About the Execution of Marcie for Murphy-COL-D3N050
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
16221.596 | 3600000.00 | 3449116.00 | 118744.50 | ??F????T??F??T?F | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fkordon/mcc2023-input.r513-tall-167987240900305.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2023-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
....................................................................................................................................................................................
=====================================================================
Generated by BenchKit 2-5348
Executing tool marcie
Input is Murphy-COL-D3N050, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r513-tall-167987240900305
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 436K
-rw-r--r-- 1 mcc users 7.3K Mar 23 15:21 CTLCardinality.txt
-rw-r--r-- 1 mcc users 82K Mar 23 15:21 CTLCardinality.xml
-rw-r--r-- 1 mcc users 5.4K Mar 23 15:20 CTLFireability.txt
-rw-r--r-- 1 mcc users 52K Mar 23 15:20 CTLFireability.xml
-rw-r--r-- 1 mcc users 3.6K Mar 23 07:07 LTLCardinality.txt
-rw-r--r-- 1 mcc users 26K Mar 23 07:07 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.1K Mar 23 07:07 LTLFireability.txt
-rw-r--r-- 1 mcc users 19K Mar 23 07:07 LTLFireability.xml
-rw-r--r-- 1 mcc users 1 Mar 26 22:42 NewModel
-rw-r--r-- 1 mcc users 9.1K Mar 23 15:22 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 98K Mar 23 15:22 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 6.3K Mar 23 15:22 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 54K Mar 23 15:22 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.6K Mar 23 07:07 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.6K Mar 23 07:07 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Mar 26 22:42 equiv_pt
-rw-r--r-- 1 mcc users 7 Mar 26 22:42 instance
-rw-r--r-- 1 mcc users 5 Mar 26 22:42 iscolored
-rw-r--r-- 1 mcc users 28K Mar 26 22:42 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME Murphy-COL-D3N050-CTLCardinality-00
FORMULA_NAME Murphy-COL-D3N050-CTLCardinality-01
FORMULA_NAME Murphy-COL-D3N050-CTLCardinality-02
FORMULA_NAME Murphy-COL-D3N050-CTLCardinality-03
FORMULA_NAME Murphy-COL-D3N050-CTLCardinality-04
FORMULA_NAME Murphy-COL-D3N050-CTLCardinality-05
FORMULA_NAME Murphy-COL-D3N050-CTLCardinality-06
FORMULA_NAME Murphy-COL-D3N050-CTLCardinality-07
FORMULA_NAME Murphy-COL-D3N050-CTLCardinality-08
FORMULA_NAME Murphy-COL-D3N050-CTLCardinality-09
FORMULA_NAME Murphy-COL-D3N050-CTLCardinality-10
FORMULA_NAME Murphy-COL-D3N050-CTLCardinality-11
FORMULA_NAME Murphy-COL-D3N050-CTLCardinality-12
FORMULA_NAME Murphy-COL-D3N050-CTLCardinality-13
FORMULA_NAME Murphy-COL-D3N050-CTLCardinality-14
FORMULA_NAME Murphy-COL-D3N050-CTLCardinality-15
=== Now, execution of the tool begins
BK_START 1679892519547
bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marcie
BK_EXAMINATION=CTLCardinality
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=Murphy-COL-D3N050
Not applying reductions.
Model is COL
CTLCardinality COL
timeout --kill-after=10s --signal=SIGINT 1m for testing only
Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: /home/mcc/BenchKit/bin//../marcie/bin/marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --memory=6 --mcc-mode
parse successfull
net created successfully
Unfolding complete |P|=24|T|=28|A|=108
Time for unfolding: 0m 0.437sec
Net: PGCD_COL_D3_N50
(NrP: 24 NrTr: 28 NrArc: 108)
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec
net check time: 0m 0.000sec
init dd package: 0m 2.856sec
RS generation: 0m17.313sec
-> reachability set: #nodes 39729 (4.0e+04) #states 540,710,084,330,928 (14)
starting MCC model checker
--------------------------
checking: EG [~ [AG [EF [[~ [sum(p1_c3, p1_c2, p1_c1, p1_c0)<=13] | AF [30<=sum(p5_c3, p5_c2, p5_c1, p5_c0)]]]]]]
normalized: EG [E [true U ~ [E [true U [~ [EG [~ [30<=sum(p5_c3, p5_c2, p5_c1, p5_c0)]]] | ~ [sum(p1_c3, p1_c2, p1_c1, p1_c0)<=13]]]]]]
abstracting: (sum(p1_c3, p1_c2, p1_c1, p1_c0)<=13)
states: 479,192,495,616 (11)
abstracting: (30<=sum(p5_c3, p5_c2, p5_c1, p5_c0))
states: 0
EG iterations: 0
.
EG iterations: 1
-> the formula is FALSE
FORMULA Murphy-COL-D3N050-CTLCardinality-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 3m23.172sec
checking: EG [[EG [EX [EG [11<=sum(p0_c3, p0_c2, p0_c1, p0_c0)]]] & AG [sum(p3_c3, p3_c2, p3_c1, p3_c0)<=sum(p3_c3, p3_c2, p3_c1, p3_c0)]]]
normalized: EG [[~ [E [true U ~ [sum(p3_c3, p3_c2, p3_c1, p3_c0)<=sum(p3_c3, p3_c2, p3_c1, p3_c0)]]] & EG [EX [EG [11<=sum(p0_c3, p0_c2, p0_c1, p0_c0)]]]]]
abstracting: (11<=sum(p0_c3, p0_c2, p0_c1, p0_c0))
states: 540,502,541,382,384 (14)
.
EG iterations: 1
..
EG iterations: 1
abstracting: (sum(p3_c3, p3_c2, p3_c1, p3_c0)<=sum(p3_c3, p3_c2, p3_c1, p3_c0))
states: 540,710,084,330,928 (14)
.
EG iterations: 1
-> the formula is FALSE
FORMULA Murphy-COL-D3N050-CTLCardinality-02 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 3m13.473sec
checking: AX [~ [[AX [EX [[sum(p3_c3, p3_c2, p3_c1, p3_c0)<=23 & sum(p4_c3, p4_c2, p4_c1, p4_c0)<=57]]] & AF [EX [~ [4<=sum(p5_c3, p5_c2, p5_c1, p5_c0)]]]]]]
normalized: ~ [EX [[~ [EG [~ [EX [~ [4<=sum(p5_c3, p5_c2, p5_c1, p5_c0)]]]]] & ~ [EX [~ [EX [[sum(p3_c3, p3_c2, p3_c1, p3_c0)<=23 & sum(p4_c3, p4_c2, p4_c1, p4_c0)<=57]]]]]]]]
abstracting: (sum(p4_c3, p4_c2, p4_c1, p4_c0)<=57)
states: 540,710,084,330,928 (14)
abstracting: (sum(p3_c3, p3_c2, p3_c1, p3_c0)<=23)
states: 540,710,084,330,928 (14)
..abstracting: (4<=sum(p5_c3, p5_c2, p5_c1, p5_c0))
states: 488,558,262,925,553 (14)
..
EG iterations: 1
.-> the formula is TRUE
FORMULA Murphy-COL-D3N050-CTLCardinality-07 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m10.893sec
checking: [EF [A [sum(p3_c3, p3_c2, p3_c1, p3_c0)<=sum(p5_c3, p5_c2, p5_c1, p5_c0) U EG [EG [71<=sum(p5_c3, p5_c2, p5_c1, p5_c0)]]]] & AG [sum(p5_c3, p5_c2, p5_c1, p5_c0)<=46]]
normalized: [~ [E [true U ~ [sum(p5_c3, p5_c2, p5_c1, p5_c0)<=46]]] & E [true U [~ [EG [~ [EG [EG [71<=sum(p5_c3, p5_c2, p5_c1, p5_c0)]]]]] & ~ [E [~ [EG [EG [71<=sum(p5_c3, p5_c2, p5_c1, p5_c0)]]] U [~ [EG [EG [71<=sum(p5_c3, p5_c2, p5_c1, p5_c0)]]] & ~ [sum(p3_c3, p3_c2, p3_c1, p3_c0)<=sum(p5_c3, p5_c2, p5_c1, p5_c0)]]]]]]]
abstracting: (sum(p3_c3, p3_c2, p3_c1, p3_c0)<=sum(p5_c3, p5_c2, p5_c1, p5_c0))
states: 519,432,141,197,535 (14)
abstracting: (71<=sum(p5_c3, p5_c2, p5_c1, p5_c0))
states: 0
.
EG iterations: 1
.
EG iterations: 1
abstracting: (71<=sum(p5_c3, p5_c2, p5_c1, p5_c0))
states: 0
.
EG iterations: 1
.
EG iterations: 1
abstracting: (71<=sum(p5_c3, p5_c2, p5_c1, p5_c0))
states: 0
.
EG iterations: 1
.
EG iterations: 1
EG iterations: 0
abstracting: (sum(p5_c3, p5_c2, p5_c1, p5_c0)<=46)
states: 540,710,084,330,928 (14)
-> the formula is FALSE
FORMULA Murphy-COL-D3N050-CTLCardinality-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 3.300sec
checking: E [AG [[A [EG [75<=sum(p3_c3, p3_c2, p3_c1, p3_c0)] U AG [92<=sum(p1_c3, p1_c2, p1_c1, p1_c0)]] | AX [AG [66<=sum(p4_c3, p4_c2, p4_c1, p4_c0)]]]] U 38<=sum(p1_c3, p1_c2, p1_c1, p1_c0)]
normalized: E [~ [E [true U ~ [[~ [EX [E [true U ~ [66<=sum(p4_c3, p4_c2, p4_c1, p4_c0)]]]] | [~ [EG [E [true U ~ [92<=sum(p1_c3, p1_c2, p1_c1, p1_c0)]]]] & ~ [E [E [true U ~ [92<=sum(p1_c3, p1_c2, p1_c1, p1_c0)]] U [~ [EG [75<=sum(p3_c3, p3_c2, p3_c1, p3_c0)]] & E [true U ~ [92<=sum(p1_c3, p1_c2, p1_c1, p1_c0)]]]]]]]]]] U 38<=sum(p1_c3, p1_c2, p1_c1, p1_c0)]
abstracting: (38<=sum(p1_c3, p1_c2, p1_c1, p1_c0))
states: 525,667,712,271,984 (14)
abstracting: (92<=sum(p1_c3, p1_c2, p1_c1, p1_c0))
MC time: 4m25.013sec
checking: ~ [AF [AX [~ [E [[sum(p4_c3, p4_c2, p4_c1, p4_c0)<=sum(p4_c3, p4_c2, p4_c1, p4_c0) & 72<=sum(p2_c3, p2_c2, p2_c1, p2_c0)] U A [4<=sum(p2_c3, p2_c2, p2_c1, p2_c0) U sum(p0_c3, p0_c2, p0_c1, p0_c0)<=98]]]]]]
normalized: EG [EX [E [[sum(p4_c3, p4_c2, p4_c1, p4_c0)<=sum(p4_c3, p4_c2, p4_c1, p4_c0) & 72<=sum(p2_c3, p2_c2, p2_c1, p2_c0)] U [~ [EG [~ [sum(p0_c3, p0_c2, p0_c1, p0_c0)<=98]]] & ~ [E [~ [sum(p0_c3, p0_c2, p0_c1, p0_c0)<=98] U [~ [sum(p0_c3, p0_c2, p0_c1, p0_c0)<=98] & ~ [4<=sum(p2_c3, p2_c2, p2_c1, p2_c0)]]]]]]]]
abstracting: (4<=sum(p2_c3, p2_c2, p2_c1, p2_c0))
states: 540,703,476,674,928 (14)
abstracting: (sum(p0_c3, p0_c2, p0_c1, p0_c0)<=98)
MC time: 4m 3.002sec
checking: AX [~ [[30<=sum(p5_c3, p5_c2, p5_c1, p5_c0) | [AX [AX [sum(p2_c3, p2_c2, p2_c1, p2_c0)<=sum(p0_c3, p0_c2, p0_c1, p0_c0)]] & A [sum(p2_c3, p2_c2, p2_c1, p2_c0)<=sum(p0_c3, p0_c2, p0_c1, p0_c0) U AG [sum(p2_c3, p2_c2, p2_c1, p2_c0)<=sum(p1_c3, p1_c2, p1_c1, p1_c0)]]]]]]
normalized: ~ [EX [[30<=sum(p5_c3, p5_c2, p5_c1, p5_c0) | [[~ [E [E [true U ~ [sum(p2_c3, p2_c2, p2_c1, p2_c0)<=sum(p1_c3, p1_c2, p1_c1, p1_c0)]] U [E [true U ~ [sum(p2_c3, p2_c2, p2_c1, p2_c0)<=sum(p1_c3, p1_c2, p1_c1, p1_c0)]] & ~ [sum(p2_c3, p2_c2, p2_c1, p2_c0)<=sum(p0_c3, p0_c2, p0_c1, p0_c0)]]]] & ~ [EG [E [true U ~ [sum(p2_c3, p2_c2, p2_c1, p2_c0)<=sum(p1_c3, p1_c2, p1_c1, p1_c0)]]]]] & ~ [EX [EX [~ [sum(p2_c3, p2_c2, p2_c1, p2_c0)<=sum(p0_c3, p0_c2, p0_c1, p0_c0)]]]]]]]]
abstracting: (sum(p2_c3, p2_c2, p2_c1, p2_c0)<=sum(p0_c3, p0_c2, p0_c1, p0_c0))
MC time: 3m42.000sec
checking: EG [[[EX [25<=sum(p2_c3, p2_c2, p2_c1, p2_c0)] & sum(p1_c3, p1_c2, p1_c1, p1_c0)<=1] & AF [[EG [[38<=sum(p3_c3, p3_c2, p3_c1, p3_c0) & sum(p1_c3, p1_c2, p1_c1, p1_c0)<=sum(p3_c3, p3_c2, p3_c1, p3_c0)]] & A [68<=sum(p5_c3, p5_c2, p5_c1, p5_c0) U EG [sum(p1_c3, p1_c2, p1_c1, p1_c0)<=sum(p4_c3, p4_c2, p4_c1, p4_c0)]]]]]]
normalized: EG [[~ [EG [~ [[[~ [EG [~ [EG [sum(p1_c3, p1_c2, p1_c1, p1_c0)<=sum(p4_c3, p4_c2, p4_c1, p4_c0)]]]] & ~ [E [~ [EG [sum(p1_c3, p1_c2, p1_c1, p1_c0)<=sum(p4_c3, p4_c2, p4_c1, p4_c0)]] U [~ [EG [sum(p1_c3, p1_c2, p1_c1, p1_c0)<=sum(p4_c3, p4_c2, p4_c1, p4_c0)]] & ~ [68<=sum(p5_c3, p5_c2, p5_c1, p5_c0)]]]]] & EG [[38<=sum(p3_c3, p3_c2, p3_c1, p3_c0) & sum(p1_c3, p1_c2, p1_c1, p1_c0)<=sum(p3_c3, p3_c2, p3_c1, p3_c0)]]]]]] & [sum(p1_c3, p1_c2, p1_c1, p1_c0)<=1 & EX [25<=sum(p2_c3, p2_c2, p2_c1, p2_c0)]]]]
abstracting: (25<=sum(p2_c3, p2_c2, p2_c1, p2_c0))
MC time: 3m24.000sec
checking: [AX [sum(p4_c3, p4_c2, p4_c1, p4_c0)<=sum(p1_c3, p1_c2, p1_c1, p1_c0)] & AX [EG [[~ [AX [94<=sum(p1_c3, p1_c2, p1_c1, p1_c0)]] | [~ [[48<=sum(p2_c3, p2_c2, p2_c1, p2_c0) & sum(p5_c3, p5_c2, p5_c1, p5_c0)<=33]] | [EX [sum(p3_c3, p3_c2, p3_c1, p3_c0)<=sum(p2_c3, p2_c2, p2_c1, p2_c0)] | A [sum(p3_c3, p3_c2, p3_c1, p3_c0)<=97 U sum(p2_c3, p2_c2, p2_c1, p2_c0)<=96]]]]]]]
normalized: [~ [EX [~ [EG [[[[[~ [EG [~ [sum(p2_c3, p2_c2, p2_c1, p2_c0)<=96]]] & ~ [E [~ [sum(p2_c3, p2_c2, p2_c1, p2_c0)<=96] U [~ [sum(p2_c3, p2_c2, p2_c1, p2_c0)<=96] & ~ [sum(p3_c3, p3_c2, p3_c1, p3_c0)<=97]]]]] | EX [sum(p3_c3, p3_c2, p3_c1, p3_c0)<=sum(p2_c3, p2_c2, p2_c1, p2_c0)]] | ~ [[48<=sum(p2_c3, p2_c2, p2_c1, p2_c0) & sum(p5_c3, p5_c2, p5_c1, p5_c0)<=33]]] | EX [~ [94<=sum(p1_c3, p1_c2, p1_c1, p1_c0)]]]]]]] & ~ [EX [~ [sum(p4_c3, p4_c2, p4_c1, p4_c0)<=sum(p1_c3, p1_c2, p1_c1, p1_c0)]]]]
abstracting: (sum(p4_c3, p4_c2, p4_c1, p4_c0)<=sum(p1_c3, p1_c2, p1_c1, p1_c0))
MC time: 3m 7.000sec
checking: [~ [EG [~ [AX [65<=sum(p4_c3, p4_c2, p4_c1, p4_c0)]]]] & EG [[90<=sum(p0_c3, p0_c2, p0_c1, p0_c0) | [sum(p2_c3, p2_c2, p2_c1, p2_c0)<=sum(p2_c3, p2_c2, p2_c1, p2_c0) & [[[[sum(p1_c3, p1_c2, p1_c1, p1_c0)<=sum(p4_c3, p4_c2, p4_c1, p4_c0) & 15<=sum(p5_c3, p5_c2, p5_c1, p5_c0)] & ~ [sum(p4_c3, p4_c2, p4_c1, p4_c0)<=34]] | ~ [[14<=sum(p4_c3, p4_c2, p4_c1, p4_c0) | sum(p4_c3, p4_c2, p4_c1, p4_c0)<=90]]] & A [[88<=sum(p2_c3, p2_c2, p2_c1, p2_c0) & sum(p4_c3, p4_c2, p4_c1, p4_c0)<=47] U EF [48<=sum(p2_c3, p2_c2, p2_c1, p2_c0)]]]]]]]
normalized: [EG [[90<=sum(p0_c3, p0_c2, p0_c1, p0_c0) | [sum(p2_c3, p2_c2, p2_c1, p2_c0)<=sum(p2_c3, p2_c2, p2_c1, p2_c0) & [[~ [EG [~ [E [true U 48<=sum(p2_c3, p2_c2, p2_c1, p2_c0)]]]] & ~ [E [~ [E [true U 48<=sum(p2_c3, p2_c2, p2_c1, p2_c0)]] U [~ [[88<=sum(p2_c3, p2_c2, p2_c1, p2_c0) & sum(p4_c3, p4_c2, p4_c1, p4_c0)<=47]] & ~ [E [true U 48<=sum(p2_c3, p2_c2, p2_c1, p2_c0)]]]]]] & [~ [[14<=sum(p4_c3, p4_c2, p4_c1, p4_c0) | sum(p4_c3, p4_c2, p4_c1, p4_c0)<=90]] | [~ [sum(p4_c3, p4_c2, p4_c1, p4_c0)<=34] & [sum(p1_c3, p1_c2, p1_c1, p1_c0)<=sum(p4_c3, p4_c2, p4_c1, p4_c0) & 15<=sum(p5_c3, p5_c2, p5_c1, p5_c0)]]]]]]] & ~ [EG [EX [~ [65<=sum(p4_c3, p4_c2, p4_c1, p4_c0)]]]]]
abstracting: (65<=sum(p4_c3, p4_c2, p4_c1, p4_c0))
states: 0
.
EG iterations: 0
abstracting: (15<=sum(p5_c3, p5_c2, p5_c1, p5_c0))
states: 0
abstracting: (sum(p1_c3, p1_c2, p1_c1, p1_c0)<=sum(p4_c3, p4_c2, p4_c1, p4_c0))
MC time: 2m51.000sec
checking: [EX [A [~ [sum(p3_c3, p3_c2, p3_c1, p3_c0)<=sum(p2_c3, p2_c2, p2_c1, p2_c0)] U [[~ [[sum(p0_c3, p0_c2, p0_c1, p0_c0)<=26 & sum(p0_c3, p0_c2, p0_c1, p0_c0)<=sum(p3_c3, p3_c2, p3_c1, p3_c0)]] & [~ [69<=sum(p0_c3, p0_c2, p0_c1, p0_c0)] & ~ [54<=sum(p5_c3, p5_c2, p5_c1, p5_c0)]]] | sum(p1_c3, p1_c2, p1_c1, p1_c0)<=63]]] | [~ [A [~ [sum(p5_c3, p5_c2, p5_c1, p5_c0)<=sum(p3_c3, p3_c2, p3_c1, p3_c0)] U [AX [sum(p5_c3, p5_c2, p5_c1, p5_c0)<=79] & sum(p0_c3, p0_c2, p0_c1, p0_c0)<=62]]] & AG [E [[99<=sum(p5_c3, p5_c2, p5_c1, p5_c0) | sum(p1_c3, p1_c2, p1_c1, p1_c0)<=65] U EX [EG [70<=sum(p5_c3, p5_c2, p5_c1, p5_c0)]]]]]]
normalized: [[~ [E [true U ~ [E [[99<=sum(p5_c3, p5_c2, p5_c1, p5_c0) | sum(p1_c3, p1_c2, p1_c1, p1_c0)<=65] U EX [EG [70<=sum(p5_c3, p5_c2, p5_c1, p5_c0)]]]]]] & ~ [[~ [EG [~ [[sum(p0_c3, p0_c2, p0_c1, p0_c0)<=62 & ~ [EX [~ [sum(p5_c3, p5_c2, p5_c1, p5_c0)<=79]]]]]]] & ~ [E [~ [[sum(p0_c3, p0_c2, p0_c1, p0_c0)<=62 & ~ [EX [~ [sum(p5_c3, p5_c2, p5_c1, p5_c0)<=79]]]]] U [sum(p5_c3, p5_c2, p5_c1, p5_c0)<=sum(p3_c3, p3_c2, p3_c1, p3_c0) & ~ [[sum(p0_c3, p0_c2, p0_c1, p0_c0)<=62 & ~ [EX [~ [sum(p5_c3, p5_c2, p5_c1, p5_c0)<=79]]]]]]]]]]] | EX [[~ [EG [~ [[sum(p1_c3, p1_c2, p1_c1, p1_c0)<=63 | [[~ [54<=sum(p5_c3, p5_c2, p5_c1, p5_c0)] & ~ [69<=sum(p0_c3, p0_c2, p0_c1, p0_c0)]] & ~ [[sum(p0_c3, p0_c2, p0_c1, p0_c0)<=26 & sum(p0_c3, p0_c2, p0_c1, p0_c0)<=sum(p3_c3, p3_c2, p3_c1, p3_c0)]]]]]]] & ~ [E [~ [[sum(p1_c3, p1_c2, p1_c1, p1_c0)<=63 | [[~ [54<=sum(p5_c3, p5_c2, p5_c1, p5_c0)] & ~ [69<=sum(p0_c3, p0_c2, p0_c1, p0_c0)]] & ~ [[sum(p0_c3, p0_c2, p0_c1, p0_c0)<=26 & sum(p0_c3, p0_c2, p0_c1, p0_c0)<=sum(p3_c3, p3_c2, p3_c1, p3_c0)]]]]] U [sum(p3_c3, p3_c2, p3_c1, p3_c0)<=sum(p2_c3, p2_c2, p2_c1, p2_c0) & ~ [[sum(p1_c3, p1_c2, p1_c1, p1_c0)<=63 | [[~ [54<=sum(p5_c3, p5_c2, p5_c1, p5_c0)] & ~ [69<=sum(p0_c3, p0_c2, p0_c1, p0_c0)]] & ~ [[sum(p0_c3, p0_c2, p0_c1, p0_c0)<=26 & sum(p0_c3, p0_c2, p0_c1, p0_c0)<=sum(p3_c3, p3_c2, p3_c1, p3_c0)]]]]]]]]]]]
abstracting: (sum(p0_c3, p0_c2, p0_c1, p0_c0)<=sum(p3_c3, p3_c2, p3_c1, p3_c0))
MC time: 2m37.000sec
checking: [[~ [E [sum(p2_c3, p2_c2, p2_c1, p2_c0)<=77 U [[[sum(p0_c3, p0_c2, p0_c1, p0_c0)<=sum(p4_c3, p4_c2, p4_c1, p4_c0) & 83<=sum(p0_c3, p0_c2, p0_c1, p0_c0)] & sum(p1_c3, p1_c2, p1_c1, p1_c0)<=sum(p5_c3, p5_c2, p5_c1, p5_c0)] & EX [sum(p0_c3, p0_c2, p0_c1, p0_c0)<=sum(p4_c3, p4_c2, p4_c1, p4_c0)]]]] | E [sum(p0_c3, p0_c2, p0_c1, p0_c0)<=sum(p5_c3, p5_c2, p5_c1, p5_c0) U AG [[[AX [71<=sum(p5_c3, p5_c2, p5_c1, p5_c0)] & A [36<=sum(p4_c3, p4_c2, p4_c1, p4_c0) U 100<=sum(p5_c3, p5_c2, p5_c1, p5_c0)]] | EF [sum(p4_c3, p4_c2, p4_c1, p4_c0)<=sum(p5_c3, p5_c2, p5_c1, p5_c0)]]]]] | ~ [EX [sum(p4_c3, p4_c2, p4_c1, p4_c0)<=85]]]
normalized: [~ [EX [sum(p4_c3, p4_c2, p4_c1, p4_c0)<=85]] | [E [sum(p0_c3, p0_c2, p0_c1, p0_c0)<=sum(p5_c3, p5_c2, p5_c1, p5_c0) U ~ [E [true U ~ [[E [true U sum(p4_c3, p4_c2, p4_c1, p4_c0)<=sum(p5_c3, p5_c2, p5_c1, p5_c0)] | [[~ [EG [~ [100<=sum(p5_c3, p5_c2, p5_c1, p5_c0)]]] & ~ [E [~ [100<=sum(p5_c3, p5_c2, p5_c1, p5_c0)] U [~ [36<=sum(p4_c3, p4_c2, p4_c1, p4_c0)] & ~ [100<=sum(p5_c3, p5_c2, p5_c1, p5_c0)]]]]] & ~ [EX [~ [71<=sum(p5_c3, p5_c2, p5_c1, p5_c0)]]]]]]]]] | ~ [E [sum(p2_c3, p2_c2, p2_c1, p2_c0)<=77 U [EX [sum(p0_c3, p0_c2, p0_c1, p0_c0)<=sum(p4_c3, p4_c2, p4_c1, p4_c0)] & [sum(p1_c3, p1_c2, p1_c1, p1_c0)<=sum(p5_c3, p5_c2, p5_c1, p5_c0) & [sum(p0_c3, p0_c2, p0_c1, p0_c0)<=sum(p4_c3, p4_c2, p4_c1, p4_c0) & 83<=sum(p0_c3, p0_c2, p0_c1, p0_c0)]]]]]]]
abstracting: (83<=sum(p0_c3, p0_c2, p0_c1, p0_c0))
MC time: 2m24.000sec
checking: EF [[E [[[EG [sum(p0_c3, p0_c2, p0_c1, p0_c0)<=70] | [AF [87<=sum(p4_c3, p4_c2, p4_c1, p4_c0)] & sum(p4_c3, p4_c2, p4_c1, p4_c0)<=97]] & AX [[33<=sum(p4_c3, p4_c2, p4_c1, p4_c0) | 43<=sum(p4_c3, p4_c2, p4_c1, p4_c0)]]] U [[sum(p0_c3, p0_c2, p0_c1, p0_c0)<=86 | ~ [AG [63<=sum(p4_c3, p4_c2, p4_c1, p4_c0)]]] | ~ [[[22<=sum(p3_c3, p3_c2, p3_c1, p3_c0) | sum(p0_c3, p0_c2, p0_c1, p0_c0)<=32] & [sum(p2_c3, p2_c2, p2_c1, p2_c0)<=sum(p3_c3, p3_c2, p3_c1, p3_c0) | sum(p2_c3, p2_c2, p2_c1, p2_c0)<=16]]]]] | ~ [[EX [sum(p1_c3, p1_c2, p1_c1, p1_c0)<=52] | [sum(p1_c3, p1_c2, p1_c1, p1_c0)<=73 & [[95<=sum(p5_c3, p5_c2, p5_c1, p5_c0) & sum(p0_c3, p0_c2, p0_c1, p0_c0)<=sum(p0_c3, p0_c2, p0_c1, p0_c0)] | ~ [sum(p2_c3, p2_c2, p2_c1, p2_c0)<=15]]]]]]]
normalized: E [true U [~ [[[sum(p1_c3, p1_c2, p1_c1, p1_c0)<=73 & [[95<=sum(p5_c3, p5_c2, p5_c1, p5_c0) & sum(p0_c3, p0_c2, p0_c1, p0_c0)<=sum(p0_c3, p0_c2, p0_c1, p0_c0)] | ~ [sum(p2_c3, p2_c2, p2_c1, p2_c0)<=15]]] | EX [sum(p1_c3, p1_c2, p1_c1, p1_c0)<=52]]] | E [[~ [EX [~ [[33<=sum(p4_c3, p4_c2, p4_c1, p4_c0) | 43<=sum(p4_c3, p4_c2, p4_c1, p4_c0)]]]] & [[sum(p4_c3, p4_c2, p4_c1, p4_c0)<=97 & ~ [EG [~ [87<=sum(p4_c3, p4_c2, p4_c1, p4_c0)]]]] | EG [sum(p0_c3, p0_c2, p0_c1, p0_c0)<=70]]] U [~ [[[sum(p2_c3, p2_c2, p2_c1, p2_c0)<=sum(p3_c3, p3_c2, p3_c1, p3_c0) | sum(p2_c3, p2_c2, p2_c1, p2_c0)<=16] & [22<=sum(p3_c3, p3_c2, p3_c1, p3_c0) | sum(p0_c3, p0_c2, p0_c1, p0_c0)<=32]]] | [sum(p0_c3, p0_c2, p0_c1, p0_c0)<=86 | E [true U ~ [63<=sum(p4_c3, p4_c2, p4_c1, p4_c0)]]]]]]]
abstracting: (63<=sum(p4_c3, p4_c2, p4_c1, p4_c0))
states: 0
abstracting: (sum(p0_c3, p0_c2, p0_c1, p0_c0)<=86)
MC time: 2m12.000sec
checking: A [AG [AF [[[EG [sum(p5_c3, p5_c2, p5_c1, p5_c0)<=sum(p5_c3, p5_c2, p5_c1, p5_c0)] | A [sum(p2_c3, p2_c2, p2_c1, p2_c0)<=sum(p0_c3, p0_c2, p0_c1, p0_c0) U sum(p5_c3, p5_c2, p5_c1, p5_c0)<=3]] | sum(p0_c3, p0_c2, p0_c1, p0_c0)<=sum(p4_c3, p4_c2, p4_c1, p4_c0)]]] U [[[~ [EF [AF [sum(p4_c3, p4_c2, p4_c1, p4_c0)<=27]]] & [EG [~ [sum(p0_c3, p0_c2, p0_c1, p0_c0)<=sum(p2_c3, p2_c2, p2_c1, p2_c0)]] | AF [[sum(p3_c3, p3_c2, p3_c1, p3_c0)<=sum(p4_c3, p4_c2, p4_c1, p4_c0) & 41<=sum(p0_c3, p0_c2, p0_c1, p0_c0)]]]] & AG [sum(p2_c3, p2_c2, p2_c1, p2_c0)<=14]] | ~ [[AX [AF [sum(p5_c3, p5_c2, p5_c1, p5_c0)<=sum(p4_c3, p4_c2, p4_c1, p4_c0)]] & EG [EG [sum(p5_c3, p5_c2, p5_c1, p5_c0)<=sum(p2_c3, p2_c2, p2_c1, p2_c0)]]]]]]
normalized: [~ [EG [~ [[~ [[EG [EG [sum(p5_c3, p5_c2, p5_c1, p5_c0)<=sum(p2_c3, p2_c2, p2_c1, p2_c0)]] & ~ [EX [EG [~ [sum(p5_c3, p5_c2, p5_c1, p5_c0)<=sum(p4_c3, p4_c2, p4_c1, p4_c0)]]]]]] | [~ [E [true U ~ [sum(p2_c3, p2_c2, p2_c1, p2_c0)<=14]]] & [[~ [EG [~ [[sum(p3_c3, p3_c2, p3_c1, p3_c0)<=sum(p4_c3, p4_c2, p4_c1, p4_c0) & 41<=sum(p0_c3, p0_c2, p0_c1, p0_c0)]]]] | EG [~ [sum(p0_c3, p0_c2, p0_c1, p0_c0)<=sum(p2_c3, p2_c2, p2_c1, p2_c0)]]] & ~ [E [true U ~ [EG [~ [sum(p4_c3, p4_c2, p4_c1, p4_c0)<=27]]]]]]]]]]] & ~ [E [~ [[~ [[EG [EG [sum(p5_c3, p5_c2, p5_c1, p5_c0)<=sum(p2_c3, p2_c2, p2_c1, p2_c0)]] & ~ [EX [EG [~ [sum(p5_c3, p5_c2, p5_c1, p5_c0)<=sum(p4_c3, p4_c2, p4_c1, p4_c0)]]]]]] | [~ [E [true U ~ [sum(p2_c3, p2_c2, p2_c1, p2_c0)<=14]]] & [[~ [EG [~ [[sum(p3_c3, p3_c2, p3_c1, p3_c0)<=sum(p4_c3, p4_c2, p4_c1, p4_c0) & 41<=sum(p0_c3, p0_c2, p0_c1, p0_c0)]]]] | EG [~ [sum(p0_c3, p0_c2, p0_c1, p0_c0)<=sum(p2_c3, p2_c2, p2_c1, p2_c0)]]] & ~ [E [true U ~ [EG [~ [sum(p4_c3, p4_c2, p4_c1, p4_c0)<=27]]]]]]]]] U [E [true U EG [~ [[sum(p0_c3, p0_c2, p0_c1, p0_c0)<=sum(p4_c3, p4_c2, p4_c1, p4_c0) | [[~ [EG [~ [sum(p5_c3, p5_c2, p5_c1, p5_c0)<=3]]] & ~ [E [~ [sum(p5_c3, p5_c2, p5_c1, p5_c0)<=3] U [~ [sum(p5_c3, p5_c2, p5_c1, p5_c0)<=3] & ~ [sum(p2_c3, p2_c2, p2_c1, p2_c0)<=sum(p0_c3, p0_c2, p0_c1, p0_c0)]]]]] | EG [sum(p5_c3, p5_c2, p5_c1, p5_c0)<=sum(p5_c3, p5_c2, p5_c1, p5_c0)]]]]]] & ~ [[~ [[EG [EG [sum(p5_c3, p5_c2, p5_c1, p5_c0)<=sum(p2_c3, p2_c2, p2_c1, p2_c0)]] & ~ [EX [EG [~ [sum(p5_c3, p5_c2, p5_c1, p5_c0)<=sum(p4_c3, p4_c2, p4_c1, p4_c0)]]]]]] | [~ [E [true U ~ [sum(p2_c3, p2_c2, p2_c1, p2_c0)<=14]]] & [[~ [EG [~ [[sum(p3_c3, p3_c2, p3_c1, p3_c0)<=sum(p4_c3, p4_c2, p4_c1, p4_c0) & 41<=sum(p0_c3, p0_c2, p0_c1, p0_c0)]]]] | EG [~ [sum(p0_c3, p0_c2, p0_c1, p0_c0)<=sum(p2_c3, p2_c2, p2_c1, p2_c0)]]] & ~ [E [true U ~ [EG [~ [sum(p4_c3, p4_c2, p4_c1, p4_c0)<=27]]]]]]]]]]]]]
abstracting: (sum(p4_c3, p4_c2, p4_c1, p4_c0)<=27)
states: 540,710,084,330,928 (14)
.
EG iterations: 1
abstracting: (sum(p0_c3, p0_c2, p0_c1, p0_c0)<=sum(p2_c3, p2_c2, p2_c1, p2_c0))
MC time: 2m 1.000sec
checking: EX [[AF [[sum(p1_c3, p1_c2, p1_c1, p1_c0)<=69 & [[[sum(p1_c3, p1_c2, p1_c1, p1_c0)<=62 | sum(p3_c3, p3_c2, p3_c1, p3_c0)<=36] | [59<=sum(p5_c3, p5_c2, p5_c1, p5_c0) | sum(p1_c3, p1_c2, p1_c1, p1_c0)<=31]] & [sum(p1_c3, p1_c2, p1_c1, p1_c0)<=sum(p2_c3, p2_c2, p2_c1, p2_c0) & E [sum(p1_c3, p1_c2, p1_c1, p1_c0)<=sum(p4_c3, p4_c2, p4_c1, p4_c0) U sum(p2_c3, p2_c2, p2_c1, p2_c0)<=79]]]]] | [~ [[sum(p0_c3, p0_c2, p0_c1, p0_c0)<=sum(p0_c3, p0_c2, p0_c1, p0_c0) & ~ [[sum(p5_c3, p5_c2, p5_c1, p5_c0)<=sum(p4_c3, p4_c2, p4_c1, p4_c0) | sum(p1_c3, p1_c2, p1_c1, p1_c0)<=11]]]] | [~ [[~ [[sum(p2_c3, p2_c2, p2_c1, p2_c0)<=sum(p3_c3, p3_c2, p3_c1, p3_c0) & 14<=sum(p2_c3, p2_c2, p2_c1, p2_c0)]] | ~ [[sum(p5_c3, p5_c2, p5_c1, p5_c0)<=24 & sum(p0_c3, p0_c2, p0_c1, p0_c0)<=45]]]] | AX [AX [sum(p2_c3, p2_c2, p2_c1, p2_c0)<=99]]]]]]
normalized: EX [[[[~ [EX [EX [~ [sum(p2_c3, p2_c2, p2_c1, p2_c0)<=99]]]] | ~ [[~ [[sum(p5_c3, p5_c2, p5_c1, p5_c0)<=24 & sum(p0_c3, p0_c2, p0_c1, p0_c0)<=45]] | ~ [[sum(p2_c3, p2_c2, p2_c1, p2_c0)<=sum(p3_c3, p3_c2, p3_c1, p3_c0) & 14<=sum(p2_c3, p2_c2, p2_c1, p2_c0)]]]]] | ~ [[sum(p0_c3, p0_c2, p0_c1, p0_c0)<=sum(p0_c3, p0_c2, p0_c1, p0_c0) & ~ [[sum(p5_c3, p5_c2, p5_c1, p5_c0)<=sum(p4_c3, p4_c2, p4_c1, p4_c0) | sum(p1_c3, p1_c2, p1_c1, p1_c0)<=11]]]]] | ~ [EG [~ [[sum(p1_c3, p1_c2, p1_c1, p1_c0)<=69 & [[sum(p1_c3, p1_c2, p1_c1, p1_c0)<=sum(p2_c3, p2_c2, p2_c1, p2_c0) & E [sum(p1_c3, p1_c2, p1_c1, p1_c0)<=sum(p4_c3, p4_c2, p4_c1, p4_c0) U sum(p2_c3, p2_c2, p2_c1, p2_c0)<=79]] & [[59<=sum(p5_c3, p5_c2, p5_c1, p5_c0) | sum(p1_c3, p1_c2, p1_c1, p1_c0)<=31] | [sum(p1_c3, p1_c2, p1_c1, p1_c0)<=62 | sum(p3_c3, p3_c2, p3_c1, p3_c0)<=36]]]]]]]]]
abstracting: (sum(p3_c3, p3_c2, p3_c1, p3_c0)<=36)
states: 540,710,084,330,928 (14)
abstracting: (sum(p1_c3, p1_c2, p1_c1, p1_c0)<=62)
MC time: 1m51.000sec
checking: [A [[AX [83<=sum(p0_c3, p0_c2, p0_c1, p0_c0)] & [[EX [75<=sum(p4_c3, p4_c2, p4_c1, p4_c0)] | ~ [[sum(p1_c3, p1_c2, p1_c1, p1_c0)<=sum(p5_c3, p5_c2, p5_c1, p5_c0) | ~ [sum(p0_c3, p0_c2, p0_c1, p0_c0)<=10]]]] & ~ [[~ [sum(p0_c3, p0_c2, p0_c1, p0_c0)<=sum(p5_c3, p5_c2, p5_c1, p5_c0)] & 3<=sum(p2_c3, p2_c2, p2_c1, p2_c0)]]]] U ~ [[[sum(p0_c3, p0_c2, p0_c1, p0_c0)<=sum(p4_c3, p4_c2, p4_c1, p4_c0) & [[[38<=sum(p1_c3, p1_c2, p1_c1, p1_c0) & sum(p4_c3, p4_c2, p4_c1, p4_c0)<=14] | [99<=sum(p3_c3, p3_c2, p3_c1, p3_c0) | 16<=sum(p0_c3, p0_c2, p0_c1, p0_c0)]] & A [sum(p4_c3, p4_c2, p4_c1, p4_c0)<=sum(p5_c3, p5_c2, p5_c1, p5_c0) U sum(p5_c3, p5_c2, p5_c1, p5_c0)<=57]]] | 47<=sum(p1_c3, p1_c2, p1_c1, p1_c0)]]] | A [[[AG [~ [[sum(p4_c3, p4_c2, p4_c1, p4_c0)<=sum(p5_c3, p5_c2, p5_c1, p5_c0) & sum(p0_c3, p0_c2, p0_c1, p0_c0)<=sum(p4_c3, p4_c2, p4_c1, p4_c0)]]] & ~ [A [sum(p0_c3, p0_c2, p0_c1, p0_c0)<=sum(p0_c3, p0_c2, p0_c1, p0_c0) U 21<=sum(p0_c3, p0_c2, p0_c1, p0_c0)]]] & EG [~ [90<=sum(p4_c3, p4_c2, p4_c1, p4_c0)]]] U E [sum(p5_c3, p5_c2, p5_c1, p5_c0)<=77 U EF [[sum(p5_c3, p5_c2, p5_c1, p5_c0)<=sum(p4_c3, p4_c2, p4_c1, p4_c0) & [sum(p3_c3, p3_c2, p3_c1, p3_c0)<=15 | sum(p4_c3, p4_c2, p4_c1, p4_c0)<=52]]]]]]
normalized: [[~ [EG [~ [E [sum(p5_c3, p5_c2, p5_c1, p5_c0)<=77 U E [true U [sum(p5_c3, p5_c2, p5_c1, p5_c0)<=sum(p4_c3, p4_c2, p4_c1, p4_c0) & [sum(p3_c3, p3_c2, p3_c1, p3_c0)<=15 | sum(p4_c3, p4_c2, p4_c1, p4_c0)<=52]]]]]]] & ~ [E [~ [E [sum(p5_c3, p5_c2, p5_c1, p5_c0)<=77 U E [true U [sum(p5_c3, p5_c2, p5_c1, p5_c0)<=sum(p4_c3, p4_c2, p4_c1, p4_c0) & [sum(p3_c3, p3_c2, p3_c1, p3_c0)<=15 | sum(p4_c3, p4_c2, p4_c1, p4_c0)<=52]]]]] U [~ [[EG [~ [90<=sum(p4_c3, p4_c2, p4_c1, p4_c0)]] & [~ [[~ [EG [~ [21<=sum(p0_c3, p0_c2, p0_c1, p0_c0)]]] & ~ [E [~ [21<=sum(p0_c3, p0_c2, p0_c1, p0_c0)] U [~ [sum(p0_c3, p0_c2, p0_c1, p0_c0)<=sum(p0_c3, p0_c2, p0_c1, p0_c0)] & ~ [21<=sum(p0_c3, p0_c2, p0_c1, p0_c0)]]]]]] & ~ [E [true U [sum(p4_c3, p4_c2, p4_c1, p4_c0)<=sum(p5_c3, p5_c2, p5_c1, p5_c0) & sum(p0_c3, p0_c2, p0_c1, p0_c0)<=sum(p4_c3, p4_c2, p4_c1, p4_c0)]]]]]] & ~ [E [sum(p5_c3, p5_c2, p5_c1, p5_c0)<=77 U E [true U [sum(p5_c3, p5_c2, p5_c1, p5_c0)<=sum(p4_c3, p4_c2, p4_c1, p4_c0) & [sum(p3_c3, p3_c2, p3_c1, p3_c0)<=15 | sum(p4_c3, p4_c2, p4_c1, p4_c0)<=52]]]]]]]]] | [~ [EG [[47<=sum(p1_c3, p1_c2, p1_c1, p1_c0) | [sum(p0_c3, p0_c2, p0_c1, p0_c0)<=sum(p4_c3, p4_c2, p4_c1, p4_c0) & [[~ [EG [~ [sum(p5_c3, p5_c2, p5_c1, p5_c0)<=57]]] & ~ [E [~ [sum(p5_c3, p5_c2, p5_c1, p5_c0)<=57] U [~ [sum(p4_c3, p4_c2, p4_c1, p4_c0)<=sum(p5_c3, p5_c2, p5_c1, p5_c0)] & ~ [sum(p5_c3, p5_c2, p5_c1, p5_c0)<=57]]]]] & [[99<=sum(p3_c3, p3_c2, p3_c1, p3_c0) | 16<=sum(p0_c3, p0_c2, p0_c1, p0_c0)] | [38<=sum(p1_c3, p1_c2, p1_c1, p1_c0) & sum(p4_c3, p4_c2, p4_c1, p4_c0)<=14]]]]]]] & ~ [E [[47<=sum(p1_c3, p1_c2, p1_c1, p1_c0) | [sum(p0_c3, p0_c2, p0_c1, p0_c0)<=sum(p4_c3, p4_c2, p4_c1, p4_c0) & [[~ [EG [~ [sum(p5_c3, p5_c2, p5_c1, p5_c0)<=57]]] & ~ [E [~ [sum(p5_c3, p5_c2, p5_c1, p5_c0)<=57] U [~ [sum(p4_c3, p4_c2, p4_c1, p4_c0)<=sum(p5_c3, p5_c2, p5_c1, p5_c0)] & ~ [sum(p5_c3, p5_c2, p5_c1, p5_c0)<=57]]]]] & [[99<=sum(p3_c3, p3_c2, p3_c1, p3_c0) | 16<=sum(p0_c3, p0_c2, p0_c1, p0_c0)] | [38<=sum(p1_c3, p1_c2, p1_c1, p1_c0) & sum(p4_c3, p4_c2, p4_c1, p4_c0)<=14]]]]] U [~ [[[~ [[3<=sum(p2_c3, p2_c2, p2_c1, p2_c0) & ~ [sum(p0_c3, p0_c2, p0_c1, p0_c0)<=sum(p5_c3, p5_c2, p5_c1, p5_c0)]]] & [~ [[sum(p1_c3, p1_c2, p1_c1, p1_c0)<=sum(p5_c3, p5_c2, p5_c1, p5_c0) | ~ [sum(p0_c3, p0_c2, p0_c1, p0_c0)<=10]]] | EX [75<=sum(p4_c3, p4_c2, p4_c1, p4_c0)]]] & ~ [EX [~ [83<=sum(p0_c3, p0_c2, p0_c1, p0_c0)]]]]] & [47<=sum(p1_c3, p1_c2, p1_c1, p1_c0) | [sum(p0_c3, p0_c2, p0_c1, p0_c0)<=sum(p4_c3, p4_c2, p4_c1, p4_c0) & [[~ [EG [~ [sum(p5_c3, p5_c2, p5_c1, p5_c0)<=57]]] & ~ [E [~ [sum(p5_c3, p5_c2, p5_c1, p5_c0)<=57] U [~ [sum(p4_c3, p4_c2, p4_c1, p4_c0)<=sum(p5_c3, p5_c2, p5_c1, p5_c0)] & ~ [sum(p5_c3, p5_c2, p5_c1, p5_c0)<=57]]]]] & [[99<=sum(p3_c3, p3_c2, p3_c1, p3_c0) | 16<=sum(p0_c3, p0_c2, p0_c1, p0_c0)] | [38<=sum(p1_c3, p1_c2, p1_c1, p1_c0) & sum(p4_c3, p4_c2, p4_c1, p4_c0)<=14]]]]]]]]]]
abstracting: (sum(p4_c3, p4_c2, p4_c1, p4_c0)<=14)
states: 540,710,084,330,928 (14)
abstracting: (38<=sum(p1_c3, p1_c2, p1_c1, p1_c0))
states: 525,667,712,271,984 (14)
abstracting: (16<=sum(p0_c3, p0_c2, p0_c1, p0_c0))
MC time: 1m42.000sec
checking: E [AG [[A [EG [75<=sum(p3_c3, p3_c2, p3_c1, p3_c0)] U AG [92<=sum(p1_c3, p1_c2, p1_c1, p1_c0)]] | AX [AG [66<=sum(p4_c3, p4_c2, p4_c1, p4_c0)]]]] U 38<=sum(p1_c3, p1_c2, p1_c1, p1_c0)]
normalized: E [~ [E [true U ~ [[~ [EX [E [true U ~ [66<=sum(p4_c3, p4_c2, p4_c1, p4_c0)]]]] | [~ [EG [E [true U ~ [92<=sum(p1_c3, p1_c2, p1_c1, p1_c0)]]]] & ~ [E [E [true U ~ [92<=sum(p1_c3, p1_c2, p1_c1, p1_c0)]] U [~ [EG [75<=sum(p3_c3, p3_c2, p3_c1, p3_c0)]] & E [true U ~ [92<=sum(p1_c3, p1_c2, p1_c1, p1_c0)]]]]]]]]]] U 38<=sum(p1_c3, p1_c2, p1_c1, p1_c0)]
abstracting: (38<=sum(p1_c3, p1_c2, p1_c1, p1_c0))
states: 525,667,712,271,984 (14)
abstracting: (92<=sum(p1_c3, p1_c2, p1_c1, p1_c0))
states: 329,475,925,936,224 (14)
before gc: list nodes free: 1863752
after gc: idd nodes used:2457156, unused:61542844; list nodes free:716162349
abstracting: (75<=sum(p3_c3, p3_c2, p3_c1, p3_c0))
states: 0
.
EG iterations: 1
abstracting: (92<=sum(p1_c3, p1_c2, p1_c1, p1_c0))
states: 329,475,925,936,224 (14)
abstracting: (92<=sum(p1_c3, p1_c2, p1_c1, p1_c0))
states: 329,475,925,936,224 (14)
EG iterations: 0
abstracting: (66<=sum(p4_c3, p4_c2, p4_c1, p4_c0))
states: 0
.-> the formula is TRUE
FORMULA Murphy-COL-D3N050-CTLCardinality-13 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
TIME LIMIT: Killed by timeout after 3600 seconds
MemTotal: 16393932 kB
MemFree: 165552 kB
After kill :
MemTotal: 16393932 kB
MemFree: 15855252 kB
BK_TIME_CONFINEMENT_REACHED
--------------------
content from stderr:
check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.002sec
iterations count:20755 (741), effective:4264 (152)
initing FirstDep: 0m 0.001sec
iterations count:398 (14), effective:74 (2)
iterations count:76 (2), effective:13 (0)
idd.h:1025: Timeout: after 264 sec
idd.h:1025: Timeout: after 242 sec
idd.h:1025: Timeout: after 221 sec
idd.h:1025: Timeout: after 203 sec
idd.h:1025: Timeout: after 186 sec
idd.h:1025: Timeout: after 170 sec
idd.h:1025: Timeout: after 156 sec
idd.h:1025: Timeout: after 143 sec
iterations count:28 (1), effective:0 (0)
idd.h:1025: Timeout: after 131 sec
iterations count:28 (1), effective:0 (0)
idd.h:1025: Timeout: after 120 sec
idd.h:1025: Timeout: after 110 sec
idd.h:1025: Timeout: after 101 sec
iterations count:4299 (153), effective:933 (33)
iterations count:4299 (153), effective:933 (33)
iterations count:28 (1), effective:0 (0)
iterations count:4299 (153), effective:933 (33)
iterations count:28 (1), effective:0 (0)
iterations count:28 (1), effective:0 (0)
iterations count:28 (1), effective:0 (0)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="Murphy-COL-D3N050"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marcie"
echo " Input is Murphy-COL-D3N050, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r513-tall-167987240900305"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/Murphy-COL-D3N050.tgz
mv Murphy-COL-D3N050 execution
cd execution
if [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "UpperBounds" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] || [ "CTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME CTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;