About the Execution of Marcie for PGCD-PT-D02N005
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
5448.216 | 4758.00 | 4900.00 | 50.00 | TFFFFFTFTTTTFFTF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fkordon/mcc2023-input.r513-tall-167987241100433.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2023-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
....................
=====================================================================
Generated by BenchKit 2-5348
Executing tool marcie
Input is PGCD-PT-D02N005, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r513-tall-167987241100433
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 564K
-rw-r--r-- 1 mcc users 8.2K Mar 23 15:26 CTLCardinality.txt
-rw-r--r-- 1 mcc users 92K Mar 23 15:26 CTLCardinality.xml
-rw-r--r-- 1 mcc users 6.5K Mar 23 15:24 CTLFireability.txt
-rw-r--r-- 1 mcc users 67K Mar 23 15:24 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.6K Mar 23 07:07 LTLCardinality.txt
-rw-r--r-- 1 mcc users 31K Mar 23 07:07 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.1K Mar 23 07:07 LTLFireability.txt
-rw-r--r-- 1 mcc users 17K Mar 23 07:07 LTLFireability.xml
-rw-r--r-- 1 mcc users 1 Mar 26 22:42 NewModel
-rw-r--r-- 1 mcc users 19K Mar 23 15:26 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 220K Mar 23 15:26 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 4.9K Mar 23 15:26 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 35K Mar 23 15:26 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.7K Mar 23 07:07 UpperBounds.txt
-rw-r--r-- 1 mcc users 4.3K Mar 23 07:07 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Mar 26 22:42 equiv_col
-rw-r--r-- 1 mcc users 8 Mar 26 22:42 instance
-rw-r--r-- 1 mcc users 6 Mar 26 22:42 iscolored
-rw-r--r-- 1 mcc users 6.7K Mar 26 22:42 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME PGCD-PT-D02N005-CTLCardinality-00
FORMULA_NAME PGCD-PT-D02N005-CTLCardinality-01
FORMULA_NAME PGCD-PT-D02N005-CTLCardinality-02
FORMULA_NAME PGCD-PT-D02N005-CTLCardinality-03
FORMULA_NAME PGCD-PT-D02N005-CTLCardinality-04
FORMULA_NAME PGCD-PT-D02N005-CTLCardinality-05
FORMULA_NAME PGCD-PT-D02N005-CTLCardinality-06
FORMULA_NAME PGCD-PT-D02N005-CTLCardinality-07
FORMULA_NAME PGCD-PT-D02N005-CTLCardinality-08
FORMULA_NAME PGCD-PT-D02N005-CTLCardinality-09
FORMULA_NAME PGCD-PT-D02N005-CTLCardinality-10
FORMULA_NAME PGCD-PT-D02N005-CTLCardinality-11
FORMULA_NAME PGCD-PT-D02N005-CTLCardinality-12
FORMULA_NAME PGCD-PT-D02N005-CTLCardinality-13
FORMULA_NAME PGCD-PT-D02N005-CTLCardinality-14
FORMULA_NAME PGCD-PT-D02N005-CTLCardinality-15
=== Now, execution of the tool begins
BK_START 1679896289645
bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marcie
BK_EXAMINATION=CTLCardinality
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=PGCD-PT-D02N005
Not applying reductions.
Model is PT
CTLCardinality PT
timeout --kill-after=10s --signal=SIGINT 1m for testing only
Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: /home/mcc/BenchKit/bin//../marcie/bin/marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --memory=6 --mcc-mode
parse successfull
net created successfully
Net: PGCD_COL_D2_N5
(NrP: 9 NrTr: 9 NrArc: 42)
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec
net check time: 0m 0.000sec
init dd package: 0m 2.887sec
RS generation: 0m 0.004sec
-> reachability set: #nodes 377 (3.8e+02) #states 8,484 (3)
starting MCC model checker
--------------------------
checking: AG [~ [AG [AX [p1_3<=3]]]]
normalized: ~ [E [true U ~ [E [true U EX [~ [p1_3<=3]]]]]]
abstracting: (p1_3<=3)
states: 5,558 (3)
.-> the formula is FALSE
FORMULA PGCD-PT-D02N005-CTLCardinality-03 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.015sec
checking: ~ [AX [4<=p1_2]]
normalized: EX [~ [4<=p1_2]]
abstracting: (4<=p1_2)
states: 2,926 (3)
.-> the formula is FALSE
FORMULA PGCD-PT-D02N005-CTLCardinality-05 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.001sec
checking: EF [p1_3<=p0_1]
normalized: E [true U p1_3<=p0_1]
abstracting: (p1_3<=p0_1)
states: 4,833 (3)
-> the formula is TRUE
FORMULA PGCD-PT-D02N005-CTLCardinality-08 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.004sec
checking: EX [AX [~ [p0_1<=p2_2]]]
normalized: EX [~ [EX [p0_1<=p2_2]]]
abstracting: (p0_1<=p2_2)
states: 4,710 (3)
..-> the formula is FALSE
FORMULA PGCD-PT-D02N005-CTLCardinality-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.007sec
checking: EF [~ [E [[~ [AG [5<=p2_2]] | ~ [EG [p0_2<=5]]] U AX [p0_2<=1]]]]
normalized: E [true U ~ [E [[~ [EG [p0_2<=5]] | E [true U ~ [5<=p2_2]]] U ~ [EX [~ [p0_2<=1]]]]]]
abstracting: (p0_2<=1)
states: 3,192 (3)
.abstracting: (5<=p2_2)
states: 2,184 (3)
abstracting: (p0_2<=5)
states: 6,832 (3)
.
EG iterations: 1
-> the formula is FALSE
FORMULA PGCD-PT-D02N005-CTLCardinality-01 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.002sec
checking: AX [~ [EG [EG [[AF [4<=p1_2] | A [p1_1<=2 U p1_2<=p0_3]]]]]]
normalized: ~ [EX [EG [EG [[[~ [EG [~ [p1_2<=p0_3]]] & ~ [E [~ [p1_2<=p0_3] U [~ [p1_1<=2] & ~ [p1_2<=p0_3]]]]] | ~ [EG [~ [4<=p1_2]]]]]]]]
abstracting: (4<=p1_2)
states: 2,926 (3)
.
EG iterations: 1
abstracting: (p1_2<=p0_3)
states: 4,833 (3)
abstracting: (p1_1<=2)
states: 4,690 (3)
abstracting: (p1_2<=p0_3)
states: 4,833 (3)
abstracting: (p1_2<=p0_3)
states: 4,833 (3)
..
EG iterations: 2
...
EG iterations: 3
.
EG iterations: 1
.-> the formula is FALSE
FORMULA PGCD-PT-D02N005-CTLCardinality-04 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.012sec
checking: EX [[~ [EG [p2_2<=0]] & [~ [[[p0_3<=2 & p1_3<=4] | EF [3<=p0_2]]] | AX [AF [p0_3<=p1_3]]]]]
normalized: EX [[[~ [EX [EG [~ [p0_3<=p1_3]]]] | ~ [[E [true U 3<=p0_2] | [p0_3<=2 & p1_3<=4]]]] & ~ [EG [p2_2<=0]]]]
abstracting: (p2_2<=0)
states: 1,872 (3)
.
EG iterations: 1
abstracting: (p1_3<=4)
states: 6,410 (3)
abstracting: (p0_3<=2)
states: 4,548 (3)
abstracting: (3<=p0_2)
states: 3,936 (3)
abstracting: (p0_3<=p1_3)
states: 5,160 (3)
.
EG iterations: 1
..-> the formula is TRUE
FORMULA PGCD-PT-D02N005-CTLCardinality-11 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.006sec
checking: [AG [~ [p1_3<=3]] & A [[EF [[EG [p0_3<=2] | p1_2<=0]] | [EF [[~ [p2_1<=0] | AF [4<=p1_2]]] | AG [EF [p1_3<=p1_2]]]] U 5<=p2_2]]
normalized: [[~ [EG [~ [5<=p2_2]]] & ~ [E [~ [5<=p2_2] U [~ [[[~ [E [true U ~ [E [true U p1_3<=p1_2]]]] | E [true U [~ [EG [~ [4<=p1_2]]] | ~ [p2_1<=0]]]] | E [true U [EG [p0_3<=2] | p1_2<=0]]]] & ~ [5<=p2_2]]]]] & ~ [E [true U p1_3<=3]]]
abstracting: (p1_3<=3)
states: 5,558 (3)
abstracting: (5<=p2_2)
states: 2,184 (3)
abstracting: (p1_2<=0)
states: 1,996 (3)
abstracting: (p0_3<=2)
states: 4,548 (3)
.
EG iterations: 1
abstracting: (p2_1<=0)
states: 1,872 (3)
abstracting: (4<=p1_2)
states: 2,926 (3)
.
EG iterations: 1
abstracting: (p1_3<=p1_2)
states: 4,758 (3)
abstracting: (5<=p2_2)
states: 2,184 (3)
abstracting: (5<=p2_2)
states: 2,184 (3)
.
EG iterations: 1
-> the formula is FALSE
FORMULA PGCD-PT-D02N005-CTLCardinality-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.016sec
checking: AG [EF [[AG [[E [p1_2<=0 U p1_1<=p1_1] | [5<=p2_2 | 4<=p2_1]]] | [[EG [p2_1<=1] | AF [p2_1<=p2_2]] & A [EX [p0_3<=5] U EG [1<=p2_1]]]]]]
normalized: ~ [E [true U ~ [E [true U [[[~ [EG [~ [EG [1<=p2_1]]]] & ~ [E [~ [EG [1<=p2_1]] U [~ [EX [p0_3<=5]] & ~ [EG [1<=p2_1]]]]]] & [~ [EG [~ [p2_1<=p2_2]]] | EG [p2_1<=1]]] | ~ [E [true U ~ [[[5<=p2_2 | 4<=p2_1] | E [p1_2<=0 U p1_1<=p1_1]]]]]]]]]]
abstracting: (p1_1<=p1_1)
states: 8,484 (3)
abstracting: (p1_2<=0)
states: 1,996 (3)
abstracting: (4<=p2_1)
states: 3,060 (3)
abstracting: (5<=p2_2)
states: 2,184 (3)
abstracting: (p2_1<=1)
states: 3,192 (3)
.
EG iterations: 1
abstracting: (p2_1<=p2_2)
states: 4,710 (3)
.
EG iterations: 1
abstracting: (1<=p2_1)
states: 6,612 (3)
.
EG iterations: 1
abstracting: (p0_3<=5)
states: 6,832 (3)
.abstracting: (1<=p2_1)
states: 6,612 (3)
.
EG iterations: 1
abstracting: (1<=p2_1)
states: 6,612 (3)
.
EG iterations: 1
.
EG iterations: 1
-> the formula is TRUE
FORMULA PGCD-PT-D02N005-CTLCardinality-00 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.014sec
checking: EF [~ [E [[[EG [5<=p1_1] | [AG [p2_1<=p0_2] | [p1_2<=p1_2 | p2_1<=p0_3]]] | AX [[p2_3<=4 | p1_2<=p2_2]]] U [AX [~ [p0_3<=3]] | p2_1<=p2_1]]]]
normalized: E [true U ~ [E [[~ [EX [~ [[p2_3<=4 | p1_2<=p2_2]]]] | [[[p1_2<=p1_2 | p2_1<=p0_3] | ~ [E [true U ~ [p2_1<=p0_2]]]] | EG [5<=p1_1]]] U [~ [EX [p0_3<=3]] | p2_1<=p2_1]]]]
abstracting: (p2_1<=p2_1)
states: 8,484 (3)
abstracting: (p0_3<=3)
states: 5,424 (3)
.abstracting: (5<=p1_1)
states: 2,074 (3)
..
EG iterations: 2
abstracting: (p2_1<=p0_2)
states: 4,710 (3)
abstracting: (p2_1<=p0_3)
states: 4,710 (3)
abstracting: (p1_2<=p1_2)
states: 8,484 (3)
abstracting: (p1_2<=p2_2)
states: 5,320 (3)
abstracting: (p2_3<=4)
states: 6,300 (3)
.-> the formula is FALSE
FORMULA PGCD-PT-D02N005-CTLCardinality-02 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.007sec
checking: AX [[[AG [[p0_1<=3 | [5<=p1_3 & 1<=p1_1]]] & EF [EF [EG [p0_2<=p1_1]]]] & [~ [[~ [EX [p0_2<=p0_3]] | ~ [p0_1<=5]]] & [EG [A [4<=p0_2 U 1<=p1_1]] & EF [[~ [p1_1<=3] & E [4<=p0_1 U p2_3<=p1_2]]]]]]]
normalized: ~ [EX [~ [[[E [true U E [true U EG [p0_2<=p1_1]]] & ~ [E [true U ~ [[[5<=p1_3 & 1<=p1_1] | p0_1<=3]]]]] & [[E [true U [E [4<=p0_1 U p2_3<=p1_2] & ~ [p1_1<=3]]] & EG [[~ [EG [~ [1<=p1_1]]] & ~ [E [~ [1<=p1_1] U [~ [4<=p0_2] & ~ [1<=p1_1]]]]]]] & ~ [[~ [p0_1<=5] | ~ [EX [p0_2<=p0_3]]]]]]]]]
abstracting: (p0_2<=p0_3)
states: 4,710 (3)
.abstracting: (p0_1<=5)
states: 6,832 (3)
abstracting: (1<=p1_1)
states: 6,488 (3)
abstracting: (4<=p0_2)
states: 3,060 (3)
abstracting: (1<=p1_1)
states: 6,488 (3)
abstracting: (1<=p1_1)
states: 6,488 (3)
....
EG iterations: 4
..
EG iterations: 2
abstracting: (p1_1<=3)
states: 5,558 (3)
abstracting: (p2_3<=p1_2)
states: 4,666 (3)
abstracting: (4<=p0_1)
states: 3,060 (3)
abstracting: (p0_1<=3)
states: 5,424 (3)
abstracting: (1<=p1_1)
states: 6,488 (3)
abstracting: (5<=p1_3)
states: 2,074 (3)
abstracting: (p0_2<=p1_1)
states: 4,666 (3)
...
EG iterations: 3
.-> the formula is FALSE
FORMULA PGCD-PT-D02N005-CTLCardinality-07 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.030sec
checking: EX [[[[AG [AG [5<=p2_1]] & [1<=p0_3 & [p1_1<=p2_2 | E [p0_3<=5 U p0_1<=p2_1]]]] | EX [[[~ [5<=p2_3] & p2_1<=p0_1] | AG [3<=p1_2]]]] & EX [[EF [2<=p1_1] | A [~ [p0_2<=p0_3] U [p1_1<=5 | 3<=p2_2]]]]]]
normalized: EX [[EX [[[~ [EG [~ [[p1_1<=5 | 3<=p2_2]]]] & ~ [E [~ [[p1_1<=5 | 3<=p2_2]] U [p0_2<=p0_3 & ~ [[p1_1<=5 | 3<=p2_2]]]]]] | E [true U 2<=p1_1]]] & [EX [[~ [E [true U ~ [3<=p1_2]]] | [p2_1<=p0_1 & ~ [5<=p2_3]]]] | [[1<=p0_3 & [p1_1<=p2_2 | E [p0_3<=5 U p0_1<=p2_1]]] & ~ [E [true U E [true U ~ [5<=p2_1]]]]]]]]
abstracting: (5<=p2_1)
states: 2,184 (3)
abstracting: (p0_1<=p2_1)
states: 8,484 (3)
abstracting: (p0_3<=5)
states: 6,832 (3)
abstracting: (p1_1<=p2_2)
states: 4,833 (3)
abstracting: (1<=p0_3)
states: 6,612 (3)
abstracting: (5<=p2_3)
states: 2,184 (3)
abstracting: (p2_1<=p0_1)
states: 8,484 (3)
abstracting: (3<=p1_2)
states: 3,794 (3)
.abstracting: (2<=p1_1)
states: 5,132 (3)
abstracting: (3<=p2_2)
states: 3,936 (3)
abstracting: (p1_1<=5)
states: 6,935 (3)
abstracting: (p0_2<=p0_3)
states: 4,710 (3)
abstracting: (3<=p2_2)
states: 3,936 (3)
abstracting: (p1_1<=5)
states: 6,935 (3)
abstracting: (3<=p2_2)
states: 3,936 (3)
abstracting: (p1_1<=5)
states: 6,935 (3)
...
EG iterations: 3
..-> the formula is TRUE
FORMULA PGCD-PT-D02N005-CTLCardinality-10 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.012sec
checking: AX [[p2_1<=1 | [p0_2<=1 & [[AG [A [5<=p2_3 U p0_3<=5]] & [EX [p1_2<=p1_2] & AX [p2_2<=2]]] & [~ [[EG [5<=p0_3] & [p0_2<=p0_1 & 3<=p0_2]]] | [E [p0_2<=p2_3 U p0_3<=p0_3] & E [p1_3<=p1_1 U p2_3<=4]]]]]]]
normalized: ~ [EX [~ [[p2_1<=1 | [p0_2<=1 & [[[E [p1_3<=p1_1 U p2_3<=4] & E [p0_2<=p2_3 U p0_3<=p0_3]] | ~ [[[p0_2<=p0_1 & 3<=p0_2] & EG [5<=p0_3]]]] & [[~ [EX [~ [p2_2<=2]]] & EX [p1_2<=p1_2]] & ~ [E [true U ~ [[~ [EG [~ [p0_3<=5]]] & ~ [E [~ [p0_3<=5] U [~ [5<=p2_3] & ~ [p0_3<=5]]]]]]]]]]]]]]]
abstracting: (p0_3<=5)
states: 6,832 (3)
abstracting: (5<=p2_3)
states: 2,184 (3)
abstracting: (p0_3<=5)
states: 6,832 (3)
abstracting: (p0_3<=5)
states: 6,832 (3)
..
EG iterations: 2
abstracting: (p1_2<=p1_2)
states: 8,484 (3)
.abstracting: (p2_2<=2)
states: 4,548 (3)
.abstracting: (5<=p0_3)
states: 2,184 (3)
.
EG iterations: 1
abstracting: (3<=p0_2)
states: 3,936 (3)
abstracting: (p0_2<=p0_1)
states: 4,710 (3)
abstracting: (p0_3<=p0_3)
states: 8,484 (3)
abstracting: (p0_2<=p2_3)
states: 4,710 (3)
abstracting: (p2_3<=4)
states: 6,300 (3)
abstracting: (p1_3<=p1_1)
states: 4,758 (3)
abstracting: (p0_2<=1)
states: 3,192 (3)
abstracting: (p2_1<=1)
states: 3,192 (3)
.-> the formula is FALSE
FORMULA PGCD-PT-D02N005-CTLCardinality-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.011sec
checking: E [[[E [[AF [p0_3<=p1_3] & EG [4<=p2_1]] U [[[p2_3<=0 | p0_3<=p1_3] & [5<=p2_1 & p1_1<=p1_3]] & [AF [p0_3<=1] & ~ [p1_2<=3]]]] | [[~ [AX [p0_3<=5]] & AX [EG [p2_3<=p0_3]]] | EG [[p1_3<=p0_2 & [p1_2<=p2_3 | p2_3<=p0_3]]]]] | [~ [E [EG [3<=p1_2] U [3<=p0_3 & AF [p2_3<=p1_1]]]] | 2<=p0_2]] U p0_3<=4]
normalized: E [[[2<=p0_2 | ~ [E [EG [3<=p1_2] U [3<=p0_3 & ~ [EG [~ [p2_3<=p1_1]]]]]]] | [[EG [[p1_3<=p0_2 & [p1_2<=p2_3 | p2_3<=p0_3]]] | [~ [EX [~ [EG [p2_3<=p0_3]]]] & EX [~ [p0_3<=5]]]] | E [[EG [4<=p2_1] & ~ [EG [~ [p0_3<=p1_3]]]] U [[~ [p1_2<=3] & ~ [EG [~ [p0_3<=1]]]] & [[5<=p2_1 & p1_1<=p1_3] & [p2_3<=0 | p0_3<=p1_3]]]]]] U p0_3<=4]
abstracting: (p0_3<=4)
states: 6,300 (3)
abstracting: (p0_3<=p1_3)
states: 5,160 (3)
abstracting: (p2_3<=0)
states: 1,872 (3)
abstracting: (p1_1<=p1_3)
states: 4,758 (3)
abstracting: (5<=p2_1)
states: 2,184 (3)
abstracting: (p0_3<=1)
states: 3,192 (3)
.
EG iterations: 1
abstracting: (p1_2<=3)
states: 5,558 (3)
abstracting: (p0_3<=p1_3)
states: 5,160 (3)
.
EG iterations: 1
abstracting: (4<=p2_1)
states: 3,060 (3)
..
EG iterations: 2
abstracting: (p0_3<=5)
states: 6,832 (3)
.abstracting: (p2_3<=p0_3)
states: 8,484 (3)
EG iterations: 0
.abstracting: (p2_3<=p0_3)
states: 8,484 (3)
abstracting: (p1_2<=p2_3)
states: 4,833 (3)
abstracting: (p1_3<=p0_2)
states: 4,833 (3)
..
EG iterations: 2
abstracting: (p2_3<=p1_1)
states: 4,666 (3)
.
EG iterations: 1
abstracting: (3<=p0_3)
states: 3,936 (3)
abstracting: (3<=p1_2)
states: 3,794 (3)
..
EG iterations: 2
abstracting: (2<=p0_2)
states: 5,292 (3)
-> the formula is TRUE
FORMULA PGCD-PT-D02N005-CTLCardinality-14 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.020sec
checking: [EF [EX [A [A [5<=p1_2 U 4<=p0_2] U p0_2<=5]]] | [A [p1_3<=p2_1 U [[~ [[p2_3<=p1_3 | 4<=p1_1]] | EG [A [p2_2<=p2_2 U 4<=p2_3]]] & [[[EX [p1_2<=p0_3] & EF [p0_1<=p0_1]] | AX [p2_3<=p0_3]] | ~ [[p0_1<=5 & [p0_2<=p0_1 & p2_1<=1]]]]]] | [AG [[p0_3<=p1_3 | ~ [EG [p1_3<=p2_2]]]] | ~ [[EG [[A [p0_3<=p0_2 U 4<=p0_3] & [5<=p0_2 | p2_1<=2]]] | [EX [AG [p0_2<=4]] | AX [3<=p0_1]]]]]]]
normalized: [[[~ [[[~ [EX [~ [3<=p0_1]]] | EX [~ [E [true U ~ [p0_2<=4]]]]] | EG [[[5<=p0_2 | p2_1<=2] & [~ [EG [~ [4<=p0_3]]] & ~ [E [~ [4<=p0_3] U [~ [p0_3<=p0_2] & ~ [4<=p0_3]]]]]]]]] | ~ [E [true U ~ [[p0_3<=p1_3 | ~ [EG [p1_3<=p2_2]]]]]]] | [~ [EG [~ [[[~ [[p0_1<=5 & [p0_2<=p0_1 & p2_1<=1]]] | [~ [EX [~ [p2_3<=p0_3]]] | [E [true U p0_1<=p0_1] & EX [p1_2<=p0_3]]]] & [EG [[~ [EG [~ [4<=p2_3]]] & ~ [E [~ [4<=p2_3] U [~ [p2_2<=p2_2] & ~ [4<=p2_3]]]]]] | ~ [[p2_3<=p1_3 | 4<=p1_1]]]]]]] & ~ [E [~ [[[~ [[p0_1<=5 & [p0_2<=p0_1 & p2_1<=1]]] | [~ [EX [~ [p2_3<=p0_3]]] | [E [true U p0_1<=p0_1] & EX [p1_2<=p0_3]]]] & [EG [[~ [EG [~ [4<=p2_3]]] & ~ [E [~ [4<=p2_3] U [~ [p2_2<=p2_2] & ~ [4<=p2_3]]]]]] | ~ [[p2_3<=p1_3 | 4<=p1_1]]]]] U [~ [p1_3<=p2_1] & ~ [[[~ [[p0_1<=5 & [p0_2<=p0_1 & p2_1<=1]]] | [~ [EX [~ [p2_3<=p0_3]]] | [E [true U p0_1<=p0_1] & EX [p1_2<=p0_3]]]] & [EG [[~ [EG [~ [4<=p2_3]]] & ~ [E [~ [4<=p2_3] U [~ [p2_2<=p2_2] & ~ [4<=p2_3]]]]]] | ~ [[p2_3<=p1_3 | 4<=p1_1]]]]]]]]]] | E [true U EX [[~ [EG [~ [p0_2<=5]]] & ~ [E [~ [p0_2<=5] U [~ [[~ [EG [~ [4<=p0_2]]] & ~ [E [~ [4<=p0_2] U [~ [5<=p1_2] & ~ [4<=p0_2]]]]]] & ~ [p0_2<=5]]]]]]]]
abstracting: (p0_2<=5)
states: 6,832 (3)
abstracting: (4<=p0_2)
states: 3,060 (3)
abstracting: (5<=p1_2)
states: 2,074 (3)
abstracting: (4<=p0_2)
states: 3,060 (3)
abstracting: (4<=p0_2)
states: 3,060 (3)
.
EG iterations: 1
abstracting: (p0_2<=5)
states: 6,832 (3)
abstracting: (p0_2<=5)
states: 6,832 (3)
..
EG iterations: 2
.abstracting: (4<=p1_1)
states: 2,926 (3)
abstracting: (p2_3<=p1_3)
states: 5,160 (3)
abstracting: (4<=p2_3)
states: 3,060 (3)
abstracting: (p2_2<=p2_2)
states: 8,484 (3)
abstracting: (4<=p2_3)
states: 3,060 (3)
abstracting: (4<=p2_3)
states: 3,060 (3)
.
EG iterations: 1
..
EG iterations: 2
abstracting: (p1_2<=p0_3)
states: 4,833 (3)
.abstracting: (p0_1<=p0_1)
states: 8,484 (3)
abstracting: (p2_3<=p0_3)
states: 8,484 (3)
.abstracting: (p2_1<=1)
states: 3,192 (3)
abstracting: (p0_2<=p0_1)
states: 4,710 (3)
abstracting: (p0_1<=5)
states: 6,832 (3)
abstracting: (p1_3<=p2_1)
states: 4,833 (3)
abstracting: (4<=p1_1)
states: 2,926 (3)
abstracting: (p2_3<=p1_3)
states: 5,160 (3)
abstracting: (4<=p2_3)
states: 3,060 (3)
abstracting: (p2_2<=p2_2)
states: 8,484 (3)
abstracting: (4<=p2_3)
states: 3,060 (3)
abstracting: (4<=p2_3)
states: 3,060 (3)
.
EG iterations: 1
..
EG iterations: 2
abstracting: (p1_2<=p0_3)
states: 4,833 (3)
.abstracting: (p0_1<=p0_1)
states: 8,484 (3)
abstracting: (p2_3<=p0_3)
states: 8,484 (3)
.abstracting: (p2_1<=1)
states: 3,192 (3)
abstracting: (p0_2<=p0_1)
states: 4,710 (3)
abstracting: (p0_1<=5)
states: 6,832 (3)
abstracting: (4<=p1_1)
states: 2,926 (3)
abstracting: (p2_3<=p1_3)
states: 5,160 (3)
abstracting: (4<=p2_3)
states: 3,060 (3)
abstracting: (p2_2<=p2_2)
states: 8,484 (3)
abstracting: (4<=p2_3)
states: 3,060 (3)
abstracting: (4<=p2_3)
states: 3,060 (3)
.
EG iterations: 1
..
EG iterations: 2
abstracting: (p1_2<=p0_3)
states: 4,833 (3)
.abstracting: (p0_1<=p0_1)
states: 8,484 (3)
abstracting: (p2_3<=p0_3)
states: 8,484 (3)
.abstracting: (p2_1<=1)
states: 3,192 (3)
abstracting: (p0_2<=p0_1)
states: 4,710 (3)
abstracting: (p0_1<=5)
states: 6,832 (3)
..
EG iterations: 2
abstracting: (p1_3<=p2_2)
states: 4,833 (3)
..
EG iterations: 2
abstracting: (p0_3<=p1_3)
states: 5,160 (3)
abstracting: (4<=p0_3)
states: 3,060 (3)
abstracting: (p0_3<=p0_2)
states: 4,710 (3)
abstracting: (4<=p0_3)
states: 3,060 (3)
abstracting: (4<=p0_3)
states: 3,060 (3)
.
EG iterations: 1
abstracting: (p2_1<=2)
states: 4,548 (3)
abstracting: (5<=p0_2)
states: 2,184 (3)
..
EG iterations: 2
abstracting: (p0_2<=4)
states: 6,300 (3)
.abstracting: (3<=p0_1)
states: 3,936 (3)
.-> the formula is TRUE
FORMULA PGCD-PT-D02N005-CTLCardinality-09 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.026sec
checking: E [[[~ [[[EF [p2_2<=2] | [[p2_1<=p2_2 | p2_2<=p1_2] & [5<=p1_2 | 4<=p2_1]]] & p1_3<=1]] | [[5<=p1_3 & EF [A [p1_3<=p0_2 U p1_2<=3]]] & A [[[p1_1<=1 & p0_2<=p1_3] | EF [2<=p1_1]] U [1<=p1_2 & [p1_2<=5 | p2_3<=p1_3]]]]] & AX [[[3<=p1_3 | [p2_3<=p0_1 | p0_1<=p0_2]] | [~ [[5<=p2_1 | 1<=p0_2]] & 5<=p2_2]]]] U [[~ [p1_2<=5] & [[E [~ [p1_3<=p2_2] U AG [p0_3<=1]] & AX [[p1_3<=2 & p2_2<=5]]] | EF [[[p0_1<=p2_3 | 2<=p2_2] & AF [p1_1<=2]]]]] | ~ [AG [[[A [p0_1<=2 U 1<=p0_1] & [p0_2<=4 | p1_2<=p2_3]] & p0_1<=4]]]]]
normalized: E [[~ [EX [~ [[[5<=p2_2 & ~ [[5<=p2_1 | 1<=p0_2]]] | [3<=p1_3 | [p2_3<=p0_1 | p0_1<=p0_2]]]]]] & [[[~ [EG [~ [[1<=p1_2 & [p1_2<=5 | p2_3<=p1_3]]]]] & ~ [E [~ [[1<=p1_2 & [p1_2<=5 | p2_3<=p1_3]]] U [~ [[E [true U 2<=p1_1] | [p1_1<=1 & p0_2<=p1_3]]] & ~ [[1<=p1_2 & [p1_2<=5 | p2_3<=p1_3]]]]]]] & [5<=p1_3 & E [true U [~ [EG [~ [p1_2<=3]]] & ~ [E [~ [p1_2<=3] U [~ [p1_3<=p0_2] & ~ [p1_2<=3]]]]]]]] | ~ [[p1_3<=1 & [[[5<=p1_2 | 4<=p2_1] & [p2_1<=p2_2 | p2_2<=p1_2]] | E [true U p2_2<=2]]]]]] U [E [true U ~ [[p0_1<=4 & [[p0_2<=4 | p1_2<=p2_3] & [~ [EG [~ [1<=p0_1]]] & ~ [E [~ [1<=p0_1] U [~ [p0_1<=2] & ~ [1<=p0_1]]]]]]]]] | [[E [true U [~ [EG [~ [p1_1<=2]]] & [p0_1<=p2_3 | 2<=p2_2]]] | [~ [EX [~ [[p1_3<=2 & p2_2<=5]]]] & E [~ [p1_3<=p2_2] U ~ [E [true U ~ [p0_3<=1]]]]]] & ~ [p1_2<=5]]]]
abstracting: (p1_2<=5)
states: 6,935 (3)
abstracting: (p0_3<=1)
states: 3,192 (3)
abstracting: (p1_3<=p2_2)
states: 4,833 (3)
abstracting: (p2_2<=5)
states: 6,832 (3)
abstracting: (p1_3<=2)
states: 4,690 (3)
.abstracting: (2<=p2_2)
states: 5,292 (3)
abstracting: (p0_1<=p2_3)
states: 4,710 (3)
abstracting: (p1_1<=2)
states: 4,690 (3)
..
EG iterations: 2
abstracting: (1<=p0_1)
states: 6,612 (3)
abstracting: (p0_1<=2)
states: 4,548 (3)
abstracting: (1<=p0_1)
states: 6,612 (3)
abstracting: (1<=p0_1)
states: 6,612 (3)
.
EG iterations: 1
abstracting: (p1_2<=p2_3)
states: 4,833 (3)
abstracting: (p0_2<=4)
states: 6,300 (3)
abstracting: (p0_1<=4)
states: 6,300 (3)
abstracting: (p2_2<=2)
states: 4,548 (3)
abstracting: (p2_2<=p1_2)
states: 5,160 (3)
abstracting: (p2_1<=p2_2)
states: 4,710 (3)
abstracting: (4<=p2_1)
states: 3,060 (3)
abstracting: (5<=p1_2)
states: 2,074 (3)
abstracting: (p1_3<=1)
states: 3,352 (3)
abstracting: (p1_2<=3)
states: 5,558 (3)
abstracting: (p1_3<=p0_2)
states: 4,833 (3)
abstracting: (p1_2<=3)
states: 5,558 (3)
abstracting: (p1_2<=3)
states: 5,558 (3)
..
EG iterations: 2
abstracting: (5<=p1_3)
states: 2,074 (3)
abstracting: (p2_3<=p1_3)
states: 5,160 (3)
abstracting: (p1_2<=5)
states: 6,935 (3)
abstracting: (1<=p1_2)
states: 6,488 (3)
abstracting: (p0_2<=p1_3)
states: 4,666 (3)
abstracting: (p1_1<=1)
states: 3,352 (3)
abstracting: (2<=p1_1)
states: 5,132 (3)
abstracting: (p2_3<=p1_3)
states: 5,160 (3)
abstracting: (p1_2<=5)
states: 6,935 (3)
abstracting: (1<=p1_2)
states: 6,488 (3)
abstracting: (p2_3<=p1_3)
states: 5,160 (3)
abstracting: (p1_2<=5)
states: 6,935 (3)
abstracting: (1<=p1_2)
states: 6,488 (3)
....
EG iterations: 4
abstracting: (p0_1<=p0_2)
states: 4,710 (3)
abstracting: (p2_3<=p0_1)
states: 4,710 (3)
abstracting: (3<=p1_3)
states: 3,794 (3)
abstracting: (1<=p0_2)
states: 6,612 (3)
abstracting: (5<=p2_1)
states: 2,184 (3)
abstracting: (5<=p2_2)
states: 2,184 (3)
.-> the formula is TRUE
FORMULA PGCD-PT-D02N005-CTLCardinality-06 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.031sec
totally nodes used: 62785 (6.3e+04)
number of garbage collections: 0
fire ops cache: hits/miss/sum: 361445 148397 509842
used/not used/entry size/cache size: 194265 66914599 16 1024MB
basic ops cache: hits/miss/sum: 167665 97752 265417
used/not used/entry size/cache size: 170407 16606809 12 192MB
unary ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 8 128MB
abstract ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 12 192MB
state nr cache: hits/miss/sum: 15687 6485 22172
used/not used/entry size/cache size: 6485 8382123 32 256MB
max state cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 8388608 32 256MB
uniqueHash elements/entry size/size: 67108864 4 256MB
0 67057464
1 46629
2 2944
3 769
4 383
5 179
6 108
7 81
8 62
9 56
>= 10 189
Total processing time: 0m 4.712sec
BK_STOP 1679896294403
--------------------
content from stderr:
check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.000sec
iterations count:486 (54), effective:159 (17)
initing FirstDep: 0m 0.000sec
iterations count:120 (13), effective:33 (3)
iterations count:348 (38), effective:104 (11)
iterations count:54 (6), effective:19 (2)
iterations count:72 (8), effective:14 (1)
iterations count:116 (12), effective:26 (2)
iterations count:160 (17), effective:45 (5)
iterations count:95 (10), effective:27 (3)
iterations count:59 (6), effective:17 (1)
iterations count:51 (5), effective:14 (1)
iterations count:24 (2), effective:4 (0)
iterations count:121 (13), effective:37 (4)
iterations count:420 (46), effective:120 (13)
iterations count:9 (1), effective:0 (0)
iterations count:63 (7), effective:16 (1)
iterations count:9 (1), effective:0 (0)
iterations count:108 (12), effective:34 (3)
iterations count:9 (1), effective:0 (0)
iterations count:76 (8), effective:15 (1)
iterations count:86 (9), effective:24 (2)
iterations count:106 (11), effective:31 (3)
iterations count:58 (6), effective:21 (2)
iterations count:116 (12), effective:34 (3)
iterations count:9 (1), effective:0 (0)
iterations count:37 (4), effective:14 (1)
iterations count:9 (1), effective:0 (0)
iterations count:9 (1), effective:0 (0)
iterations count:151 (16), effective:38 (4)
iterations count:51 (5), effective:12 (1)
iterations count:16 (1), effective:2 (0)
iterations count:131 (14), effective:38 (4)
iterations count:9 (1), effective:0 (0)
iterations count:64 (7), effective:20 (2)
iterations count:121 (13), effective:43 (4)
iterations count:237 (26), effective:78 (8)
iterations count:51 (5), effective:14 (1)
iterations count:129 (14), effective:32 (3)
iterations count:63 (7), effective:12 (1)
iterations count:9 (1), effective:0 (0)
iterations count:9 (1), effective:0 (0)
iterations count:137 (15), effective:52 (5)
iterations count:9 (1), effective:0 (0)
iterations count:69 (7), effective:21 (2)
iterations count:123 (13), effective:30 (3)
iterations count:173 (19), effective:52 (5)
iterations count:28 (3), effective:5 (0)
iterations count:519 (57), effective:148 (16)
iterations count:87 (9), effective:37 (4)
iterations count:60 (6), effective:18 (2)
iterations count:81 (9), effective:16 (1)
iterations count:122 (13), effective:32 (3)
iterations count:148 (16), effective:38 (4)
iterations count:51 (5), effective:12 (1)
iterations count:9 (1), effective:0 (0)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="PGCD-PT-D02N005"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marcie"
echo " Input is PGCD-PT-D02N005, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r513-tall-167987241100433"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/PGCD-PT-D02N005.tgz
mv PGCD-PT-D02N005 execution
cd execution
if [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "UpperBounds" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] || [ "CTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME CTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;