About the Execution of Marcie for Murphy-COL-D1N010
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
5474.132 | 7585.00 | 7079.00 | 0.00 | TFFFTTTFTTTFTFTF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fkordon/mcc2023-input.r513-tall-167987240900286.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2023-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
.................
=====================================================================
Generated by BenchKit 2-5348
Executing tool marcie
Input is Murphy-COL-D1N010, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r513-tall-167987240900286
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 380K
-rw-r--r-- 1 mcc users 5.5K Mar 23 15:21 CTLCardinality.txt
-rw-r--r-- 1 mcc users 55K Mar 23 15:21 CTLCardinality.xml
-rw-r--r-- 1 mcc users 5.1K Mar 23 15:20 CTLFireability.txt
-rw-r--r-- 1 mcc users 48K Mar 23 15:20 CTLFireability.xml
-rw-r--r-- 1 mcc users 3.3K Mar 23 07:07 LTLCardinality.txt
-rw-r--r-- 1 mcc users 22K Mar 23 07:07 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.1K Mar 23 07:07 LTLFireability.txt
-rw-r--r-- 1 mcc users 19K Mar 23 07:07 LTLFireability.xml
-rw-r--r-- 1 mcc users 1 Mar 26 22:42 NewModel
-rw-r--r-- 1 mcc users 7.2K Mar 23 15:23 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 69K Mar 23 15:23 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 7.3K Mar 23 15:23 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 68K Mar 23 15:23 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.6K Mar 23 07:07 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.6K Mar 23 07:07 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Mar 26 22:42 equiv_pt
-rw-r--r-- 1 mcc users 7 Mar 26 22:42 instance
-rw-r--r-- 1 mcc users 5 Mar 26 22:42 iscolored
-rw-r--r-- 1 mcc users 28K Mar 26 22:42 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME Murphy-COL-D1N010-ReachabilityCardinality-00
FORMULA_NAME Murphy-COL-D1N010-ReachabilityCardinality-01
FORMULA_NAME Murphy-COL-D1N010-ReachabilityCardinality-02
FORMULA_NAME Murphy-COL-D1N010-ReachabilityCardinality-03
FORMULA_NAME Murphy-COL-D1N010-ReachabilityCardinality-04
FORMULA_NAME Murphy-COL-D1N010-ReachabilityCardinality-05
FORMULA_NAME Murphy-COL-D1N010-ReachabilityCardinality-06
FORMULA_NAME Murphy-COL-D1N010-ReachabilityCardinality-07
FORMULA_NAME Murphy-COL-D1N010-ReachabilityCardinality-08
FORMULA_NAME Murphy-COL-D1N010-ReachabilityCardinality-09
FORMULA_NAME Murphy-COL-D1N010-ReachabilityCardinality-10
FORMULA_NAME Murphy-COL-D1N010-ReachabilityCardinality-11
FORMULA_NAME Murphy-COL-D1N010-ReachabilityCardinality-12
FORMULA_NAME Murphy-COL-D1N010-ReachabilityCardinality-13
FORMULA_NAME Murphy-COL-D1N010-ReachabilityCardinality-14
FORMULA_NAME Murphy-COL-D1N010-ReachabilityCardinality-15
=== Now, execution of the tool begins
BK_START 1679892250581
bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marcie
BK_EXAMINATION=ReachabilityCardinality
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=Murphy-COL-D1N010
Not applying reductions.
Model is COL
ReachabilityCardinality COL
timeout --kill-after=10s --signal=SIGINT 1m for testing only
Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: /home/mcc/BenchKit/bin//../marcie/bin/marcie --net-file=model.pnml --mcc-file=ReachabilityCardinality.xml --memory=6 --mcc-mode
parse successfull
net created successfully
Unfolding complete |P|=12|T|=14|A|=54
Time for unfolding: 0m 0.428sec
Net: PGCD_COL_D1_N10
(NrP: 12 NrTr: 14 NrArc: 54)
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec
net check time: 0m 0.000sec
init dd package: 0m 2.854sec
RS generation: 0m 0.015sec
-> reachability set: #nodes 237 (2.4e+02) #states 39,780 (4)
starting MCC model checker
--------------------------
checking: EF [71<=sum(p4_c1, p4_c0)]
normalized: E [true U 71<=sum(p4_c1, p4_c0)]
abstracting: (71<=sum(p4_c1, p4_c0))
states: 0
-> the formula is FALSE
FORMULA Murphy-COL-D1N010-ReachabilityCardinality-01 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.034sec
checking: AG [sum(p2_c1, p2_c0)<=97]
normalized: ~ [E [true U ~ [sum(p2_c1, p2_c0)<=97]]]
abstracting: (sum(p2_c1, p2_c0)<=97)
states: 39,780 (4)
-> the formula is TRUE
FORMULA Murphy-COL-D1N010-ReachabilityCardinality-04 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.022sec
checking: EF [sum(p1_c1, p1_c0)<=52]
normalized: E [true U sum(p1_c1, p1_c0)<=52]
abstracting: (sum(p1_c1, p1_c0)<=52)
states: 39,780 (4)
-> the formula is TRUE
FORMULA Murphy-COL-D1N010-ReachabilityCardinality-05 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.022sec
checking: EF [6<=sum(p3_c1, p3_c0)]
normalized: E [true U 6<=sum(p3_c1, p3_c0)]
abstracting: (6<=sum(p3_c1, p3_c0))
states: 0
-> the formula is FALSE
FORMULA Murphy-COL-D1N010-ReachabilityCardinality-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.022sec
checking: AG [sum(p3_c1, p3_c0)<=sum(p0_c1, p0_c0)]
normalized: ~ [E [true U ~ [sum(p3_c1, p3_c0)<=sum(p0_c1, p0_c0)]]]
abstracting: (sum(p3_c1, p3_c0)<=sum(p0_c1, p0_c0))
states: 39,780 (4)
-> the formula is TRUE
FORMULA Murphy-COL-D1N010-ReachabilityCardinality-09 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.022sec
checking: AG [sum(p1_c1, p1_c0)<=sum(p1_c1, p1_c0)]
normalized: ~ [E [true U ~ [sum(p1_c1, p1_c0)<=sum(p1_c1, p1_c0)]]]
abstracting: (sum(p1_c1, p1_c0)<=sum(p1_c1, p1_c0))
states: 39,780 (4)
-> the formula is TRUE
FORMULA Murphy-COL-D1N010-ReachabilityCardinality-10 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.000sec
checking: EF [~ [sum(p3_c1, p3_c0)<=sum(p3_c1, p3_c0)]]
normalized: E [true U ~ [sum(p3_c1, p3_c0)<=sum(p3_c1, p3_c0)]]
abstracting: (sum(p3_c1, p3_c0)<=sum(p3_c1, p3_c0))
states: 39,780 (4)
-> the formula is FALSE
FORMULA Murphy-COL-D1N010-ReachabilityCardinality-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.000sec
checking: EF [[sum(p2_c1, p2_c0)<=100 | sum(p1_c1, p1_c0)<=sum(p4_c1, p4_c0)]]
normalized: E [true U [sum(p2_c1, p2_c0)<=100 | sum(p1_c1, p1_c0)<=sum(p4_c1, p4_c0)]]
abstracting: (sum(p1_c1, p1_c0)<=sum(p4_c1, p4_c0))
states: 2,512 (3)
abstracting: (sum(p2_c1, p2_c0)<=100)
states: 39,780 (4)
-> the formula is TRUE
FORMULA Murphy-COL-D1N010-ReachabilityCardinality-00 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.047sec
checking: AG [[sum(p2_c1, p2_c0)<=24 | [sum(p5_c1, p5_c0)<=sum(p3_c1, p3_c0) | sum(p2_c1, p2_c0)<=63]]]
normalized: ~ [E [true U ~ [[[sum(p5_c1, p5_c0)<=sum(p3_c1, p3_c0) | sum(p2_c1, p2_c0)<=63] | sum(p2_c1, p2_c0)<=24]]]]
abstracting: (sum(p2_c1, p2_c0)<=24)
states: 39,780 (4)
abstracting: (sum(p2_c1, p2_c0)<=63)
states: 39,780 (4)
abstracting: (sum(p5_c1, p5_c0)<=sum(p3_c1, p3_c0))
states: 8,840 (3)
-> the formula is TRUE
FORMULA Murphy-COL-D1N010-ReachabilityCardinality-08 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.065sec
checking: AG [[[sum(p5_c1, p5_c0)<=sum(p3_c1, p3_c0) | sum(p3_c1, p3_c0)<=sum(p0_c1, p0_c0)] & [sum(p1_c1, p1_c0)<=sum(p2_c1, p2_c0) | 87<=sum(p3_c1, p3_c0)]]]
normalized: ~ [E [true U ~ [[[sum(p5_c1, p5_c0)<=sum(p3_c1, p3_c0) | sum(p3_c1, p3_c0)<=sum(p0_c1, p0_c0)] & [sum(p1_c1, p1_c0)<=sum(p2_c1, p2_c0) | 87<=sum(p3_c1, p3_c0)]]]]]
abstracting: (87<=sum(p3_c1, p3_c0))
states: 0
abstracting: (sum(p1_c1, p1_c0)<=sum(p2_c1, p2_c0))
states: 21,888 (4)
abstracting: (sum(p3_c1, p3_c0)<=sum(p0_c1, p0_c0))
states: 39,780 (4)
abstracting: (sum(p5_c1, p5_c0)<=sum(p3_c1, p3_c0))
states: 8,840 (3)
-> the formula is FALSE
FORMULA Murphy-COL-D1N010-ReachabilityCardinality-02 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.096sec
checking: EF [~ [[[sum(p4_c1, p4_c0)<=68 & [~ [40<=sum(p3_c1, p3_c0)] & [[sum(p0_c1, p0_c0)<=sum(p2_c1, p2_c0) | ~ [[sum(p1_c1, p1_c0)<=15 & sum(p3_c1, p3_c0)<=sum(p5_c1, p5_c0)]]] | ~ [sum(p4_c1, p4_c0)<=98]]]] | sum(p5_c1, p5_c0)<=2]]]
normalized: E [true U ~ [[[[[[~ [[sum(p1_c1, p1_c0)<=15 & sum(p3_c1, p3_c0)<=sum(p5_c1, p5_c0)]] | sum(p0_c1, p0_c0)<=sum(p2_c1, p2_c0)] | ~ [sum(p4_c1, p4_c0)<=98]] & ~ [40<=sum(p3_c1, p3_c0)]] & sum(p4_c1, p4_c0)<=68] | sum(p5_c1, p5_c0)<=2]]]
abstracting: (sum(p5_c1, p5_c0)<=2)
states: 14,365 (4)
abstracting: (sum(p4_c1, p4_c0)<=68)
states: 39,780 (4)
abstracting: (40<=sum(p3_c1, p3_c0))
states: 0
abstracting: (sum(p4_c1, p4_c0)<=98)
states: 39,780 (4)
abstracting: (sum(p0_c1, p0_c0)<=sum(p2_c1, p2_c0))
states: 39,780 (4)
abstracting: (sum(p3_c1, p3_c0)<=sum(p5_c1, p5_c0))
states: 36,465 (4)
abstracting: (sum(p1_c1, p1_c0)<=15)
states: 31,680 (4)
-> the formula is FALSE
FORMULA Murphy-COL-D1N010-ReachabilityCardinality-07 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.205sec
checking: EF [~ [[sum(p5_c1, p5_c0)<=sum(p4_c1, p4_c0) & [[~ [80<=sum(p5_c1, p5_c0)] & [~ [[sum(p1_c1, p1_c0)<=sum(p2_c1, p2_c0) & sum(p0_c1, p0_c0)<=sum(p5_c1, p5_c0)]] & ~ [[52<=sum(p2_c1, p2_c0) | sum(p4_c1, p4_c0)<=sum(p4_c1, p4_c0)]]]] & sum(p0_c1, p0_c0)<=sum(p0_c1, p0_c0)]]]]
normalized: E [true U ~ [[[[[~ [[52<=sum(p2_c1, p2_c0) | sum(p4_c1, p4_c0)<=sum(p4_c1, p4_c0)]] & ~ [[sum(p1_c1, p1_c0)<=sum(p2_c1, p2_c0) & sum(p0_c1, p0_c0)<=sum(p5_c1, p5_c0)]]] & ~ [80<=sum(p5_c1, p5_c0)]] & sum(p0_c1, p0_c0)<=sum(p0_c1, p0_c0)] & sum(p5_c1, p5_c0)<=sum(p4_c1, p4_c0)]]]
abstracting: (sum(p5_c1, p5_c0)<=sum(p4_c1, p4_c0))
states: 16,575 (4)
abstracting: (sum(p0_c1, p0_c0)<=sum(p0_c1, p0_c0))
states: 39,780 (4)
abstracting: (80<=sum(p5_c1, p5_c0))
states: 0
abstracting: (sum(p0_c1, p0_c0)<=sum(p5_c1, p5_c0))
states: 2,651 (3)
abstracting: (sum(p1_c1, p1_c0)<=sum(p2_c1, p2_c0))
states: 21,888 (4)
abstracting: (sum(p4_c1, p4_c0)<=sum(p4_c1, p4_c0))
states: 39,780 (4)
abstracting: (52<=sum(p2_c1, p2_c0))
states: 0
-> the formula is TRUE
FORMULA Murphy-COL-D1N010-ReachabilityCardinality-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.092sec
checking: AG [[[[[21<=sum(p5_c1, p5_c0) & [99<=sum(p3_c1, p3_c0) & sum(p5_c1, p5_c0)<=sum(p5_c1, p5_c0)]] | [[[[[sum(p3_c1, p3_c0)<=sum(p2_c1, p2_c0) & [15<=sum(p5_c1, p5_c0) | sum(p0_c1, p0_c0)<=sum(p1_c1, p1_c0)]] | [~ [51<=sum(p5_c1, p5_c0)] & 59<=sum(p0_c1, p0_c0)]] | 17<=sum(p5_c1, p5_c0)] & [[sum(p5_c1, p5_c0)<=54 & [[sum(p4_c1, p4_c0)<=3 | sum(p5_c1, p5_c0)<=45] & sum(p2_c1, p2_c0)<=sum(p5_c1, p5_c0)]] | [sum(p4_c1, p4_c0)<=sum(p3_c1, p3_c0) & [[45<=sum(p2_c1, p2_c0) | sum(p2_c1, p2_c0)<=12] | [32<=sum(p3_c1, p3_c0) & 76<=sum(p4_c1, p4_c0)]]]]] | sum(p1_c1, p1_c0)<=21]] & sum(p5_c1, p5_c0)<=sum(p1_c1, p1_c0)] & 66<=sum(p3_c1, p3_c0)]]
normalized: ~ [E [true U ~ [[[[[[[[[[32<=sum(p3_c1, p3_c0) & 76<=sum(p4_c1, p4_c0)] | [45<=sum(p2_c1, p2_c0) | sum(p2_c1, p2_c0)<=12]] & sum(p4_c1, p4_c0)<=sum(p3_c1, p3_c0)] | [[[sum(p4_c1, p4_c0)<=3 | sum(p5_c1, p5_c0)<=45] & sum(p2_c1, p2_c0)<=sum(p5_c1, p5_c0)] & sum(p5_c1, p5_c0)<=54]] & [[[~ [51<=sum(p5_c1, p5_c0)] & 59<=sum(p0_c1, p0_c0)] | [[15<=sum(p5_c1, p5_c0) | sum(p0_c1, p0_c0)<=sum(p1_c1, p1_c0)] & sum(p3_c1, p3_c0)<=sum(p2_c1, p2_c0)]] | 17<=sum(p5_c1, p5_c0)]] | sum(p1_c1, p1_c0)<=21] | [[99<=sum(p3_c1, p3_c0) & sum(p5_c1, p5_c0)<=sum(p5_c1, p5_c0)] & 21<=sum(p5_c1, p5_c0)]] & sum(p5_c1, p5_c0)<=sum(p1_c1, p1_c0)] & 66<=sum(p3_c1, p3_c0)]]]]
abstracting: (66<=sum(p3_c1, p3_c0))
states: 0
abstracting: (sum(p5_c1, p5_c0)<=sum(p1_c1, p1_c0))
states: 37,191 (4)
abstracting: (21<=sum(p5_c1, p5_c0))
states: 0
abstracting: (sum(p5_c1, p5_c0)<=sum(p5_c1, p5_c0))
states: 39,780 (4)
abstracting: (99<=sum(p3_c1, p3_c0))
states: 0
abstracting: (sum(p1_c1, p1_c0)<=21)
states: 39,780 (4)
abstracting: (17<=sum(p5_c1, p5_c0))
states: 0
abstracting: (sum(p3_c1, p3_c0)<=sum(p2_c1, p2_c0))
states: 39,780 (4)
abstracting: (sum(p0_c1, p0_c0)<=sum(p1_c1, p1_c0))
states: 20,484 (4)
abstracting: (15<=sum(p5_c1, p5_c0))
states: 0
abstracting: (59<=sum(p0_c1, p0_c0))
states: 0
abstracting: (51<=sum(p5_c1, p5_c0))
states: 0
abstracting: (sum(p5_c1, p5_c0)<=54)
states: 39,780 (4)
abstracting: (sum(p2_c1, p2_c0)<=sum(p5_c1, p5_c0))
states: 2,651 (3)
abstracting: (sum(p5_c1, p5_c0)<=45)
states: 39,780 (4)
abstracting: (sum(p4_c1, p4_c0)<=3)
states: 35,360 (4)
abstracting: (sum(p4_c1, p4_c0)<=sum(p3_c1, p3_c0))
states: 14,365 (4)
abstracting: (sum(p2_c1, p2_c0)<=12)
states: 23,040 (4)
abstracting: (45<=sum(p2_c1, p2_c0))
states: 0
abstracting: (76<=sum(p4_c1, p4_c0))
states: 0
abstracting: (32<=sum(p3_c1, p3_c0))
states: 0
-> the formula is FALSE
FORMULA Murphy-COL-D1N010-ReachabilityCardinality-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.483sec
checking: EF [[[[~ [[[49<=sum(p4_c1, p4_c0) & [~ [28<=sum(p4_c1, p4_c0)] & sum(p3_c1, p3_c0)<=sum(p0_c1, p0_c0)]] | ~ [[[sum(p1_c1, p1_c0)<=sum(p3_c1, p3_c0) & sum(p2_c1, p2_c0)<=sum(p1_c1, p1_c0)] | [sum(p0_c1, p0_c0)<=27 & 67<=sum(p3_c1, p3_c0)]]]]] & [[[[sum(p4_c1, p4_c0)<=68 & [19<=sum(p2_c1, p2_c0) | 52<=sum(p4_c1, p4_c0)]] | ~ [[sum(p3_c1, p3_c0)<=sum(p1_c1, p1_c0) & sum(p1_c1, p1_c0)<=sum(p2_c1, p2_c0)]]] | [[[[sum(p2_c1, p2_c0)<=sum(p0_c1, p0_c0) | sum(p3_c1, p3_c0)<=sum(p1_c1, p1_c0)] | sum(p2_c1, p2_c0)<=59] | sum(p2_c1, p2_c0)<=sum(p0_c1, p0_c0)] | sum(p0_c1, p0_c0)<=32]] | 12<=sum(p2_c1, p2_c0)]] & [~ [[[[82<=sum(p4_c1, p4_c0) | ~ [[8<=sum(p4_c1, p4_c0) & sum(p4_c1, p4_c0)<=32]]] | ~ [sum(p4_c1, p4_c0)<=69]] | sum(p5_c1, p5_c0)<=sum(p3_c1, p3_c0)]] | ~ [[71<=sum(p3_c1, p3_c0) | sum(p4_c1, p4_c0)<=sum(p3_c1, p3_c0)]]]] & ~ [sum(p2_c1, p2_c0)<=sum(p5_c1, p5_c0)]]]
normalized: E [true U [[[~ [[~ [[[sum(p0_c1, p0_c0)<=27 & 67<=sum(p3_c1, p3_c0)] | [sum(p1_c1, p1_c0)<=sum(p3_c1, p3_c0) & sum(p2_c1, p2_c0)<=sum(p1_c1, p1_c0)]]] | [[~ [28<=sum(p4_c1, p4_c0)] & sum(p3_c1, p3_c0)<=sum(p0_c1, p0_c0)] & 49<=sum(p4_c1, p4_c0)]]] & [[[[[[sum(p2_c1, p2_c0)<=sum(p0_c1, p0_c0) | sum(p3_c1, p3_c0)<=sum(p1_c1, p1_c0)] | sum(p2_c1, p2_c0)<=59] | sum(p2_c1, p2_c0)<=sum(p0_c1, p0_c0)] | sum(p0_c1, p0_c0)<=32] | [~ [[sum(p3_c1, p3_c0)<=sum(p1_c1, p1_c0) & sum(p1_c1, p1_c0)<=sum(p2_c1, p2_c0)]] | [[19<=sum(p2_c1, p2_c0) | 52<=sum(p4_c1, p4_c0)] & sum(p4_c1, p4_c0)<=68]]] | 12<=sum(p2_c1, p2_c0)]] & [~ [[[~ [sum(p4_c1, p4_c0)<=69] | [~ [[8<=sum(p4_c1, p4_c0) & sum(p4_c1, p4_c0)<=32]] | 82<=sum(p4_c1, p4_c0)]] | sum(p5_c1, p5_c0)<=sum(p3_c1, p3_c0)]] | ~ [[71<=sum(p3_c1, p3_c0) | sum(p4_c1, p4_c0)<=sum(p3_c1, p3_c0)]]]] & ~ [sum(p2_c1, p2_c0)<=sum(p5_c1, p5_c0)]]]
abstracting: (sum(p2_c1, p2_c0)<=sum(p5_c1, p5_c0))
states: 2,651 (3)
abstracting: (sum(p4_c1, p4_c0)<=sum(p3_c1, p3_c0))
states: 14,365 (4)
abstracting: (71<=sum(p3_c1, p3_c0))
states: 0
abstracting: (sum(p5_c1, p5_c0)<=sum(p3_c1, p3_c0))
states: 8,840 (3)
abstracting: (82<=sum(p4_c1, p4_c0))
states: 0
abstracting: (sum(p4_c1, p4_c0)<=32)
states: 39,780 (4)
abstracting: (8<=sum(p4_c1, p4_c0))
states: 0
abstracting: (sum(p4_c1, p4_c0)<=69)
states: 39,780 (4)
abstracting: (12<=sum(p2_c1, p2_c0))
states: 19,296 (4)
abstracting: (sum(p4_c1, p4_c0)<=68)
states: 39,780 (4)
abstracting: (52<=sum(p4_c1, p4_c0))
states: 0
abstracting: (19<=sum(p2_c1, p2_c0))
states: 3,744 (3)
abstracting: (sum(p1_c1, p1_c0)<=sum(p2_c1, p2_c0))
states: 21,888 (4)
abstracting: (sum(p3_c1, p3_c0)<=sum(p1_c1, p1_c0))
states: 39,285 (4)
abstracting: (sum(p0_c1, p0_c0)<=32)
states: 39,780 (4)
abstracting: (sum(p2_c1, p2_c0)<=sum(p0_c1, p0_c0))
states: 39,780 (4)
abstracting: (sum(p2_c1, p2_c0)<=59)
states: 39,780 (4)
abstracting: (sum(p3_c1, p3_c0)<=sum(p1_c1, p1_c0))
states: 39,285 (4)
abstracting: (sum(p2_c1, p2_c0)<=sum(p0_c1, p0_c0))
states: 39,780 (4)
abstracting: (49<=sum(p4_c1, p4_c0))
states: 0
abstracting: (sum(p3_c1, p3_c0)<=sum(p0_c1, p0_c0))
states: 39,780 (4)
abstracting: (28<=sum(p4_c1, p4_c0))
states: 0
abstracting: (sum(p2_c1, p2_c0)<=sum(p1_c1, p1_c0))
states: 20,484 (4)
abstracting: (sum(p1_c1, p1_c0)<=sum(p3_c1, p3_c0))
states: 1,269 (3)
abstracting: (67<=sum(p3_c1, p3_c0))
states: 0
abstracting: (sum(p0_c1, p0_c0)<=27)
states: 39,780 (4)
-> the formula is FALSE
FORMULA Murphy-COL-D1N010-ReachabilityCardinality-03 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.504sec
checking: AG [[[~ [[sum(p4_c1, p4_c0)<=sum(p4_c1, p4_c0) & ~ [sum(p1_c1, p1_c0)<=66]]] | [~ [[[~ [sum(p3_c1, p3_c0)<=55] & [98<=sum(p1_c1, p1_c0) & sum(p0_c1, p0_c0)<=99]] | ~ [[67<=sum(p1_c1, p1_c0) & sum(p1_c1, p1_c0)<=sum(p5_c1, p5_c0)]]]] & ~ [[~ [[~ [sum(p1_c1, p1_c0)<=76] | ~ [sum(p0_c1, p0_c0)<=sum(p2_c1, p2_c0)]]] | [sum(p2_c1, p2_c0)<=sum(p0_c1, p0_c0) | sum(p3_c1, p3_c0)<=93]]]]] & ~ [[[sum(p5_c1, p5_c0)<=91 | [~ [[43<=sum(p3_c1, p3_c0) & ~ [sum(p0_c1, p0_c0)<=sum(p3_c1, p3_c0)]]] & [~ [[sum(p5_c1, p5_c0)<=sum(p2_c1, p2_c0) & sum(p1_c1, p1_c0)<=73]] & sum(p2_c1, p2_c0)<=sum(p2_c1, p2_c0)]]] & [[[[[sum(p4_c1, p4_c0)<=sum(p4_c1, p4_c0) & 65<=sum(p4_c1, p4_c0)] | [sum(p5_c1, p5_c0)<=sum(p4_c1, p4_c0) & sum(p5_c1, p5_c0)<=sum(p1_c1, p1_c0)]] | [~ [11<=sum(p3_c1, p3_c0)] & [sum(p2_c1, p2_c0)<=sum(p0_c1, p0_c0) | sum(p1_c1, p1_c0)<=21]]] | sum(p5_c1, p5_c0)<=96] & 25<=sum(p5_c1, p5_c0)]]]]]
normalized: ~ [E [true U ~ [[~ [[[[[[[sum(p2_c1, p2_c0)<=sum(p0_c1, p0_c0) | sum(p1_c1, p1_c0)<=21] & ~ [11<=sum(p3_c1, p3_c0)]] | [[sum(p5_c1, p5_c0)<=sum(p4_c1, p4_c0) & sum(p5_c1, p5_c0)<=sum(p1_c1, p1_c0)] | [sum(p4_c1, p4_c0)<=sum(p4_c1, p4_c0) & 65<=sum(p4_c1, p4_c0)]]] | sum(p5_c1, p5_c0)<=96] & 25<=sum(p5_c1, p5_c0)] & [[[~ [[sum(p5_c1, p5_c0)<=sum(p2_c1, p2_c0) & sum(p1_c1, p1_c0)<=73]] & sum(p2_c1, p2_c0)<=sum(p2_c1, p2_c0)] & ~ [[~ [sum(p0_c1, p0_c0)<=sum(p3_c1, p3_c0)] & 43<=sum(p3_c1, p3_c0)]]] | sum(p5_c1, p5_c0)<=91]]] & [[~ [[[sum(p2_c1, p2_c0)<=sum(p0_c1, p0_c0) | sum(p3_c1, p3_c0)<=93] | ~ [[~ [sum(p0_c1, p0_c0)<=sum(p2_c1, p2_c0)] | ~ [sum(p1_c1, p1_c0)<=76]]]]] & ~ [[~ [[67<=sum(p1_c1, p1_c0) & sum(p1_c1, p1_c0)<=sum(p5_c1, p5_c0)]] | [[98<=sum(p1_c1, p1_c0) & sum(p0_c1, p0_c0)<=99] & ~ [sum(p3_c1, p3_c0)<=55]]]]] | ~ [[~ [sum(p1_c1, p1_c0)<=66] & sum(p4_c1, p4_c0)<=sum(p4_c1, p4_c0)]]]]]]]
abstracting: (sum(p4_c1, p4_c0)<=sum(p4_c1, p4_c0))
states: 39,780 (4)
abstracting: (sum(p1_c1, p1_c0)<=66)
states: 39,780 (4)
abstracting: (sum(p3_c1, p3_c0)<=55)
states: 39,780 (4)
abstracting: (sum(p0_c1, p0_c0)<=99)
states: 39,780 (4)
abstracting: (98<=sum(p1_c1, p1_c0))
states: 0
abstracting: (sum(p1_c1, p1_c0)<=sum(p5_c1, p5_c0))
states: 3,987 (3)
abstracting: (67<=sum(p1_c1, p1_c0))
states: 0
abstracting: (sum(p1_c1, p1_c0)<=76)
states: 39,780 (4)
abstracting: (sum(p0_c1, p0_c0)<=sum(p2_c1, p2_c0))
states: 39,780 (4)
abstracting: (sum(p3_c1, p3_c0)<=93)
states: 39,780 (4)
abstracting: (sum(p2_c1, p2_c0)<=sum(p0_c1, p0_c0))
states: 39,780 (4)
abstracting: (sum(p5_c1, p5_c0)<=91)
states: 39,780 (4)
abstracting: (43<=sum(p3_c1, p3_c0))
states: 0
abstracting: (sum(p0_c1, p0_c0)<=sum(p3_c1, p3_c0))
states: 243
abstracting: (sum(p2_c1, p2_c0)<=sum(p2_c1, p2_c0))
states: 39,780 (4)
abstracting: (sum(p1_c1, p1_c0)<=73)
states: 39,780 (4)
abstracting: (sum(p5_c1, p5_c0)<=sum(p2_c1, p2_c0))
states: 38,376 (4)
abstracting: (25<=sum(p5_c1, p5_c0))
states: 0
abstracting: (sum(p5_c1, p5_c0)<=96)
states: 39,780 (4)
abstracting: (65<=sum(p4_c1, p4_c0))
states: 0
abstracting: (sum(p4_c1, p4_c0)<=sum(p4_c1, p4_c0))
states: 39,780 (4)
abstracting: (sum(p5_c1, p5_c0)<=sum(p1_c1, p1_c0))
states: 37,191 (4)
abstracting: (sum(p5_c1, p5_c0)<=sum(p4_c1, p4_c0))
states: 16,575 (4)
abstracting: (11<=sum(p3_c1, p3_c0))
states: 0
abstracting: (sum(p1_c1, p1_c0)<=21)
states: 39,780 (4)
abstracting: (sum(p2_c1, p2_c0)<=sum(p0_c1, p0_c0))
states: 39,780 (4)
-> the formula is TRUE
FORMULA Murphy-COL-D1N010-ReachabilityCardinality-06 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.371sec
checking: AG [[[[~ [[[20<=sum(p5_c1, p5_c0) & [~ [[58<=sum(p2_c1, p2_c0) | 61<=sum(p2_c1, p2_c0)]] | [~ [sum(p1_c1, p1_c0)<=3] | 97<=sum(p5_c1, p5_c0)]]] & ~ [[sum(p2_c1, p2_c0)<=sum(p3_c1, p3_c0) | [[sum(p2_c1, p2_c0)<=76 & sum(p2_c1, p2_c0)<=18] | [sum(p1_c1, p1_c0)<=61 | 24<=sum(p1_c1, p1_c0)]]]]]] | 42<=sum(p0_c1, p0_c0)] | [[[[~ [sum(p2_c1, p2_c0)<=sum(p2_c1, p2_c0)] | [sum(p3_c1, p3_c0)<=30 | sum(p4_c1, p4_c0)<=72]] | [[[[75<=sum(p0_c1, p0_c0) & sum(p3_c1, p3_c0)<=81] | ~ [sum(p2_c1, p2_c0)<=20]] & sum(p1_c1, p1_c0)<=sum(p2_c1, p2_c0)] | sum(p4_c1, p4_c0)<=sum(p5_c1, p5_c0)]] | [~ [87<=sum(p3_c1, p3_c0)] | [~ [[~ [53<=sum(p4_c1, p4_c0)] & [sum(p1_c1, p1_c0)<=sum(p0_c1, p0_c0) & sum(p4_c1, p4_c0)<=sum(p0_c1, p0_c0)]]] | [[[52<=sum(p5_c1, p5_c0) | sum(p1_c1, p1_c0)<=52] | ~ [18<=sum(p2_c1, p2_c0)]] | sum(p3_c1, p3_c0)<=19]]]] & sum(p5_c1, p5_c0)<=13]] & ~ [[sum(p2_c1, p2_c0)<=sum(p5_c1, p5_c0) & [[~ [[sum(p1_c1, p1_c0)<=52 | sum(p3_c1, p3_c0)<=sum(p4_c1, p4_c0)]] & [sum(p0_c1, p0_c0)<=sum(p0_c1, p0_c0) | [sum(p4_c1, p4_c0)<=sum(p2_c1, p2_c0) | ~ [[sum(p1_c1, p1_c0)<=sum(p0_c1, p0_c0) | 2<=sum(p2_c1, p2_c0)]]]]] & sum(p3_c1, p3_c0)<=35]]]]]
normalized: ~ [E [true U ~ [[~ [[[[[[~ [[sum(p1_c1, p1_c0)<=sum(p0_c1, p0_c0) | 2<=sum(p2_c1, p2_c0)]] | sum(p4_c1, p4_c0)<=sum(p2_c1, p2_c0)] | sum(p0_c1, p0_c0)<=sum(p0_c1, p0_c0)] & ~ [[sum(p1_c1, p1_c0)<=52 | sum(p3_c1, p3_c0)<=sum(p4_c1, p4_c0)]]] & sum(p3_c1, p3_c0)<=35] & sum(p2_c1, p2_c0)<=sum(p5_c1, p5_c0)]] & [[[[[[[~ [18<=sum(p2_c1, p2_c0)] | [52<=sum(p5_c1, p5_c0) | sum(p1_c1, p1_c0)<=52]] | sum(p3_c1, p3_c0)<=19] | ~ [[[sum(p1_c1, p1_c0)<=sum(p0_c1, p0_c0) & sum(p4_c1, p4_c0)<=sum(p0_c1, p0_c0)] & ~ [53<=sum(p4_c1, p4_c0)]]]] | ~ [87<=sum(p3_c1, p3_c0)]] | [[[[~ [sum(p2_c1, p2_c0)<=20] | [75<=sum(p0_c1, p0_c0) & sum(p3_c1, p3_c0)<=81]] & sum(p1_c1, p1_c0)<=sum(p2_c1, p2_c0)] | sum(p4_c1, p4_c0)<=sum(p5_c1, p5_c0)] | [[sum(p3_c1, p3_c0)<=30 | sum(p4_c1, p4_c0)<=72] | ~ [sum(p2_c1, p2_c0)<=sum(p2_c1, p2_c0)]]]] & sum(p5_c1, p5_c0)<=13] | [~ [[~ [[[[sum(p1_c1, p1_c0)<=61 | 24<=sum(p1_c1, p1_c0)] | [sum(p2_c1, p2_c0)<=76 & sum(p2_c1, p2_c0)<=18]] | sum(p2_c1, p2_c0)<=sum(p3_c1, p3_c0)]] & [[[~ [sum(p1_c1, p1_c0)<=3] | 97<=sum(p5_c1, p5_c0)] | ~ [[58<=sum(p2_c1, p2_c0) | 61<=sum(p2_c1, p2_c0)]]] & 20<=sum(p5_c1, p5_c0)]]] | 42<=sum(p0_c1, p0_c0)]]]]]]
abstracting: (42<=sum(p0_c1, p0_c0))
states: 0
abstracting: (20<=sum(p5_c1, p5_c0))
states: 0
abstracting: (61<=sum(p2_c1, p2_c0))
states: 0
abstracting: (58<=sum(p2_c1, p2_c0))
states: 0
abstracting: (97<=sum(p5_c1, p5_c0))
states: 0
abstracting: (sum(p1_c1, p1_c0)<=3)
states: 3,744 (3)
abstracting: (sum(p2_c1, p2_c0)<=sum(p3_c1, p3_c0))
states: 243
abstracting: (sum(p2_c1, p2_c0)<=18)
states: 36,036 (4)
abstracting: (sum(p2_c1, p2_c0)<=76)
states: 39,780 (4)
abstracting: (24<=sum(p1_c1, p1_c0))
states: 0
abstracting: (sum(p1_c1, p1_c0)<=61)
states: 39,780 (4)
abstracting: (sum(p5_c1, p5_c0)<=13)
states: 39,780 (4)
abstracting: (sum(p2_c1, p2_c0)<=sum(p2_c1, p2_c0))
states: 39,780 (4)
abstracting: (sum(p4_c1, p4_c0)<=72)
states: 39,780 (4)
abstracting: (sum(p3_c1, p3_c0)<=30)
states: 39,780 (4)
abstracting: (sum(p4_c1, p4_c0)<=sum(p5_c1, p5_c0))
states: 28,730 (4)
abstracting: (sum(p1_c1, p1_c0)<=sum(p2_c1, p2_c0))
states: 21,888 (4)
abstracting: (sum(p3_c1, p3_c0)<=81)
states: 39,780 (4)
abstracting: (75<=sum(p0_c1, p0_c0))
states: 0
abstracting: (sum(p2_c1, p2_c0)<=20)
states: 38,592 (4)
abstracting: (87<=sum(p3_c1, p3_c0))
states: 0
abstracting: (53<=sum(p4_c1, p4_c0))
states: 0
abstracting: (sum(p4_c1, p4_c0)<=sum(p0_c1, p0_c0))
states: 39,304 (4)
abstracting: (sum(p1_c1, p1_c0)<=sum(p0_c1, p0_c0))
states: 21,888 (4)
abstracting: (sum(p3_c1, p3_c0)<=19)
states: 39,780 (4)
abstracting: (sum(p1_c1, p1_c0)<=52)
states: 39,780 (4)
abstracting: (52<=sum(p5_c1, p5_c0))
states: 0
abstracting: (18<=sum(p2_c1, p2_c0))
states: 5,436 (3)
abstracting: (sum(p2_c1, p2_c0)<=sum(p5_c1, p5_c0))
states: 2,651 (3)
abstracting: (sum(p3_c1, p3_c0)<=35)
states: 39,780 (4)
abstracting: (sum(p3_c1, p3_c0)<=sum(p4_c1, p4_c0))
states: 34,255 (4)
abstracting: (sum(p1_c1, p1_c0)<=52)
states: 39,780 (4)
abstracting: (sum(p0_c1, p0_c0)<=sum(p0_c1, p0_c0))
states: 39,780 (4)
abstracting: (sum(p4_c1, p4_c0)<=sum(p2_c1, p2_c0))
states: 39,304 (4)
abstracting: (2<=sum(p2_c1, p2_c0))
states: 39,780 (4)
abstracting: (sum(p1_c1, p1_c0)<=sum(p0_c1, p0_c0))
states: 21,888 (4)
-> the formula is TRUE
FORMULA Murphy-COL-D1N010-ReachabilityCardinality-14 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.631sec
totally nodes used: 5723 (5.7e+03)
number of garbage collections: 0
fire ops cache: hits/miss/sum: 20987 10938 31925
used/not used/entry size/cache size: 13609 67095255 16 1024MB
basic ops cache: hits/miss/sum: 18432 22103 40535
used/not used/entry size/cache size: 29175 16748041 12 192MB
unary ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 8 128MB
abstract ops cache: hits/miss/sum: 0 67057 67057
used/not used/entry size/cache size: 1 16777215 12 192MB
state nr cache: hits/miss/sum: 4278 1657 5935
used/not used/entry size/cache size: 1657 8386951 32 256MB
max state cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 8388608 32 256MB
uniqueHash elements/entry size/size: 67108864 4 256MB
0 67103459
1 5294
2 54
3 35
4 9
5 6
6 0
7 0
8 0
9 0
>= 10 7
Total processing time: 0m 7.538sec
BK_STOP 1679892258166
--------------------
content from stderr:
check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.000sec
iterations count:277 (19), effective:98 (7)
initing FirstDep: 0m 0.000sec
iterations count:14 (1), effective:0 (0)
iterations count:14 (1), effective:0 (0)
iterations count:193 (13), effective:37 (2)
iterations count:14 (1), effective:0 (0)
iterations count:14 (1), effective:0 (0)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="Murphy-COL-D1N010"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marcie"
echo " Input is Murphy-COL-D1N010, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r513-tall-167987240900286"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/Murphy-COL-D1N010.tgz
mv Murphy-COL-D1N010 execution
cd execution
if [ "ReachabilityCardinality" = "ReachabilityDeadlock" ] || [ "ReachabilityCardinality" = "UpperBounds" ] || [ "ReachabilityCardinality" = "QuasiLiveness" ] || [ "ReachabilityCardinality" = "StableMarking" ] || [ "ReachabilityCardinality" = "Liveness" ] || [ "ReachabilityCardinality" = "OneSafe" ] || [ "ReachabilityCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "ReachabilityCardinality" = "ReachabilityDeadlock" ] || [ "ReachabilityCardinality" = "QuasiLiveness" ] || [ "ReachabilityCardinality" = "StableMarking" ] || [ "ReachabilityCardinality" = "Liveness" ] || [ "ReachabilityCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME ReachabilityCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;