About the Execution of Marcie for PGCD-COL-D02N006
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
5472.355 | 84756.00 | 84880.00 | 150.60 | FTTFTTFTTTFTFTFF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fkordon/mcc2023-input.r513-tall-167987241000385.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2023-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
.......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
=====================================================================
Generated by BenchKit 2-5348
Executing tool marcie
Input is PGCD-COL-D02N006, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r513-tall-167987241000385
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 512K
-rw-r--r-- 1 mcc users 6.9K Mar 23 15:24 CTLCardinality.txt
-rw-r--r-- 1 mcc users 78K Mar 23 15:24 CTLCardinality.xml
-rw-r--r-- 1 mcc users 5.1K Mar 23 15:21 CTLFireability.txt
-rw-r--r-- 1 mcc users 48K Mar 23 15:21 CTLFireability.xml
-rw-r--r-- 1 mcc users 3.6K Mar 23 07:07 LTLCardinality.txt
-rw-r--r-- 1 mcc users 27K Mar 23 07:07 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.0K Mar 23 07:07 LTLFireability.txt
-rw-r--r-- 1 mcc users 16K Mar 23 07:07 LTLFireability.xml
-rw-r--r-- 1 mcc users 1 Mar 26 22:42 NewModel
-rw-r--r-- 1 mcc users 14K Mar 23 15:27 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 164K Mar 23 15:27 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 8.5K Mar 23 15:27 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 82K Mar 23 15:27 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.6K Mar 23 07:07 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.6K Mar 23 07:07 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Mar 26 22:42 equiv_pt
-rw-r--r-- 1 mcc users 8 Mar 26 22:42 instance
-rw-r--r-- 1 mcc users 5 Mar 26 22:42 iscolored
-rw-r--r-- 1 mcc users 16K Mar 26 22:42 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME PGCD-COL-D02N006-CTLCardinality-00
FORMULA_NAME PGCD-COL-D02N006-CTLCardinality-01
FORMULA_NAME PGCD-COL-D02N006-CTLCardinality-02
FORMULA_NAME PGCD-COL-D02N006-CTLCardinality-03
FORMULA_NAME PGCD-COL-D02N006-CTLCardinality-04
FORMULA_NAME PGCD-COL-D02N006-CTLCardinality-05
FORMULA_NAME PGCD-COL-D02N006-CTLCardinality-06
FORMULA_NAME PGCD-COL-D02N006-CTLCardinality-07
FORMULA_NAME PGCD-COL-D02N006-CTLCardinality-08
FORMULA_NAME PGCD-COL-D02N006-CTLCardinality-09
FORMULA_NAME PGCD-COL-D02N006-CTLCardinality-10
FORMULA_NAME PGCD-COL-D02N006-CTLCardinality-11
FORMULA_NAME PGCD-COL-D02N006-CTLCardinality-12
FORMULA_NAME PGCD-COL-D02N006-CTLCardinality-13
FORMULA_NAME PGCD-COL-D02N006-CTLCardinality-14
FORMULA_NAME PGCD-COL-D02N006-CTLCardinality-15
=== Now, execution of the tool begins
BK_START 1679895692332
bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marcie
BK_EXAMINATION=CTLCardinality
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=PGCD-COL-D02N006
Not applying reductions.
Model is COL
CTLCardinality COL
timeout --kill-after=10s --signal=SIGINT 1m for testing only
Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: /home/mcc/BenchKit/bin//../marcie/bin/marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --memory=6 --mcc-mode
parse successfull
net created successfully
Unfolding complete |P|=9|T|=9|A|=42
Time for unfolding: 0m 0.214sec
Net: PGCD_COL_D2_N6
(NrP: 9 NrTr: 9 NrArc: 42)
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec
net check time: 0m 0.000sec
init dd package: 0m 2.810sec
RS generation: 0m 0.018sec
-> reachability set: #nodes 422 (4.2e+02) #states 15,670 (4)
starting MCC model checker
--------------------------
checking: EF [21<=sum(p0_c2, p0_c1, p0_c0)]
normalized: E [true U 21<=sum(p0_c2, p0_c1, p0_c0)]
abstracting: (21<=sum(p0_c2, p0_c1, p0_c0))
states: 55
-> the formula is TRUE
FORMULA PGCD-COL-D02N006-CTLCardinality-04 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.033sec
checking: EF [A [14<=sum(p2_c2, p2_c1, p2_c0) U ~ [sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0)]]]
normalized: E [true U [~ [EG [sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0)]] & ~ [E [sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0) U [~ [14<=sum(p2_c2, p2_c1, p2_c0)] & sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0)]]]]]
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 15,670 (4)
abstracting: (14<=sum(p2_c2, p2_c1, p2_c0))
states: 4,368 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 15,670 (4)
EG iterations: 0
-> the formula is FALSE
FORMULA PGCD-COL-D02N006-CTLCardinality-00 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m16.267sec
checking: AX [[EG [[22<=sum(p0_c2, p0_c1, p0_c0) | ~ [AX [sum(p0_c2, p0_c1, p0_c0)<=13]]]] & EX [54<=sum(p1_c2, p1_c1, p1_c0)]]]
normalized: ~ [EX [~ [[EG [[EX [~ [sum(p0_c2, p0_c1, p0_c0)<=13]] | 22<=sum(p0_c2, p0_c1, p0_c0)]] & EX [54<=sum(p1_c2, p1_c1, p1_c0)]]]]]
abstracting: (54<=sum(p1_c2, p1_c1, p1_c0))
states: 0
.abstracting: (22<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=13)
states: 11,302 (4)
..
EG iterations: 1
.-> the formula is FALSE
FORMULA PGCD-COL-D02N006-CTLCardinality-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.079sec
checking: ~ [EG [AF [E [[EG [sum(p1_c2, p1_c1, p1_c0)<=31] & EF [sum(p1_c2, p1_c1, p1_c0)<=44]] U EF [sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)]]]]]
normalized: ~ [EG [~ [EG [~ [E [[E [true U sum(p1_c2, p1_c1, p1_c0)<=44] & EG [sum(p1_c2, p1_c1, p1_c0)<=31]] U E [true U sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)]]]]]]]
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 15,670 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=31)
states: 15,670 (4)
EG iterations: 0
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=44)
states: 15,670 (4)
.
EG iterations: 1
EG iterations: 0
-> the formula is FALSE
FORMULA PGCD-COL-D02N006-CTLCardinality-06 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m15.360sec
checking: [E [AG [EF [EG [29<=sum(p2_c2, p2_c1, p2_c0)]]] U A [sum(p1_c2, p1_c1, p1_c0)<=89 U sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0)]] & EG [sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)]]
normalized: [EG [sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)] & E [~ [E [true U ~ [E [true U EG [29<=sum(p2_c2, p2_c1, p2_c0)]]]]] U [~ [EG [~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0)]]] & ~ [E [~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0)] U [~ [sum(p1_c2, p1_c1, p1_c0)<=89] & ~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0)]]]]]]]
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=89)
states: 15,670 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
..
EG iterations: 2
abstracting: (29<=sum(p2_c2, p2_c1, p2_c0))
states: 0
.
EG iterations: 1
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 15,670 (4)
EG iterations: 0
-> the formula is TRUE
FORMULA PGCD-COL-D02N006-CTLCardinality-13 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m11.738sec
checking: [~ [AF [sum(p0_c2, p0_c1, p0_c0)<=58]] & EF [[AX [AG [[92<=sum(p1_c2, p1_c1, p1_c0) | 5<=sum(p0_c2, p0_c1, p0_c0)]]] | EX [[AG [sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0)] | sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0)]]]]]
normalized: [E [true U [EX [[~ [E [true U ~ [sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0)]]] | sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0)]] | ~ [EX [E [true U ~ [[92<=sum(p1_c2, p1_c1, p1_c0) | 5<=sum(p0_c2, p0_c1, p0_c0)]]]]]]] & EG [~ [sum(p0_c2, p0_c1, p0_c0)<=58]]]
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=58)
states: 15,670 (4)
.
EG iterations: 1
abstracting: (5<=sum(p0_c2, p0_c1, p0_c0))
states: 14,415 (4)
abstracting: (92<=sum(p1_c2, p1_c1, p1_c0))
states: 0
.abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 8,008 (3)
.-> the formula is FALSE
FORMULA PGCD-COL-D02N006-CTLCardinality-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m11.784sec
checking: AG [A [EX [A [[97<=sum(p0_c2, p0_c1, p0_c0) & 19<=sum(p0_c2, p0_c1, p0_c0)] U sum(p0_c2, p0_c1, p0_c0)<=30]] U [sum(p0_c2, p0_c1, p0_c0)<=30 | A [sum(p0_c2, p0_c1, p0_c0)<=10 U [~ [sum(p2_c2, p2_c1, p2_c0)<=89] & [21<=sum(p2_c2, p2_c1, p2_c0) & 9<=sum(p1_c2, p1_c1, p1_c0)]]]]]]
normalized: ~ [E [true U ~ [[~ [EG [~ [[[~ [EG [~ [[[21<=sum(p2_c2, p2_c1, p2_c0) & 9<=sum(p1_c2, p1_c1, p1_c0)] & ~ [sum(p2_c2, p2_c1, p2_c0)<=89]]]]] & ~ [E [~ [[[21<=sum(p2_c2, p2_c1, p2_c0) & 9<=sum(p1_c2, p1_c1, p1_c0)] & ~ [sum(p2_c2, p2_c1, p2_c0)<=89]]] U [~ [sum(p0_c2, p0_c1, p0_c0)<=10] & ~ [[[21<=sum(p2_c2, p2_c1, p2_c0) & 9<=sum(p1_c2, p1_c1, p1_c0)] & ~ [sum(p2_c2, p2_c1, p2_c0)<=89]]]]]]] | sum(p0_c2, p0_c1, p0_c0)<=30]]]] & ~ [E [~ [[[~ [EG [~ [[[21<=sum(p2_c2, p2_c1, p2_c0) & 9<=sum(p1_c2, p1_c1, p1_c0)] & ~ [sum(p2_c2, p2_c1, p2_c0)<=89]]]]] & ~ [E [~ [[[21<=sum(p2_c2, p2_c1, p2_c0) & 9<=sum(p1_c2, p1_c1, p1_c0)] & ~ [sum(p2_c2, p2_c1, p2_c0)<=89]]] U [~ [sum(p0_c2, p0_c1, p0_c0)<=10] & ~ [[[21<=sum(p2_c2, p2_c1, p2_c0) & 9<=sum(p1_c2, p1_c1, p1_c0)] & ~ [sum(p2_c2, p2_c1, p2_c0)<=89]]]]]]] | sum(p0_c2, p0_c1, p0_c0)<=30]] U [~ [[[~ [EG [~ [[[21<=sum(p2_c2, p2_c1, p2_c0) & 9<=sum(p1_c2, p1_c1, p1_c0)] & ~ [sum(p2_c2, p2_c1, p2_c0)<=89]]]]] & ~ [E [~ [[[21<=sum(p2_c2, p2_c1, p2_c0) & 9<=sum(p1_c2, p1_c1, p1_c0)] & ~ [sum(p2_c2, p2_c1, p2_c0)<=89]]] U [~ [sum(p0_c2, p0_c1, p0_c0)<=10] & ~ [[[21<=sum(p2_c2, p2_c1, p2_c0) & 9<=sum(p1_c2, p1_c1, p1_c0)] & ~ [sum(p2_c2, p2_c1, p2_c0)<=89]]]]]]] | sum(p0_c2, p0_c1, p0_c0)<=30]] & ~ [EX [[~ [EG [~ [sum(p0_c2, p0_c1, p0_c0)<=30]]] & ~ [E [~ [sum(p0_c2, p0_c1, p0_c0)<=30] U [~ [[97<=sum(p0_c2, p0_c1, p0_c0) & 19<=sum(p0_c2, p0_c1, p0_c0)]] & ~ [sum(p0_c2, p0_c1, p0_c0)<=30]]]]]]]]]]]]]]
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=30)
states: 15,670 (4)
abstracting: (19<=sum(p0_c2, p0_c1, p0_c0))
states: 520
abstracting: (97<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=30)
states: 15,670 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=30)
states: 15,670 (4)
.
EG iterations: 1
.abstracting: (sum(p0_c2, p0_c1, p0_c0)<=30)
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=89)
states: 15,670 (4)
abstracting: (9<=sum(p1_c2, p1_c1, p1_c0))
states: 10,147 (4)
abstracting: (21<=sum(p2_c2, p2_c1, p2_c0))
states: 55
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=10)
states: 7,662 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=89)
states: 15,670 (4)
abstracting: (9<=sum(p1_c2, p1_c1, p1_c0))
states: 10,147 (4)
abstracting: (21<=sum(p2_c2, p2_c1, p2_c0))
states: 55
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=89)
states: 15,670 (4)
abstracting: (9<=sum(p1_c2, p1_c1, p1_c0))
states: 10,147 (4)
abstracting: (21<=sum(p2_c2, p2_c1, p2_c0))
states: 55
EG iterations: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=30)
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=89)
states: 15,670 (4)
abstracting: (9<=sum(p1_c2, p1_c1, p1_c0))
states: 10,147 (4)
abstracting: (21<=sum(p2_c2, p2_c1, p2_c0))
states: 55
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=10)
states: 7,662 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=89)
states: 15,670 (4)
abstracting: (9<=sum(p1_c2, p1_c1, p1_c0))
states: 10,147 (4)
abstracting: (21<=sum(p2_c2, p2_c1, p2_c0))
states: 55
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=89)
states: 15,670 (4)
abstracting: (9<=sum(p1_c2, p1_c1, p1_c0))
states: 10,147 (4)
abstracting: (21<=sum(p2_c2, p2_c1, p2_c0))
states: 55
EG iterations: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=30)
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=89)
states: 15,670 (4)
abstracting: (9<=sum(p1_c2, p1_c1, p1_c0))
states: 10,147 (4)
abstracting: (21<=sum(p2_c2, p2_c1, p2_c0))
states: 55
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=10)
states: 7,662 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=89)
states: 15,670 (4)
abstracting: (9<=sum(p1_c2, p1_c1, p1_c0))
states: 10,147 (4)
abstracting: (21<=sum(p2_c2, p2_c1, p2_c0))
states: 55
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=89)
states: 15,670 (4)
abstracting: (9<=sum(p1_c2, p1_c1, p1_c0))
states: 10,147 (4)
abstracting: (21<=sum(p2_c2, p2_c1, p2_c0))
states: 55
EG iterations: 0
.
EG iterations: 1
-> the formula is TRUE
FORMULA PGCD-COL-D02N006-CTLCardinality-11 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.173sec
checking: EG [AX [[[AG [EG [sum(p0_c2, p0_c1, p0_c0)<=30]] | [A [99<=sum(p2_c2, p2_c1, p2_c0) U sum(p0_c2, p0_c1, p0_c0)<=38] & [70<=sum(p1_c2, p1_c1, p1_c0) | AF [sum(p2_c2, p2_c1, p2_c0)<=40]]]] & [AG [[sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) & sum(p1_c2, p1_c1, p1_c0)<=22]] | ~ [87<=sum(p2_c2, p2_c1, p2_c0)]]]]]
normalized: EG [~ [EX [~ [[[[[~ [EG [~ [sum(p2_c2, p2_c1, p2_c0)<=40]]] | 70<=sum(p1_c2, p1_c1, p1_c0)] & [~ [EG [~ [sum(p0_c2, p0_c1, p0_c0)<=38]]] & ~ [E [~ [sum(p0_c2, p0_c1, p0_c0)<=38] U [~ [99<=sum(p2_c2, p2_c1, p2_c0)] & ~ [sum(p0_c2, p0_c1, p0_c0)<=38]]]]]] | ~ [E [true U ~ [EG [sum(p0_c2, p0_c1, p0_c0)<=30]]]]] & [~ [E [true U ~ [[sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) & sum(p1_c2, p1_c1, p1_c0)<=22]]]] | ~ [87<=sum(p2_c2, p2_c1, p2_c0)]]]]]]]
abstracting: (87<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=22)
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=30)
states: 15,670 (4)
EG iterations: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=38)
states: 15,670 (4)
abstracting: (99<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=38)
states: 15,670 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=38)
states: 15,670 (4)
.
EG iterations: 1
abstracting: (70<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=40)
states: 15,670 (4)
.
EG iterations: 1
.
EG iterations: 0
-> the formula is TRUE
FORMULA PGCD-COL-D02N006-CTLCardinality-01 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m11.818sec
checking: [AG [[14<=sum(p2_c2, p2_c1, p2_c0) & [~ [sum(p2_c2, p2_c1, p2_c0)<=92] & [~ [[[sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0) & sum(p1_c2, p1_c1, p1_c0)<=68] | [sum(p0_c2, p0_c1, p0_c0)<=17 & 74<=sum(p2_c2, p2_c1, p2_c0)]]] & EF [[sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0) & 46<=sum(p1_c2, p1_c1, p1_c0)]]]]]] | AX [74<=sum(p1_c2, p1_c1, p1_c0)]]
normalized: [~ [EX [~ [74<=sum(p1_c2, p1_c1, p1_c0)]]] | ~ [E [true U ~ [[[[E [true U [sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0) & 46<=sum(p1_c2, p1_c1, p1_c0)]] & ~ [[[sum(p0_c2, p0_c1, p0_c0)<=17 & 74<=sum(p2_c2, p2_c1, p2_c0)] | [sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0) & sum(p1_c2, p1_c1, p1_c0)<=68]]]] & ~ [sum(p2_c2, p2_c1, p2_c0)<=92]] & 14<=sum(p2_c2, p2_c1, p2_c0)]]]]]
abstracting: (14<=sum(p2_c2, p2_c1, p2_c0))
states: 4,368 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=92)
states: 15,670 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=68)
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 15,670 (4)
abstracting: (74<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=17)
states: 14,690 (4)
abstracting: (46<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
abstracting: (74<=sum(p1_c2, p1_c1, p1_c0))
states: 0
.-> the formula is FALSE
FORMULA PGCD-COL-D02N006-CTLCardinality-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.140sec
checking: E [[A [[sum(p0_c2, p0_c1, p0_c0)<=7 & [~ [63<=sum(p0_c2, p0_c1, p0_c0)] | AX [sum(p2_c2, p2_c1, p2_c0)<=53]]] U EF [[AF [53<=sum(p1_c2, p1_c1, p1_c0)] & EX [sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)]]]] & E [~ [[sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0) & sum(p1_c2, p1_c1, p1_c0)<=33]] U sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0)]] U ~ [sum(p0_c2, p0_c1, p0_c0)<=3]]
normalized: E [[E [~ [[sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0) & sum(p1_c2, p1_c1, p1_c0)<=33]] U sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0)] & [~ [EG [~ [E [true U [EX [sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)] & ~ [EG [~ [53<=sum(p1_c2, p1_c1, p1_c0)]]]]]]]] & ~ [E [~ [E [true U [EX [sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)] & ~ [EG [~ [53<=sum(p1_c2, p1_c1, p1_c0)]]]]]] U [~ [[[~ [EX [~ [sum(p2_c2, p2_c1, p2_c0)<=53]]] | ~ [63<=sum(p0_c2, p0_c1, p0_c0)]] & sum(p0_c2, p0_c1, p0_c0)<=7]] & ~ [E [true U [EX [sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)] & ~ [EG [~ [53<=sum(p1_c2, p1_c1, p1_c0)]]]]]]]]]]] U ~ [sum(p0_c2, p0_c1, p0_c0)<=3]]
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=3)
states: 640
abstracting: (53<=sum(p1_c2, p1_c1, p1_c0))
states: 0
EG iterations: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 15,670 (4)
.abstracting: (sum(p0_c2, p0_c1, p0_c0)<=7)
states: 4,022 (3)
abstracting: (63<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=53)
states: 15,670 (4)
.abstracting: (53<=sum(p1_c2, p1_c1, p1_c0))
states: 0
EG iterations: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 15,670 (4)
.abstracting: (53<=sum(p1_c2, p1_c1, p1_c0))
states: 0
EG iterations: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 15,670 (4)
.
EG iterations: 0
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 8,008 (3)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=33)
states: 15,670 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 8,008 (3)
-> the formula is FALSE
FORMULA PGCD-COL-D02N006-CTLCardinality-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m11.866sec
checking: AX [[EX [E [AG [86<=sum(p0_c2, p0_c1, p0_c0)] U [E [sum(p2_c2, p2_c1, p2_c0)<=19 U sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)] | ~ [sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0)]]]] | [~ [AX [~ [[sum(p1_c2, p1_c1, p1_c0)<=56 & 93<=sum(p0_c2, p0_c1, p0_c0)]]]] | [sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0) & E [[sum(p2_c2, p2_c1, p2_c0)<=46 & sum(p1_c2, p1_c1, p1_c0)<=27] U sum(p2_c2, p2_c1, p2_c0)<=15]]]]]
normalized: ~ [EX [~ [[[[E [[sum(p2_c2, p2_c1, p2_c0)<=46 & sum(p1_c2, p1_c1, p1_c0)<=27] U sum(p2_c2, p2_c1, p2_c0)<=15] & sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0)] | EX [[sum(p1_c2, p1_c1, p1_c0)<=56 & 93<=sum(p0_c2, p0_c1, p0_c0)]]] | EX [E [~ [E [true U ~ [86<=sum(p0_c2, p0_c1, p0_c0)]]] U [~ [sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0)] | E [sum(p2_c2, p2_c1, p2_c0)<=19 U sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)]]]]]]]]
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=19)
states: 15,450 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 8,008 (3)
abstracting: (86<=sum(p0_c2, p0_c1, p0_c0))
states: 0
.abstracting: (93<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=56)
states: 15,670 (4)
.abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=15)
states: 13,286 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=27)
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=46)
states: 15,670 (4)
.-> the formula is TRUE
FORMULA PGCD-COL-D02N006-CTLCardinality-08 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.169sec
checking: EG [~ [[[~ [EX [sum(p2_c2, p2_c1, p2_c0)<=31]] | [~ [AX [7<=sum(p1_c2, p1_c1, p1_c0)]] | ~ [60<=sum(p2_c2, p2_c1, p2_c0)]]] & A [[A [sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0) U sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0)] | [[38<=sum(p0_c2, p0_c1, p0_c0) | sum(p0_c2, p0_c1, p0_c0)<=98] | [sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0) & 37<=sum(p0_c2, p0_c1, p0_c0)]]] U EG [~ [sum(p0_c2, p0_c1, p0_c0)<=33]]]]]]
normalized: EG [~ [[[~ [EG [~ [EG [~ [sum(p0_c2, p0_c1, p0_c0)<=33]]]]] & ~ [E [~ [EG [~ [sum(p0_c2, p0_c1, p0_c0)<=33]]] U [~ [[[[sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0) & 37<=sum(p0_c2, p0_c1, p0_c0)] | [38<=sum(p0_c2, p0_c1, p0_c0) | sum(p0_c2, p0_c1, p0_c0)<=98]] | [~ [EG [~ [sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0)]]] & ~ [E [~ [sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0)] U [~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)] & ~ [sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0)]]]]]]] & ~ [EG [~ [sum(p0_c2, p0_c1, p0_c0)<=33]]]]]]] & [[~ [60<=sum(p2_c2, p2_c1, p2_c0)] | EX [~ [7<=sum(p1_c2, p1_c1, p1_c0)]]] | ~ [EX [sum(p2_c2, p2_c1, p2_c0)<=31]]]]]]
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=31)
states: 15,670 (4)
.abstracting: (7<=sum(p1_c2, p1_c1, p1_c0))
states: 12,358 (4)
.abstracting: (60<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=33)
states: 15,670 (4)
.
EG iterations: 1
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 8,008 (3)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 15,670 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 8,008 (3)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 8,008 (3)
.
EG iterations: 1
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=98)
states: 15,670 (4)
abstracting: (38<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (37<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 15,670 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=33)
states: 15,670 (4)
.
EG iterations: 1
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=33)
states: 15,670 (4)
.
EG iterations: 1
EG iterations: 0
EG iterations: 0
-> the formula is TRUE
FORMULA PGCD-COL-D02N006-CTLCardinality-09 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.165sec
checking: [E [EX [[[E [sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0) U sum(p1_c2, p1_c1, p1_c0)<=25] | ~ [EF [sum(p2_c2, p2_c1, p2_c0)<=63]]] | [sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0) | E [sum(p0_c2, p0_c1, p0_c0)<=28 U sum(p1_c2, p1_c1, p1_c0)<=87]]]] U ~ [EX [E [EX [sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)] U EF [sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0)]]]]] | ~ [EX [~ [A [EF [sum(p1_c2, p1_c1, p1_c0)<=11] U EX [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0)]]]]]]
normalized: [~ [EX [~ [[~ [EG [~ [EX [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0)]]]] & ~ [E [~ [EX [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0)]] U [~ [E [true U sum(p1_c2, p1_c1, p1_c0)<=11]] & ~ [EX [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0)]]]]]]]]] | E [EX [[[E [sum(p0_c2, p0_c1, p0_c0)<=28 U sum(p1_c2, p1_c1, p1_c0)<=87] | sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0)] | [~ [E [true U sum(p2_c2, p2_c1, p2_c0)<=63]] | E [sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0) U sum(p1_c2, p1_c1, p1_c0)<=25]]]] U ~ [EX [E [EX [sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)] U E [true U sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0)]]]]]]
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 8,008 (3)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 15,670 (4)
..abstracting: (sum(p1_c2, p1_c1, p1_c0)<=25)
states: 15,670 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=63)
states: 15,670 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 15,670 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=87)
states: 15,670 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=28)
states: 15,670 (4)
.abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
.abstracting: (sum(p1_c2, p1_c1, p1_c0)<=11)
states: 9,268 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
.abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
...
EG iterations: 2
.-> the formula is TRUE
FORMULA PGCD-COL-D02N006-CTLCardinality-02 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.122sec
checking: E [EF [sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0)] U [[sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0) | AF [AG [EX [sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0)]]]] | [E [EG [~ [sum(p1_c2, p1_c1, p1_c0)<=6]] U sum(p2_c2, p2_c1, p2_c0)<=77] & [~ [A [26<=sum(p1_c2, p1_c1, p1_c0) U sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0)]] & [E [A [sum(p0_c2, p0_c1, p0_c0)<=17 U sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0)] U EF [sum(p0_c2, p0_c1, p0_c0)<=69]] & AX [77<=sum(p2_c2, p2_c1, p2_c0)]]]]]]
normalized: E [E [true U sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0)] U [[[[~ [EX [~ [77<=sum(p2_c2, p2_c1, p2_c0)]]] & E [[~ [EG [~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0)]]] & ~ [E [~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0)] U [~ [sum(p0_c2, p0_c1, p0_c0)<=17] & ~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0)]]]]] U E [true U sum(p0_c2, p0_c1, p0_c0)<=69]]] & ~ [[~ [EG [~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0)]]] & ~ [E [~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0)] U [~ [26<=sum(p1_c2, p1_c1, p1_c0)] & ~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0)]]]]]]] & E [EG [~ [sum(p1_c2, p1_c1, p1_c0)<=6]] U sum(p2_c2, p2_c1, p2_c0)<=77]] | [~ [EG [E [true U ~ [EX [sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0)]]]]] | sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)]]]
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 15,670 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 15,670 (4)
..
EG iterations: 1
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=77)
states: 15,670 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=6)
states: 3,312 (3)
.
EG iterations: 1
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
abstracting: (26<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
..
EG iterations: 2
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=69)
states: 15,670 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=17)
states: 14,690 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
..
EG iterations: 2
abstracting: (77<=sum(p2_c2, p2_c1, p2_c0))
states: 0
.abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 15,670 (4)
-> the formula is TRUE
FORMULA PGCD-COL-D02N006-CTLCardinality-07 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.134sec
checking: [EX [[AX [[~ [[sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0) | sum(p0_c2, p0_c1, p0_c0)<=86]] | [sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0) | [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) & sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0)]]]] | AX [[EG [sum(p0_c2, p0_c1, p0_c0)<=35] & [[sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0) | sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0)] & sum(p1_c2, p1_c1, p1_c0)<=0]]]]] & AG [EG [[AG [[sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0) | 19<=sum(p0_c2, p0_c1, p0_c0)]] & A [sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0) U sum(p2_c2, p2_c1, p2_c0)<=65]]]]]
normalized: [~ [E [true U ~ [EG [[[~ [EG [~ [sum(p2_c2, p2_c1, p2_c0)<=65]]] & ~ [E [~ [sum(p2_c2, p2_c1, p2_c0)<=65] U [~ [sum(p2_c2, p2_c1, p2_c0)<=65] & ~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0)]]]]] & ~ [E [true U ~ [[sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0) | 19<=sum(p0_c2, p0_c1, p0_c0)]]]]]]]]] & EX [[~ [EX [~ [[[sum(p1_c2, p1_c1, p1_c0)<=0 & [sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0) | sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0)]] & EG [sum(p0_c2, p0_c1, p0_c0)<=35]]]]] | ~ [EX [~ [[[sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0) | [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) & sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0)]] | ~ [[sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0) | sum(p0_c2, p0_c1, p0_c0)<=86]]]]]]]]]
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=86)
states: 15,670 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 8,008 (3)
.abstracting: (sum(p0_c2, p0_c1, p0_c0)<=35)
states: 15,670 (4)
EG iterations: 0
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 15,670 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=0)
states: 55
..abstracting: (19<=sum(p0_c2, p0_c1, p0_c0))
states: 520
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 15,670 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=65)
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=65)
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=65)
states: 15,670 (4)
.
EG iterations: 1
EG iterations: 0
-> the formula is TRUE
FORMULA PGCD-COL-D02N006-CTLCardinality-05 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.094sec
checking: ~ [[EF [E [[[~ [sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0)] & sum(p0_c2, p0_c1, p0_c0)<=60] & [~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0)] & [sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0) | 72<=sum(p1_c2, p1_c1, p1_c0)]]] U [[sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0) & [sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0) | sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0)]] & [EF [sum(p1_c2, p1_c1, p1_c0)<=25] & E [57<=sum(p0_c2, p0_c1, p0_c0) U 98<=sum(p0_c2, p0_c1, p0_c0)]]]]] | [[A [sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0) U AX [~ [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0)]]] | EF [[EF [sum(p2_c2, p2_c1, p2_c0)<=15] & 83<=sum(p2_c2, p2_c1, p2_c0)]]] | AG [E [EX [34<=sum(p0_c2, p0_c1, p0_c0)] U AF [sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0)]]]]]]
normalized: ~ [[[~ [E [true U ~ [E [EX [34<=sum(p0_c2, p0_c1, p0_c0)] U ~ [EG [~ [sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0)]]]]]]] | [E [true U [83<=sum(p2_c2, p2_c1, p2_c0) & E [true U sum(p2_c2, p2_c1, p2_c0)<=15]]] | [~ [EG [EX [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0)]]] & ~ [E [EX [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0)] U [~ [sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0)] & EX [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0)]]]]]]] | E [true U E [[[[sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0) | 72<=sum(p1_c2, p1_c1, p1_c0)] & ~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0)]] & [sum(p0_c2, p0_c1, p0_c0)<=60 & ~ [sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0)]]] U [[E [57<=sum(p0_c2, p0_c1, p0_c0) U 98<=sum(p0_c2, p0_c1, p0_c0)] & E [true U sum(p1_c2, p1_c1, p1_c0)<=25]] & [sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0) & [sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0) | sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0)]]]]]]]
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 15,670 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 15,670 (4)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 8,008 (3)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=25)
states: 15,670 (4)
abstracting: (98<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (57<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 15,670 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=60)
states: 15,670 (4)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 15,670 (4)
abstracting: (72<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
.abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 15,670 (4)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
.abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 7,662 (3)
..
EG iterations: 1
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=15)
states: 13,286 (4)
abstracting: (83<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 15,670 (4)
.
EG iterations: 1
abstracting: (34<=sum(p0_c2, p0_c1, p0_c0))
states: 0
.-> the formula is FALSE
FORMULA PGCD-COL-D02N006-CTLCardinality-03 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.137sec
totally nodes used: 22603 (2.3e+04)
number of garbage collections: 0
fire ops cache: hits/miss/sum: 162860 63580 226440
used/not used/entry size/cache size: 84259 67024605 16 1024MB
basic ops cache: hits/miss/sum: 100192 64978 165170
used/not used/entry size/cache size: 91712 16685504 12 192MB
unary ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 8 128MB
abstract ops cache: hits/miss/sum: 0 17681663 17681663
used/not used/entry size/cache size: 1 16777215 12 192MB
state nr cache: hits/miss/sum: 8112 3475 11587
used/not used/entry size/cache size: 3475 8385133 32 256MB
max state cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 8388608 32 256MB
uniqueHash elements/entry size/size: 67108864 4 256MB
0 67088621
1 18987
2 848
3 166
4 92
5 49
6 41
7 25
8 16
9 6
>= 10 13
Total processing time: 1m24.707sec
BK_STOP 1679895777088
--------------------
content from stderr:
check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.000sec
iterations count:509 (56), effective:169 (18)
initing FirstDep: 0m 0.000sec
iterations count:265 (29), effective:87 (9)
iterations count:104 (11), effective:29 (3)
iterations count:9 (1), effective:0 (0)
iterations count:9 (1), effective:0 (0)
iterations count:9 (1), effective:0 (0)
iterations count:9 (1), effective:0 (0)
iterations count:9 (1), effective:0 (0)
iterations count:173 (19), effective:52 (5)
iterations count:116 (12), effective:34 (3)
iterations count:123 (13), effective:35 (3)
iterations count:127 (14), effective:41 (4)
iterations count:127 (14), effective:41 (4)
iterations count:127 (14), effective:41 (4)
iterations count:127 (14), effective:41 (4)
iterations count:9 (1), effective:0 (0)
iterations count:75 (8), effective:23 (2)
iterations count:127 (14), effective:41 (4)
iterations count:9 (1), effective:0 (0)
iterations count:9 (1), effective:0 (0)
iterations count:9 (1), effective:0 (0)
iterations count:9 (1), effective:0 (0)
iterations count:85 (9), effective:23 (2)
iterations count:127 (14), effective:41 (4)
iterations count:9 (1), effective:0 (0)
iterations count:9 (1), effective:0 (0)
iterations count:9 (1), effective:0 (0)
iterations count:9 (1), effective:0 (0)
iterations count:104 (11), effective:33 (3)
iterations count:9 (1), effective:0 (0)
iterations count:9 (1), effective:0 (0)
iterations count:9 (1), effective:0 (0)
iterations count:144 (16), effective:43 (4)
iterations count:9 (1), effective:0 (0)
iterations count:9 (1), effective:0 (0)
iterations count:9 (1), effective:0 (0)
iterations count:9 (1), effective:0 (0)
iterations count:85 (9), effective:23 (2)
iterations count:9 (1), effective:0 (0)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="PGCD-COL-D02N006"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marcie"
echo " Input is PGCD-COL-D02N006, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r513-tall-167987241000385"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/PGCD-COL-D02N006.tgz
mv PGCD-COL-D02N006 execution
cd execution
if [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "UpperBounds" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] || [ "CTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME CTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;