About the Execution of Marcie+red for Murphy-COL-D4N025
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
11473.819 | 95290.00 | 105242.00 | 646.40 | FTTTFTTFFTFTFTTF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fkordon/mcc2023-input.r522-tall-167987247200314.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2023-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
...................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
=====================================================================
Generated by BenchKit 2-5348
Executing tool marciexred
Input is Murphy-COL-D4N025, examination is CTLFireability
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r522-tall-167987247200314
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 460K
-rw-r--r-- 1 mcc users 7.8K Mar 23 15:21 CTLCardinality.txt
-rw-r--r-- 1 mcc users 87K Mar 23 15:21 CTLCardinality.xml
-rw-r--r-- 1 mcc users 5.7K Mar 23 15:20 CTLFireability.txt
-rw-r--r-- 1 mcc users 57K Mar 23 15:20 CTLFireability.xml
-rw-r--r-- 1 mcc users 3.2K Mar 23 07:07 LTLCardinality.txt
-rw-r--r-- 1 mcc users 23K Mar 23 07:07 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.1K Mar 23 07:07 LTLFireability.txt
-rw-r--r-- 1 mcc users 19K Mar 23 07:07 LTLFireability.xml
-rw-r--r-- 1 mcc users 1 Mar 26 22:42 NewModel
-rw-r--r-- 1 mcc users 9.0K Mar 23 15:22 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 95K Mar 23 15:22 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 8.1K Mar 23 15:22 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 78K Mar 23 15:22 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.6K Mar 23 07:07 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.6K Mar 23 07:07 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Mar 26 22:42 equiv_pt
-rw-r--r-- 1 mcc users 7 Mar 26 22:42 instance
-rw-r--r-- 1 mcc users 5 Mar 26 22:42 iscolored
-rw-r--r-- 1 mcc users 20K Mar 31 16:48 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME Murphy-COL-D4N025-CTLFireability-00
FORMULA_NAME Murphy-COL-D4N025-CTLFireability-01
FORMULA_NAME Murphy-COL-D4N025-CTLFireability-02
FORMULA_NAME Murphy-COL-D4N025-CTLFireability-03
FORMULA_NAME Murphy-COL-D4N025-CTLFireability-04
FORMULA_NAME Murphy-COL-D4N025-CTLFireability-05
FORMULA_NAME Murphy-COL-D4N025-CTLFireability-06
FORMULA_NAME Murphy-COL-D4N025-CTLFireability-07
FORMULA_NAME Murphy-COL-D4N025-CTLFireability-08
FORMULA_NAME Murphy-COL-D4N025-CTLFireability-09
FORMULA_NAME Murphy-COL-D4N025-CTLFireability-10
FORMULA_NAME Murphy-COL-D4N025-CTLFireability-11
FORMULA_NAME Murphy-COL-D4N025-CTLFireability-12
FORMULA_NAME Murphy-COL-D4N025-CTLFireability-13
FORMULA_NAME Murphy-COL-D4N025-CTLFireability-14
FORMULA_NAME Murphy-COL-D4N025-CTLFireability-15
=== Now, execution of the tool begins
BK_START 1680891245831
bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marciexred
BK_EXAMINATION=CTLFireability
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=Murphy-COL-D4N025
Applying reductions before tool marcie
Invoking reducer
Running Version 202304061127
[2023-04-07 18:14:07] [INFO ] Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, CTLFireability, -timeout, 360, -rebuildPNML]
[2023-04-07 18:14:07] [INFO ] Parsing pnml file : /home/mcc/execution/model.pnml
[2023-04-07 18:14:07] [INFO ] Detected file is not PT type :http://www.pnml.org/version-2009/grammar/symmetricnet
log4j:WARN No appenders could be found for logger (org.apache.axiom.locator.DefaultOMMetaFactoryLocator).
log4j:WARN Please initialize the log4j system properly.
log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.
[2023-04-07 18:14:07] [WARNING] Using fallBack plugin, rng conformance not checked
[2023-04-07 18:14:07] [INFO ] Load time of PNML (colored model parsed with PNMLFW) : 405 ms
[2023-04-07 18:14:07] [INFO ] Imported 6 HL places and 7 HL transitions for a total of 30 PT places and 35.0 transition bindings in 17 ms.
Parsed 16 properties from file /home/mcc/execution/CTLFireability.xml in 13 ms.
FORMULA Murphy-COL-D4N025-CTLFireability-10 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
[2023-04-07 18:14:07] [INFO ] Built PT skeleton of HLPN with 6 places and 7 transitions 27 arcs in 4 ms.
[2023-04-07 18:14:07] [INFO ] Skeletonized 15 HLPN properties in 2 ms.
Initial state reduction rules removed 2 formulas.
FORMULA Murphy-COL-D4N025-CTLFireability-04 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA Murphy-COL-D4N025-CTLFireability-15 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
Computed a total of 0 stabilizing places and 0 stable transitions
Remains 2 properties that can be checked using skeleton over-approximation.
Computed a total of 0 stabilizing places and 0 stable transitions
Finished random walk after 6 steps, including 0 resets, run visited all 2 properties in 6 ms. (steps per millisecond=1 )
Parikh walk visited 0 properties in 1 ms.
[2023-04-07 18:14:07] [INFO ] Flatten gal took : 12 ms
[2023-04-07 18:14:07] [INFO ] Flatten gal took : 2 ms
Arc [2:1*[(MOD (ADD $x 1) 5)]] contains successor/predecessor on variables of sort CD
[2023-04-07 18:14:07] [INFO ] Unfolded HLPN to a Petri net with 30 places and 35 transitions 135 arcs in 7 ms.
[2023-04-07 18:14:07] [INFO ] Unfolded 13 HLPN properties in 1 ms.
Support contains 30 out of 30 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 30/30 places, 35/35 transitions.
Applied a total of 0 rules in 5 ms. Remains 30 /30 variables (removed 0) and now considering 35/35 (removed 0) transitions.
// Phase 1: matrix 35 rows 30 cols
[2023-04-07 18:14:07] [INFO ] Computed 6 invariants in 4 ms
[2023-04-07 18:14:08] [INFO ] Dead Transitions using invariants and state equation in 154 ms found 0 transitions.
[2023-04-07 18:14:08] [INFO ] Invariant cache hit.
[2023-04-07 18:14:08] [INFO ] Implicit Places using invariants in 33 ms returned []
[2023-04-07 18:14:08] [INFO ] Invariant cache hit.
[2023-04-07 18:14:08] [INFO ] State equation strengthened by 10 read => feed constraints.
[2023-04-07 18:14:08] [INFO ] Implicit Places using invariants and state equation in 51 ms returned []
Implicit Place search using SMT with State Equation took 85 ms to find 0 implicit places.
[2023-04-07 18:14:08] [INFO ] Invariant cache hit.
[2023-04-07 18:14:08] [INFO ] Dead Transitions using invariants and state equation in 37 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 285 ms. Remains : 30/30 places, 35/35 transitions.
Support contains 30 out of 30 places after structural reductions.
[2023-04-07 18:14:08] [INFO ] Flatten gal took : 11 ms
[2023-04-07 18:14:08] [INFO ] Flatten gal took : 10 ms
[2023-04-07 18:14:08] [INFO ] Input system was already deterministic with 35 transitions.
Incomplete random walk after 10001 steps, including 2 resets, run finished after 179 ms. (steps per millisecond=55 ) properties (out of 34) seen :30
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 65 ms. (steps per millisecond=153 ) properties (out of 4) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 27 ms. (steps per millisecond=370 ) properties (out of 4) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 30 ms. (steps per millisecond=333 ) properties (out of 4) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 34 ms. (steps per millisecond=294 ) properties (out of 4) seen :0
Running SMT prover for 4 properties.
[2023-04-07 18:14:08] [INFO ] Invariant cache hit.
[2023-04-07 18:14:08] [INFO ] [Real]Absence check using 2 positive place invariants in 1 ms returned sat
[2023-04-07 18:14:08] [INFO ] [Real]Absence check using 2 positive and 4 generalized place invariants in 1 ms returned sat
[2023-04-07 18:14:08] [INFO ] After 67ms SMT Verify possible using all constraints in real domain returned unsat :0 sat :0 real:4
[2023-04-07 18:14:08] [INFO ] [Nat]Absence check using 2 positive place invariants in 1 ms returned sat
[2023-04-07 18:14:08] [INFO ] [Nat]Absence check using 2 positive and 4 generalized place invariants in 0 ms returned sat
[2023-04-07 18:14:08] [INFO ] After 38ms SMT Verify possible using state equation in natural domain returned unsat :0 sat :4
[2023-04-07 18:14:08] [INFO ] State equation strengthened by 10 read => feed constraints.
[2023-04-07 18:14:08] [INFO ] After 26ms SMT Verify possible using 10 Read/Feed constraints in natural domain returned unsat :0 sat :4
[2023-04-07 18:14:09] [INFO ] After 68ms SMT Verify possible using trap constraints in natural domain returned unsat :0 sat :4
Attempting to minimize the solution found.
Minimization took 31 ms.
[2023-04-07 18:14:09] [INFO ] After 177ms SMT Verify possible using all constraints in natural domain returned unsat :0 sat :4
Parikh walk visited 0 properties in 50 ms.
Support contains 30 out of 30 places. Attempting structural reductions.
Starting structural reductions in REACHABILITY mode, iteration 0 : 30/30 places, 35/35 transitions.
Applied a total of 0 rules in 4 ms. Remains 30 /30 variables (removed 0) and now considering 35/35 (removed 0) transitions.
[2023-04-07 18:14:09] [INFO ] Invariant cache hit.
[2023-04-07 18:14:09] [INFO ] Dead Transitions using invariants and state equation in 35 ms found 0 transitions.
Finished structural reductions in REACHABILITY mode , in 1 iterations and 40 ms. Remains : 30/30 places, 35/35 transitions.
Incomplete random walk after 10001 steps, including 2 resets, run finished after 95 ms. (steps per millisecond=105 ) properties (out of 4) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 44 ms. (steps per millisecond=227 ) properties (out of 4) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 25 ms. (steps per millisecond=400 ) properties (out of 4) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 19 ms. (steps per millisecond=526 ) properties (out of 4) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 22 ms. (steps per millisecond=454 ) properties (out of 4) seen :0
Interrupted probabilistic random walk after 257653 steps, run timeout after 3001 ms. (steps per millisecond=85 ) properties seen :{}
Probabilistic random walk after 257653 steps, saw 177557 distinct states, run finished after 3002 ms. (steps per millisecond=85 ) properties seen :0
Running SMT prover for 4 properties.
[2023-04-07 18:14:12] [INFO ] Invariant cache hit.
[2023-04-07 18:14:12] [INFO ] [Real]Absence check using 2 positive place invariants in 1 ms returned sat
[2023-04-07 18:14:12] [INFO ] [Real]Absence check using 2 positive and 4 generalized place invariants in 0 ms returned sat
[2023-04-07 18:14:12] [INFO ] After 40ms SMT Verify possible using all constraints in real domain returned unsat :0 sat :0 real:4
[2023-04-07 18:14:12] [INFO ] [Nat]Absence check using 2 positive place invariants in 1 ms returned sat
[2023-04-07 18:14:12] [INFO ] [Nat]Absence check using 2 positive and 4 generalized place invariants in 1 ms returned sat
[2023-04-07 18:14:12] [INFO ] After 32ms SMT Verify possible using state equation in natural domain returned unsat :0 sat :4
[2023-04-07 18:14:12] [INFO ] State equation strengthened by 10 read => feed constraints.
[2023-04-07 18:14:12] [INFO ] After 31ms SMT Verify possible using 10 Read/Feed constraints in natural domain returned unsat :0 sat :4
[2023-04-07 18:14:12] [INFO ] After 55ms SMT Verify possible using trap constraints in natural domain returned unsat :0 sat :4
Attempting to minimize the solution found.
Minimization took 22 ms.
[2023-04-07 18:14:12] [INFO ] After 141ms SMT Verify possible using all constraints in natural domain returned unsat :0 sat :4
Parikh walk visited 0 properties in 36 ms.
Support contains 30 out of 30 places. Attempting structural reductions.
Starting structural reductions in REACHABILITY mode, iteration 0 : 30/30 places, 35/35 transitions.
Applied a total of 0 rules in 1 ms. Remains 30 /30 variables (removed 0) and now considering 35/35 (removed 0) transitions.
Finished structural reductions in REACHABILITY mode , in 1 iterations and 1 ms. Remains : 30/30 places, 35/35 transitions.
Starting structural reductions in REACHABILITY mode, iteration 0 : 30/30 places, 35/35 transitions.
Applied a total of 0 rules in 1 ms. Remains 30 /30 variables (removed 0) and now considering 35/35 (removed 0) transitions.
[2023-04-07 18:14:12] [INFO ] Invariant cache hit.
[2023-04-07 18:14:12] [INFO ] Implicit Places using invariants in 23 ms returned []
[2023-04-07 18:14:12] [INFO ] Invariant cache hit.
[2023-04-07 18:14:12] [INFO ] State equation strengthened by 10 read => feed constraints.
[2023-04-07 18:14:12] [INFO ] Implicit Places using invariants and state equation in 40 ms returned []
Implicit Place search using SMT with State Equation took 66 ms to find 0 implicit places.
[2023-04-07 18:14:12] [INFO ] Redundant transitions in 0 ms returned []
[2023-04-07 18:14:12] [INFO ] Invariant cache hit.
[2023-04-07 18:14:12] [INFO ] Dead Transitions using invariants and state equation in 33 ms found 0 transitions.
Finished structural reductions in REACHABILITY mode , in 1 iterations and 105 ms. Remains : 30/30 places, 35/35 transitions.
Applied a total of 0 rules in 0 ms. Remains 30 /30 variables (removed 0) and now considering 35/35 (removed 0) transitions.
Running SMT prover for 4 properties.
[2023-04-07 18:14:12] [INFO ] Invariant cache hit.
[2023-04-07 18:14:12] [INFO ] [Real]Absence check using 2 positive place invariants in 1 ms returned sat
[2023-04-07 18:14:12] [INFO ] [Real]Absence check using 2 positive and 4 generalized place invariants in 1 ms returned sat
[2023-04-07 18:14:12] [INFO ] After 28ms SMT Verify possible using all constraints in real domain returned unsat :0 sat :0 real:4
[2023-04-07 18:14:12] [INFO ] [Nat]Absence check using 2 positive place invariants in 0 ms returned sat
[2023-04-07 18:14:12] [INFO ] [Nat]Absence check using 2 positive and 4 generalized place invariants in 5 ms returned sat
[2023-04-07 18:14:12] [INFO ] After 45ms SMT Verify possible using state equation in natural domain returned unsat :0 sat :4
[2023-04-07 18:14:12] [INFO ] State equation strengthened by 10 read => feed constraints.
[2023-04-07 18:14:12] [INFO ] After 27ms SMT Verify possible using 10 Read/Feed constraints in natural domain returned unsat :0 sat :4
[2023-04-07 18:14:12] [INFO ] Deduced a trap composed of 2 places in 24 ms of which 2 ms to minimize.
[2023-04-07 18:14:12] [INFO ] Trap strengthening (SAT) tested/added 2/1 trap constraints in 30 ms
[2023-04-07 18:14:12] [INFO ] After 87ms SMT Verify possible using trap constraints in natural domain returned unsat :0 sat :4
Attempting to minimize the solution found.
Minimization took 34 ms.
[2023-04-07 18:14:12] [INFO ] After 202ms SMT Verify possible using all constraints in natural domain returned unsat :0 sat :4
[2023-04-07 18:14:12] [INFO ] Flatten gal took : 10 ms
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 11 ms
[2023-04-07 18:14:13] [INFO ] Input system was already deterministic with 35 transitions.
Computed a total of 0 stabilizing places and 0 stable transitions
Starting structural reductions in LTL mode, iteration 0 : 30/30 places, 35/35 transitions.
Applied a total of 0 rules in 2 ms. Remains 30 /30 variables (removed 0) and now considering 35/35 (removed 0) transitions.
[2023-04-07 18:14:13] [INFO ] Invariant cache hit.
[2023-04-07 18:14:13] [INFO ] Dead Transitions using invariants and state equation in 37 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 41 ms. Remains : 30/30 places, 35/35 transitions.
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 3 ms
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 4 ms
[2023-04-07 18:14:13] [INFO ] Input system was already deterministic with 35 transitions.
Starting structural reductions in SI_CTL mode, iteration 0 : 30/30 places, 35/35 transitions.
Applied a total of 0 rules in 2 ms. Remains 30 /30 variables (removed 0) and now considering 35/35 (removed 0) transitions.
[2023-04-07 18:14:13] [INFO ] Invariant cache hit.
[2023-04-07 18:14:13] [INFO ] Dead Transitions using invariants and state equation in 33 ms found 0 transitions.
Finished structural reductions in SI_CTL mode , in 1 iterations and 36 ms. Remains : 30/30 places, 35/35 transitions.
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 3 ms
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 2 ms
[2023-04-07 18:14:13] [INFO ] Input system was already deterministic with 35 transitions.
Finished random walk after 93 steps, including 0 resets, run visited all 1 properties in 1 ms. (steps per millisecond=93 )
FORMULA Murphy-COL-D4N025-CTLFireability-01 TRUE TECHNIQUES TOPOLOGICAL RANDOM_WALK
Parikh walk visited 0 properties in 0 ms.
Starting structural reductions in LTL mode, iteration 0 : 30/30 places, 35/35 transitions.
Applied a total of 0 rules in 1 ms. Remains 30 /30 variables (removed 0) and now considering 35/35 (removed 0) transitions.
[2023-04-07 18:14:13] [INFO ] Invariant cache hit.
[2023-04-07 18:14:13] [INFO ] Dead Transitions using invariants and state equation in 31 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 32 ms. Remains : 30/30 places, 35/35 transitions.
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 3 ms
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 3 ms
[2023-04-07 18:14:13] [INFO ] Input system was already deterministic with 35 transitions.
Starting structural reductions in LTL mode, iteration 0 : 30/30 places, 35/35 transitions.
Applied a total of 0 rules in 1 ms. Remains 30 /30 variables (removed 0) and now considering 35/35 (removed 0) transitions.
[2023-04-07 18:14:13] [INFO ] Invariant cache hit.
[2023-04-07 18:14:13] [INFO ] Dead Transitions using invariants and state equation in 30 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 31 ms. Remains : 30/30 places, 35/35 transitions.
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 3 ms
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 2 ms
[2023-04-07 18:14:13] [INFO ] Input system was already deterministic with 35 transitions.
Starting structural reductions in LTL mode, iteration 0 : 30/30 places, 35/35 transitions.
Applied a total of 0 rules in 1 ms. Remains 30 /30 variables (removed 0) and now considering 35/35 (removed 0) transitions.
[2023-04-07 18:14:13] [INFO ] Invariant cache hit.
[2023-04-07 18:14:13] [INFO ] Dead Transitions using invariants and state equation in 37 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 38 ms. Remains : 30/30 places, 35/35 transitions.
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 3 ms
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 2 ms
[2023-04-07 18:14:13] [INFO ] Input system was already deterministic with 35 transitions.
Starting structural reductions in LTL mode, iteration 0 : 30/30 places, 35/35 transitions.
Applied a total of 0 rules in 0 ms. Remains 30 /30 variables (removed 0) and now considering 35/35 (removed 0) transitions.
[2023-04-07 18:14:13] [INFO ] Invariant cache hit.
[2023-04-07 18:14:13] [INFO ] Dead Transitions using invariants and state equation in 30 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 30 ms. Remains : 30/30 places, 35/35 transitions.
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 2 ms
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 2 ms
[2023-04-07 18:14:13] [INFO ] Input system was already deterministic with 35 transitions.
Starting structural reductions in LTL mode, iteration 0 : 30/30 places, 35/35 transitions.
Applied a total of 0 rules in 1 ms. Remains 30 /30 variables (removed 0) and now considering 35/35 (removed 0) transitions.
[2023-04-07 18:14:13] [INFO ] Invariant cache hit.
[2023-04-07 18:14:13] [INFO ] Dead Transitions using invariants and state equation in 26 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 28 ms. Remains : 30/30 places, 35/35 transitions.
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 2 ms
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 3 ms
[2023-04-07 18:14:13] [INFO ] Input system was already deterministic with 35 transitions.
Starting structural reductions in LTL mode, iteration 0 : 30/30 places, 35/35 transitions.
Applied a total of 0 rules in 0 ms. Remains 30 /30 variables (removed 0) and now considering 35/35 (removed 0) transitions.
[2023-04-07 18:14:13] [INFO ] Invariant cache hit.
[2023-04-07 18:14:13] [INFO ] Dead Transitions using invariants and state equation in 27 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 27 ms. Remains : 30/30 places, 35/35 transitions.
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 3 ms
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 2 ms
[2023-04-07 18:14:13] [INFO ] Input system was already deterministic with 35 transitions.
Starting structural reductions in LTL mode, iteration 0 : 30/30 places, 35/35 transitions.
Applied a total of 0 rules in 0 ms. Remains 30 /30 variables (removed 0) and now considering 35/35 (removed 0) transitions.
[2023-04-07 18:14:13] [INFO ] Invariant cache hit.
[2023-04-07 18:14:13] [INFO ] Dead Transitions using invariants and state equation in 30 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 31 ms. Remains : 30/30 places, 35/35 transitions.
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 2 ms
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 2 ms
[2023-04-07 18:14:13] [INFO ] Input system was already deterministic with 35 transitions.
Starting structural reductions in LTL mode, iteration 0 : 30/30 places, 35/35 transitions.
Applied a total of 0 rules in 0 ms. Remains 30 /30 variables (removed 0) and now considering 35/35 (removed 0) transitions.
[2023-04-07 18:14:13] [INFO ] Invariant cache hit.
[2023-04-07 18:14:13] [INFO ] Dead Transitions using invariants and state equation in 26 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 27 ms. Remains : 30/30 places, 35/35 transitions.
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 3 ms
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 2 ms
[2023-04-07 18:14:13] [INFO ] Input system was already deterministic with 35 transitions.
Starting structural reductions in LTL mode, iteration 0 : 30/30 places, 35/35 transitions.
Applied a total of 0 rules in 0 ms. Remains 30 /30 variables (removed 0) and now considering 35/35 (removed 0) transitions.
[2023-04-07 18:14:13] [INFO ] Invariant cache hit.
[2023-04-07 18:14:13] [INFO ] Dead Transitions using invariants and state equation in 30 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 31 ms. Remains : 30/30 places, 35/35 transitions.
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 2 ms
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 2 ms
[2023-04-07 18:14:13] [INFO ] Input system was already deterministic with 35 transitions.
Starting structural reductions in LTL mode, iteration 0 : 30/30 places, 35/35 transitions.
Applied a total of 0 rules in 0 ms. Remains 30 /30 variables (removed 0) and now considering 35/35 (removed 0) transitions.
[2023-04-07 18:14:13] [INFO ] Invariant cache hit.
[2023-04-07 18:14:13] [INFO ] Dead Transitions using invariants and state equation in 32 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 32 ms. Remains : 30/30 places, 35/35 transitions.
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 2 ms
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 2 ms
[2023-04-07 18:14:13] [INFO ] Input system was already deterministic with 35 transitions.
Starting structural reductions in LTL mode, iteration 0 : 30/30 places, 35/35 transitions.
Applied a total of 0 rules in 0 ms. Remains 30 /30 variables (removed 0) and now considering 35/35 (removed 0) transitions.
[2023-04-07 18:14:13] [INFO ] Invariant cache hit.
[2023-04-07 18:14:13] [INFO ] Dead Transitions using invariants and state equation in 37 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 37 ms. Remains : 30/30 places, 35/35 transitions.
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 2 ms
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 3 ms
[2023-04-07 18:14:13] [INFO ] Input system was already deterministic with 35 transitions.
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 4 ms
[2023-04-07 18:14:13] [INFO ] Flatten gal took : 4 ms
[2023-04-07 18:14:13] [INFO ] Export to MCC of 12 properties in file /home/mcc/execution/CTLFireability.sr.xml took 6 ms.
[2023-04-07 18:14:13] [INFO ] Export to PNML in file /home/mcc/execution/model.sr.pnml of net with 30 places, 35 transitions and 135 arcs took 0 ms.
Total runtime 6489 ms.
There are residual formulas that ITS could not solve within timeout
timeout --kill-after=10s --signal=SIGINT 1m for testing only
Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: /home/mcc/BenchKit/bin//../reducer/bin//../../marcie/bin/marcie --net-file=model.pnml --mcc-file=CTLFireability.xml --memory=6 --mcc-mode
parse successfull
net created successfully
Net: Petri
(NrP: 30 NrTr: 35 NrArc: 135)
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec
net check time: 0m 0.000sec
init dd package: 0m 2.773sec
RS generation: 0m 8.707sec
-> reachability set: #nodes 25113 (2.5e+04) #states 20,012,606,308,670,976 (16)
starting MCC model checker
--------------------------
checking: AG [AX [EX [[[[p16<=1 | p21<=0] & [p17<=1 | p22<=0]] & [[p15<=1 | p20<=0] & [[p18<=1 | p23<=0] & [p19<=1 | p24<=0]]]]]]]
normalized: ~ [E [true U EX [~ [EX [[[[p16<=1 | p21<=0] & [p17<=1 | p22<=0]] & [[p15<=1 | p20<=0] & [[p19<=1 | p24<=0] & [p18<=1 | p23<=0]]]]]]]]]
abstracting: (p23<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p18<=1)
states: 20,012,606,308,670,976 (16)
abstracting: (p24<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p19<=1)
states: 20,012,606,308,670,976 (16)
abstracting: (p20<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p15<=1)
states: 20,012,606,308,670,976 (16)
abstracting: (p22<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p17<=1)
states: 20,012,606,308,670,976 (16)
abstracting: (p21<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p16<=1)
states: 20,012,606,308,670,976 (16)
..-> the formula is TRUE
FORMULA Murphy-COL-D4N025-CTLFireability-02 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.493sec
checking: EG [AX [[[[1<=p2 & [1<=p7 & 1<=p12]] | [1<=p0 & [1<=p5 & 1<=p10]]] | [[1<=p3 & [1<=p8 & 1<=p13]] | [[1<=p1 & [1<=p6 & 1<=p11]] | [1<=p4 & [1<=p9 & 1<=p14]]]]]]]
normalized: EG [~ [EX [~ [[[[[1<=p4 & [1<=p9 & 1<=p14]] | [1<=p1 & [1<=p6 & 1<=p11]]] | [1<=p3 & [1<=p8 & 1<=p13]]] | [[1<=p0 & [1<=p5 & 1<=p10]] | [1<=p2 & [1<=p7 & 1<=p12]]]]]]]]
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
..
EG iterations: 1
-> the formula is TRUE
FORMULA Murphy-COL-D4N025-CTLFireability-05 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 1.213sec
checking: EX [AF [EG [A [[[[2<=p16 & 1<=p21] | [2<=p17 & 1<=p22]] | [[2<=p15 & 1<=p20] | [[2<=p18 & 1<=p23] | [2<=p19 & 1<=p24]]]] U [[3<=p25 | 3<=p26] | [3<=p27 | [3<=p28 | 3<=p29]]]]]]]
normalized: EX [~ [EG [~ [EG [[~ [EG [~ [[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]]]] & ~ [E [~ [[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]] U [~ [[[[2<=p16 & 1<=p21] | [2<=p17 & 1<=p22]] | [[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [2<=p15 & 1<=p20]]]] & ~ [[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]]]]]]]]]]]
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
............
EG iterations: 12
.
EG iterations: 1
............
EG iterations: 12
.-> the formula is TRUE
FORMULA Murphy-COL-D4N025-CTLFireability-06 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 3.432sec
checking: EF [[A [[[[2<=p16 & 1<=p21] | [2<=p17 & 1<=p22]] | [[2<=p15 & 1<=p20] | [[2<=p18 & 1<=p23] | [2<=p19 & 1<=p24]]]] U [[[3<=p0 & [1<=p10 & 1<=p20]] | [3<=p2 & [1<=p12 & 1<=p22]]] | [[3<=p4 & [1<=p14 & 1<=p24]] | [[3<=p1 & [1<=p11 & 1<=p21]] | [3<=p3 & [1<=p13 & 1<=p23]]]]]] & EX [[[[1<=p0 & 1<=p5] | [1<=p4 & 1<=p9]] | [[1<=p1 & 1<=p6] | [[1<=p3 & 1<=p8] | [1<=p2 & 1<=p7]]]]]]]
normalized: E [true U [EX [[[[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]] | [[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]]]] & [~ [EG [~ [[[[[3<=p3 & [1<=p13 & 1<=p23]] | [3<=p1 & [1<=p11 & 1<=p21]]] | [3<=p4 & [1<=p14 & 1<=p24]]] | [[3<=p2 & [1<=p12 & 1<=p22]] | [3<=p0 & [1<=p10 & 1<=p20]]]]]]] & ~ [E [~ [[[[[3<=p3 & [1<=p13 & 1<=p23]] | [3<=p1 & [1<=p11 & 1<=p21]]] | [3<=p4 & [1<=p14 & 1<=p24]]] | [[3<=p2 & [1<=p12 & 1<=p22]] | [3<=p0 & [1<=p10 & 1<=p20]]]]] U [~ [[[[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [2<=p15 & 1<=p20]] | [[2<=p17 & 1<=p22] | [2<=p16 & 1<=p21]]]] & ~ [[[[[3<=p3 & [1<=p13 & 1<=p23]] | [3<=p1 & [1<=p11 & 1<=p21]]] | [3<=p4 & [1<=p14 & 1<=p24]]] | [[3<=p2 & [1<=p12 & 1<=p22]] | [3<=p0 & [1<=p10 & 1<=p20]]]]]]]]]]]
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p0)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p2)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p4)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p1)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p3)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p0)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p2)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p4)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p1)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p3)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p0)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p2)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p4)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p1)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p3)
states: 16,316,817,174,687,744 (16)
.......
EG iterations: 7
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
.-> the formula is TRUE
FORMULA Murphy-COL-D4N025-CTLFireability-09 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 3.431sec
checking: AX [[EF [[[p16<=0 & p17<=0] & [p18<=0 & [p19<=0 & p15<=0]]]] & [[AF [[[[1<=p2 & [1<=p7 & 1<=p12]] | [1<=p0 & [1<=p5 & 1<=p10]]] | [[1<=p3 & [1<=p8 & 1<=p13]] | [[1<=p1 & [1<=p6 & 1<=p11]] | [1<=p4 & [1<=p9 & 1<=p14]]]]]] | [[1<=p0 & 1<=p5] | [1<=p4 & 1<=p9]]] | [[[1<=p1 & 1<=p6] | [1<=p3 & 1<=p8]] | [[1<=p2 & 1<=p7] | [AF [EG [[[p25<=2 & p26<=2] & [p27<=2 & [p28<=2 & p29<=2]]]]] & AG [EX [[[[p16<=1 | p21<=0] & [p17<=1 | p22<=0]] & [[p15<=1 | p20<=0] & [[p18<=1 | p23<=0] & [p19<=1 | p24<=0]]]]]]]]]]]]
normalized: ~ [EX [~ [[[[[[~ [E [true U ~ [EX [[[[[p19<=1 | p24<=0] & [p18<=1 | p23<=0]] & [p15<=1 | p20<=0]] & [[p17<=1 | p22<=0] & [p16<=1 | p21<=0]]]]]]] & ~ [EG [~ [EG [[[p27<=2 & [p28<=2 & p29<=2]] & [p25<=2 & p26<=2]]]]]]] | [1<=p2 & 1<=p7]] | [[1<=p3 & 1<=p8] | [1<=p1 & 1<=p6]]] | [[[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]] | ~ [EG [~ [[[[[1<=p4 & [1<=p9 & 1<=p14]] | [1<=p1 & [1<=p6 & 1<=p11]]] | [1<=p3 & [1<=p8 & 1<=p13]]] | [[1<=p0 & [1<=p5 & 1<=p10]] | [1<=p2 & [1<=p7 & 1<=p12]]]]]]]]] & E [true U [[p18<=0 & [p19<=0 & p15<=0]] & [p16<=0 & p17<=0]]]]]]]
abstracting: (p17<=0)
states: 10,006,303,154,335,488 (16)
abstracting: (p16<=0)
states: 10,006,303,154,335,488 (16)
abstracting: (p15<=0)
states: 10,006,303,154,335,488 (16)
abstracting: (p19<=0)
states: 10,006,303,154,335,488 (16)
abstracting: (p18<=0)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
.
EG iterations: 1
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (p26<=2)
states: 16,677,171,923,892,480 (16)
abstracting: (p25<=2)
states: 16,677,171,923,892,480 (16)
abstracting: (p29<=2)
states: 16,677,171,923,892,480 (16)
abstracting: (p28<=2)
states: 16,677,171,923,892,480 (16)
abstracting: (p27<=2)
states: 16,677,171,923,892,480 (16)
............
EG iterations: 12
.
EG iterations: 1
abstracting: (p21<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p16<=1)
states: 20,012,606,308,670,976 (16)
abstracting: (p22<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p17<=1)
states: 20,012,606,308,670,976 (16)
abstracting: (p20<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p15<=1)
states: 20,012,606,308,670,976 (16)
abstracting: (p23<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p18<=1)
states: 20,012,606,308,670,976 (16)
abstracting: (p24<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p19<=1)
states: 20,012,606,308,670,976 (16)
..-> the formula is TRUE
FORMULA Murphy-COL-D4N025-CTLFireability-11 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 1.111sec
checking: A [~ [EF [[[E [~ [[[3<=p25 | 3<=p26] | [3<=p27 | [3<=p28 | 3<=p29]]]] U [[[3<=p25 | 3<=p26] | [3<=p27 | [3<=p28 | 3<=p29]]] | [[[1<=p2 & [1<=p7 & 1<=p12]] | [1<=p0 & [1<=p5 & 1<=p10]]] | [[1<=p3 & [1<=p8 & 1<=p13]] | [[1<=p1 & [1<=p6 & 1<=p11]] | [1<=p4 & [1<=p9 & 1<=p14]]]]]]] | [3<=p25 | 3<=p26]] | [3<=p27 | [3<=p28 | 3<=p29]]]]] U [EX [AF [AX [[[[1<=p0 & 1<=p5] | [1<=p4 & 1<=p9]] | [[1<=p1 & 1<=p6] | [[1<=p3 & 1<=p8] | [1<=p2 & 1<=p7]]]]]]] & EF [[[[EG [[[[1<=p0 & 1<=p5] | [1<=p4 & 1<=p9]] | [[1<=p1 & 1<=p6] | [[1<=p3 & 1<=p8] | [1<=p2 & 1<=p7]]]]] & [[[1<=p0 & 1<=p5] | [1<=p9 & 1<=p4]] | [[1<=p1 & 1<=p6] | [[1<=p3 & 1<=p8] | [1<=p2 & 1<=p7]]]]] | [1<=p16 | 1<=p17]] | [1<=p18 | [1<=p19 | 1<=p15]]]]]]
normalized: [~ [EG [~ [[E [true U [[1<=p18 | [1<=p19 | 1<=p15]] | [[1<=p16 | 1<=p17] | [[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p9 & 1<=p4] | [1<=p0 & 1<=p5]]] & EG [[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]]]]]]] & EX [~ [EG [EX [~ [[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]]]]]]]]]]] & ~ [E [~ [[E [true U [[1<=p18 | [1<=p19 | 1<=p15]] | [[1<=p16 | 1<=p17] | [[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p9 & 1<=p4] | [1<=p0 & 1<=p5]]] & EG [[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]]]]]]] & EX [~ [EG [EX [~ [[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]]]]]]]]] U [E [true U [[3<=p27 | [3<=p28 | 3<=p29]] | [E [~ [[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]] U [[[[1<=p0 & [1<=p5 & 1<=p10]] | [1<=p2 & [1<=p7 & 1<=p12]]] | [[[1<=p4 & [1<=p9 & 1<=p14]] | [1<=p1 & [1<=p6 & 1<=p11]]] | [1<=p3 & [1<=p8 & 1<=p13]]]] | [[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]]] | [3<=p25 | 3<=p26]]]] & ~ [[E [true U [[1<=p18 | [1<=p19 | 1<=p15]] | [[1<=p16 | 1<=p17] | [[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p9 & 1<=p4] | [1<=p0 & 1<=p5]]] & EG [[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]]]]]]] & EX [~ [EG [EX [~ [[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]]]]]]]]]]]]]
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
..
EG iterations: 1
.abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
.
EG iterations: 1
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p17)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p16)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p15)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p19)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p18)
states: 10,006,303,154,335,488 (16)
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
..
EG iterations: 1
.abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
.
EG iterations: 1
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p17)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p16)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p15)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p19)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p18)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
..
EG iterations: 1
.abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
.
EG iterations: 1
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p17)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p16)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p15)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p19)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p18)
states: 10,006,303,154,335,488 (16)
.
EG iterations: 1
-> the formula is TRUE
FORMULA Murphy-COL-D4N025-CTLFireability-14 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 2.655sec
checking: EX [[[[3<=p0 & [1<=p10 & 1<=p20]] | [[3<=p2 & [1<=p12 & 1<=p22]] | [3<=p4 & [1<=p14 & 1<=p24]]]] | [[3<=p1 & [1<=p11 & 1<=p21]] | [[3<=p3 & [1<=p13 & 1<=p23]] | [AG [[[[p0<=2 | [p10<=0 | p20<=0]] & [[p2<=2 | [p12<=0 | p22<=0]] & [p4<=2 | [p14<=0 | p24<=0]]]] & [[p1<=2 | [p11<=0 | p21<=0]] & [[p3<=2 | [p13<=0 | p23<=0]] & AG [[[p20<=0 & p21<=0] & [p22<=0 & [p23<=0 & p24<=0]]]]]]]] & [[EX [[[3<=p25 | 3<=p26] | [3<=p27 | [3<=p28 | 3<=p29]]]] | [[1<=p0 & 1<=p5] | [1<=p4 & 1<=p9]]] | [[[1<=p1 & 1<=p6] | [1<=p3 & 1<=p8]] | [[1<=p2 & 1<=p7] | [[AG [[[p16<=0 & p17<=0] & [p18<=0 & [p19<=0 & p15<=0]]]] & [EF [[[[p0<=0 | p5<=0] & [p4<=0 | p9<=0]] & [[p1<=0 | p6<=0] & [[p3<=0 | p8<=0] & [p2<=0 | p7<=0]]]]] & [p0<=0 | p5<=0]]] & [[[p4<=0 | p9<=0] & [p1<=0 | p6<=0]] & [[p3<=0 | p8<=0] & [p2<=0 | p7<=0]]]]]]]]]]]]
normalized: EX [[[[[[[[[[[[p2<=0 | p7<=0] & [p3<=0 | p8<=0]] & [[p1<=0 | p6<=0] & [p4<=0 | p9<=0]]] & [[[p0<=0 | p5<=0] & E [true U [[[[p2<=0 | p7<=0] & [p3<=0 | p8<=0]] & [p1<=0 | p6<=0]] & [[p4<=0 | p9<=0] & [p0<=0 | p5<=0]]]]] & ~ [E [true U ~ [[[p18<=0 & [p19<=0 & p15<=0]] & [p16<=0 & p17<=0]]]]]]] | [1<=p2 & 1<=p7]] | [[1<=p3 & 1<=p8] | [1<=p1 & 1<=p6]]] | [[[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]] | EX [[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]]]] & ~ [E [true U ~ [[[[~ [E [true U ~ [[[p22<=0 & [p23<=0 & p24<=0]] & [p20<=0 & p21<=0]]]]] & [p3<=2 | [p13<=0 | p23<=0]]] & [p1<=2 | [p11<=0 | p21<=0]]] & [[[p4<=2 | [p14<=0 | p24<=0]] & [p2<=2 | [p12<=0 | p22<=0]]] & [p0<=2 | [p10<=0 | p20<=0]]]]]]]] | [3<=p3 & [1<=p13 & 1<=p23]]] | [3<=p1 & [1<=p11 & 1<=p21]]] | [[[3<=p4 & [1<=p14 & 1<=p24]] | [3<=p2 & [1<=p12 & 1<=p22]]] | [3<=p0 & [1<=p10 & 1<=p20]]]]]
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p0)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p2)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p4)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p1)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p3)
states: 16,316,817,174,687,744 (16)
abstracting: (p20<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p10<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p0<=2)
states: 3,695,789,133,983,232 (15)
abstracting: (p22<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p12<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p2<=2)
states: 3,695,789,133,983,232 (15)
abstracting: (p24<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p14<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p4<=2)
states: 3,695,789,133,983,232 (15)
abstracting: (p21<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p11<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p1<=2)
states: 3,695,789,133,983,232 (15)
abstracting: (p23<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p13<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p3<=2)
states: 3,695,789,133,983,232 (15)
abstracting: (p21<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p20<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p24<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p23<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p22<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
.abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (p17<=0)
states: 10,006,303,154,335,488 (16)
abstracting: (p16<=0)
states: 10,006,303,154,335,488 (16)
abstracting: (p15<=0)
states: 10,006,303,154,335,488 (16)
abstracting: (p19<=0)
states: 10,006,303,154,335,488 (16)
abstracting: (p18<=0)
states: 10,006,303,154,335,488 (16)
abstracting: (p5<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p0<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p9<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p4<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p6<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p1<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p8<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p3<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p7<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p2<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p5<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p0<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p9<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p4<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p6<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p1<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p8<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p3<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p7<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p2<=0)
states: 1,331,807,098,152,960 (15)
.-> the formula is FALSE
FORMULA Murphy-COL-D4N025-CTLFireability-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 7.731sec
checking: EF [[[A [AG [[[[[1<=p10 & 1<=p20] & 3<=p0] | [3<=p2 & [1<=p12 & 1<=p22]]] | [[3<=p4 & [1<=p14 & 1<=p24]] | [[3<=p1 & [1<=p11 & 1<=p21]] | [3<=p3 & [1<=p13 & 1<=p23]]]]]] U [EF [[[[1<=p0 & 1<=p5] | [1<=p4 & 1<=p9]] | [[1<=p1 & 1<=p6] | [[1<=p3 & 1<=p8] | [1<=p2 & 1<=p7]]]]] | [[[[3<=p0 & [1<=p10 & 1<=p20]] | [3<=p2 & [1<=p12 & 1<=p22]]] | [[3<=p4 & [1<=p14 & 1<=p24]] | [[3<=p1 & [1<=p11 & 1<=p21]] | [3<=p3 & [1<=p13 & 1<=p23]]]]] & [[[[2<=p16 & 1<=p21] | [2<=p17 & 1<=p22]] | [[2<=p15 & 1<=p20] | [[2<=p18 & 1<=p23] | [2<=p19 & 1<=p24]]]] & ~ [[[[1<=p2 & [1<=p7 & 1<=p12]] | [1<=p0 & [1<=p5 & 1<=p10]]] | [[1<=p3 & [1<=p8 & 1<=p13]] | [[1<=p1 & [1<=p6 & 1<=p11]] | [1<=p4 & [1<=p9 & 1<=p14]]]]]]]]]] & EF [[[[p20<=0 & p21<=0] & [p22<=0 & [p23<=0 & p24<=0]]] & [[[p0<=0 | p5<=0] & [p4<=0 | p9<=0]] & [[p1<=0 | p6<=0] & [[p3<=0 | p8<=0] & [p2<=0 | p7<=0]]]]]]] & [AF [[[[1<=p20 | 1<=p21] | [1<=p22 | [1<=p23 | 1<=p24]]] & [[[1<=p2 & [1<=p7 & 1<=p12]] | [1<=p0 & [1<=p5 & 1<=p10]]] | [[1<=p3 & [1<=p8 & 1<=p13]] | [[1<=p1 & [1<=p6 & 1<=p11]] | [1<=p4 & [1<=p9 & 1<=p14]]]]]]] & AX [[[[p2<=0 | [p7<=0 | p12<=0]] & [p0<=0 | [p5<=0 | p10<=0]]] & [[p3<=0 | [p8<=0 | p13<=0]] & [[p1<=0 | [p6<=0 | p11<=0]] & [p4<=0 | [p9<=0 | p14<=0]]]]]]]]]
normalized: E [true U [[~ [EX [~ [[[[p0<=0 | [p5<=0 | p10<=0]] & [p2<=0 | [p7<=0 | p12<=0]]] & [[[p4<=0 | [p9<=0 | p14<=0]] & [p1<=0 | [p6<=0 | p11<=0]]] & [p3<=0 | [p8<=0 | p13<=0]]]]]]] & ~ [EG [~ [[[[[[1<=p4 & [1<=p9 & 1<=p14]] | [1<=p1 & [1<=p6 & 1<=p11]]] | [1<=p3 & [1<=p8 & 1<=p13]]] | [[1<=p0 & [1<=p5 & 1<=p10]] | [1<=p2 & [1<=p7 & 1<=p12]]]] & [[1<=p22 | [1<=p23 | 1<=p24]] | [1<=p20 | 1<=p21]]]]]]] & [E [true U [[[[[p2<=0 | p7<=0] & [p3<=0 | p8<=0]] & [p1<=0 | p6<=0]] & [[p4<=0 | p9<=0] & [p0<=0 | p5<=0]]] & [[p22<=0 & [p23<=0 & p24<=0]] & [p20<=0 & p21<=0]]]] & [~ [EG [~ [[[[~ [[[[[1<=p4 & [1<=p9 & 1<=p14]] | [1<=p1 & [1<=p6 & 1<=p11]]] | [1<=p3 & [1<=p8 & 1<=p13]]] | [[1<=p0 & [1<=p5 & 1<=p10]] | [1<=p2 & [1<=p7 & 1<=p12]]]]] & [[[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [2<=p15 & 1<=p20]] | [[2<=p17 & 1<=p22] | [2<=p16 & 1<=p21]]]] & [[[[3<=p3 & [1<=p13 & 1<=p23]] | [3<=p1 & [1<=p11 & 1<=p21]]] | [3<=p4 & [1<=p14 & 1<=p24]]] | [[3<=p2 & [1<=p12 & 1<=p22]] | [3<=p0 & [1<=p10 & 1<=p20]]]]] | E [true U [[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]]]]]]] & ~ [E [~ [[[[~ [[[[[1<=p4 & [1<=p9 & 1<=p14]] | [1<=p1 & [1<=p6 & 1<=p11]]] | [1<=p3 & [1<=p8 & 1<=p13]]] | [[1<=p0 & [1<=p5 & 1<=p10]] | [1<=p2 & [1<=p7 & 1<=p12]]]]] & [[[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [2<=p15 & 1<=p20]] | [[2<=p17 & 1<=p22] | [2<=p16 & 1<=p21]]]] & [[[[3<=p3 & [1<=p13 & 1<=p23]] | [3<=p1 & [1<=p11 & 1<=p21]]] | [3<=p4 & [1<=p14 & 1<=p24]]] | [[3<=p2 & [1<=p12 & 1<=p22]] | [3<=p0 & [1<=p10 & 1<=p20]]]]] | E [true U [[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]]]]] U [E [true U ~ [[[[[3<=p3 & [1<=p13 & 1<=p23]] | [3<=p1 & [1<=p11 & 1<=p21]]] | [3<=p4 & [1<=p14 & 1<=p24]]] | [[3<=p2 & [1<=p12 & 1<=p22]] | [3<=p0 & [1<=p10 & 1<=p20]]]]]] & ~ [[[[~ [[[[[1<=p4 & [1<=p9 & 1<=p14]] | [1<=p1 & [1<=p6 & 1<=p11]]] | [1<=p3 & [1<=p8 & 1<=p13]]] | [[1<=p0 & [1<=p5 & 1<=p10]] | [1<=p2 & [1<=p7 & 1<=p12]]]]] & [[[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [2<=p15 & 1<=p20]] | [[2<=p17 & 1<=p22] | [2<=p16 & 1<=p21]]]] & [[[[3<=p3 & [1<=p13 & 1<=p23]] | [3<=p1 & [1<=p11 & 1<=p21]]] | [3<=p4 & [1<=p14 & 1<=p24]]] | [[3<=p2 & [1<=p12 & 1<=p22]] | [3<=p0 & [1<=p10 & 1<=p20]]]]] | E [true U [[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]]]]]]]]]]]]
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p0)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p2)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p4)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p1)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p3)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p0)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p2)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p4)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p1)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p3)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p0)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p2)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p4)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p1)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p3)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p0)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p2)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p4)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p1)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p3)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
.
EG iterations: 1
abstracting: (p21<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p20<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p24<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p23<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p22<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p5<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p0<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p9<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p4<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p6<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p1<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p8<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p3<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p7<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p2<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
.
EG iterations: 1
abstracting: (p13<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p8<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p3<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p11<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p6<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p1<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p14<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p9<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p4<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p12<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p7<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p2<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p10<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p5<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p0<=0)
states: 1,331,807,098,152,960 (15)
.-> the formula is FALSE
FORMULA Murphy-COL-D4N025-CTLFireability-00 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m17.335sec
checking: [AX [AF [[EF [[[p16<=0 & p17<=0] & [p18<=0 & [p19<=0 & p15<=0]]]] | [EG [[[[2<=p16 & 1<=p21] | [2<=p17 & 1<=p22]] | [[2<=p15 & 1<=p20] | [[2<=p18 & 1<=p23] | [2<=p19 & 1<=p24]]]]] & [[[1<=p20 | [1<=p21 | 1<=p22]] | [[1<=p23 | 1<=p24] | [1<=p16 | 1<=p17]]] | [[[1<=p18 | 1<=p19] | [1<=p15 | [2<=p16 & 1<=p21]]] | [[[2<=p17 & 1<=p22] | [2<=p15 & 1<=p20]] | [[2<=p18 & 1<=p23] | [2<=p19 & 1<=p24]]]]]]]]] | A [~ [[[AF [[[[[2<=p16 & 1<=p21] | [2<=p17 & 1<=p22]] | [[2<=p15 & 1<=p20] | [[2<=p18 & 1<=p23] | [2<=p19 & 1<=p24]]]] | [[1<=p20 | 1<=p21] | [1<=p22 | [1<=p23 | 1<=p24]]]]] & AF [[[3<=p25 | 3<=p26] | [3<=p27 | [3<=p28 | 3<=p29]]]]] & [[[[1<=p0 & 1<=p5] | [1<=p4 & 1<=p9]] | [[1<=p1 & 1<=p6] | [[1<=p3 & 1<=p8] | [1<=p2 & 1<=p7]]]] & [[~ [[[3<=p25 | 3<=p26] | [3<=p27 | [3<=p28 | 3<=p29]]]] | [1<=p20 | 1<=p21]] | [[1<=p22 | 1<=p23] | [1<=p24 | EG [[[[3<=p0 & [1<=p10 & 1<=p20]] | [3<=p2 & [1<=p12 & 1<=p22]]] | [[3<=p4 & [1<=p14 & 1<=p24]] | [[3<=p1 & [1<=p11 & 1<=p21]] | [3<=p3 & [1<=p13 & 1<=p23]]]]]]]]]]]] U [[E [[[AF [[[[3<=p0 & [1<=p10 & 1<=p20]] | [3<=p2 & [1<=p12 & 1<=p22]]] | [[3<=p4 & [1<=p14 & 1<=p24]] | [[3<=p1 & [1<=p11 & 1<=p21]] | [3<=p3 & [1<=p13 & 1<=p23]]]]]] | [1<=p20 | 1<=p21]] | [1<=p22 | [1<=p23 | 1<=p24]]] U [[1<=p20 | 1<=p21] | [1<=p22 | [1<=p23 | 1<=p24]]]] & ~ [[AX [[[3<=p25 | 3<=p26] | [3<=p27 | [3<=p28 | 3<=p29]]]] & [[[3<=p25 | 3<=p26] | [3<=p27 | [3<=p28 | 3<=p29]]] & [[1<=p20 | 1<=p21] | [1<=p22 | [1<=p23 | 1<=p24]]]]]]] | AG [~ [AX [[[[2<=p16 & 1<=p21] | [2<=p17 & 1<=p22]] | [[2<=p15 & 1<=p20] | [[2<=p18 & 1<=p23] | [2<=p19 & 1<=p24]]]]]]]]]]
normalized: [[~ [EG [~ [[~ [E [true U ~ [EX [~ [[[[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [2<=p15 & 1<=p20]] | [[2<=p17 & 1<=p22] | [2<=p16 & 1<=p21]]]]]]]] | [~ [[[[[1<=p22 | [1<=p23 | 1<=p24]] | [1<=p20 | 1<=p21]] & [[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]] & ~ [EX [~ [[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]]]]]] & E [[[1<=p22 | [1<=p23 | 1<=p24]] | [[1<=p20 | 1<=p21] | ~ [EG [~ [[[[[3<=p3 & [1<=p13 & 1<=p23]] | [3<=p1 & [1<=p11 & 1<=p21]]] | [3<=p4 & [1<=p14 & 1<=p24]]] | [[3<=p2 & [1<=p12 & 1<=p22]] | [3<=p0 & [1<=p10 & 1<=p20]]]]]]]]] U [[1<=p22 | [1<=p23 | 1<=p24]] | [1<=p20 | 1<=p21]]]]]]]] & ~ [E [~ [[~ [E [true U ~ [EX [~ [[[[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [2<=p15 & 1<=p20]] | [[2<=p17 & 1<=p22] | [2<=p16 & 1<=p21]]]]]]]] | [~ [[[[[1<=p22 | [1<=p23 | 1<=p24]] | [1<=p20 | 1<=p21]] & [[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]] & ~ [EX [~ [[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]]]]]] & E [[[1<=p22 | [1<=p23 | 1<=p24]] | [[1<=p20 | 1<=p21] | ~ [EG [~ [[[[[3<=p3 & [1<=p13 & 1<=p23]] | [3<=p1 & [1<=p11 & 1<=p21]]] | [3<=p4 & [1<=p14 & 1<=p24]]] | [[3<=p2 & [1<=p12 & 1<=p22]] | [3<=p0 & [1<=p10 & 1<=p20]]]]]]]]] U [[1<=p22 | [1<=p23 | 1<=p24]] | [1<=p20 | 1<=p21]]]]]] U [[[[[[1<=p24 | EG [[[[[3<=p3 & [1<=p13 & 1<=p23]] | [3<=p1 & [1<=p11 & 1<=p21]]] | [3<=p4 & [1<=p14 & 1<=p24]]] | [[3<=p2 & [1<=p12 & 1<=p22]] | [3<=p0 & [1<=p10 & 1<=p20]]]]]] | [1<=p22 | 1<=p23]] | [[1<=p20 | 1<=p21] | ~ [[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]]]] & [[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]]] & [~ [EG [~ [[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]]]] & ~ [EG [~ [[[[1<=p22 | [1<=p23 | 1<=p24]] | [1<=p20 | 1<=p21]] | [[[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [2<=p15 & 1<=p20]] | [[2<=p17 & 1<=p22] | [2<=p16 & 1<=p21]]]]]]]]] & ~ [[~ [E [true U ~ [EX [~ [[[[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [2<=p15 & 1<=p20]] | [[2<=p17 & 1<=p22] | [2<=p16 & 1<=p21]]]]]]]] | [~ [[[[[1<=p22 | [1<=p23 | 1<=p24]] | [1<=p20 | 1<=p21]] & [[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]] & ~ [EX [~ [[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]]]]]] & E [[[1<=p22 | [1<=p23 | 1<=p24]] | [[1<=p20 | 1<=p21] | ~ [EG [~ [[[[[3<=p3 & [1<=p13 & 1<=p23]] | [3<=p1 & [1<=p11 & 1<=p21]]] | [3<=p4 & [1<=p14 & 1<=p24]]] | [[3<=p2 & [1<=p12 & 1<=p22]] | [3<=p0 & [1<=p10 & 1<=p20]]]]]]]]] U [[1<=p22 | [1<=p23 | 1<=p24]] | [1<=p20 | 1<=p21]]]]]]]]]] | ~ [EX [EG [~ [[[[[[[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [[2<=p15 & 1<=p20] | [2<=p17 & 1<=p22]]] | [[1<=p15 | [2<=p16 & 1<=p21]] | [1<=p18 | 1<=p19]]] | [[[1<=p16 | 1<=p17] | [1<=p23 | 1<=p24]] | [1<=p20 | [1<=p21 | 1<=p22]]]] & EG [[[[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [2<=p15 & 1<=p20]] | [[2<=p17 & 1<=p22] | [2<=p16 & 1<=p21]]]]] | E [true U [[p18<=0 & [p19<=0 & p15<=0]] & [p16<=0 & p17<=0]]]]]]]]]
abstracting: (p17<=0)
states: 10,006,303,154,335,488 (16)
abstracting: (p16<=0)
states: 10,006,303,154,335,488 (16)
abstracting: (p15<=0)
states: 10,006,303,154,335,488 (16)
abstracting: (p19<=0)
states: 10,006,303,154,335,488 (16)
abstracting: (p18<=0)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
.
EG iterations: 1
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p17)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p16)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p19)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p18)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p15)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
.
EG iterations: 1
.abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p0)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p2)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p4)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p1)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p3)
states: 16,316,817,174,687,744 (16)
.......
EG iterations: 7
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
.abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
.abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
.......
EG iterations: 7
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
............
EG iterations: 12
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p0)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p2)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p4)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p1)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p3)
states: 16,316,817,174,687,744 (16)
.
EG iterations: 1
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p0)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p2)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p4)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p1)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p3)
states: 16,316,817,174,687,744 (16)
.......
EG iterations: 7
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
.abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
.abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p0)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p2)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p4)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p1)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p3)
states: 16,316,817,174,687,744 (16)
.......
EG iterations: 7
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
.abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
..
EG iterations: 1
-> the formula is TRUE
FORMULA Murphy-COL-D4N025-CTLFireability-03 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 2.339sec
checking: E [[[1<=p16 | 1<=p17] | [1<=p18 | [1<=p19 | 1<=p15]]] U [[AG [[AX [[[1<=p20 | 1<=p21] | [1<=p22 | [1<=p23 | 1<=p24]]]] & EX [[[[2<=p16 & 1<=p21] | [2<=p17 & 1<=p22]] | [[2<=p15 & 1<=p20] | [[2<=p18 & 1<=p23] | [2<=p19 & 1<=p24]]]]]]] & E [[[[2<=p16 & 1<=p21] | [2<=p17 & 1<=p22]] | [[2<=p15 & 1<=p20] | [[2<=p18 & 1<=p23] | [2<=p19 & 1<=p24]]]] U A [EG [[[[1<=p0 & 1<=p5] | [1<=p4 & 1<=p9]] | [[1<=p1 & 1<=p6] | [[1<=p3 & 1<=p8] | [1<=p2 & 1<=p7]]]]] U [[[1<=p20 | 1<=p21] | [1<=p22 | [1<=p23 | 1<=p24]]] | [[[1<=p0 & 1<=p5] | [1<=p4 & 1<=p9]] | [[1<=p1 & 1<=p6] | [[1<=p3 & 1<=p8] | [1<=p2 & 1<=p7]]]]]]]] & [[~ [[[[[[1<=p2 & [1<=p7 & 1<=p12]] | [1<=p0 & [1<=p5 & 1<=p10]]] | [[1<=p3 & [1<=p8 & 1<=p13]] | [[1<=p1 & [1<=p6 & 1<=p11]] | [1<=p4 & [1<=p9 & 1<=p14]]]]] & [[1<=p20 | 1<=p21] | [1<=p22 | [1<=p23 | 1<=p24]]]] & [AF [[[[1<=p0 & 1<=p5] | [1<=p4 & 1<=p9]] | [[1<=p1 & 1<=p6] | [[1<=p3 & 1<=p8] | [1<=p2 & 1<=p7]]]]] & AX [[[[1<=p2 & [1<=p7 & 1<=p12]] | [1<=p0 & [1<=p5 & 1<=p10]]] | [[1<=p3 & [1<=p8 & 1<=p13]] | [[1<=p1 & [1<=p6 & 1<=p11]] | [1<=p4 & [1<=p9 & 1<=p14]]]]]]]]] | [AG [~ [[[[2<=p16 & 1<=p21] | [2<=p17 & 1<=p22]] | [[2<=p15 & 1<=p20] | [[2<=p18 & 1<=p23] | [2<=p19 & 1<=p24]]]]]] & AX [~ [[[[2<=p16 & 1<=p21] | [2<=p17 & 1<=p22]] | [[2<=p15 & 1<=p20] | [[2<=p18 & 1<=p23] | [2<=p19 & 1<=p24]]]]]]]] & [[E [AF [[[1<=p16 | 1<=p17] | [1<=p18 | [1<=p19 | 1<=p15]]]] U [AG [[[[1<=p2 & [1<=p7 & 1<=p12]] | [1<=p0 & [1<=p5 & 1<=p10]]] | [[1<=p3 & [1<=p8 & 1<=p13]] | [[1<=p1 & [1<=p6 & 1<=p11]] | [1<=p4 & [1<=p9 & 1<=p14]]]]]] & ~ [[[1<=p16 | 1<=p17] | [1<=p18 | [1<=p19 | 1<=p15]]]]]] | [[1<=p0 & 1<=p5] | [1<=p4 & 1<=p9]]] | [[1<=p1 & 1<=p6] | [[1<=p3 & 1<=p8] | [1<=p2 & 1<=p7]]]]]]]
normalized: E [[[1<=p18 | [1<=p19 | 1<=p15]] | [1<=p16 | 1<=p17]] U [[[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]] | E [~ [EG [~ [[[1<=p18 | [1<=p19 | 1<=p15]] | [1<=p16 | 1<=p17]]]]] U [~ [[[1<=p18 | [1<=p19 | 1<=p15]] | [1<=p16 | 1<=p17]]] & ~ [E [true U ~ [[[[[1<=p4 & [1<=p9 & 1<=p14]] | [1<=p1 & [1<=p6 & 1<=p11]]] | [1<=p3 & [1<=p8 & 1<=p13]]] | [[1<=p0 & [1<=p5 & 1<=p10]] | [1<=p2 & [1<=p7 & 1<=p12]]]]]]]]]]] & [[~ [EX [[[[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [2<=p15 & 1<=p20]] | [[2<=p17 & 1<=p22] | [2<=p16 & 1<=p21]]]]] & ~ [E [true U [[[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [2<=p15 & 1<=p20]] | [[2<=p17 & 1<=p22] | [2<=p16 & 1<=p21]]]]]] | ~ [[[~ [EX [~ [[[[[1<=p4 & [1<=p9 & 1<=p14]] | [1<=p1 & [1<=p6 & 1<=p11]]] | [1<=p3 & [1<=p8 & 1<=p13]]] | [[1<=p0 & [1<=p5 & 1<=p10]] | [1<=p2 & [1<=p7 & 1<=p12]]]]]]] & ~ [EG [~ [[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]]]]]] & [[[1<=p22 | [1<=p23 | 1<=p24]] | [1<=p20 | 1<=p21]] & [[[[1<=p4 & [1<=p9 & 1<=p14]] | [1<=p1 & [1<=p6 & 1<=p11]]] | [1<=p3 & [1<=p8 & 1<=p13]]] | [[1<=p0 & [1<=p5 & 1<=p10]] | [1<=p2 & [1<=p7 & 1<=p12]]]]]]]]] & [E [[[[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [2<=p15 & 1<=p20]] | [[2<=p17 & 1<=p22] | [2<=p16 & 1<=p21]]] U [~ [EG [~ [[[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]] | [[1<=p22 | [1<=p23 | 1<=p24]] | [1<=p20 | 1<=p21]]]]]] & ~ [E [~ [[[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]] | [[1<=p22 | [1<=p23 | 1<=p24]] | [1<=p20 | 1<=p21]]]] U [~ [EG [[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]]]] & ~ [[[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]] | [[1<=p22 | [1<=p23 | 1<=p24]] | [1<=p20 | 1<=p21]]]]]]]]] & ~ [E [true U ~ [[EX [[[[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [2<=p15 & 1<=p20]] | [[2<=p17 & 1<=p22] | [2<=p16 & 1<=p21]]]] & ~ [EX [~ [[[1<=p22 | [1<=p23 | 1<=p24]] | [1<=p20 | 1<=p21]]]]]]]]]]]]
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
.abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
.abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
.
EG iterations: 1
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
.......
EG iterations: 7
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
.
EG iterations: 1
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
.abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
.abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p17)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p16)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p15)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p19)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p18)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p17)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p16)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p15)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p19)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p18)
states: 10,006,303,154,335,488 (16)
............
EG iterations: 12
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p17)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p16)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p15)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p19)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p18)
states: 10,006,303,154,335,488 (16)
-> the formula is FALSE
FORMULA Murphy-COL-D4N025-CTLFireability-08 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 3.479sec
checking: EF [[[AF [[[[1<=p2 & [1<=p7 & 1<=p12]] | [1<=p0 & [1<=p5 & 1<=p10]]] | [[1<=p3 & [1<=p8 & 1<=p13]] | [[1<=p1 & [1<=p6 & 1<=p11]] | [1<=p4 & [1<=p9 & 1<=p14]]]]]] & [[1<=p16 | 1<=p17] | [1<=p18 | [1<=p19 | 1<=p15]]]] & [[[[1<=p0 & 1<=p5] | [[1<=p4 & 1<=p9] | [1<=p1 & 1<=p6]]] | [[1<=p3 & 1<=p8] | [[1<=p2 & 1<=p7] | [[[[3<=p0 & [1<=p10 & 1<=p20]] | [[3<=p2 & [1<=p12 & 1<=p22]] | [3<=p4 & [1<=p14 & 1<=p24]]]] | [[3<=p1 & [1<=p11 & 1<=p21]] | [[3<=p3 & [1<=p13 & 1<=p23]] | [AX [[[3<=p25 | 3<=p26] | [3<=p27 | [3<=p28 | 3<=p29]]]] & [[1<=p20 | 1<=p21] | [1<=p22 | [1<=p23 | 1<=p24]]]]]]] & [[AX [[[p20<=0 & p21<=0] & [p22<=0 & [p23<=0 & p24<=0]]]] | [[[p2<=0 | [p7<=0 | p12<=0]] & [p0<=0 | [p5<=0 | p10<=0]]] & [[p3<=0 | [p8<=0 | p13<=0]] & [[p1<=0 | [p6<=0 | p11<=0]] & [p4<=0 | [p9<=0 | p14<=0]]]]]] & [EX [[[[[1<=p2 & [1<=p7 & 1<=p12]] | [1<=p0 & [1<=p5 & 1<=p10]]] | [[1<=p3 & [1<=p8 & 1<=p13]] | [[1<=p1 & [1<=p6 & 1<=p11]] | [1<=p4 & [1<=p9 & 1<=p14]]]]] & [[[2<=p16 & 1<=p21] | [2<=p17 & 1<=p22]] | [[2<=p15 & 1<=p20] | [[2<=p18 & 1<=p23] | [2<=p19 & 1<=p24]]]]]] | EG [[[p16<=0 & p17<=0] & [p18<=0 & [p19<=0 & p15<=0]]]]]]]]]] & [[[[3<=p25 | 3<=p26] | [3<=p27 | [3<=p28 | 3<=p29]]] | [[[1<=p0 & 1<=p5] | [1<=p4 & 1<=p9]] | [[1<=p1 & 1<=p6] | [[1<=p3 & 1<=p8] | [1<=p2 & 1<=p7]]]]] & [EG [[[[p0<=2 | [p10<=0 | p20<=0]] & [p2<=2 | [p12<=0 | p22<=0]]] & [[p4<=2 | [p14<=0 | p24<=0]] & [[p1<=2 | [p11<=0 | p21<=0]] & [p3<=2 | [p13<=0 | p23<=0]]]]]] | [[EF [[[[p0<=0 | p5<=0] & [p4<=0 | p9<=0]] & [[p1<=0 | p6<=0] & [[p3<=0 | p8<=0] & [p2<=0 | p7<=0]]]]] & [[p2<=0 | [p7<=0 | p12<=0]] & [p0<=0 | [p5<=0 | p10<=0]]]] & [[p3<=0 | [p8<=0 | p13<=0]] & [[p1<=0 | [p6<=0 | p11<=0]] & [p4<=0 | [p9<=0 | p14<=0]]]]]]]]]]
normalized: E [true U [[[[[[[[p4<=0 | [p9<=0 | p14<=0]] & [p1<=0 | [p6<=0 | p11<=0]]] & [p3<=0 | [p8<=0 | p13<=0]]] & [[[p0<=0 | [p5<=0 | p10<=0]] & [p2<=0 | [p7<=0 | p12<=0]]] & E [true U [[[[p2<=0 | p7<=0] & [p3<=0 | p8<=0]] & [p1<=0 | p6<=0]] & [[p4<=0 | p9<=0] & [p0<=0 | p5<=0]]]]]] | EG [[[[[p3<=2 | [p13<=0 | p23<=0]] & [p1<=2 | [p11<=0 | p21<=0]]] & [p4<=2 | [p14<=0 | p24<=0]]] & [[p2<=2 | [p12<=0 | p22<=0]] & [p0<=2 | [p10<=0 | p20<=0]]]]]] & [[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]] | [[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]]] & [[[[[[EG [[[p18<=0 & [p19<=0 & p15<=0]] & [p16<=0 & p17<=0]]] | EX [[[[[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [2<=p15 & 1<=p20]] | [[2<=p17 & 1<=p22] | [2<=p16 & 1<=p21]]] & [[[[1<=p4 & [1<=p9 & 1<=p14]] | [1<=p1 & [1<=p6 & 1<=p11]]] | [1<=p3 & [1<=p8 & 1<=p13]]] | [[1<=p0 & [1<=p5 & 1<=p10]] | [1<=p2 & [1<=p7 & 1<=p12]]]]]]] & [[[[[p4<=0 | [p9<=0 | p14<=0]] & [p1<=0 | [p6<=0 | p11<=0]]] & [p3<=0 | [p8<=0 | p13<=0]]] & [[p0<=0 | [p5<=0 | p10<=0]] & [p2<=0 | [p7<=0 | p12<=0]]]] | ~ [EX [~ [[[p22<=0 & [p23<=0 & p24<=0]] & [p20<=0 & p21<=0]]]]]]] & [[[[[[1<=p22 | [1<=p23 | 1<=p24]] | [1<=p20 | 1<=p21]] & ~ [EX [~ [[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]]]]] | [3<=p3 & [1<=p13 & 1<=p23]]] | [3<=p1 & [1<=p11 & 1<=p21]]] | [[[3<=p4 & [1<=p14 & 1<=p24]] | [3<=p2 & [1<=p12 & 1<=p22]]] | [3<=p0 & [1<=p10 & 1<=p20]]]]] | [1<=p2 & 1<=p7]] | [1<=p3 & 1<=p8]] | [[[1<=p1 & 1<=p6] | [1<=p4 & 1<=p9]] | [1<=p0 & 1<=p5]]]] & [[[1<=p18 | [1<=p19 | 1<=p15]] | [1<=p16 | 1<=p17]] & ~ [EG [~ [[[[[1<=p4 & [1<=p9 & 1<=p14]] | [1<=p1 & [1<=p6 & 1<=p11]]] | [1<=p3 & [1<=p8 & 1<=p13]]] | [[1<=p0 & [1<=p5 & 1<=p10]] | [1<=p2 & [1<=p7 & 1<=p12]]]]]]]]]]
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
.
EG iterations: 1
abstracting: (1<=p17)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p16)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p15)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p19)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p18)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p0)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p2)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p4)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p1)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p3)
states: 16,316,817,174,687,744 (16)
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
.abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (p21<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p20<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p24<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p23<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p22<=0)
states: 6,670,868,769,556,992 (15)
.abstracting: (p12<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p7<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p2<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p10<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p5<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p0<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p13<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p8<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p3<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p11<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p6<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p1<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p14<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p9<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p4<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
.abstracting: (p17<=0)
states: 10,006,303,154,335,488 (16)
abstracting: (p16<=0)
states: 10,006,303,154,335,488 (16)
abstracting: (p15<=0)
states: 10,006,303,154,335,488 (16)
abstracting: (p19<=0)
states: 10,006,303,154,335,488 (16)
abstracting: (p18<=0)
states: 10,006,303,154,335,488 (16)
............
EG iterations: 12
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (p20<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p10<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p0<=2)
states: 3,695,789,133,983,232 (15)
abstracting: (p22<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p12<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p2<=2)
states: 3,695,789,133,983,232 (15)
abstracting: (p24<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p14<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p4<=2)
states: 3,695,789,133,983,232 (15)
abstracting: (p21<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p11<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p1<=2)
states: 3,695,789,133,983,232 (15)
abstracting: (p23<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p13<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p3<=2)
states: 3,695,789,133,983,232 (15)
.......
EG iterations: 7
abstracting: (p5<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p0<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p9<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p4<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p6<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p1<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p8<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p3<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p7<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p2<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p12<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p7<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p2<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p10<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p5<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p0<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p13<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p8<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p3<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p11<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p6<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p1<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p14<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p9<=0)
states: 1,331,838,322,214,400 (15)
abstracting: (p4<=0)
states: 1,331,807,098,152,960 (15)
-> the formula is TRUE
FORMULA Murphy-COL-D4N025-CTLFireability-13 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m17.075sec
checking: [EX [[[E [EF [[[3<=p25 | 3<=p26] | [3<=p27 | [3<=p28 | 3<=p29]]]] U ~ [[[1<=p20 | 1<=p21] | [1<=p22 | [1<=p23 | 1<=p24]]]]] & [EG [[[[p0<=2 | [p10<=0 | p20<=0]] & [p2<=2 | [p12<=0 | p22<=0]]] & [[p4<=2 | [p14<=0 | p24<=0]] & [[p1<=2 | [p11<=0 | p21<=0]] & [p3<=2 | [p13<=0 | p23<=0]]]]]] & [[3<=p25 | 3<=p26] | [3<=p27 | [3<=p28 | 3<=p29]]]]] | [E [AX [[[[1<=p0 & 1<=p5] | [1<=p4 & 1<=p9]] | [[1<=p1 & 1<=p6] | [[1<=p3 & 1<=p8] | [1<=p2 & 1<=p7]]]]] U [[[[3<=p0 & [1<=p10 & 1<=p20]] | [3<=p2 & [1<=p12 & 1<=p22]]] | [[3<=p4 & [1<=p14 & 1<=p24]] | [[3<=p1 & [1<=p11 & 1<=p21]] | [3<=p3 & [1<=p13 & 1<=p23]]]]] | [[1<=p16 | 1<=p17] | [1<=p18 | [1<=p19 | 1<=p15]]]]] & EX [[[[p16<=1 | p21<=0] & [p17<=1 | p22<=0]] & [[p15<=1 | p20<=0] & [[p18<=1 | p23<=0] & [p19<=1 | p24<=0]]]]]]]] & [A [[AF [[[[1<=p16 | [1<=p17 | 1<=p18]] | [[1<=p19 | 1<=p15] | [[2<=p16 & 1<=p21] | [2<=p17 & 1<=p22]]]] | [[[[2<=p15 & 1<=p20] | [2<=p18 & 1<=p23]] | [[2<=p19 & 1<=p24] | [2<=p16 & 1<=p21]]] | [[[2<=p17 & 1<=p22] | [2<=p15 & 1<=p20]] | [[2<=p18 & 1<=p23] | [2<=p19 & 1<=p24]]]]]] | EX [AF [[[[1<=p0 & 1<=p5] | [1<=p4 & 1<=p9]] | [[1<=p1 & 1<=p6] | [[1<=p3 & 1<=p8] | [1<=p2 & 1<=p7]]]]]]] U ~ [[~ [[[[3<=p25 | 3<=p26] | [3<=p27 | [3<=p28 | 3<=p29]]] & [[[2<=p16 & 1<=p21] | [2<=p17 & 1<=p22]] | [[2<=p15 & 1<=p20] | [[2<=p18 & 1<=p23] | [2<=p19 & 1<=p24]]]]]] | [A [[[[1<=p0 & 1<=p5] | [1<=p4 & 1<=p9]] | [[1<=p1 & 1<=p6] | [[1<=p3 & 1<=p8] | [1<=p2 & 1<=p7]]]] U [[3<=p25 | 3<=p26] | [3<=p27 | [3<=p28 | 3<=p29]]]] & ~ [[[[3<=p0 & [1<=p10 & 1<=p20]] | [3<=p2 & [1<=p12 & 1<=p22]]] | [[3<=p4 & [1<=p14 & 1<=p24]] | [[3<=p1 & [1<=p11 & 1<=p21]] | [3<=p3 & [1<=p13 & 1<=p23]]]]]]]]]] & EF [[[[[1<=p0 & 1<=p5] | [1<=p4 & 1<=p9]] | [[1<=p1 & 1<=p6] | [[1<=p3 & 1<=p8] | [1<=p2 & 1<=p7]]]] | [[[2<=p16 & 1<=p21] | [2<=p17 & 1<=p22]] | [[2<=p15 & 1<=p20] | [[2<=p18 & 1<=p23] | [2<=p19 & 1<=p24]]]]]]]]
normalized: [[E [true U [[[[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [2<=p15 & 1<=p20]] | [[2<=p17 & 1<=p22] | [2<=p16 & 1<=p21]]] | [[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]]]] & [~ [EG [[[~ [[[[[3<=p3 & [1<=p13 & 1<=p23]] | [3<=p1 & [1<=p11 & 1<=p21]]] | [3<=p4 & [1<=p14 & 1<=p24]]] | [[3<=p2 & [1<=p12 & 1<=p22]] | [3<=p0 & [1<=p10 & 1<=p20]]]]] & [~ [EG [~ [[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]]]] & ~ [E [~ [[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]] U [~ [[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]]] & ~ [[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]]]]]]] | ~ [[[[[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [2<=p15 & 1<=p20]] | [[2<=p17 & 1<=p22] | [2<=p16 & 1<=p21]]] & [[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]]]]]] & ~ [E [[[~ [[[[[3<=p3 & [1<=p13 & 1<=p23]] | [3<=p1 & [1<=p11 & 1<=p21]]] | [3<=p4 & [1<=p14 & 1<=p24]]] | [[3<=p2 & [1<=p12 & 1<=p22]] | [3<=p0 & [1<=p10 & 1<=p20]]]]] & [~ [EG [~ [[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]]]] & ~ [E [~ [[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]] U [~ [[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]]] & ~ [[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]]]]]]] | ~ [[[[[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [2<=p15 & 1<=p20]] | [[2<=p17 & 1<=p22] | [2<=p16 & 1<=p21]]] & [[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]]]] U [~ [[EX [~ [EG [~ [[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]]]]]] | ~ [EG [~ [[[[[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [[2<=p15 & 1<=p20] | [2<=p17 & 1<=p22]]] | [[[2<=p16 & 1<=p21] | [2<=p19 & 1<=p24]] | [[2<=p18 & 1<=p23] | [2<=p15 & 1<=p20]]]] | [[[[2<=p17 & 1<=p22] | [2<=p16 & 1<=p21]] | [1<=p19 | 1<=p15]] | [1<=p16 | [1<=p17 | 1<=p18]]]]]]]]] & [[~ [[[[[3<=p3 & [1<=p13 & 1<=p23]] | [3<=p1 & [1<=p11 & 1<=p21]]] | [3<=p4 & [1<=p14 & 1<=p24]]] | [[3<=p2 & [1<=p12 & 1<=p22]] | [3<=p0 & [1<=p10 & 1<=p20]]]]] & [~ [EG [~ [[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]]]] & ~ [E [~ [[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]] U [~ [[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]]] & ~ [[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]]]]]]] | ~ [[[[[[2<=p19 & 1<=p24] | [2<=p18 & 1<=p23]] | [2<=p15 & 1<=p20]] | [[2<=p17 & 1<=p22] | [2<=p16 & 1<=p21]]] & [[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]]]]]]]]] & EX [[[EX [[[[[p19<=1 | p24<=0] & [p18<=1 | p23<=0]] & [p15<=1 | p20<=0]] & [[p17<=1 | p22<=0] & [p16<=1 | p21<=0]]]] & E [~ [EX [~ [[[[[1<=p2 & 1<=p7] | [1<=p3 & 1<=p8]] | [1<=p1 & 1<=p6]] | [[1<=p4 & 1<=p9] | [1<=p0 & 1<=p5]]]]]] U [[[1<=p18 | [1<=p19 | 1<=p15]] | [1<=p16 | 1<=p17]] | [[[[3<=p3 & [1<=p13 & 1<=p23]] | [3<=p1 & [1<=p11 & 1<=p21]]] | [3<=p4 & [1<=p14 & 1<=p24]]] | [[3<=p2 & [1<=p12 & 1<=p22]] | [3<=p0 & [1<=p10 & 1<=p20]]]]]]] | [[[[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]] & EG [[[[[p3<=2 | [p13<=0 | p23<=0]] & [p1<=2 | [p11<=0 | p21<=0]]] & [p4<=2 | [p14<=0 | p24<=0]]] & [[p2<=2 | [p12<=0 | p22<=0]] & [p0<=2 | [p10<=0 | p20<=0]]]]]] & E [E [true U [[3<=p27 | [3<=p28 | 3<=p29]] | [3<=p25 | 3<=p26]]] U ~ [[[1<=p22 | [1<=p23 | 1<=p24]] | [1<=p20 | 1<=p21]]]]]]]]
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (p20<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p10<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p0<=2)
states: 3,695,789,133,983,232 (15)
abstracting: (p22<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p12<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p2<=2)
states: 3,695,789,133,983,232 (15)
abstracting: (p24<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p14<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p4<=2)
states: 3,695,789,133,983,232 (15)
abstracting: (p21<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p11<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p1<=2)
states: 3,695,789,133,983,232 (15)
abstracting: (p23<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p13<=0)
states: 1,331,807,098,152,960 (15)
abstracting: (p3<=2)
states: 3,695,789,133,983,232 (15)
.......
EG iterations: 7
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p0)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p2)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p4)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p1)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p3)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p17)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p16)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p15)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p19)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p18)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
.abstracting: (p21<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p16<=1)
states: 20,012,606,308,670,976 (16)
abstracting: (p22<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p17<=1)
states: 20,012,606,308,670,976 (16)
abstracting: (p20<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p15<=1)
states: 20,012,606,308,670,976 (16)
abstracting: (p23<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p18<=1)
states: 20,012,606,308,670,976 (16)
abstracting: (p24<=0)
states: 6,670,868,769,556,992 (15)
abstracting: (p19<=1)
states: 20,012,606,308,670,976 (16)
..abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
............
EG iterations: 12
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p0)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p2)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p4)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p1)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p3)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p18)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p17)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p16)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p15)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p19)
states: 10,006,303,154,335,488 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
............
EG iterations: 12
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
.
EG iterations: 1
.abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
............
EG iterations: 12
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p0)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p2)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p4)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p1)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p3)
states: 16,316,817,174,687,744 (16)
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p26)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p25)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p29)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p28)
states: 3,335,434,384,778,496 (15)
abstracting: (3<=p27)
states: 3,335,434,384,778,496 (15)
............
EG iterations: 12
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p10)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p0)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p12)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p2)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p14)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p4)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p11)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p1)
states: 16,316,817,174,687,744 (16)
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (1<=p13)
states: 18,680,799,210,518,016 (16)
abstracting: (3<=p3)
states: 16,316,817,174,687,744 (16)
EG iterations: 0
abstracting: (1<=p5)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p0)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p9)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p4)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p6)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p1)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p8)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p3)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p7)
states: 18,680,767,986,456,576 (16)
abstracting: (1<=p2)
states: 18,680,799,210,518,016 (16)
abstracting: (1<=p21)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p16)
states: 0
abstracting: (1<=p22)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p17)
states: 0
abstracting: (1<=p20)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p15)
states: 0
abstracting: (1<=p23)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p18)
states: 0
abstracting: (1<=p24)
states: 13,341,737,539,113,984 (16)
abstracting: (2<=p19)
states: 0
-> the formula is FALSE
FORMULA Murphy-COL-D4N025-CTLFireability-07 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m10.972sec
totally nodes used: 24671916 (2.5e+07)
number of garbage collections: 0
fire ops cache: hits/miss/sum: 368606770 55198957 423805727
used/not used/entry size/cache size: 44870621 22238243 16 1024MB
basic ops cache: hits/miss/sum: 154530215 27658116 182188331
used/not used/entry size/cache size: 15155246 1621970 12 192MB
unary ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 8 128MB
abstract ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 12 192MB
state nr cache: hits/miss/sum: 2050919 491888 2542807
used/not used/entry size/cache size: 477917 7910691 32 256MB
max state cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 8388608 32 256MB
uniqueHash elements/entry size/size: 67108864 4 256MB
0 47381314
1 15729954
2 3339382
3 546959
4 79626
5 14303
6 5572
7 2548
8 2650
9 1269
>= 10 5287
Total processing time: 1m26.302sec
BK_STOP 1680891341121
--------------------
content from stderr:
+ ulimit -s 65536
+ [[ -z '' ]]
+ export LTSMIN_MEM_SIZE=8589934592
+ LTSMIN_MEM_SIZE=8589934592
+ export PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ export LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
+ LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
++ sed s/.jar//
++ perl -pe 's/.*\.//g'
++ ls /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/plugins/fr.lip6.move.gal.application.pnmcc_1.0.0.202304061127.jar
+ VERSION=202304061127
+ echo 'Running Version 202304061127'
+ /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/its-tools -pnfolder /home/mcc/execution -examination CTLFireability -timeout 360 -rebuildPNML
check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.000sec
iterations count:23162 (661), effective:4563 (130)
initing FirstDep: 0m 0.000sec
iterations count:35 (1), effective:0 (0)
iterations count:35 (1), effective:0 (0)
iterations count:265 (7), effective:35 (1)
iterations count:55 (1), effective:5 (0)
iterations count:48 (1), effective:4 (0)
iterations count:49 (1), effective:4 (0)
iterations count:35 (1), effective:0 (0)
iterations count:48 (1), effective:4 (0)
iterations count:35 (1), effective:0 (0)
iterations count:48 (1), effective:4 (0)
iterations count:42 (1), effective:2 (0)
iterations count:35 (1), effective:0 (0)
iterations count:46 (1), effective:3 (0)
iterations count:1918 (54), effective:388 (11)
iterations count:93 (2), effective:15 (0)
iterations count:3363 (96), effective:640 (18)
iterations count:93 (2), effective:15 (0)
iterations count:35 (1), effective:0 (0)
iterations count:93 (2), effective:15 (0)
iterations count:1958 (55), effective:398 (11)
iterations count:55 (1), effective:5 (0)
iterations count:42 (1), effective:2 (0)
iterations count:42 (1), effective:2 (0)
iterations count:42 (1), effective:2 (0)
iterations count:35 (1), effective:0 (0)
iterations count:35 (1), effective:0 (0)
iterations count:35 (1), effective:0 (0)
iterations count:1918 (54), effective:388 (11)
iterations count:1918 (54), effective:388 (11)
iterations count:3406 (97), effective:652 (18)
iterations count:47 (1), effective:3 (0)
iterations count:75 (2), effective:10 (0)
iterations count:48 (1), effective:5 (0)
iterations count:1918 (54), effective:388 (11)
iterations count:1918 (54), effective:388 (11)
iterations count:1918 (54), effective:388 (11)
iterations count:93 (2), effective:15 (0)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="Murphy-COL-D4N025"
export BK_EXAMINATION="CTLFireability"
export BK_TOOL="marciexred"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marciexred"
echo " Input is Murphy-COL-D4N025, examination is CTLFireability"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r522-tall-167987247200314"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/Murphy-COL-D4N025.tgz
mv Murphy-COL-D4N025 execution
cd execution
if [ "CTLFireability" = "ReachabilityDeadlock" ] || [ "CTLFireability" = "UpperBounds" ] || [ "CTLFireability" = "QuasiLiveness" ] || [ "CTLFireability" = "StableMarking" ] || [ "CTLFireability" = "Liveness" ] || [ "CTLFireability" = "OneSafe" ] || [ "CTLFireability" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLFireability" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLFireability" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLFireability.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLFireability.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLFireability.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "CTLFireability" = "ReachabilityDeadlock" ] || [ "CTLFireability" = "QuasiLiveness" ] || [ "CTLFireability" = "StableMarking" ] || [ "CTLFireability" = "Liveness" ] || [ "CTLFireability" = "OneSafe" ] ; then
echo "FORMULA_NAME CTLFireability"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;