About the Execution of Marcie for Murphy-PT-D1N010
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
5450.695 | 4759.00 | 3970.00 | 100.00 | TTFFTFTTFFFTTTTT | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fkordon/mcc2023-input.r513-tall-167987240900329.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2023-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
..................
=====================================================================
Generated by BenchKit 2-5348
Executing tool marcie
Input is Murphy-PT-D1N010, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r513-tall-167987240900329
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 528K
-rw-r--r-- 1 mcc users 7.6K Mar 23 15:23 CTLCardinality.txt
-rw-r--r-- 1 mcc users 83K Mar 23 15:23 CTLCardinality.xml
-rw-r--r-- 1 mcc users 4.8K Mar 23 15:21 CTLFireability.txt
-rw-r--r-- 1 mcc users 46K Mar 23 15:21 CTLFireability.xml
-rw-r--r-- 1 mcc users 3.7K Mar 23 07:07 LTLCardinality.txt
-rw-r--r-- 1 mcc users 24K Mar 23 07:07 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.1K Mar 23 07:07 LTLFireability.txt
-rw-r--r-- 1 mcc users 18K Mar 23 07:07 LTLFireability.xml
-rw-r--r-- 1 mcc users 1 Mar 26 22:42 NewModel
-rw-r--r-- 1 mcc users 13K Mar 23 15:23 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 145K Mar 23 15:23 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 12K Mar 23 15:23 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 112K Mar 23 15:23 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.7K Mar 23 07:07 UpperBounds.txt
-rw-r--r-- 1 mcc users 4.1K Mar 23 07:07 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Mar 26 22:42 equiv_col
-rw-r--r-- 1 mcc users 7 Mar 26 22:42 instance
-rw-r--r-- 1 mcc users 6 Mar 26 22:42 iscolored
-rw-r--r-- 1 mcc users 9.3K Mar 26 22:42 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME Murphy-PT-D1N010-CTLCardinality-00
FORMULA_NAME Murphy-PT-D1N010-CTLCardinality-01
FORMULA_NAME Murphy-PT-D1N010-CTLCardinality-02
FORMULA_NAME Murphy-PT-D1N010-CTLCardinality-03
FORMULA_NAME Murphy-PT-D1N010-CTLCardinality-04
FORMULA_NAME Murphy-PT-D1N010-CTLCardinality-05
FORMULA_NAME Murphy-PT-D1N010-CTLCardinality-06
FORMULA_NAME Murphy-PT-D1N010-CTLCardinality-07
FORMULA_NAME Murphy-PT-D1N010-CTLCardinality-08
FORMULA_NAME Murphy-PT-D1N010-CTLCardinality-09
FORMULA_NAME Murphy-PT-D1N010-CTLCardinality-10
FORMULA_NAME Murphy-PT-D1N010-CTLCardinality-11
FORMULA_NAME Murphy-PT-D1N010-CTLCardinality-12
FORMULA_NAME Murphy-PT-D1N010-CTLCardinality-13
FORMULA_NAME Murphy-PT-D1N010-CTLCardinality-14
FORMULA_NAME Murphy-PT-D1N010-CTLCardinality-15
=== Now, execution of the tool begins
BK_START 1679893967617
bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marcie
BK_EXAMINATION=CTLCardinality
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=Murphy-PT-D1N010
Not applying reductions.
Model is PT
CTLCardinality PT
timeout --kill-after=10s --signal=SIGINT 1m for testing only
Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: /home/mcc/BenchKit/bin//../marcie/bin/marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --memory=6 --mcc-mode
parse successfull
net created successfully
Net: Murphy_COL_D1_N10
(NrP: 12 NrTr: 14 NrArc: 54)
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec
net check time: 0m 0.000sec
init dd package: 0m 2.852sec
RS generation: 0m 0.004sec
-> reachability set: #nodes 237 (2.4e+02) #states 39,780 (4)
starting MCC model checker
--------------------------
checking: AG [EX [EG [EX [[2<=p0_1 | 8<=p4_1]]]]]
normalized: ~ [E [true U ~ [EX [EG [EX [[2<=p0_1 | 8<=p4_1]]]]]]]
abstracting: (8<=p4_1)
states: 0
abstracting: (2<=p0_1)
states: 31,608 (4)
..
EG iterations: 1
.-> the formula is FALSE
FORMULA Murphy-PT-D1N010-CTLCardinality-02 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.017sec
checking: EG [AX [~ [EF [AG [p1_1<=p1_1]]]]]
normalized: EG [~ [EX [E [true U ~ [E [true U ~ [p1_1<=p1_1]]]]]]]
abstracting: (p1_1<=p1_1)
states: 39,780 (4)
..
EG iterations: 1
-> the formula is FALSE
FORMULA Murphy-PT-D1N010-CTLCardinality-03 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.000sec
checking: AG [AG [[AX [E [p5_2<=7 U p3_1<=7]] & [EG [~ [5<=p3_2]] | EG [EX [6<=p3_2]]]]]]
normalized: ~ [E [true U E [true U ~ [[~ [EX [~ [E [p5_2<=7 U p3_1<=7]]]] & [EG [EX [6<=p3_2]] | EG [~ [5<=p3_2]]]]]]]]
abstracting: (5<=p3_2)
states: 0
EG iterations: 0
abstracting: (6<=p3_2)
states: 0
..
EG iterations: 1
abstracting: (p3_1<=7)
states: 39,780 (4)
abstracting: (p5_2<=7)
states: 39,780 (4)
.-> the formula is TRUE
FORMULA Murphy-PT-D1N010-CTLCardinality-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.000sec
checking: ~ [EG [AG [AX [[p2_1<=p1_1 & p5_1<=p4_1]]]]]
normalized: ~ [EG [~ [E [true U EX [~ [[p2_1<=p1_1 & p5_1<=p4_1]]]]]]]
abstracting: (p5_1<=p4_1)
states: 19,890 (4)
abstracting: (p2_1<=p1_1)
states: 19,332 (4)
..
EG iterations: 1
-> the formula is TRUE
FORMULA Murphy-PT-D1N010-CTLCardinality-15 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.003sec
checking: EG [~ [EX [[E [AF [p2_2<=p0_2] U [4<=p3_2 | 10<=p0_1]] | 6<=p2_2]]]]
normalized: EG [~ [EX [[E [~ [EG [~ [p2_2<=p0_2]]] U [4<=p3_2 | 10<=p0_1]] | 6<=p2_2]]]]
abstracting: (6<=p2_2)
states: 17,280 (4)
abstracting: (10<=p0_1)
states: 8,064 (3)
abstracting: (4<=p3_2)
states: 0
abstracting: (p2_2<=p0_2)
states: 39,780 (4)
.
EG iterations: 1
..
EG iterations: 1
-> the formula is FALSE
FORMULA Murphy-PT-D1N010-CTLCardinality-08 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.002sec
checking: EF [~ [A [[[~ [p3_1<=9] & 4<=p2_1] & 8<=p5_2] U E [[7<=p1_2 | p4_1<=1] U p0_2<=8]]]]
normalized: E [true U ~ [[~ [EG [~ [E [[7<=p1_2 | p4_1<=1] U p0_2<=8]]]] & ~ [E [~ [E [[7<=p1_2 | p4_1<=1] U p0_2<=8]] U [~ [[[~ [p3_1<=9] & 4<=p2_1] & 8<=p5_2]] & ~ [E [[7<=p1_2 | p4_1<=1] U p0_2<=8]]]]]]]]
abstracting: (p0_2<=8)
states: 29,700 (4)
abstracting: (p4_1<=1)
states: 26,520 (4)
abstracting: (7<=p1_2)
states: 13,752 (4)
abstracting: (8<=p5_2)
states: 0
abstracting: (4<=p2_1)
states: 23,760 (4)
abstracting: (p3_1<=9)
states: 39,780 (4)
abstracting: (p0_2<=8)
states: 29,700 (4)
abstracting: (p4_1<=1)
states: 26,520 (4)
abstracting: (7<=p1_2)
states: 13,752 (4)
abstracting: (p0_2<=8)
states: 29,700 (4)
abstracting: (p4_1<=1)
states: 26,520 (4)
abstracting: (7<=p1_2)
states: 13,752 (4)
.
EG iterations: 1
-> the formula is TRUE
FORMULA Murphy-PT-D1N010-CTLCardinality-07 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.006sec
checking: [AX [[[AG [p5_1<=10] & [[~ [p0_2<=p1_2] & ~ [AG [7<=p3_2]]] & p0_1<=p3_1]] & 2<=p2_1]] | AG [p3_1<=7]]
normalized: [~ [E [true U ~ [p3_1<=7]]] | ~ [EX [~ [[2<=p2_1 & [[[E [true U ~ [7<=p3_2]] & ~ [p0_2<=p1_2]] & p0_1<=p3_1] & ~ [E [true U ~ [p5_1<=10]]]]]]]]]
abstracting: (p5_1<=10)
states: 39,780 (4)
abstracting: (p0_1<=p3_1)
states: 6,030 (3)
abstracting: (p0_2<=p1_2)
states: 19,332 (4)
abstracting: (7<=p3_2)
states: 0
abstracting: (2<=p2_1)
states: 31,608 (4)
.abstracting: (p3_1<=7)
states: 39,780 (4)
-> the formula is TRUE
FORMULA Murphy-PT-D1N010-CTLCardinality-00 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.001sec
checking: AG [E [A [[[p5_1<=p5_2 | E [3<=p0_2 U p4_2<=7]] & AX [7<=p5_2]] U p1_2<=p1_1] U EF [~ [AF [3<=p1_1]]]]]
normalized: ~ [E [true U ~ [E [[~ [EG [~ [p1_2<=p1_1]]] & ~ [E [~ [p1_2<=p1_1] U [~ [[~ [EX [~ [7<=p5_2]]] & [E [3<=p0_2 U p4_2<=7] | p5_1<=p5_2]]] & ~ [p1_2<=p1_1]]]]] U E [true U EG [~ [3<=p1_1]]]]]]]
abstracting: (3<=p1_1)
states: 26,568 (4)
.
EG iterations: 1
abstracting: (p1_2<=p1_1)
states: 21,168 (4)
abstracting: (p5_1<=p5_2)
states: 25,415 (4)
abstracting: (p4_2<=7)
states: 39,780 (4)
abstracting: (3<=p0_2)
states: 27,684 (4)
abstracting: (7<=p5_2)
states: 0
.abstracting: (p1_2<=p1_1)
states: 21,168 (4)
abstracting: (p1_2<=p1_1)
states: 21,168 (4)
.
EG iterations: 1
-> the formula is TRUE
FORMULA Murphy-PT-D1N010-CTLCardinality-01 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.006sec
checking: EX [~ [[[p5_2<=p2_2 & [p5_1<=p3_2 & EG [8<=p2_1]]] & [EX [~ [p0_2<=1]] & [~ [p3_2<=p0_2] & EF [[6<=p4_1 & p1_1<=5]]]]]]]
normalized: EX [~ [[[[E [true U [6<=p4_1 & p1_1<=5]] & ~ [p3_2<=p0_2]] & EX [~ [p0_2<=1]]] & [[EG [8<=p2_1] & p5_1<=p3_2] & p5_2<=p2_2]]]]
abstracting: (p5_2<=p2_2)
states: 33,744 (4)
abstracting: (p5_1<=p3_2)
states: 13,260 (4)
abstracting: (8<=p2_1)
states: 12,096 (4)
.
EG iterations: 1
abstracting: (p0_2<=1)
states: 8,172 (3)
.abstracting: (p3_2<=p0_2)
states: 37,836 (4)
abstracting: (p1_1<=5)
states: 23,472 (4)
abstracting: (6<=p4_1)
states: 0
.-> the formula is TRUE
FORMULA Murphy-PT-D1N010-CTLCardinality-13 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.002sec
checking: [EG [[E [[[[p3_2<=2 & p3_2<=p3_1] & p4_1<=5] & EX [p3_1<=6]] U AF [p3_2<=8]] & E [EX [AX [p0_2<=p3_1]] U E [EF [p5_2<=p4_1] U [6<=p1_2 | p3_1<=2]]]]] | AF [10<=p2_2]]
normalized: [EG [[E [EX [~ [EX [~ [p0_2<=p3_1]]]] U E [E [true U p5_2<=p4_1] U [6<=p1_2 | p3_1<=2]]] & E [[EX [p3_1<=6] & [[p3_2<=2 & p3_2<=p3_1] & p4_1<=5]] U ~ [EG [~ [p3_2<=8]]]]]] | ~ [EG [~ [10<=p2_2]]]]
abstracting: (10<=p2_2)
states: 8,064 (3)
.
EG iterations: 1
abstracting: (p3_2<=8)
states: 39,780 (4)
.
EG iterations: 1
abstracting: (p4_1<=5)
states: 39,780 (4)
abstracting: (p3_2<=p3_1)
states: 29,835 (4)
abstracting: (p3_2<=2)
states: 39,780 (4)
abstracting: (p3_1<=6)
states: 39,780 (4)
.abstracting: (p3_1<=2)
states: 39,780 (4)
abstracting: (6<=p1_2)
states: 16,308 (4)
abstracting: (p5_2<=p4_1)
states: 19,890 (4)
abstracting: (p0_2<=p3_1)
states: 6,030 (3)
..
EG iterations: 0
-> the formula is TRUE
FORMULA Murphy-PT-D1N010-CTLCardinality-14 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.002sec
checking: [EF [p1_1<=p3_1] | AX [[[[E [1<=p5_1 U EF [p2_1<=p0_2]] & A [p0_2<=p2_1 U ~ [p3_2<=6]]] & E [4<=p4_1 U E [p0_1<=1 U p5_1<=p5_2]]] & AG [[[EF [2<=p0_1] & ~ [1<=p1_2]] & p4_2<=3]]]]]
normalized: [~ [EX [~ [[~ [E [true U ~ [[[~ [1<=p1_2] & E [true U 2<=p0_1]] & p4_2<=3]]]] & [E [4<=p4_1 U E [p0_1<=1 U p5_1<=p5_2]] & [[~ [EG [p3_2<=6]] & ~ [E [p3_2<=6 U [~ [p0_2<=p2_1] & p3_2<=6]]]] & E [1<=p5_1 U E [true U p2_1<=p0_2]]]]]]]] | E [true U p1_1<=p3_1]]
abstracting: (p1_1<=p3_1)
states: 6,966 (3)
abstracting: (p2_1<=p0_2)
states: 20,952 (4)
abstracting: (1<=p5_1)
states: 33,150 (4)
abstracting: (p3_2<=6)
states: 39,780 (4)
abstracting: (p0_2<=p2_1)
states: 20,952 (4)
abstracting: (p3_2<=6)
states: 39,780 (4)
abstracting: (p3_2<=6)
states: 39,780 (4)
EG iterations: 0
abstracting: (p5_1<=p5_2)
states: 25,415 (4)
abstracting: (p0_1<=1)
states: 8,172 (3)
abstracting: (4<=p4_1)
states: 0
abstracting: (p4_2<=3)
states: 39,780 (4)
abstracting: (2<=p0_1)
states: 31,608 (4)
abstracting: (1<=p1_2)
states: 35,136 (4)
.-> the formula is TRUE
FORMULA Murphy-PT-D1N010-CTLCardinality-04 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.011sec
checking: EF [[[[EF [~ [[p2_2<=4 & 7<=p4_2]]] & EX [AF [1<=p3_2]]] & ~ [[[AX [p4_1<=3] & 3<=p3_2] | ~ [[[p1_1<=p4_2 & p1_2<=9] & EG [p3_2<=p4_2]]]]]] & A [[~ [p5_1<=p5_2] & p2_1<=7] U [~ [EG [p4_1<=9]] & [[3<=p2_2 & p5_1<=p1_2] & ~ [p4_2<=2]]]]]]
normalized: E [true U [[~ [EG [~ [[[~ [p4_2<=2] & [3<=p2_2 & p5_1<=p1_2]] & ~ [EG [p4_1<=9]]]]]] & ~ [E [~ [[[~ [p4_2<=2] & [3<=p2_2 & p5_1<=p1_2]] & ~ [EG [p4_1<=9]]]] U [~ [[~ [p5_1<=p5_2] & p2_1<=7]] & ~ [[[~ [p4_2<=2] & [3<=p2_2 & p5_1<=p1_2]] & ~ [EG [p4_1<=9]]]]]]]] & [~ [[~ [[EG [p3_2<=p4_2] & [p1_1<=p4_2 & p1_2<=9]]] | [~ [EX [~ [p4_1<=3]]] & 3<=p3_2]]] & [EX [~ [EG [~ [1<=p3_2]]]] & E [true U ~ [[p2_2<=4 & 7<=p4_2]]]]]]]
abstracting: (7<=p4_2)
states: 0
abstracting: (p2_2<=4)
states: 19,260 (4)
abstracting: (1<=p3_2)
states: 19,890 (4)
.
EG iterations: 1
.abstracting: (3<=p3_2)
states: 0
abstracting: (p4_1<=3)
states: 39,780 (4)
.abstracting: (p1_2<=9)
states: 32,472 (4)
abstracting: (p1_1<=p4_2)
states: 9,048 (3)
abstracting: (p3_2<=p4_2)
states: 33,150 (4)
.
EG iterations: 1
abstracting: (p4_1<=9)
states: 39,780 (4)
EG iterations: 0
abstracting: (p5_1<=p1_2)
states: 32,934 (4)
abstracting: (3<=p2_2)
states: 27,684 (4)
abstracting: (p4_2<=2)
states: 39,780 (4)
abstracting: (p2_1<=7)
states: 27,684 (4)
abstracting: (p5_1<=p5_2)
states: 25,415 (4)
abstracting: (p4_1<=9)
states: 39,780 (4)
EG iterations: 0
abstracting: (p5_1<=p1_2)
states: 32,934 (4)
abstracting: (3<=p2_2)
states: 27,684 (4)
abstracting: (p4_2<=2)
states: 39,780 (4)
abstracting: (p4_1<=9)
states: 39,780 (4)
EG iterations: 0
abstracting: (p5_1<=p1_2)
states: 32,934 (4)
abstracting: (3<=p2_2)
states: 27,684 (4)
abstracting: (p4_2<=2)
states: 39,780 (4)
EG iterations: 0
-> the formula is FALSE
FORMULA Murphy-PT-D1N010-CTLCardinality-05 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.003sec
checking: ~ [AG [[[EG [p4_2<=p1_2] | [p1_1<=8 | [[p1_2<=p3_2 & [p3_2<=p4_1 & p1_2<=p4_2]] | AF [9<=p1_2]]]] & [[[[E [3<=p5_1 U p2_2<=5] | 10<=p3_1] | 1<=p0_1] | ~ [[~ [3<=p1_2] & ~ [4<=p1_1]]]] | AX [p0_1<=p0_2]]]]]
normalized: E [true U ~ [[[~ [EX [~ [p0_1<=p0_2]]] | [~ [[~ [4<=p1_1] & ~ [3<=p1_2]]] | [1<=p0_1 | [10<=p3_1 | E [3<=p5_1 U p2_2<=5]]]]] & [[p1_1<=8 | [~ [EG [~ [9<=p1_2]]] | [p1_2<=p3_2 & [p3_2<=p4_1 & p1_2<=p4_2]]]] | EG [p4_2<=p1_2]]]]]
abstracting: (p4_2<=p1_2)
states: 35,136 (4)
.
EG iterations: 1
abstracting: (p1_2<=p4_2)
states: 9,048 (3)
abstracting: (p3_2<=p4_1)
states: 33,150 (4)
abstracting: (p1_2<=p3_2)
states: 6,966 (3)
abstracting: (9<=p1_2)
states: 9,252 (3)
.
EG iterations: 1
abstracting: (p1_1<=8)
states: 30,528 (4)
abstracting: (p2_2<=5)
states: 22,500 (4)
abstracting: (3<=p5_1)
states: 6,630 (3)
abstracting: (10<=p3_1)
states: 0
abstracting: (1<=p0_1)
states: 35,892 (4)
abstracting: (3<=p1_2)
states: 26,568 (4)
abstracting: (4<=p1_1)
states: 22,680 (4)
abstracting: (p0_1<=p0_2)
states: 20,952 (4)
.-> the formula is TRUE
FORMULA Murphy-PT-D1N010-CTLCardinality-11 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.014sec
checking: E [[~ [[[[AF [6<=p4_2] | ~ [p5_1<=0]] & ~ [EX [3<=p1_1]]] & AX [[E [p4_2<=p3_1 U p1_1<=p1_1] | ~ [p2_2<=p5_2]]]]] & [EX [p2_1<=p4_1] & [~ [AX [~ [3<=p4_1]]] & ~ [[~ [A [p3_1<=0 U 6<=p1_2]] | AG [10<=p3_2]]]]]] U ~ [A [EG [p5_2<=2] U E [AF [p4_2<=p3_1] U ~ [p3_1<=0]]]]]
normalized: E [[[[~ [[~ [E [true U ~ [10<=p3_2]]] | ~ [[~ [EG [~ [6<=p1_2]]] & ~ [E [~ [6<=p1_2] U [~ [p3_1<=0] & ~ [6<=p1_2]]]]]]]] & EX [3<=p4_1]] & EX [p2_1<=p4_1]] & ~ [[~ [EX [~ [[~ [p2_2<=p5_2] | E [p4_2<=p3_1 U p1_1<=p1_1]]]]] & [~ [EX [3<=p1_1]] & [~ [p5_1<=0] | ~ [EG [~ [6<=p4_2]]]]]]]] U ~ [[~ [EG [~ [E [~ [EG [~ [p4_2<=p3_1]]] U ~ [p3_1<=0]]]]] & ~ [E [~ [E [~ [EG [~ [p4_2<=p3_1]]] U ~ [p3_1<=0]]] U [~ [EG [p5_2<=2]] & ~ [E [~ [EG [~ [p4_2<=p3_1]]] U ~ [p3_1<=0]]]]]]]]]
abstracting: (p3_1<=0)
states: 19,890 (4)
abstracting: (p4_2<=p3_1)
states: 19,890 (4)
...
EG iterations: 3
abstracting: (p5_2<=2)
states: 33,150 (4)
.
EG iterations: 1
abstracting: (p3_1<=0)
states: 19,890 (4)
abstracting: (p4_2<=p3_1)
states: 19,890 (4)
...
EG iterations: 3
abstracting: (p3_1<=0)
states: 19,890 (4)
abstracting: (p4_2<=p3_1)
states: 19,890 (4)
...
EG iterations: 3
...
EG iterations: 3
abstracting: (6<=p4_2)
states: 0
EG iterations: 0
abstracting: (p5_1<=0)
states: 6,630 (3)
abstracting: (3<=p1_1)
states: 26,568 (4)
.abstracting: (p1_1<=p1_1)
states: 39,780 (4)
abstracting: (p4_2<=p3_1)
states: 19,890 (4)
abstracting: (p2_2<=p5_2)
states: 10,074 (4)
.abstracting: (p2_1<=p4_1)
states: 8,052 (3)
.abstracting: (3<=p4_1)
states: 0
.abstracting: (6<=p1_2)
states: 16,308 (4)
abstracting: (p3_1<=0)
states: 19,890 (4)
abstracting: (6<=p1_2)
states: 16,308 (4)
abstracting: (6<=p1_2)
states: 16,308 (4)
.
EG iterations: 1
abstracting: (10<=p3_2)
states: 0
-> the formula is FALSE
FORMULA Murphy-PT-D1N010-CTLCardinality-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.007sec
checking: A [[[p5_2<=p2_2 | E [[[~ [10<=p5_2] | [p5_1<=p1_1 | p4_2<=7]] & AG [7<=p4_2]] U ~ [[[p3_2<=p2_1 & p0_1<=p3_1] | EF [8<=p2_1]]]]] & EX [AG [[[p3_1<=p0_2 & p3_1<=p3_1] | [p1_2<=9 | p2_1<=p4_1]]]]] U EF [~ [p0_2<=10]]]
normalized: [~ [EG [~ [E [true U ~ [p0_2<=10]]]]] & ~ [E [~ [E [true U ~ [p0_2<=10]]] U [~ [[EX [~ [E [true U ~ [[[p1_2<=9 | p2_1<=p4_1] | [p3_1<=p0_2 & p3_1<=p3_1]]]]]] & [p5_2<=p2_2 | E [[~ [E [true U ~ [7<=p4_2]]] & [[p5_1<=p1_1 | p4_2<=7] | ~ [10<=p5_2]]] U ~ [[E [true U 8<=p2_1] | [p3_2<=p2_1 & p0_1<=p3_1]]]]]]] & ~ [E [true U ~ [p0_2<=10]]]]]]]
abstracting: (p0_2<=10)
states: 33,228 (4)
abstracting: (p0_1<=p3_1)
states: 6,030 (3)
abstracting: (p3_2<=p2_1)
states: 37,836 (4)
abstracting: (8<=p2_1)
states: 12,096 (4)
abstracting: (10<=p5_2)
states: 0
abstracting: (p4_2<=7)
states: 39,780 (4)
abstracting: (p5_1<=p1_1)
states: 32,934 (4)
abstracting: (7<=p4_2)
states: 0
abstracting: (p5_2<=p2_2)
states: 33,744 (4)
abstracting: (p3_1<=p3_1)
states: 39,780 (4)
abstracting: (p3_1<=p0_2)
states: 37,836 (4)
abstracting: (p2_1<=p4_1)
states: 8,052 (3)
abstracting: (p1_2<=9)
states: 32,472 (4)
.abstracting: (p0_2<=10)
states: 33,228 (4)
abstracting: (p0_2<=10)
states: 33,228 (4)
.
EG iterations: 1
-> the formula is TRUE
FORMULA Murphy-PT-D1N010-CTLCardinality-06 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.011sec
checking: A [p3_1<=7 U [E [AG [[EX [5<=p1_2] & [p4_2<=4 & p1_1<=p1_1]]] U [[[AG [2<=p0_2] & A [p4_2<=p5_1 U p5_1<=4]] | [[p0_2<=p5_1 | p5_1<=3] & [p1_2<=p5_1 & p5_1<=5]]] & [[AX [p4_1<=p2_1] & [10<=p5_2 | p3_1<=p1_1]] & AG [p0_2<=6]]]] & EG [~ [[~ [[p4_2<=p3_1 | 4<=p5_1]] | [p2_1<=p3_2 & [10<=p3_1 | 2<=p0_1]]]]]]]
normalized: [~ [EG [~ [[EG [~ [[[p2_1<=p3_2 & [10<=p3_1 | 2<=p0_1]] | ~ [[p4_2<=p3_1 | 4<=p5_1]]]]] & E [~ [E [true U ~ [[[p4_2<=4 & p1_1<=p1_1] & EX [5<=p1_2]]]]] U [[~ [E [true U ~ [p0_2<=6]]] & [[10<=p5_2 | p3_1<=p1_1] & ~ [EX [~ [p4_1<=p2_1]]]]] & [[[p1_2<=p5_1 & p5_1<=5] & [p0_2<=p5_1 | p5_1<=3]] | [[~ [EG [~ [p5_1<=4]]] & ~ [E [~ [p5_1<=4] U [~ [p4_2<=p5_1] & ~ [p5_1<=4]]]]] & ~ [E [true U ~ [2<=p0_2]]]]]]]]]]] & ~ [E [~ [[EG [~ [[[p2_1<=p3_2 & [10<=p3_1 | 2<=p0_1]] | ~ [[p4_2<=p3_1 | 4<=p5_1]]]]] & E [~ [E [true U ~ [[[p4_2<=4 & p1_1<=p1_1] & EX [5<=p1_2]]]]] U [[~ [E [true U ~ [p0_2<=6]]] & [[10<=p5_2 | p3_1<=p1_1] & ~ [EX [~ [p4_1<=p2_1]]]]] & [[[p1_2<=p5_1 & p5_1<=5] & [p0_2<=p5_1 | p5_1<=3]] | [[~ [EG [~ [p5_1<=4]]] & ~ [E [~ [p5_1<=4] U [~ [p4_2<=p5_1] & ~ [p5_1<=4]]]]] & ~ [E [true U ~ [2<=p0_2]]]]]]]]] U [~ [p3_1<=7] & ~ [[EG [~ [[[p2_1<=p3_2 & [10<=p3_1 | 2<=p0_1]] | ~ [[p4_2<=p3_1 | 4<=p5_1]]]]] & E [~ [E [true U ~ [[[p4_2<=4 & p1_1<=p1_1] & EX [5<=p1_2]]]]] U [[~ [E [true U ~ [p0_2<=6]]] & [[10<=p5_2 | p3_1<=p1_1] & ~ [EX [~ [p4_1<=p2_1]]]]] & [[[p1_2<=p5_1 & p5_1<=5] & [p0_2<=p5_1 | p5_1<=3]] | [[~ [EG [~ [p5_1<=4]]] & ~ [E [~ [p5_1<=4] U [~ [p4_2<=p5_1] & ~ [p5_1<=4]]]]] & ~ [E [true U ~ [2<=p0_2]]]]]]]]]]]]]
abstracting: (2<=p0_2)
states: 31,608 (4)
abstracting: (p5_1<=4)
states: 39,780 (4)
abstracting: (p4_2<=p5_1)
states: 30,940 (4)
abstracting: (p5_1<=4)
states: 39,780 (4)
abstracting: (p5_1<=4)
states: 39,780 (4)
.
EG iterations: 1
abstracting: (p5_1<=3)
states: 39,780 (4)
abstracting: (p0_2<=p5_1)
states: 10,074 (4)
abstracting: (p5_1<=5)
states: 39,780 (4)
abstracting: (p1_2<=p5_1)
states: 11,124 (4)
abstracting: (p4_1<=p2_1)
states: 35,760 (4)
.abstracting: (p3_1<=p1_1)
states: 37,458 (4)
abstracting: (10<=p5_2)
states: 0
abstracting: (p0_2<=6)
states: 25,092 (4)
abstracting: (5<=p1_2)
states: 19,476 (4)
.abstracting: (p1_1<=p1_1)
states: 39,780 (4)
abstracting: (p4_2<=4)
states: 39,780 (4)
abstracting: (4<=p5_1)
states: 0
abstracting: (p4_2<=p3_1)
states: 19,890 (4)
abstracting: (2<=p0_1)
states: 31,608 (4)
abstracting: (10<=p3_1)
states: 0
abstracting: (p2_1<=p3_2)
states: 6,030 (3)
.
EG iterations: 1
abstracting: (p3_1<=7)
states: 39,780 (4)
abstracting: (2<=p0_2)
states: 31,608 (4)
abstracting: (p5_1<=4)
states: 39,780 (4)
abstracting: (p4_2<=p5_1)
states: 30,940 (4)
abstracting: (p5_1<=4)
states: 39,780 (4)
abstracting: (p5_1<=4)
states: 39,780 (4)
.
EG iterations: 1
abstracting: (p5_1<=3)
states: 39,780 (4)
abstracting: (p0_2<=p5_1)
states: 10,074 (4)
abstracting: (p5_1<=5)
states: 39,780 (4)
abstracting: (p1_2<=p5_1)
states: 11,124 (4)
abstracting: (p4_1<=p2_1)
states: 35,760 (4)
.abstracting: (p3_1<=p1_1)
states: 37,458 (4)
abstracting: (10<=p5_2)
states: 0
abstracting: (p0_2<=6)
states: 25,092 (4)
abstracting: (5<=p1_2)
states: 19,476 (4)
.abstracting: (p1_1<=p1_1)
states: 39,780 (4)
abstracting: (p4_2<=4)
states: 39,780 (4)
abstracting: (4<=p5_1)
states: 0
abstracting: (p4_2<=p3_1)
states: 19,890 (4)
abstracting: (2<=p0_1)
states: 31,608 (4)
abstracting: (10<=p3_1)
states: 0
abstracting: (p2_1<=p3_2)
states: 6,030 (3)
.
EG iterations: 1
abstracting: (2<=p0_2)
states: 31,608 (4)
abstracting: (p5_1<=4)
states: 39,780 (4)
abstracting: (p4_2<=p5_1)
states: 30,940 (4)
abstracting: (p5_1<=4)
states: 39,780 (4)
abstracting: (p5_1<=4)
states: 39,780 (4)
.
EG iterations: 1
abstracting: (p5_1<=3)
states: 39,780 (4)
abstracting: (p0_2<=p5_1)
states: 10,074 (4)
abstracting: (p5_1<=5)
states: 39,780 (4)
abstracting: (p1_2<=p5_1)
states: 11,124 (4)
abstracting: (p4_1<=p2_1)
states: 35,760 (4)
.abstracting: (p3_1<=p1_1)
states: 37,458 (4)
abstracting: (10<=p5_2)
states: 0
abstracting: (p0_2<=6)
states: 25,092 (4)
abstracting: (5<=p1_2)
states: 19,476 (4)
.abstracting: (p1_1<=p1_1)
states: 39,780 (4)
abstracting: (p4_2<=4)
states: 39,780 (4)
abstracting: (4<=p5_1)
states: 0
abstracting: (p4_2<=p3_1)
states: 19,890 (4)
abstracting: (2<=p0_1)
states: 31,608 (4)
abstracting: (10<=p3_1)
states: 0
abstracting: (p2_1<=p3_2)
states: 6,030 (3)
.
EG iterations: 1
EG iterations: 0
-> the formula is FALSE
FORMULA Murphy-PT-D1N010-CTLCardinality-09 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.010sec
totally nodes used: 38111 (3.8e+04)
number of garbage collections: 0
fire ops cache: hits/miss/sum: 104643 65925 170568
used/not used/entry size/cache size: 90879 67017985 16 1024MB
basic ops cache: hits/miss/sum: 61767 46162 107929
used/not used/entry size/cache size: 87133 16690083 12 192MB
unary ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 8 128MB
abstract ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 12 192MB
state nr cache: hits/miss/sum: 5564 2462 8026
used/not used/entry size/cache size: 2462 8386146 32 256MB
max state cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 8388608 32 256MB
uniqueHash elements/entry size/size: 67108864 4 256MB
0 67075095
1 32161
2 972
3 329
4 113
5 48
6 21
7 18
8 15
9 7
>= 10 85
Total processing time: 0m 4.713sec
BK_STOP 1679893972376
--------------------
content from stderr:
check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.000sec
iterations count:277 (19), effective:98 (7)
initing FirstDep: 0m 0.000sec
iterations count:195 (13), effective:55 (3)
iterations count:14 (1), effective:0 (0)
iterations count:14 (1), effective:0 (0)
iterations count:29 (2), effective:10 (0)
iterations count:117 (8), effective:30 (2)
iterations count:106 (7), effective:16 (1)
iterations count:106 (7), effective:16 (1)
iterations count:14 (1), effective:0 (0)
iterations count:106 (7), effective:16 (1)
iterations count:137 (9), effective:44 (3)
iterations count:14 (1), effective:0 (0)
iterations count:50 (3), effective:21 (1)
iterations count:14 (1), effective:0 (0)
iterations count:14 (1), effective:0 (0)
iterations count:14 (1), effective:0 (0)
iterations count:14 (1), effective:0 (0)
iterations count:28 (2), effective:4 (0)
iterations count:14 (1), effective:0 (0)
iterations count:14 (1), effective:0 (0)
iterations count:63 (4), effective:26 (1)
iterations count:110 (7), effective:34 (2)
iterations count:14 (1), effective:0 (0)
iterations count:110 (7), effective:33 (2)
iterations count:29 (2), effective:4 (0)
iterations count:14 (1), effective:0 (0)
iterations count:34 (2), effective:5 (0)
iterations count:44 (3), effective:7 (0)
iterations count:14 (1), effective:0 (0)
iterations count:63 (4), effective:20 (1)
iterations count:117 (8), effective:18 (1)
iterations count:335 (23), effective:84 (6)
iterations count:25 (1), effective:3 (0)
iterations count:25 (1), effective:3 (0)
iterations count:25 (1), effective:3 (0)
iterations count:14 (1), effective:0 (0)
iterations count:25 (1), effective:3 (0)
iterations count:14 (1), effective:0 (0)
iterations count:14 (1), effective:0 (0)
iterations count:143 (10), effective:49 (3)
iterations count:98 (7), effective:24 (1)
iterations count:14 (1), effective:0 (0)
iterations count:373 (26), effective:83 (5)
iterations count:143 (10), effective:49 (3)
iterations count:143 (10), effective:49 (3)
iterations count:141 (10), effective:22 (1)
iterations count:104 (7), effective:33 (2)
iterations count:101 (7), effective:41 (2)
iterations count:141 (10), effective:22 (1)
iterations count:104 (7), effective:33 (2)
iterations count:101 (7), effective:41 (2)
iterations count:141 (10), effective:22 (1)
iterations count:104 (7), effective:33 (2)
iterations count:101 (7), effective:41 (2)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="Murphy-PT-D1N010"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marcie"
echo " Input is Murphy-PT-D1N010, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r513-tall-167987240900329"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/Murphy-PT-D1N010.tgz
mv Murphy-PT-D1N010 execution
cd execution
if [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "UpperBounds" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] || [ "CTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME CTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;