardinality-02 FALSE TECHNIQUES STRUCTURAL_REDUCTION TOPOLOGICAL SAT_SMT
FORMULA PGCD-COL-D02N006-ReachabilityCardinality-01 FALSE TECHNIQUES STRUCTURAL_REDUCTION TOPOLOGICAL SAT_SMT
Fused 4 Parikh solutions to 0 different solutions.
Parikh walk visited 0 properties in 1 ms.
All properties solved without resorting to model-checking.
Total runtime 1174 ms.
timeout --kill-after=10s --signal=SIGINT 1m for testing only
Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: /home/mcc/BenchKit/bin//../reducer/bin//../../marcie/bin/marcie --net-file=model.pnml --mcc-file=ReachabilityCardinality.xml --memory=6 --mcc-mode
parse successfull
net created successfully
Unfolding complete |P|=9|T|=9|A|=42
Time for unfolding: 0m 0.252sec
Net: PGCD_COL_D02N006
(NrP: 9 NrTr: 9 NrArc: 42)
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec
net check time: 0m 0.000sec
init dd package: 0m 2.802sec
RS generation: 0m 0.017sec
-> reachability set: #nodes 422 (4.2e+02) #states 15,670 (4)
starting MCC model checker
--------------------------
checking: EF [74<=sum(p0_c2, p0_c1, p0_c0)]
normalized: E [true U 74<=sum(p0_c2, p0_c1, p0_c0)]
abstracting: (74<=sum(p0_c2, p0_c1, p0_c0))
states: 0
-> the formula is FALSE
FORMULA PGCD-COL-D02N006-ReachabilityCardinality-02 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.025sec
checking: AG [22<=sum(p0_c2, p0_c1, p0_c0)]
normalized: ~ [E [true U ~ [22<=sum(p0_c2, p0_c1, p0_c0)]]]
abstracting: (22<=sum(p0_c2, p0_c1, p0_c0))
states: 0
-> the formula is FALSE
FORMULA PGCD-COL-D02N006-ReachabilityCardinality-07 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.025sec
checking: AG [6<=sum(p2_c2, p2_c1, p2_c0)]
normalized: ~ [E [true U ~ [6<=sum(p2_c2, p2_c1, p2_c0)]]]
abstracting: (6<=sum(p2_c2, p2_c1, p2_c0))
states: 13,632 (4)
-> the formula is FALSE
FORMULA PGCD-COL-D02N006-ReachabilityCardinality-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.033sec
checking: EF [[66<=sum(p2_c2, p2_c1, p2_c0) | 26<=sum(p1_c2, p1_c1, p1_c0)]]
normalized: E [true U [66<=sum(p2_c2, p2_c1, p2_c0) | 26<=sum(p1_c2, p1_c1, p1_c0)]]
abstracting: (26<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (66<=sum(p2_c2, p2_c1, p2_c0))
states: 0
-> the formula is FALSE
FORMULA PGCD-COL-D02N006-ReachabilityCardinality-08 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.046sec
checking: AG [~ [[28<=sum(p2_c2, p2_c1, p2_c0) | ~ [[9<=sum(p2_c2, p2_c1, p2_c0) & ~ [[~ [[3<=sum(p2_c2, p2_c1, p2_c0) & 64<=sum(p0_c2, p0_c1, p0_c0)]] & ~ [[sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0) & sum(p0_c2, p0_c1, p0_c0)<=50]]]]]]]]]
normalized: ~ [E [true U [~ [[~ [[~ [[sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0) & sum(p0_c2, p0_c1, p0_c0)<=50]] & ~ [[3<=sum(p2_c2, p2_c1, p2_c0) & 64<=sum(p0_c2, p0_c1, p0_c0)]]]] & 9<=sum(p2_c2, p2_c1, p2_c0)]] | 28<=sum(p2_c2, p2_c1, p2_c0)]]]
abstracting: (28<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (9<=sum(p2_c2, p2_c1, p2_c0))
states: 10,493 (4)
abstracting: (64<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (3<=sum(p2_c2, p2_c1, p2_c0))
states: 15,454 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=50)
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 15,670 (4)
-> the formula is FALSE
FORMULA PGCD-COL-D02N006-ReachabilityCardinality-06 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m15.353sec
checking: AG [~ [[~ [[[[[~ [11<=sum(p2_c2, p2_c1, p2_c0)] | ~ [sum(p2_c2, p2_c1, p2_c0)<=58]] | sum(p0_c2, p0_c1, p0_c0)<=27] | 57<=sum(p1_c2, p1_c1, p1_c0)] & sum(p2_c2, p2_c1, p2_c0)<=15]] | ~ [[sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0) | sum(p0_c2, p0_c1, p0_c0)<=27]]]]]
normalized: ~ [E [true U [~ [[sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0) | sum(p0_c2, p0_c1, p0_c0)<=27]] | ~ [[sum(p2_c2, p2_c1, p2_c0)<=15 & [57<=sum(p1_c2, p1_c1, p1_c0) | [[~ [sum(p2_c2, p2_c1, p2_c0)<=58] | ~ [11<=sum(p2_c2, p2_c1, p2_c0)]] | sum(p0_c2, p0_c1, p0_c0)<=27]]]]]]]
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=27)
states: 15,670 (4)
abstracting: (11<=sum(p2_c2, p2_c1, p2_c0))
states: 8,008 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=58)
states: 15,670 (4)
abstracting: (57<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=15)
states: 13,286 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=27)
states: 15,670 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
-> the formula is FALSE
FORMULA PGCD-COL-D02N006-ReachabilityCardinality-00 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m11.587sec
checking: EF [~ [[sum(p0_c2, p0_c1, p0_c0)<=15 & ~ [[[[sum(p0_c2, p0_c1, p0_c0)<=41 & ~ [sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0)]] & [sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0) & [26<=sum(p2_c2, p2_c1, p2_c0) | sum(p1_c2, p1_c1, p1_c0)<=31]]] & sum(p2_c2, p2_c1, p2_c0)<=57]]]]]
normalized: E [true U ~ [[~ [[[[[26<=sum(p2_c2, p2_c1, p2_c0) | sum(p1_c2, p1_c1, p1_c0)<=31] & sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0)] & [~ [sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0)] & sum(p0_c2, p0_c1, p0_c0)<=41]] & sum(p2_c2, p2_c1, p2_c0)<=57]] & sum(p0_c2, p0_c1, p0_c0)<=15]]]
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=15)
states: 13,286 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=57)
states: 15,670 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=41)
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 15,670 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 8,008 (3)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=31)
states: 15,670 (4)
abstracting: (26<=sum(p2_c2, p2_c1, p2_c0))
states: 0
-> the formula is TRUE
FORMULA PGCD-COL-D02N006-ReachabilityCardinality-14 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m11.913sec
checking: AG [~ [[[~ [sum(p0_c2, p0_c1, p0_c0)<=73] | [[28<=sum(p1_c2, p1_c1, p1_c0) & sum(p1_c2, p1_c1, p1_c0)<=83] & [sum(p0_c2, p0_c1, p0_c0)<=65 & [[sum(p2_c2, p2_c1, p2_c0)<=11 & 27<=sum(p2_c2, p2_c1, p2_c0)] & [sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0) & sum(p2_c2, p2_c1, p2_c0)<=63]]]]] | ~ [[[~ [sum(p2_c2, p2_c1, p2_c0)<=19] & [sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0) & [35<=sum(p1_c2, p1_c1, p1_c0) & 32<=sum(p2_c2, p2_c1, p2_c0)]]] | ~ [sum(p2_c2, p2_c1, p2_c0)<=45]]]]]]
normalized: ~ [E [true U [~ [[~ [sum(p2_c2, p2_c1, p2_c0)<=45] | [[[35<=sum(p1_c2, p1_c1, p1_c0) & 32<=sum(p2_c2, p2_c1, p2_c0)] & sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0)] & ~ [sum(p2_c2, p2_c1, p2_c0)<=19]]]] | [[[[[sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0) & sum(p2_c2, p2_c1, p2_c0)<=63] & [sum(p2_c2, p2_c1, p2_c0)<=11 & 27<=sum(p2_c2, p2_c1, p2_c0)]] & sum(p0_c2, p0_c1, p0_c0)<=65] & [28<=sum(p1_c2, p1_c1, p1_c0) & sum(p1_c2, p1_c1, p1_c0)<=83]] | ~ [sum(p0_c2, p0_c1, p0_c0)<=73]]]]]
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=73)
states: 15,670 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=83)
states: 15,670 (4)
abstracting: (28<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=65)
states: 15,670 (4)
abstracting: (27<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=11)
states: 8,922 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=63)
states: 15,670 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=19)
states: 15,450 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 15,670 (4)
abstracting: (32<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (35<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=45)
states: 15,670 (4)
-> the formula is FALSE
FORMULA PGCD-COL-D02N006-ReachabilityCardinality-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.353sec
checking: EF [[40<=sum(p1_c2, p1_c1, p1_c0) & ~ [[[[~ [44<=sum(p1_c2, p1_c1, p1_c0)] | [sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0) & 86<=sum(p0_c2, p0_c1, p0_c0)]] | ~ [[[33<=sum(p1_c2, p1_c1, p1_c0) & [sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0) | sum(p0_c2, p0_c1, p0_c0)<=82]] | [sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0) & ~ [94<=sum(p0_c2, p0_c1, p0_c0)]]]]] | [74<=sum(p1_c2, p1_c1, p1_c0) & [[[~ [sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0)] | [97<=sum(p2_c2, p2_c1, p2_c0) | sum(p0_c2, p0_c1, p0_c0)<=69]] & ~ [[87<=sum(p1_c2, p1_c1, p1_c0) | sum(p0_c2, p0_c1, p0_c0)<=81]]] | 2<=sum(p1_c2, p1_c1, p1_c0)]]]]]]
normalized: E [true U [~ [[[[[~ [[87<=sum(p1_c2, p1_c1, p1_c0) | sum(p0_c2, p0_c1, p0_c0)<=81]] & [[97<=sum(p2_c2, p2_c1, p2_c0) | sum(p0_c2, p0_c1, p0_c0)<=69] | ~ [sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0)]]] | 2<=sum(p1_c2, p1_c1, p1_c0)] & 74<=sum(p1_c2, p1_c1, p1_c0)] | [~ [[[~ [94<=sum(p0_c2, p0_c1, p0_c0)] & sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)] | [[sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0) | sum(p0_c2, p0_c1, p0_c0)<=82] & 33<=sum(p1_c2, p1_c1, p1_c0)]]] | [[sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0) & 86<=sum(p0_c2, p0_c1, p0_c0)] | ~ [44<=sum(p1_c2, p1_c1, p1_c0)]]]]] & 40<=sum(p1_c2, p1_c1, p1_c0)]]
abstracting: (40<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (44<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (86<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 8,008 (3)
abstracting: (33<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=82)
states: 15,670 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 15,670 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 15,670 (4)
abstracting: (94<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (74<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (2<=sum(p1_c2, p1_c1, p1_c0))
states: 15,450 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 15,670 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=69)
states: 15,670 (4)
abstracting: (97<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=81)
states: 15,670 (4)
abstracting: (87<=sum(p1_c2, p1_c1, p1_c0))
states: 0
-> the formula is FALSE
FORMULA PGCD-COL-D02N006-ReachabilityCardinality-01 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m27.216sec
checking: EF [~ [[sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0) | ~ [[[~ [[5<=sum(p1_c2, p1_c1, p1_c0) & [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) | sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0)]]] | ~ [[sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0) & sum(p2_c2, p2_c1, p2_c0)<=32]]] | [[sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0) & [~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)] & [sum(p0_c2, p0_c1, p0_c0)<=100 | sum(p2_c2, p2_c1, p2_c0)<=100]]] | [[~ [[sum(p2_c2, p2_c1, p2_c0)<=99 & sum(p1_c2, p1_c1, p1_c0)<=11]] & [[sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0) | sum(p2_c2, p2_c1, p2_c0)<=80] | [sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0) | 10<=sum(p2_c2, p2_c1, p2_c0)]]] & 66<=sum(p0_c2, p0_c1, p0_c0)]]]]]]]
normalized: E [true U ~ [[~ [[[[[[[sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0) | 10<=sum(p2_c2, p2_c1, p2_c0)] | [sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0) | sum(p2_c2, p2_c1, p2_c0)<=80]] & ~ [[sum(p2_c2, p2_c1, p2_c0)<=99 & sum(p1_c2, p1_c1, p1_c0)<=11]]] & 66<=sum(p0_c2, p0_c1, p0_c0)] | [[[sum(p0_c2, p0_c1, p0_c0)<=100 | sum(p2_c2, p2_c1, p2_c0)<=100] & ~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)]] & sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)]] | [~ [[sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0) & sum(p2_c2, p2_c1, p2_c0)<=32]] | ~ [[[sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) | sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0)] & 5<=sum(p1_c2, p1_c1, p1_c0)]]]]] | sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0)]]]
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 15,670 (4)
abstracting: (5<=sum(p1_c2, p1_c1, p1_c0))
states: 14,069 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 8,008 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=32)
states: 15,670 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 8,008 (3)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 15,670 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=100)
states: 15,670 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=100)
states: 15,670 (4)
abstracting: (66<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=11)
states: 9,268 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=99)
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=80)
states: 15,670 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 8,008 (3)
abstracting: (10<=sum(p2_c2, p2_c1, p2_c0))
states: 9,268 (3)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 15,670 (4)
-> the formula is FALSE
FORMULA PGCD-COL-D02N006-ReachabilityCardinality-05 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m11.794sec
checking: AG [~ [[[[~ [sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0)] | ~ [[[~ [[sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0) & sum(p0_c2, p0_c1, p0_c0)<=3]] | [[sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0) & 41<=sum(p2_c2, p2_c1, p2_c0)] & [7<=sum(p0_c2, p0_c1, p0_c0) | sum(p1_c2, p1_c1, p1_c0)<=7]]] | [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) | sum(p0_c2, p0_c1, p0_c0)<=16]]]] & [~ [[~ [[[sum(p0_c2, p0_c1, p0_c0)<=98 | sum(p0_c2, p0_c1, p0_c0)<=39] | ~ [sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0)]]] & ~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0)]]] | [[[[~ [24<=sum(p1_c2, p1_c1, p1_c0)] | [sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0) & sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0)]] & [[27<=sum(p2_c2, p2_c1, p2_c0) & sum(p1_c2, p1_c1, p1_c0)<=66] & [4<=sum(p0_c2, p0_c1, p0_c0) | 91<=sum(p2_c2, p2_c1, p2_c0)]]] & [[~ [74<=sum(p2_c2, p2_c1, p2_c0)] & [sum(p1_c2, p1_c1, p1_c0)<=52 & 16<=sum(p1_c2, p1_c1, p1_c0)]] & [sum(p0_c2, p0_c1, p0_c0)<=4 | ~ [sum(p1_c2, p1_c1, p1_c0)<=43]]]] | sum(p2_c2, p2_c1, p2_c0)<=44]]] | 24<=sum(p1_c2, p1_c1, p1_c0)]]]
normalized: ~ [E [true U [[[[[[[~ [sum(p1_c2, p1_c1, p1_c0)<=43] | sum(p0_c2, p0_c1, p0_c0)<=4] & [[sum(p1_c2, p1_c1, p1_c0)<=52 & 16<=sum(p1_c2, p1_c1, p1_c0)] & ~ [74<=sum(p2_c2, p2_c1, p2_c0)]]] & [[[4<=sum(p0_c2, p0_c1, p0_c0) | 91<=sum(p2_c2, p2_c1, p2_c0)] & [27<=sum(p2_c2, p2_c1, p2_c0) & sum(p1_c2, p1_c1, p1_c0)<=66]] & [[sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0) & sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0)] | ~ [24<=sum(p1_c2, p1_c1, p1_c0)]]]] | sum(p2_c2, p2_c1, p2_c0)<=44] | ~ [[~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0)] & ~ [[~ [sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0)] | [sum(p0_c2, p0_c1, p0_c0)<=98 | sum(p0_c2, p0_c1, p0_c0)<=39]]]]]] & [~ [[[sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) | sum(p0_c2, p0_c1, p0_c0)<=16] | [[[7<=sum(p0_c2, p0_c1, p0_c0) | sum(p1_c2, p1_c1, p1_c0)<=7] & [sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0) & 41<=sum(p2_c2, p2_c1, p2_c0)]] | ~ [[sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0) & sum(p0_c2, p0_c1, p0_c0)<=3]]]]] | ~ [sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0)]]] | 24<=sum(p1_c2, p1_c1, p1_c0)]]]
abstracting: (24<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 8,008 (3)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=3)
states: 640
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 15,670 (4)
abstracting: (41<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 15,670 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=7)
states: 4,368 (3)
abstracting: (7<=sum(p0_c2, p0_c1, p0_c0))
states: 12,704 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=16)
states: 14,069 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=39)
states: 15,670 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=98)
states: 15,670 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 8,008 (3)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=44)
states: 15,670 (4)
abstracting: (24<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 15,670 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=66)
states: 15,670 (4)
abstracting: (27<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (91<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (4<=sum(p0_c2, p0_c1, p0_c0))
states: 15,030 (4)
abstracting: (74<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (16<=sum(p1_c2, p1_c1, p1_c0))
states: 2,038 (3)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=52)
states: 15,670 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=4)
states: 1,255 (3)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=43)
states: 15,670 (4)
-> the formula is FALSE
FORMULA PGCD-COL-D02N006-ReachabilityCardinality-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.647sec
checking: AG [[sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0) & [[[sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0) | ~ [sum(p0_c2, p0_c1, p0_c0)<=32]] | ~ [56<=sum(p2_c2, p2_c1, p2_c0)]] & [[~ [[[sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0) & [sum(p1_c2, p1_c1, p1_c0)<=21 | [71<=sum(p1_c2, p1_c1, p1_c0) & sum(p2_c2, p2_c1, p2_c0)<=87]]] & ~ [sum(p1_c2, p1_c1, p1_c0)<=78]]] | [52<=sum(p0_c2, p0_c1, p0_c0) & ~ [sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0)]]] & [[[~ [9<=sum(p1_c2, p1_c1, p1_c0)] & [[[sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0) | sum(p1_c2, p1_c1, p1_c0)<=63] & [sum(p2_c2, p2_c1, p2_c0)<=3 & 44<=sum(p1_c2, p1_c1, p1_c0)]] | ~ [sum(p1_c2, p1_c1, p1_c0)<=37]]] & [64<=sum(p1_c2, p1_c1, p1_c0) | [60<=sum(p1_c2, p1_c1, p1_c0) | ~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0)]]]] | [[~ [[sum(p2_c2, p2_c1, p2_c0)<=21 & sum(p1_c2, p1_c1, p1_c0)<=64]] | 72<=sum(p2_c2, p2_c1, p2_c0)] & [[~ [[sum(p1_c2, p1_c1, p1_c0)<=18 | sum(p1_c2, p1_c1, p1_c0)<=43]] | [~ [83<=sum(p2_c2, p2_c1, p2_c0)] | [61<=sum(p1_c2, p1_c1, p1_c0) | sum(p2_c2, p2_c1, p2_c0)<=78]]] & [16<=sum(p2_c2, p2_c1, p2_c0) & 9<=sum(p2_c2, p2_c1, p2_c0)]]]]]]]]
normalized: ~ [E [true U ~ [[[[[[[[16<=sum(p2_c2, p2_c1, p2_c0) & 9<=sum(p2_c2, p2_c1, p2_c0)] & [[[61<=sum(p1_c2, p1_c1, p1_c0) | sum(p2_c2, p2_c1, p2_c0)<=78] | ~ [83<=sum(p2_c2, p2_c1, p2_c0)]] | ~ [[sum(p1_c2, p1_c1, p1_c0)<=18 | sum(p1_c2, p1_c1, p1_c0)<=43]]]] & [~ [[sum(p2_c2, p2_c1, p2_c0)<=21 & sum(p1_c2, p1_c1, p1_c0)<=64]] | 72<=sum(p2_c2, p2_c1, p2_c0)]] | [[[~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0)] | 60<=sum(p1_c2, p1_c1, p1_c0)] | 64<=sum(p1_c2, p1_c1, p1_c0)] & [[~ [sum(p1_c2, p1_c1, p1_c0)<=37] | [[sum(p2_c2, p2_c1, p2_c0)<=3 & 44<=sum(p1_c2, p1_c1, p1_c0)] & [sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0) | sum(p1_c2, p1_c1, p1_c0)<=63]]] & ~ [9<=sum(p1_c2, p1_c1, p1_c0)]]]] & [[~ [sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0)] & 52<=sum(p0_c2, p0_c1, p0_c0)] | ~ [[~ [sum(p1_c2, p1_c1, p1_c0)<=78] & [[[71<=sum(p1_c2, p1_c1, p1_c0) & sum(p2_c2, p2_c1, p2_c0)<=87] | sum(p1_c2, p1_c1, p1_c0)<=21] & sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0)]]]]] & [~ [56<=sum(p2_c2, p2_c1, p2_c0)] | [~ [sum(p0_c2, p0_c1, p0_c0)<=32] | sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0)]]] & sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0)]]]]
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 15,670 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 8,008 (3)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=32)
states: 15,670 (4)
abstracting: (56<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 8,008 (3)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=21)
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=87)
states: 15,670 (4)
abstracting: (71<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=78)
states: 15,670 (4)
abstracting: (52<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 8,008 (3)
abstracting: (9<=sum(p1_c2, p1_c1, p1_c0))
states: 10,147 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=63)
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 15,670 (4)
abstracting: (44<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=3)
states: 640
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=37)
states: 15,670 (4)
abstracting: (64<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (60<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 15,670 (4)
abstracting: (72<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=64)
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=21)
states: 15,670 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=43)
states: 15,670 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=18)
states: 15,454 (4)
abstracting: (83<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=78)
states: 15,670 (4)
abstracting: (61<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (9<=sum(p2_c2, p2_c1, p2_c0))
states: 10,493 (4)
abstracting: (16<=sum(p2_c2, p2_c1, p2_c0))
states: 2,384 (3)
-> the formula is FALSE
FORMULA PGCD-COL-D02N006-ReachabilityCardinality-03 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.609sec
checking: AG [[[sum(p2_c2, p2_c1, p2_c0)<=33 | ~ [[[[sum(p1_c2, p1_c1, p1_c0)<=31 | [84<=sum(p1_c2, p1_c1, p1_c0) & 63<=sum(p2_c2, p2_c1, p2_c0)]] | [7<=sum(p2_c2, p2_c1, p2_c0) | [6<=sum(p2_c2, p2_c1, p2_c0) & [~ [sum(p0_c2, p0_c1, p0_c0)<=98] & 11<=sum(p1_c2, p1_c1, p1_c0)]]]] | [~ [[sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0) | [[10<=sum(p0_c2, p0_c1, p0_c0) | sum(p0_c2, p0_c1, p0_c0)<=64] & [sum(p1_c2, p1_c1, p1_c0)<=82 | sum(p0_c2, p0_c1, p0_c0)<=49]]]] & [~ [[[sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0) | sum(p1_c2, p1_c1, p1_c0)<=45] | [sum(p2_c2, p2_c1, p2_c0)<=94 | sum(p1_c2, p1_c1, p1_c0)<=91]]] | [~ [sum(p2_c2, p2_c1, p2_c0)<=87] & [sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0) | [sum(p1_c2, p1_c1, p1_c0)<=47 | 100<=sum(p2_c2, p2_c1, p2_c0)]]]]]]]] & [[sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0) & [[~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)] | [~ [12<=sum(p1_c2, p1_c1, p1_c0)] | [[[sum(p2_c2, p2_c1, p2_c0)<=0 | sum(p0_c2, p0_c1, p0_c0)<=73] | [sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0) & sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0)]] | [[18<=sum(p0_c2, p0_c1, p0_c0) | sum(p2_c2, p2_c1, p2_c0)<=54] | ~ [19<=sum(p0_c2, p0_c1, p0_c0)]]]]] | [73<=sum(p0_c2, p0_c1, p0_c0) & ~ [[sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0) | sum(p2_c2, p2_c1, p2_c0)<=9]]]]] & [[~ [[[81<=sum(p2_c2, p2_c1, p2_c0) & ~ [72<=sum(p1_c2, p1_c1, p1_c0)]] | [~ [sum(p1_c2, p1_c1, p1_c0)<=36] & ~ [[sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) & sum(p0_c2, p0_c1, p0_c0)<=76]]]]] & [sum(p2_c2, p2_c1, p2_c0)<=62 | [[[sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0) & [sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0) | sum(p1_c2, p1_c1, p1_c0)<=31]] | sum(p0_c2, p0_c1, p0_c0)<=77] & sum(p1_c2, p1_c1, p1_c0)<=18]]] | sum(p0_c2, p0_c1, p0_c0)<=36]]]]
normalized: ~ [E [true U ~ [[[[[[[[[[sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0) | sum(p1_c2, p1_c1, p1_c0)<=31] & sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0)] | sum(p0_c2, p0_c1, p0_c0)<=77] & sum(p1_c2, p1_c1, p1_c0)<=18] | sum(p2_c2, p2_c1, p2_c0)<=62] & ~ [[[~ [[sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) & sum(p0_c2, p0_c1, p0_c0)<=76]] & ~ [sum(p1_c2, p1_c1, p1_c0)<=36]] | [~ [72<=sum(p1_c2, p1_c1, p1_c0)] & 81<=sum(p2_c2, p2_c1, p2_c0)]]]] | sum(p0_c2, p0_c1, p0_c0)<=36] & [[[~ [[sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0) | sum(p2_c2, p2_c1, p2_c0)<=9]] & 73<=sum(p0_c2, p0_c1, p0_c0)] | [[[[~ [19<=sum(p0_c2, p0_c1, p0_c0)] | [18<=sum(p0_c2, p0_c1, p0_c0) | sum(p2_c2, p2_c1, p2_c0)<=54]] | [[sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0) & sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0)] | [sum(p2_c2, p2_c1, p2_c0)<=0 | sum(p0_c2, p0_c1, p0_c0)<=73]]] | ~ [12<=sum(p1_c2, p1_c1, p1_c0)]] | ~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)]]] & sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0)]] & [~ [[[[[[[sum(p1_c2, p1_c1, p1_c0)<=47 | 100<=sum(p2_c2, p2_c1, p2_c0)] | sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0)] & ~ [sum(p2_c2, p2_c1, p2_c0)<=87]] | ~ [[[sum(p2_c2, p2_c1, p2_c0)<=94 | sum(p1_c2, p1_c1, p1_c0)<=91] | [sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0) | sum(p1_c2, p1_c1, p1_c0)<=45]]]] & ~ [[[[sum(p1_c2, p1_c1, p1_c0)<=82 | sum(p0_c2, p0_c1, p0_c0)<=49] & [10<=sum(p0_c2, p0_c1, p0_c0) | sum(p0_c2, p0_c1, p0_c0)<=64]] | sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0)]]] | [[[[~ [sum(p0_c2, p0_c1, p0_c0)<=98] & 11<=sum(p1_c2, p1_c1, p1_c0)] & 6<=sum(p2_c2, p2_c1, p2_c0)] | 7<=sum(p2_c2, p2_c1, p2_c0)] | [[84<=sum(p1_c2, p1_c1, p1_c0) & 63<=sum(p2_c2, p2_c1, p2_c0)] | sum(p1_c2, p1_c1, p1_c0)<=31]]]] | sum(p2_c2, p2_c1, p2_c0)<=33]]]]]
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=33)
states: 15,670 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=31)
states: 15,670 (4)
abstracting: (63<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (84<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (7<=sum(p2_c2, p2_c1, p2_c0))
states: 12,704 (4)
abstracting: (6<=sum(p2_c2, p2_c1, p2_c0))
states: 13,632 (4)
abstracting: (11<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=98)
states: 15,670 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 8,008 (3)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=64)
states: 15,670 (4)
abstracting: (10<=sum(p0_c2, p0_c1, p0_c0))
states: 9,268 (3)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=49)
states: 15,670 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=82)
states: 15,670 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=45)
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 15,670 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=91)
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=94)
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=87)
states: 15,670 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
abstracting: (100<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=47)
states: 15,670 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 15,670 (4)
abstracting: (12<=sum(p1_c2, p1_c1, p1_c0))
states: 6,402 (3)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=73)
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=0)
states: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 15,670 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=54)
states: 15,670 (4)
abstracting: (18<=sum(p0_c2, p0_c1, p0_c0))
states: 980
abstracting: (19<=sum(p0_c2, p0_c1, p0_c0))
states: 520
abstracting: (73<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=9)
states: 6,402 (3)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 8,008 (3)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=36)
states: 15,670 (4)
abstracting: (81<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (72<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=36)
states: 15,670 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=76)
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=62)
states: 15,670 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=18)
states: 15,454 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=77)
states: 15,670 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=31)
states: 15,670 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 15,670 (4)
-> the formula is FALSE
FORMULA PGCD-COL-D02N006-ReachabilityCardinality-09 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.816sec
checking: EF [[[~ [[18<=sum(p2_c2, p2_c1, p2_c0) | [[[[[sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) & 41<=sum(p1_c2, p1_c1, p1_c0)] & [sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0) & sum(p2_c2, p2_c1, p2_c0)<=23]] & [[sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0) & sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0)] | ~ [sum(p1_c2, p1_c1, p1_c0)<=60]]] | [[44<=sum(p0_c2, p0_c1, p0_c0) & [73<=sum(p1_c2, p1_c1, p1_c0) | sum(p0_c2, p0_c1, p0_c0)<=63]] & [~ [89<=sum(p0_c2, p0_c1, p0_c0)] | [sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0) & sum(p1_c2, p1_c1, p1_c0)<=91]]]] & ~ [[~ [sum(p0_c2, p0_c1, p0_c0)<=64] | ~ [[sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0) | 24<=sum(p1_c2, p1_c1, p1_c0)]]]]]]] & [sum(p1_c2, p1_c1, p1_c0)<=36 | [[[sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) & ~ [[[sum(p2_c2, p2_c1, p2_c0)<=85 & sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0)] | ~ [43<=sum(p0_c2, p0_c1, p0_c0)]]]] | ~ [[sum(p1_c2, p1_c1, p1_c0)<=8 | [~ [sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0)] | 60<=sum(p2_c2, p2_c1, p2_c0)]]]] & ~ [[~ [[sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) & 49<=sum(p0_c2, p0_c1, p0_c0)]] | [~ [sum(p2_c2, p2_c1, p2_c0)<=52] & ~ [[sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0) & sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0)]]]]]]]] | ~ [[~ [[sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0) & ~ [[[sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0) & sum(p2_c2, p2_c1, p2_c0)<=26] | [69<=sum(p1_c2, p1_c1, p1_c0) | sum(p0_c2, p0_c1, p0_c0)<=73]]]]] & [~ [[80<=sum(p0_c2, p0_c1, p0_c0) | ~ [23<=sum(p1_c2, p1_c1, p1_c0)]]] & ~ [[sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0) | [[sum(p0_c2, p0_c1, p0_c0)<=95 & 87<=sum(p2_c2, p2_c1, p2_c0)] | [sum(p0_c2, p0_c1, p0_c0)<=62 & sum(p2_c2, p2_c1, p2_c0)<=62]]]]]]]]]
normalized: E [true U [~ [[[~ [[[[sum(p0_c2, p0_c1, p0_c0)<=95 & 87<=sum(p2_c2, p2_c1, p2_c0)] | [sum(p0_c2, p0_c1, p0_c0)<=62 & sum(p2_c2, p2_c1, p2_c0)<=62]] | sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0)]] & ~ [[~ [23<=sum(p1_c2, p1_c1, p1_c0)] | 80<=sum(p0_c2, p0_c1, p0_c0)]]] & ~ [[~ [[[69<=sum(p1_c2, p1_c1, p1_c0) | sum(p0_c2, p0_c1, p0_c0)<=73] | [sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0) & sum(p2_c2, p2_c1, p2_c0)<=26]]] & sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0)]]]] | [[[~ [[[~ [[sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0) & sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0)]] & ~ [sum(p2_c2, p2_c1, p2_c0)<=52]] | ~ [[sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) & 49<=sum(p0_c2, p0_c1, p0_c0)]]]] & [~ [[[~ [sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0)] | 60<=sum(p2_c2, p2_c1, p2_c0)] | sum(p1_c2, p1_c1, p1_c0)<=8]] | [~ [[~ [43<=sum(p0_c2, p0_c1, p0_c0)] | [sum(p2_c2, p2_c1, p2_c0)<=85 & sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0)]]] & sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0)]]] | sum(p1_c2, p1_c1, p1_c0)<=36] & ~ [[[~ [[~ [[sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0) | 24<=sum(p1_c2, p1_c1, p1_c0)]] | ~ [sum(p0_c2, p0_c1, p0_c0)<=64]]] & [[[[sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0) & sum(p1_c2, p1_c1, p1_c0)<=91] | ~ [89<=sum(p0_c2, p0_c1, p0_c0)]] & [[73<=sum(p1_c2, p1_c1, p1_c0) | sum(p0_c2, p0_c1, p0_c0)<=63] & 44<=sum(p0_c2, p0_c1, p0_c0)]] | [[~ [sum(p1_c2, p1_c1, p1_c0)<=60] | [sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0) & sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0)]] & [[sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0) & sum(p2_c2, p2_c1, p2_c0)<=23] & [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) & 41<=sum(p1_c2, p1_c1, p1_c0)]]]]] | 18<=sum(p2_c2, p2_c1, p2_c0)]]]]]
abstracting: (18<=sum(p2_c2, p2_c1, p2_c0))
states: 980
abstracting: (41<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=23)
states: 15,670 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 15,670 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 15,670 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=60)
states: 15,670 (4)
abstracting: (44<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=63)
states: 15,670 (4)
abstracting: (73<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (89<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=91)
states: 15,670 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 8,008 (3)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=64)
states: 15,670 (4)
abstracting: (24<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 15,670 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=36)
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=85)
states: 15,670 (4)
abstracting: (43<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=8)
states: 5,523 (3)
abstracting: (60<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 15,670 (4)
abstracting: (49<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=52)
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 15,670 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=26)
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 15,670 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=73)
states: 15,670 (4)
abstracting: (69<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (80<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (23<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 8,008 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=62)
states: 15,670 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=62)
states: 15,670 (4)
abstracting: (87<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=95)
states: 15,670 (4)
-> the formula is TRUE
FORMULA PGCD-COL-D02N006-ReachabilityCardinality-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.615sec
checking: EF [[[[[[sum(p2_c2, p2_c1, p2_c0)<=22 | ~ [[22<=sum(p0_c2, p0_c1, p0_c0) & ~ [78<=sum(p1_c2, p1_c1, p1_c0)]]]] | [~ [[~ [70<=sum(p1_c2, p1_c1, p1_c0)] | [[sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0) | sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0)] & ~ [28<=sum(p2_c2, p2_c1, p2_c0)]]]] | [86<=sum(p2_c2, p2_c1, p2_c0) & [sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0) & ~ [sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0)]]]]] & ~ [[sum(p2_c2, p2_c1, p2_c0)<=2 & [~ [[sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0) | ~ [sum(p1_c2, p1_c1, p1_c0)<=58]]] & ~ [[~ [5<=sum(p1_c2, p1_c1, p1_c0)] | [61<=sum(p1_c2, p1_c1, p1_c0) & sum(p0_c2, p0_c1, p0_c0)<=95]]]]]]] & sum(p0_c2, p0_c1, p0_c0)<=83] | [~ [[[~ [[[[sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0) | 80<=sum(p2_c2, p2_c1, p2_c0)] & [47<=sum(p2_c2, p2_c1, p2_c0) & 69<=sum(p2_c2, p2_c1, p2_c0)]] & [[sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) & 40<=sum(p0_c2, p0_c1, p0_c0)] | [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) | 80<=sum(p2_c2, p2_c1, p2_c0)]]]] & [~ [sum(p0_c2, p0_c1, p0_c0)<=42] & [61<=sum(p1_c2, p1_c1, p1_c0) | 74<=sum(p0_c2, p0_c1, p0_c0)]]] & ~ [35<=sum(p2_c2, p2_c1, p2_c0)]]] & [[~ [[sum(p0_c2, p0_c1, p0_c0)<=40 & [60<=sum(p0_c2, p0_c1, p0_c0) | [sum(p1_c2, p1_c1, p1_c0)<=98 & [sum(p1_c2, p1_c1, p1_c0)<=84 | sum(p0_c2, p0_c1, p0_c0)<=20]]]]] | ~ [94<=sum(p1_c2, p1_c1, p1_c0)]] & [42<=sum(p2_c2, p2_c1, p2_c0) & ~ [[[[sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0) & [sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0) | 54<=sum(p1_c2, p1_c1, p1_c0)]] | ~ [[sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0) & 52<=sum(p1_c2, p1_c1, p1_c0)]]] & [[sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0) | [sum(p2_c2, p2_c1, p2_c0)<=60 & sum(p2_c2, p2_c1, p2_c0)<=44]] | [[sum(p2_c2, p2_c1, p2_c0)<=66 | 28<=sum(p1_c2, p1_c1, p1_c0)] & [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) | sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0)]]]]]]]]]]
normalized: E [true U [[[[~ [[[[[sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) | sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0)] & [sum(p2_c2, p2_c1, p2_c0)<=66 | 28<=sum(p1_c2, p1_c1, p1_c0)]] | [[sum(p2_c2, p2_c1, p2_c0)<=60 & sum(p2_c2, p2_c1, p2_c0)<=44] | sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0)]] & [~ [[sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0) & 52<=sum(p1_c2, p1_c1, p1_c0)]] | [[sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0) | 54<=sum(p1_c2, p1_c1, p1_c0)] & sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0)]]]] & 42<=sum(p2_c2, p2_c1, p2_c0)] & [~ [94<=sum(p1_c2, p1_c1, p1_c0)] | ~ [[[[[sum(p1_c2, p1_c1, p1_c0)<=84 | sum(p0_c2, p0_c1, p0_c0)<=20] & sum(p1_c2, p1_c1, p1_c0)<=98] | 60<=sum(p0_c2, p0_c1, p0_c0)] & sum(p0_c2, p0_c1, p0_c0)<=40]]]] & ~ [[~ [35<=sum(p2_c2, p2_c1, p2_c0)] & [[[61<=sum(p1_c2, p1_c1, p1_c0) | 74<=sum(p0_c2, p0_c1, p0_c0)] & ~ [sum(p0_c2, p0_c1, p0_c0)<=42]] & ~ [[[[sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) | 80<=sum(p2_c2, p2_c1, p2_c0)] | [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) & 40<=sum(p0_c2, p0_c1, p0_c0)]] & [[47<=sum(p2_c2, p2_c1, p2_c0) & 69<=sum(p2_c2, p2_c1, p2_c0)] & [sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0) | 80<=sum(p2_c2, p2_c1, p2_c0)]]]]]]]] | [[~ [[[~ [[[61<=sum(p1_c2, p1_c1, p1_c0) & sum(p0_c2, p0_c1, p0_c0)<=95] | ~ [5<=sum(p1_c2, p1_c1, p1_c0)]]] & ~ [[~ [sum(p1_c2, p1_c1, p1_c0)<=58] | sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)]]] & sum(p2_c2, p2_c1, p2_c0)<=2]] & [[[[~ [sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0)] & sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0)] & 86<=sum(p2_c2, p2_c1, p2_c0)] | ~ [[[~ [28<=sum(p2_c2, p2_c1, p2_c0)] & [sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0) | sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0)]] | ~ [70<=sum(p1_c2, p1_c1, p1_c0)]]]] | [~ [[~ [78<=sum(p1_c2, p1_c1, p1_c0)] & 22<=sum(p0_c2, p0_c1, p0_c0)]] | sum(p2_c2, p2_c1, p2_c0)<=22]]] & sum(p0_c2, p0_c1, p0_c0)<=83]]]
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=83)
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=22)
states: 15,670 (4)
abstracting: (22<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (78<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (70<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 15,670 (4)
abstracting: (28<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (86<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=2)
states: 216
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 15,670 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=58)
states: 15,670 (4)
abstracting: (5<=sum(p1_c2, p1_c1, p1_c0))
states: 14,069 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=95)
states: 15,670 (4)
abstracting: (61<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (80<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
abstracting: (69<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (47<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (40<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
abstracting: (80<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=42)
states: 15,670 (4)
abstracting: (74<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (61<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (35<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=40)
states: 15,670 (4)
abstracting: (60<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=98)
states: 15,670 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=20)
states: 15,615 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=84)
states: 15,670 (4)
abstracting: (94<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (42<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 8,008 (3)
abstracting: (54<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 15,670 (4)
abstracting: (52<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 8,008 (3)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 8,008 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=44)
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=60)
states: 15,670 (4)
abstracting: (28<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=66)
states: 15,670 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 8,008 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
-> the formula is TRUE
FORMULA PGCD-COL-D02N006-ReachabilityCardinality-11 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.680sec
checking: AG [[[~ [[[9<=sum(p2_c2, p2_c1, p2_c0) | [[[[22<=sum(p1_c2, p1_c1, p1_c0) & sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0)] | ~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0)]] & ~ [[sum(p0_c2, p0_c1, p0_c0)<=15 | 39<=sum(p1_c2, p1_c1, p1_c0)]]] & [[sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0) & ~ [87<=sum(p2_c2, p2_c1, p2_c0)]] | sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0)]]] | [[sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0) | [~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0)] & [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) & sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0)]]] | ~ [[[sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0) | 50<=sum(p2_c2, p2_c1, p2_c0)] & [sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0) & [89<=sum(p1_c2, p1_c1, p1_c0) | sum(p1_c2, p1_c1, p1_c0)<=41]]]]]]] | [[[~ [[[~ [sum(p1_c2, p1_c1, p1_c0)<=70] | ~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0)]] | sum(p1_c2, p1_c1, p1_c0)<=32]] & [sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0) & [[sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0) & [sum(p0_c2, p0_c1, p0_c0)<=8 | sum(p2_c2, p2_c1, p2_c0)<=52]] & sum(p1_c2, p1_c1, p1_c0)<=99]]] | 42<=sum(p2_c2, p2_c1, p2_c0)] | [[~ [[26<=sum(p2_c2, p2_c1, p2_c0) | [sum(p0_c2, p0_c1, p0_c0)<=57 | [70<=sum(p2_c2, p2_c1, p2_c0) & 22<=sum(p0_c2, p0_c1, p0_c0)]]]] | [~ [sum(p2_c2, p2_c1, p2_c0)<=60] | [~ [[16<=sum(p1_c2, p1_c1, p1_c0) & 60<=sum(p2_c2, p2_c1, p2_c0)]] | [40<=sum(p1_c2, p1_c1, p1_c0) & [59<=sum(p0_c2, p0_c1, p0_c0) | sum(p2_c2, p2_c1, p2_c0)<=41]]]]] & ~ [[[[sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0) | sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0)] | ~ [sum(p2_c2, p2_c1, p2_c0)<=4]] & ~ [[81<=sum(p0_c2, p0_c1, p0_c0) & 12<=sum(p1_c2, p1_c1, p1_c0)]]]]]]] | [[[sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0) & 38<=sum(p2_c2, p2_c1, p2_c0)] & ~ [[[[[sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0) | 52<=sum(p0_c2, p0_c1, p0_c0)] | [sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0) | 76<=sum(p1_c2, p1_c1, p1_c0)]] & [~ [5<=sum(p0_c2, p0_c1, p0_c0)] & [sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0) & sum(p2_c2, p2_c1, p2_c0)<=35]]] & 3<=sum(p0_c2, p0_c1, p0_c0)]]] | ~ [[sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0) | ~ [[~ [36<=sum(p0_c2, p0_c1, p0_c0)] & [[[10<=sum(p1_c2, p1_c1, p1_c0) & 84<=sum(p2_c2, p2_c1, p2_c0)] & [sum(p1_c2, p1_c1, p1_c0)<=19 & sum(p1_c2, p1_c1, p1_c0)<=0]] | [[42<=sum(p0_c2, p0_c1, p0_c0) & sum(p2_c2, p2_c1, p2_c0)<=99] | [80<=sum(p1_c2, p1_c1, p1_c0) | 37<=sum(p1_c2, p1_c1, p1_c0)]]]]]]]]]]
normalized: ~ [E [true U ~ [[[~ [[~ [[[[[42<=sum(p0_c2, p0_c1, p0_c0) & sum(p2_c2, p2_c1, p2_c0)<=99] | [80<=sum(p1_c2, p1_c1, p1_c0) | 37<=sum(p1_c2, p1_c1, p1_c0)]] | [[sum(p1_c2, p1_c1, p1_c0)<=19 & sum(p1_c2, p1_c1, p1_c0)<=0] & [10<=sum(p1_c2, p1_c1, p1_c0) & 84<=sum(p2_c2, p2_c1, p2_c0)]]] & ~ [36<=sum(p0_c2, p0_c1, p0_c0)]]] | sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0)]] | [~ [[[[[sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0) & sum(p2_c2, p2_c1, p2_c0)<=35] & ~ [5<=sum(p0_c2, p0_c1, p0_c0)]] & [[sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0) | 76<=sum(p1_c2, p1_c1, p1_c0)] | [sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0) | 52<=sum(p0_c2, p0_c1, p0_c0)]]] & 3<=sum(p0_c2, p0_c1, p0_c0)]] & [sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0) & 38<=sum(p2_c2, p2_c1, p2_c0)]]] | [[[~ [[~ [[81<=sum(p0_c2, p0_c1, p0_c0) & 12<=sum(p1_c2, p1_c1, p1_c0)]] & [~ [sum(p2_c2, p2_c1, p2_c0)<=4] | [sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0) | sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0)]]]] & [[[[[59<=sum(p0_c2, p0_c1, p0_c0) | sum(p2_c2, p2_c1, p2_c0)<=41] & 40<=sum(p1_c2, p1_c1, p1_c0)] | ~ [[16<=sum(p1_c2, p1_c1, p1_c0) & 60<=sum(p2_c2, p2_c1, p2_c0)]]] | ~ [sum(p2_c2, p2_c1, p2_c0)<=60]] | ~ [[[[70<=sum(p2_c2, p2_c1, p2_c0) & 22<=sum(p0_c2, p0_c1, p0_c0)] | sum(p0_c2, p0_c1, p0_c0)<=57] | 26<=sum(p2_c2, p2_c1, p2_c0)]]]] | [[[[[[sum(p0_c2, p0_c1, p0_c0)<=8 | sum(p2_c2, p2_c1, p2_c0)<=52] & sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)] & sum(p1_c2, p1_c1, p1_c0)<=99] & sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0)] & ~ [[[~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0)] | ~ [sum(p1_c2, p1_c1, p1_c0)<=70]] | sum(p1_c2, p1_c1, p1_c0)<=32]]] | 42<=sum(p2_c2, p2_c1, p2_c0)]] | ~ [[[~ [[[[89<=sum(p1_c2, p1_c1, p1_c0) | sum(p1_c2, p1_c1, p1_c0)<=41] & sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0)] & [sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0) | 50<=sum(p2_c2, p2_c1, p2_c0)]]] | [[[sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) & sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0)] & ~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0)]] | sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0)]] | [[[[~ [87<=sum(p2_c2, p2_c1, p2_c0)] & sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0)] | sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0)] & [~ [[sum(p0_c2, p0_c1, p0_c0)<=15 | 39<=sum(p1_c2, p1_c1, p1_c0)]] & [~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0)] | [22<=sum(p1_c2, p1_c1, p1_c0) & sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0)]]]] | 9<=sum(p2_c2, p2_c1, p2_c0)]]]]]]]]
abstracting: (9<=sum(p2_c2, p2_c1, p2_c0))
states: 10,493 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 15,670 (4)
abstracting: (22<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 15,670 (4)
abstracting: (39<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=15)
states: 13,286 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 8,008 (3)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 8,008 (3)
abstracting: (87<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 15,670 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
abstracting: (50<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 8,008 (3)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 15,670 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=41)
states: 15,670 (4)
abstracting: (89<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (42<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=32)
states: 15,670 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=70)
states: 15,670 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 15,670 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=99)
states: 15,670 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=52)
states: 15,670 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=8)
states: 5,177 (3)
abstracting: (26<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=57)
states: 15,670 (4)
abstracting: (22<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (70<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=60)
states: 15,670 (4)
abstracting: (60<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (16<=sum(p1_c2, p1_c1, p1_c0))
states: 2,038 (3)
abstracting: (40<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=41)
states: 15,670 (4)
abstracting: (59<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=4)
states: 1,255 (3)
abstracting: (12<=sum(p1_c2, p1_c1, p1_c0))
states: 6,402 (3)
abstracting: (81<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (38<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 8,008 (3)
abstracting: (3<=sum(p0_c2, p0_c1, p0_c0))
states: 15,454 (4)
abstracting: (52<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 15,670 (4)
abstracting: (76<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 15,670 (4)
abstracting: (5<=sum(p0_c2, p0_c1, p0_c0))
states: 14,415 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=35)
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 15,670 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 15,670 (4)
abstracting: (36<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (84<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (10<=sum(p1_c2, p1_c1, p1_c0))
states: 8,922 (3)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=0)
states: 55
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=19)
states: 15,670 (4)
abstracting: (37<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (80<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=99)
states: 15,670 (4)
abstracting: (42<=sum(p0_c2, p0_c1, p0_c0))
states: 0
-> the formula is FALSE
FORMULA PGCD-COL-D02N006-ReachabilityCardinality-04 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.781sec
totally nodes used: 16727 (1.7e+04)
number of garbage collections: 0
fire ops cache: hits/miss/sum: 96086 33895 129981
used/not used/entry size/cache size: 44607 67064257 16 1024MB
basic ops cache: hits/miss/sum: 105478 71686 177164
used/not used/entry size/cache size: 98322 16678894 12 192MB
unary ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 8 128MB
abstract ops cache: hits/miss/sum: 0 17728751 17728751
used/not used/entry size/cache size: 1 16777215 12 192MB
state nr cache: hits/miss/sum: 9678 4058 13736
used/not used/entry size/cache size: 4058 8384550 32 256MB
max state cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 8388608 32 256MB
uniqueHash elements/entry size/size: 67108864 4 256MB
0 67093572
1 14609
2 407
3 104
4 66
5 43
6 28
7 14
8 13
9 2
>= 10 6
Total processing time: 1m27.766sec
BK_STOP 1680811008816
--------------------
content from stderr:
+ ulimit -s 65536
+ [[ -z '' ]]
+ export LTSMIN_MEM_SIZE=8589934592
+ LTSMIN_MEM_SIZE=8589934592
+ export PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ export LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
+ LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
++ sed s/.jar//
++ perl -pe 's/.*\.//g'
++ ls /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/plugins/fr.lip6.move.gal.application.pnmcc_1.0.0.202304061127.jar
+ VERSION=202304061127
+ echo 'Running Version 202304061127'
+ /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/its-tools -pnfolder /home/mcc/execution -examination ReachabilityCardinality -timeout 360 -rebuildPNML
check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.000sec
iterations count:509 (56), effective:169 (18)
initing FirstDep: 0m 0.000sec
iterations count:9 (1), effective:0 (0)
iterations count:180 (20), effective:53 (5)
iterations count:135 (15), effective:40 (4)
iterations count:191 (21), effective:63 (7)
iterations count:191 (21), effective:63 (7)
iterations count:9 (1), effective:0 (0)
iterations count:116 (12), effective:34 (3)
iterations count:9 (1), effective:0 (0)
iterations count:127 (14), effective:41 (4)
iterations count:9 (1), effective:0 (0)
iterations count:9 (1), effective:0 (0)
iterations count:9 (1), effective:0 (0)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="PGCD-COL-D02N006"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="marciexred"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marciexred"
echo " Input is PGCD-COL-D02N006, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r522-tall-167987247300390"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/PGCD-COL-D02N006.tgz
mv PGCD-COL-D02N006 execution
cd execution
if [ "ReachabilityCardinality" = "ReachabilityDeadlock" ] || [ "ReachabilityCardinality" = "UpperBounds" ] || [ "ReachabilityCardinality" = "QuasiLiveness" ] || [ "ReachabilityCardinality" = "StableMarking" ] || [ "ReachabilityCardinality" = "Liveness" ] || [ "ReachabilityCardinality" = "OneSafe" ] || [ "ReachabilityCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "ReachabilityCardinality" = "ReachabilityDeadlock" ] || [ "ReachabilityCardinality" = "QuasiLiveness" ] || [ "ReachabilityCardinality" = "StableMarking" ] || [ "ReachabilityCardinality" = "Liveness" ] || [ "ReachabilityCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME ReachabilityCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;