About the Execution of Marcie+red for Murphy-COL-D2N100
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
16212.260 | 588260.00 | 559460.00 | 25527.90 | T?FTF??FTT?TTF?T | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fkordon/mcc2023-input.r522-tall-167987247200298.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2023-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
.......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
=====================================================================
Generated by BenchKit 2-5348
Executing tool marciexred
Input is Murphy-COL-D2N100, examination is CTLFireability
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r522-tall-167987247200298
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 440K
-rw-r--r-- 1 mcc users 6.7K Mar 23 15:21 CTLCardinality.txt
-rw-r--r-- 1 mcc users 73K Mar 23 15:21 CTLCardinality.xml
-rw-r--r-- 1 mcc users 4.8K Mar 23 15:20 CTLFireability.txt
-rw-r--r-- 1 mcc users 44K Mar 23 15:20 CTLFireability.xml
-rw-r--r-- 1 mcc users 3.2K Mar 23 07:07 LTLCardinality.txt
-rw-r--r-- 1 mcc users 23K Mar 23 07:07 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.0K Mar 23 07:07 LTLFireability.txt
-rw-r--r-- 1 mcc users 17K Mar 23 07:07 LTLFireability.xml
-rw-r--r-- 1 mcc users 1 Mar 26 22:42 NewModel
-rw-r--r-- 1 mcc users 12K Mar 23 15:22 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 129K Mar 23 15:22 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 6.4K Mar 23 15:22 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 55K Mar 23 15:22 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.6K Mar 23 07:07 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.6K Mar 23 07:07 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Mar 26 22:42 equiv_pt
-rw-r--r-- 1 mcc users 7 Mar 26 22:42 instance
-rw-r--r-- 1 mcc users 5 Mar 26 22:42 iscolored
-rw-r--r-- 1 mcc users 20K Mar 31 16:48 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME Murphy-COL-D2N100-CTLFireability-00
FORMULA_NAME Murphy-COL-D2N100-CTLFireability-01
FORMULA_NAME Murphy-COL-D2N100-CTLFireability-02
FORMULA_NAME Murphy-COL-D2N100-CTLFireability-03
FORMULA_NAME Murphy-COL-D2N100-CTLFireability-04
FORMULA_NAME Murphy-COL-D2N100-CTLFireability-05
FORMULA_NAME Murphy-COL-D2N100-CTLFireability-06
FORMULA_NAME Murphy-COL-D2N100-CTLFireability-07
FORMULA_NAME Murphy-COL-D2N100-CTLFireability-08
FORMULA_NAME Murphy-COL-D2N100-CTLFireability-09
FORMULA_NAME Murphy-COL-D2N100-CTLFireability-10
FORMULA_NAME Murphy-COL-D2N100-CTLFireability-11
FORMULA_NAME Murphy-COL-D2N100-CTLFireability-12
FORMULA_NAME Murphy-COL-D2N100-CTLFireability-13
FORMULA_NAME Murphy-COL-D2N100-CTLFireability-14
FORMULA_NAME Murphy-COL-D2N100-CTLFireability-15
=== Now, execution of the tool begins
BK_START 1680888210993
bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marciexred
BK_EXAMINATION=CTLFireability
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=Murphy-COL-D2N100
Applying reductions before tool marcie
Invoking reducer
Running Version 202304061127
[2023-04-07 17:23:32] [INFO ] Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, CTLFireability, -timeout, 360, -rebuildPNML]
[2023-04-07 17:23:32] [INFO ] Parsing pnml file : /home/mcc/execution/model.pnml
[2023-04-07 17:23:32] [INFO ] Detected file is not PT type :http://www.pnml.org/version-2009/grammar/symmetricnet
log4j:WARN No appenders could be found for logger (org.apache.axiom.locator.DefaultOMMetaFactoryLocator).
log4j:WARN Please initialize the log4j system properly.
log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.
[2023-04-07 17:23:32] [WARNING] Using fallBack plugin, rng conformance not checked
[2023-04-07 17:23:32] [INFO ] Load time of PNML (colored model parsed with PNMLFW) : 490 ms
[2023-04-07 17:23:32] [INFO ] Imported 6 HL places and 7 HL transitions for a total of 18 PT places and 21.0 transition bindings in 16 ms.
Parsed 16 properties from file /home/mcc/execution/CTLFireability.xml in 12 ms.
[2023-04-07 17:23:32] [INFO ] Built PT skeleton of HLPN with 6 places and 7 transitions 27 arcs in 3 ms.
[2023-04-07 17:23:32] [INFO ] Skeletonized 16 HLPN properties in 2 ms.
Initial state reduction rules removed 1 formulas.
FORMULA Murphy-COL-D2N100-CTLFireability-13 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
Computed a total of 0 stabilizing places and 0 stable transitions
Remains 5 properties that can be checked using skeleton over-approximation.
Computed a total of 0 stabilizing places and 0 stable transitions
Finished random walk after 4 steps, including 0 resets, run visited all 5 properties in 6 ms. (steps per millisecond=0 )
Parikh walk visited 0 properties in 0 ms.
[2023-04-07 17:23:33] [INFO ] Flatten gal took : 12 ms
[2023-04-07 17:23:33] [INFO ] Flatten gal took : 1 ms
Arc [2:1*[(MOD (ADD $x 1) 3)]] contains successor/predecessor on variables of sort CD
[2023-04-07 17:23:33] [INFO ] Unfolded HLPN to a Petri net with 18 places and 21 transitions 81 arcs in 6 ms.
[2023-04-07 17:23:33] [INFO ] Unfolded 15 HLPN properties in 0 ms.
Support contains 18 out of 18 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 18/18 places, 21/21 transitions.
Applied a total of 0 rules in 5 ms. Remains 18 /18 variables (removed 0) and now considering 21/21 (removed 0) transitions.
// Phase 1: matrix 21 rows 18 cols
[2023-04-07 17:23:33] [INFO ] Computed 4 invariants in 3 ms
[2023-04-07 17:23:33] [INFO ] Dead Transitions using invariants and state equation in 130 ms found 0 transitions.
[2023-04-07 17:23:33] [INFO ] Invariant cache hit.
[2023-04-07 17:23:33] [INFO ] Implicit Places using invariants in 25 ms returned []
[2023-04-07 17:23:33] [INFO ] Invariant cache hit.
[2023-04-07 17:23:33] [INFO ] State equation strengthened by 6 read => feed constraints.
[2023-04-07 17:23:33] [INFO ] Implicit Places using invariants and state equation in 42 ms returned []
Implicit Place search using SMT with State Equation took 69 ms to find 0 implicit places.
[2023-04-07 17:23:33] [INFO ] Invariant cache hit.
[2023-04-07 17:23:33] [INFO ] Dead Transitions using invariants and state equation in 48 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 255 ms. Remains : 18/18 places, 21/21 transitions.
Support contains 18 out of 18 places after structural reductions.
[2023-04-07 17:23:33] [INFO ] Flatten gal took : 7 ms
[2023-04-07 17:23:33] [INFO ] Flatten gal took : 6 ms
[2023-04-07 17:23:33] [INFO ] Input system was already deterministic with 21 transitions.
Incomplete random walk after 10025 steps, including 2 resets, run finished after 118 ms. (steps per millisecond=84 ) properties (out of 28) seen :21
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 60 ms. (steps per millisecond=166 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 49 ms. (steps per millisecond=204 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 69 ms. (steps per millisecond=144 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 58 ms. (steps per millisecond=172 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 30 ms. (steps per millisecond=333 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 31 ms. (steps per millisecond=322 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 24 ms. (steps per millisecond=416 ) properties (out of 7) seen :0
Running SMT prover for 7 properties.
[2023-04-07 17:23:33] [INFO ] Invariant cache hit.
[2023-04-07 17:23:34] [INFO ] [Real]Absence check using 2 positive place invariants in 0 ms returned sat
[2023-04-07 17:23:34] [INFO ] [Real]Absence check using 2 positive and 2 generalized place invariants in 0 ms returned sat
[2023-04-07 17:23:34] [INFO ] After 57ms SMT Verify possible using all constraints in real domain returned unsat :0 sat :0 real:7
[2023-04-07 17:23:34] [INFO ] [Nat]Absence check using 2 positive place invariants in 1 ms returned sat
[2023-04-07 17:23:34] [INFO ] [Nat]Absence check using 2 positive and 2 generalized place invariants in 1 ms returned sat
[2023-04-07 17:23:34] [INFO ] After 31ms SMT Verify possible using state equation in natural domain returned unsat :0 sat :7
[2023-04-07 17:23:34] [INFO ] State equation strengthened by 6 read => feed constraints.
[2023-04-07 17:23:34] [INFO ] After 20ms SMT Verify possible using 6 Read/Feed constraints in natural domain returned unsat :0 sat :7
[2023-04-07 17:23:34] [INFO ] After 60ms SMT Verify possible using trap constraints in natural domain returned unsat :0 sat :7
Attempting to minimize the solution found.
Minimization took 27 ms.
[2023-04-07 17:23:34] [INFO ] After 184ms SMT Verify possible using all constraints in natural domain returned unsat :0 sat :7
Parikh walk visited 0 properties in 156 ms.
Support contains 18 out of 18 places. Attempting structural reductions.
Starting structural reductions in REACHABILITY mode, iteration 0 : 18/18 places, 21/21 transitions.
Applied a total of 0 rules in 4 ms. Remains 18 /18 variables (removed 0) and now considering 21/21 (removed 0) transitions.
[2023-04-07 17:23:34] [INFO ] Invariant cache hit.
[2023-04-07 17:23:34] [INFO ] Dead Transitions using invariants and state equation in 29 ms found 0 transitions.
Finished structural reductions in REACHABILITY mode , in 1 iterations and 34 ms. Remains : 18/18 places, 21/21 transitions.
Incomplete random walk after 10039 steps, including 2 resets, run finished after 18 ms. (steps per millisecond=557 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 21 ms. (steps per millisecond=476 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 19 ms. (steps per millisecond=526 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 21 ms. (steps per millisecond=476 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 19 ms. (steps per millisecond=526 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 18 ms. (steps per millisecond=555 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 18 ms. (steps per millisecond=555 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 23 ms. (steps per millisecond=434 ) properties (out of 7) seen :0
Interrupted probabilistic random walk after 255338 steps, run timeout after 3001 ms. (steps per millisecond=85 ) properties seen :{}
Probabilistic random walk after 255338 steps, saw 167018 distinct states, run finished after 3002 ms. (steps per millisecond=85 ) properties seen :0
Running SMT prover for 7 properties.
[2023-04-07 17:23:37] [INFO ] Invariant cache hit.
[2023-04-07 17:23:37] [INFO ] [Real]Absence check using 2 positive place invariants in 1 ms returned sat
[2023-04-07 17:23:37] [INFO ] [Real]Absence check using 2 positive and 2 generalized place invariants in 0 ms returned sat
[2023-04-07 17:23:37] [INFO ] After 32ms SMT Verify possible using all constraints in real domain returned unsat :0 sat :0 real:7
[2023-04-07 17:23:37] [INFO ] [Nat]Absence check using 2 positive place invariants in 1 ms returned sat
[2023-04-07 17:23:37] [INFO ] [Nat]Absence check using 2 positive and 2 generalized place invariants in 1 ms returned sat
[2023-04-07 17:23:37] [INFO ] After 23ms SMT Verify possible using state equation in natural domain returned unsat :0 sat :7
[2023-04-07 17:23:37] [INFO ] State equation strengthened by 6 read => feed constraints.
[2023-04-07 17:23:37] [INFO ] After 29ms SMT Verify possible using 6 Read/Feed constraints in natural domain returned unsat :0 sat :7
[2023-04-07 17:23:37] [INFO ] After 60ms SMT Verify possible using trap constraints in natural domain returned unsat :0 sat :7
Attempting to minimize the solution found.
Minimization took 27 ms.
[2023-04-07 17:23:37] [INFO ] After 141ms SMT Verify possible using all constraints in natural domain returned unsat :0 sat :7
Parikh walk visited 0 properties in 124 ms.
Support contains 18 out of 18 places. Attempting structural reductions.
Starting structural reductions in REACHABILITY mode, iteration 0 : 18/18 places, 21/21 transitions.
Applied a total of 0 rules in 1 ms. Remains 18 /18 variables (removed 0) and now considering 21/21 (removed 0) transitions.
Finished structural reductions in REACHABILITY mode , in 1 iterations and 1 ms. Remains : 18/18 places, 21/21 transitions.
Starting structural reductions in REACHABILITY mode, iteration 0 : 18/18 places, 21/21 transitions.
Applied a total of 0 rules in 1 ms. Remains 18 /18 variables (removed 0) and now considering 21/21 (removed 0) transitions.
[2023-04-07 17:23:37] [INFO ] Invariant cache hit.
[2023-04-07 17:23:37] [INFO ] Implicit Places using invariants in 19 ms returned []
[2023-04-07 17:23:37] [INFO ] Invariant cache hit.
[2023-04-07 17:23:37] [INFO ] State equation strengthened by 6 read => feed constraints.
[2023-04-07 17:23:37] [INFO ] Implicit Places using invariants and state equation in 35 ms returned []
Implicit Place search using SMT with State Equation took 56 ms to find 0 implicit places.
[2023-04-07 17:23:37] [INFO ] Redundant transitions in 0 ms returned []
[2023-04-07 17:23:37] [INFO ] Invariant cache hit.
[2023-04-07 17:23:37] [INFO ] Dead Transitions using invariants and state equation in 25 ms found 0 transitions.
Finished structural reductions in REACHABILITY mode , in 1 iterations and 86 ms. Remains : 18/18 places, 21/21 transitions.
Applied a total of 0 rules in 1 ms. Remains 18 /18 variables (removed 0) and now considering 21/21 (removed 0) transitions.
Running SMT prover for 7 properties.
[2023-04-07 17:23:37] [INFO ] Invariant cache hit.
[2023-04-07 17:23:37] [INFO ] [Real]Absence check using 2 positive place invariants in 0 ms returned sat
[2023-04-07 17:23:37] [INFO ] [Real]Absence check using 2 positive and 2 generalized place invariants in 0 ms returned sat
[2023-04-07 17:23:37] [INFO ] After 30ms SMT Verify possible using all constraints in real domain returned unsat :0 sat :0 real:7
[2023-04-07 17:23:37] [INFO ] [Nat]Absence check using 2 positive place invariants in 1 ms returned sat
[2023-04-07 17:23:38] [INFO ] [Nat]Absence check using 2 positive and 2 generalized place invariants in 3 ms returned sat
[2023-04-07 17:23:38] [INFO ] After 22ms SMT Verify possible using state equation in natural domain returned unsat :0 sat :7
[2023-04-07 17:23:38] [INFO ] State equation strengthened by 6 read => feed constraints.
[2023-04-07 17:23:38] [INFO ] After 18ms SMT Verify possible using 6 Read/Feed constraints in natural domain returned unsat :0 sat :7
[2023-04-07 17:23:38] [INFO ] After 45ms SMT Verify possible using trap constraints in natural domain returned unsat :0 sat :7
Attempting to minimize the solution found.
Minimization took 19 ms.
[2023-04-07 17:23:38] [INFO ] After 125ms SMT Verify possible using all constraints in natural domain returned unsat :0 sat :7
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 4 ms
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 4 ms
[2023-04-07 17:23:38] [INFO ] Input system was already deterministic with 21 transitions.
Computed a total of 0 stabilizing places and 0 stable transitions
Starting structural reductions in LTL mode, iteration 0 : 18/18 places, 21/21 transitions.
Applied a total of 0 rules in 1 ms. Remains 18 /18 variables (removed 0) and now considering 21/21 (removed 0) transitions.
[2023-04-07 17:23:38] [INFO ] Invariant cache hit.
[2023-04-07 17:23:38] [INFO ] Dead Transitions using invariants and state equation in 27 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 28 ms. Remains : 18/18 places, 21/21 transitions.
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 3 ms
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 1 ms
[2023-04-07 17:23:38] [INFO ] Input system was already deterministic with 21 transitions.
Starting structural reductions in LTL mode, iteration 0 : 18/18 places, 21/21 transitions.
Applied a total of 0 rules in 0 ms. Remains 18 /18 variables (removed 0) and now considering 21/21 (removed 0) transitions.
[2023-04-07 17:23:38] [INFO ] Invariant cache hit.
[2023-04-07 17:23:38] [INFO ] Dead Transitions using invariants and state equation in 34 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 35 ms. Remains : 18/18 places, 21/21 transitions.
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 1 ms
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 3 ms
[2023-04-07 17:23:38] [INFO ] Input system was already deterministic with 21 transitions.
Starting structural reductions in LTL mode, iteration 0 : 18/18 places, 21/21 transitions.
Applied a total of 0 rules in 1 ms. Remains 18 /18 variables (removed 0) and now considering 21/21 (removed 0) transitions.
[2023-04-07 17:23:38] [INFO ] Invariant cache hit.
[2023-04-07 17:23:38] [INFO ] Dead Transitions using invariants and state equation in 25 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 27 ms. Remains : 18/18 places, 21/21 transitions.
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 2 ms
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 1 ms
[2023-04-07 17:23:38] [INFO ] Input system was already deterministic with 21 transitions.
Starting structural reductions in LTL mode, iteration 0 : 18/18 places, 21/21 transitions.
Applied a total of 0 rules in 0 ms. Remains 18 /18 variables (removed 0) and now considering 21/21 (removed 0) transitions.
[2023-04-07 17:23:38] [INFO ] Invariant cache hit.
[2023-04-07 17:23:38] [INFO ] Dead Transitions using invariants and state equation in 25 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 26 ms. Remains : 18/18 places, 21/21 transitions.
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 2 ms
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 2 ms
[2023-04-07 17:23:38] [INFO ] Input system was already deterministic with 21 transitions.
Starting structural reductions in LTL mode, iteration 0 : 18/18 places, 21/21 transitions.
Applied a total of 0 rules in 1 ms. Remains 18 /18 variables (removed 0) and now considering 21/21 (removed 0) transitions.
[2023-04-07 17:23:38] [INFO ] Invariant cache hit.
[2023-04-07 17:23:38] [INFO ] Dead Transitions using invariants and state equation in 21 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 23 ms. Remains : 18/18 places, 21/21 transitions.
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 1 ms
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 1 ms
[2023-04-07 17:23:38] [INFO ] Input system was already deterministic with 21 transitions.
Starting structural reductions in LTL mode, iteration 0 : 18/18 places, 21/21 transitions.
Applied a total of 0 rules in 1 ms. Remains 18 /18 variables (removed 0) and now considering 21/21 (removed 0) transitions.
[2023-04-07 17:23:38] [INFO ] Invariant cache hit.
[2023-04-07 17:23:38] [INFO ] Dead Transitions using invariants and state equation in 23 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 26 ms. Remains : 18/18 places, 21/21 transitions.
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 1 ms
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 1 ms
[2023-04-07 17:23:38] [INFO ] Input system was already deterministic with 21 transitions.
Starting structural reductions in LTL mode, iteration 0 : 18/18 places, 21/21 transitions.
Applied a total of 0 rules in 0 ms. Remains 18 /18 variables (removed 0) and now considering 21/21 (removed 0) transitions.
[2023-04-07 17:23:38] [INFO ] Invariant cache hit.
[2023-04-07 17:23:38] [INFO ] Dead Transitions using invariants and state equation in 23 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 23 ms. Remains : 18/18 places, 21/21 transitions.
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 1 ms
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 2 ms
[2023-04-07 17:23:38] [INFO ] Input system was already deterministic with 21 transitions.
Starting structural reductions in LTL mode, iteration 0 : 18/18 places, 21/21 transitions.
Applied a total of 0 rules in 0 ms. Remains 18 /18 variables (removed 0) and now considering 21/21 (removed 0) transitions.
[2023-04-07 17:23:38] [INFO ] Invariant cache hit.
[2023-04-07 17:23:38] [INFO ] Dead Transitions using invariants and state equation in 24 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 24 ms. Remains : 18/18 places, 21/21 transitions.
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 1 ms
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 1 ms
[2023-04-07 17:23:38] [INFO ] Input system was already deterministic with 21 transitions.
Starting structural reductions in LTL mode, iteration 0 : 18/18 places, 21/21 transitions.
Applied a total of 0 rules in 1 ms. Remains 18 /18 variables (removed 0) and now considering 21/21 (removed 0) transitions.
[2023-04-07 17:23:38] [INFO ] Invariant cache hit.
[2023-04-07 17:23:38] [INFO ] Dead Transitions using invariants and state equation in 19 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 21 ms. Remains : 18/18 places, 21/21 transitions.
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 2 ms
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 1 ms
[2023-04-07 17:23:38] [INFO ] Input system was already deterministic with 21 transitions.
Starting structural reductions in LTL mode, iteration 0 : 18/18 places, 21/21 transitions.
Applied a total of 0 rules in 0 ms. Remains 18 /18 variables (removed 0) and now considering 21/21 (removed 0) transitions.
[2023-04-07 17:23:38] [INFO ] Invariant cache hit.
[2023-04-07 17:23:38] [INFO ] Dead Transitions using invariants and state equation in 26 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 26 ms. Remains : 18/18 places, 21/21 transitions.
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 1 ms
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 1 ms
[2023-04-07 17:23:38] [INFO ] Input system was already deterministic with 21 transitions.
Starting structural reductions in LTL mode, iteration 0 : 18/18 places, 21/21 transitions.
Applied a total of 0 rules in 0 ms. Remains 18 /18 variables (removed 0) and now considering 21/21 (removed 0) transitions.
[2023-04-07 17:23:38] [INFO ] Invariant cache hit.
[2023-04-07 17:23:38] [INFO ] Dead Transitions using invariants and state equation in 21 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 21 ms. Remains : 18/18 places, 21/21 transitions.
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 1 ms
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 2 ms
[2023-04-07 17:23:38] [INFO ] Input system was already deterministic with 21 transitions.
Starting structural reductions in LTL mode, iteration 0 : 18/18 places, 21/21 transitions.
Applied a total of 0 rules in 0 ms. Remains 18 /18 variables (removed 0) and now considering 21/21 (removed 0) transitions.
[2023-04-07 17:23:38] [INFO ] Invariant cache hit.
[2023-04-07 17:23:38] [INFO ] Dead Transitions using invariants and state equation in 22 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 23 ms. Remains : 18/18 places, 21/21 transitions.
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 2 ms
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 1 ms
[2023-04-07 17:23:38] [INFO ] Input system was already deterministic with 21 transitions.
Starting structural reductions in LTL mode, iteration 0 : 18/18 places, 21/21 transitions.
Applied a total of 0 rules in 0 ms. Remains 18 /18 variables (removed 0) and now considering 21/21 (removed 0) transitions.
[2023-04-07 17:23:38] [INFO ] Invariant cache hit.
[2023-04-07 17:23:38] [INFO ] Dead Transitions using invariants and state equation in 34 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 35 ms. Remains : 18/18 places, 21/21 transitions.
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 2 ms
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 1 ms
[2023-04-07 17:23:38] [INFO ] Input system was already deterministic with 21 transitions.
Starting structural reductions in LTL mode, iteration 0 : 18/18 places, 21/21 transitions.
Applied a total of 0 rules in 0 ms. Remains 18 /18 variables (removed 0) and now considering 21/21 (removed 0) transitions.
[2023-04-07 17:23:38] [INFO ] Invariant cache hit.
[2023-04-07 17:23:38] [INFO ] Dead Transitions using invariants and state equation in 23 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 23 ms. Remains : 18/18 places, 21/21 transitions.
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 1 ms
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 1 ms
[2023-04-07 17:23:38] [INFO ] Input system was already deterministic with 21 transitions.
Starting structural reductions in SI_CTL mode, iteration 0 : 18/18 places, 21/21 transitions.
Applied a total of 0 rules in 2 ms. Remains 18 /18 variables (removed 0) and now considering 21/21 (removed 0) transitions.
[2023-04-07 17:23:38] [INFO ] Invariant cache hit.
[2023-04-07 17:23:38] [INFO ] Dead Transitions using invariants and state equation in 21 ms found 0 transitions.
Finished structural reductions in SI_CTL mode , in 1 iterations and 24 ms. Remains : 18/18 places, 21/21 transitions.
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 1 ms
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 1 ms
[2023-04-07 17:23:38] [INFO ] Input system was already deterministic with 21 transitions.
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 4 ms
[2023-04-07 17:23:38] [INFO ] Flatten gal took : 3 ms
[2023-04-07 17:23:38] [INFO ] Export to MCC of 15 properties in file /home/mcc/execution/CTLFireability.sr.xml took 3 ms.
[2023-04-07 17:23:38] [INFO ] Export to PNML in file /home/mcc/execution/model.sr.pnml of net with 18 places, 21 transitions and 81 arcs took 1 ms.
Total runtime 6318 ms.
There are residual formulas that ITS could not solve within timeout
timeout --kill-after=10s --signal=SIGINT 1m for testing only
Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: /home/mcc/BenchKit/bin//../reducer/bin//../../marcie/bin/marcie --net-file=model.pnml --mcc-file=CTLFireability.xml --memory=6 --mcc-mode
parse successfull
net created successfully
Net: Petri
(NrP: 18 NrTr: 21 NrArc: 81)
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec
net check time: 0m 0.000sec
init dd package: 0m 2.773sec
RS generation: 0m18.522sec
-> reachability set: #nodes 53223 (5.3e+04) #states 1,207,044,185,616 (12)
starting MCC model checker
--------------------------
checking: AX [EG [[[2<=p9 & 1<=p12] | [[2<=p10 & 1<=p13] | [2<=p11 & 1<=p14]]]]]
normalized: ~ [EX [~ [EG [[[2<=p9 & 1<=p12] | [[2<=p11 & 1<=p14] | [2<=p10 & 1<=p13]]]]]]]
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (2<=p10)
states: 0
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (2<=p11)
states: 0
abstracting: (1<=p12)
states: 804,696,123,744 (11)
abstracting: (2<=p9)
states: 0
.
EG iterations: 1
.-> the formula is FALSE
FORMULA Murphy-COL-D2N100-CTLFireability-02 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.734sec
checking: EX [[[1<=p2 & [1<=p5 & 1<=p8]] | [[1<=p0 & [1<=p3 & 1<=p6]] | [1<=p1 & [1<=p4 & 1<=p7]]]]]
normalized: EX [[[[1<=p1 & [1<=p4 & 1<=p7]] | [1<=p0 & [1<=p3 & 1<=p6]]] | [1<=p2 & [1<=p5 & 1<=p8]]]]
abstracting: (1<=p8)
states: 1,187,583,196,680 (12)
abstracting: (1<=p5)
states: 1,187,575,696,728 (12)
abstracting: (1<=p2)
states: 1,187,583,196,680 (12)
abstracting: (1<=p6)
states: 1,187,583,196,680 (12)
abstracting: (1<=p3)
states: 1,187,575,696,728 (12)
abstracting: (1<=p0)
states: 1,187,583,196,680 (12)
abstracting: (1<=p7)
states: 1,187,583,196,680 (12)
abstracting: (1<=p4)
states: 1,187,575,696,728 (12)
abstracting: (1<=p1)
states: 1,187,583,196,680 (12)
.-> the formula is TRUE
FORMULA Murphy-COL-D2N100-CTLFireability-08 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.871sec
checking: AF [[AX [[p12<=0 & [p13<=0 & p14<=0]]] | AF [EX [[[3<=p0 & [1<=p6 & 1<=p12]] | [[3<=p1 & [1<=p7 & 1<=p13]] | [3<=p2 & [1<=p8 & 1<=p14]]]]]]]]
normalized: ~ [EG [~ [[~ [EG [~ [EX [[[3<=p0 & [1<=p6 & 1<=p12]] | [[3<=p1 & [1<=p7 & 1<=p13]] | [3<=p2 & [1<=p8 & 1<=p14]]]]]]]] | ~ [EX [~ [[p12<=0 & [p13<=0 & p14<=0]]]]]]]]]
abstracting: (p14<=0)
states: 402,348,061,872 (11)
abstracting: (p13<=0)
states: 402,348,061,872 (11)
abstracting: (p12<=0)
states: 402,348,061,872 (11)
.abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (1<=p8)
states: 1,187,583,196,680 (12)
abstracting: (3<=p2)
states: 1,149,154,276,608 (12)
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (1<=p7)
states: 1,187,583,196,680 (12)
abstracting: (3<=p1)
states: 1,149,154,276,608 (12)
abstracting: (1<=p12)
states: 804,696,123,744 (11)
abstracting: (1<=p6)
states: 1,187,583,196,680 (12)
abstracting: (3<=p0)
states: 1,149,154,276,608 (12)
...
EG iterations: 2
.
EG iterations: 1
-> the formula is FALSE
FORMULA Murphy-COL-D2N100-CTLFireability-04 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 3.550sec
checking: AG [[[EX [[[2<=p9 & 1<=p12] | [[2<=p10 & 1<=p13] | [2<=p11 & 1<=p14]]]] & AX [[1<=p12 | [1<=p13 | 1<=p14]]]] & [p12<=0 & [p13<=0 & p14<=0]]]]
normalized: ~ [E [true U ~ [[[p12<=0 & [p13<=0 & p14<=0]] & [~ [EX [~ [[1<=p12 | [1<=p13 | 1<=p14]]]]] & EX [[[[2<=p11 & 1<=p14] | [2<=p10 & 1<=p13]] | [2<=p9 & 1<=p12]]]]]]]]
abstracting: (1<=p12)
states: 804,696,123,744 (11)
abstracting: (2<=p9)
states: 0
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (2<=p10)
states: 0
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (2<=p11)
states: 0
.abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (1<=p12)
states: 804,696,123,744 (11)
.abstracting: (p14<=0)
states: 402,348,061,872 (11)
abstracting: (p13<=0)
states: 402,348,061,872 (11)
abstracting: (p12<=0)
states: 402,348,061,872 (11)
-> the formula is FALSE
FORMULA Murphy-COL-D2N100-CTLFireability-07 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.883sec
checking: AF [[AG [EF [[1<=p9 | [1<=p10 | 1<=p11]]]] & EX [[[[p9<=1 | p12<=0] & [p10<=1 | p13<=0]] & [[p11<=1 | p14<=0] & AF [[1<=p12 | [1<=p13 | 1<=p14]]]]]]]]
normalized: ~ [EG [~ [[EX [[[~ [EG [~ [[1<=p12 | [1<=p13 | 1<=p14]]]]] & [p11<=1 | p14<=0]] & [[p10<=1 | p13<=0] & [p9<=1 | p12<=0]]]] & ~ [E [true U ~ [E [true U [1<=p9 | [1<=p10 | 1<=p11]]]]]]]]]]
abstracting: (1<=p11)
states: 603,522,092,808 (11)
abstracting: (1<=p10)
states: 603,522,092,808 (11)
abstracting: (1<=p9)
states: 603,522,092,808 (11)
abstracting: (p12<=0)
states: 402,348,061,872 (11)
abstracting: (p9<=1)
states: 1,207,044,185,616 (12)
abstracting: (p13<=0)
states: 402,348,061,872 (11)
abstracting: (p10<=1)
states: 1,207,044,185,616 (12)
abstracting: (p14<=0)
states: 402,348,061,872 (11)
abstracting: (p11<=1)
states: 1,207,044,185,616 (12)
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (1<=p12)
states: 804,696,123,744 (11)
.....
EG iterations: 5
....
EG iterations: 3
-> the formula is TRUE
FORMULA Murphy-COL-D2N100-CTLFireability-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 2.754sec
checking: AG [[EG [EF [[[p12<=0 & [p13<=0 & p14<=0]] | [[p0<=2 | [p6<=0 | p12<=0]] & [[p1<=2 | [p7<=0 | p13<=0]] & [p2<=2 | [p8<=0 | p14<=0]]]]]]] | [p9<=0 & [p10<=0 & p11<=0]]]]
normalized: ~ [E [true U ~ [[EG [E [true U [[[[p2<=2 | [p8<=0 | p14<=0]] & [p1<=2 | [p7<=0 | p13<=0]]] & [p0<=2 | [p6<=0 | p12<=0]]] | [p12<=0 & [p13<=0 & p14<=0]]]]] | [p9<=0 & [p10<=0 & p11<=0]]]]]]
abstracting: (p11<=0)
states: 603,522,092,808 (11)
abstracting: (p10<=0)
states: 603,522,092,808 (11)
abstracting: (p9<=0)
states: 603,522,092,808 (11)
abstracting: (p14<=0)
states: 402,348,061,872 (11)
abstracting: (p13<=0)
states: 402,348,061,872 (11)
abstracting: (p12<=0)
states: 402,348,061,872 (11)
abstracting: (p12<=0)
states: 402,348,061,872 (11)
abstracting: (p6<=0)
states: 19,460,988,936 (10)
abstracting: (p0<=2)
states: 57,889,909,008 (10)
abstracting: (p13<=0)
states: 402,348,061,872 (11)
abstracting: (p7<=0)
states: 19,460,988,936 (10)
abstracting: (p1<=2)
states: 57,889,909,008 (10)
abstracting: (p14<=0)
states: 402,348,061,872 (11)
abstracting: (p8<=0)
states: 19,460,988,936 (10)
abstracting: (p2<=2)
states: 57,889,909,008 (10)
EG iterations: 0
-> the formula is TRUE
FORMULA Murphy-COL-D2N100-CTLFireability-15 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m36.776sec
checking: [AF [[AX [[[1<=p2 & [1<=p5 & 1<=p8]] | [[1<=p0 & [1<=p3 & 1<=p6]] | [1<=p1 & [1<=p4 & 1<=p7]]]]] & EX [[[1<=p0 & 1<=p3] | [[1<=p1 & 1<=p4] | [1<=p2 & 1<=p5]]]]]] & [EG [[3<=p15 | [3<=p16 | 3<=p17]]] & [EX [EX [[1<=p9 | [1<=p10 | 1<=p11]]]] | AG [AX [[[p0<=2 | [p6<=0 | p12<=0]] & [[p1<=2 | [p7<=0 | p13<=0]] & [p2<=2 | [p8<=0 | p14<=0]]]]]]]]]
normalized: [[[~ [E [true U EX [~ [[[[p2<=2 | [p8<=0 | p14<=0]] & [p1<=2 | [p7<=0 | p13<=0]]] & [p0<=2 | [p6<=0 | p12<=0]]]]]]] | EX [EX [[1<=p9 | [1<=p10 | 1<=p11]]]]] & EG [[3<=p15 | [3<=p16 | 3<=p17]]]] & ~ [EG [~ [[EX [[[[1<=p2 & 1<=p5] | [1<=p1 & 1<=p4]] | [1<=p0 & 1<=p3]]] & ~ [EX [~ [[[[1<=p1 & [1<=p4 & 1<=p7]] | [1<=p0 & [1<=p3 & 1<=p6]]] | [1<=p2 & [1<=p5 & 1<=p8]]]]]]]]]]]
abstracting: (1<=p8)
states: 1,187,583,196,680 (12)
abstracting: (1<=p5)
states: 1,187,575,696,728 (12)
abstracting: (1<=p2)
states: 1,187,583,196,680 (12)
abstracting: (1<=p6)
states: 1,187,583,196,680 (12)
abstracting: (1<=p3)
states: 1,187,575,696,728 (12)
abstracting: (1<=p0)
states: 1,187,583,196,680 (12)
abstracting: (1<=p7)
states: 1,187,583,196,680 (12)
abstracting: (1<=p4)
states: 1,187,575,696,728 (12)
abstracting: (1<=p1)
states: 1,187,583,196,680 (12)
.abstracting: (1<=p3)
states: 1,187,575,696,728 (12)
abstracting: (1<=p0)
states: 1,187,583,196,680 (12)
abstracting: (1<=p4)
states: 1,187,575,696,728 (12)
abstracting: (1<=p1)
states: 1,187,583,196,680 (12)
abstracting: (1<=p5)
states: 1,187,575,696,728 (12)
abstracting: (1<=p2)
states: 1,187,583,196,680 (12)
..
EG iterations: 1
abstracting: (3<=p17)
states: 201,174,030,936 (11)
abstracting: (3<=p16)
states: 201,174,030,936 (11)
abstracting: (3<=p15)
states: 201,174,030,936 (11)
.
EG iterations: 1
abstracting: (1<=p11)
states: 603,522,092,808 (11)
abstracting: (1<=p10)
states: 603,522,092,808 (11)
abstracting: (1<=p9)
states: 603,522,092,808 (11)
..abstracting: (p12<=0)
states: 402,348,061,872 (11)
abstracting: (p6<=0)
states: 19,460,988,936 (10)
abstracting: (p0<=2)
states: 57,889,909,008 (10)
abstracting: (p13<=0)
states: 402,348,061,872 (11)
abstracting: (p7<=0)
states: 19,460,988,936 (10)
abstracting: (p1<=2)
states: 57,889,909,008 (10)
abstracting: (p14<=0)
states: 402,348,061,872 (11)
abstracting: (p8<=0)
states: 19,460,988,936 (10)
abstracting: (p2<=2)
states: 57,889,909,008 (10)
.-> the formula is TRUE
FORMULA Murphy-COL-D2N100-CTLFireability-09 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 3.936sec
checking: AG [[~ [A [[[3<=p15 | [3<=p16 | 3<=p17]] | [1<=p9 | [1<=p10 | 1<=p11]]] U [[1<=p9 | [1<=p10 | 1<=p11]] & A [[[1<=p0 & 1<=p3] | [[1<=p1 & 1<=p4] | [1<=p2 & 1<=p5]]] U [[3<=p0 & [1<=p6 & 1<=p12]] | [[3<=p1 & [1<=p7 & 1<=p13]] | [3<=p2 & [1<=p8 & 1<=p14]]]]]]]] | AX [EF [[[p15<=2 & [p16<=2 & p17<=2]] | [[p9<=1 | p12<=0] & [[p10<=1 | p13<=0] & [p11<=1 | p14<=0]]]]]]]]
normalized: ~ [E [true U ~ [[~ [EX [~ [E [true U [[[[p11<=1 | p14<=0] & [p10<=1 | p13<=0]] & [p9<=1 | p12<=0]] | [p15<=2 & [p16<=2 & p17<=2]]]]]]] | ~ [[~ [EG [~ [[[~ [EG [~ [[[[3<=p2 & [1<=p8 & 1<=p14]] | [3<=p1 & [1<=p7 & 1<=p13]]] | [3<=p0 & [1<=p6 & 1<=p12]]]]]] & ~ [E [~ [[[[3<=p2 & [1<=p8 & 1<=p14]] | [3<=p1 & [1<=p7 & 1<=p13]]] | [3<=p0 & [1<=p6 & 1<=p12]]]] U [~ [[[[1<=p2 & 1<=p5] | [1<=p1 & 1<=p4]] | [1<=p0 & 1<=p3]]] & ~ [[[[3<=p2 & [1<=p8 & 1<=p14]] | [3<=p1 & [1<=p7 & 1<=p13]]] | [3<=p0 & [1<=p6 & 1<=p12]]]]]]]] & [1<=p9 | [1<=p10 | 1<=p11]]]]]] & ~ [E [~ [[[~ [EG [~ [[[[3<=p2 & [1<=p8 & 1<=p14]] | [3<=p1 & [1<=p7 & 1<=p13]]] | [3<=p0 & [1<=p6 & 1<=p12]]]]]] & ~ [E [~ [[[[3<=p2 & [1<=p8 & 1<=p14]] | [3<=p1 & [1<=p7 & 1<=p13]]] | [3<=p0 & [1<=p6 & 1<=p12]]]] U [~ [[[[1<=p2 & 1<=p5] | [1<=p1 & 1<=p4]] | [1<=p0 & 1<=p3]]] & ~ [[[[3<=p2 & [1<=p8 & 1<=p14]] | [3<=p1 & [1<=p7 & 1<=p13]]] | [3<=p0 & [1<=p6 & 1<=p12]]]]]]]] & [1<=p9 | [1<=p10 | 1<=p11]]]] U [~ [[[1<=p9 | [1<=p10 | 1<=p11]] | [3<=p15 | [3<=p16 | 3<=p17]]]] & ~ [[[~ [EG [~ [[[[3<=p2 & [1<=p8 & 1<=p14]] | [3<=p1 & [1<=p7 & 1<=p13]]] | [3<=p0 & [1<=p6 & 1<=p12]]]]]] & ~ [E [~ [[[[3<=p2 & [1<=p8 & 1<=p14]] | [3<=p1 & [1<=p7 & 1<=p13]]] | [3<=p0 & [1<=p6 & 1<=p12]]]] U [~ [[[[1<=p2 & 1<=p5] | [1<=p1 & 1<=p4]] | [1<=p0 & 1<=p3]]] & ~ [[[[3<=p2 & [1<=p8 & 1<=p14]] | [3<=p1 & [1<=p7 & 1<=p13]]] | [3<=p0 & [1<=p6 & 1<=p12]]]]]]]] & [1<=p9 | [1<=p10 | 1<=p11]]]]]]]]]]]]]
abstracting: (1<=p11)
states: 603,522,092,808 (11)
abstracting: (1<=p10)
states: 603,522,092,808 (11)
abstracting: (1<=p9)
states: 603,522,092,808 (11)
abstracting: (1<=p12)
states: 804,696,123,744 (11)
abstracting: (1<=p6)
states: 1,187,583,196,680 (12)
abstracting: (3<=p0)
states: 1,149,154,276,608 (12)
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (1<=p7)
states: 1,187,583,196,680 (12)
abstracting: (3<=p1)
states: 1,149,154,276,608 (12)
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (1<=p8)
states: 1,187,583,196,680 (12)
abstracting: (3<=p2)
states: 1,149,154,276,608 (12)
abstracting: (1<=p3)
states: 1,187,575,696,728 (12)
abstracting: (1<=p0)
states: 1,187,583,196,680 (12)
abstracting: (1<=p4)
states: 1,187,575,696,728 (12)
abstracting: (1<=p1)
states: 1,187,583,196,680 (12)
abstracting: (1<=p5)
states: 1,187,575,696,728 (12)
abstracting: (1<=p2)
states: 1,187,583,196,680 (12)
abstracting: (1<=p12)
states: 804,696,123,744 (11)
abstracting: (1<=p6)
states: 1,187,583,196,680 (12)
abstracting: (3<=p0)
states: 1,149,154,276,608 (12)
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (1<=p7)
states: 1,187,583,196,680 (12)
abstracting: (3<=p1)
states: 1,149,154,276,608 (12)
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (1<=p8)
states: 1,187,583,196,680 (12)
abstracting: (3<=p2)
states: 1,149,154,276,608 (12)
abstracting: (1<=p12)
states: 804,696,123,744 (11)
abstracting: (1<=p6)
states: 1,187,583,196,680 (12)
abstracting: (3<=p0)
states: 1,149,154,276,608 (12)
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (1<=p7)
states: 1,187,583,196,680 (12)
abstracting: (3<=p1)
states: 1,149,154,276,608 (12)
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (1<=p8)
states: 1,187,583,196,680 (12)
abstracting: (3<=p2)
states: 1,149,154,276,608 (12)
.....
EG iterations: 5
abstracting: (3<=p17)
states: 201,174,030,936 (11)
abstracting: (3<=p16)
states: 201,174,030,936 (11)
abstracting: (3<=p15)
states: 201,174,030,936 (11)
abstracting: (1<=p11)
states: 603,522,092,808 (11)
abstracting: (1<=p10)
states: 603,522,092,808 (11)
abstracting: (1<=p9)
states: 603,522,092,808 (11)
abstracting: (1<=p11)
states: 603,522,092,808 (11)
abstracting: (1<=p10)
states: 603,522,092,808 (11)
abstracting: (1<=p9)
states: 603,522,092,808 (11)
abstracting: (1<=p12)
states: 804,696,123,744 (11)
abstracting: (1<=p6)
states: 1,187,583,196,680 (12)
abstracting: (3<=p0)
states: 1,149,154,276,608 (12)
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (1<=p7)
states: 1,187,583,196,680 (12)
abstracting: (3<=p1)
states: 1,149,154,276,608 (12)
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (1<=p8)
states: 1,187,583,196,680 (12)
abstracting: (3<=p2)
states: 1,149,154,276,608 (12)
abstracting: (1<=p3)
states: 1,187,575,696,728 (12)
abstracting: (1<=p0)
states: 1,187,583,196,680 (12)
abstracting: (1<=p4)
states: 1,187,575,696,728 (12)
abstracting: (1<=p1)
states: 1,187,583,196,680 (12)
abstracting: (1<=p5)
states: 1,187,575,696,728 (12)
abstracting: (1<=p2)
states: 1,187,583,196,680 (12)
abstracting: (1<=p12)
states: 804,696,123,744 (11)
abstracting: (1<=p6)
states: 1,187,583,196,680 (12)
abstracting: (3<=p0)
states: 1,149,154,276,608 (12)
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (1<=p7)
states: 1,187,583,196,680 (12)
abstracting: (3<=p1)
states: 1,149,154,276,608 (12)
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (1<=p8)
states: 1,187,583,196,680 (12)
abstracting: (3<=p2)
states: 1,149,154,276,608 (12)
abstracting: (1<=p12)
states: 804,696,123,744 (11)
abstracting: (1<=p6)
states: 1,187,583,196,680 (12)
abstracting: (3<=p0)
states: 1,149,154,276,608 (12)
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (1<=p7)
states: 1,187,583,196,680 (12)
abstracting: (3<=p1)
states: 1,149,154,276,608 (12)
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (1<=p8)
states: 1,187,583,196,680 (12)
abstracting: (3<=p2)
states: 1,149,154,276,608 (12)
.....
EG iterations: 5
MC time: 7m25.709sec
checking: [AF [[[[2<=p9 & 1<=p12] | [2<=p10 & 1<=p13]] | [[2<=p11 & 1<=p14] | EX [[[1<=p2 & [1<=p5 & 1<=p8]] | [[1<=p0 & [1<=p3 & 1<=p6]] | [1<=p1 & [1<=p4 & 1<=p7]]]]]]]] & [E [~ [[[[~ [[1<=p12 | [1<=p13 | 1<=p14]]] | 1<=p9] | [1<=p10 | 1<=p11]] | [[1<=p9 | 1<=p10] | [1<=p11 | AX [[1<=p9 | [1<=p10 | 1<=p11]]]]]]] U [[1<=p2 & [1<=p5 & 1<=p8]] | [[1<=p0 & [1<=p3 & 1<=p6]] | [1<=p1 & [1<=p4 & 1<=p7]]]]] | A [[1<=p12 | [1<=p13 | 1<=p14]] U ~ [[3<=p15 | [3<=p16 | 3<=p17]]]]]]
normalized: [[[~ [EG [[3<=p15 | [3<=p16 | 3<=p17]]]] & ~ [E [[3<=p15 | [3<=p16 | 3<=p17]] U [~ [[1<=p12 | [1<=p13 | 1<=p14]]] & [3<=p15 | [3<=p16 | 3<=p17]]]]]] | E [~ [[[[1<=p11 | ~ [EX [~ [[1<=p9 | [1<=p10 | 1<=p11]]]]]] | [1<=p9 | 1<=p10]] | [[1<=p10 | 1<=p11] | [1<=p9 | ~ [[1<=p12 | [1<=p13 | 1<=p14]]]]]]] U [[[1<=p1 & [1<=p4 & 1<=p7]] | [1<=p0 & [1<=p3 & 1<=p6]]] | [1<=p2 & [1<=p5 & 1<=p8]]]]] & ~ [EG [~ [[[EX [[[[1<=p1 & [1<=p4 & 1<=p7]] | [1<=p0 & [1<=p3 & 1<=p6]]] | [1<=p2 & [1<=p5 & 1<=p8]]]] | [2<=p11 & 1<=p14]] | [[2<=p10 & 1<=p13] | [2<=p9 & 1<=p12]]]]]]]
abstracting: (1<=p12)
states: 804,696,123,744 (11)
abstracting: (2<=p9)
states: 0
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (2<=p10)
states: 0
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (2<=p11)
states: 0
abstracting: (1<=p8)
states: 1,187,583,196,680 (12)
abstracting: (1<=p5)
states: 1,187,575,696,728 (12)
abstracting: (1<=p2)
states: 1,187,583,196,680 (12)
abstracting: (1<=p6)
states: 1,187,583,196,680 (12)
abstracting: (1<=p3)
states: 1,187,575,696,728 (12)
abstracting: (1<=p0)
states: 1,187,583,196,680 (12)
abstracting: (1<=p7)
states: 1,187,583,196,680 (12)
abstracting: (1<=p4)
states: 1,187,575,696,728 (12)
abstracting: (1<=p1)
states: 1,187,583,196,680 (12)
......
EG iterations: 5
abstracting: (1<=p8)
states: 1,187,583,196,680 (12)
abstracting: (1<=p5)
states: 1,187,575,696,728 (12)
abstracting: (1<=p2)
states: 1,187,583,196,680 (12)
abstracting: (1<=p6)
states: 1,187,583,196,680 (12)
abstracting: (1<=p3)
states: 1,187,575,696,728 (12)
abstracting: (1<=p0)
states: 1,187,583,196,680 (12)
abstracting: (1<=p7)
states: 1,187,583,196,680 (12)
abstracting: (1<=p4)
states: 1,187,575,696,728 (12)
abstracting: (1<=p1)
states: 1,187,583,196,680 (12)
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (1<=p12)
states: 804,696,123,744 (11)
abstracting: (1<=p9)
states: 603,522,092,808 (11)
abstracting: (1<=p11)
states: 603,522,092,808 (11)
abstracting: (1<=p10)
states: 603,522,092,808 (11)
abstracting: (1<=p10)
states: 603,522,092,808 (11)
abstracting: (1<=p9)
states: 603,522,092,808 (11)
abstracting: (1<=p11)
states: 603,522,092,808 (11)
abstracting: (1<=p10)
states: 603,522,092,808 (11)
abstracting: (1<=p9)
states: 603,522,092,808 (11)
.abstracting: (1<=p11)
states: 603,522,092,808 (11)
abstracting: (3<=p17)
states: 201,174,030,936 (11)
abstracting: (3<=p16)
states: 201,174,030,936 (11)
abstracting: (3<=p15)
states: 201,174,030,936 (11)
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (1<=p12)
states: 804,696,123,744 (11)
abstracting: (3<=p17)
states: 201,174,030,936 (11)
abstracting: (3<=p16)
states: 201,174,030,936 (11)
abstracting: (3<=p15)
states: 201,174,030,936 (11)
abstracting: (3<=p17)
states: 201,174,030,936 (11)
abstracting: (3<=p16)
states: 201,174,030,936 (11)
abstracting: (3<=p15)
states: 201,174,030,936 (11)
.
EG iterations: 1
-> the formula is TRUE
FORMULA Murphy-COL-D2N100-CTLFireability-11 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 6.113sec
checking: A [[EX [[[3<=p17 | 3<=p16] | 3<=p15]] | [AX [~ [[[1<=p0 & 1<=p3] | [[1<=p1 & 1<=p4] | [1<=p2 & 1<=p5]]]]] | [~ [AX [[[1<=p0 & 1<=p3] | [[1<=p1 & 1<=p4] | [1<=p2 & 1<=p5]]]]] & [[3<=p0 & [1<=p6 & 1<=p12]] | [[3<=p1 & [1<=p7 & 1<=p13]] | [3<=p2 & [1<=p8 & 1<=p14]]]]]]] U AX [EG [[~ [[[[3<=p0 & [1<=p6 & 1<=p12]] | [[3<=p1 & [1<=p7 & 1<=p13]] | [3<=p2 & [1<=p8 & 1<=p14]]]] & [[2<=p9 & 1<=p12] | [[2<=p10 & 1<=p13] | [2<=p11 & 1<=p14]]]]] | [EX [[1<=p12 | [1<=p13 | 1<=p14]]] & [1<=p9 | [1<=p10 | 1<=p11]]]]]]]
normalized: [~ [EG [EX [~ [EG [[[[1<=p9 | [1<=p10 | 1<=p11]] & EX [[1<=p12 | [1<=p13 | 1<=p14]]]] | ~ [[[[[2<=p11 & 1<=p14] | [2<=p10 & 1<=p13]] | [2<=p9 & 1<=p12]] & [[[3<=p2 & [1<=p8 & 1<=p14]] | [3<=p1 & [1<=p7 & 1<=p13]]] | [3<=p0 & [1<=p6 & 1<=p12]]]]]]]]]]] & ~ [E [EX [~ [EG [[[[1<=p9 | [1<=p10 | 1<=p11]] & EX [[1<=p12 | [1<=p13 | 1<=p14]]]] | ~ [[[[[2<=p11 & 1<=p14] | [2<=p10 & 1<=p13]] | [2<=p9 & 1<=p12]] & [[[3<=p2 & [1<=p8 & 1<=p14]] | [3<=p1 & [1<=p7 & 1<=p13]]] | [3<=p0 & [1<=p6 & 1<=p12]]]]]]]]] U [~ [[[[[[[3<=p2 & [1<=p8 & 1<=p14]] | [3<=p1 & [1<=p7 & 1<=p13]]] | [3<=p0 & [1<=p6 & 1<=p12]]] & EX [~ [[[[1<=p2 & 1<=p5] | [1<=p1 & 1<=p4]] | [1<=p0 & 1<=p3]]]]] | ~ [EX [[[[1<=p2 & 1<=p5] | [1<=p1 & 1<=p4]] | [1<=p0 & 1<=p3]]]]] | EX [[3<=p15 | [3<=p17 | 3<=p16]]]]] & EX [~ [EG [[[[1<=p9 | [1<=p10 | 1<=p11]] & EX [[1<=p12 | [1<=p13 | 1<=p14]]]] | ~ [[[[[2<=p11 & 1<=p14] | [2<=p10 & 1<=p13]] | [2<=p9 & 1<=p12]] & [[[3<=p2 & [1<=p8 & 1<=p14]] | [3<=p1 & [1<=p7 & 1<=p13]]] | [3<=p0 & [1<=p6 & 1<=p12]]]]]]]]]]]]]
abstracting: (1<=p12)
states: 804,696,123,744 (11)
abstracting: (1<=p6)
states: 1,187,583,196,680 (12)
abstracting: (3<=p0)
states: 1,149,154,276,608 (12)
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (1<=p7)
states: 1,187,583,196,680 (12)
abstracting: (3<=p1)
states: 1,149,154,276,608 (12)
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (1<=p8)
states: 1,187,583,196,680 (12)
abstracting: (3<=p2)
states: 1,149,154,276,608 (12)
abstracting: (1<=p12)
states: 804,696,123,744 (11)
abstracting: (2<=p9)
states: 0
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (2<=p10)
states: 0
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (2<=p11)
states: 0
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (1<=p12)
states: 804,696,123,744 (11)
.abstracting: (1<=p11)
states: 603,522,092,808 (11)
abstracting: (1<=p10)
states: 603,522,092,808 (11)
abstracting: (1<=p9)
states: 603,522,092,808 (11)
EG iterations: 0
.abstracting: (3<=p16)
states: 201,174,030,936 (11)
abstracting: (3<=p17)
states: 201,174,030,936 (11)
abstracting: (3<=p15)
states: 201,174,030,936 (11)
.abstracting: (1<=p3)
states: 1,187,575,696,728 (12)
abstracting: (1<=p0)
states: 1,187,583,196,680 (12)
abstracting: (1<=p4)
states: 1,187,575,696,728 (12)
abstracting: (1<=p1)
states: 1,187,583,196,680 (12)
abstracting: (1<=p5)
states: 1,187,575,696,728 (12)
abstracting: (1<=p2)
states: 1,187,583,196,680 (12)
.abstracting: (1<=p3)
states: 1,187,575,696,728 (12)
abstracting: (1<=p0)
states: 1,187,583,196,680 (12)
abstracting: (1<=p4)
states: 1,187,575,696,728 (12)
abstracting: (1<=p1)
states: 1,187,583,196,680 (12)
abstracting: (1<=p5)
states: 1,187,575,696,728 (12)
abstracting: (1<=p2)
states: 1,187,583,196,680 (12)
.abstracting: (1<=p12)
states: 804,696,123,744 (11)
abstracting: (1<=p6)
states: 1,187,583,196,680 (12)
abstracting: (3<=p0)
states: 1,149,154,276,608 (12)
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (1<=p7)
states: 1,187,583,196,680 (12)
abstracting: (3<=p1)
states: 1,149,154,276,608 (12)
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (1<=p8)
states: 1,187,583,196,680 (12)
abstracting: (3<=p2)
states: 1,149,154,276,608 (12)
abstracting: (1<=p12)
states: 804,696,123,744 (11)
abstracting: (1<=p6)
states: 1,187,583,196,680 (12)
abstracting: (3<=p0)
states: 1,149,154,276,608 (12)
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (1<=p7)
states: 1,187,583,196,680 (12)
abstracting: (3<=p1)
states: 1,149,154,276,608 (12)
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (1<=p8)
states: 1,187,583,196,680 (12)
abstracting: (3<=p2)
states: 1,149,154,276,608 (12)
abstracting: (1<=p12)
states: 804,696,123,744 (11)
abstracting: (2<=p9)
states: 0
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (2<=p10)
states: 0
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (2<=p11)
states: 0
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (1<=p12)
states: 804,696,123,744 (11)
.abstracting: (1<=p11)
states: 603,522,092,808 (11)
abstracting: (1<=p10)
states: 603,522,092,808 (11)
abstracting: (1<=p9)
states: 603,522,092,808 (11)
EG iterations: 0
.abstracting: (1<=p12)
states: 804,696,123,744 (11)
abstracting: (1<=p6)
states: 1,187,583,196,680 (12)
abstracting: (3<=p0)
states: 1,149,154,276,608 (12)
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (1<=p7)
states: 1,187,583,196,680 (12)
abstracting: (3<=p1)
states: 1,149,154,276,608 (12)
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (1<=p8)
states: 1,187,583,196,680 (12)
abstracting: (3<=p2)
states: 1,149,154,276,608 (12)
abstracting: (1<=p12)
states: 804,696,123,744 (11)
abstracting: (2<=p9)
states: 0
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (2<=p10)
states: 0
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (2<=p11)
states: 0
abstracting: (1<=p14)
states: 804,696,123,744 (11)
abstracting: (1<=p13)
states: 804,696,123,744 (11)
abstracting: (1<=p12)
states: 804,696,123,744 (11)
.abstracting: (1<=p11)
states: 603,522,092,808 (11)
abstracting: (1<=p10)
states: 603,522,092,808 (11)
abstracting: (1<=p9)
states: 603,522,092,808 (11)
EG iterations: 0
..
EG iterations: 1
-> the formula is TRUE
FORMULA Murphy-COL-D2N100-CTLFireability-00 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 1.072sec
checking: AX [[EG [[[3<=p15 | [3<=p16 | 3<=p17]] & [[[p2<=0 | [p5<=0 | p8<=0]] & [[p0<=0 | [p3<=0 | p6<=0]] & [p1<=0 | [p4<=0 | p7<=0]]]] | [[p0<=2 | [p6<=0 | p12<=0]] & [[p1<=2 | [p7<=0 | p13<=0]] & [p2<=2 | [p8<=0 | p14<=0]]]]]]] & [EF [[1<=p9 | [1<=p10 | 1<=p11]]] | [[[p2<=0 | [p5<=0 | p8<=0]] & [[p0<=0 | [p3<=0 | p6<=0]] & [p1<=0 | [p4<=0 | p7<=0]]]] | [AG [[p12<=0 & [p13<=0 & p14<=0]]] & [[[p2<=0 | [p5<=0 | p8<=0]] & [[p0<=0 | [p3<=0 | p6<=0]] & [p1<=0 | [p4<=0 | p7<=0]]]] | [[p9<=1 | p12<=0] & [[p10<=1 | p13<=0] & [p11<=1 | p14<=0]]]]]]]]]
normalized: ~ [EX [~ [[[[[[[[[p11<=1 | p14<=0] & [p10<=1 | p13<=0]] & [p9<=1 | p12<=0]] | [[[p1<=0 | [p4<=0 | p7<=0]] & [p0<=0 | [p3<=0 | p6<=0]]] & [p2<=0 | [p5<=0 | p8<=0]]]] & ~ [E [true U ~ [[p12<=0 & [p13<=0 & p14<=0]]]]]] | [[[p1<=0 | [p4<=0 | p7<=0]] & [p0<=0 | [p3<=0 | p6<=0]]] & [p2<=0 | [p5<=0 | p8<=0]]]] | E [true U [1<=p9 | [1<=p10 | 1<=p11]]]] & EG [[[[[[p2<=2 | [p8<=0 | p14<=0]] & [p1<=2 | [p7<=0 | p13<=0]]] & [p0<=2 | [p6<=0 | p12<=0]]] | [[[p1<=0 | [p4<=0 | p7<=0]] & [p0<=0 | [p3<=0 | p6<=0]]] & [p2<=0 | [p5<=0 | p8<=0]]]] & [3<=p15 | [3<=p16 | 3<=p17]]]]]]]]
abstracting: (3<=p17)
states: 201,174,030,936 (11)
abstracting: (3<=p16)
states: 201,174,030,936 (11)
abstracting: (3<=p15)
states: 201,174,030,936 (11)
abstracting: (p8<=0)
states: 19,460,988,936 (10)
abstracting: (p5<=0)
states: 19,468,488,888 (10)
abstracting: (p2<=0)
states: 19,460,988,936 (10)
abstracting: (p6<=0)
states: 19,460,988,936 (10)
abstracting: (p3<=0)
states: 19,468,488,888 (10)
abstracting: (p0<=0)
states: 19,460,988,936 (10)
abstracting: (p7<=0)
states: 19,460,988,936 (10)
abstracting: (p4<=0)
states: 19,468,488,888 (10)
abstracting: (p1<=0)
states: 19,460,988,936 (10)
abstracting: (p12<=0)
states: 402,348,061,872 (11)
abstracting: (p6<=0)
states: 19,460,988,936 (10)
abstracting: (p0<=2)
states: 57,889,909,008 (10)
abstracting: (p13<=0)
states: 402,348,061,872 (11)
abstracting: (p7<=0)
states: 19,460,988,936 (10)
abstracting: (p1<=2)
states: 57,889,909,008 (10)
abstracting: (p14<=0)
states: 402,348,061,872 (11)
abstracting: (p8<=0)
states: 19,460,988,936 (10)
abstracting: (p2<=2)
states: 57,889,909,008 (10)
.
EG iterations: 1
abstracting: (1<=p11)
states: 603,522,092,808 (11)
abstracting: (1<=p10)
states: 603,522,092,808 (11)
abstracting: (1<=p9)
states: 603,522,092,808 (11)
abstracting: (p8<=0)
states: 19,460,988,936 (10)
abstracting: (p5<=0)
states: 19,468,488,888 (10)
abstracting: (p2<=0)
states: 19,460,988,936 (10)
abstracting: (p6<=0)
states: 19,460,988,936 (10)
abstracting: (p3<=0)
states: 19,468,488,888 (10)
abstracting: (p0<=0)
states: 19,460,988,936 (10)
abstracting: (p7<=0)
states: 19,460,988,936 (10)
abstracting: (p4<=0)
states: 19,468,488,888 (10)
abstracting: (p1<=0)
states: 19,460,988,936 (10)
abstracting: (p14<=0)
states: 402,348,061,872 (11)
abstracting: (p13<=0)
states: 402,348,061,872 (11)
abstracting: (p12<=0)
states: 402,348,061,872 (11)
abstracting: (p8<=0)
states: 19,460,988,936 (10)
abstracting: (p5<=0)
states: 19,468,488,888 (10)
abstracting: (p2<=0)
states: 19,460,988,936 (10)
abstracting: (p6<=0)
states: 19,460,988,936 (10)
abstracting: (p3<=0)
states: 19,468,488,888 (10)
abstracting: (p0<=0)
states: 19,460,988,936 (10)
abstracting: (p7<=0)
states: 19,460,988,936 (10)
abstracting: (p4<=0)
states: 19,468,488,888 (10)
abstracting: (p1<=0)
states: 19,460,988,936 (10)
abstracting: (p12<=0)
states: 402,348,061,872 (11)
abstracting: (p9<=1)
states: 1,207,044,185,616 (12)
abstracting: (p13<=0)
states: 402,348,061,872 (11)
abstracting: (p10<=1)
states: 1,207,044,185,616 (12)
abstracting: (p14<=0)
states: 402,348,061,872 (11)
abstracting: (p11<=1)
states: 1,207,044,185,616 (12)
.-> the formula is TRUE
FORMULA Murphy-COL-D2N100-CTLFireability-03 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
BK_STOP 1680888799253
--------------------
content from stderr:
+ ulimit -s 65536
+ [[ -z '' ]]
+ export LTSMIN_MEM_SIZE=8589934592
+ LTSMIN_MEM_SIZE=8589934592
+ export PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ export LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
+ LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
++ sed s/.jar//
++ perl -pe 's/.*\.//g'
++ ls /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/plugins/fr.lip6.move.gal.application.pnmcc_1.0.0.202304061127.jar
+ VERSION=202304061127
+ echo 'Running Version 202304061127'
+ /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/its-tools -pnfolder /home/mcc/execution -examination CTLFireability -timeout 360 -rebuildPNML
check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.000sec
iterations count:14959 (712), effective:3586 (170)
initing FirstDep: 0m 0.000sec
iterations count:21 (1), effective:0 (0)
iterations count:32 (1), effective:3 (0)
iterations count:4508 (214), effective:897 (42)
iterations count:46 (2), effective:7 (0)
iterations count:5397 (257), effective:1344 (64)
iterations count:5397 (257), effective:1344 (64)
sat_reach.icc:155: Timeout: after 441 sec
iterations count:38 (1), effective:3 (0)
iterations count:45 (2), effective:6 (0)
iterations count:32 (1), effective:3 (0)
iterations count:28 (1), effective:2 (0)
/home/mcc/BenchKit/bin//../reducer/bin//../../marcie/bin//../BenchKit_head.sh: line 16: 562 Killed ${MARCIE} --net-file=model.pnml --mcc-file=${BK_EXAMINATION}.xml ${MARCIE_CONFIG}
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="Murphy-COL-D2N100"
export BK_EXAMINATION="CTLFireability"
export BK_TOOL="marciexred"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marciexred"
echo " Input is Murphy-COL-D2N100, examination is CTLFireability"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r522-tall-167987247200298"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/Murphy-COL-D2N100.tgz
mv Murphy-COL-D2N100 execution
cd execution
if [ "CTLFireability" = "ReachabilityDeadlock" ] || [ "CTLFireability" = "UpperBounds" ] || [ "CTLFireability" = "QuasiLiveness" ] || [ "CTLFireability" = "StableMarking" ] || [ "CTLFireability" = "Liveness" ] || [ "CTLFireability" = "OneSafe" ] || [ "CTLFireability" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLFireability" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLFireability" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLFireability.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLFireability.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLFireability.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "CTLFireability" = "ReachabilityDeadlock" ] || [ "CTLFireability" = "QuasiLiveness" ] || [ "CTLFireability" = "StableMarking" ] || [ "CTLFireability" = "Liveness" ] || [ "CTLFireability" = "OneSafe" ] ; then
echo "FORMULA_NAME CTLFireability"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;