fond
Model Checking Contest 2023
13th edition, Paris, France, April 26, 2023 (at TOOLympics II)
Execution of r522-tall-167987247200314
Last Updated
May 14, 2023

About the Execution of Marcie+red for Murphy-COL-D4N025

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
11473.819 95290.00 105242.00 646.40 FTTTFTTFFTFTFTTF normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Formatting '/data/fkordon/mcc2023-input.r522-tall-167987247200314.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2023-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
...................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
=====================================================================
Generated by BenchKit 2-5348
Executing tool marciexred
Input is Murphy-COL-D4N025, examination is CTLFireability
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r522-tall-167987247200314
=====================================================================

--------------------
preparation of the directory to be used:
/home/mcc/execution
total 460K
-rw-r--r-- 1 mcc users 7.8K Mar 23 15:21 CTLCardinality.txt
-rw-r--r-- 1 mcc users 87K Mar 23 15:21 CTLCardinality.xml
-rw-r--r-- 1 mcc users 5.7K Mar 23 15:20 CTLFireability.txt
-rw-r--r-- 1 mcc users 57K Mar 23 15:20 CTLFireability.xml
-rw-r--r-- 1 mcc users 3.2K Mar 23 07:07 LTLCardinality.txt
-rw-r--r-- 1 mcc users 23K Mar 23 07:07 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.1K Mar 23 07:07 LTLFireability.txt
-rw-r--r-- 1 mcc users 19K Mar 23 07:07 LTLFireability.xml
-rw-r--r-- 1 mcc users 1 Mar 26 22:42 NewModel
-rw-r--r-- 1 mcc users 9.0K Mar 23 15:22 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 95K Mar 23 15:22 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 8.1K Mar 23 15:22 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 78K Mar 23 15:22 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.6K Mar 23 07:07 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.6K Mar 23 07:07 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Mar 26 22:42 equiv_pt
-rw-r--r-- 1 mcc users 7 Mar 26 22:42 instance
-rw-r--r-- 1 mcc users 5 Mar 26 22:42 iscolored
-rw-r--r-- 1 mcc users 20K Mar 31 16:48 model.pnml

--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME Murphy-COL-D4N025-CTLFireability-00
FORMULA_NAME Murphy-COL-D4N025-CTLFireability-01
FORMULA_NAME Murphy-COL-D4N025-CTLFireability-02
FORMULA_NAME Murphy-COL-D4N025-CTLFireability-03
FORMULA_NAME Murphy-COL-D4N025-CTLFireability-04
FORMULA_NAME Murphy-COL-D4N025-CTLFireability-05
FORMULA_NAME Murphy-COL-D4N025-CTLFireability-06
FORMULA_NAME Murphy-COL-D4N025-CTLFireability-07
FORMULA_NAME Murphy-COL-D4N025-CTLFireability-08
FORMULA_NAME Murphy-COL-D4N025-CTLFireability-09
FORMULA_NAME Murphy-COL-D4N025-CTLFireability-10
FORMULA_NAME Murphy-COL-D4N025-CTLFireability-11
FORMULA_NAME Murphy-COL-D4N025-CTLFireability-12
FORMULA_NAME Murphy-COL-D4N025-CTLFireability-13
FORMULA_NAME Murphy-COL-D4N025-CTLFireability-14
FORMULA_NAME Murphy-COL-D4N025-CTLFireability-15

=== Now, execution of the tool begins

BK_START 1680891245831

bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marciexred
BK_EXAMINATION=CTLFireability
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=Murphy-COL-D4N025
Applying reductions before tool marcie
Invoking reducer
Running Version 202304061127
[2023-04-07 18:14:07] [INFO ] Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, CTLFireability, -timeout, 360, -rebuildPNML]
[2023-04-07 18:14:07] [INFO ] Parsing pnml file : /home/mcc/execution/model.pnml
[2023-04-07 18:14:07] [INFO ] Detected file is not PT type :http://www.pnml.org/version-2009/grammar/symmetricnet
log4j:WARN No appenders could be found for logger (org.apache.axiom.locator.DefaultOMMetaFactoryLocator).
log4j:WARN Please initialize the log4j system properly.
log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.
[2023-04-07 18:14:07] [WARNING] Using fallBack plugin, rng conformance not checked
[2023-04-07 18:14:07] [INFO ] Load time of PNML (colored model parsed with PNMLFW) : 405 ms
[2023-04-07 18:14:07] [INFO ] Imported 6 HL places and 7 HL transitions for a total of 30 PT places and 35.0 transition bindings in 17 ms.
Parsed 16 properties from file /home/mcc/execution/CTLFireability.xml in 13 ms.
FORMULA Murphy-COL-D4N025-CTLFireability-10 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
[2023-04-07 18:14:07] [INFO ] Built PT skeleton of HLPN with 6 places and 7 transitions 27 arcs in 4 ms.
[2023-04-07 18:14:07] [INFO ] Skeletonized 15 HLPN properties in 2 ms.
Initial state reduction rules removed 2 formulas.
FORMULA Murphy-COL-D4N025-CTLFireability-04 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA Murphy-COL-D4N025-CTLFireability-15 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
Computed a total of 0 stabilizing places and 0 stable transitions
Remains 2 properties that can be checked using skeleton over-approximation.
Computed a total of 0 stabilizing places and 0 stable transitions
Finished random walk after 6 steps, including 0 resets, run visited all 2 properties in 6 ms. (steps per millisecond=1 )
Parikh walk visited 0 properties in 1 ms.
[2023-04-07 18:14:07] [INFO ] Flatten gal took : 12 ms
[2023-04-07 18:14:07] [INFO ] Flatten gal took : 2 ms
Arc [2:1*[(MOD (ADD $x 1) 5)]] contains successor/predecessor on variables of sort CD
[2023-04-07 18:14:07] [INFO ] Unfolded HLPN to a Petri net with 30 places and 35 transitions 135 arcs in 7 ms.
[2023-04-07 18:14:07] [INFO ] Unfolded 13 HLPN properties in 1 ms.
Support contains 30 out of 30 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 30/30 places, 35/35 transitions.
Applied a total of 0 rules in 5 ms. Remains 30 /30 variables (removed 0) and now considering 35/35 (removed 0) transitions.
// Phase 1: matrix 35 rows 30 cols
[2023-04-07 18:14:07] [INFO ] Computed 6 invariants in 4 ms
[2023-04-07 18:14:08] [INFO ] Dead Transitions using invariants and state equation in 154 ms found 0 transitions.
[2023-04-07 18:14:08] [INFO ] Invariant cache hit.
[2023-04-07 18:14:08] [INFO ] Implicit Places using invariants in 33 ms returned []
[2023-04-07 18:14:08] [INFO ] Invariant cache hit.
[2023-04-07 18:14:08] [INFO ] State equation strengthened by 10 read => feed constraints.
[2023-04-07 18:14:08] [INFO ] Implicit Places using invariants and state equation in 51 ms returned []
Implicit Place search using SMT with State Equation took 85 ms to find 0 implicit places.
[2023-04-07 18:14:08] [INFO ] Invariant cache hit.
[2023-04-07 18:14:08] [INFO ] Dead Transitions using invariants and state equation in 37 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 285 ms. Remains : 30/30 places, 35/35 transitions.
Support contains 30 out of 30 places after structural reductions.
[2023-04-07 18:14:08] [INFO ] Flatten gal took : 11 ms
[2023-04-07 18:14:08] [INFO ] Flatten gal took : 10 ms
[2023-04-07 18:14:08] [INFO ] Input system was already deterministic with 35 transitions.
Incomplete random walk after 10001 steps, including 2 resets, run finished after 179 ms. (steps per millisecond=55 ) properties (out of 34) seen :30
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 65 ms. (steps per millisecond=153 ) properties (out of 4) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 27 ms. (steps per millisecond=370 ) properties (out of 4) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 30 ms. (steps per millisecond=333 ) properties (out of 4) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 34 ms. (steps per millisecond=294 ) properties (out of 4) seen :0
Running SMT prover for 4 properties.
[2023-04-07 18:14:08] [INFO ] Invariant cache hit.
[2023-04-07 18:14:08] [INFO ] [Real]Absence check using 2 positive place invariants in 1 ms returned sat
[2023-04-07 18:14:08] [INFO ] [Real]Absence check using 2 positive and 4 generalized place invariants in 1 ms returned sat
[2023-04-07 18:14:08] [INFO ] After 67ms SMT Verify possible using all constraints in real domain returned unsat :0 sat :0 real:4
[2023-04-07 18:14:08] [INFO ] [Nat]Absence check using 2 positive place invariants in 1 ms returned sat
[2023-04-07 18:14:08] [INFO ] [Nat]Absence check using 2 positive and 4 generalized place invariants in 0 ms returned sat
[2023-04-07 18:14:08] [INFO ] After 38ms SMT Verify possible using state equation in natural domain returned unsat :0 sat :4
[2023-04-07 18:14:08] [INFO ] State equation strengthened by 10 read => feed constraints.
[2023-04-07 18:14:08] [INFO ] After 26ms SMT Verify possible using 10 Read/Feed constraints in natural domain returned unsat :0 sat :4
[2023-04-07 18:14:09] [INFO ] After 68ms SMT Verify possible using trap constraints in natural domain returned unsat :0 sat :4
Attempting to minimize the solution found.
Minimization took 31 ms.
[2023-04-07 18:14:09] [INFO ] After 177ms SMT Verify possible using all constraints in natural domain returned unsat :0 sat :4
Parikh walk visited 0 properties in 50 ms.
Support contains 30 out of 30 places. Attempting structural reductions.
Starting structural reductions in REACHABILITY mode, iteration 0 : 30/30 places, 35/35 transitions.
Applied a total of 0 rules in 4 ms. Remains 30 /30 variables (removed 0) and now considering 35/35 (removed 0) transitions.
[2023-04-07 18:14:09] [INFO ] Invariant cache hit.
[2023-04-07 18:14:09] [INFO ] Dead Transitions using invariants and state equation in 35 ms found 0 transitions.
Finished structural reductions in REACHABILITY mode , in 1 iterations and 40 ms. Remains : 30/30 places, 35/35 transitions.
Incomplete random walk after 10001 steps, including 2 resets, run finished after 95 ms. (steps per millisecond=105 ) properties (out of 4) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 44 ms. (steps per millisecond=227 ) properties (out of 4) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 25 ms. (steps per millisecond=400 ) properties (out of 4) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 19 ms. (steps per millisecond=526 ) properties (out of 4) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 22 ms. (steps per millisecond=454 ) properties (out of 4) seen :0
Interrupted probabilistic random walk after 257653 steps, run timeout after 3001 ms. (steps per millisecond=85 ) properties seen :{}
Probabilistic random walk after 257653 steps, saw 177557 distinct states, run finished after 3002 ms. (steps per millisecond=85 ) properties seen :0
Running SMT prover for 4 properties.
[2023-04-07 18:14:12] [INFO ] Invariant cache hit.
[2023-04-07 18:14:12] [INFO ] [Real]Absence check using 2 positive place invariants in 1 ms returned sat
[2023-04-07 18:14:12] [INFO ] [Real]Absence check using 2 positive and 4 generalized place invariants in 0 ms returned sat
[2023-04-07 18:14:12] [INFO ] After 40ms SMT Verify possible using all constraints in real domain returned unsat :0 sat :0 real:4
[2023-04-07 18:14:12] [INFO ] [Nat]Absence check using 2 positive place invariants in 1 ms returned sat
[2023-04-07 18:14:12] [INFO ] [Nat]Absence check using 2 positive and 4 generalized place invariants in 1 ms returned sat
[2023-04-07 18:14:12] [INFO ] After 32ms SMT Verify possible using state equation in natural domain returned unsat :0 sat :4
[2023-04-07 18:14:12] [INFO ] State equation strengthened by 10 read => feed constraints.
[2023-04-07 18:14:12] [INFO ] After 31ms SMT Verify possible using 10 Read/Feed constraints in natural domain returned unsat :0 sat :4
[2023-04-07 18:14:12] [INFO ] After 55ms SMT Verify possible using trap constraints in natural domain returned unsat :0 sat :4
Attempting to minimize the solution found.
Minimization took 22 ms.
[2023-04-07 18:14:12] [INFO ] After 141ms SMT Verify possible using all constraints in natural domain returned unsat :0 sat :4
Parikh walk visited 0 properties in 36 ms.
Support contains 30 out of 30 places. Attempting structural reductions.
Starting structural reductions in REACHABILITY mode, iteration 0 : 30/30 places, 35/35 transitions.
Applied a total of 0 rules in 1 ms. Remains 30 /30 variables (removed 0) and now considering 35/35 (removed 0) transitions.
Finished structural reductions in REACHABILITY mode , in 1 iterations and 1 ms. Remains : 30/30 places, 35/35 transitions.
Starting structural reductions in REACHABILITY mode, iteration 0 : 30/30 places, 35/35 transitions.
Applied a total of 0 rules in 1 ms. Remains 30 /30 variables (removed 0) and now considering 35/35 (removed 0) transitions.
[2023-04-07 18:14:12] [INFO ] Invariant cache hit.
[2023-04-07 18:14:12] [INFO ] Implicit Places using invariants in 23 ms returned []
[2023-04-07 18:14:12] [INFO ] Invariant cache hit.
[2023-04-07 18:14:12] [INFO ] State equation strengthened by 10 read => feed constraints.
[2023-04-07 18:14:12] [INFO ] Implicit Places using invariants and state equation in 40 ms returned []
Implicit Place search using SMT with State Equation took 66 ms to find 0 implicit places.
[2023-04-07 18:14:12] [INFO ] Redundant transitions in 0 ms returned []
[2023-04-07 18:14:12] [INFO ] Invariant cache hit.
[2023-04-07 18:14:12] [INFO ] Dead Transitions using invariants and state equation in 33 ms found 0 transitions.
Finished structural reductions in REACHABILITY mode , in 1 iterations and 105 ms. Remains : 30/30 places, 35/35 transitions.
Applied a total of 0 rules in 0 ms. Remains 30 /30 variables (removed 0) and now considering 35/35 (removed 0) transitions.
Running SMT prover for 4 properties.
[2023-04-07 18:14:12] [INFO ] Invariant cache hit.
[2023-04-07 18:14:12] [INFO ] [Real]Absence check using 2 positive place invariants in 1 ms returned sat
[2023-04-07 18:14:12] [INFO ] [Real]Absence check using 2 positive and 4 generalized place invariants in 1 ms returned sat
[2023-04-07 18:14:12] [INFO ] After 28ms SMT Verify possible using all constraints in real domain returned unsat :0 sat :0 real:4
[2023-04-07 18:14:12] [INFO ] [Nat]Absence check using 2 positive place invariants in 0 ms returned sat
[2023-04-07 18:14:12] [INFO ] [Nat]Absence check using 2 positive and 4 generalized place invariants in 5 ms returned sat
[2023-04-07 18:14:12] [INFO ] After 45ms SMT Verify possible using state equation in natural domain returned unsat :0 sat :4
[2023-04-07 18:14:12] [INFO ] State equation strengthened by 10 read => feed constraints.
[2023-04-07 18:14:12] [INFO ] After 27ms SMT Verify possible using 10 Read/Feed constraints in natural domain returned unsat :0 sat :4
[2023-04-07 18:14:12] [INFO ] Deduced a trap composed of 2 places in 24 ms of which 2 ms to minimize.
[2023-04-07 18:14:12] [INFO ] Trap strengthening (SAT) tested/added 2/1 trap constraints in 30 ms
[2023-04-07 18:14:12] [INFO ] After 87ms SMT Verify possible using trap constraints in natural domain returned unsat :0 sat :4
Attempting to minimize the solution found.
Minimization took 34 ms.
[2023-04-07 18:14:12] [INFO ] After 202ms SMT Verify possible using all constraints in natural domain returned unsat :0 sat :4
[2023-04-07 18:14:12] [INFO ] Flatten gal took : 10 ms
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 11 ms
[2023-04-07 18:14:13] [INFO ] Input system was already deterministic with 35 transitions.
Computed a total of 0 stabilizing places and 0 stable transitions
Starting structural reductions in LTL mode, iteration 0 : 30/30 places, 35/35 transitions.
Applied a total of 0 rules in 2 ms. Remains 30 /30 variables (removed 0) and now considering 35/35 (removed 0) transitions.
[2023-04-07 18:14:13] [INFO ] Invariant cache hit.
[2023-04-07 18:14:13] [INFO ] Dead Transitions using invariants and state equation in 37 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 41 ms. Remains : 30/30 places, 35/35 transitions.
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 3 ms
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 4 ms
[2023-04-07 18:14:13] [INFO ] Input system was already deterministic with 35 transitions.
Starting structural reductions in SI_CTL mode, iteration 0 : 30/30 places, 35/35 transitions.
Applied a total of 0 rules in 2 ms. Remains 30 /30 variables (removed 0) and now considering 35/35 (removed 0) transitions.
[2023-04-07 18:14:13] [INFO ] Invariant cache hit.
[2023-04-07 18:14:13] [INFO ] Dead Transitions using invariants and state equation in 33 ms found 0 transitions.
Finished structural reductions in SI_CTL mode , in 1 iterations and 36 ms. Remains : 30/30 places, 35/35 transitions.
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 3 ms
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 2 ms
[2023-04-07 18:14:13] [INFO ] Input system was already deterministic with 35 transitions.
Finished random walk after 93 steps, including 0 resets, run visited all 1 properties in 1 ms. (steps per millisecond=93 )
FORMULA Murphy-COL-D4N025-CTLFireability-01 TRUE TECHNIQUES TOPOLOGICAL RANDOM_WALK
Parikh walk visited 0 properties in 0 ms.
Starting structural reductions in LTL mode, iteration 0 : 30/30 places, 35/35 transitions.
Applied a total of 0 rules in 1 ms. Remains 30 /30 variables (removed 0) and now considering 35/35 (removed 0) transitions.
[2023-04-07 18:14:13] [INFO ] Invariant cache hit.
[2023-04-07 18:14:13] [INFO ] Dead Transitions using invariants and state equation in 31 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 32 ms. Remains : 30/30 places, 35/35 transitions.
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 3 ms
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 3 ms
[2023-04-07 18:14:13] [INFO ] Input system was already deterministic with 35 transitions.
Starting structural reductions in LTL mode, iteration 0 : 30/30 places, 35/35 transitions.
Applied a total of 0 rules in 1 ms. Remains 30 /30 variables (removed 0) and now considering 35/35 (removed 0) transitions.
[2023-04-07 18:14:13] [INFO ] Invariant cache hit.
[2023-04-07 18:14:13] [INFO ] Dead Transitions using invariants and state equation in 30 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 31 ms. Remains : 30/30 places, 35/35 transitions.
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 3 ms
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 2 ms
[2023-04-07 18:14:13] [INFO ] Input system was already deterministic with 35 transitions.
Starting structural reductions in LTL mode, iteration 0 : 30/30 places, 35/35 transitions.
Applied a total of 0 rules in 1 ms. Remains 30 /30 variables (removed 0) and now considering 35/35 (removed 0) transitions.
[2023-04-07 18:14:13] [INFO ] Invariant cache hit.
[2023-04-07 18:14:13] [INFO ] Dead Transitions using invariants and state equation in 37 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 38 ms. Remains : 30/30 places, 35/35 transitions.
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 3 ms
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 2 ms
[2023-04-07 18:14:13] [INFO ] Input system was already deterministic with 35 transitions.
Starting structural reductions in LTL mode, iteration 0 : 30/30 places, 35/35 transitions.
Applied a total of 0 rules in 0 ms. Remains 30 /30 variables (removed 0) and now considering 35/35 (removed 0) transitions.
[2023-04-07 18:14:13] [INFO ] Invariant cache hit.
[2023-04-07 18:14:13] [INFO ] Dead Transitions using invariants and state equation in 30 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 30 ms. Remains : 30/30 places, 35/35 transitions.
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 2 ms
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 2 ms
[2023-04-07 18:14:13] [INFO ] Input system was already deterministic with 35 transitions.
Starting structural reductions in LTL mode, iteration 0 : 30/30 places, 35/35 transitions.
Applied a total of 0 rules in 1 ms. Remains 30 /30 variables (removed 0) and now considering 35/35 (removed 0) transitions.
[2023-04-07 18:14:13] [INFO ] Invariant cache hit.
[2023-04-07 18:14:13] [INFO ] Dead Transitions using invariants and state equation in 26 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 28 ms. Remains : 30/30 places, 35/35 transitions.
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 2 ms
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 3 ms
[2023-04-07 18:14:13] [INFO ] Input system was already deterministic with 35 transitions.
Starting structural reductions in LTL mode, iteration 0 : 30/30 places, 35/35 transitions.
Applied a total of 0 rules in 0 ms. Remains 30 /30 variables (removed 0) and now considering 35/35 (removed 0) transitions.
[2023-04-07 18:14:13] [INFO ] Invariant cache hit.
[2023-04-07 18:14:13] [INFO ] Dead Transitions using invariants and state equation in 27 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 27 ms. Remains : 30/30 places, 35/35 transitions.
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 3 ms
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 2 ms
[2023-04-07 18:14:13] [INFO ] Input system was already deterministic with 35 transitions.
Starting structural reductions in LTL mode, iteration 0 : 30/30 places, 35/35 transitions.
Applied a total of 0 rules in 0 ms. Remains 30 /30 variables (removed 0) and now considering 35/35 (removed 0) transitions.
[2023-04-07 18:14:13] [INFO ] Invariant cache hit.
[2023-04-07 18:14:13] [INFO ] Dead Transitions using invariants and state equation in 30 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 31 ms. Remains : 30/30 places, 35/35 transitions.
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 2 ms
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 2 ms
[2023-04-07 18:14:13] [INFO ] Input system was already deterministic with 35 transitions.
Starting structural reductions in LTL mode, iteration 0 : 30/30 places, 35/35 transitions.
Applied a total of 0 rules in 0 ms. Remains 30 /30 variables (removed 0) and now considering 35/35 (removed 0) transitions.
[2023-04-07 18:14:13] [INFO ] Invariant cache hit.
[2023-04-07 18:14:13] [INFO ] Dead Transitions using invariants and state equation in 26 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 27 ms. Remains : 30/30 places, 35/35 transitions.
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 3 ms
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 2 ms
[2023-04-07 18:14:13] [INFO ] Input system was already deterministic with 35 transitions.
Starting structural reductions in LTL mode, iteration 0 : 30/30 places, 35/35 transitions.
Applied a total of 0 rules in 0 ms. Remains 30 /30 variables (removed 0) and now considering 35/35 (removed 0) transitions.
[2023-04-07 18:14:13] [INFO ] Invariant cache hit.
[2023-04-07 18:14:13] [INFO ] Dead Transitions using invariants and state equation in 30 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 31 ms. Remains : 30/30 places, 35/35 transitions.
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 2 ms
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 2 ms
[2023-04-07 18:14:13] [INFO ] Input system was already deterministic with 35 transitions.
Starting structural reductions in LTL mode, iteration 0 : 30/30 places, 35/35 transitions.
Applied a total of 0 rules in 0 ms. Remains 30 /30 variables (removed 0) and now considering 35/35 (removed 0) transitions.
[2023-04-07 18:14:13] [INFO ] Invariant cache hit.
[2023-04-07 18:14:13] [INFO ] Dead Transitions using invariants and state equation in 32 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 32 ms. Remains : 30/30 places, 35/35 transitions.
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 2 ms
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 2 ms
[2023-04-07 18:14:13] [INFO ] Input system was already deterministic with 35 transitions.
Starting structural reductions in LTL mode, iteration 0 : 30/30 places, 35/35 transitions.
Applied a total of 0 rules in 0 ms. Remains 30 /30 variables (removed 0) and now considering 35/35 (removed 0) transitions.
[2023-04-07 18:14:13] [INFO ] Invariant cache hit.
[2023-04-07 18:14:13] [INFO ] Dead Transitions using invariants and state equation in 37 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 37 ms. Remains : 30/30 places, 35/35 transitions.
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 2 ms
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 3 ms
[2023-04-07 18:14:13] [INFO ] Input system was already deterministic with 35 transitions.
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 4 ms
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 4 ms
[2023-04-07 18:14:13] [INFO ] Export to MCC of 12 properties in file /home/mcc/execution/CTLFireability.sr.xml took 6 ms.
[2023-04-07 18:14:13] [INFO ] Export to PNML in file /home/mcc/execution/model.sr.pnml of net with 30 places, 35 transitions and 135 arcs took 0 ms.
Total runtime 6489 ms.
There are residual formulas that ITS could not solve within timeout
timeout --kill-after=10s --signal=SIGINT 1m for testing only

Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets

authors: Alex Tovchigrechko (IDD package and CTL model checking)

Martin Schwarick (Symbolic numerical analysis and CSL model checking)

Christian Rohr (Simulative and approximative numerical model checking)

marcie@informatik.tu-cottbus.de

called as: /home/mcc/BenchKit/bin//../reducer/bin//../../marcie/bin/marcie --net-file=model.pnml --mcc-file=CTLFireability.xml --memory=6 --mcc-mode

parse successfull
net created successfully

Net: Petri
(NrP: 30 NrTr: 35 NrArc: 135)

parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec

net check time: 0m 0.000sec

init dd package: 0m 2.773sec


RS generation: 0m 8.707sec


-> reachability set: #nodes 25113 (2.5e+04) #states 20,012,606,308,670,976 (16)



starting MCC model checker
--------------------------

checking: AG [AX [EX [[[[p16<=1 | p21<=0] & [p17<=1 | p22<=0]] & [[p15<=1 | p20<=0] & [[p18<=1 | p23<=0] & [p19<=1 | p24<=0]]]]]]]
normalized: ~ [E [true U EX [~ [EX [[[[p16<=1 | p21<=0] & [p17<=1 | p22<=0]] & [[p15<=1 | p20<=0] & [[p19<=1 | p24<=0] & [p18<=1 | p23<=0]]]]]]]]]

abstracting: (p23<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p18<=1)
states: 20,012,606,308,670,976 (16)
abstracting: (p24<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p19<=1)
states: 20,012,606,308,670,976 (16)
abstracting: (p20<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p15<=1)
states: 20,012,606,308,670,976 (16)
abstracting: (p22<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p17<=1)
states: 20,012,606,308,670,976 (16)
abstracting: (p21<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p16<=1)
states: 20,012,606,308,670,976 (16)
..-> the formula is TRUE

FORMULA Murphy-COL-D4N025-CTLFireability-02 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.493sec

checking: EG [AX [[[[1<=p2 & [1<=p7 & 1<=p12]] | [1<=p0 & [1<=p5 & 1<=p10]]] | [[1<=p3 & [1<=p8 & 1<=p13]] | [[1<=p1 & [1<=p6 & 1<=p11]] | [1<=p4 & [1<=p9 & 1<=p14]]]]]]]
normalized: EG [~ [EX [~ [[[[[1<=p4 & [1<=p9 & 1<=p14]] | [1<=p1 & [1<=p6 & 1<=p11]]] | [1<=p3 & [1<=p8 & 1<=p13]]] | [[1<=p0 & [1<=p5 & 1<=p10]] | [1<=p2 & [1<=p7 & 1<=p12]]]]]]]]

abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
..
EG iterations: 1
-> the formula is TRUE

FORMULA Murphy-COL-D4N025-CTLFireability-05 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 1.213sec

checking: EX [AF [EG [A [[[[2<=p16 & 1<=p21] | [2<=p17 & 1<=p22]] | [[2<=p15 & 1<=p20] | [[2<=p18 & 1<=p23] | [2<=p19 & 1<=p24]]]] U [[3<=p25 | 3<=p26] | [3<=p27 | [3<=p28 | 3<=p29]]]]]]]
normalized: EX [~ [EG [~ [EG [[~ [EG [~ [[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]]]] & ~ [E [~ [[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]] U [~ [[[[2<=p16 & 1<=p21] | [2<=p17 & 1<=p22]] | [[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [2<=p15 & 1<=p20]]]] & ~ [[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]]]]]]]]]]]

abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
............
EG iterations: 12
.
EG iterations: 1
............
EG iterations: 12
.-> the formula is TRUE

FORMULA Murphy-COL-D4N025-CTLFireability-06 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 3.432sec

checking: EF [[A [[[[2<=p16 & 1<=p21] | [2<=p17 & 1<=p22]] | [[2<=p15 & 1<=p20] | [[2<=p18 & 1<=p23] | [2<=p19 & 1<=p24]]]] U [[[3<=p0 & [1<=p10 & 1<=p20]] | [3<=p2 & [1<=p12 & 1<=p22]]] | [[3<=p4 & [1<=p14 & 1<=p24]] | [[3<=p1 & [1<=p11 & 1<=p21]] | [3<=p3 & [1<=p13 & 1<=p23]]]]]] & EX [[[[1<=p0 & 1<=p5] | [1<=p4 & 1<=p9]] | [[1<=p1 & 1<=p6] | [[1<=p3 & 1<=p8] | [1<=p2 & 1<=p7]]]]]]]
normalized: E [true U [EX [[[[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]] | [[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]]]] & [~ [EG [~ [[[[[3<=p3 & [1<=p13 & 1<=p23]] | [3<=p1 & [1<=p11 & 1<=p21]]] | [3<=p4 & [1<=p14 & 1<=p24]]] | [[3<=p2 & [1<=p12 & 1<=p22]] | [3<=p0 & [1<=p10 & 1<=p20]]]]]]] & ~ [E [~ [[[[[3<=p3 & [1<=p13 & 1<=p23]] | [3<=p1 & [1<=p11 & 1<=p21]]] | [3<=p4 & [1<=p14 & 1<=p24]]] | [[3<=p2 & [1<=p12 & 1<=p22]] | [3<=p0 & [1<=p10 & 1<=p20]]]]] U [~ [[[[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [2<=p15 & 1<=p20]] | [[2<=p17 & 1<=p22] | [2<=p16 & 1<=p21]]]] & ~ [[[[[3<=p3 & [1<=p13 & 1<=p23]] | [3<=p1 & [1<=p11 & 1<=p21]]] | [3<=p4 & [1<=p14 & 1<=p24]]] | [[3<=p2 & [1<=p12 & 1<=p22]] | [3<=p0 & [1<=p10 & 1<=p20]]]]]]]]]]]

abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p0)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p2)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p4)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p1)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p3)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p0)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p2)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p4)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p1)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p3)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p0)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p2)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p4)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p1)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p3)
states: 16,316,817,174,687,744 (16)
.......
EG iterations: 7
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
.-> the formula is TRUE

FORMULA Murphy-COL-D4N025-CTLFireability-09 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 3.431sec

checking: AX [[EF [[[p16<=0 & p17<=0] & [p18<=0 & [p19<=0 & p15<=0]]]] & [[AF [[[[1<=p2 & [1<=p7 & 1<=p12]] | [1<=p0 & [1<=p5 & 1<=p10]]] | [[1<=p3 & [1<=p8 & 1<=p13]] | [[1<=p1 & [1<=p6 & 1<=p11]] | [1<=p4 & [1<=p9 & 1<=p14]]]]]] | [[1<=p0 & 1<=p5] | [1<=p4 & 1<=p9]]] | [[[1<=p1 & 1<=p6] | [1<=p3 & 1<=p8]] | [[1<=p2 & 1<=p7] | [AF [EG [[[p25<=2 & p26<=2] & [p27<=2 & [p28<=2 & p29<=2]]]]] & AG [EX [[[[p16<=1 | p21<=0] & [p17<=1 | p22<=0]] & [[p15<=1 | p20<=0] & [[p18<=1 | p23<=0] & [p19<=1 | p24<=0]]]]]]]]]]]]
normalized: ~ [EX [~ [[[[[[~ [E [true U ~ [EX [[[[[p19<=1 | p24<=0] & [p18<=1 | p23<=0]] & [p15<=1 | p20<=0]] & [[p17<=1 | p22<=0] & [p16<=1 | p21<=0]]]]]]] & ~ [EG [~ [EG [[[p27<=2 & [p28<=2 & p29<=2]] & [p25<=2 & p26<=2]]]]]]] | [1<=p2 & 1<=p7]] | [[1<=p3 & 1<=p8] | [1<=p1 & 1<=p6]]] | [[[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]] | ~ [EG [~ [[[[[1<=p4 & [1<=p9 & 1<=p14]] | [1<=p1 & [1<=p6 & 1<=p11]]] | [1<=p3 & [1<=p8 & 1<=p13]]] | [[1<=p0 & [1<=p5 & 1<=p10]] | [1<=p2 & [1<=p7 & 1<=p12]]]]]]]]] & E [true U [[p18<=0 & [p19<=0 & p15<=0]] & [p16<=0 & p17<=0]]]]]]]

abstracting: (p17<=0)
states: 10,006,303,154,335,488 (16)
abstracting: (p16<=0)
states: 10,006,303,154,335,488 (16)
abstracting: (p15<=0)
states: 10,006,303,154,335,488 (16)
abstracting: (p19<=0)
states: 10,006,303,154,335,488 (16)
abstracting: (p18<=0)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
.
EG iterations: 1
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (p26<=2)
states: 16,677,171,923,892,480 (16)
abstracting: (p25<=2)
states: 16,677,171,923,892,480 (16)
abstracting: (p29<=2)
states: 16,677,171,923,892,480 (16)
abstracting: (p28<=2)
states: 16,677,171,923,892,480 (16)
abstracting: (p27<=2)
states: 16,677,171,923,892,480 (16)
............
EG iterations: 12
.
EG iterations: 1
abstracting: (p21<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p16<=1)
states: 20,012,606,308,670,976 (16)
abstracting: (p22<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p17<=1)
states: 20,012,606,308,670,976 (16)
abstracting: (p20<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p15<=1)
states: 20,012,606,308,670,976 (16)
abstracting: (p23<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p18<=1)
states: 20,012,606,308,670,976 (16)
abstracting: (p24<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p19<=1)
states: 20,012,606,308,670,976 (16)
..-> the formula is TRUE

FORMULA Murphy-COL-D4N025-CTLFireability-11 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 1.111sec

checking: A [~ [EF [[[E [~ [[[3<=p25 | 3<=p26] | [3<=p27 | [3<=p28 | 3<=p29]]]] U [[[3<=p25 | 3<=p26] | [3<=p27 | [3<=p28 | 3<=p29]]] | [[[1<=p2 & [1<=p7 & 1<=p12]] | [1<=p0 & [1<=p5 & 1<=p10]]] | [[1<=p3 & [1<=p8 & 1<=p13]] | [[1<=p1 & [1<=p6 & 1<=p11]] | [1<=p4 & [1<=p9 & 1<=p14]]]]]]] | [3<=p25 | 3<=p26]] | [3<=p27 | [3<=p28 | 3<=p29]]]]] U [EX [AF [AX [[[[1<=p0 & 1<=p5] | [1<=p4 & 1<=p9]] | [[1<=p1 & 1<=p6] | [[1<=p3 & 1<=p8] | [1<=p2 & 1<=p7]]]]]]] & EF [[[[EG [[[[1<=p0 & 1<=p5] | [1<=p4 & 1<=p9]] | [[1<=p1 & 1<=p6] | [[1<=p3 & 1<=p8] | [1<=p2 & 1<=p7]]]]] & [[[1<=p0 & 1<=p5] | [1<=p9 & 1<=p4]] | [[1<=p1 & 1<=p6] | [[1<=p3 & 1<=p8] | [1<=p2 & 1<=p7]]]]] | [1<=p16 | 1<=p17]] | [1<=p18 | [1<=p19 | 1<=p15]]]]]]
normalized: [~ [EG [~ [[E [true U [[1<=p18 | [1<=p19 | 1<=p15]] | [[1<=p16 | 1<=p17] | [[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p9 & 1<=p4] | [1<=p0 & 1<=p5]]] & EG [[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]]]]]]] & EX [~ [EG [EX [~ [[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]]]]]]]]]]] & ~ [E [~ [[E [true U [[1<=p18 | [1<=p19 | 1<=p15]] | [[1<=p16 | 1<=p17] | [[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p9 & 1<=p4] | [1<=p0 & 1<=p5]]] & EG [[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]]]]]]] & EX [~ [EG [EX [~ [[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]]]]]]]]] U [E [true U [[3<=p27 | [3<=p28 | 3<=p29]] | [E [~ [[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]] U [[[[1<=p0 & [1<=p5 & 1<=p10]] | [1<=p2 & [1<=p7 & 1<=p12]]] | [[[1<=p4 & [1<=p9 & 1<=p14]] | [1<=p1 & [1<=p6 & 1<=p11]]] | [1<=p3 & [1<=p8 & 1<=p13]]]] | [[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]]] | [3<=p25 | 3<=p26]]]] & ~ [[E [true U [[1<=p18 | [1<=p19 | 1<=p15]] | [[1<=p16 | 1<=p17] | [[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p9 & 1<=p4] | [1<=p0 & 1<=p5]]] & EG [[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]]]]]]] & EX [~ [EG [EX [~ [[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]]]]]]]]]]]]]

abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
..
EG iterations: 1
.abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
.
EG iterations: 1
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p17)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p16)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p15)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p19)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p18)
states: 10,006,303,154,335,488 (16)
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
..
EG iterations: 1
.abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
.
EG iterations: 1
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p17)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p16)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p15)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p19)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p18)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
..
EG iterations: 1
.abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
.
EG iterations: 1
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p17)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p16)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p15)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p19)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p18)
states: 10,006,303,154,335,488 (16)
.
EG iterations: 1
-> the formula is TRUE

FORMULA Murphy-COL-D4N025-CTLFireability-14 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 2.655sec

checking: EX [[[[3<=p0 & [1<=p10 & 1<=p20]] | [[3<=p2 & [1<=p12 & 1<=p22]] | [3<=p4 & [1<=p14 & 1<=p24]]]] | [[3<=p1 & [1<=p11 & 1<=p21]] | [[3<=p3 & [1<=p13 & 1<=p23]] | [AG [[[[p0<=2 | [p10<=0 | p20<=0]] & [[p2<=2 | [p12<=0 | p22<=0]] & [p4<=2 | [p14<=0 | p24<=0]]]] & [[p1<=2 | [p11<=0 | p21<=0]] & [[p3<=2 | [p13<=0 | p23<=0]] & AG [[[p20<=0 & p21<=0] & [p22<=0 & [p23<=0 & p24<=0]]]]]]]] & [[EX [[[3<=p25 | 3<=p26] | [3<=p27 | [3<=p28 | 3<=p29]]]] | [[1<=p0 & 1<=p5] | [1<=p4 & 1<=p9]]] | [[[1<=p1 & 1<=p6] | [1<=p3 & 1<=p8]] | [[1<=p2 & 1<=p7] | [[AG [[[p16<=0 & p17<=0] & [p18<=0 & [p19<=0 & p15<=0]]]] & [EF [[[[p0<=0 | p5<=0] & [p4<=0 | p9<=0]] & [[p1<=0 | p6<=0] & [[p3<=0 | p8<=0] & [p2<=0 | p7<=0]]]]] & [p0<=0 | p5<=0]]] & [[[p4<=0 | p9<=0] & [p1<=0 | p6<=0]] & [[p3<=0 | p8<=0] & [p2<=0 | p7<=0]]]]]]]]]]]]
normalized: EX [[[[[[[[[[[[p2<=0 | p7<=0] & [p3<=0 | p8<=0]] & [[p1<=0 | p6<=0] & [p4<=0 | p9<=0]]] & [[[p0<=0 | p5<=0] & E [true U [[[[p2<=0 | p7<=0] & [p3<=0 | p8<=0]] & [p1<=0 | p6<=0]] & [[p4<=0 | p9<=0] & [p0<=0 | p5<=0]]]]] & ~ [E [true U ~ [[[p18<=0 & [p19<=0 & p15<=0]] & [p16<=0 & p17<=0]]]]]]] | [1<=p2 & 1<=p7]] | [[1<=p3 & 1<=p8] | [1<=p1 & 1<=p6]]] | [[[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]] | EX [[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]]]] & ~ [E [true U ~ [[[[~ [E [true U ~ [[[p22<=0 & [p23<=0 & p24<=0]] & [p20<=0 & p21<=0]]]]] & [p3<=2 | [p13<=0 | p23<=0]]] & [p1<=2 | [p11<=0 | p21<=0]]] & [[[p4<=2 | [p14<=0 | p24<=0]] & [p2<=2 | [p12<=0 | p22<=0]]] & [p0<=2 | [p10<=0 | p20<=0]]]]]]]] | [3<=p3 & [1<=p13 & 1<=p23]]] | [3<=p1 & [1<=p11 & 1<=p21]]] | [[[3<=p4 & [1<=p14 & 1<=p24]] | [3<=p2 & [1<=p12 & 1<=p22]]] | [3<=p0 & [1<=p10 & 1<=p20]]]]]

abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p0)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p2)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p4)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p1)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p3)
states: 16,316,817,174,687,744 (16)
abstracting: (p20<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p10<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p0<=2)
states: 3,695,789,133,983,232 (15)
abstracting: (p22<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p12<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p2<=2)
states: 3,695,789,133,983,232 (15)
abstracting: (p24<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p14<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p4<=2)
states: 3,695,789,133,983,232 (15)
abstracting: (p21<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p11<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p1<=2)
states: 3,695,789,133,983,232 (15)
abstracting: (p23<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p13<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p3<=2)
states: 3,695,789,133,983,232 (15)
abstracting: (p21<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p20<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p24<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p23<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p22<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
.abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (p17<=0)
states: 10,006,303,154,335,488 (16)
abstracting: (p16<=0)
states: 10,006,303,154,335,488 (16)
abstracting: (p15<=0)
states: 10,006,303,154,335,488 (16)
abstracting: (p19<=0)
states: 10,006,303,154,335,488 (16)
abstracting: (p18<=0)
states: 10,006,303,154,335,488 (16)
abstracting: (p5<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p0<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p9<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p4<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p6<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p1<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p8<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p3<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p7<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p2<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p5<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p0<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p9<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p4<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p6<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p1<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p8<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p3<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p7<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p2<=0)
states: 1,331,807,098,152,960 (15)
.-> the formula is FALSE

FORMULA Murphy-COL-D4N025-CTLFireability-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 7.731sec

checking: EF [[[A [AG [[[[[1<=p10 & 1<=p20] & 3<=p0] | [3<=p2 & [1<=p12 & 1<=p22]]] | [[3<=p4 & [1<=p14 & 1<=p24]] | [[3<=p1 & [1<=p11 & 1<=p21]] | [3<=p3 & [1<=p13 & 1<=p23]]]]]] U [EF [[[[1<=p0 & 1<=p5] | [1<=p4 & 1<=p9]] | [[1<=p1 & 1<=p6] | [[1<=p3 & 1<=p8] | [1<=p2 & 1<=p7]]]]] | [[[[3<=p0 & [1<=p10 & 1<=p20]] | [3<=p2 & [1<=p12 & 1<=p22]]] | [[3<=p4 & [1<=p14 & 1<=p24]] | [[3<=p1 & [1<=p11 & 1<=p21]] | [3<=p3 & [1<=p13 & 1<=p23]]]]] & [[[[2<=p16 & 1<=p21] | [2<=p17 & 1<=p22]] | [[2<=p15 & 1<=p20] | [[2<=p18 & 1<=p23] | [2<=p19 & 1<=p24]]]] & ~ [[[[1<=p2 & [1<=p7 & 1<=p12]] | [1<=p0 & [1<=p5 & 1<=p10]]] | [[1<=p3 & [1<=p8 & 1<=p13]] | [[1<=p1 & [1<=p6 & 1<=p11]] | [1<=p4 & [1<=p9 & 1<=p14]]]]]]]]]] & EF [[[[p20<=0 & p21<=0] & [p22<=0 & [p23<=0 & p24<=0]]] & [[[p0<=0 | p5<=0] & [p4<=0 | p9<=0]] & [[p1<=0 | p6<=0] & [[p3<=0 | p8<=0] & [p2<=0 | p7<=0]]]]]]] & [AF [[[[1<=p20 | 1<=p21] | [1<=p22 | [1<=p23 | 1<=p24]]] & [[[1<=p2 & [1<=p7 & 1<=p12]] | [1<=p0 & [1<=p5 & 1<=p10]]] | [[1<=p3 & [1<=p8 & 1<=p13]] | [[1<=p1 & [1<=p6 & 1<=p11]] | [1<=p4 & [1<=p9 & 1<=p14]]]]]]] & AX [[[[p2<=0 | [p7<=0 | p12<=0]] & [p0<=0 | [p5<=0 | p10<=0]]] & [[p3<=0 | [p8<=0 | p13<=0]] & [[p1<=0 | [p6<=0 | p11<=0]] & [p4<=0 | [p9<=0 | p14<=0]]]]]]]]]
normalized: E [true U [[~ [EX [~ [[[[p0<=0 | [p5<=0 | p10<=0]] & [p2<=0 | [p7<=0 | p12<=0]]] & [[[p4<=0 | [p9<=0 | p14<=0]] & [p1<=0 | [p6<=0 | p11<=0]]] & [p3<=0 | [p8<=0 | p13<=0]]]]]]] & ~ [EG [~ [[[[[[1<=p4 & [1<=p9 & 1<=p14]] | [1<=p1 & [1<=p6 & 1<=p11]]] | [1<=p3 & [1<=p8 & 1<=p13]]] | [[1<=p0 & [1<=p5 & 1<=p10]] | [1<=p2 & [1<=p7 & 1<=p12]]]] & [[1<=p22 | [1<=p23 | 1<=p24]] | [1<=p20 | 1<=p21]]]]]]] & [E [true U [[[[[p2<=0 | p7<=0] & [p3<=0 | p8<=0]] & [p1<=0 | p6<=0]] & [[p4<=0 | p9<=0] & [p0<=0 | p5<=0]]] & [[p22<=0 & [p23<=0 & p24<=0]] & [p20<=0 & p21<=0]]]] & [~ [EG [~ [[[[~ [[[[[1<=p4 & [1<=p9 & 1<=p14]] | [1<=p1 & [1<=p6 & 1<=p11]]] | [1<=p3 & [1<=p8 & 1<=p13]]] | [[1<=p0 & [1<=p5 & 1<=p10]] | [1<=p2 & [1<=p7 & 1<=p12]]]]] & [[[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [2<=p15 & 1<=p20]] | [[2<=p17 & 1<=p22] | [2<=p16 & 1<=p21]]]] & [[[[3<=p3 & [1<=p13 & 1<=p23]] | [3<=p1 & [1<=p11 & 1<=p21]]] | [3<=p4 & [1<=p14 & 1<=p24]]] | [[3<=p2 & [1<=p12 & 1<=p22]] | [3<=p0 & [1<=p10 & 1<=p20]]]]] | E [true U [[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]]]]]]] & ~ [E [~ [[[[~ [[[[[1<=p4 & [1<=p9 & 1<=p14]] | [1<=p1 & [1<=p6 & 1<=p11]]] | [1<=p3 & [1<=p8 & 1<=p13]]] | [[1<=p0 & [1<=p5 & 1<=p10]] | [1<=p2 & [1<=p7 & 1<=p12]]]]] & [[[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [2<=p15 & 1<=p20]] | [[2<=p17 & 1<=p22] | [2<=p16 & 1<=p21]]]] & [[[[3<=p3 & [1<=p13 & 1<=p23]] | [3<=p1 & [1<=p11 & 1<=p21]]] | [3<=p4 & [1<=p14 & 1<=p24]]] | [[3<=p2 & [1<=p12 & 1<=p22]] | [3<=p0 & [1<=p10 & 1<=p20]]]]] | E [true U [[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]]]]] U [E [true U ~ [[[[[3<=p3 & [1<=p13 & 1<=p23]] | [3<=p1 & [1<=p11 & 1<=p21]]] | [3<=p4 & [1<=p14 & 1<=p24]]] | [[3<=p2 & [1<=p12 & 1<=p22]] | [3<=p0 & [1<=p10 & 1<=p20]]]]]] & ~ [[[[~ [[[[[1<=p4 & [1<=p9 & 1<=p14]] | [1<=p1 & [1<=p6 & 1<=p11]]] | [1<=p3 & [1<=p8 & 1<=p13]]] | [[1<=p0 & [1<=p5 & 1<=p10]] | [1<=p2 & [1<=p7 & 1<=p12]]]]] & [[[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [2<=p15 & 1<=p20]] | [[2<=p17 & 1<=p22] | [2<=p16 & 1<=p21]]]] & [[[[3<=p3 & [1<=p13 & 1<=p23]] | [3<=p1 & [1<=p11 & 1<=p21]]] | [3<=p4 & [1<=p14 & 1<=p24]]] | [[3<=p2 & [1<=p12 & 1<=p22]] | [3<=p0 & [1<=p10 & 1<=p20]]]]] | E [true U [[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]]]]]]]]]]]]

abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p0)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p2)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p4)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p1)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p3)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p0)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p2)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p4)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p1)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p3)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p0)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p2)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p4)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p1)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p3)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p0)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p2)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p4)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p1)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p3)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
.
EG iterations: 1
abstracting: (p21<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p20<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p24<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p23<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p22<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p5<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p0<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p9<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p4<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p6<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p1<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p8<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p3<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p7<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p2<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
.
EG iterations: 1
abstracting: (p13<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p8<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p3<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p11<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p6<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p1<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p14<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p9<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p4<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p12<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p7<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p2<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p10<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p5<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p0<=0)
states: 1,331,807,098,152,960 (15)
.-> the formula is FALSE

FORMULA Murphy-COL-D4N025-CTLFireability-00 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m17.335sec

checking: [AX [AF [[EF [[[p16<=0 & p17<=0] & [p18<=0 & [p19<=0 & p15<=0]]]] | [EG [[[[2<=p16 & 1<=p21] | [2<=p17 & 1<=p22]] | [[2<=p15 & 1<=p20] | [[2<=p18 & 1<=p23] | [2<=p19 & 1<=p24]]]]] & [[[1<=p20 | [1<=p21 | 1<=p22]] | [[1<=p23 | 1<=p24] | [1<=p16 | 1<=p17]]] | [[[1<=p18 | 1<=p19] | [1<=p15 | [2<=p16 & 1<=p21]]] | [[[2<=p17 & 1<=p22] | [2<=p15 & 1<=p20]] | [[2<=p18 & 1<=p23] | [2<=p19 & 1<=p24]]]]]]]]] | A [~ [[[AF [[[[[2<=p16 & 1<=p21] | [2<=p17 & 1<=p22]] | [[2<=p15 & 1<=p20] | [[2<=p18 & 1<=p23] | [2<=p19 & 1<=p24]]]] | [[1<=p20 | 1<=p21] | [1<=p22 | [1<=p23 | 1<=p24]]]]] & AF [[[3<=p25 | 3<=p26] | [3<=p27 | [3<=p28 | 3<=p29]]]]] & [[[[1<=p0 & 1<=p5] | [1<=p4 & 1<=p9]] | [[1<=p1 & 1<=p6] | [[1<=p3 & 1<=p8] | [1<=p2 & 1<=p7]]]] & [[~ [[[3<=p25 | 3<=p26] | [3<=p27 | [3<=p28 | 3<=p29]]]] | [1<=p20 | 1<=p21]] | [[1<=p22 | 1<=p23] | [1<=p24 | EG [[[[3<=p0 & [1<=p10 & 1<=p20]] | [3<=p2 & [1<=p12 & 1<=p22]]] | [[3<=p4 & [1<=p14 & 1<=p24]] | [[3<=p1 & [1<=p11 & 1<=p21]] | [3<=p3 & [1<=p13 & 1<=p23]]]]]]]]]]]] U [[E [[[AF [[[[3<=p0 & [1<=p10 & 1<=p20]] | [3<=p2 & [1<=p12 & 1<=p22]]] | [[3<=p4 & [1<=p14 & 1<=p24]] | [[3<=p1 & [1<=p11 & 1<=p21]] | [3<=p3 & [1<=p13 & 1<=p23]]]]]] | [1<=p20 | 1<=p21]] | [1<=p22 | [1<=p23 | 1<=p24]]] U [[1<=p20 | 1<=p21] | [1<=p22 | [1<=p23 | 1<=p24]]]] & ~ [[AX [[[3<=p25 | 3<=p26] | [3<=p27 | [3<=p28 | 3<=p29]]]] & [[[3<=p25 | 3<=p26] | [3<=p27 | [3<=p28 | 3<=p29]]] & [[1<=p20 | 1<=p21] | [1<=p22 | [1<=p23 | 1<=p24]]]]]]] | AG [~ [AX [[[[2<=p16 & 1<=p21] | [2<=p17 & 1<=p22]] | [[2<=p15 & 1<=p20] | [[2<=p18 & 1<=p23] | [2<=p19 & 1<=p24]]]]]]]]]]
normalized: [[~ [EG [~ [[~ [E [true U ~ [EX [~ [[[[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [2<=p15 & 1<=p20]] | [[2<=p17 & 1<=p22] | [2<=p16 & 1<=p21]]]]]]]] | [~ [[[[[1<=p22 | [1<=p23 | 1<=p24]] | [1<=p20 | 1<=p21]] & [[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]] & ~ [EX [~ [[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]]]]]] & E [[[1<=p22 | [1<=p23 | 1<=p24]] | [[1<=p20 | 1<=p21] | ~ [EG [~ [[[[[3<=p3 & [1<=p13 & 1<=p23]] | [3<=p1 & [1<=p11 & 1<=p21]]] | [3<=p4 & [1<=p14 & 1<=p24]]] | [[3<=p2 & [1<=p12 & 1<=p22]] | [3<=p0 & [1<=p10 & 1<=p20]]]]]]]]] U [[1<=p22 | [1<=p23 | 1<=p24]] | [1<=p20 | 1<=p21]]]]]]]] & ~ [E [~ [[~ [E [true U ~ [EX [~ [[[[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [2<=p15 & 1<=p20]] | [[2<=p17 & 1<=p22] | [2<=p16 & 1<=p21]]]]]]]] | [~ [[[[[1<=p22 | [1<=p23 | 1<=p24]] | [1<=p20 | 1<=p21]] & [[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]] & ~ [EX [~ [[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]]]]]] & E [[[1<=p22 | [1<=p23 | 1<=p24]] | [[1<=p20 | 1<=p21] | ~ [EG [~ [[[[[3<=p3 & [1<=p13 & 1<=p23]] | [3<=p1 & [1<=p11 & 1<=p21]]] | [3<=p4 & [1<=p14 & 1<=p24]]] | [[3<=p2 & [1<=p12 & 1<=p22]] | [3<=p0 & [1<=p10 & 1<=p20]]]]]]]]] U [[1<=p22 | [1<=p23 | 1<=p24]] | [1<=p20 | 1<=p21]]]]]] U [[[[[[1<=p24 | EG [[[[[3<=p3 & [1<=p13 & 1<=p23]] | [3<=p1 & [1<=p11 & 1<=p21]]] | [3<=p4 & [1<=p14 & 1<=p24]]] | [[3<=p2 & [1<=p12 & 1<=p22]] | [3<=p0 & [1<=p10 & 1<=p20]]]]]] | [1<=p22 | 1<=p23]] | [[1<=p20 | 1<=p21] | ~ [[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]]]] & [[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]]] & [~ [EG [~ [[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]]]] & ~ [EG [~ [[[[1<=p22 | [1<=p23 | 1<=p24]] | [1<=p20 | 1<=p21]] | [[[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [2<=p15 & 1<=p20]] | [[2<=p17 & 1<=p22] | [2<=p16 & 1<=p21]]]]]]]]] & ~ [[~ [E [true U ~ [EX [~ [[[[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [2<=p15 & 1<=p20]] | [[2<=p17 & 1<=p22] | [2<=p16 & 1<=p21]]]]]]]] | [~ [[[[[1<=p22 | [1<=p23 | 1<=p24]] | [1<=p20 | 1<=p21]] & [[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]] & ~ [EX [~ [[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]]]]]] & E [[[1<=p22 | [1<=p23 | 1<=p24]] | [[1<=p20 | 1<=p21] | ~ [EG [~ [[[[[3<=p3 & [1<=p13 & 1<=p23]] | [3<=p1 & [1<=p11 & 1<=p21]]] | [3<=p4 & [1<=p14 & 1<=p24]]] | [[3<=p2 & [1<=p12 & 1<=p22]] | [3<=p0 & [1<=p10 & 1<=p20]]]]]]]]] U [[1<=p22 | [1<=p23 | 1<=p24]] | [1<=p20 | 1<=p21]]]]]]]]]] | ~ [EX [EG [~ [[[[[[[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [[2<=p15 & 1<=p20] | [2<=p17 & 1<=p22]]] | [[1<=p15 | [2<=p16 & 1<=p21]] | [1<=p18 | 1<=p19]]] | [[[1<=p16 | 1<=p17] | [1<=p23 | 1<=p24]] | [1<=p20 | [1<=p21 | 1<=p22]]]] & EG [[[[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [2<=p15 & 1<=p20]] | [[2<=p17 & 1<=p22] | [2<=p16 & 1<=p21]]]]] | E [true U [[p18<=0 & [p19<=0 & p15<=0]] & [p16<=0 & p17<=0]]]]]]]]]

abstracting: (p17<=0)
states: 10,006,303,154,335,488 (16)
abstracting: (p16<=0)
states: 10,006,303,154,335,488 (16)
abstracting: (p15<=0)
states: 10,006,303,154,335,488 (16)
abstracting: (p19<=0)
states: 10,006,303,154,335,488 (16)
abstracting: (p18<=0)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
.
EG iterations: 1
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p17)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p16)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p19)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p18)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p15)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
.
EG iterations: 1
.abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p0)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p2)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p4)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p1)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p3)
states: 16,316,817,174,687,744 (16)
.......
EG iterations: 7
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
.abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
.abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
.......
EG iterations: 7
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
............
EG iterations: 12
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p0)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p2)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p4)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p1)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p3)
states: 16,316,817,174,687,744 (16)
.
EG iterations: 1
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p0)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p2)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p4)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p1)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p3)
states: 16,316,817,174,687,744 (16)
.......
EG iterations: 7
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
.abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
.abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p0)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p2)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p4)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p1)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p3)
states: 16,316,817,174,687,744 (16)
.......
EG iterations: 7
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
.abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
..
EG iterations: 1
-> the formula is TRUE

FORMULA Murphy-COL-D4N025-CTLFireability-03 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 2.339sec

checking: E [[[1<=p16 | 1<=p17] | [1<=p18 | [1<=p19 | 1<=p15]]] U [[AG [[AX [[[1<=p20 | 1<=p21] | [1<=p22 | [1<=p23 | 1<=p24]]]] & EX [[[[2<=p16 & 1<=p21] | [2<=p17 & 1<=p22]] | [[2<=p15 & 1<=p20] | [[2<=p18 & 1<=p23] | [2<=p19 & 1<=p24]]]]]]] & E [[[[2<=p16 & 1<=p21] | [2<=p17 & 1<=p22]] | [[2<=p15 & 1<=p20] | [[2<=p18 & 1<=p23] | [2<=p19 & 1<=p24]]]] U A [EG [[[[1<=p0 & 1<=p5] | [1<=p4 & 1<=p9]] | [[1<=p1 & 1<=p6] | [[1<=p3 & 1<=p8] | [1<=p2 & 1<=p7]]]]] U [[[1<=p20 | 1<=p21] | [1<=p22 | [1<=p23 | 1<=p24]]] | [[[1<=p0 & 1<=p5] | [1<=p4 & 1<=p9]] | [[1<=p1 & 1<=p6] | [[1<=p3 & 1<=p8] | [1<=p2 & 1<=p7]]]]]]]] & [[~ [[[[[[1<=p2 & [1<=p7 & 1<=p12]] | [1<=p0 & [1<=p5 & 1<=p10]]] | [[1<=p3 & [1<=p8 & 1<=p13]] | [[1<=p1 & [1<=p6 & 1<=p11]] | [1<=p4 & [1<=p9 & 1<=p14]]]]] & [[1<=p20 | 1<=p21] | [1<=p22 | [1<=p23 | 1<=p24]]]] & [AF [[[[1<=p0 & 1<=p5] | [1<=p4 & 1<=p9]] | [[1<=p1 & 1<=p6] | [[1<=p3 & 1<=p8] | [1<=p2 & 1<=p7]]]]] & AX [[[[1<=p2 & [1<=p7 & 1<=p12]] | [1<=p0 & [1<=p5 & 1<=p10]]] | [[1<=p3 & [1<=p8 & 1<=p13]] | [[1<=p1 & [1<=p6 & 1<=p11]] | [1<=p4 & [1<=p9 & 1<=p14]]]]]]]]] | [AG [~ [[[[2<=p16 & 1<=p21] | [2<=p17 & 1<=p22]] | [[2<=p15 & 1<=p20] | [[2<=p18 & 1<=p23] | [2<=p19 & 1<=p24]]]]]] & AX [~ [[[[2<=p16 & 1<=p21] | [2<=p17 & 1<=p22]] | [[2<=p15 & 1<=p20] | [[2<=p18 & 1<=p23] | [2<=p19 & 1<=p24]]]]]]]] & [[E [AF [[[1<=p16 | 1<=p17] | [1<=p18 | [1<=p19 | 1<=p15]]]] U [AG [[[[1<=p2 & [1<=p7 & 1<=p12]] | [1<=p0 & [1<=p5 & 1<=p10]]] | [[1<=p3 & [1<=p8 & 1<=p13]] | [[1<=p1 & [1<=p6 & 1<=p11]] | [1<=p4 & [1<=p9 & 1<=p14]]]]]] & ~ [[[1<=p16 | 1<=p17] | [1<=p18 | [1<=p19 | 1<=p15]]]]]] | [[1<=p0 & 1<=p5] | [1<=p4 & 1<=p9]]] | [[1<=p1 & 1<=p6] | [[1<=p3 & 1<=p8] | [1<=p2 & 1<=p7]]]]]]]
normalized: E [[[1<=p18 | [1<=p19 | 1<=p15]] | [1<=p16 | 1<=p17]] U [[[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]] | E [~ [EG [~ [[[1<=p18 | [1<=p19 | 1<=p15]] | [1<=p16 | 1<=p17]]]]] U [~ [[[1<=p18 | [1<=p19 | 1<=p15]] | [1<=p16 | 1<=p17]]] & ~ [E [true U ~ [[[[[1<=p4 & [1<=p9 & 1<=p14]] | [1<=p1 & [1<=p6 & 1<=p11]]] | [1<=p3 & [1<=p8 & 1<=p13]]] | [[1<=p0 & [1<=p5 & 1<=p10]] | [1<=p2 & [1<=p7 & 1<=p12]]]]]]]]]]] & [[~ [EX [[[[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [2<=p15 & 1<=p20]] | [[2<=p17 & 1<=p22] | [2<=p16 & 1<=p21]]]]] & ~ [E [true U [[[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [2<=p15 & 1<=p20]] | [[2<=p17 & 1<=p22] | [2<=p16 & 1<=p21]]]]]] | ~ [[[~ [EX [~ [[[[[1<=p4 & [1<=p9 & 1<=p14]] | [1<=p1 & [1<=p6 & 1<=p11]]] | [1<=p3 & [1<=p8 & 1<=p13]]] | [[1<=p0 & [1<=p5 & 1<=p10]] | [1<=p2 & [1<=p7 & 1<=p12]]]]]]] & ~ [EG [~ [[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]]]]]] & [[[1<=p22 | [1<=p23 | 1<=p24]] | [1<=p20 | 1<=p21]] & [[[[1<=p4 & [1<=p9 & 1<=p14]] | [1<=p1 & [1<=p6 & 1<=p11]]] | [1<=p3 & [1<=p8 & 1<=p13]]] | [[1<=p0 & [1<=p5 & 1<=p10]] | [1<=p2 & [1<=p7 & 1<=p12]]]]]]]]] & [E [[[[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [2<=p15 & 1<=p20]] | [[2<=p17 & 1<=p22] | [2<=p16 & 1<=p21]]] U [~ [EG [~ [[[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]] | [[1<=p22 | [1<=p23 | 1<=p24]] | [1<=p20 | 1<=p21]]]]]] & ~ [E [~ [[[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]] | [[1<=p22 | [1<=p23 | 1<=p24]] | [1<=p20 | 1<=p21]]]] U [~ [EG [[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]]]] & ~ [[[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]] | [[1<=p22 | [1<=p23 | 1<=p24]] | [1<=p20 | 1<=p21]]]]]]]]] & ~ [E [true U ~ [[EX [[[[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [2<=p15 & 1<=p20]] | [[2<=p17 & 1<=p22] | [2<=p16 & 1<=p21]]]] & ~ [EX [~ [[[1<=p22 | [1<=p23 | 1<=p24]] | [1<=p20 | 1<=p21]]]]]]]]]]]]

abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
.abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
.abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
.
EG iterations: 1
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
.......
EG iterations: 7
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
.
EG iterations: 1
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
.abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
.abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p17)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p16)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p15)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p19)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p18)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p17)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p16)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p15)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p19)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p18)
states: 10,006,303,154,335,488 (16)
............
EG iterations: 12
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p17)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p16)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p15)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p19)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p18)
states: 10,006,303,154,335,488 (16)
-> the formula is FALSE

FORMULA Murphy-COL-D4N025-CTLFireability-08 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 3.479sec

checking: EF [[[AF [[[[1<=p2 & [1<=p7 & 1<=p12]] | [1<=p0 & [1<=p5 & 1<=p10]]] | [[1<=p3 & [1<=p8 & 1<=p13]] | [[1<=p1 & [1<=p6 & 1<=p11]] | [1<=p4 & [1<=p9 & 1<=p14]]]]]] & [[1<=p16 | 1<=p17] | [1<=p18 | [1<=p19 | 1<=p15]]]] & [[[[1<=p0 & 1<=p5] | [[1<=p4 & 1<=p9] | [1<=p1 & 1<=p6]]] | [[1<=p3 & 1<=p8] | [[1<=p2 & 1<=p7] | [[[[3<=p0 & [1<=p10 & 1<=p20]] | [[3<=p2 & [1<=p12 & 1<=p22]] | [3<=p4 & [1<=p14 & 1<=p24]]]] | [[3<=p1 & [1<=p11 & 1<=p21]] | [[3<=p3 & [1<=p13 & 1<=p23]] | [AX [[[3<=p25 | 3<=p26] | [3<=p27 | [3<=p28 | 3<=p29]]]] & [[1<=p20 | 1<=p21] | [1<=p22 | [1<=p23 | 1<=p24]]]]]]] & [[AX [[[p20<=0 & p21<=0] & [p22<=0 & [p23<=0 & p24<=0]]]] | [[[p2<=0 | [p7<=0 | p12<=0]] & [p0<=0 | [p5<=0 | p10<=0]]] & [[p3<=0 | [p8<=0 | p13<=0]] & [[p1<=0 | [p6<=0 | p11<=0]] & [p4<=0 | [p9<=0 | p14<=0]]]]]] & [EX [[[[[1<=p2 & [1<=p7 & 1<=p12]] | [1<=p0 & [1<=p5 & 1<=p10]]] | [[1<=p3 & [1<=p8 & 1<=p13]] | [[1<=p1 & [1<=p6 & 1<=p11]] | [1<=p4 & [1<=p9 & 1<=p14]]]]] & [[[2<=p16 & 1<=p21] | [2<=p17 & 1<=p22]] | [[2<=p15 & 1<=p20] | [[2<=p18 & 1<=p23] | [2<=p19 & 1<=p24]]]]]] | EG [[[p16<=0 & p17<=0] & [p18<=0 & [p19<=0 & p15<=0]]]]]]]]]] & [[[[3<=p25 | 3<=p26] | [3<=p27 | [3<=p28 | 3<=p29]]] | [[[1<=p0 & 1<=p5] | [1<=p4 & 1<=p9]] | [[1<=p1 & 1<=p6] | [[1<=p3 & 1<=p8] | [1<=p2 & 1<=p7]]]]] & [EG [[[[p0<=2 | [p10<=0 | p20<=0]] & [p2<=2 | [p12<=0 | p22<=0]]] & [[p4<=2 | [p14<=0 | p24<=0]] & [[p1<=2 | [p11<=0 | p21<=0]] & [p3<=2 | [p13<=0 | p23<=0]]]]]] | [[EF [[[[p0<=0 | p5<=0] & [p4<=0 | p9<=0]] & [[p1<=0 | p6<=0] & [[p3<=0 | p8<=0] & [p2<=0 | p7<=0]]]]] & [[p2<=0 | [p7<=0 | p12<=0]] & [p0<=0 | [p5<=0 | p10<=0]]]] & [[p3<=0 | [p8<=0 | p13<=0]] & [[p1<=0 | [p6<=0 | p11<=0]] & [p4<=0 | [p9<=0 | p14<=0]]]]]]]]]]
normalized: E [true U [[[[[[[[p4<=0 | [p9<=0 | p14<=0]] & [p1<=0 | [p6<=0 | p11<=0]]] & [p3<=0 | [p8<=0 | p13<=0]]] & [[[p0<=0 | [p5<=0 | p10<=0]] & [p2<=0 | [p7<=0 | p12<=0]]] & E [true U [[[[p2<=0 | p7<=0] & [p3<=0 | p8<=0]] & [p1<=0 | p6<=0]] & [[p4<=0 | p9<=0] & [p0<=0 | p5<=0]]]]]] | EG [[[[[p3<=2 | [p13<=0 | p23<=0]] & [p1<=2 | [p11<=0 | p21<=0]]] & [p4<=2 | [p14<=0 | p24<=0]]] & [[p2<=2 | [p12<=0 | p22<=0]] & [p0<=2 | [p10<=0 | p20<=0]]]]]] & [[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]] | [[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]]] & [[[[[[EG [[[p18<=0 & [p19<=0 & p15<=0]] & [p16<=0 & p17<=0]]] | EX [[[[[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [2<=p15 & 1<=p20]] | [[2<=p17 & 1<=p22] | [2<=p16 & 1<=p21]]] & [[[[1<=p4 & [1<=p9 & 1<=p14]] | [1<=p1 & [1<=p6 & 1<=p11]]] | [1<=p3 & [1<=p8 & 1<=p13]]] | [[1<=p0 & [1<=p5 & 1<=p10]] | [1<=p2 & [1<=p7 & 1<=p12]]]]]]] & [[[[[p4<=0 | [p9<=0 | p14<=0]] & [p1<=0 | [p6<=0 | p11<=0]]] & [p3<=0 | [p8<=0 | p13<=0]]] & [[p0<=0 | [p5<=0 | p10<=0]] & [p2<=0 | [p7<=0 | p12<=0]]]] | ~ [EX [~ [[[p22<=0 & [p23<=0 & p24<=0]] & [p20<=0 & p21<=0]]]]]]] & [[[[[[1<=p22 | [1<=p23 | 1<=p24]] | [1<=p20 | 1<=p21]] & ~ [EX [~ [[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]]]]] | [3<=p3 & [1<=p13 & 1<=p23]]] | [3<=p1 & [1<=p11 & 1<=p21]]] | [[[3<=p4 & [1<=p14 & 1<=p24]] | [3<=p2 & [1<=p12 & 1<=p22]]] | [3<=p0 & [1<=p10 & 1<=p20]]]]] | [1<=p2 & 1<=p7]] | [1<=p3 & 1<=p8]] | [[[1<=p1 & 1<=p6] | [1<=p4 & 1<=p9]] | [1<=p0 & 1<=p5]]]] & [[[1<=p18 | [1<=p19 | 1<=p15]] | [1<=p16 | 1<=p17]] & ~ [EG [~ [[[[[1<=p4 & [1<=p9 & 1<=p14]] | [1<=p1 & [1<=p6 & 1<=p11]]] | [1<=p3 & [1<=p8 & 1<=p13]]] | [[1<=p0 & [1<=p5 & 1<=p10]] | [1<=p2 & [1<=p7 & 1<=p12]]]]]]]]]]

abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
.
EG iterations: 1
abstracting: (1<=p17)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p16)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p15)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p19)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p18)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p0)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p2)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p4)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p1)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p3)
states: 16,316,817,174,687,744 (16)
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
.abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (p21<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p20<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p24<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p23<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p22<=0)
states: 6,670,868,769,556,992 (15)
.abstracting: (p12<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p7<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p2<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p10<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p5<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p0<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p13<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p8<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p3<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p11<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p6<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p1<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p14<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p9<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p4<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
.abstracting: (p17<=0)
states: 10,006,303,154,335,488 (16)
abstracting: (p16<=0)
states: 10,006,303,154,335,488 (16)
abstracting: (p15<=0)
states: 10,006,303,154,335,488 (16)
abstracting: (p19<=0)
states: 10,006,303,154,335,488 (16)
abstracting: (p18<=0)
states: 10,006,303,154,335,488 (16)
............
EG iterations: 12
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (p20<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p10<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p0<=2)
states: 3,695,789,133,983,232 (15)
abstracting: (p22<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p12<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p2<=2)
states: 3,695,789,133,983,232 (15)
abstracting: (p24<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p14<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p4<=2)
states: 3,695,789,133,983,232 (15)
abstracting: (p21<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p11<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p1<=2)
states: 3,695,789,133,983,232 (15)
abstracting: (p23<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p13<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p3<=2)
states: 3,695,789,133,983,232 (15)
.......
EG iterations: 7
abstracting: (p5<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p0<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p9<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p4<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p6<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p1<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p8<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p3<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p7<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p2<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p12<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p7<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p2<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p10<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p5<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p0<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p13<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p8<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p3<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p11<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p6<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p1<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p14<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p9<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p4<=0)
states: 1,331,807,098,152,960 (15)
-> the formula is TRUE

FORMULA Murphy-COL-D4N025-CTLFireability-13 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m17.075sec

checking: [EX [[[E [EF [[[3<=p25 | 3<=p26] | [3<=p27 | [3<=p28 | 3<=p29]]]] U ~ [[[1<=p20 | 1<=p21] | [1<=p22 | [1<=p23 | 1<=p24]]]]] & [EG [[[[p0<=2 | [p10<=0 | p20<=0]] & [p2<=2 | [p12<=0 | p22<=0]]] & [[p4<=2 | [p14<=0 | p24<=0]] & [[p1<=2 | [p11<=0 | p21<=0]] & [p3<=2 | [p13<=0 | p23<=0]]]]]] & [[3<=p25 | 3<=p26] | [3<=p27 | [3<=p28 | 3<=p29]]]]] | [E [AX [[[[1<=p0 & 1<=p5] | [1<=p4 & 1<=p9]] | [[1<=p1 & 1<=p6] | [[1<=p3 & 1<=p8] | [1<=p2 & 1<=p7]]]]] U [[[[3<=p0 & [1<=p10 & 1<=p20]] | [3<=p2 & [1<=p12 & 1<=p22]]] | [[3<=p4 & [1<=p14 & 1<=p24]] | [[3<=p1 & [1<=p11 & 1<=p21]] | [3<=p3 & [1<=p13 & 1<=p23]]]]] | [[1<=p16 | 1<=p17] | [1<=p18 | [1<=p19 | 1<=p15]]]]] & EX [[[[p16<=1 | p21<=0] & [p17<=1 | p22<=0]] & [[p15<=1 | p20<=0] & [[p18<=1 | p23<=0] & [p19<=1 | p24<=0]]]]]]]] & [A [[AF [[[[1<=p16 | [1<=p17 | 1<=p18]] | [[1<=p19 | 1<=p15] | [[2<=p16 & 1<=p21] | [2<=p17 & 1<=p22]]]] | [[[[2<=p15 & 1<=p20] | [2<=p18 & 1<=p23]] | [[2<=p19 & 1<=p24] | [2<=p16 & 1<=p21]]] | [[[2<=p17 & 1<=p22] | [2<=p15 & 1<=p20]] | [[2<=p18 & 1<=p23] | [2<=p19 & 1<=p24]]]]]] | EX [AF [[[[1<=p0 & 1<=p5] | [1<=p4 & 1<=p9]] | [[1<=p1 & 1<=p6] | [[1<=p3 & 1<=p8] | [1<=p2 & 1<=p7]]]]]]] U ~ [[~ [[[[3<=p25 | 3<=p26] | [3<=p27 | [3<=p28 | 3<=p29]]] & [[[2<=p16 & 1<=p21] | [2<=p17 & 1<=p22]] | [[2<=p15 & 1<=p20] | [[2<=p18 & 1<=p23] | [2<=p19 & 1<=p24]]]]]] | [A [[[[1<=p0 & 1<=p5] | [1<=p4 & 1<=p9]] | [[1<=p1 & 1<=p6] | [[1<=p3 & 1<=p8] | [1<=p2 & 1<=p7]]]] U [[3<=p25 | 3<=p26] | [3<=p27 | [3<=p28 | 3<=p29]]]] & ~ [[[[3<=p0 & [1<=p10 & 1<=p20]] | [3<=p2 & [1<=p12 & 1<=p22]]] | [[3<=p4 & [1<=p14 & 1<=p24]] | [[3<=p1 & [1<=p11 & 1<=p21]] | [3<=p3 & [1<=p13 & 1<=p23]]]]]]]]]] & EF [[[[[1<=p0 & 1<=p5] | [1<=p4 & 1<=p9]] | [[1<=p1 & 1<=p6] | [[1<=p3 & 1<=p8] | [1<=p2 & 1<=p7]]]] | [[[2<=p16 & 1<=p21] | [2<=p17 & 1<=p22]] | [[2<=p15 & 1<=p20] | [[2<=p18 & 1<=p23] | [2<=p19 & 1<=p24]]]]]]]]
normalized: [[E [true U [[[[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [2<=p15 & 1<=p20]] | [[2<=p17 & 1<=p22] | [2<=p16 & 1<=p21]]] | [[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]]]] & [~ [EG [[[~ [[[[[3<=p3 & [1<=p13 & 1<=p23]] | [3<=p1 & [1<=p11 & 1<=p21]]] | [3<=p4 & [1<=p14 & 1<=p24]]] | [[3<=p2 & [1<=p12 & 1<=p22]] | [3<=p0 & [1<=p10 & 1<=p20]]]]] & [~ [EG [~ [[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]]]] & ~ [E [~ [[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]] U [~ [[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]]] & ~ [[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]]]]]]] | ~ [[[[[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [2<=p15 & 1<=p20]] | [[2<=p17 & 1<=p22] | [2<=p16 & 1<=p21]]] & [[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]]]]]] & ~ [E [[[~ [[[[[3<=p3 & [1<=p13 & 1<=p23]] | [3<=p1 & [1<=p11 & 1<=p21]]] | [3<=p4 & [1<=p14 & 1<=p24]]] | [[3<=p2 & [1<=p12 & 1<=p22]] | [3<=p0 & [1<=p10 & 1<=p20]]]]] & [~ [EG [~ [[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]]]] & ~ [E [~ [[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]] U [~ [[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]]] & ~ [[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]]]]]]] | ~ [[[[[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [2<=p15 & 1<=p20]] | [[2<=p17 & 1<=p22] | [2<=p16 & 1<=p21]]] & [[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]]]] U [~ [[EX [~ [EG [~ [[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]]]]]] | ~ [EG [~ [[[[[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [[2<=p15 & 1<=p20] | [2<=p17 & 1<=p22]]] | [[[2<=p16 & 1<=p21] | [2<=p19 & 1<=p24]] | [[2<=p18 & 1<=p23] | [2<=p15 & 1<=p20]]]] | [[[[2<=p17 & 1<=p22] | [2<=p16 & 1<=p21]] | [1<=p19 | 1<=p15]] | [1<=p16 | [1<=p17 | 1<=p18]]]]]]]]] & [[~ [[[[[3<=p3 & [1<=p13 & 1<=p23]] | [3<=p1 & [1<=p11 & 1<=p21]]] | [3<=p4 & [1<=p14 & 1<=p24]]] | [[3<=p2 & [1<=p12 & 1<=p22]] | [3<=p0 & [1<=p10 & 1<=p20]]]]] & [~ [EG [~ [[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]]]] & ~ [E [~ [[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]] U [~ [[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]]] & ~ [[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]]]]]]] | ~ [[[[[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [2<=p15 & 1<=p20]] | [[2<=p17 & 1<=p22] | [2<=p16 & 1<=p21]]] & [[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]]]]]]]]] & EX [[[EX [[[[[p19<=1 | p24<=0] & [p18<=1 | p23<=0]] & [p15<=1 | p20<=0]] & [[p17<=1 | p22<=0] & [p16<=1 | p21<=0]]]] & E [~ [EX [~ [[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]]]]] U [[[1<=p18 | [1<=p19 | 1<=p15]] | [1<=p16 | 1<=p17]] | [[[[3<=p3 & [1<=p13 & 1<=p23]] | [3<=p1 & [1<=p11 & 1<=p21]]] | [3<=p4 & [1<=p14 & 1<=p24]]] | [[3<=p2 & [1<=p12 & 1<=p22]] | [3<=p0 & [1<=p10 & 1<=p20]]]]]]] | [[[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]] & EG [[[[[p3<=2 | [p13<=0 | p23<=0]] & [p1<=2 | [p11<=0 | p21<=0]]] & [p4<=2 | [p14<=0 | p24<=0]]] & [[p2<=2 | [p12<=0 | p22<=0]] & [p0<=2 | [p10<=0 | p20<=0]]]]]] & E [E [true U [[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]] U ~ [[[1<=p22 | [1<=p23 | 1<=p24]] | [1<=p20 | 1<=p21]]]]]]]]

abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (p20<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p10<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p0<=2)
states: 3,695,789,133,983,232 (15)
abstracting: (p22<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p12<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p2<=2)
states: 3,695,789,133,983,232 (15)
abstracting: (p24<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p14<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p4<=2)
states: 3,695,789,133,983,232 (15)
abstracting: (p21<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p11<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p1<=2)
states: 3,695,789,133,983,232 (15)
abstracting: (p23<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p13<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p3<=2)
states: 3,695,789,133,983,232 (15)
.......
EG iterations: 7
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p0)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p2)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p4)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p1)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p3)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p17)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p16)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p15)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p19)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p18)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
.abstracting: (p21<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p16<=1)
states: 20,012,606,308,670,976 (16)
abstracting: (p22<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p17<=1)
states: 20,012,606,308,670,976 (16)
abstracting: (p20<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p15<=1)
states: 20,012,606,308,670,976 (16)
abstracting: (p23<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p18<=1)
states: 20,012,606,308,670,976 (16)
abstracting: (p24<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p19<=1)
states: 20,012,606,308,670,976 (16)
..abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
............
EG iterations: 12
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p0)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p2)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p4)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p1)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p3)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p18)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p17)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p16)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p15)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p19)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
............
EG iterations: 12
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
.
EG iterations: 1
.abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
............
EG iterations: 12
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p0)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p2)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p4)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p1)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p3)
states: 16,316,817,174,687,744 (16)
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
............
EG iterations: 12
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p0)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p2)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p4)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p1)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p3)
states: 16,316,817,174,687,744 (16)

EG iterations: 0
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
-> the formula is FALSE

FORMULA Murphy-COL-D4N025-CTLFireability-07 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m10.972sec

totally nodes used: 24671916 (2.5e+07)
number of garbage collections: 0
fire ops cache: hits/miss/sum: 368606770 55198957 423805727
used/not used/entry size/cache size: 44870621 22238243 16 1024MB
basic ops cache: hits/miss/sum: 154530215 27658116 182188331
used/not used/entry size/cache size: 15155246 1621970 12 192MB
unary ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 8 128MB
abstract ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 12 192MB
state nr cache: hits/miss/sum: 2050919 491888 2542807
used/not used/entry size/cache size: 477917 7910691 32 256MB
max state cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 8388608 32 256MB
uniqueHash elements/entry size/size: 67108864 4 256MB
0 47381314
1 15729954
2 3339382
3 546959
4 79626
5 14303
6 5572
7 2548
8 2650
9 1269
>= 10 5287

Total processing time: 1m26.302sec


BK_STOP 1680891341121

--------------------
content from stderr:

+ ulimit -s 65536
+ [[ -z '' ]]
+ export LTSMIN_MEM_SIZE=8589934592
+ LTSMIN_MEM_SIZE=8589934592
+ export PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ export LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
+ LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
++ sed s/.jar//
++ perl -pe 's/.*\.//g'
++ ls /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/plugins/fr.lip6.move.gal.application.pnmcc_1.0.0.202304061127.jar
+ VERSION=202304061127
+ echo 'Running Version 202304061127'
+ /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/its-tools -pnfolder /home/mcc/execution -examination CTLFireability -timeout 360 -rebuildPNML
check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok


initing FirstDep: 0m 0.000sec


iterations count:23162 (661), effective:4563 (130)

initing FirstDep: 0m 0.000sec


iterations count:35 (1), effective:0 (0)

iterations count:35 (1), effective:0 (0)

iterations count:265 (7), effective:35 (1)

iterations count:55 (1), effective:5 (0)

iterations count:48 (1), effective:4 (0)

iterations count:49 (1), effective:4 (0)

iterations count:35 (1), effective:0 (0)

iterations count:48 (1), effective:4 (0)

iterations count:35 (1), effective:0 (0)

iterations count:48 (1), effective:4 (0)

iterations count:42 (1), effective:2 (0)

iterations count:35 (1), effective:0 (0)

iterations count:46 (1), effective:3 (0)

iterations count:1918 (54), effective:388 (11)

iterations count:93 (2), effective:15 (0)

iterations count:3363 (96), effective:640 (18)

iterations count:93 (2), effective:15 (0)

iterations count:35 (1), effective:0 (0)

iterations count:93 (2), effective:15 (0)

iterations count:1958 (55), effective:398 (11)

iterations count:55 (1), effective:5 (0)

iterations count:42 (1), effective:2 (0)

iterations count:42 (1), effective:2 (0)

iterations count:42 (1), effective:2 (0)

iterations count:35 (1), effective:0 (0)

iterations count:35 (1), effective:0 (0)

iterations count:35 (1), effective:0 (0)

iterations count:1918 (54), effective:388 (11)

iterations count:1918 (54), effective:388 (11)

iterations count:3406 (97), effective:652 (18)

iterations count:47 (1), effective:3 (0)

iterations count:75 (2), effective:10 (0)

iterations count:48 (1), effective:5 (0)

iterations count:1918 (54), effective:388 (11)

iterations count:1918 (54), effective:388 (11)

iterations count:1918 (54), effective:388 (11)

iterations count:93 (2), effective:15 (0)

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="Murphy-COL-D4N025"
export BK_EXAMINATION="CTLFireability"
export BK_TOOL="marciexred"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marciexred"
echo " Input is Murphy-COL-D4N025, examination is CTLFireability"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r522-tall-167987247200314"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"

tar xzf /home/mcc/BenchKit/INPUTS/Murphy-COL-D4N025.tgz
mv Murphy-COL-D4N025 execution
cd execution
if [ "CTLFireability" = "ReachabilityDeadlock" ] || [ "CTLFireability" = "UpperBounds" ] || [ "CTLFireability" = "QuasiLiveness" ] || [ "CTLFireability" = "StableMarking" ] || [ "CTLFireability" = "Liveness" ] || [ "CTLFireability" = "OneSafe" ] || [ "CTLFireability" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh

echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLFireability" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLFireability" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLFireability.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLFireability.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLFireability.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' CTLFireability.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ "CTLFireability" = "ReachabilityDeadlock" ] || [ "CTLFireability" = "QuasiLiveness" ] || [ "CTLFireability" = "StableMarking" ] || [ "CTLFireability" = "Liveness" ] || [ "CTLFireability" = "OneSafe" ] ; then
echo "FORMULA_NAME CTLFireability"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;