About the Execution of Marcie for PGCD-COL-D02N005
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
5471.920 | 68796.00 | 68930.00 | 130.00 | FTFFTFTFTTFFTTFT | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fkordon/mcc2023-input.r513-tall-167987241000377.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2023-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
=====================================================================
Generated by BenchKit 2-5348
Executing tool marcie
Input is PGCD-COL-D02N005, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r513-tall-167987241000377
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 456K
-rw-r--r-- 1 mcc users 7.7K Mar 23 15:24 CTLCardinality.txt
-rw-r--r-- 1 mcc users 87K Mar 23 15:24 CTLCardinality.xml
-rw-r--r-- 1 mcc users 5.4K Mar 23 15:21 CTLFireability.txt
-rw-r--r-- 1 mcc users 54K Mar 23 15:21 CTLFireability.xml
-rw-r--r-- 1 mcc users 3.6K Mar 23 07:07 LTLCardinality.txt
-rw-r--r-- 1 mcc users 27K Mar 23 07:07 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.1K Mar 23 07:07 LTLFireability.txt
-rw-r--r-- 1 mcc users 17K Mar 23 07:07 LTLFireability.xml
-rw-r--r-- 1 mcc users 1 Mar 26 22:42 NewModel
-rw-r--r-- 1 mcc users 9.6K Mar 23 15:26 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 105K Mar 23 15:26 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 7.7K Mar 23 15:26 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 71K Mar 23 15:26 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.6K Mar 23 07:07 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.6K Mar 23 07:07 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Mar 26 22:42 equiv_pt
-rw-r--r-- 1 mcc users 8 Mar 26 22:42 instance
-rw-r--r-- 1 mcc users 5 Mar 26 22:42 iscolored
-rw-r--r-- 1 mcc users 16K Mar 26 22:42 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME PGCD-COL-D02N005-CTLCardinality-00
FORMULA_NAME PGCD-COL-D02N005-CTLCardinality-01
FORMULA_NAME PGCD-COL-D02N005-CTLCardinality-02
FORMULA_NAME PGCD-COL-D02N005-CTLCardinality-03
FORMULA_NAME PGCD-COL-D02N005-CTLCardinality-04
FORMULA_NAME PGCD-COL-D02N005-CTLCardinality-05
FORMULA_NAME PGCD-COL-D02N005-CTLCardinality-06
FORMULA_NAME PGCD-COL-D02N005-CTLCardinality-07
FORMULA_NAME PGCD-COL-D02N005-CTLCardinality-08
FORMULA_NAME PGCD-COL-D02N005-CTLCardinality-09
FORMULA_NAME PGCD-COL-D02N005-CTLCardinality-10
FORMULA_NAME PGCD-COL-D02N005-CTLCardinality-11
FORMULA_NAME PGCD-COL-D02N005-CTLCardinality-12
FORMULA_NAME PGCD-COL-D02N005-CTLCardinality-13
FORMULA_NAME PGCD-COL-D02N005-CTLCardinality-14
FORMULA_NAME PGCD-COL-D02N005-CTLCardinality-15
=== Now, execution of the tool begins
BK_START 1679895610594
bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marcie
BK_EXAMINATION=CTLCardinality
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=PGCD-COL-D02N005
Not applying reductions.
Model is COL
CTLCardinality COL
timeout --kill-after=10s --signal=SIGINT 1m for testing only
Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: /home/mcc/BenchKit/bin//../marcie/bin/marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --memory=6 --mcc-mode
parse successfull
net created successfully
Unfolding complete |P|=9|T|=9|A|=42
Time for unfolding: 0m 0.212sec
Net: PGCD_COL_D2_N5
(NrP: 9 NrTr: 9 NrArc: 42)
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec
net check time: 0m 0.000sec
init dd package: 0m 2.796sec
RS generation: 0m 0.016sec
-> reachability set: #nodes 377 (3.8e+02) #states 8,484 (3)
starting MCC model checker
--------------------------
checking: ~ [AF [sum(p1_c2, p1_c1, p1_c0)<=82]]
normalized: EG [~ [sum(p1_c2, p1_c1, p1_c0)<=82]]
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=82)
states: 8,484 (3)
.
EG iterations: 1
-> the formula is FALSE
FORMULA PGCD-COL-D02N005-CTLCardinality-02 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.026sec
checking: EG [EF [sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0)]]
normalized: EG [E [true U sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0)]]
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 8,484 (3)
EG iterations: 0
-> the formula is TRUE
FORMULA PGCD-COL-D02N005-CTLCardinality-13 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m12.304sec
checking: ~ [EX [EG [[57<=sum(p2_c2, p2_c1, p2_c0) & EX [~ [sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0)]]]]]]
normalized: ~ [EX [EG [[EX [~ [sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0)]] & 57<=sum(p2_c2, p2_c1, p2_c0)]]]]
abstracting: (57<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 4,738 (3)
..
EG iterations: 1
.-> the formula is TRUE
FORMULA PGCD-COL-D02N005-CTLCardinality-06 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 9.581sec
checking: ~ [EG [E [sum(p1_c2, p1_c1, p1_c0)<=13 U [[sum(p2_c2, p2_c1, p2_c0)<=70 | sum(p1_c2, p1_c1, p1_c0)<=62] & [sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0) | EF [sum(p2_c2, p2_c1, p2_c0)<=85]]]]]]
normalized: ~ [EG [E [sum(p1_c2, p1_c1, p1_c0)<=13 U [[E [true U sum(p2_c2, p2_c1, p2_c0)<=85] | sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0)] & [sum(p2_c2, p2_c1, p2_c0)<=70 | sum(p1_c2, p1_c1, p1_c0)<=62]]]]]
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=62)
states: 8,484 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=70)
states: 8,484 (3)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 4,738 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=85)
states: 8,484 (3)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=13)
states: 7,448 (3)
EG iterations: 0
-> the formula is FALSE
FORMULA PGCD-COL-D02N005-CTLCardinality-07 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.096sec
checking: [AG [~ [[~ [A [sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0) U [sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0) | 73<=sum(p0_c2, p0_c1, p0_c0)]]] & EF [[[sum(p1_c2, p1_c1, p1_c0)<=0 | sum(p2_c2, p2_c1, p2_c0)<=44] & [59<=sum(p0_c2, p0_c1, p0_c0) | 23<=sum(p1_c2, p1_c1, p1_c0)]]]]]] | EG [AG [22<=sum(p0_c2, p0_c1, p0_c0)]]]
normalized: [EG [~ [E [true U ~ [22<=sum(p0_c2, p0_c1, p0_c0)]]]] | ~ [E [true U [E [true U [[59<=sum(p0_c2, p0_c1, p0_c0) | 23<=sum(p1_c2, p1_c1, p1_c0)] & [sum(p1_c2, p1_c1, p1_c0)<=0 | sum(p2_c2, p2_c1, p2_c0)<=44]]] & ~ [[~ [EG [~ [[sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0) | 73<=sum(p0_c2, p0_c1, p0_c0)]]]] & ~ [E [~ [[sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0) | 73<=sum(p0_c2, p0_c1, p0_c0)]] U [~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0)] & ~ [[sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0) | 73<=sum(p0_c2, p0_c1, p0_c0)]]]]]]]]]]]
abstracting: (73<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 8,484 (3)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 8,484 (3)
abstracting: (73<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 8,484 (3)
abstracting: (73<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 8,484 (3)
.
EG iterations: 1
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=44)
states: 8,484 (3)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=0)
states: 55
abstracting: (23<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (59<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (22<=sum(p0_c2, p0_c1, p0_c0))
states: 0
.
EG iterations: 1
-> the formula is TRUE
FORMULA PGCD-COL-D02N005-CTLCardinality-04 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m11.949sec
checking: AG [EG [[[sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0) & ~ [EF [sum(p1_c2, p1_c1, p1_c0)<=11]]] | [[55<=sum(p2_c2, p2_c1, p2_c0) | [~ [98<=sum(p1_c2, p1_c1, p1_c0)] & [sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0) | sum(p2_c2, p2_c1, p2_c0)<=25]]] & AG [[49<=sum(p1_c2, p1_c1, p1_c0) & sum(p2_c2, p2_c1, p2_c0)<=24]]]]]]
normalized: ~ [E [true U ~ [EG [[[~ [E [true U ~ [[49<=sum(p1_c2, p1_c1, p1_c0) & sum(p2_c2, p2_c1, p2_c0)<=24]]]] & [[[sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0) | sum(p2_c2, p2_c1, p2_c0)<=25] & ~ [98<=sum(p1_c2, p1_c1, p1_c0)]] | 55<=sum(p2_c2, p2_c1, p2_c0)]] | [~ [E [true U sum(p1_c2, p1_c1, p1_c0)<=11]] & sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0)]]]]]]
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 8,484 (3)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=11)
states: 6,223 (3)
abstracting: (55<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (98<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=25)
states: 8,484 (3)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 4,521 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=24)
states: 8,484 (3)
abstracting: (49<=sum(p1_c2, p1_c1, p1_c0))
states: 0
.
EG iterations: 1
-> the formula is FALSE
FORMULA PGCD-COL-D02N005-CTLCardinality-05 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 9.146sec
checking: EG [AF [[~ [[[[sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) & sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0)] & AG [sum(p0_c2, p0_c1, p0_c0)<=91]] & [63<=sum(p2_c2, p2_c1, p2_c0) & [sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0) & sum(p2_c2, p2_c1, p2_c0)<=45]]]] & sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0)]]]
normalized: EG [~ [EG [~ [[~ [[[[sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0) & sum(p2_c2, p2_c1, p2_c0)<=45] & 63<=sum(p2_c2, p2_c1, p2_c0)] & [~ [E [true U ~ [sum(p0_c2, p0_c1, p0_c0)<=91]]] & [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) & sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0)]]]] & sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0)]]]]]
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 8,484 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 8,484 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 4,521 (3)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=91)
states: 8,484 (3)
abstracting: (63<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=45)
states: 8,484 (3)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 4,738 (3)
.
EG iterations: 1
EG iterations: 0
-> the formula is TRUE
FORMULA PGCD-COL-D02N005-CTLCardinality-01 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 9.563sec
checking: ~ [EX [[[AG [[sum(p2_c2, p2_c1, p2_c0)<=71 & [66<=sum(p0_c2, p0_c1, p0_c0) & sum(p2_c2, p2_c1, p2_c0)<=79]]] | ~ [[[EF [sum(p0_c2, p0_c1, p0_c0)<=85] & AX [sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0)]] & EF [sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0)]]]] | [sum(p0_c2, p0_c1, p0_c0)<=35 & E [EF [sum(p0_c2, p0_c1, p0_c0)<=60] U EF [74<=sum(p0_c2, p0_c1, p0_c0)]]]]]]
normalized: ~ [EX [[[E [E [true U sum(p0_c2, p0_c1, p0_c0)<=60] U E [true U 74<=sum(p0_c2, p0_c1, p0_c0)]] & sum(p0_c2, p0_c1, p0_c0)<=35] | [~ [[E [true U sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0)] & [~ [EX [~ [sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0)]]] & E [true U sum(p0_c2, p0_c1, p0_c0)<=85]]]] | ~ [E [true U ~ [[[66<=sum(p0_c2, p0_c1, p0_c0) & sum(p2_c2, p2_c1, p2_c0)<=79] & sum(p2_c2, p2_c1, p2_c0)<=71]]]]]]]]
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=71)
states: 8,484 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=79)
states: 8,484 (3)
abstracting: (66<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=85)
states: 8,484 (3)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 4,738 (3)
.abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 4,738 (3)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=35)
states: 8,484 (3)
abstracting: (74<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=60)
states: 8,484 (3)
.-> the formula is FALSE
FORMULA PGCD-COL-D02N005-CTLCardinality-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 9.644sec
checking: EG [[E [[E [AG [88<=sum(p0_c2, p0_c1, p0_c0)] U EX [sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0)]] | [[[sum(p1_c2, p1_c1, p1_c0)<=95 | sum(p0_c2, p0_c1, p0_c0)<=79] & [sum(p1_c2, p1_c1, p1_c0)<=61 & sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)]] | EG [sum(p1_c2, p1_c1, p1_c0)<=35]]] U sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0)] & AX [EX [AG [81<=sum(p0_c2, p0_c1, p0_c0)]]]]]
normalized: EG [[~ [EX [~ [EX [~ [E [true U ~ [81<=sum(p0_c2, p0_c1, p0_c0)]]]]]]] & E [[[EG [sum(p1_c2, p1_c1, p1_c0)<=35] | [[sum(p1_c2, p1_c1, p1_c0)<=61 & sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)] & [sum(p1_c2, p1_c1, p1_c0)<=95 | sum(p0_c2, p0_c1, p0_c0)<=79]]] | E [~ [E [true U ~ [88<=sum(p0_c2, p0_c1, p0_c0)]]] U EX [sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0)]]] U sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0)]]]
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 4,521 (3)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 4,738 (3)
.abstracting: (88<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=79)
states: 8,484 (3)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=95)
states: 8,484 (3)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 8,484 (3)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=61)
states: 8,484 (3)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=35)
states: 8,484 (3)
EG iterations: 0
abstracting: (81<=sum(p0_c2, p0_c1, p0_c0))
states: 0
...
EG iterations: 1
-> the formula is FALSE
FORMULA PGCD-COL-D02N005-CTLCardinality-03 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.153sec
checking: EX [[[[~ [AF [[sum(p0_c2, p0_c1, p0_c0)<=81 | 80<=sum(p0_c2, p0_c1, p0_c0)]]] & ~ [[[60<=sum(p1_c2, p1_c1, p1_c0) & AG [71<=sum(p1_c2, p1_c1, p1_c0)]] & [[sum(p0_c2, p0_c1, p0_c0)<=21 | sum(p2_c2, p2_c1, p2_c0)<=4] | AX [66<=sum(p2_c2, p2_c1, p2_c0)]]]]] | [[[AG [sum(p2_c2, p2_c1, p2_c0)<=54] & EG [sum(p2_c2, p2_c1, p2_c0)<=83]] & AG [~ [sum(p0_c2, p0_c1, p0_c0)<=100]]] & ~ [AF [~ [sum(p1_c2, p1_c1, p1_c0)<=25]]]]] & ~ [A [EG [40<=sum(p1_c2, p1_c1, p1_c0)] U [sum(p0_c2, p0_c1, p0_c0)<=66 | 30<=sum(p0_c2, p0_c1, p0_c0)]]]]]
normalized: EX [[~ [[~ [EG [~ [[sum(p0_c2, p0_c1, p0_c0)<=66 | 30<=sum(p0_c2, p0_c1, p0_c0)]]]] & ~ [E [~ [[sum(p0_c2, p0_c1, p0_c0)<=66 | 30<=sum(p0_c2, p0_c1, p0_c0)]] U [~ [EG [40<=sum(p1_c2, p1_c1, p1_c0)]] & ~ [[sum(p0_c2, p0_c1, p0_c0)<=66 | 30<=sum(p0_c2, p0_c1, p0_c0)]]]]]]] & [[EG [sum(p1_c2, p1_c1, p1_c0)<=25] & [~ [E [true U sum(p0_c2, p0_c1, p0_c0)<=100]] & [EG [sum(p2_c2, p2_c1, p2_c0)<=83] & ~ [E [true U ~ [sum(p2_c2, p2_c1, p2_c0)<=54]]]]]] | [~ [[[~ [EX [~ [66<=sum(p2_c2, p2_c1, p2_c0)]]] | [sum(p0_c2, p0_c1, p0_c0)<=21 | sum(p2_c2, p2_c1, p2_c0)<=4]] & [60<=sum(p1_c2, p1_c1, p1_c0) & ~ [E [true U ~ [71<=sum(p1_c2, p1_c1, p1_c0)]]]]]] & EG [~ [[sum(p0_c2, p0_c1, p0_c0)<=81 | 80<=sum(p0_c2, p0_c1, p0_c0)]]]]]]]
abstracting: (80<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=81)
states: 8,484 (3)
.
EG iterations: 1
abstracting: (71<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (60<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=4)
states: 1,036 (3)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=21)
states: 8,484 (3)
abstracting: (66<=sum(p2_c2, p2_c1, p2_c0))
states: 0
.abstracting: (sum(p2_c2, p2_c1, p2_c0)<=54)
states: 8,484 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=83)
states: 8,484 (3)
EG iterations: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=100)
states: 8,484 (3)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=25)
states: 8,484 (3)
EG iterations: 0
abstracting: (30<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=66)
states: 8,484 (3)
abstracting: (40<=sum(p1_c2, p1_c1, p1_c0))
states: 0
.
EG iterations: 1
abstracting: (30<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=66)
states: 8,484 (3)
abstracting: (30<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=66)
states: 8,484 (3)
.
EG iterations: 1
.-> the formula is FALSE
FORMULA PGCD-COL-D02N005-CTLCardinality-00 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.337sec
checking: ~ [EX [[[[sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0) & ~ [EG [sum(p0_c2, p0_c1, p0_c0)<=46]]] | EX [[[sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0) & sum(p1_c2, p1_c1, p1_c0)<=43] & [93<=sum(p0_c2, p0_c1, p0_c0) | sum(p0_c2, p0_c1, p0_c0)<=62]]]] | [68<=sum(p0_c2, p0_c1, p0_c0) & [~ [[65<=sum(p2_c2, p2_c1, p2_c0) | 100<=sum(p2_c2, p2_c1, p2_c0)]] | [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) & 49<=sum(p2_c2, p2_c1, p2_c0)]]]]]]
normalized: ~ [EX [[[[[sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) & 49<=sum(p2_c2, p2_c1, p2_c0)] | ~ [[65<=sum(p2_c2, p2_c1, p2_c0) | 100<=sum(p2_c2, p2_c1, p2_c0)]]] & 68<=sum(p0_c2, p0_c1, p0_c0)] | [EX [[[93<=sum(p0_c2, p0_c1, p0_c0) | sum(p0_c2, p0_c1, p0_c0)<=62] & [sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0) & sum(p1_c2, p1_c1, p1_c0)<=43]]] | [~ [EG [sum(p0_c2, p0_c1, p0_c0)<=46]] & sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0)]]]]]
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 4,738 (3)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=46)
states: 8,484 (3)
EG iterations: 0
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=43)
states: 8,484 (3)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 8,484 (3)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=62)
states: 8,484 (3)
abstracting: (93<=sum(p0_c2, p0_c1, p0_c0))
states: 0
.abstracting: (68<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (100<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (65<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (49<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 4,521 (3)
.-> the formula is FALSE
FORMULA PGCD-COL-D02N005-CTLCardinality-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.194sec
checking: [EX [A [[[sum(p1_c2, p1_c1, p1_c0)<=85 | sum(p0_c2, p0_c1, p0_c0)<=28] & [~ [37<=sum(p2_c2, p2_c1, p2_c0)] & EF [sum(p0_c2, p0_c1, p0_c0)<=58]]] U sum(p2_c2, p2_c1, p2_c0)<=46]] | AX [E [E [[[sum(p1_c2, p1_c1, p1_c0)<=87 | sum(p2_c2, p2_c1, p2_c0)<=65] & [sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0) | sum(p2_c2, p2_c1, p2_c0)<=66]] U EF [21<=sum(p0_c2, p0_c1, p0_c0)]] U A [[~ [52<=sum(p1_c2, p1_c1, p1_c0)] | sum(p1_c2, p1_c1, p1_c0)<=80] U 56<=sum(p1_c2, p1_c1, p1_c0)]]]]
normalized: [~ [EX [~ [E [E [[[sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0) | sum(p2_c2, p2_c1, p2_c0)<=66] & [sum(p1_c2, p1_c1, p1_c0)<=87 | sum(p2_c2, p2_c1, p2_c0)<=65]] U E [true U 21<=sum(p0_c2, p0_c1, p0_c0)]] U [~ [EG [~ [56<=sum(p1_c2, p1_c1, p1_c0)]]] & ~ [E [~ [56<=sum(p1_c2, p1_c1, p1_c0)] U [~ [[~ [52<=sum(p1_c2, p1_c1, p1_c0)] | sum(p1_c2, p1_c1, p1_c0)<=80]] & ~ [56<=sum(p1_c2, p1_c1, p1_c0)]]]]]]]]] | EX [[~ [EG [~ [sum(p2_c2, p2_c1, p2_c0)<=46]]] & ~ [E [~ [sum(p2_c2, p2_c1, p2_c0)<=46] U [~ [[[E [true U sum(p0_c2, p0_c1, p0_c0)<=58] & ~ [37<=sum(p2_c2, p2_c1, p2_c0)]] & [sum(p1_c2, p1_c1, p1_c0)<=85 | sum(p0_c2, p0_c1, p0_c0)<=28]]] & ~ [sum(p2_c2, p2_c1, p2_c0)<=46]]]]]]]
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=46)
states: 8,484 (3)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=28)
states: 8,484 (3)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=85)
states: 8,484 (3)
abstracting: (37<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=58)
states: 8,484 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=46)
states: 8,484 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=46)
states: 8,484 (3)
.
EG iterations: 1
.abstracting: (56<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=80)
states: 8,484 (3)
abstracting: (52<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (56<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (56<=sum(p1_c2, p1_c1, p1_c0))
states: 0
EG iterations: 0
abstracting: (21<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=65)
states: 8,484 (3)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=87)
states: 8,484 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=66)
states: 8,484 (3)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 8,484 (3)
.-> the formula is TRUE
FORMULA PGCD-COL-D02N005-CTLCardinality-15 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.286sec
checking: [EF [[[E [~ [[sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) & sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0)]] U ~ [26<=sum(p1_c2, p1_c1, p1_c0)]] & AX [[[sum(p0_c2, p0_c1, p0_c0)<=37 | sum(p2_c2, p2_c1, p2_c0)<=57] | ~ [23<=sum(p0_c2, p0_c1, p0_c0)]]]] & 84<=sum(p2_c2, p2_c1, p2_c0)]] | E [~ [AG [[A [sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0) U 53<=sum(p0_c2, p0_c1, p0_c0)] | [5<=sum(p2_c2, p2_c1, p2_c0) & 65<=sum(p2_c2, p2_c1, p2_c0)]]]] U AX [sum(p0_c2, p0_c1, p0_c0)<=38]]]
normalized: [E [E [true U ~ [[[5<=sum(p2_c2, p2_c1, p2_c0) & 65<=sum(p2_c2, p2_c1, p2_c0)] | [~ [EG [~ [53<=sum(p0_c2, p0_c1, p0_c0)]]] & ~ [E [~ [53<=sum(p0_c2, p0_c1, p0_c0)] U [~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)] & ~ [53<=sum(p0_c2, p0_c1, p0_c0)]]]]]]]] U ~ [EX [~ [sum(p0_c2, p0_c1, p0_c0)<=38]]]] | E [true U [[~ [EX [~ [[~ [23<=sum(p0_c2, p0_c1, p0_c0)] | [sum(p0_c2, p0_c1, p0_c0)<=37 | sum(p2_c2, p2_c1, p2_c0)<=57]]]]] & E [~ [[sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) & sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0)]] U ~ [26<=sum(p1_c2, p1_c1, p1_c0)]]] & 84<=sum(p2_c2, p2_c1, p2_c0)]]]
abstracting: (84<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (26<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 8,484 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 4,521 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=57)
states: 8,484 (3)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=37)
states: 8,484 (3)
abstracting: (23<=sum(p0_c2, p0_c1, p0_c0))
states: 0
.abstracting: (sum(p0_c2, p0_c1, p0_c0)<=38)
states: 8,484 (3)
.abstracting: (53<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 8,484 (3)
abstracting: (53<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (53<=sum(p0_c2, p0_c1, p0_c0))
states: 0
EG iterations: 0
abstracting: (65<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (5<=sum(p2_c2, p2_c1, p2_c0))
states: 7,448 (3)
-> the formula is TRUE
FORMULA PGCD-COL-D02N005-CTLCardinality-09 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.195sec
checking: E [35<=sum(p0_c2, p0_c1, p0_c0) U [[~ [[[[AG [12<=sum(p1_c2, p1_c1, p1_c0)] | [sum(p1_c2, p1_c1, p1_c0)<=46 & 54<=sum(p1_c2, p1_c1, p1_c0)]] | [AF [sum(p2_c2, p2_c1, p2_c0)<=19] & EG [sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0)]]] & AF [EX [sum(p2_c2, p2_c1, p2_c0)<=25]]]] | [EG [sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0)] & EX [[~ [sum(p2_c2, p2_c1, p2_c0)<=74] & 8<=sum(p2_c2, p2_c1, p2_c0)]]]] & AG [[AG [AG [sum(p0_c2, p0_c1, p0_c0)<=18]] & ~ [[99<=sum(p0_c2, p0_c1, p0_c0) & AF [sum(p0_c2, p0_c1, p0_c0)<=62]]]]]]]
normalized: E [35<=sum(p0_c2, p0_c1, p0_c0) U [~ [E [true U ~ [[~ [[~ [EG [~ [sum(p0_c2, p0_c1, p0_c0)<=62]]] & 99<=sum(p0_c2, p0_c1, p0_c0)]] & ~ [E [true U E [true U ~ [sum(p0_c2, p0_c1, p0_c0)<=18]]]]]]]] & [[EX [[~ [sum(p2_c2, p2_c1, p2_c0)<=74] & 8<=sum(p2_c2, p2_c1, p2_c0)]] & EG [sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0)]] | ~ [[~ [EG [~ [EX [sum(p2_c2, p2_c1, p2_c0)<=25]]]] & [[EG [sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0)] & ~ [EG [~ [sum(p2_c2, p2_c1, p2_c0)<=19]]]] | [[sum(p1_c2, p1_c1, p1_c0)<=46 & 54<=sum(p1_c2, p1_c1, p1_c0)] | ~ [E [true U ~ [12<=sum(p1_c2, p1_c1, p1_c0)]]]]]]]]]]
abstracting: (12<=sum(p1_c2, p1_c1, p1_c0))
states: 2,261 (3)
abstracting: (54<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=46)
states: 8,484 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=19)
states: 8,484 (3)
.
EG iterations: 1
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 8,484 (3)
EG iterations: 0
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=25)
states: 8,484 (3)
..
EG iterations: 1
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 8,484 (3)
EG iterations: 0
abstracting: (8<=sum(p2_c2, p2_c1, p2_c0))
states: 5,503 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=74)
states: 8,484 (3)
.abstracting: (sum(p0_c2, p0_c1, p0_c0)<=18)
states: 8,484 (3)
abstracting: (99<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=62)
states: 8,484 (3)
.
EG iterations: 1
abstracting: (35<=sum(p0_c2, p0_c1, p0_c0))
states: 0
-> the formula is FALSE
FORMULA PGCD-COL-D02N005-CTLCardinality-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.220sec
checking: E [[EF [[AF [~ [70<=sum(p1_c2, p1_c1, p1_c0)]] & ~ [AG [93<=sum(p0_c2, p0_c1, p0_c0)]]]] & sum(p0_c2, p0_c1, p0_c0)<=55] U [E [~ [[[EX [27<=sum(p1_c2, p1_c1, p1_c0)] & A [11<=sum(p1_c2, p1_c1, p1_c0) U sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0)]] | ~ [AF [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0)]]]] U [sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0) | [~ [AX [sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0)]] & 58<=sum(p0_c2, p0_c1, p0_c0)]]] | [~ [[sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0) | A [[sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0) & 82<=sum(p1_c2, p1_c1, p1_c0)] U [sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0) | 30<=sum(p1_c2, p1_c1, p1_c0)]]]] | AG [[EX [sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0)] | AX [70<=sum(p1_c2, p1_c1, p1_c0)]]]]]]
normalized: E [[E [true U [E [true U ~ [93<=sum(p0_c2, p0_c1, p0_c0)]] & ~ [EG [70<=sum(p1_c2, p1_c1, p1_c0)]]]] & sum(p0_c2, p0_c1, p0_c0)<=55] U [[~ [E [true U ~ [[EX [sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0)] | ~ [EX [~ [70<=sum(p1_c2, p1_c1, p1_c0)]]]]]]] | ~ [[[~ [EG [~ [[sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0) | 30<=sum(p1_c2, p1_c1, p1_c0)]]]] & ~ [E [~ [[sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0) | 30<=sum(p1_c2, p1_c1, p1_c0)]] U [~ [[sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0) & 82<=sum(p1_c2, p1_c1, p1_c0)]] & ~ [[sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0) | 30<=sum(p1_c2, p1_c1, p1_c0)]]]]]] | sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0)]]] | E [~ [[EG [~ [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0)]] | [[~ [EG [~ [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0)]]] & ~ [E [~ [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0)] U [~ [11<=sum(p1_c2, p1_c1, p1_c0)] & ~ [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0)]]]]] & EX [27<=sum(p1_c2, p1_c1, p1_c0)]]]] U [[EX [~ [sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0)]] & 58<=sum(p0_c2, p0_c1, p0_c0)] | sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)]]]]
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 8,484 (3)
abstracting: (58<=sum(p0_c2, p0_c1, p0_c0))
states: 0
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 8,484 (3)
.abstracting: (27<=sum(p1_c2, p1_c1, p1_c0))
states: 0
.abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 4,521 (3)
abstracting: (11<=sum(p1_c2, p1_c1, p1_c0))
states: 2,981 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 4,521 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 4,521 (3)
..
EG iterations: 2
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 4,521 (3)
..
EG iterations: 2
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 8,484 (3)
abstracting: (30<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 4,738 (3)
abstracting: (82<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 8,484 (3)
abstracting: (30<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 4,738 (3)
abstracting: (30<=sum(p1_c2, p1_c1, p1_c0))
states: 0
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 4,738 (3)
.
EG iterations: 1
abstracting: (70<=sum(p1_c2, p1_c1, p1_c0))
states: 0
.abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 8,484 (3)
.abstracting: (sum(p0_c2, p0_c1, p0_c0)<=55)
states: 8,484 (3)
abstracting: (70<=sum(p1_c2, p1_c1, p1_c0))
states: 0
.
EG iterations: 1
abstracting: (93<=sum(p0_c2, p0_c1, p0_c0))
states: 0
-> the formula is TRUE
FORMULA PGCD-COL-D02N005-CTLCardinality-08 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.173sec
checking: [AX [[[sum(p0_c2, p0_c1, p0_c0)<=67 & [[[~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)] | [sum(p1_c2, p1_c1, p1_c0)<=26 & 26<=sum(p2_c2, p2_c1, p2_c0)]] & [[sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) & sum(p1_c2, p1_c1, p1_c0)<=32] | ~ [sum(p2_c2, p2_c1, p2_c0)<=28]]] & [sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0) | [[sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0) | sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0)] | EF [sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0)]]]]] | [~ [AG [sum(p2_c2, p2_c1, p2_c0)<=25]] | [AX [sum(p0_c2, p0_c1, p0_c0)<=92] | ~ [EG [sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0)]]]]]] | EF [~ [[[sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0) | AG [72<=sum(p2_c2, p2_c1, p2_c0)]] | [AG [sum(p1_c2, p1_c1, p1_c0)<=100] | [sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0) | sum(p0_c2, p0_c1, p0_c0)<=89]]]]]]
normalized: [E [true U ~ [[[[sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0) | sum(p0_c2, p0_c1, p0_c0)<=89] | ~ [E [true U ~ [sum(p1_c2, p1_c1, p1_c0)<=100]]]] | [~ [E [true U ~ [72<=sum(p2_c2, p2_c1, p2_c0)]]] | sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)]]]] | ~ [EX [~ [[[[~ [EG [sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0)]] | ~ [EX [~ [sum(p0_c2, p0_c1, p0_c0)<=92]]]] | E [true U ~ [sum(p2_c2, p2_c1, p2_c0)<=25]]] | [[[[E [true U sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0)] | [sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0) | sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0)]] | sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0)] & [[~ [sum(p2_c2, p2_c1, p2_c0)<=28] | [sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0) & sum(p1_c2, p1_c1, p1_c0)<=32]] & [[sum(p1_c2, p1_c1, p1_c0)<=26 & 26<=sum(p2_c2, p2_c1, p2_c0)] | ~ [sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0)]]]] & sum(p0_c2, p0_c1, p0_c0)<=67]]]]]]
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=67)
states: 8,484 (3)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 8,484 (3)
abstracting: (26<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=26)
states: 8,484 (3)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=32)
states: 8,484 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 4,521 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=28)
states: 8,484 (3)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 4,738 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 4,521 (3)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 8,484 (3)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 8,484 (3)
abstracting: (sum(p2_c2, p2_c1, p2_c0)<=25)
states: 8,484 (3)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=92)
states: 8,484 (3)
.abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p1_c2, p1_c1, p1_c0))
states: 8,484 (3)
EG iterations: 0
.abstracting: (sum(p0_c2, p0_c1, p0_c0)<=sum(p2_c2, p2_c1, p2_c0))
states: 8,484 (3)
abstracting: (72<=sum(p2_c2, p2_c1, p2_c0))
states: 0
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=100)
states: 8,484 (3)
abstracting: (sum(p0_c2, p0_c1, p0_c0)<=89)
states: 8,484 (3)
abstracting: (sum(p1_c2, p1_c1, p1_c0)<=sum(p0_c2, p0_c1, p0_c0))
states: 4,738 (3)
-> the formula is TRUE
FORMULA PGCD-COL-D02N005-CTLCardinality-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.212sec
totally nodes used: 10408 (1.0e+04)
number of garbage collections: 0
fire ops cache: hits/miss/sum: 70607 31320 101927
used/not used/entry size/cache size: 39270 67069594 16 1024MB
basic ops cache: hits/miss/sum: 47572 38247 85819
used/not used/entry size/cache size: 48765 16728451 12 192MB
unary ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 8 128MB
abstract ops cache: hits/miss/sum: 0 13635599 13635599
used/not used/entry size/cache size: 1 16777215 12 192MB
state nr cache: hits/miss/sum: 3978 1760 5738
used/not used/entry size/cache size: 1760 8386848 32 256MB
max state cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 8388608 32 256MB
uniqueHash elements/entry size/size: 67108864 4 256MB
0 67099437
1 8872
2 371
3 92
4 51
5 23
6 6
7 5
8 1
9 0
>= 10 6
Total processing time: 1m 8.750sec
BK_STOP 1679895679390
--------------------
content from stderr:
check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.000sec
iterations count:486 (54), effective:159 (17)
initing FirstDep: 0m 0.000sec
iterations count:9 (1), effective:0 (0)
iterations count:9 (1), effective:0 (0)
iterations count:9 (1), effective:0 (0)
iterations count:9 (1), effective:0 (0)
iterations count:91 (10), effective:27 (3)
iterations count:9 (1), effective:0 (0)
iterations count:9 (1), effective:0 (0)
iterations count:9 (1), effective:0 (0)
iterations count:9 (1), effective:0 (0)
iterations count:120 (13), effective:37 (4)
iterations count:9 (1), effective:0 (0)
iterations count:9 (1), effective:0 (0)
iterations count:9 (1), effective:0 (0)
iterations count:117 (13), effective:33 (3)
iterations count:9 (1), effective:0 (0)
iterations count:9 (1), effective:0 (0)
iterations count:9 (1), effective:0 (0)
iterations count:9 (1), effective:0 (0)
iterations count:9 (1), effective:0 (0)
iterations count:9 (1), effective:0 (0)
iterations count:9 (1), effective:0 (0)
iterations count:91 (10), effective:27 (3)
iterations count:9 (1), effective:0 (0)
iterations count:9 (1), effective:0 (0)
iterations count:9 (1), effective:0 (0)
iterations count:9 (1), effective:0 (0)
iterations count:9 (1), effective:0 (0)
iterations count:9 (1), effective:0 (0)
iterations count:9 (1), effective:0 (0)
iterations count:9 (1), effective:0 (0)
iterations count:9 (1), effective:0 (0)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="PGCD-COL-D02N005"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marcie"
echo " Input is PGCD-COL-D02N005, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r513-tall-167987241000377"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/PGCD-COL-D02N005.tgz
mv PGCD-COL-D02N005 execution
cd execution
if [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "UpperBounds" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] || [ "CTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME CTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;