About the Execution of Marcie for Murphy-COL-D1N010
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
5472.340 | 6823.00 | 6901.00 | 100.00 | FFTFTFTFTFTFTTTT | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fkordon/mcc2023-input.r513-tall-167987240800281.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2023-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
..................
=====================================================================
Generated by BenchKit 2-5348
Executing tool marcie
Input is Murphy-COL-D1N010, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r513-tall-167987240800281
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 380K
-rw-r--r-- 1 mcc users 5.5K Mar 23 15:21 CTLCardinality.txt
-rw-r--r-- 1 mcc users 55K Mar 23 15:21 CTLCardinality.xml
-rw-r--r-- 1 mcc users 5.1K Mar 23 15:20 CTLFireability.txt
-rw-r--r-- 1 mcc users 48K Mar 23 15:20 CTLFireability.xml
-rw-r--r-- 1 mcc users 3.3K Mar 23 07:07 LTLCardinality.txt
-rw-r--r-- 1 mcc users 22K Mar 23 07:07 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.1K Mar 23 07:07 LTLFireability.txt
-rw-r--r-- 1 mcc users 19K Mar 23 07:07 LTLFireability.xml
-rw-r--r-- 1 mcc users 1 Mar 26 22:42 NewModel
-rw-r--r-- 1 mcc users 7.2K Mar 23 15:23 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 69K Mar 23 15:23 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 7.3K Mar 23 15:23 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 68K Mar 23 15:23 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.6K Mar 23 07:07 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.6K Mar 23 07:07 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Mar 26 22:42 equiv_pt
-rw-r--r-- 1 mcc users 7 Mar 26 22:42 instance
-rw-r--r-- 1 mcc users 5 Mar 26 22:42 iscolored
-rw-r--r-- 1 mcc users 28K Mar 26 22:42 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME Murphy-COL-D1N010-CTLCardinality-00
FORMULA_NAME Murphy-COL-D1N010-CTLCardinality-01
FORMULA_NAME Murphy-COL-D1N010-CTLCardinality-02
FORMULA_NAME Murphy-COL-D1N010-CTLCardinality-03
FORMULA_NAME Murphy-COL-D1N010-CTLCardinality-04
FORMULA_NAME Murphy-COL-D1N010-CTLCardinality-05
FORMULA_NAME Murphy-COL-D1N010-CTLCardinality-06
FORMULA_NAME Murphy-COL-D1N010-CTLCardinality-07
FORMULA_NAME Murphy-COL-D1N010-CTLCardinality-08
FORMULA_NAME Murphy-COL-D1N010-CTLCardinality-09
FORMULA_NAME Murphy-COL-D1N010-CTLCardinality-10
FORMULA_NAME Murphy-COL-D1N010-CTLCardinality-11
FORMULA_NAME Murphy-COL-D1N010-CTLCardinality-12
FORMULA_NAME Murphy-COL-D1N010-CTLCardinality-13
FORMULA_NAME Murphy-COL-D1N010-CTLCardinality-14
FORMULA_NAME Murphy-COL-D1N010-CTLCardinality-15
=== Now, execution of the tool begins
BK_START 1679892178742
bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marcie
BK_EXAMINATION=CTLCardinality
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=Murphy-COL-D1N010
Not applying reductions.
Model is COL
CTLCardinality COL
timeout --kill-after=10s --signal=SIGINT 1m for testing only
Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: /home/mcc/BenchKit/bin//../marcie/bin/marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --memory=6 --mcc-mode
parse successfull
net created successfully
Unfolding complete |P|=12|T|=14|A|=54
Time for unfolding: 0m 0.419sec
Net: PGCD_COL_D1_N10
(NrP: 12 NrTr: 14 NrArc: 54)
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec
net check time: 0m 0.000sec
init dd package: 0m 2.888sec
RS generation: 0m 0.015sec
-> reachability set: #nodes 237 (2.4e+02) #states 39,780 (4)
starting MCC model checker
--------------------------
checking: EX [99<=sum(p5_c1, p5_c0)]
normalized: EX [99<=sum(p5_c1, p5_c0)]
abstracting: (99<=sum(p5_c1, p5_c0))
states: 0
.-> the formula is FALSE
FORMULA Murphy-COL-D1N010-CTLCardinality-00 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.064sec
checking: ~ [AG [~ [EG [~ [74<=sum(p4_c1, p4_c0)]]]]]
normalized: E [true U EG [~ [74<=sum(p4_c1, p4_c0)]]]
abstracting: (74<=sum(p4_c1, p4_c0))
states: 0
EG iterations: 0
-> the formula is TRUE
FORMULA Murphy-COL-D1N010-CTLCardinality-10 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.023sec
checking: EG [A [~ [19<=sum(p3_c1, p3_c0)] U AX [EF [~ [46<=sum(p0_c1, p0_c0)]]]]]
normalized: EG [[~ [EG [EX [~ [E [true U ~ [46<=sum(p0_c1, p0_c0)]]]]]] & ~ [E [EX [~ [E [true U ~ [46<=sum(p0_c1, p0_c0)]]]] U [EX [~ [E [true U ~ [46<=sum(p0_c1, p0_c0)]]]] & 19<=sum(p3_c1, p3_c0)]]]]]
abstracting: (19<=sum(p3_c1, p3_c0))
states: 0
abstracting: (46<=sum(p0_c1, p0_c0))
states: 0
.abstracting: (46<=sum(p0_c1, p0_c0))
states: 0
.abstracting: (46<=sum(p0_c1, p0_c0))
states: 0
..
EG iterations: 1
EG iterations: 0
-> the formula is TRUE
FORMULA Murphy-COL-D1N010-CTLCardinality-13 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.046sec
checking: ~ [AG [EX [EG [~ [EF [sum(p4_c1, p4_c0)<=sum(p4_c1, p4_c0)]]]]]]
normalized: E [true U ~ [EX [EG [~ [E [true U sum(p4_c1, p4_c0)<=sum(p4_c1, p4_c0)]]]]]]
abstracting: (sum(p4_c1, p4_c0)<=sum(p4_c1, p4_c0))
states: 39,780 (4)
.
EG iterations: 1
.-> the formula is TRUE
FORMULA Murphy-COL-D1N010-CTLCardinality-14 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.000sec
checking: EG [[~ [E [[AX [sum(p3_c1, p3_c0)<=89] | EX [9<=sum(p1_c1, p1_c0)]] U EF [AX [12<=sum(p1_c1, p1_c0)]]]] | AX [EG [sum(p0_c1, p0_c0)<=41]]]]
normalized: EG [[~ [EX [~ [EG [sum(p0_c1, p0_c0)<=41]]]] | ~ [E [[EX [9<=sum(p1_c1, p1_c0)] | ~ [EX [~ [sum(p3_c1, p3_c0)<=89]]]] U E [true U ~ [EX [~ [12<=sum(p1_c1, p1_c0)]]]]]]]]
abstracting: (12<=sum(p1_c1, p1_c0))
states: 17,892 (4)
.abstracting: (sum(p3_c1, p3_c0)<=89)
states: 39,780 (4)
.abstracting: (9<=sum(p1_c1, p1_c0))
states: 25,560 (4)
.abstracting: (sum(p0_c1, p0_c0)<=41)
states: 39,780 (4)
EG iterations: 0
.
EG iterations: 0
-> the formula is TRUE
FORMULA Murphy-COL-D1N010-CTLCardinality-02 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.097sec
checking: AX [~ [[A [sum(p5_c1, p5_c0)<=sum(p1_c1, p1_c0) U sum(p3_c1, p3_c0)<=16] | AX [sum(p2_c1, p2_c0)<=5]]]]
normalized: ~ [EX [[~ [EX [~ [sum(p2_c1, p2_c0)<=5]]] | [~ [EG [~ [sum(p3_c1, p3_c0)<=16]]] & ~ [E [~ [sum(p3_c1, p3_c0)<=16] U [~ [sum(p5_c1, p5_c0)<=sum(p1_c1, p1_c0)] & ~ [sum(p3_c1, p3_c0)<=16]]]]]]]]
abstracting: (sum(p3_c1, p3_c0)<=16)
states: 39,780 (4)
abstracting: (sum(p5_c1, p5_c0)<=sum(p1_c1, p1_c0))
states: 37,191 (4)
abstracting: (sum(p3_c1, p3_c0)<=16)
states: 39,780 (4)
abstracting: (sum(p3_c1, p3_c0)<=16)
states: 39,780 (4)
.
EG iterations: 1
abstracting: (sum(p2_c1, p2_c0)<=5)
states: 5,976 (3)
..-> the formula is FALSE
FORMULA Murphy-COL-D1N010-CTLCardinality-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.070sec
checking: EX [~ [EF [EF [[EG [sum(p5_c1, p5_c0)<=sum(p4_c1, p4_c0)] & A [sum(p3_c1, p3_c0)<=sum(p5_c1, p5_c0) U sum(p5_c1, p5_c0)<=sum(p2_c1, p2_c0)]]]]]]
normalized: EX [~ [E [true U E [true U [[~ [EG [~ [sum(p5_c1, p5_c0)<=sum(p2_c1, p2_c0)]]] & ~ [E [~ [sum(p5_c1, p5_c0)<=sum(p2_c1, p2_c0)] U [~ [sum(p3_c1, p3_c0)<=sum(p5_c1, p5_c0)] & ~ [sum(p5_c1, p5_c0)<=sum(p2_c1, p2_c0)]]]]] & EG [sum(p5_c1, p5_c0)<=sum(p4_c1, p4_c0)]]]]]]
abstracting: (sum(p5_c1, p5_c0)<=sum(p4_c1, p4_c0))
states: 16,575 (4)
..
EG iterations: 2
abstracting: (sum(p5_c1, p5_c0)<=sum(p2_c1, p2_c0))
states: 38,376 (4)
abstracting: (sum(p3_c1, p3_c0)<=sum(p5_c1, p5_c0))
states: 36,465 (4)
abstracting: (sum(p5_c1, p5_c0)<=sum(p2_c1, p2_c0))
states: 38,376 (4)
abstracting: (sum(p5_c1, p5_c0)<=sum(p2_c1, p2_c0))
states: 38,376 (4)
..
EG iterations: 2
.-> the formula is FALSE
FORMULA Murphy-COL-D1N010-CTLCardinality-07 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.072sec
checking: AG [AX [AX [[[[52<=sum(p1_c1, p1_c0) & sum(p5_c1, p5_c0)<=52] & ~ [60<=sum(p4_c1, p4_c0)]] & [sum(p2_c1, p2_c0)<=sum(p2_c1, p2_c0) & sum(p5_c1, p5_c0)<=96]]]]]
normalized: ~ [E [true U EX [EX [~ [[[sum(p2_c1, p2_c0)<=sum(p2_c1, p2_c0) & sum(p5_c1, p5_c0)<=96] & [~ [60<=sum(p4_c1, p4_c0)] & [52<=sum(p1_c1, p1_c0) & sum(p5_c1, p5_c0)<=52]]]]]]]]
abstracting: (sum(p5_c1, p5_c0)<=52)
states: 39,780 (4)
abstracting: (52<=sum(p1_c1, p1_c0))
states: 0
abstracting: (60<=sum(p4_c1, p4_c0))
states: 0
abstracting: (sum(p5_c1, p5_c0)<=96)
states: 39,780 (4)
abstracting: (sum(p2_c1, p2_c0)<=sum(p2_c1, p2_c0))
states: 39,780 (4)
..-> the formula is FALSE
FORMULA Murphy-COL-D1N010-CTLCardinality-09 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.088sec
checking: ~ [EX [[[EG [71<=sum(p5_c1, p5_c0)] | ~ [[A [sum(p1_c1, p1_c0)<=96 U 54<=sum(p5_c1, p5_c0)] & AF [sum(p5_c1, p5_c0)<=74]]]] | ~ [[[sum(p1_c1, p1_c0)<=22 | ~ [sum(p4_c1, p4_c0)<=66]] & AF [EX [81<=sum(p1_c1, p1_c0)]]]]]]]
normalized: ~ [EX [[~ [[~ [EG [~ [EX [81<=sum(p1_c1, p1_c0)]]]] & [~ [sum(p4_c1, p4_c0)<=66] | sum(p1_c1, p1_c0)<=22]]] | [~ [[~ [EG [~ [sum(p5_c1, p5_c0)<=74]]] & [~ [EG [~ [54<=sum(p5_c1, p5_c0)]]] & ~ [E [~ [54<=sum(p5_c1, p5_c0)] U [~ [sum(p1_c1, p1_c0)<=96] & ~ [54<=sum(p5_c1, p5_c0)]]]]]]] | EG [71<=sum(p5_c1, p5_c0)]]]]]
abstracting: (71<=sum(p5_c1, p5_c0))
states: 0
.
EG iterations: 1
abstracting: (54<=sum(p5_c1, p5_c0))
states: 0
abstracting: (sum(p1_c1, p1_c0)<=96)
states: 39,780 (4)
abstracting: (54<=sum(p5_c1, p5_c0))
states: 0
abstracting: (54<=sum(p5_c1, p5_c0))
states: 0
EG iterations: 0
abstracting: (sum(p5_c1, p5_c0)<=74)
states: 39,780 (4)
.
EG iterations: 1
abstracting: (sum(p1_c1, p1_c0)<=22)
states: 39,780 (4)
abstracting: (sum(p4_c1, p4_c0)<=66)
states: 39,780 (4)
abstracting: (81<=sum(p1_c1, p1_c0))
states: 0
.
EG iterations: 0
.-> the formula is FALSE
FORMULA Murphy-COL-D1N010-CTLCardinality-03 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.156sec
checking: EG [[EX [sum(p3_c1, p3_c0)<=10] | [[sum(p5_c1, p5_c0)<=sum(p4_c1, p4_c0) & ~ [E [EG [sum(p0_c1, p0_c0)<=sum(p4_c1, p4_c0)] U EF [sum(p5_c1, p5_c0)<=100]]]] | sum(p3_c1, p3_c0)<=89]]]
normalized: EG [[[[~ [E [EG [sum(p0_c1, p0_c0)<=sum(p4_c1, p4_c0)] U E [true U sum(p5_c1, p5_c0)<=100]]] & sum(p5_c1, p5_c0)<=sum(p4_c1, p4_c0)] | sum(p3_c1, p3_c0)<=89] | EX [sum(p3_c1, p3_c0)<=10]]]
abstracting: (sum(p3_c1, p3_c0)<=10)
states: 39,780 (4)
.abstracting: (sum(p3_c1, p3_c0)<=89)
states: 39,780 (4)
abstracting: (sum(p5_c1, p5_c0)<=sum(p4_c1, p4_c0))
states: 16,575 (4)
abstracting: (sum(p5_c1, p5_c0)<=100)
states: 39,780 (4)
abstracting: (sum(p0_c1, p0_c0)<=sum(p4_c1, p4_c0))
states: 1,292 (3)
.
EG iterations: 1
EG iterations: 0
-> the formula is TRUE
FORMULA Murphy-COL-D1N010-CTLCardinality-15 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.081sec
checking: E [EF [[[EG [47<=sum(p4_c1, p4_c0)] & ~ [A [42<=sum(p4_c1, p4_c0) U sum(p4_c1, p4_c0)<=sum(p0_c1, p0_c0)]]] & [[EG [26<=sum(p1_c1, p1_c0)] | ~ [42<=sum(p3_c1, p3_c0)]] | AG [~ [sum(p0_c1, p0_c0)<=15]]]]] U AG [sum(p0_c1, p0_c0)<=sum(p0_c1, p0_c0)]]
normalized: E [E [true U [[~ [E [true U sum(p0_c1, p0_c0)<=15]] | [~ [42<=sum(p3_c1, p3_c0)] | EG [26<=sum(p1_c1, p1_c0)]]] & [~ [[~ [EG [~ [sum(p4_c1, p4_c0)<=sum(p0_c1, p0_c0)]]] & ~ [E [~ [sum(p4_c1, p4_c0)<=sum(p0_c1, p0_c0)] U [~ [42<=sum(p4_c1, p4_c0)] & ~ [sum(p4_c1, p4_c0)<=sum(p0_c1, p0_c0)]]]]]] & EG [47<=sum(p4_c1, p4_c0)]]]] U ~ [E [true U ~ [sum(p0_c1, p0_c0)<=sum(p0_c1, p0_c0)]]]]
abstracting: (sum(p0_c1, p0_c0)<=sum(p0_c1, p0_c0))
states: 39,780 (4)
abstracting: (47<=sum(p4_c1, p4_c0))
states: 0
.
EG iterations: 1
abstracting: (sum(p4_c1, p4_c0)<=sum(p0_c1, p0_c0))
states: 39,304 (4)
abstracting: (42<=sum(p4_c1, p4_c0))
states: 0
abstracting: (sum(p4_c1, p4_c0)<=sum(p0_c1, p0_c0))
states: 39,304 (4)
abstracting: (sum(p4_c1, p4_c0)<=sum(p0_c1, p0_c0))
states: 39,304 (4)
.
EG iterations: 1
abstracting: (26<=sum(p1_c1, p1_c0))
states: 0
.
EG iterations: 1
abstracting: (42<=sum(p3_c1, p3_c0))
states: 0
abstracting: (sum(p0_c1, p0_c0)<=15)
states: 30,276 (4)
-> the formula is TRUE
FORMULA Murphy-COL-D1N010-CTLCardinality-08 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.135sec
checking: EF [AF [[[AX [AF [55<=sum(p0_c1, p0_c0)]] & sum(p3_c1, p3_c0)<=sum(p2_c1, p2_c0)] | [[[[sum(p3_c1, p3_c0)<=33 | sum(p0_c1, p0_c0)<=sum(p4_c1, p4_c0)] | 94<=sum(p2_c1, p2_c0)] | 7<=sum(p3_c1, p3_c0)] | EG [[sum(p2_c1, p2_c0)<=21 | sum(p2_c1, p2_c0)<=19]]]]]]
normalized: E [true U ~ [EG [~ [[[EG [[sum(p2_c1, p2_c0)<=21 | sum(p2_c1, p2_c0)<=19]] | [[[sum(p3_c1, p3_c0)<=33 | sum(p0_c1, p0_c0)<=sum(p4_c1, p4_c0)] | 94<=sum(p2_c1, p2_c0)] | 7<=sum(p3_c1, p3_c0)]] | [~ [EX [EG [~ [55<=sum(p0_c1, p0_c0)]]]] & sum(p3_c1, p3_c0)<=sum(p2_c1, p2_c0)]]]]]]
abstracting: (sum(p3_c1, p3_c0)<=sum(p2_c1, p2_c0))
states: 39,780 (4)
abstracting: (55<=sum(p0_c1, p0_c0))
states: 0
EG iterations: 0
.abstracting: (7<=sum(p3_c1, p3_c0))
states: 0
abstracting: (94<=sum(p2_c1, p2_c0))
states: 0
abstracting: (sum(p0_c1, p0_c0)<=sum(p4_c1, p4_c0))
states: 1,292 (3)
abstracting: (sum(p3_c1, p3_c0)<=33)
states: 39,780 (4)
abstracting: (sum(p2_c1, p2_c0)<=19)
states: 37,476 (4)
abstracting: (sum(p2_c1, p2_c0)<=21)
states: 39,384 (4)
.
EG iterations: 1
.
EG iterations: 1
-> the formula is TRUE
FORMULA Murphy-COL-D1N010-CTLCardinality-04 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.155sec
checking: [AX [~ [[[EX [~ [71<=sum(p0_c1, p0_c0)]] | [97<=sum(p5_c1, p5_c0) | AG [1<=sum(p0_c1, p0_c0)]]] & ~ [14<=sum(p5_c1, p5_c0)]]]] | AF [AF [~ [[~ [sum(p1_c1, p1_c0)<=71] | [[sum(p0_c1, p0_c0)<=sum(p0_c1, p0_c0) & sum(p3_c1, p3_c0)<=98] | AX [sum(p0_c1, p0_c0)<=sum(p2_c1, p2_c0)]]]]]]]
normalized: [~ [EX [[~ [14<=sum(p5_c1, p5_c0)] & [[~ [E [true U ~ [1<=sum(p0_c1, p0_c0)]]] | 97<=sum(p5_c1, p5_c0)] | EX [~ [71<=sum(p0_c1, p0_c0)]]]]]] | ~ [EG [EG [[[~ [EX [~ [sum(p0_c1, p0_c0)<=sum(p2_c1, p2_c0)]]] | [sum(p0_c1, p0_c0)<=sum(p0_c1, p0_c0) & sum(p3_c1, p3_c0)<=98]] | ~ [sum(p1_c1, p1_c0)<=71]]]]]]
abstracting: (sum(p1_c1, p1_c0)<=71)
states: 39,780 (4)
abstracting: (sum(p3_c1, p3_c0)<=98)
states: 39,780 (4)
abstracting: (sum(p0_c1, p0_c0)<=sum(p0_c1, p0_c0))
states: 39,780 (4)
abstracting: (sum(p0_c1, p0_c0)<=sum(p2_c1, p2_c0))
states: 39,780 (4)
.
EG iterations: 0
EG iterations: 0
abstracting: (71<=sum(p0_c1, p0_c0))
states: 0
.abstracting: (97<=sum(p5_c1, p5_c0))
states: 0
abstracting: (1<=sum(p0_c1, p0_c0))
states: 39,780 (4)
abstracting: (14<=sum(p5_c1, p5_c0))
states: 0
.-> the formula is FALSE
FORMULA Murphy-COL-D1N010-CTLCardinality-05 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.206sec
checking: AX [[[sum(p5_c1, p5_c0)<=79 | [[EF [[91<=sum(p5_c1, p5_c0) & 24<=sum(p2_c1, p2_c0)]] | EF [[51<=sum(p1_c1, p1_c0) & sum(p3_c1, p3_c0)<=sum(p3_c1, p3_c0)]]] & [sum(p2_c1, p2_c0)<=sum(p3_c1, p3_c0) | E [[sum(p5_c1, p5_c0)<=41 | sum(p2_c1, p2_c0)<=sum(p5_c1, p5_c0)] U ~ [52<=sum(p0_c1, p0_c0)]]]]] | sum(p2_c1, p2_c0)<=96]]
normalized: ~ [EX [~ [[[[[E [[sum(p5_c1, p5_c0)<=41 | sum(p2_c1, p2_c0)<=sum(p5_c1, p5_c0)] U ~ [52<=sum(p0_c1, p0_c0)]] | sum(p2_c1, p2_c0)<=sum(p3_c1, p3_c0)] & [E [true U [51<=sum(p1_c1, p1_c0) & sum(p3_c1, p3_c0)<=sum(p3_c1, p3_c0)]] | E [true U [91<=sum(p5_c1, p5_c0) & 24<=sum(p2_c1, p2_c0)]]]] | sum(p5_c1, p5_c0)<=79] | sum(p2_c1, p2_c0)<=96]]]]
abstracting: (sum(p2_c1, p2_c0)<=96)
states: 39,780 (4)
abstracting: (sum(p5_c1, p5_c0)<=79)
states: 39,780 (4)
abstracting: (24<=sum(p2_c1, p2_c0))
states: 0
abstracting: (91<=sum(p5_c1, p5_c0))
states: 0
abstracting: (sum(p3_c1, p3_c0)<=sum(p3_c1, p3_c0))
states: 39,780 (4)
abstracting: (51<=sum(p1_c1, p1_c0))
states: 0
abstracting: (sum(p2_c1, p2_c0)<=sum(p3_c1, p3_c0))
states: 243
abstracting: (52<=sum(p0_c1, p0_c0))
states: 0
abstracting: (sum(p2_c1, p2_c0)<=sum(p5_c1, p5_c0))
states: 2,651 (3)
abstracting: (sum(p5_c1, p5_c0)<=41)
states: 39,780 (4)
.-> the formula is TRUE
FORMULA Murphy-COL-D1N010-CTLCardinality-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.200sec
checking: [EX [[[sum(p3_c1, p3_c0)<=sum(p2_c1, p2_c0) | sum(p5_c1, p5_c0)<=sum(p3_c1, p3_c0)] & ~ [[EF [[sum(p1_c1, p1_c0)<=sum(p4_c1, p4_c0) | 38<=sum(p3_c1, p3_c0)]] | sum(p2_c1, p2_c0)<=60]]]] | [A [EG [EF [AX [sum(p3_c1, p3_c0)<=sum(p5_c1, p5_c0)]]] U ~ [E [sum(p5_c1, p5_c0)<=sum(p3_c1, p3_c0) U AF [sum(p1_c1, p1_c0)<=50]]]] & [E [sum(p5_c1, p5_c0)<=sum(p3_c1, p3_c0) U ~ [EF [EG [sum(p1_c1, p1_c0)<=sum(p2_c1, p2_c0)]]]] & EF [EX [96<=sum(p3_c1, p3_c0)]]]]]
normalized: [[[E [true U EX [96<=sum(p3_c1, p3_c0)]] & E [sum(p5_c1, p5_c0)<=sum(p3_c1, p3_c0) U ~ [E [true U EG [sum(p1_c1, p1_c0)<=sum(p2_c1, p2_c0)]]]]] & [~ [EG [E [sum(p5_c1, p5_c0)<=sum(p3_c1, p3_c0) U ~ [EG [~ [sum(p1_c1, p1_c0)<=50]]]]]] & ~ [E [E [sum(p5_c1, p5_c0)<=sum(p3_c1, p3_c0) U ~ [EG [~ [sum(p1_c1, p1_c0)<=50]]]] U [~ [EG [E [true U ~ [EX [~ [sum(p3_c1, p3_c0)<=sum(p5_c1, p5_c0)]]]]]] & E [sum(p5_c1, p5_c0)<=sum(p3_c1, p3_c0) U ~ [EG [~ [sum(p1_c1, p1_c0)<=50]]]]]]]]] | EX [[~ [[E [true U [sum(p1_c1, p1_c0)<=sum(p4_c1, p4_c0) | 38<=sum(p3_c1, p3_c0)]] | sum(p2_c1, p2_c0)<=60]] & [sum(p3_c1, p3_c0)<=sum(p2_c1, p2_c0) | sum(p5_c1, p5_c0)<=sum(p3_c1, p3_c0)]]]]
abstracting: (sum(p5_c1, p5_c0)<=sum(p3_c1, p3_c0))
states: 8,840 (3)
abstracting: (sum(p3_c1, p3_c0)<=sum(p2_c1, p2_c0))
states: 39,780 (4)
abstracting: (sum(p2_c1, p2_c0)<=60)
states: 39,780 (4)
abstracting: (38<=sum(p3_c1, p3_c0))
states: 0
abstracting: (sum(p1_c1, p1_c0)<=sum(p4_c1, p4_c0))
states: 2,512 (3)
.abstracting: (sum(p1_c1, p1_c0)<=50)
states: 39,780 (4)
.
EG iterations: 1
abstracting: (sum(p5_c1, p5_c0)<=sum(p3_c1, p3_c0))
states: 8,840 (3)
abstracting: (sum(p3_c1, p3_c0)<=sum(p5_c1, p5_c0))
states: 36,465 (4)
.
EG iterations: 0
abstracting: (sum(p1_c1, p1_c0)<=50)
states: 39,780 (4)
.
EG iterations: 1
abstracting: (sum(p5_c1, p5_c0)<=sum(p3_c1, p3_c0))
states: 8,840 (3)
abstracting: (sum(p1_c1, p1_c0)<=50)
states: 39,780 (4)
.
EG iterations: 1
abstracting: (sum(p5_c1, p5_c0)<=sum(p3_c1, p3_c0))
states: 8,840 (3)
EG iterations: 0
abstracting: (sum(p1_c1, p1_c0)<=sum(p2_c1, p2_c0))
states: 21,888 (4)
.
EG iterations: 1
abstracting: (sum(p5_c1, p5_c0)<=sum(p3_c1, p3_c0))
states: 8,840 (3)
abstracting: (96<=sum(p3_c1, p3_c0))
states: 0
.-> the formula is FALSE
FORMULA Murphy-COL-D1N010-CTLCardinality-01 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.214sec
checking: A [[AG [sum(p4_c1, p4_c0)<=sum(p5_c1, p5_c0)] | [AX [[A [29<=sum(p0_c1, p0_c0) U sum(p3_c1, p3_c0)<=sum(p4_c1, p4_c0)] | [[sum(p0_c1, p0_c0)<=sum(p3_c1, p3_c0) | sum(p0_c1, p0_c0)<=sum(p2_c1, p2_c0)] & ~ [sum(p2_c1, p2_c0)<=sum(p1_c1, p1_c0)]]]] & [84<=sum(p2_c1, p2_c0) | [~ [sum(p3_c1, p3_c0)<=sum(p0_c1, p0_c0)] & [EX [98<=sum(p0_c1, p0_c0)] | ~ [sum(p4_c1, p4_c0)<=sum(p0_c1, p0_c0)]]]]]] U sum(p4_c1, p4_c0)<=97]
normalized: [~ [EG [~ [sum(p4_c1, p4_c0)<=97]]] & ~ [E [~ [sum(p4_c1, p4_c0)<=97] U [~ [[[[[[~ [sum(p4_c1, p4_c0)<=sum(p0_c1, p0_c0)] | EX [98<=sum(p0_c1, p0_c0)]] & ~ [sum(p3_c1, p3_c0)<=sum(p0_c1, p0_c0)]] | 84<=sum(p2_c1, p2_c0)] & ~ [EX [~ [[[~ [sum(p2_c1, p2_c0)<=sum(p1_c1, p1_c0)] & [sum(p0_c1, p0_c0)<=sum(p3_c1, p3_c0) | sum(p0_c1, p0_c0)<=sum(p2_c1, p2_c0)]] | [~ [EG [~ [sum(p3_c1, p3_c0)<=sum(p4_c1, p4_c0)]]] & ~ [E [~ [sum(p3_c1, p3_c0)<=sum(p4_c1, p4_c0)] U [~ [29<=sum(p0_c1, p0_c0)] & ~ [sum(p3_c1, p3_c0)<=sum(p4_c1, p4_c0)]]]]]]]]]] | ~ [E [true U ~ [sum(p4_c1, p4_c0)<=sum(p5_c1, p5_c0)]]]]] & ~ [sum(p4_c1, p4_c0)<=97]]]]]
abstracting: (sum(p4_c1, p4_c0)<=97)
states: 39,780 (4)
abstracting: (sum(p4_c1, p4_c0)<=sum(p5_c1, p5_c0))
states: 28,730 (4)
abstracting: (sum(p3_c1, p3_c0)<=sum(p4_c1, p4_c0))
states: 34,255 (4)
abstracting: (29<=sum(p0_c1, p0_c0))
states: 0
abstracting: (sum(p3_c1, p3_c0)<=sum(p4_c1, p4_c0))
states: 34,255 (4)
abstracting: (sum(p3_c1, p3_c0)<=sum(p4_c1, p4_c0))
states: 34,255 (4)
....
EG iterations: 4
abstracting: (sum(p0_c1, p0_c0)<=sum(p2_c1, p2_c0))
states: 39,780 (4)
abstracting: (sum(p0_c1, p0_c0)<=sum(p3_c1, p3_c0))
states: 243
abstracting: (sum(p2_c1, p2_c0)<=sum(p1_c1, p1_c0))
states: 20,484 (4)
.abstracting: (84<=sum(p2_c1, p2_c0))
states: 0
abstracting: (sum(p3_c1, p3_c0)<=sum(p0_c1, p0_c0))
states: 39,780 (4)
abstracting: (98<=sum(p0_c1, p0_c0))
states: 0
.abstracting: (sum(p4_c1, p4_c0)<=sum(p0_c1, p0_c0))
states: 39,304 (4)
abstracting: (sum(p4_c1, p4_c0)<=97)
states: 39,780 (4)
abstracting: (sum(p4_c1, p4_c0)<=97)
states: 39,780 (4)
.
EG iterations: 1
-> the formula is TRUE
FORMULA Murphy-COL-D1N010-CTLCardinality-06 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.226sec
totally nodes used: 13253 (1.3e+04)
number of garbage collections: 0
fire ops cache: hits/miss/sum: 45934 26392 72326
used/not used/entry size/cache size: 36310 67072554 16 1024MB
basic ops cache: hits/miss/sum: 24698 25747 50445
used/not used/entry size/cache size: 38710 16738506 12 192MB
unary ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 8 128MB
abstract ops cache: hits/miss/sum: 0 34479 34479
used/not used/entry size/cache size: 1 16777215 12 192MB
state nr cache: hits/miss/sum: 4242 1533 5775
used/not used/entry size/cache size: 1533 8387075 32 256MB
max state cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 8388608 32 256MB
uniqueHash elements/entry size/size: 67108864 4 256MB
0 67096342
1 12172
2 227
3 71
4 20
5 10
6 5
7 2
8 0
9 0
>= 10 15
Total processing time: 0m 6.778sec
BK_STOP 1679892185565
--------------------
content from stderr:
check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.000sec
iterations count:277 (19), effective:98 (7)
initing FirstDep: 0m 0.000sec
iterations count:14 (1), effective:0 (0)
iterations count:14 (1), effective:0 (0)
iterations count:14 (1), effective:0 (0)
iterations count:14 (1), effective:0 (0)
iterations count:14 (1), effective:0 (0)
iterations count:14 (1), effective:0 (0)
iterations count:207 (14), effective:41 (2)
iterations count:14 (1), effective:0 (0)
iterations count:40 (2), effective:8 (0)
iterations count:14 (1), effective:0 (0)
iterations count:14 (1), effective:0 (0)
iterations count:14 (1), effective:0 (0)
iterations count:14 (1), effective:0 (0)
iterations count:14 (1), effective:0 (0)
iterations count:123 (8), effective:23 (1)
iterations count:14 (1), effective:0 (0)
iterations count:14 (1), effective:0 (0)
iterations count:14 (1), effective:0 (0)
iterations count:140 (10), effective:54 (3)
iterations count:14 (1), effective:0 (0)
iterations count:28 (2), effective:4 (0)
iterations count:14 (1), effective:0 (0)
iterations count:14 (1), effective:0 (0)
iterations count:81 (5), effective:26 (1)
iterations count:36 (2), effective:6 (0)
iterations count:14 (1), effective:0 (0)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="Murphy-COL-D1N010"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marcie"
echo " Input is Murphy-COL-D1N010, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r513-tall-167987240800281"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/Murphy-COL-D1N010.tgz
mv Murphy-COL-D1N010 execution
cd execution
if [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "UpperBounds" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] || [ "CTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME CTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;