fond
Model Checking Contest 2023
13th edition, Paris, France, April 26, 2023 (at TOOLympics II)
Execution of r522-tall-167987247200298
Last Updated
May 14, 2023

About the Execution of Marcie+red for Murphy-COL-D2N100

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
16212.260 588260.00 559460.00 25527.90 T?FTF??FTT?TTF?T normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Formatting '/data/fkordon/mcc2023-input.r522-tall-167987247200298.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2023-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
.......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
=====================================================================
Generated by BenchKit 2-5348
Executing tool marciexred
Input is Murphy-COL-D2N100, examination is CTLFireability
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r522-tall-167987247200298
=====================================================================

--------------------
preparation of the directory to be used:
/home/mcc/execution
total 440K
-rw-r--r-- 1 mcc users 6.7K Mar 23 15:21 CTLCardinality.txt
-rw-r--r-- 1 mcc users 73K Mar 23 15:21 CTLCardinality.xml
-rw-r--r-- 1 mcc users 4.8K Mar 23 15:20 CTLFireability.txt
-rw-r--r-- 1 mcc users 44K Mar 23 15:20 CTLFireability.xml
-rw-r--r-- 1 mcc users 3.2K Mar 23 07:07 LTLCardinality.txt
-rw-r--r-- 1 mcc users 23K Mar 23 07:07 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.0K Mar 23 07:07 LTLFireability.txt
-rw-r--r-- 1 mcc users 17K Mar 23 07:07 LTLFireability.xml
-rw-r--r-- 1 mcc users 1 Mar 26 22:42 NewModel
-rw-r--r-- 1 mcc users 12K Mar 23 15:22 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 129K Mar 23 15:22 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 6.4K Mar 23 15:22 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 55K Mar 23 15:22 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.6K Mar 23 07:07 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.6K Mar 23 07:07 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Mar 26 22:42 equiv_pt
-rw-r--r-- 1 mcc users 7 Mar 26 22:42 instance
-rw-r--r-- 1 mcc users 5 Mar 26 22:42 iscolored
-rw-r--r-- 1 mcc users 20K Mar 31 16:48 model.pnml

--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME Murphy-COL-D2N100-CTLFireability-00
FORMULA_NAME Murphy-COL-D2N100-CTLFireability-01
FORMULA_NAME Murphy-COL-D2N100-CTLFireability-02
FORMULA_NAME Murphy-COL-D2N100-CTLFireability-03
FORMULA_NAME Murphy-COL-D2N100-CTLFireability-04
FORMULA_NAME Murphy-COL-D2N100-CTLFireability-05
FORMULA_NAME Murphy-COL-D2N100-CTLFireability-06
FORMULA_NAME Murphy-COL-D2N100-CTLFireability-07
FORMULA_NAME Murphy-COL-D2N100-CTLFireability-08
FORMULA_NAME Murphy-COL-D2N100-CTLFireability-09
FORMULA_NAME Murphy-COL-D2N100-CTLFireability-10
FORMULA_NAME Murphy-COL-D2N100-CTLFireability-11
FORMULA_NAME Murphy-COL-D2N100-CTLFireability-12
FORMULA_NAME Murphy-COL-D2N100-CTLFireability-13
FORMULA_NAME Murphy-COL-D2N100-CTLFireability-14
FORMULA_NAME Murphy-COL-D2N100-CTLFireability-15

=== Now, execution of the tool begins

BK_START 1680888210993

bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marciexred
BK_EXAMINATION=CTLFireability
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=Murphy-COL-D2N100
Applying reductions before tool marcie
Invoking reducer
Running Version 202304061127
[2023-04-07 17:23:32] [INFO ] Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, CTLFireability, -timeout, 360, -rebuildPNML]
[2023-04-07 17:23:32] [INFO ] Parsing pnml file : /home/mcc/execution/model.pnml
[2023-04-07 17:23:32] [INFO ] Detected file is not PT type :http://www.pnml.org/version-2009/grammar/symmetricnet
log4j:WARN No appenders could be found for logger (org.apache.axiom.locator.DefaultOMMetaFactoryLocator).
log4j:WARN Please initialize the log4j system properly.
log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.
[2023-04-07 17:23:32] [WARNING] Using fallBack plugin, rng conformance not checked
[2023-04-07 17:23:32] [INFO ] Load time of PNML (colored model parsed with PNMLFW) : 490 ms
[2023-04-07 17:23:32] [INFO ] Imported 6 HL places and 7 HL transitions for a total of 18 PT places and 21.0 transition bindings in 16 ms.
Parsed 16 properties from file /home/mcc/execution/CTLFireability.xml in 12 ms.
[2023-04-07 17:23:32] [INFO ] Built PT skeleton of HLPN with 6 places and 7 transitions 27 arcs in 3 ms.
[2023-04-07 17:23:32] [INFO ] Skeletonized 16 HLPN properties in 2 ms.
Initial state reduction rules removed 1 formulas.
FORMULA Murphy-COL-D2N100-CTLFireability-13 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
Computed a total of 0 stabilizing places and 0 stable transitions
Remains 5 properties that can be checked using skeleton over-approximation.
Computed a total of 0 stabilizing places and 0 stable transitions
Finished random walk after 4 steps, including 0 resets, run visited all 5 properties in 6 ms. (steps per millisecond=0 )
Parikh walk visited 0 properties in 0 ms.
[2023-04-07 17:23:33] [INFO ] Flatten gal took : 12 ms
[2023-04-07 17:23:33] [INFO ] Flatten gal took : 1 ms
Arc [2:1*[(MOD (ADD $x 1) 3)]] contains successor/predecessor on variables of sort CD
[2023-04-07 17:23:33] [INFO ] Unfolded HLPN to a Petri net with 18 places and 21 transitions 81 arcs in 6 ms.
[2023-04-07 17:23:33] [INFO ] Unfolded 15 HLPN properties in 0 ms.
Support contains 18 out of 18 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 18/18 places, 21/21 transitions.
Applied a total of 0 rules in 5 ms. Remains 18 /18 variables (removed 0) and now considering 21/21 (removed 0) transitions.
// Phase 1: matrix 21 rows 18 cols
[2023-04-07 17:23:33] [INFO ] Computed 4 invariants in 3 ms
[2023-04-07 17:23:33] [INFO ] Dead Transitions using invariants and state equation in 130 ms found 0 transitions.
[2023-04-07 17:23:33] [INFO ] Invariant cache hit.
[2023-04-07 17:23:33] [INFO ] Implicit Places using invariants in 25 ms returned []
[2023-04-07 17:23:33] [INFO ] Invariant cache hit.
[2023-04-07 17:23:33] [INFO ] State equation strengthened by 6 read => feed constraints.
[2023-04-07 17:23:33] [INFO ] Implicit Places using invariants and state equation in 42 ms returned []
Implicit Place search using SMT with State Equation took 69 ms to find 0 implicit places.
[2023-04-07 17:23:33] [INFO ] Invariant cache hit.
[2023-04-07 17:23:33] [INFO ] Dead Transitions using invariants and state equation in 48 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 255 ms. Remains : 18/18 places, 21/21 transitions.
Support contains 18 out of 18 places after structural reductions.
[2023-04-07 17:23:33] [INFO ] Flatten gal took : 7 ms
[2023-04-07 17:23:33] [INFO ] Flatten gal took : 6 ms
[2023-04-07 17:23:33] [INFO ] Input system was already deterministic with 21 transitions.
Incomplete random walk after 10025 steps, including 2 resets, run finished after 118 ms. (steps per millisecond=84 ) properties (out of 28) seen :21
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 60 ms. (steps per millisecond=166 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 49 ms. (steps per millisecond=204 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 69 ms. (steps per millisecond=144 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 58 ms. (steps per millisecond=172 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 30 ms. (steps per millisecond=333 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 31 ms. (steps per millisecond=322 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 24 ms. (steps per millisecond=416 ) properties (out of 7) seen :0
Running SMT prover for 7 properties.
[2023-04-07 17:23:33] [INFO ] Invariant cache hit.
[2023-04-07 17:23:34] [INFO ] [Real]Absence check using 2 positive place invariants in 0 ms returned sat
[2023-04-07 17:23:34] [INFO ] [Real]Absence check using 2 positive and 2 generalized place invariants in 0 ms returned sat
[2023-04-07 17:23:34] [INFO ] After 57ms SMT Verify possible using all constraints in real domain returned unsat :0 sat :0 real:7
[2023-04-07 17:23:34] [INFO ] [Nat]Absence check using 2 positive place invariants in 1 ms returned sat
[2023-04-07 17:23:34] [INFO ] [Nat]Absence check using 2 positive and 2 generalized place invariants in 1 ms returned sat
[2023-04-07 17:23:34] [INFO ] After 31ms SMT Verify possible using state equation in natural domain returned unsat :0 sat :7
[2023-04-07 17:23:34] [INFO ] State equation strengthened by 6 read => feed constraints.
[2023-04-07 17:23:34] [INFO ] After 20ms SMT Verify possible using 6 Read/Feed constraints in natural domain returned unsat :0 sat :7
[2023-04-07 17:23:34] [INFO ] After 60ms SMT Verify possible using trap constraints in natural domain returned unsat :0 sat :7
Attempting to minimize the solution found.
Minimization took 27 ms.
[2023-04-07 17:23:34] [INFO ] After 184ms SMT Verify possible using all constraints in natural domain returned unsat :0 sat :7
Parikh walk visited 0 properties in 156 ms.
Support contains 18 out of 18 places. Attempting structural reductions.
Starting structural reductions in REACHABILITY mode, iteration 0 : 18/18 places, 21/21 transitions.
Applied a total of 0 rules in 4 ms. Remains 18 /18 variables (removed 0) and now considering 21/21 (removed 0) transitions.
[2023-04-07 17:23:34] [INFO ] Invariant cache hit.
[2023-04-07 17:23:34] [INFO ] Dead Transitions using invariants and state equation in 29 ms found 0 transitions.
Finished structural reductions in REACHABILITY mode , in 1 iterations and 34 ms. Remains : 18/18 places, 21/21 transitions.
Incomplete random walk after 10039 steps, including 2 resets, run finished after 18 ms. (steps per millisecond=557 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 21 ms. (steps per millisecond=476 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 19 ms. (steps per millisecond=526 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 21 ms. (steps per millisecond=476 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 19 ms. (steps per millisecond=526 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 18 ms. (steps per millisecond=555 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 18 ms. (steps per millisecond=555 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 23 ms. (steps per millisecond=434 ) properties (out of 7) seen :0
Interrupted probabilistic random walk after 255338 steps, run timeout after 3001 ms. (steps per millisecond=85 ) properties seen :{}
Probabilistic random walk after 255338 steps, saw 167018 distinct states, run finished after 3002 ms. (steps per millisecond=85 ) properties seen :0
Running SMT prover for 7 properties.
[2023-04-07 17:23:37] [INFO ] Invariant cache hit.
[2023-04-07 17:23:37] [INFO ] [Real]Absence check using 2 positive place invariants in 1 ms returned sat
[2023-04-07 17:23:37] [INFO ] [Real]Absence check using 2 positive and 2 generalized place invariants in 0 ms returned sat
[2023-04-07 17:23:37] [INFO ] After 32ms SMT Verify possible using all constraints in real domain returned unsat :0 sat :0 real:7
[2023-04-07 17:23:37] [INFO ] [Nat]Absence check using 2 positive place invariants in 1 ms returned sat
[2023-04-07 17:23:37] [INFO ] [Nat]Absence check using 2 positive and 2 generalized place invariants in 1 ms returned sat
[2023-04-07 17:23:37] [INFO ] After 23ms SMT Verify possible using state equation in natural domain returned unsat :0 sat :7
[2023-04-07 17:23:37] [INFO ] State equation strengthened by 6 read => feed constraints.
[2023-04-07 17:23:37] [INFO ] After 29ms SMT Verify possible using 6 Read/Feed constraints in natural domain returned unsat :0 sat :7
[2023-04-07 17:23:37] [INFO ] After 60ms SMT Verify possible using trap constraints in natural domain returned unsat :0 sat :7
Attempting to minimize the solution found.
Minimization took 27 ms.
[2023-04-07 17:23:37] [INFO ] After 141ms SMT Verify possible using all constraints in natural domain returned unsat :0 sat :7
Parikh walk visited 0 properties in 124 ms.
Support contains 18 out of 18 places. Attempting structural reductions.
Starting structural reductions in REACHABILITY mode, iteration 0 : 18/18 places, 21/21 transitions.
Applied a total of 0 rules in 1 ms. Remains 18 /18 variables (removed 0) and now considering 21/21 (removed 0) transitions.
Finished structural reductions in REACHABILITY mode , in 1 iterations and 1 ms. Remains : 18/18 places, 21/21 transitions.
Starting structural reductions in REACHABILITY mode, iteration 0 : 18/18 places, 21/21 transitions.
Applied a total of 0 rules in 1 ms. Remains 18 /18 variables (removed 0) and now considering 21/21 (removed 0) transitions.
[2023-04-07 17:23:37] [INFO ] Invariant cache hit.
[2023-04-07 17:23:37] [INFO ] Implicit Places using invariants in 19 ms returned []
[2023-04-07 17:23:37] [INFO ] Invariant cache hit.
[2023-04-07 17:23:37] [INFO ] State equation strengthened by 6 read => feed constraints.
[2023-04-07 17:23:37] [INFO ] Implicit Places using invariants and state equation in 35 ms returned []
Implicit Place search using SMT with State Equation took 56 ms to find 0 implicit places.
[2023-04-07 17:23:37] [INFO ] Redundant transitions in 0 ms returned []
[2023-04-07 17:23:37] [INFO ] Invariant cache hit.
[2023-04-07 17:23:37] [INFO ] Dead Transitions using invariants and state equation in 25 ms found 0 transitions.
Finished structural reductions in REACHABILITY mode , in 1 iterations and 86 ms. Remains : 18/18 places, 21/21 transitions.
Applied a total of 0 rules in 1 ms. Remains 18 /18 variables (removed 0) and now considering 21/21 (removed 0) transitions.
Running SMT prover for 7 properties.
[2023-04-07 17:23:37] [INFO ] Invariant cache hit.
[2023-04-07 17:23:37] [INFO ] [Real]Absence check using 2 positive place invariants in 0 ms returned sat
[2023-04-07 17:23:37] [INFO ] [Real]Absence check using 2 positive and 2 generalized place invariants in 0 ms returned sat
[2023-04-07 17:23:37] [INFO ] After 30ms SMT Verify possible using all constraints in real domain returned unsat :0 sat :0 real:7
[2023-04-07 17:23:37] [INFO ] [Nat]Absence check using 2 positive place invariants in 1 ms returned sat
[2023-04-07 17:23:38] [INFO ] [Nat]Absence check using 2 positive and 2 generalized place invariants in 3 ms returned sat
[2023-04-07 17:23:38] [INFO ] After 22ms SMT Verify possible using state equation in natural domain returned unsat :0 sat :7
[2023-04-07 17:23:38] [INFO ] State equation strengthened by 6 read => feed constraints.
[2023-04-07 17:23:38] [INFO ] After 18ms SMT Verify possible using 6 Read/Feed constraints in natural domain returned unsat :0 sat :7
[2023-04-07 17:23:38] [INFO ] After 45ms SMT Verify possible using trap constraints in natural domain returned unsat :0 sat :7
Attempting to minimize the solution found.
Minimization took 19 ms.
[2023-04-07 17:23:38] [INFO ] After 125ms SMT Verify possible using all constraints in natural domain returned unsat :0 sat :7
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 4 ms
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 4 ms
[2023-04-07 17:23:38] [INFO ] Input system was already deterministic with 21 transitions.
Computed a total of 0 stabilizing places and 0 stable transitions
Starting structural reductions in LTL mode, iteration 0 : 18/18 places, 21/21 transitions.
Applied a total of 0 rules in 1 ms. Remains 18 /18 variables (removed 0) and now considering 21/21 (removed 0) transitions.
[2023-04-07 17:23:38] [INFO ] Invariant cache hit.
[2023-04-07 17:23:38] [INFO ] Dead Transitions using invariants and state equation in 27 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 28 ms. Remains : 18/18 places, 21/21 transitions.
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 3 ms
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 1 ms
[2023-04-07 17:23:38] [INFO ] Input system was already deterministic with 21 transitions.
Starting structural reductions in LTL mode, iteration 0 : 18/18 places, 21/21 transitions.
Applied a total of 0 rules in 0 ms. Remains 18 /18 variables (removed 0) and now considering 21/21 (removed 0) transitions.
[2023-04-07 17:23:38] [INFO ] Invariant cache hit.
[2023-04-07 17:23:38] [INFO ] Dead Transitions using invariants and state equation in 34 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 35 ms. Remains : 18/18 places, 21/21 transitions.
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 1 ms
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 3 ms
[2023-04-07 17:23:38] [INFO ] Input system was already deterministic with 21 transitions.
Starting structural reductions in LTL mode, iteration 0 : 18/18 places, 21/21 transitions.
Applied a total of 0 rules in 1 ms. Remains 18 /18 variables (removed 0) and now considering 21/21 (removed 0) transitions.
[2023-04-07 17:23:38] [INFO ] Invariant cache hit.
[2023-04-07 17:23:38] [INFO ] Dead Transitions using invariants and state equation in 25 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 27 ms. Remains : 18/18 places, 21/21 transitions.
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 2 ms
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 1 ms
[2023-04-07 17:23:38] [INFO ] Input system was already deterministic with 21 transitions.
Starting structural reductions in LTL mode, iteration 0 : 18/18 places, 21/21 transitions.
Applied a total of 0 rules in 0 ms. Remains 18 /18 variables (removed 0) and now considering 21/21 (removed 0) transitions.
[2023-04-07 17:23:38] [INFO ] Invariant cache hit.
[2023-04-07 17:23:38] [INFO ] Dead Transitions using invariants and state equation in 25 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 26 ms. Remains : 18/18 places, 21/21 transitions.
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 2 ms
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 2 ms
[2023-04-07 17:23:38] [INFO ] Input system was already deterministic with 21 transitions.
Starting structural reductions in LTL mode, iteration 0 : 18/18 places, 21/21 transitions.
Applied a total of 0 rules in 1 ms. Remains 18 /18 variables (removed 0) and now considering 21/21 (removed 0) transitions.
[2023-04-07 17:23:38] [INFO ] Invariant cache hit.
[2023-04-07 17:23:38] [INFO ] Dead Transitions using invariants and state equation in 21 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 23 ms. Remains : 18/18 places, 21/21 transitions.
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 1 ms
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 1 ms
[2023-04-07 17:23:38] [INFO ] Input system was already deterministic with 21 transitions.
Starting structural reductions in LTL mode, iteration 0 : 18/18 places, 21/21 transitions.
Applied a total of 0 rules in 1 ms. Remains 18 /18 variables (removed 0) and now considering 21/21 (removed 0) transitions.
[2023-04-07 17:23:38] [INFO ] Invariant cache hit.
[2023-04-07 17:23:38] [INFO ] Dead Transitions using invariants and state equation in 23 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 26 ms. Remains : 18/18 places, 21/21 transitions.
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 1 ms
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 1 ms
[2023-04-07 17:23:38] [INFO ] Input system was already deterministic with 21 transitions.
Starting structural reductions in LTL mode, iteration 0 : 18/18 places, 21/21 transitions.
Applied a total of 0 rules in 0 ms. Remains 18 /18 variables (removed 0) and now considering 21/21 (removed 0) transitions.
[2023-04-07 17:23:38] [INFO ] Invariant cache hit.
[2023-04-07 17:23:38] [INFO ] Dead Transitions using invariants and state equation in 23 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 23 ms. Remains : 18/18 places, 21/21 transitions.
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 1 ms
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 2 ms
[2023-04-07 17:23:38] [INFO ] Input system was already deterministic with 21 transitions.
Starting structural reductions in LTL mode, iteration 0 : 18/18 places, 21/21 transitions.
Applied a total of 0 rules in 0 ms. Remains 18 /18 variables (removed 0) and now considering 21/21 (removed 0) transitions.
[2023-04-07 17:23:38] [INFO ] Invariant cache hit.
[2023-04-07 17:23:38] [INFO ] Dead Transitions using invariants and state equation in 24 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 24 ms. Remains : 18/18 places, 21/21 transitions.
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 1 ms
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 1 ms
[2023-04-07 17:23:38] [INFO ] Input system was already deterministic with 21 transitions.
Starting structural reductions in LTL mode, iteration 0 : 18/18 places, 21/21 transitions.
Applied a total of 0 rules in 1 ms. Remains 18 /18 variables (removed 0) and now considering 21/21 (removed 0) transitions.
[2023-04-07 17:23:38] [INFO ] Invariant cache hit.
[2023-04-07 17:23:38] [INFO ] Dead Transitions using invariants and state equation in 19 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 21 ms. Remains : 18/18 places, 21/21 transitions.
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 2 ms
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 1 ms
[2023-04-07 17:23:38] [INFO ] Input system was already deterministic with 21 transitions.
Starting structural reductions in LTL mode, iteration 0 : 18/18 places, 21/21 transitions.
Applied a total of 0 rules in 0 ms. Remains 18 /18 variables (removed 0) and now considering 21/21 (removed 0) transitions.
[2023-04-07 17:23:38] [INFO ] Invariant cache hit.
[2023-04-07 17:23:38] [INFO ] Dead Transitions using invariants and state equation in 26 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 26 ms. Remains : 18/18 places, 21/21 transitions.
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 1 ms
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 1 ms
[2023-04-07 17:23:38] [INFO ] Input system was already deterministic with 21 transitions.
Starting structural reductions in LTL mode, iteration 0 : 18/18 places, 21/21 transitions.
Applied a total of 0 rules in 0 ms. Remains 18 /18 variables (removed 0) and now considering 21/21 (removed 0) transitions.
[2023-04-07 17:23:38] [INFO ] Invariant cache hit.
[2023-04-07 17:23:38] [INFO ] Dead Transitions using invariants and state equation in 21 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 21 ms. Remains : 18/18 places, 21/21 transitions.
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 1 ms
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 2 ms
[2023-04-07 17:23:38] [INFO ] Input system was already deterministic with 21 transitions.
Starting structural reductions in LTL mode, iteration 0 : 18/18 places, 21/21 transitions.
Applied a total of 0 rules in 0 ms. Remains 18 /18 variables (removed 0) and now considering 21/21 (removed 0) transitions.
[2023-04-07 17:23:38] [INFO ] Invariant cache hit.
[2023-04-07 17:23:38] [INFO ] Dead Transitions using invariants and state equation in 22 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 23 ms. Remains : 18/18 places, 21/21 transitions.
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 2 ms
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 1 ms
[2023-04-07 17:23:38] [INFO ] Input system was already deterministic with 21 transitions.
Starting structural reductions in LTL mode, iteration 0 : 18/18 places, 21/21 transitions.
Applied a total of 0 rules in 0 ms. Remains 18 /18 variables (removed 0) and now considering 21/21 (removed 0) transitions.
[2023-04-07 17:23:38] [INFO ] Invariant cache hit.
[2023-04-07 17:23:38] [INFO ] Dead Transitions using invariants and state equation in 34 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 35 ms. Remains : 18/18 places, 21/21 transitions.
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 2 ms
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 1 ms
[2023-04-07 17:23:38] [INFO ] Input system was already deterministic with 21 transitions.
Starting structural reductions in LTL mode, iteration 0 : 18/18 places, 21/21 transitions.
Applied a total of 0 rules in 0 ms. Remains 18 /18 variables (removed 0) and now considering 21/21 (removed 0) transitions.
[2023-04-07 17:23:38] [INFO ] Invariant cache hit.
[2023-04-07 17:23:38] [INFO ] Dead Transitions using invariants and state equation in 23 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 23 ms. Remains : 18/18 places, 21/21 transitions.
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 1 ms
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 1 ms
[2023-04-07 17:23:38] [INFO ] Input system was already deterministic with 21 transitions.
Starting structural reductions in SI_CTL mode, iteration 0 : 18/18 places, 21/21 transitions.
Applied a total of 0 rules in 2 ms. Remains 18 /18 variables (removed 0) and now considering 21/21 (removed 0) transitions.
[2023-04-07 17:23:38] [INFO ] Invariant cache hit.
[2023-04-07 17:23:38] [INFO ] Dead Transitions using invariants and state equation in 21 ms found 0 transitions.
Finished structural reductions in SI_CTL mode , in 1 iterations and 24 ms. Remains : 18/18 places, 21/21 transitions.
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 1 ms
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 1 ms
[2023-04-07 17:23:38] [INFO ] Input system was already deterministic with 21 transitions.
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 4 ms
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 3 ms
[2023-04-07 17:23:38] [INFO ] Export to MCC of 15 properties in file /home/mcc/execution/CTLFireability.sr.xml took 3 ms.
[2023-04-07 17:23:38] [INFO ] Export to PNML in file /home/mcc/execution/model.sr.pnml of net with 18 places, 21 transitions and 81 arcs took 1 ms.
Total runtime 6318 ms.
There are residual formulas that ITS could not solve within timeout
timeout --kill-after=10s --signal=SIGINT 1m for testing only

Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets

authors: Alex Tovchigrechko (IDD package and CTL model checking)

Martin Schwarick (Symbolic numerical analysis and CSL model checking)

Christian Rohr (Simulative and approximative numerical model checking)

marcie@informatik.tu-cottbus.de

called as: /home/mcc/BenchKit/bin//../reducer/bin//../../marcie/bin/marcie --net-file=model.pnml --mcc-file=CTLFireability.xml --memory=6 --mcc-mode

parse successfull
net created successfully

Net: Petri
(NrP: 18 NrTr: 21 NrArc: 81)

parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec

net check time: 0m 0.000sec

init dd package: 0m 2.773sec


RS generation: 0m18.522sec


-> reachability set: #nodes 53223 (5.3e+04) #states 1,207,044,185,616 (12)



starting MCC model checker
--------------------------

checking: AX [EG [[[2<=p9 & 1<=p12] | [[2<=p10 & 1<=p13] | [2<=p11 & 1<=p14]]]]]
normalized: ~ [EX [~ [EG [[[2<=p9 & 1<=p12] | [[2<=p11 & 1<=p14] | [2<=p10 & 1<=p13]]]]]]]

abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (2<=p10)
states: 0
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (2<=p11)
states: 0
abstracting: (1<=p12)
states: 804,696,123,744 (11)
abstracting: (2<=p9)
states: 0
.
EG iterations: 1
.-> the formula is FALSE

FORMULA Murphy-COL-D2N100-CTLFireability-02 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.734sec

checking: EX [[[1<=p2 & [1<=p5 & 1<=p8]] | [[1<=p0 & [1<=p3 & 1<=p6]] | [1<=p1 & [1<=p4 & 1<=p7]]]]]
normalized: EX [[[[1<=p1 & [1<=p4 & 1<=p7]] | [1<=p0 & [1<=p3 & 1<=p6]]] | [1<=p2 & [1<=p5 & 1<=p8]]]]

abstracting: (1<=p8)
states: 1,187,583,196,680 (12)
abstracting: (1<=p5)
states: 1,187,575,696,728 (12)
abstracting: (1<=p2)
states: 1,187,583,196,680 (12)
abstracting: (1<=p6)
states: 1,187,583,196,680 (12)
abstracting: (1<=p3)
states: 1,187,575,696,728 (12)
abstracting: (1<=p0)
states: 1,187,583,196,680 (12)
abstracting: (1<=p7)
states: 1,187,583,196,680 (12)
abstracting: (1<=p4)
states: 1,187,575,696,728 (12)
abstracting: (1<=p1)
states: 1,187,583,196,680 (12)
.-> the formula is TRUE

FORMULA Murphy-COL-D2N100-CTLFireability-08 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.871sec

checking: AF [[AX [[p12<=0 & [p13<=0 & p14<=0]]] | AF [EX [[[3<=p0 & [1<=p6 & 1<=p12]] | [[3<=p1 & [1<=p7 & 1<=p13]] | [3<=p2 & [1<=p8 & 1<=p14]]]]]]]]
normalized: ~ [EG [~ [[~ [EG [~ [EX [[[3<=p0 & [1<=p6 & 1<=p12]] | [[3<=p1 & [1<=p7 & 1<=p13]] | [3<=p2 & [1<=p8 & 1<=p14]]]]]]]] | ~ [EX [~ [[p12<=0 & [p13<=0 & p14<=0]]]]]]]]]

abstracting: (p14<=0)
states: 402,348,061,872 (11)
abstracting: (p13<=0)
states: 402,348,061,872 (11)
abstracting: (p12<=0)
states: 402,348,061,872 (11)
.abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (1<=p8)
states: 1,187,583,196,680 (12)
abstracting: (3<=p2)
states: 1,149,154,276,608 (12)
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (1<=p7)
states: 1,187,583,196,680 (12)
abstracting: (3<=p1)
states: 1,149,154,276,608 (12)
abstracting: (1<=p12)
states: 804,696,123,744 (11)
abstracting: (1<=p6)
states: 1,187,583,196,680 (12)
abstracting: (3<=p0)
states: 1,149,154,276,608 (12)
...
EG iterations: 2
.
EG iterations: 1
-> the formula is FALSE

FORMULA Murphy-COL-D2N100-CTLFireability-04 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 3.550sec

checking: AG [[[EX [[[2<=p9 & 1<=p12] | [[2<=p10 & 1<=p13] | [2<=p11 & 1<=p14]]]] & AX [[1<=p12 | [1<=p13 | 1<=p14]]]] & [p12<=0 & [p13<=0 & p14<=0]]]]
normalized: ~ [E [true U ~ [[[p12<=0 & [p13<=0 & p14<=0]] & [~ [EX [~ [[1<=p12 | [1<=p13 | 1<=p14]]]]] & EX [[[[2<=p11 & 1<=p14] | [2<=p10 & 1<=p13]] | [2<=p9 & 1<=p12]]]]]]]]

abstracting: (1<=p12)
states: 804,696,123,744 (11)
abstracting: (2<=p9)
states: 0
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (2<=p10)
states: 0
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (2<=p11)
states: 0
.abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (1<=p12)
states: 804,696,123,744 (11)
.abstracting: (p14<=0)
states: 402,348,061,872 (11)
abstracting: (p13<=0)
states: 402,348,061,872 (11)
abstracting: (p12<=0)
states: 402,348,061,872 (11)
-> the formula is FALSE

FORMULA Murphy-COL-D2N100-CTLFireability-07 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.883sec

checking: AF [[AG [EF [[1<=p9 | [1<=p10 | 1<=p11]]]] & EX [[[[p9<=1 | p12<=0] & [p10<=1 | p13<=0]] & [[p11<=1 | p14<=0] & AF [[1<=p12 | [1<=p13 | 1<=p14]]]]]]]]
normalized: ~ [EG [~ [[EX [[[~ [EG [~ [[1<=p12 | [1<=p13 | 1<=p14]]]]] & [p11<=1 | p14<=0]] & [[p10<=1 | p13<=0] & [p9<=1 | p12<=0]]]] & ~ [E [true U ~ [E [true U [1<=p9 | [1<=p10 | 1<=p11]]]]]]]]]]

abstracting: (1<=p11)
states: 603,522,092,808 (11)
abstracting: (1<=p10)
states: 603,522,092,808 (11)
abstracting: (1<=p9)
states: 603,522,092,808 (11)
abstracting: (p12<=0)
states: 402,348,061,872 (11)
abstracting: (p9<=1)
states: 1,207,044,185,616 (12)
abstracting: (p13<=0)
states: 402,348,061,872 (11)
abstracting: (p10<=1)
states: 1,207,044,185,616 (12)
abstracting: (p14<=0)
states: 402,348,061,872 (11)
abstracting: (p11<=1)
states: 1,207,044,185,616 (12)
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (1<=p12)
states: 804,696,123,744 (11)
.....
EG iterations: 5
....
EG iterations: 3
-> the formula is TRUE

FORMULA Murphy-COL-D2N100-CTLFireability-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 2.754sec

checking: AG [[EG [EF [[[p12<=0 & [p13<=0 & p14<=0]] | [[p0<=2 | [p6<=0 | p12<=0]] & [[p1<=2 | [p7<=0 | p13<=0]] & [p2<=2 | [p8<=0 | p14<=0]]]]]]] | [p9<=0 & [p10<=0 & p11<=0]]]]
normalized: ~ [E [true U ~ [[EG [E [true U [[[[p2<=2 | [p8<=0 | p14<=0]] & [p1<=2 | [p7<=0 | p13<=0]]] & [p0<=2 | [p6<=0 | p12<=0]]] | [p12<=0 & [p13<=0 & p14<=0]]]]] | [p9<=0 & [p10<=0 & p11<=0]]]]]]

abstracting: (p11<=0)
states: 603,522,092,808 (11)
abstracting: (p10<=0)
states: 603,522,092,808 (11)
abstracting: (p9<=0)
states: 603,522,092,808 (11)
abstracting: (p14<=0)
states: 402,348,061,872 (11)
abstracting: (p13<=0)
states: 402,348,061,872 (11)
abstracting: (p12<=0)
states: 402,348,061,872 (11)
abstracting: (p12<=0)
states: 402,348,061,872 (11)
abstracting: (p6<=0)
states: 19,460,988,936 (10)
abstracting: (p0<=2)
states: 57,889,909,008 (10)
abstracting: (p13<=0)
states: 402,348,061,872 (11)
abstracting: (p7<=0)
states: 19,460,988,936 (10)
abstracting: (p1<=2)
states: 57,889,909,008 (10)
abstracting: (p14<=0)
states: 402,348,061,872 (11)
abstracting: (p8<=0)
states: 19,460,988,936 (10)
abstracting: (p2<=2)
states: 57,889,909,008 (10)

EG iterations: 0
-> the formula is TRUE

FORMULA Murphy-COL-D2N100-CTLFireability-15 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m36.776sec

checking: [AF [[AX [[[1<=p2 & [1<=p5 & 1<=p8]] | [[1<=p0 & [1<=p3 & 1<=p6]] | [1<=p1 & [1<=p4 & 1<=p7]]]]] & EX [[[1<=p0 & 1<=p3] | [[1<=p1 & 1<=p4] | [1<=p2 & 1<=p5]]]]]] & [EG [[3<=p15 | [3<=p16 | 3<=p17]]] & [EX [EX [[1<=p9 | [1<=p10 | 1<=p11]]]] | AG [AX [[[p0<=2 | [p6<=0 | p12<=0]] & [[p1<=2 | [p7<=0 | p13<=0]] & [p2<=2 | [p8<=0 | p14<=0]]]]]]]]]
normalized: [[[~ [E [true U EX [~ [[[[p2<=2 | [p8<=0 | p14<=0]] & [p1<=2 | [p7<=0 | p13<=0]]] & [p0<=2 | [p6<=0 | p12<=0]]]]]]] | EX [EX [[1<=p9 | [1<=p10 | 1<=p11]]]]] & EG [[3<=p15 | [3<=p16 | 3<=p17]]]] & ~ [EG [~ [[EX [[[[1<=p2 & 1<=p5] | [1<=p1 & 1<=p4]] | [1<=p0 & 1<=p3]]] & ~ [EX [~ [[[[1<=p1 & [1<=p4 & 1<=p7]] | [1<=p0 & [1<=p3 & 1<=p6]]] | [1<=p2 & [1<=p5 & 1<=p8]]]]]]]]]]]

abstracting: (1<=p8)
states: 1,187,583,196,680 (12)
abstracting: (1<=p5)
states: 1,187,575,696,728 (12)
abstracting: (1<=p2)
states: 1,187,583,196,680 (12)
abstracting: (1<=p6)
states: 1,187,583,196,680 (12)
abstracting: (1<=p3)
states: 1,187,575,696,728 (12)
abstracting: (1<=p0)
states: 1,187,583,196,680 (12)
abstracting: (1<=p7)
states: 1,187,583,196,680 (12)
abstracting: (1<=p4)
states: 1,187,575,696,728 (12)
abstracting: (1<=p1)
states: 1,187,583,196,680 (12)
.abstracting: (1<=p3)
states: 1,187,575,696,728 (12)
abstracting: (1<=p0)
states: 1,187,583,196,680 (12)
abstracting: (1<=p4)
states: 1,187,575,696,728 (12)
abstracting: (1<=p1)
states: 1,187,583,196,680 (12)
abstracting: (1<=p5)
states: 1,187,575,696,728 (12)
abstracting: (1<=p2)
states: 1,187,583,196,680 (12)
..
EG iterations: 1
abstracting: (3<=p17)
states: 201,174,030,936 (11)
abstracting: (3<=p16)
states: 201,174,030,936 (11)
abstracting: (3<=p15)
states: 201,174,030,936 (11)
.
EG iterations: 1
abstracting: (1<=p11)
states: 603,522,092,808 (11)
abstracting: (1<=p10)
states: 603,522,092,808 (11)
abstracting: (1<=p9)
states: 603,522,092,808 (11)
..abstracting: (p12<=0)
states: 402,348,061,872 (11)
abstracting: (p6<=0)
states: 19,460,988,936 (10)
abstracting: (p0<=2)
states: 57,889,909,008 (10)
abstracting: (p13<=0)
states: 402,348,061,872 (11)
abstracting: (p7<=0)
states: 19,460,988,936 (10)
abstracting: (p1<=2)
states: 57,889,909,008 (10)
abstracting: (p14<=0)
states: 402,348,061,872 (11)
abstracting: (p8<=0)
states: 19,460,988,936 (10)
abstracting: (p2<=2)
states: 57,889,909,008 (10)
.-> the formula is TRUE

FORMULA Murphy-COL-D2N100-CTLFireability-09 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 3.936sec

checking: AG [[~ [A [[[3<=p15 | [3<=p16 | 3<=p17]] | [1<=p9 | [1<=p10 | 1<=p11]]] U [[1<=p9 | [1<=p10 | 1<=p11]] & A [[[1<=p0 & 1<=p3] | [[1<=p1 & 1<=p4] | [1<=p2 & 1<=p5]]] U [[3<=p0 & [1<=p6 & 1<=p12]] | [[3<=p1 & [1<=p7 & 1<=p13]] | [3<=p2 & [1<=p8 & 1<=p14]]]]]]]] | AX [EF [[[p15<=2 & [p16<=2 & p17<=2]] | [[p9<=1 | p12<=0] & [[p10<=1 | p13<=0] & [p11<=1 | p14<=0]]]]]]]]
normalized: ~ [E [true U ~ [[~ [EX [~ [E [true U [[[[p11<=1 | p14<=0] & [p10<=1 | p13<=0]] & [p9<=1 | p12<=0]] | [p15<=2 & [p16<=2 & p17<=2]]]]]]] | ~ [[~ [EG [~ [[[~ [EG [~ [[[[3<=p2 & [1<=p8 & 1<=p14]] | [3<=p1 & [1<=p7 & 1<=p13]]] | [3<=p0 & [1<=p6 & 1<=p12]]]]]] & ~ [E [~ [[[[3<=p2 & [1<=p8 & 1<=p14]] | [3<=p1 & [1<=p7 & 1<=p13]]] | [3<=p0 & [1<=p6 & 1<=p12]]]] U [~ [[[[1<=p2 & 1<=p5] | [1<=p1 & 1<=p4]] | [1<=p0 & 1<=p3]]] & ~ [[[[3<=p2 & [1<=p8 & 1<=p14]] | [3<=p1 & [1<=p7 & 1<=p13]]] | [3<=p0 & [1<=p6 & 1<=p12]]]]]]]] & [1<=p9 | [1<=p10 | 1<=p11]]]]]] & ~ [E [~ [[[~ [EG [~ [[[[3<=p2 & [1<=p8 & 1<=p14]] | [3<=p1 & [1<=p7 & 1<=p13]]] | [3<=p0 & [1<=p6 & 1<=p12]]]]]] & ~ [E [~ [[[[3<=p2 & [1<=p8 & 1<=p14]] | [3<=p1 & [1<=p7 & 1<=p13]]] | [3<=p0 & [1<=p6 & 1<=p12]]]] U [~ [[[[1<=p2 & 1<=p5] | [1<=p1 & 1<=p4]] | [1<=p0 & 1<=p3]]] & ~ [[[[3<=p2 & [1<=p8 & 1<=p14]] | [3<=p1 & [1<=p7 & 1<=p13]]] | [3<=p0 & [1<=p6 & 1<=p12]]]]]]]] & [1<=p9 | [1<=p10 | 1<=p11]]]] U [~ [[[1<=p9 | [1<=p10 | 1<=p11]] | [3<=p15 | [3<=p16 | 3<=p17]]]] & ~ [[[~ [EG [~ [[[[3<=p2 & [1<=p8 & 1<=p14]] | [3<=p1 & [1<=p7 & 1<=p13]]] | [3<=p0 & [1<=p6 & 1<=p12]]]]]] & ~ [E [~ [[[[3<=p2 & [1<=p8 & 1<=p14]] | [3<=p1 & [1<=p7 & 1<=p13]]] | [3<=p0 & [1<=p6 & 1<=p12]]]] U [~ [[[[1<=p2 & 1<=p5] | [1<=p1 & 1<=p4]] | [1<=p0 & 1<=p3]]] & ~ [[[[3<=p2 & [1<=p8 & 1<=p14]] | [3<=p1 & [1<=p7 & 1<=p13]]] | [3<=p0 & [1<=p6 & 1<=p12]]]]]]]] & [1<=p9 | [1<=p10 | 1<=p11]]]]]]]]]]]]]

abstracting: (1<=p11)
states: 603,522,092,808 (11)
abstracting: (1<=p10)
states: 603,522,092,808 (11)
abstracting: (1<=p9)
states: 603,522,092,808 (11)
abstracting: (1<=p12)
states: 804,696,123,744 (11)
abstracting: (1<=p6)
states: 1,187,583,196,680 (12)
abstracting: (3<=p0)
states: 1,149,154,276,608 (12)
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (1<=p7)
states: 1,187,583,196,680 (12)
abstracting: (3<=p1)
states: 1,149,154,276,608 (12)
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (1<=p8)
states: 1,187,583,196,680 (12)
abstracting: (3<=p2)
states: 1,149,154,276,608 (12)
abstracting: (1<=p3)
states: 1,187,575,696,728 (12)
abstracting: (1<=p0)
states: 1,187,583,196,680 (12)
abstracting: (1<=p4)
states: 1,187,575,696,728 (12)
abstracting: (1<=p1)
states: 1,187,583,196,680 (12)
abstracting: (1<=p5)
states: 1,187,575,696,728 (12)
abstracting: (1<=p2)
states: 1,187,583,196,680 (12)
abstracting: (1<=p12)
states: 804,696,123,744 (11)
abstracting: (1<=p6)
states: 1,187,583,196,680 (12)
abstracting: (3<=p0)
states: 1,149,154,276,608 (12)
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (1<=p7)
states: 1,187,583,196,680 (12)
abstracting: (3<=p1)
states: 1,149,154,276,608 (12)
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (1<=p8)
states: 1,187,583,196,680 (12)
abstracting: (3<=p2)
states: 1,149,154,276,608 (12)
abstracting: (1<=p12)
states: 804,696,123,744 (11)
abstracting: (1<=p6)
states: 1,187,583,196,680 (12)
abstracting: (3<=p0)
states: 1,149,154,276,608 (12)
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (1<=p7)
states: 1,187,583,196,680 (12)
abstracting: (3<=p1)
states: 1,149,154,276,608 (12)
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (1<=p8)
states: 1,187,583,196,680 (12)
abstracting: (3<=p2)
states: 1,149,154,276,608 (12)
.....
EG iterations: 5
abstracting: (3<=p17)
states: 201,174,030,936 (11)
abstracting: (3<=p16)
states: 201,174,030,936 (11)
abstracting: (3<=p15)
states: 201,174,030,936 (11)
abstracting: (1<=p11)
states: 603,522,092,808 (11)
abstracting: (1<=p10)
states: 603,522,092,808 (11)
abstracting: (1<=p9)
states: 603,522,092,808 (11)
abstracting: (1<=p11)
states: 603,522,092,808 (11)
abstracting: (1<=p10)
states: 603,522,092,808 (11)
abstracting: (1<=p9)
states: 603,522,092,808 (11)
abstracting: (1<=p12)
states: 804,696,123,744 (11)
abstracting: (1<=p6)
states: 1,187,583,196,680 (12)
abstracting: (3<=p0)
states: 1,149,154,276,608 (12)
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (1<=p7)
states: 1,187,583,196,680 (12)
abstracting: (3<=p1)
states: 1,149,154,276,608 (12)
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (1<=p8)
states: 1,187,583,196,680 (12)
abstracting: (3<=p2)
states: 1,149,154,276,608 (12)
abstracting: (1<=p3)
states: 1,187,575,696,728 (12)
abstracting: (1<=p0)
states: 1,187,583,196,680 (12)
abstracting: (1<=p4)
states: 1,187,575,696,728 (12)
abstracting: (1<=p1)
states: 1,187,583,196,680 (12)
abstracting: (1<=p5)
states: 1,187,575,696,728 (12)
abstracting: (1<=p2)
states: 1,187,583,196,680 (12)
abstracting: (1<=p12)
states: 804,696,123,744 (11)
abstracting: (1<=p6)
states: 1,187,583,196,680 (12)
abstracting: (3<=p0)
states: 1,149,154,276,608 (12)
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (1<=p7)
states: 1,187,583,196,680 (12)
abstracting: (3<=p1)
states: 1,149,154,276,608 (12)
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (1<=p8)
states: 1,187,583,196,680 (12)
abstracting: (3<=p2)
states: 1,149,154,276,608 (12)
abstracting: (1<=p12)
states: 804,696,123,744 (11)
abstracting: (1<=p6)
states: 1,187,583,196,680 (12)
abstracting: (3<=p0)
states: 1,149,154,276,608 (12)
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (1<=p7)
states: 1,187,583,196,680 (12)
abstracting: (3<=p1)
states: 1,149,154,276,608 (12)
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (1<=p8)
states: 1,187,583,196,680 (12)
abstracting: (3<=p2)
states: 1,149,154,276,608 (12)
.....
EG iterations: 5
MC time: 7m25.709sec

checking: [AF [[[[2<=p9 & 1<=p12] | [2<=p10 & 1<=p13]] | [[2<=p11 & 1<=p14] | EX [[[1<=p2 & [1<=p5 & 1<=p8]] | [[1<=p0 & [1<=p3 & 1<=p6]] | [1<=p1 & [1<=p4 & 1<=p7]]]]]]]] & [E [~ [[[[~ [[1<=p12 | [1<=p13 | 1<=p14]]] | 1<=p9] | [1<=p10 | 1<=p11]] | [[1<=p9 | 1<=p10] | [1<=p11 | AX [[1<=p9 | [1<=p10 | 1<=p11]]]]]]] U [[1<=p2 & [1<=p5 & 1<=p8]] | [[1<=p0 & [1<=p3 & 1<=p6]] | [1<=p1 & [1<=p4 & 1<=p7]]]]] | A [[1<=p12 | [1<=p13 | 1<=p14]] U ~ [[3<=p15 | [3<=p16 | 3<=p17]]]]]]
normalized: [[[~ [EG [[3<=p15 | [3<=p16 | 3<=p17]]]] & ~ [E [[3<=p15 | [3<=p16 | 3<=p17]] U [~ [[1<=p12 | [1<=p13 | 1<=p14]]] & [3<=p15 | [3<=p16 | 3<=p17]]]]]] | E [~ [[[[1<=p11 | ~ [EX [~ [[1<=p9 | [1<=p10 | 1<=p11]]]]]] | [1<=p9 | 1<=p10]] | [[1<=p10 | 1<=p11] | [1<=p9 | ~ [[1<=p12 | [1<=p13 | 1<=p14]]]]]]] U [[[1<=p1 & [1<=p4 & 1<=p7]] | [1<=p0 & [1<=p3 & 1<=p6]]] | [1<=p2 & [1<=p5 & 1<=p8]]]]] & ~ [EG [~ [[[EX [[[[1<=p1 & [1<=p4 & 1<=p7]] | [1<=p0 & [1<=p3 & 1<=p6]]] | [1<=p2 & [1<=p5 & 1<=p8]]]] | [2<=p11 & 1<=p14]] | [[2<=p10 & 1<=p13] | [2<=p9 & 1<=p12]]]]]]]

abstracting: (1<=p12)
states: 804,696,123,744 (11)
abstracting: (2<=p9)
states: 0
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (2<=p10)
states: 0
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (2<=p11)
states: 0
abstracting: (1<=p8)
states: 1,187,583,196,680 (12)
abstracting: (1<=p5)
states: 1,187,575,696,728 (12)
abstracting: (1<=p2)
states: 1,187,583,196,680 (12)
abstracting: (1<=p6)
states: 1,187,583,196,680 (12)
abstracting: (1<=p3)
states: 1,187,575,696,728 (12)
abstracting: (1<=p0)
states: 1,187,583,196,680 (12)
abstracting: (1<=p7)
states: 1,187,583,196,680 (12)
abstracting: (1<=p4)
states: 1,187,575,696,728 (12)
abstracting: (1<=p1)
states: 1,187,583,196,680 (12)
......
EG iterations: 5
abstracting: (1<=p8)
states: 1,187,583,196,680 (12)
abstracting: (1<=p5)
states: 1,187,575,696,728 (12)
abstracting: (1<=p2)
states: 1,187,583,196,680 (12)
abstracting: (1<=p6)
states: 1,187,583,196,680 (12)
abstracting: (1<=p3)
states: 1,187,575,696,728 (12)
abstracting: (1<=p0)
states: 1,187,583,196,680 (12)
abstracting: (1<=p7)
states: 1,187,583,196,680 (12)
abstracting: (1<=p4)
states: 1,187,575,696,728 (12)
abstracting: (1<=p1)
states: 1,187,583,196,680 (12)
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (1<=p12)
states: 804,696,123,744 (11)
abstracting: (1<=p9)
states: 603,522,092,808 (11)
abstracting: (1<=p11)
states: 603,522,092,808 (11)
abstracting: (1<=p10)
states: 603,522,092,808 (11)
abstracting: (1<=p10)
states: 603,522,092,808 (11)
abstracting: (1<=p9)
states: 603,522,092,808 (11)
abstracting: (1<=p11)
states: 603,522,092,808 (11)
abstracting: (1<=p10)
states: 603,522,092,808 (11)
abstracting: (1<=p9)
states: 603,522,092,808 (11)
.abstracting: (1<=p11)
states: 603,522,092,808 (11)
abstracting: (3<=p17)
states: 201,174,030,936 (11)
abstracting: (3<=p16)
states: 201,174,030,936 (11)
abstracting: (3<=p15)
states: 201,174,030,936 (11)
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (1<=p12)
states: 804,696,123,744 (11)
abstracting: (3<=p17)
states: 201,174,030,936 (11)
abstracting: (3<=p16)
states: 201,174,030,936 (11)
abstracting: (3<=p15)
states: 201,174,030,936 (11)
abstracting: (3<=p17)
states: 201,174,030,936 (11)
abstracting: (3<=p16)
states: 201,174,030,936 (11)
abstracting: (3<=p15)
states: 201,174,030,936 (11)
.
EG iterations: 1
-> the formula is TRUE

FORMULA Murphy-COL-D2N100-CTLFireability-11 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 6.113sec

checking: A [[EX [[[3<=p17 | 3<=p16] | 3<=p15]] | [AX [~ [[[1<=p0 & 1<=p3] | [[1<=p1 & 1<=p4] | [1<=p2 & 1<=p5]]]]] | [~ [AX [[[1<=p0 & 1<=p3] | [[1<=p1 & 1<=p4] | [1<=p2 & 1<=p5]]]]] & [[3<=p0 & [1<=p6 & 1<=p12]] | [[3<=p1 & [1<=p7 & 1<=p13]] | [3<=p2 & [1<=p8 & 1<=p14]]]]]]] U AX [EG [[~ [[[[3<=p0 & [1<=p6 & 1<=p12]] | [[3<=p1 & [1<=p7 & 1<=p13]] | [3<=p2 & [1<=p8 & 1<=p14]]]] & [[2<=p9 & 1<=p12] | [[2<=p10 & 1<=p13] | [2<=p11 & 1<=p14]]]]] | [EX [[1<=p12 | [1<=p13 | 1<=p14]]] & [1<=p9 | [1<=p10 | 1<=p11]]]]]]]
normalized: [~ [EG [EX [~ [EG [[[[1<=p9 | [1<=p10 | 1<=p11]] & EX [[1<=p12 | [1<=p13 | 1<=p14]]]] | ~ [[[[[2<=p11 & 1<=p14] | [2<=p10 & 1<=p13]] | [2<=p9 & 1<=p12]] & [[[3<=p2 & [1<=p8 & 1<=p14]] | [3<=p1 & [1<=p7 & 1<=p13]]] | [3<=p0 & [1<=p6 & 1<=p12]]]]]]]]]]] & ~ [E [EX [~ [EG [[[[1<=p9 | [1<=p10 | 1<=p11]] & EX [[1<=p12 | [1<=p13 | 1<=p14]]]] | ~ [[[[[2<=p11 & 1<=p14] | [2<=p10 & 1<=p13]] | [2<=p9 & 1<=p12]] & [[[3<=p2 & [1<=p8 & 1<=p14]] | [3<=p1 & [1<=p7 & 1<=p13]]] | [3<=p0 & [1<=p6 & 1<=p12]]]]]]]]] U [~ [[[[[[[3<=p2 & [1<=p8 & 1<=p14]] | [3<=p1 & [1<=p7 & 1<=p13]]] | [3<=p0 & [1<=p6 & 1<=p12]]] & EX [~ [[[[1<=p2 & 1<=p5] | [1<=p1 & 1<=p4]] | [1<=p0 & 1<=p3]]]]] | ~ [EX [[[[1<=p2 & 1<=p5] | [1<=p1 & 1<=p4]] | [1<=p0 & 1<=p3]]]]] | EX [[3<=p15 | [3<=p17 | 3<=p16]]]]] & EX [~ [EG [[[[1<=p9 | [1<=p10 | 1<=p11]] & EX [[1<=p12 | [1<=p13 | 1<=p14]]]] | ~ [[[[[2<=p11 & 1<=p14] | [2<=p10 & 1<=p13]] | [2<=p9 & 1<=p12]] & [[[3<=p2 & [1<=p8 & 1<=p14]] | [3<=p1 & [1<=p7 & 1<=p13]]] | [3<=p0 & [1<=p6 & 1<=p12]]]]]]]]]]]]]

abstracting: (1<=p12)
states: 804,696,123,744 (11)
abstracting: (1<=p6)
states: 1,187,583,196,680 (12)
abstracting: (3<=p0)
states: 1,149,154,276,608 (12)
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (1<=p7)
states: 1,187,583,196,680 (12)
abstracting: (3<=p1)
states: 1,149,154,276,608 (12)
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (1<=p8)
states: 1,187,583,196,680 (12)
abstracting: (3<=p2)
states: 1,149,154,276,608 (12)
abstracting: (1<=p12)
states: 804,696,123,744 (11)
abstracting: (2<=p9)
states: 0
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (2<=p10)
states: 0
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (2<=p11)
states: 0
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (1<=p12)
states: 804,696,123,744 (11)
.abstracting: (1<=p11)
states: 603,522,092,808 (11)
abstracting: (1<=p10)
states: 603,522,092,808 (11)
abstracting: (1<=p9)
states: 603,522,092,808 (11)

EG iterations: 0
.abstracting: (3<=p16)
states: 201,174,030,936 (11)
abstracting: (3<=p17)
states: 201,174,030,936 (11)
abstracting: (3<=p15)
states: 201,174,030,936 (11)
.abstracting: (1<=p3)
states: 1,187,575,696,728 (12)
abstracting: (1<=p0)
states: 1,187,583,196,680 (12)
abstracting: (1<=p4)
states: 1,187,575,696,728 (12)
abstracting: (1<=p1)
states: 1,187,583,196,680 (12)
abstracting: (1<=p5)
states: 1,187,575,696,728 (12)
abstracting: (1<=p2)
states: 1,187,583,196,680 (12)
.abstracting: (1<=p3)
states: 1,187,575,696,728 (12)
abstracting: (1<=p0)
states: 1,187,583,196,680 (12)
abstracting: (1<=p4)
states: 1,187,575,696,728 (12)
abstracting: (1<=p1)
states: 1,187,583,196,680 (12)
abstracting: (1<=p5)
states: 1,187,575,696,728 (12)
abstracting: (1<=p2)
states: 1,187,583,196,680 (12)
.abstracting: (1<=p12)
states: 804,696,123,744 (11)
abstracting: (1<=p6)
states: 1,187,583,196,680 (12)
abstracting: (3<=p0)
states: 1,149,154,276,608 (12)
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (1<=p7)
states: 1,187,583,196,680 (12)
abstracting: (3<=p1)
states: 1,149,154,276,608 (12)
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (1<=p8)
states: 1,187,583,196,680 (12)
abstracting: (3<=p2)
states: 1,149,154,276,608 (12)
abstracting: (1<=p12)
states: 804,696,123,744 (11)
abstracting: (1<=p6)
states: 1,187,583,196,680 (12)
abstracting: (3<=p0)
states: 1,149,154,276,608 (12)
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (1<=p7)
states: 1,187,583,196,680 (12)
abstracting: (3<=p1)
states: 1,149,154,276,608 (12)
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (1<=p8)
states: 1,187,583,196,680 (12)
abstracting: (3<=p2)
states: 1,149,154,276,608 (12)
abstracting: (1<=p12)
states: 804,696,123,744 (11)
abstracting: (2<=p9)
states: 0
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (2<=p10)
states: 0
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (2<=p11)
states: 0
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (1<=p12)
states: 804,696,123,744 (11)
.abstracting: (1<=p11)
states: 603,522,092,808 (11)
abstracting: (1<=p10)
states: 603,522,092,808 (11)
abstracting: (1<=p9)
states: 603,522,092,808 (11)

EG iterations: 0
.abstracting: (1<=p12)
states: 804,696,123,744 (11)
abstracting: (1<=p6)
states: 1,187,583,196,680 (12)
abstracting: (3<=p0)
states: 1,149,154,276,608 (12)
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (1<=p7)
states: 1,187,583,196,680 (12)
abstracting: (3<=p1)
states: 1,149,154,276,608 (12)
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (1<=p8)
states: 1,187,583,196,680 (12)
abstracting: (3<=p2)
states: 1,149,154,276,608 (12)
abstracting: (1<=p12)
states: 804,696,123,744 (11)
abstracting: (2<=p9)
states: 0
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (2<=p10)
states: 0
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (2<=p11)
states: 0
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (1<=p12)
states: 804,696,123,744 (11)
.abstracting: (1<=p11)
states: 603,522,092,808 (11)
abstracting: (1<=p10)
states: 603,522,092,808 (11)
abstracting: (1<=p9)
states: 603,522,092,808 (11)

EG iterations: 0
..
EG iterations: 1
-> the formula is TRUE

FORMULA Murphy-COL-D2N100-CTLFireability-00 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 1.072sec

checking: AX [[EG [[[3<=p15 | [3<=p16 | 3<=p17]] & [[[p2<=0 | [p5<=0 | p8<=0]] & [[p0<=0 | [p3<=0 | p6<=0]] & [p1<=0 | [p4<=0 | p7<=0]]]] | [[p0<=2 | [p6<=0 | p12<=0]] & [[p1<=2 | [p7<=0 | p13<=0]] & [p2<=2 | [p8<=0 | p14<=0]]]]]]] & [EF [[1<=p9 | [1<=p10 | 1<=p11]]] | [[[p2<=0 | [p5<=0 | p8<=0]] & [[p0<=0 | [p3<=0 | p6<=0]] & [p1<=0 | [p4<=0 | p7<=0]]]] | [AG [[p12<=0 & [p13<=0 & p14<=0]]] & [[[p2<=0 | [p5<=0 | p8<=0]] & [[p0<=0 | [p3<=0 | p6<=0]] & [p1<=0 | [p4<=0 | p7<=0]]]] | [[p9<=1 | p12<=0] & [[p10<=1 | p13<=0] & [p11<=1 | p14<=0]]]]]]]]]
normalized: ~ [EX [~ [[[[[[[[[p11<=1 | p14<=0] & [p10<=1 | p13<=0]] & [p9<=1 | p12<=0]] | [[[p1<=0 | [p4<=0 | p7<=0]] & [p0<=0 | [p3<=0 | p6<=0]]] & [p2<=0 | [p5<=0 | p8<=0]]]] & ~ [E [true U ~ [[p12<=0 & [p13<=0 & p14<=0]]]]]] | [[[p1<=0 | [p4<=0 | p7<=0]] & [p0<=0 | [p3<=0 | p6<=0]]] & [p2<=0 | [p5<=0 | p8<=0]]]] | E [true U [1<=p9 | [1<=p10 | 1<=p11]]]] & EG [[[[[[p2<=2 | [p8<=0 | p14<=0]] & [p1<=2 | [p7<=0 | p13<=0]]] & [p0<=2 | [p6<=0 | p12<=0]]] | [[[p1<=0 | [p4<=0 | p7<=0]] & [p0<=0 | [p3<=0 | p6<=0]]] & [p2<=0 | [p5<=0 | p8<=0]]]] & [3<=p15 | [3<=p16 | 3<=p17]]]]]]]]

abstracting: (3<=p17)
states: 201,174,030,936 (11)
abstracting: (3<=p16)
states: 201,174,030,936 (11)
abstracting: (3<=p15)
states: 201,174,030,936 (11)
abstracting: (p8<=0)
states: 19,460,988,936 (10)
abstracting: (p5<=0)
states: 19,468,488,888 (10)
abstracting: (p2<=0)
states: 19,460,988,936 (10)
abstracting: (p6<=0)
states: 19,460,988,936 (10)
abstracting: (p3<=0)
states: 19,468,488,888 (10)
abstracting: (p0<=0)
states: 19,460,988,936 (10)
abstracting: (p7<=0)
states: 19,460,988,936 (10)
abstracting: (p4<=0)
states: 19,468,488,888 (10)
abstracting: (p1<=0)
states: 19,460,988,936 (10)
abstracting: (p12<=0)
states: 402,348,061,872 (11)
abstracting: (p6<=0)
states: 19,460,988,936 (10)
abstracting: (p0<=2)
states: 57,889,909,008 (10)
abstracting: (p13<=0)
states: 402,348,061,872 (11)
abstracting: (p7<=0)
states: 19,460,988,936 (10)
abstracting: (p1<=2)
states: 57,889,909,008 (10)
abstracting: (p14<=0)
states: 402,348,061,872 (11)
abstracting: (p8<=0)
states: 19,460,988,936 (10)
abstracting: (p2<=2)
states: 57,889,909,008 (10)
.
EG iterations: 1
abstracting: (1<=p11)
states: 603,522,092,808 (11)
abstracting: (1<=p10)
states: 603,522,092,808 (11)
abstracting: (1<=p9)
states: 603,522,092,808 (11)
abstracting: (p8<=0)
states: 19,460,988,936 (10)
abstracting: (p5<=0)
states: 19,468,488,888 (10)
abstracting: (p2<=0)
states: 19,460,988,936 (10)
abstracting: (p6<=0)
states: 19,460,988,936 (10)
abstracting: (p3<=0)
states: 19,468,488,888 (10)
abstracting: (p0<=0)
states: 19,460,988,936 (10)
abstracting: (p7<=0)
states: 19,460,988,936 (10)
abstracting: (p4<=0)
states: 19,468,488,888 (10)
abstracting: (p1<=0)
states: 19,460,988,936 (10)
abstracting: (p14<=0)
states: 402,348,061,872 (11)
abstracting: (p13<=0)
states: 402,348,061,872 (11)
abstracting: (p12<=0)
states: 402,348,061,872 (11)
abstracting: (p8<=0)
states: 19,460,988,936 (10)
abstracting: (p5<=0)
states: 19,468,488,888 (10)
abstracting: (p2<=0)
states: 19,460,988,936 (10)
abstracting: (p6<=0)
states: 19,460,988,936 (10)
abstracting: (p3<=0)
states: 19,468,488,888 (10)
abstracting: (p0<=0)
states: 19,460,988,936 (10)
abstracting: (p7<=0)
states: 19,460,988,936 (10)
abstracting: (p4<=0)
states: 19,468,488,888 (10)
abstracting: (p1<=0)
states: 19,460,988,936 (10)
abstracting: (p12<=0)
states: 402,348,061,872 (11)
abstracting: (p9<=1)
states: 1,207,044,185,616 (12)
abstracting: (p13<=0)
states: 402,348,061,872 (11)
abstracting: (p10<=1)
states: 1,207,044,185,616 (12)
abstracting: (p14<=0)
states: 402,348,061,872 (11)
abstracting: (p11<=1)
states: 1,207,044,185,616 (12)
.-> the formula is TRUE

FORMULA Murphy-COL-D2N100-CTLFireability-03 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT


BK_STOP 1680888799253

--------------------
content from stderr:

+ ulimit -s 65536
+ [[ -z '' ]]
+ export LTSMIN_MEM_SIZE=8589934592
+ LTSMIN_MEM_SIZE=8589934592
+ export PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ export LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
+ LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
++ sed s/.jar//
++ perl -pe 's/.*\.//g'
++ ls /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/plugins/fr.lip6.move.gal.application.pnmcc_1.0.0.202304061127.jar
+ VERSION=202304061127
+ echo 'Running Version 202304061127'
+ /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/its-tools -pnfolder /home/mcc/execution -examination CTLFireability -timeout 360 -rebuildPNML
check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok


initing FirstDep: 0m 0.000sec


iterations count:14959 (712), effective:3586 (170)

initing FirstDep: 0m 0.000sec


iterations count:21 (1), effective:0 (0)

iterations count:32 (1), effective:3 (0)

iterations count:4508 (214), effective:897 (42)

iterations count:46 (2), effective:7 (0)

iterations count:5397 (257), effective:1344 (64)

iterations count:5397 (257), effective:1344 (64)

sat_reach.icc:155: Timeout: after 441 sec


iterations count:38 (1), effective:3 (0)

iterations count:45 (2), effective:6 (0)

iterations count:32 (1), effective:3 (0)

iterations count:28 (1), effective:2 (0)
/home/mcc/BenchKit/bin//../reducer/bin//../../marcie/bin//../BenchKit_head.sh: line 16: 562 Killed ${MARCIE} --net-file=model.pnml --mcc-file=${BK_EXAMINATION}.xml ${MARCIE_CONFIG}

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="Murphy-COL-D2N100"
export BK_EXAMINATION="CTLFireability"
export BK_TOOL="marciexred"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marciexred"
echo " Input is Murphy-COL-D2N100, examination is CTLFireability"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r522-tall-167987247200298"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"

tar xzf /home/mcc/BenchKit/INPUTS/Murphy-COL-D2N100.tgz
mv Murphy-COL-D2N100 execution
cd execution
if [ "CTLFireability" = "ReachabilityDeadlock" ] || [ "CTLFireability" = "UpperBounds" ] || [ "CTLFireability" = "QuasiLiveness" ] || [ "CTLFireability" = "StableMarking" ] || [ "CTLFireability" = "Liveness" ] || [ "CTLFireability" = "OneSafe" ] || [ "CTLFireability" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh

echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLFireability" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLFireability" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLFireability.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLFireability.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLFireability.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' CTLFireability.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ "CTLFireability" = "ReachabilityDeadlock" ] || [ "CTLFireability" = "QuasiLiveness" ] || [ "CTLFireability" = "StableMarking" ] || [ "CTLFireability" = "Liveness" ] || [ "CTLFireability" = "OneSafe" ] ; then
echo "FORMULA_NAME CTLFireability"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;