About the Execution of Marcie for PGCD-COL-D02N100
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
12858.739 | 3600000.00 | 3597920.00 | 120.00 | T??F?FFFT??TF??? | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fkordon/mcc2023-input.r513-tall-167987241000398.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2023-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
.......................................................................
=====================================================================
Generated by BenchKit 2-5348
Executing tool marcie
Input is PGCD-COL-D02N100, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r513-tall-167987241000398
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 380K
-rw-r--r-- 1 mcc users 5.8K Mar 23 15:25 CTLCardinality.txt
-rw-r--r-- 1 mcc users 59K Mar 23 15:25 CTLCardinality.xml
-rw-r--r-- 1 mcc users 4.7K Mar 23 15:21 CTLFireability.txt
-rw-r--r-- 1 mcc users 43K Mar 23 15:21 CTLFireability.xml
-rw-r--r-- 1 mcc users 3.3K Mar 23 07:07 LTLCardinality.txt
-rw-r--r-- 1 mcc users 24K Mar 23 07:07 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.0K Mar 23 07:07 LTLFireability.txt
-rw-r--r-- 1 mcc users 17K Mar 23 07:07 LTLFireability.xml
-rw-r--r-- 1 mcc users 1 Mar 26 22:42 NewModel
-rw-r--r-- 1 mcc users 7.5K Mar 23 15:28 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 77K Mar 23 15:28 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 7.7K Mar 23 15:27 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 71K Mar 23 15:27 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.6K Mar 23 07:07 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.6K Mar 23 07:07 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Mar 26 22:42 equiv_pt
-rw-r--r-- 1 mcc users 8 Mar 26 22:42 instance
-rw-r--r-- 1 mcc users 5 Mar 26 22:42 iscolored
-rw-r--r-- 1 mcc users 16K Mar 26 22:42 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME PGCD-COL-D02N100-ReachabilityCardinality-00
FORMULA_NAME PGCD-COL-D02N100-ReachabilityCardinality-01
FORMULA_NAME PGCD-COL-D02N100-ReachabilityCardinality-02
FORMULA_NAME PGCD-COL-D02N100-ReachabilityCardinality-03
FORMULA_NAME PGCD-COL-D02N100-ReachabilityCardinality-04
FORMULA_NAME PGCD-COL-D02N100-ReachabilityCardinality-05
FORMULA_NAME PGCD-COL-D02N100-ReachabilityCardinality-06
FORMULA_NAME PGCD-COL-D02N100-ReachabilityCardinality-07
FORMULA_NAME PGCD-COL-D02N100-ReachabilityCardinality-08
FORMULA_NAME PGCD-COL-D02N100-ReachabilityCardinality-09
FORMULA_NAME PGCD-COL-D02N100-ReachabilityCardinality-10
FORMULA_NAME PGCD-COL-D02N100-ReachabilityCardinality-11
FORMULA_NAME PGCD-COL-D02N100-ReachabilityCardinality-12
FORMULA_NAME PGCD-COL-D02N100-ReachabilityCardinality-13
FORMULA_NAME PGCD-COL-D02N100-ReachabilityCardinality-14
FORMULA_NAME PGCD-COL-D02N100-ReachabilityCardinality-15
=== Now, execution of the tool begins
BK_START 1679895729909
bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marcie
BK_EXAMINATION=ReachabilityCardinality
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=PGCD-COL-D02N100
Not applying reductions.
Model is COL
ReachabilityCardinality COL
timeout --kill-after=10s --signal=SIGINT 1m for testing only
Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: /home/mcc/BenchKit/bin//../marcie/bin/marcie --net-file=model.pnml --mcc-file=ReachabilityCardinality.xml --memory=6 --mcc-mode
parse successfull
net created successfully
Unfolding complete |P|=9|T|=9|A|=42
Time for unfolding: 0m 0.212sec
Net: PGCD_COL_D2_N100
(NrP: 9 NrTr: 9 NrArc: 42)
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec
net check time: 0m 0.000sec
init dd package: 0m 2.869sec
RS generation: 0m13.131sec
-> reachability set: #nodes 49631 (5.0e+04) #states 5,588,167,526 (9)
starting MCC model checker
--------------------------
checking: EF [~ [sum(p2_c2, p2_c1, p2_c0)<=90]]
normalized: E [true U ~ [sum(p2_c2, p2_c1, p2_c0)<=90]]
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=90)
states: 916,003,431 (8)
-> the formula is TRUE
FORMULA PGCD-COL-D02N100-ReachabilityCardinality-00 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m54.313sec
checking: AG [sum(p0_c2, p0_c1, p0_c0)<=0]
normalized: ~ [E [true U ~ [sum(p0_c2, p0_c1, p0_c0)<=0]]]
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=0)
states: 0
-> the formula is FALSE
FORMULA PGCD-COL-D02N100-ReachabilityCardinality-03 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 3.112sec
checking: AG [39<=sum(p2_c2, p2_c1, p2_c0)]
normalized: ~ [E [true U ~ [39<=sum(p2_c2, p2_c1, p2_c0)]]]
abstracting: (39<=sum(p2_c2, p2_c1, p2_c0))
states: 5,486,673,206 (9)
MC time: 4m15.780sec
checking: AG [sum(p2_c2, p2_c1, p2_c0)<=9]
normalized: ~ [E [true U ~ [sum(p2_c2, p2_c1, p2_c0)<=9]]]
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=9)
states: 2,387,046 (6)
-> the formula is FALSE
FORMULA PGCD-COL-D02N100-ReachabilityCardinality-07 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 4.094sec
checking: EF [34<=sum(p1_c2, p1_c1, p1_c0)]
normalized: E [true U 34<=sum(p1_c2, p1_c1, p1_c0)]
abstracting: (34<=sum(p1_c2, p1_c1, p1_c0))
states: 5,518,312,214 (9)
-> the formula is TRUE
FORMULA PGCD-COL-D02N100-ReachabilityCardinality-08 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m12.348sec
checking: EF [22<=sum(p0_c2, p0_c1, p0_c0)]
normalized: E [true U 22<=sum(p0_c2, p0_c1, p0_c0)]
abstracting: (22<=sum(p0_c2, p0_c1, p0_c0))
states: 5,567,130,448 (9)
-> the formula is TRUE
FORMULA PGCD-COL-D02N100-ReachabilityCardinality-11 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 5.196sec
checking: AG [~ [83<=sum(p2_c2, p2_c1, p2_c0)]]
normalized: ~ [E [true U 83<=sum(p2_c2, p2_c1, p2_c0)]]
abstracting: (83<=sum(p2_c2, p2_c1, p2_c0))
states: 4,856,085,017 (9)
-> the formula is FALSE
FORMULA PGCD-COL-D02N100-ReachabilityCardinality-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m27.362sec
checking: EF [sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0)]
normalized: E [true U sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0)]
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0))
MC time: 5m23.000sec
checking: EF [sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)]
normalized: E [true U sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)]
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0))
MC time: 4m50.000sec
checking: EF [sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0)]
normalized: E [true U sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0)]
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0))
MC time: 4m21.001sec
checking: AG [[54<=sum(p1_c2, p1_c1, p1_c0) & ~ [[[~ [[[sum(p0_c2, p0_c1, p0_c0)<=38 | [sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0) & sum(p1_c2, p1_c1, p1_c0)<=19]] | 33<=sum(p0_c2, p0_c1, p0_c0)]] & ~ [sum(p0_c2, p0_c1, p0_c0)<=86]] | 62<=sum(p2_c2, p2_c1, p2_c0)]]]]
normalized: ~ [E [true U ~ [[54<=sum(p1_c2, p1_c1, p1_c0) & ~ [[62<=sum(p2_c2, p2_c1, p2_c0) | [~ [[33<=sum(p0_c2, p0_c1, p0_c0) | [sum(p0_c2, p0_c1, p0_c0)<=38 | [sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0) & sum(p1_c2, p1_c1, p1_c0)<=19]]]] & ~ [sum(p0_c2, p0_c1, p0_c0)<=86]]]]]]]]
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=86)
states: 821,550,220 (8)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=19)
states: 16,208,236 (7)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 5,588,167,526 (9)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=38)
states: 101,494,320 (8)
abstracting: (33<=sum(p0_c2, p0_c1, p0_c0))
states: 5,523,840,532 (9)
abstracting: (62<=sum(p2_c2, p2_c1, p2_c0))
states: 5,238,856,656 (9)
abstracting: (54<=sum(p1_c2, p1_c1, p1_c0))
states: 5,344,981,478 (9)
-> the formula is FALSE
FORMULA PGCD-COL-D02N100-ReachabilityCardinality-05 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m34.613sec
checking: AG [~ [[[[[[[[sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0) | sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0)] | ~ [sum(p2_c2, p2_c1, p2_c0)<=60]] | ~ [[sum(p2_c2, p2_c1, p2_c0)<=58 | sum(p0_c2, p0_c1, p0_c0)<=92]]] & ~ [[sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0) & ~ [sum(p1_c2, p1_c1, p1_c0)<=86]]]] | [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) & [[[sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) | sum(p1_c2, p1_c1, p1_c0)<=8] | [sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0) & 30<=sum(p2_c2, p2_c1, p2_c0)]] & [[51<=sum(p0_c2, p0_c1, p0_c0) & sum(p0_c2, p0_c1, p0_c0)<=74] | ~ [sum(p0_c2, p0_c1, p0_c0)<=39]]]]] | sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0)] & 69<=sum(p2_c2, p2_c1, p2_c0)]]]
normalized: ~ [E [true U [69<=sum(p2_c2, p2_c1, p2_c0) & [sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0) | [[sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) & [[~ [sum(p0_c2, p0_c1, p0_c0)<=39] | [51<=sum(p0_c2, p0_c1, p0_c0) & sum(p0_c2, p0_c1, p0_c0)<=74]] & [[sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0) & 30<=sum(p2_c2, p2_c1, p2_c0)] | [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) | sum(p1_c2, p1_c1, p1_c0)<=8]]]] | [~ [[sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0) & ~ [sum(p1_c2, p1_c1, p1_c0)<=86]]] & [~ [[sum(p2_c2, p2_c1, p2_c0)<=58 | sum(p0_c2, p0_c1, p0_c0)<=92]] | [~ [sum(p2_c2, p2_c1, p2_c0)<=60] | [sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0) | sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0)]]]]]]]]]
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0))
MC time: 4m18.000sec
checking: EF [~ [[[[[sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0) & ~ [[~ [49<=sum(p0_c2, p0_c1, p0_c0)] | 50<=sum(p0_c2, p0_c1, p0_c0)]]] & [sum(p0_c2, p0_c1, p0_c0)<=58 & [[~ [[sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0) & sum(p1_c2, p1_c1, p1_c0)<=25]] & ~ [sum(p2_c2, p2_c1, p2_c0)<=11]] & sum(p1_c2, p1_c1, p1_c0)<=58]]] | ~ [[[~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0)] & sum(p1_c2, p1_c1, p1_c0)<=0] & [~ [[sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0) & sum(p1_c2, p1_c1, p1_c0)<=62]] | ~ [[98<=sum(p0_c2, p0_c1, p0_c0) & sum(p2_c2, p2_c1, p2_c0)<=23]]]]]] | [~ [[21<=sum(p1_c2, p1_c1, p1_c0) | [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) | ~ [[[sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0) & sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0)] & sum(p2_c2, p2_c1, p2_c0)<=86]]]]] | sum(p2_c2, p2_c1, p2_c0)<=88]]]]
normalized: E [true U ~ [[[sum(p2_c2, p2_c1, p2_c0)<=88 | ~ [[21<=sum(p1_c2, p1_c1, p1_c0) | [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) | ~ [[sum(p2_c2, p2_c1, p2_c0)<=86 & [sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0) & sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0)]]]]]]] | [~ [[[~ [[98<=sum(p0_c2, p0_c1, p0_c0) & sum(p2_c2, p2_c1, p2_c0)<=23]] | ~ [[sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0) & sum(p1_c2, p1_c1, p1_c0)<=62]]] & [sum(p1_c2, p1_c1, p1_c0)<=0 & ~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0)]]]] | [[sum(p0_c2, p0_c1, p0_c0)<=58 & [sum(p1_c2, p1_c1, p1_c0)<=58 & [~ [sum(p2_c2, p2_c1, p2_c0)<=11] & ~ [[sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0) & sum(p1_c2, p1_c1, p1_c0)<=25]]]]] & [sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0) & ~ [[50<=sum(p0_c2, p0_c1, p0_c0) | ~ [49<=sum(p0_c2, p0_c1, p0_c0)]]]]]]]]]
abstracting: (49<=sum(p0_c2, p0_c1, p0_c0))
states: 5,400,371,008 (9)
abstracting: (50<=sum(p0_c2, p0_c1, p0_c0))
states: 5,389,969,408 (9)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0))
MC time: 3m49.000sec
checking: AG [[sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) | [[[~ [[[12<=sum(p0_c2, p0_c1, p0_c0) | ~ [sum(p0_c2, p0_c1, p0_c0)<=63]] & ~ [[[sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0) & sum(p2_c2, p2_c1, p2_c0)<=34] & [sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0) & sum(p2_c2, p2_c1, p2_c0)<=85]]]]] & sum(p2_c2, p2_c1, p2_c0)<=14] & [sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0) | [[~ [[[sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) & sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)] | ~ [sum(p2_c2, p2_c1, p2_c0)<=19]]] & [[[sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0) & 49<=sum(p0_c2, p0_c1, p0_c0)] | [43<=sum(p0_c2, p0_c1, p0_c0) & sum(p2_c2, p2_c1, p2_c0)<=7]] | [39<=sum(p1_c2, p1_c1, p1_c0) & [sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0) | sum(p2_c2, p2_c1, p2_c0)<=35]]]] & [sum(p1_c2, p1_c1, p1_c0)<=15 | sum(p1_c2, p1_c1, p1_c0)<=24]]]] & ~ [[[~ [sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0)] & 39<=sum(p0_c2, p0_c1, p0_c0)] | ~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)]]]]]]
normalized: ~ [E [true U ~ [[sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) | [~ [[~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)] | [39<=sum(p0_c2, p0_c1, p0_c0) & ~ [sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0)]]]] & [[sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0) | [[sum(p1_c2, p1_c1, p1_c0)<=15 | sum(p1_c2, p1_c1, p1_c0)<=24] & [[[39<=sum(p1_c2, p1_c1, p1_c0) & [sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0) | sum(p2_c2, p2_c1, p2_c0)<=35]] | [[43<=sum(p0_c2, p0_c1, p0_c0) & sum(p2_c2, p2_c1, p2_c0)<=7] | [sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0) & 49<=sum(p0_c2, p0_c1, p0_c0)]]] & ~ [[~ [sum(p2_c2, p2_c1, p2_c0)<=19] | [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) & sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)]]]]]] & [sum(p2_c2, p2_c1, p2_c0)<=14 & ~ [[~ [[[sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0) & sum(p2_c2, p2_c1, p2_c0)<=85] & [sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0) & sum(p2_c2, p2_c1, p2_c0)<=34]]] & [12<=sum(p0_c2, p0_c1, p0_c0) | ~ [sum(p0_c2, p0_c1, p0_c0)<=63]]]]]]]]]]]
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=63)
states: 379,287,894 (8)
abstracting: (12<=sum(p0_c2, p0_c1, p0_c0))
states: 5,584,226,396 (9)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=34)
states: 75,567,905 (7)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0))
MC time: 3m23.000sec
checking: EF [[[~ [[~ [95<=sum(p0_c2, p0_c1, p0_c0)] & ~ [[[~ [[sum(p2_c2, p2_c1, p2_c0)<=95 & 17<=sum(p2_c2, p2_c1, p2_c0)]] | [~ [sum(p1_c2, p1_c1, p1_c0)<=71] | [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) & sum(p2_c2, p2_c1, p2_c0)<=47]]] | ~ [64<=sum(p2_c2, p2_c1, p2_c0)]]]]] | ~ [[sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0) & [~ [[36<=sum(p1_c2, p1_c1, p1_c0) & sum(p2_c2, p2_c1, p2_c0)<=76]] & [~ [sum(p0_c2, p0_c1, p0_c0)<=13] | sum(p0_c2, p0_c1, p0_c0)<=1]]]]] | ~ [[[~ [[sum(p0_c2, p0_c1, p0_c0)<=70 & [sum(p1_c2, p1_c1, p1_c0)<=31 | [sum(p1_c2, p1_c1, p1_c0)<=88 | [sum(p2_c2, p2_c1, p2_c0)<=88 | sum(p0_c2, p0_c1, p0_c0)<=53]]]]] | 79<=sum(p2_c2, p2_c1, p2_c0)] | [sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0) | [[~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0)] | [[[sum(p0_c2, p0_c1, p0_c0)<=84 & sum(p2_c2, p2_c1, p2_c0)<=26] & sum(p1_c2, p1_c1, p1_c0)<=62] | ~ [[35<=sum(p0_c2, p0_c1, p0_c0) & 53<=sum(p2_c2, p2_c1, p2_c0)]]]] & [[sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0) | [[sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0) | 70<=sum(p2_c2, p2_c1, p2_c0)] & [sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0) | sum(p1_c2, p1_c1, p1_c0)<=22]]] & ~ [[[sum(p0_c2, p0_c1, p0_c0)<=92 & sum(p0_c2, p0_c1, p0_c0)<=45] & ~ [sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0)]]]]]]]]]]
normalized: E [true U [~ [[[sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0) | [[~ [[[sum(p0_c2, p0_c1, p0_c0)<=92 & sum(p0_c2, p0_c1, p0_c0)<=45] & ~ [sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0)]]] & [sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0) | [[sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0) | sum(p1_c2, p1_c1, p1_c0)<=22] & [sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0) | 70<=sum(p2_c2, p2_c1, p2_c0)]]]] & [[~ [[35<=sum(p0_c2, p0_c1, p0_c0) & 53<=sum(p2_c2, p2_c1, p2_c0)]] | [sum(p1_c2, p1_c1, p1_c0)<=62 & [sum(p0_c2, p0_c1, p0_c0)<=84 & sum(p2_c2, p2_c1, p2_c0)<=26]]] | ~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0)]]]] | [79<=sum(p2_c2, p2_c1, p2_c0) | ~ [[sum(p0_c2, p0_c1, p0_c0)<=70 & [sum(p1_c2, p1_c1, p1_c0)<=31 | [sum(p1_c2, p1_c1, p1_c0)<=88 | [sum(p2_c2, p2_c1, p2_c0)<=88 | sum(p0_c2, p0_c1, p0_c0)<=53]]]]]]]] | [~ [[sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0) & [[sum(p0_c2, p0_c1, p0_c0)<=1 | ~ [sum(p0_c2, p0_c1, p0_c0)<=13]] & ~ [[36<=sum(p1_c2, p1_c1, p1_c0) & sum(p2_c2, p2_c1, p2_c0)<=76]]]]] | ~ [[~ [[~ [64<=sum(p2_c2, p2_c1, p2_c0)] | [[[sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) & sum(p2_c2, p2_c1, p2_c0)<=47] | ~ [sum(p1_c2, p1_c1, p1_c0)<=71]] | ~ [[sum(p2_c2, p2_c1, p2_c0)<=95 & 17<=sum(p2_c2, p2_c1, p2_c0)]]]]] & ~ [95<=sum(p0_c2, p0_c1, p0_c0)]]]]]]
abstracting: (95<=sum(p0_c2, p0_c1, p0_c0))
states: 4,572,909,208 (9)
abstracting: (17<=sum(p2_c2, p2_c1, p2_c0))
states: 5,577,859,752 (9)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=95)
states: 1,040,798,518 (9)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=71)
states: 513,002,040 (8)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=47)
states: 177,724,518 (8)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0))
MC time: 3m 1.001sec
checking: AG [[[[[[sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0) & [[[~ [sum(p2_c2, p2_c1, p2_c0)<=2] | sum(p0_c2, p0_c1, p0_c0)<=81] & sum(p0_c2, p0_c1, p0_c0)<=76] & [[~ [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0)] | [sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0) & 47<=sum(p0_c2, p0_c1, p0_c0)]] | sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0)]]] & [[[[sum(p0_c2, p0_c1, p0_c0)<=7 | [sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0) & 36<=sum(p0_c2, p0_c1, p0_c0)]] | ~ [[sum(p1_c2, p1_c1, p1_c0)<=2 & 12<=sum(p2_c2, p2_c1, p2_c0)]]] & 83<=sum(p1_c2, p1_c1, p1_c0)] | [~ [[[sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0) & sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)] | [sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0) | 55<=sum(p0_c2, p0_c1, p0_c0)]]] | [~ [[sum(p0_c2, p0_c1, p0_c0)<=52 | sum(p2_c2, p2_c1, p2_c0)<=95]] & [[sum(p1_c2, p1_c1, p1_c0)<=83 | 28<=sum(p1_c2, p1_c1, p1_c0)] | 24<=sum(p0_c2, p0_c1, p0_c0)]]]]] & ~ [28<=sum(p0_c2, p0_c1, p0_c0)]] | [sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0) & 24<=sum(p1_c2, p1_c1, p1_c0)]] | [45<=sum(p0_c2, p0_c1, p0_c0) & ~ [[[[[[[sum(p1_c2, p1_c1, p1_c0)<=60 | 18<=sum(p0_c2, p0_c1, p0_c0)] & [86<=sum(p1_c2, p1_c1, p1_c0) & sum(p0_c2, p0_c1, p0_c0)<=6]] | sum(p2_c2, p2_c1, p2_c0)<=0] & ~ [[[sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0) & sum(p2_c2, p2_c1, p2_c0)<=52] & [sum(p0_c2, p0_c1, p0_c0)<=99 & sum(p2_c2, p2_c1, p2_c0)<=27]]]] | [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) & [~ [[11<=sum(p0_c2, p0_c1, p0_c0) & sum(p2_c2, p2_c1, p2_c0)<=72]] | sum(p2_c2, p2_c1, p2_c0)<=36]]] & [sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0) & sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0)]]]]]]
normalized: ~ [E [true U ~ [[[45<=sum(p0_c2, p0_c1, p0_c0) & ~ [[[sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0) & sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0)] & [[sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) & [sum(p2_c2, p2_c1, p2_c0)<=36 | ~ [[11<=sum(p0_c2, p0_c1, p0_c0) & sum(p2_c2, p2_c1, p2_c0)<=72]]]] | [~ [[[sum(p0_c2, p0_c1, p0_c0)<=99 & sum(p2_c2, p2_c1, p2_c0)<=27] & [sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0) & sum(p2_c2, p2_c1, p2_c0)<=52]]] & [sum(p2_c2, p2_c1, p2_c0)<=0 | [[86<=sum(p1_c2, p1_c1, p1_c0) & sum(p0_c2, p0_c1, p0_c0)<=6] & [sum(p1_c2, p1_c1, p1_c0)<=60 | 18<=sum(p0_c2, p0_c1, p0_c0)]]]]]]]] | [[sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0) & 24<=sum(p1_c2, p1_c1, p1_c0)] | [~ [28<=sum(p0_c2, p0_c1, p0_c0)] & [[[[[24<=sum(p0_c2, p0_c1, p0_c0) | [sum(p1_c2, p1_c1, p1_c0)<=83 | 28<=sum(p1_c2, p1_c1, p1_c0)]] & ~ [[sum(p0_c2, p0_c1, p0_c0)<=52 | sum(p2_c2, p2_c1, p2_c0)<=95]]] | ~ [[[sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0) | 55<=sum(p0_c2, p0_c1, p0_c0)] | [sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0) & sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)]]]] | [83<=sum(p1_c2, p1_c1, p1_c0) & [~ [[sum(p1_c2, p1_c1, p1_c0)<=2 & 12<=sum(p2_c2, p2_c1, p2_c0)]] | [sum(p0_c2, p0_c1, p0_c0)<=7 | [sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0) & 36<=sum(p0_c2, p0_c1, p0_c0)]]]]] & [sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0) & [[sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0) | [[sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0) & 47<=sum(p0_c2, p0_c1, p0_c0)] | ~ [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0)]]] & [sum(p0_c2, p0_c1, p0_c0)<=76 & [sum(p0_c2, p0_c1, p0_c0)<=81 | ~ [sum(p2_c2, p2_c1, p2_c0)<=2]]]]]]]]]]]]
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=2)
states: 67,050 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=81)
states: 710,513,766 (8)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=76)
states: 607,569,067 (8)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0))
MC time: 2m41.000sec
checking: AG [39<=sum(p2_c2, p2_c1, p2_c0)]
normalized: ~ [E [true U ~ [39<=sum(p2_c2, p2_c1, p2_c0)]]]
abstracting: (39<=sum(p2_c2, p2_c1, p2_c0))
states: 5,486,673,206 (9)
-> the formula is FALSE
FORMULA PGCD-COL-D02N100-ReachabilityCardinality-06 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
TIME LIMIT: Killed by timeout after 3600 seconds
MemTotal: 16393916 kB
MemFree: 3371976 kB
After kill :
MemTotal: 16393916 kB
MemFree: 16177820 kB
BK_TIME_CONFINEMENT_REACHED
--------------------
content from stderr:
check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.088sec
iterations count:9204 (1022), effective:3130 (347)
initing FirstDep: 0m 0.001sec
iterations count:1287 (143), effective:441 (49)
iterations count:9 (1), effective:0 (0)
sat_reach.icc:155: Timeout: after 251 sec
iterations count:104 (11), effective:33 (3)
iterations count:351 (39), effective:107 (11)
iterations count:278 (30), effective:93 (10)
iterations count:1171 (130), effective:401 (44)
idd.h:1025: Timeout: after 322 sec
idd.h:1025: Timeout: after 289 sec
idd.h:1025: Timeout: after 260 sec
iterations count:858 (95), effective:293 (32)
idd.h:1025: Timeout: after 257 sec
idd.h:1025: Timeout: after 228 sec
idd.h:1025: Timeout: after 202 sec
idd.h:1025: Timeout: after 180 sec
idd.h:1025: Timeout: after 160 sec
iterations count:2529 (281), effective:796 (88)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="PGCD-COL-D02N100"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marcie"
echo " Input is PGCD-COL-D02N100, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r513-tall-167987241000398"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/PGCD-COL-D02N100.tgz
mv PGCD-COL-D02N100 execution
cd execution
if [ "ReachabilityCardinality" = "ReachabilityDeadlock" ] || [ "ReachabilityCardinality" = "UpperBounds" ] || [ "ReachabilityCardinality" = "QuasiLiveness" ] || [ "ReachabilityCardinality" = "StableMarking" ] || [ "ReachabilityCardinality" = "Liveness" ] || [ "ReachabilityCardinality" = "OneSafe" ] || [ "ReachabilityCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "ReachabilityCardinality" = "ReachabilityDeadlock" ] || [ "ReachabilityCardinality" = "QuasiLiveness" ] || [ "ReachabilityCardinality" = "StableMarking" ] || [ "ReachabilityCardinality" = "Liveness" ] || [ "ReachabilityCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME ReachabilityCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;