fond
Model Checking Contest 2023
13th edition, Paris, France, April 26, 2023 (at TOOLympics II)
Execution of r513-tall-167987240600089
Last Updated
May 14, 2023

About the Execution of Marcie for CryptoMiner-COL-D03N100

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
5545.111 3600000.00 3600082.00 297.00 ????F?TT?TF????F normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Formatting '/data/fkordon/mcc2023-input.r513-tall-167987240600089.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2023-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
................................................................................................................................................................................................................................
=====================================================================
Generated by BenchKit 2-5348
Executing tool marcie
Input is CryptoMiner-COL-D03N100, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r513-tall-167987240600089
=====================================================================

--------------------
preparation of the directory to be used:
/home/mcc/execution
total 392K
-rw-r--r-- 1 mcc users 7.5K Mar 23 15:23 CTLCardinality.txt
-rw-r--r-- 1 mcc users 74K Mar 23 15:23 CTLCardinality.xml
-rw-r--r-- 1 mcc users 5.7K Mar 23 15:20 CTLFireability.txt
-rw-r--r-- 1 mcc users 49K Mar 23 15:20 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.1K Mar 23 07:06 LTLCardinality.txt
-rw-r--r-- 1 mcc users 25K Mar 23 07:06 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.3K Mar 23 07:06 LTLFireability.txt
-rw-r--r-- 1 mcc users 15K Mar 23 07:06 LTLFireability.xml
-rw-r--r-- 1 mcc users 1 Mar 26 22:42 NewModel
-rw-r--r-- 1 mcc users 7.1K Mar 23 15:24 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 56K Mar 23 15:24 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 9.1K Mar 23 15:24 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 72K Mar 23 15:24 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.8K Mar 23 07:06 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.8K Mar 23 07:06 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Mar 26 22:42 equiv_pt
-rw-r--r-- 1 mcc users 8 Mar 26 22:42 instance
-rw-r--r-- 1 mcc users 5 Mar 26 22:42 iscolored
-rw-r--r-- 1 mcc users 18K Mar 26 22:42 model.pnml

--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME CryptoMiner-COL-D03N100-CTLCardinality-00
FORMULA_NAME CryptoMiner-COL-D03N100-CTLCardinality-01
FORMULA_NAME CryptoMiner-COL-D03N100-CTLCardinality-02
FORMULA_NAME CryptoMiner-COL-D03N100-CTLCardinality-03
FORMULA_NAME CryptoMiner-COL-D03N100-CTLCardinality-04
FORMULA_NAME CryptoMiner-COL-D03N100-CTLCardinality-05
FORMULA_NAME CryptoMiner-COL-D03N100-CTLCardinality-06
FORMULA_NAME CryptoMiner-COL-D03N100-CTLCardinality-07
FORMULA_NAME CryptoMiner-COL-D03N100-CTLCardinality-08
FORMULA_NAME CryptoMiner-COL-D03N100-CTLCardinality-09
FORMULA_NAME CryptoMiner-COL-D03N100-CTLCardinality-10
FORMULA_NAME CryptoMiner-COL-D03N100-CTLCardinality-11
FORMULA_NAME CryptoMiner-COL-D03N100-CTLCardinality-12
FORMULA_NAME CryptoMiner-COL-D03N100-CTLCardinality-13
FORMULA_NAME CryptoMiner-COL-D03N100-CTLCardinality-14
FORMULA_NAME CryptoMiner-COL-D03N100-CTLCardinality-15

=== Now, execution of the tool begins

BK_START 1679880806833

bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marcie
BK_EXAMINATION=CTLCardinality
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=CryptoMiner-COL-D03N100
Not applying reductions.
Model is COL
CTLCardinality COL
timeout --kill-after=10s --signal=SIGINT 1m for testing only

Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets

authors: Alex Tovchigrechko (IDD package and CTL model checking)

Martin Schwarick (Symbolic numerical analysis and CSL model checking)

Christian Rohr (Simulative and approximative numerical model checking)

marcie@informatik.tu-cottbus.de

called as: /home/mcc/BenchKit/bin//../marcie/bin/marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --memory=6 --mcc-mode

parse successfull
net created successfully

Unfolding complete |P|=12|T|=12|A|=34
Time for unfolding: 0m 0.253sec

Net: CryptoMinerB_COL_D3_N100
(NrP: 12 NrTr: 12 NrArc: 34)

parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec

net check time: 0m 0.000sec

init dd package: 0m 2.947sec


RS generation: 0m 0.143sec


-> reachability set: #nodes 1119 (1.1e+03) #states 3,004,907,847 (9)



starting MCC model checker
--------------------------

checking: AX [EG [EX [AG [~ [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=89]]]]]
normalized: ~ [EX [~ [EG [EX [~ [E [true U sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=89]]]]]]]

abstracting: (sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=89)
states: 2,961,983,756 (9)
..
EG iterations: 1
.-> the formula is TRUE

FORMULA CryptoMiner-COL-D03N100-CTLCardinality-06 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m13.736sec

checking: EX [EF [[59<=sum(state_c3, state_c2, state_c1, state_c0) | sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=sum(resource_c3, resource_c2, resource_c1, resource_c0)]]]
normalized: EX [E [true U [59<=sum(state_c3, state_c2, state_c1, state_c0) | sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=sum(resource_c3, resource_c2, resource_c1, resource_c0)]]]

abstracting: (sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=sum(resource_c3, resource_c2, resource_c1, resource_c0))
MC time: 3m59.014sec

checking: E [sum(resource_c3, resource_c2, resource_c1, resource_c0)<=66 U ~ [[EF [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=55] | 7<=sum(resource_c3, resource_c2, resource_c1, resource_c0)]]]
normalized: E [sum(resource_c3, resource_c2, resource_c1, resource_c0)<=66 U ~ [[E [true U sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=55] | 7<=sum(resource_c3, resource_c2, resource_c1, resource_c0)]]]

abstracting: (7<=sum(resource_c3, resource_c2, resource_c1, resource_c0))
states: 2,936,876,359 (9)
abstracting: (sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=55)
states: 1,687,986,047 (9)
abstracting: (sum(resource_c3, resource_c2, resource_c1, resource_c0)<=66)
states: 2,994,466,982 (9)
-> the formula is TRUE

FORMULA CryptoMiner-COL-D03N100-CTLCardinality-07 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m14.949sec

checking: AX [EF [EG [[EX [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=71] | [AG [67<=sum(resource_c3, resource_c2, resource_c1, resource_c0)] & sum(state_c3, state_c2, state_c1, state_c0)<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)]]]]]
normalized: ~ [EX [~ [E [true U EG [[[~ [E [true U ~ [67<=sum(resource_c3, resource_c2, resource_c1, resource_c0)]]] & sum(state_c3, state_c2, state_c1, state_c0)<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)] | EX [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=71]]]]]]]

abstracting: (sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=71)
states: 2,525,051,450 (9)
.abstracting: (sum(state_c3, state_c2, state_c1, state_c0)<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0))
MC time: 3m58.000sec

checking: [EX [2<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)] & AG [[EG [EG [[sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=19 | sum(state_c3, state_c2, state_c1, state_c0)<=2]]] | ~ [EF [33<=sum(state_c3, state_c2, state_c1, state_c0)]]]]]
normalized: [~ [E [true U ~ [[~ [E [true U 33<=sum(state_c3, state_c2, state_c1, state_c0)]] | EG [EG [[sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=19 | sum(state_c3, state_c2, state_c1, state_c0)<=2]]]]]]] & EX [2<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)]]

abstracting: (2<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0))
states: 3,004,824,741 (9)
.abstracting: (sum(state_c3, state_c2, state_c1, state_c0)<=2)
states: 3,004,907,847 (9)
abstracting: (sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=19)
states: 95,469,124 (7)

EG iterations: 0

EG iterations: 0
abstracting: (33<=sum(state_c3, state_c2, state_c1, state_c0))
states: 0
-> the formula is TRUE

FORMULA CryptoMiner-COL-D03N100-CTLCardinality-09 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m27.208sec

checking: A [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=60 U EF [[~ [sum(state_c3, state_c2, state_c1, state_c0)<=sum(state_c3, state_c2, state_c1, state_c0)] & A [sum(resource_c3, resource_c2, resource_c1, resource_c0)<=32 U sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=13]]]]
normalized: [~ [EG [~ [E [true U [[~ [EG [~ [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=13]]] & ~ [E [~ [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=13] U [~ [sum(resource_c3, resource_c2, resource_c1, resource_c0)<=32] & ~ [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=13]]]]] & ~ [sum(state_c3, state_c2, state_c1, state_c0)<=sum(state_c3, state_c2, state_c1, state_c0)]]]]]] & ~ [E [~ [E [true U [[~ [EG [~ [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=13]]] & ~ [E [~ [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=13] U [~ [sum(resource_c3, resource_c2, resource_c1, resource_c0)<=32] & ~ [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=13]]]]] & ~ [sum(state_c3, state_c2, state_c1, state_c0)<=sum(state_c3, state_c2, state_c1, state_c0)]]]] U [~ [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=60] & ~ [E [true U [[~ [EG [~ [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=13]]] & ~ [E [~ [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=13] U [~ [sum(resource_c3, resource_c2, resource_c1, resource_c0)<=32] & ~ [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=13]]]]] & ~ [sum(state_c3, state_c2, state_c1, state_c0)<=sum(state_c3, state_c2, state_c1, state_c0)]]]]]]]]

abstracting: (sum(state_c3, state_c2, state_c1, state_c0)<=sum(state_c3, state_c2, state_c1, state_c0))
states: 3,004,907,847 (9)
abstracting: (sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=13)
states: 29,830,963 (7)
abstracting: (sum(resource_c3, resource_c2, resource_c1, resource_c0)<=32)
states: 2,222,468,355 (9)
abstracting: (sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=13)
states: 29,830,963 (7)
abstracting: (sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=13)
states: 29,830,963 (7)
.
EG iterations: 1
abstracting: (sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=60)
states: 1,980,571,207 (9)
abstracting: (sum(state_c3, state_c2, state_c1, state_c0)<=sum(state_c3, state_c2, state_c1, state_c0))
states: 3,004,907,847 (9)
abstracting: (sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=13)
states: 29,830,963 (7)
abstracting: (sum(resource_c3, resource_c2, resource_c1, resource_c0)<=32)
states: 2,222,468,355 (9)
abstracting: (sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=13)
states: 29,830,963 (7)
abstracting: (sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=13)
states: 29,830,963 (7)
.
EG iterations: 1
abstracting: (sum(state_c3, state_c2, state_c1, state_c0)<=sum(state_c3, state_c2, state_c1, state_c0))
states: 3,004,907,847 (9)
abstracting: (sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=13)
states: 29,830,963 (7)
abstracting: (sum(resource_c3, resource_c2, resource_c1, resource_c0)<=32)
states: 2,222,468,355 (9)
abstracting: (sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=13)
states: 29,830,963 (7)
abstracting: (sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=13)
states: 29,830,963 (7)
.
EG iterations: 1

EG iterations: 0
-> the formula is FALSE

FORMULA CryptoMiner-COL-D03N100-CTLCardinality-04 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m27.991sec

checking: AG [[14<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0) | AF [[sum(state_c3, state_c2, state_c1, state_c0)<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0) & EX [sum(state_c3, state_c2, state_c1, state_c0)<=sum(resource_c3, resource_c2, resource_c1, resource_c0)]]]]]
normalized: ~ [E [true U ~ [[14<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0) | ~ [EG [~ [[sum(state_c3, state_c2, state_c1, state_c0)<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0) & EX [sum(state_c3, state_c2, state_c1, state_c0)<=sum(resource_c3, resource_c2, resource_c1, resource_c0)]]]]]]]]]

abstracting: (sum(state_c3, state_c2, state_c1, state_c0)<=sum(resource_c3, resource_c2, resource_c1, resource_c0))
states: 3,004,200,443 (9)
.abstracting: (sum(state_c3, state_c2, state_c1, state_c0)<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0))
MC time: 4m14.001sec

checking: AG [EG [EF [[[sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0) | [70<=sum(resource_c3, resource_c2, resource_c1, resource_c0) | sum(resource_c3, resource_c2, resource_c1, resource_c0)<=19]] & AF [5<=sum(resource_c3, resource_c2, resource_c1, resource_c0)]]]]]
normalized: ~ [E [true U ~ [EG [E [true U [[sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0) | [70<=sum(resource_c3, resource_c2, resource_c1, resource_c0) | sum(resource_c3, resource_c2, resource_c1, resource_c0)<=19]] & ~ [EG [~ [5<=sum(resource_c3, resource_c2, resource_c1, resource_c0)]]]]]]]]]

abstracting: (5<=sum(resource_c3, resource_c2, resource_c1, resource_c0))
states: 2,977,087,032 (9)
.
EG iterations: 1
abstracting: (sum(resource_c3, resource_c2, resource_c1, resource_c0)<=19)
states: 991,077,235 (8)
abstracting: (70<=sum(resource_c3, resource_c2, resource_c1, resource_c0))
states: 6,008,540 (6)
abstracting: (sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0))
states: 3,004,907,847 (9)
.
EG iterations: 1
-> the formula is FALSE

FORMULA CryptoMiner-COL-D03N100-CTLCardinality-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 1.941sec

checking: ~ [AG [AG [A [[29<=sum(resource_c3, resource_c2, resource_c1, resource_c0) & [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=51 | 36<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)]] U [AX [sum(state_c3, state_c2, state_c1, state_c0)<=11] & [sum(resource_c3, resource_c2, resource_c1, resource_c0)<=36 | sum(state_c3, state_c2, state_c1, state_c0)<=87]]]]]]
normalized: E [true U E [true U ~ [[~ [EG [~ [[~ [EX [~ [sum(state_c3, state_c2, state_c1, state_c0)<=11]]] & [sum(resource_c3, resource_c2, resource_c1, resource_c0)<=36 | sum(state_c3, state_c2, state_c1, state_c0)<=87]]]]] & ~ [E [~ [[~ [EX [~ [sum(state_c3, state_c2, state_c1, state_c0)<=11]]] & [sum(resource_c3, resource_c2, resource_c1, resource_c0)<=36 | sum(state_c3, state_c2, state_c1, state_c0)<=87]]] U [~ [[~ [EX [~ [sum(state_c3, state_c2, state_c1, state_c0)<=11]]] & [sum(resource_c3, resource_c2, resource_c1, resource_c0)<=36 | sum(state_c3, state_c2, state_c1, state_c0)<=87]]] & ~ [[29<=sum(resource_c3, resource_c2, resource_c1, resource_c0) & [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=51 | 36<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)]]]]]]]]]]

abstracting: (36<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0))
states: 2,432,024,114 (9)
abstracting: (sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=51)
states: 1,446,657,028 (9)
abstracting: (29<=sum(resource_c3, resource_c2, resource_c1, resource_c0))
states: 1,102,175,726 (9)
abstracting: (sum(state_c3, state_c2, state_c1, state_c0)<=87)
states: 3,004,907,847 (9)
abstracting: (sum(resource_c3, resource_c2, resource_c1, resource_c0)<=36)
states: 2,468,940,488 (9)
abstracting: (sum(state_c3, state_c2, state_c1, state_c0)<=11)
states: 3,004,907,847 (9)
.abstracting: (sum(state_c3, state_c2, state_c1, state_c0)<=87)
states: 3,004,907,847 (9)
abstracting: (sum(resource_c3, resource_c2, resource_c1, resource_c0)<=36)
states: 2,468,940,488 (9)
abstracting: (sum(state_c3, state_c2, state_c1, state_c0)<=11)
states: 3,004,907,847 (9)
.abstracting: (sum(state_c3, state_c2, state_c1, state_c0)<=87)
states: 3,004,907,847 (9)
abstracting: (sum(resource_c3, resource_c2, resource_c1, resource_c0)<=36)
states: 2,468,940,488 (9)
abstracting: (sum(state_c3, state_c2, state_c1, state_c0)<=11)
states: 3,004,907,847 (9)
..
EG iterations: 1
-> the formula is FALSE

FORMULA CryptoMiner-COL-D03N100-CTLCardinality-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m29.799sec

checking: AF [A [[sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=sum(resource_c3, resource_c2, resource_c1, resource_c0) & [[sum(resource_c3, resource_c2, resource_c1, resource_c0)<=sum(state_c3, state_c2, state_c1, state_c0) & [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0) | AF [70<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)]]] | AX [sum(resource_c3, resource_c2, resource_c1, resource_c0)<=75]]] U AG [sum(resource_c3, resource_c2, resource_c1, resource_c0)<=16]]]
normalized: ~ [EG [~ [[~ [EG [E [true U ~ [sum(resource_c3, resource_c2, resource_c1, resource_c0)<=16]]]] & ~ [E [E [true U ~ [sum(resource_c3, resource_c2, resource_c1, resource_c0)<=16]] U [~ [[sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=sum(resource_c3, resource_c2, resource_c1, resource_c0) & [[sum(resource_c3, resource_c2, resource_c1, resource_c0)<=sum(state_c3, state_c2, state_c1, state_c0) & [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0) | ~ [EG [~ [70<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)]]]]] | ~ [EX [~ [sum(resource_c3, resource_c2, resource_c1, resource_c0)<=75]]]]]] & E [true U ~ [sum(resource_c3, resource_c2, resource_c1, resource_c0)<=16]]]]]]]]]

abstracting: (sum(resource_c3, resource_c2, resource_c1, resource_c0)<=16)
states: 690,390,383 (8)
abstracting: (sum(resource_c3, resource_c2, resource_c1, resource_c0)<=75)
states: 3,003,202,036 (9)
.abstracting: (70<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0))
states: 565,070,173 (8)
.
EG iterations: 1
abstracting: (sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0))
states: 3,004,907,847 (9)
abstracting: (sum(resource_c3, resource_c2, resource_c1, resource_c0)<=sum(state_c3, state_c2, state_c1, state_c0))
states: 2,551,254 (6)
abstracting: (sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=sum(resource_c3, resource_c2, resource_c1, resource_c0))
MC time: 4m36.001sec

checking: E [E [~ [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=sum(resource_c3, resource_c2, resource_c1, resource_c0)] U [[~ [EX [sum(state_c3, state_c2, state_c1, state_c0)<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)]] | [[[sum(state_c3, state_c2, state_c1, state_c0)<=58 | 27<=sum(state_c3, state_c2, state_c1, state_c0)] | AF [100<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)]] & AG [77<=sum(state_c3, state_c2, state_c1, state_c0)]]] | sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=94]] U sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=30]
normalized: E [E [~ [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=sum(resource_c3, resource_c2, resource_c1, resource_c0)] U [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=94 | [[~ [E [true U ~ [77<=sum(state_c3, state_c2, state_c1, state_c0)]]] & [~ [EG [~ [100<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)]]] | [sum(state_c3, state_c2, state_c1, state_c0)<=58 | 27<=sum(state_c3, state_c2, state_c1, state_c0)]]] | ~ [EX [sum(state_c3, state_c2, state_c1, state_c0)<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)]]]]] U sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=30]

abstracting: (sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=30)
states: 372,477,901 (8)
abstracting: (sum(state_c3, state_c2, state_c1, state_c0)<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0))
MC time: 4m 8.000sec

checking: EX [[A [[EX [[30<=sum(resource_c3, resource_c2, resource_c1, resource_c0) | 56<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)]] & 37<=sum(resource_c3, resource_c2, resource_c1, resource_c0)] U AX [sum(state_c3, state_c2, state_c1, state_c0)<=88]] & E [[~ [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=88] & [sum(state_c3, state_c2, state_c1, state_c0)<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0) & [sum(state_c3, state_c2, state_c1, state_c0)<=0 | [sum(resource_c3, resource_c2, resource_c1, resource_c0)<=78 | sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=54]]]] U AG [sum(state_c3, state_c2, state_c1, state_c0)<=sum(state_c3, state_c2, state_c1, state_c0)]]]]
normalized: EX [[E [[[sum(state_c3, state_c2, state_c1, state_c0)<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0) & [sum(state_c3, state_c2, state_c1, state_c0)<=0 | [sum(resource_c3, resource_c2, resource_c1, resource_c0)<=78 | sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=54]]] & ~ [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=88]] U ~ [E [true U ~ [sum(state_c3, state_c2, state_c1, state_c0)<=sum(state_c3, state_c2, state_c1, state_c0)]]]] & [~ [EG [EX [~ [sum(state_c3, state_c2, state_c1, state_c0)<=88]]]] & ~ [E [EX [~ [sum(state_c3, state_c2, state_c1, state_c0)<=88]] U [~ [[37<=sum(resource_c3, resource_c2, resource_c1, resource_c0) & EX [[30<=sum(resource_c3, resource_c2, resource_c1, resource_c0) | 56<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)]]]] & EX [~ [sum(state_c3, state_c2, state_c1, state_c0)<=88]]]]]]]]

abstracting: (sum(state_c3, state_c2, state_c1, state_c0)<=88)
states: 3,004,907,847 (9)
.abstracting: (56<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0))
states: 1,316,921,800 (9)
abstracting: (30<=sum(resource_c3, resource_c2, resource_c1, resource_c0))
states: 1,015,450,257 (9)
.abstracting: (37<=sum(resource_c3, resource_c2, resource_c1, resource_c0))
states: 535,967,359 (8)
abstracting: (sum(state_c3, state_c2, state_c1, state_c0)<=88)
states: 3,004,907,847 (9)
.abstracting: (sum(state_c3, state_c2, state_c1, state_c0)<=88)
states: 3,004,907,847 (9)
..
EG iterations: 1
abstracting: (sum(state_c3, state_c2, state_c1, state_c0)<=sum(state_c3, state_c2, state_c1, state_c0))
states: 3,004,907,847 (9)
abstracting: (sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=88)
states: 2,952,314,096 (9)
abstracting: (sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=54)
states: 1,628,001,983 (9)
abstracting: (sum(resource_c3, resource_c2, resource_c1, resource_c0)<=78)
states: 3,004,084,657 (9)
abstracting: (sum(state_c3, state_c2, state_c1, state_c0)<=0)
states: 1,320,641,448 (9)
abstracting: (sum(state_c3, state_c2, state_c1, state_c0)<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0))
MC time: 3m43.001sec

checking: AX [[~ [EX [EG [~ [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=43]]]] | [[E [[[sum(state_c3, state_c2, state_c1, state_c0)<=sum(resource_c3, resource_c2, resource_c1, resource_c0) | 70<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)] | A [9<=sum(state_c3, state_c2, state_c1, state_c0) U sum(state_c3, state_c2, state_c1, state_c0)<=1]] U [[sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=36 | sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=31] | 75<=sum(state_c3, state_c2, state_c1, state_c0)]] | EG [~ [[sum(resource_c3, resource_c2, resource_c1, resource_c0)<=8 & sum(resource_c3, resource_c2, resource_c1, resource_c0)<=73]]]] & ~ [AX [~ [[sum(state_c3, state_c2, state_c1, state_c0)<=sum(state_c3, state_c2, state_c1, state_c0) | sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=sum(state_c3, state_c2, state_c1, state_c0)]]]]]]]
normalized: ~ [EX [~ [[[EX [[sum(state_c3, state_c2, state_c1, state_c0)<=sum(state_c3, state_c2, state_c1, state_c0) | sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=sum(state_c3, state_c2, state_c1, state_c0)]] & [EG [~ [[sum(resource_c3, resource_c2, resource_c1, resource_c0)<=8 & sum(resource_c3, resource_c2, resource_c1, resource_c0)<=73]]] | E [[[~ [EG [~ [sum(state_c3, state_c2, state_c1, state_c0)<=1]]] & ~ [E [~ [sum(state_c3, state_c2, state_c1, state_c0)<=1] U [~ [9<=sum(state_c3, state_c2, state_c1, state_c0)] & ~ [sum(state_c3, state_c2, state_c1, state_c0)<=1]]]]] | [sum(state_c3, state_c2, state_c1, state_c0)<=sum(resource_c3, resource_c2, resource_c1, resource_c0) | 70<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)]] U [75<=sum(state_c3, state_c2, state_c1, state_c0) | [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=36 | sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=31]]]]] | ~ [EX [EG [~ [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=43]]]]]]]]

abstracting: (sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=43)
states: 977,259,914 (8)
.
EG iterations: 1
.abstracting: (sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=31)
states: 408,884,557 (8)
abstracting: (sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=36)
states: 618,286,285 (8)
abstracting: (75<=sum(state_c3, state_c2, state_c1, state_c0))
states: 0
abstracting: (70<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0))
states: 565,070,173 (8)
abstracting: (sum(state_c3, state_c2, state_c1, state_c0)<=sum(resource_c3, resource_c2, resource_c1, resource_c0))
states: 3,004,200,443 (9)
abstracting: (sum(state_c3, state_c2, state_c1, state_c0)<=1)
states: 3,004,907,847 (9)
abstracting: (9<=sum(state_c3, state_c2, state_c1, state_c0))
states: 0
abstracting: (sum(state_c3, state_c2, state_c1, state_c0)<=1)
states: 3,004,907,847 (9)
abstracting: (sum(state_c3, state_c2, state_c1, state_c0)<=1)
states: 3,004,907,847 (9)
.
EG iterations: 1
abstracting: (sum(resource_c3, resource_c2, resource_c1, resource_c0)<=73)
states: 3,002,243,617 (9)
abstracting: (sum(resource_c3, resource_c2, resource_c1, resource_c0)<=8)
states: 134,308,311 (8)
.
EG iterations: 1
abstracting: (sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=sum(state_c3, state_c2, state_c1, state_c0))
MC time: 3m21.000sec

checking: [E [[E [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=71 U [~ [AX [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=3]] & [[sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=sum(resource_c3, resource_c2, resource_c1, resource_c0) & 70<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)] & ~ [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=sum(resource_c3, resource_c2, resource_c1, resource_c0)]]]] & AF [AF [[sum(resource_c3, resource_c2, resource_c1, resource_c0)<=9 | 11<=sum(state_c3, state_c2, state_c1, state_c0)]]]] U EF [[~ [E [sum(resource_c3, resource_c2, resource_c1, resource_c0)<=76 U sum(resource_c3, resource_c2, resource_c1, resource_c0)<=38]] | [EF [sum(resource_c3, resource_c2, resource_c1, resource_c0)<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)] | [sum(state_c3, state_c2, state_c1, state_c0)<=sum(state_c3, state_c2, state_c1, state_c0) & [45<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0) & sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=9]]]]]] & AX [EF [[EG [sum(state_c3, state_c2, state_c1, state_c0)<=9] & EF [EF [16<=sum(resource_c3, resource_c2, resource_c1, resource_c0)]]]]]]
normalized: [~ [EX [~ [E [true U [E [true U E [true U 16<=sum(resource_c3, resource_c2, resource_c1, resource_c0)]] & EG [sum(state_c3, state_c2, state_c1, state_c0)<=9]]]]]] & E [[~ [EG [EG [~ [[sum(resource_c3, resource_c2, resource_c1, resource_c0)<=9 | 11<=sum(state_c3, state_c2, state_c1, state_c0)]]]]] & E [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=71 U [[~ [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=sum(resource_c3, resource_c2, resource_c1, resource_c0)] & [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=sum(resource_c3, resource_c2, resource_c1, resource_c0) & 70<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)]] & EX [~ [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=3]]]]] U E [true U [[[sum(state_c3, state_c2, state_c1, state_c0)<=sum(state_c3, state_c2, state_c1, state_c0) & [45<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0) & sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=9]] | E [true U sum(resource_c3, resource_c2, resource_c1, resource_c0)<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)]] | ~ [E [sum(resource_c3, resource_c2, resource_c1, resource_c0)<=76 U sum(resource_c3, resource_c2, resource_c1, resource_c0)<=38]]]]]]

abstracting: (sum(resource_c3, resource_c2, resource_c1, resource_c0)<=38)
states: 2,566,535,087 (9)
abstracting: (sum(resource_c3, resource_c2, resource_c1, resource_c0)<=76)
states: 3,003,558,377 (9)
abstracting: (sum(resource_c3, resource_c2, resource_c1, resource_c0)<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0))
MC time: 3m 1.000sec

checking: ~ [A [[[[AG [EF [sum(resource_c3, resource_c2, resource_c1, resource_c0)<=0]] & [30<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0) & AX [69<=sum(resource_c3, resource_c2, resource_c1, resource_c0)]]] & E [sum(state_c3, state_c2, state_c1, state_c0)<=19 U AX [sum(state_c3, state_c2, state_c1, state_c0)<=58]]] & [E [[[73<=sum(resource_c3, resource_c2, resource_c1, resource_c0) & sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=61] & AG [53<=sum(resource_c3, resource_c2, resource_c1, resource_c0)]] U [[63<=sum(state_c3, state_c2, state_c1, state_c0) & sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=70] & [42<=sum(state_c3, state_c2, state_c1, state_c0) & sum(state_c3, state_c2, state_c1, state_c0)<=85]]] | [~ [58<=sum(state_c3, state_c2, state_c1, state_c0)] | EG [EG [sum(resource_c3, resource_c2, resource_c1, resource_c0)<=sum(resource_c3, resource_c2, resource_c1, resource_c0)]]]]] U EF [[sum(resource_c3, resource_c2, resource_c1, resource_c0)<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0) & [60<=sum(resource_c3, resource_c2, resource_c1, resource_c0) & [82<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0) & AF [21<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)]]]]]]]
normalized: ~ [[~ [EG [~ [E [true U [sum(resource_c3, resource_c2, resource_c1, resource_c0)<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0) & [60<=sum(resource_c3, resource_c2, resource_c1, resource_c0) & [82<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0) & ~ [EG [~ [21<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)]]]]]]]]]] & ~ [E [~ [E [true U [sum(resource_c3, resource_c2, resource_c1, resource_c0)<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0) & [60<=sum(resource_c3, resource_c2, resource_c1, resource_c0) & [82<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0) & ~ [EG [~ [21<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)]]]]]]]] U [~ [[[[~ [58<=sum(state_c3, state_c2, state_c1, state_c0)] | EG [EG [sum(resource_c3, resource_c2, resource_c1, resource_c0)<=sum(resource_c3, resource_c2, resource_c1, resource_c0)]]] | E [[~ [E [true U ~ [53<=sum(resource_c3, resource_c2, resource_c1, resource_c0)]]] & [73<=sum(resource_c3, resource_c2, resource_c1, resource_c0) & sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=61]] U [[42<=sum(state_c3, state_c2, state_c1, state_c0) & sum(state_c3, state_c2, state_c1, state_c0)<=85] & [63<=sum(state_c3, state_c2, state_c1, state_c0) & sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=70]]]] & [E [sum(state_c3, state_c2, state_c1, state_c0)<=19 U ~ [EX [~ [sum(state_c3, state_c2, state_c1, state_c0)<=58]]]] & [[30<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0) & ~ [EX [~ [69<=sum(resource_c3, resource_c2, resource_c1, resource_c0)]]]] & ~ [E [true U ~ [E [true U sum(resource_c3, resource_c2, resource_c1, resource_c0)<=0]]]]]]]] & ~ [E [true U [sum(resource_c3, resource_c2, resource_c1, resource_c0)<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0) & [60<=sum(resource_c3, resource_c2, resource_c1, resource_c0) & [82<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0) & ~ [EG [~ [21<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)]]]]]]]]]]]]]

abstracting: (21<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0))
states: 2,893,248,241 (9)
.
EG iterations: 1
abstracting: (82<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0))
states: 165,208,858 (8)
abstracting: (60<=sum(resource_c3, resource_c2, resource_c1, resource_c0))
states: 32,638,139 (7)
abstracting: (sum(resource_c3, resource_c2, resource_c1, resource_c0)<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0))
MC time: 2m43.000sec

checking: [EX [[[~ [[sum(resource_c3, resource_c2, resource_c1, resource_c0)<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0) & AG [sum(resource_c3, resource_c2, resource_c1, resource_c0)<=sum(state_c3, state_c2, state_c1, state_c0)]]] | ~ [A [[sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=sum(resource_c3, resource_c2, resource_c1, resource_c0) & sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=99] U sum(resource_c3, resource_c2, resource_c1, resource_c0)<=20]]] & [E [[[73<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0) & sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)] | AF [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=sum(resource_c3, resource_c2, resource_c1, resource_c0)]] U A [17<=sum(resource_c3, resource_c2, resource_c1, resource_c0) U sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=sum(resource_c3, resource_c2, resource_c1, resource_c0)]] | [[42<=sum(state_c3, state_c2, state_c1, state_c0) | ~ [EX [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=5]]] & ~ [[EF [sum(resource_c3, resource_c2, resource_c1, resource_c0)<=sum(state_c3, state_c2, state_c1, state_c0)] & [sum(resource_c3, resource_c2, resource_c1, resource_c0)<=83 & sum(resource_c3, resource_c2, resource_c1, resource_c0)<=40]]]]]]] & E [~ [[AF [EF [97<=sum(state_c3, state_c2, state_c1, state_c0)]] & [[A [16<=sum(resource_c3, resource_c2, resource_c1, resource_c0) U sum(state_c3, state_c2, state_c1, state_c0)<=91] | [sum(state_c3, state_c2, state_c1, state_c0)<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0) & sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=82]] & AX [sum(state_c3, state_c2, state_c1, state_c0)<=sum(resource_c3, resource_c2, resource_c1, resource_c0)]]]] U [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=sum(state_c3, state_c2, state_c1, state_c0) & sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)]]]
normalized: [E [~ [[[~ [EX [~ [sum(state_c3, state_c2, state_c1, state_c0)<=sum(resource_c3, resource_c2, resource_c1, resource_c0)]]] & [[sum(state_c3, state_c2, state_c1, state_c0)<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0) & sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=82] | [~ [EG [~ [sum(state_c3, state_c2, state_c1, state_c0)<=91]]] & ~ [E [~ [sum(state_c3, state_c2, state_c1, state_c0)<=91] U [~ [sum(state_c3, state_c2, state_c1, state_c0)<=91] & ~ [16<=sum(resource_c3, resource_c2, resource_c1, resource_c0)]]]]]]] & ~ [EG [~ [E [true U 97<=sum(state_c3, state_c2, state_c1, state_c0)]]]]]] U [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=sum(state_c3, state_c2, state_c1, state_c0) & sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)]] & EX [[[[~ [[[sum(resource_c3, resource_c2, resource_c1, resource_c0)<=83 & sum(resource_c3, resource_c2, resource_c1, resource_c0)<=40] & E [true U sum(resource_c3, resource_c2, resource_c1, resource_c0)<=sum(state_c3, state_c2, state_c1, state_c0)]]] & [42<=sum(state_c3, state_c2, state_c1, state_c0) | ~ [EX [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=5]]]] | E [[~ [EG [~ [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=sum(resource_c3, resource_c2, resource_c1, resource_c0)]]] | [73<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0) & sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)]] U [~ [EG [~ [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=sum(resource_c3, resource_c2, resource_c1, resource_c0)]]] & ~ [E [~ [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=sum(resource_c3, resource_c2, resource_c1, resource_c0)] U [~ [17<=sum(resource_c3, resource_c2, resource_c1, resource_c0)] & ~ [sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=sum(resource_c3, resource_c2, resource_c1, resource_c0)]]]]]]] & [~ [[~ [EG [~ [sum(resource_c3, resource_c2, resource_c1, resource_c0)<=20]]] & ~ [E [~ [sum(resource_c3, resource_c2, resource_c1, resource_c0)<=20] U [~ [[sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=sum(resource_c3, resource_c2, resource_c1, resource_c0) & sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0)<=99]] & ~ [sum(resource_c3, resource_c2, resource_c1, resource_c0)<=20]]]]]] | ~ [[sum(resource_c3, resource_c2, resource_c1, resource_c0)<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0) & ~ [E [true U ~ [sum(resource_c3, resource_c2, resource_c1, resource_c0)<=sum(state_c3, state_c2, state_c1, state_c0)]]]]]]]]]

abstracting: (sum(resource_c3, resource_c2, resource_c1, resource_c0)<=sum(state_c3, state_c2, state_c1, state_c0))
states: 2,551,254 (6)
abstracting: (sum(resource_c3, resource_c2, resource_c1, resource_c0)<=sum(capacity_c3, capacity_c2, capacity_c1, capacity_c0))
TIME LIMIT: Killed by timeout after 3600 seconds
MemTotal: 16393916 kB
MemFree: 10685104 kB
After kill :
MemTotal: 16393916 kB
MemFree: 16177304 kB

BK_TIME_CONFINEMENT_REACHED

--------------------
content from stderr:

check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok


initing FirstDep: 0m 0.000sec


iterations count:2088 (174), effective:512 (42)

initing FirstDep: 0m 0.000sec


iterations count:459 (38), effective:148 (12)

idd.h:1025: Timeout: after 238 sec


iterations count:3398 (283), effective:1164 (97)

iterations count:14 (1), effective:1 (0)

idd.h:1025: Timeout: after 237 sec


iterations count:375 (31), effective:132 (11)

iterations count:375 (31), effective:132 (11)

iterations count:12 (1), effective:0 (0)

iterations count:375 (31), effective:132 (11)

idd.h:1025: Timeout: after 253 sec


iterations count:67 (5), effective:20 (1)

iterations count:14 (1), effective:1 (0)

iterations count:199 (16), effective:68 (5)

idd.h:1025: Timeout: after 275 sec


idd.h:1025: Timeout: after 247 sec


idd.h:1025: Timeout: after 222 sec


iterations count:6099 (508), effective:2117 (176)

idd.h:1025: Timeout: after 200 sec


iterations count:12 (1), effective:0 (0)

idd.h:1025: Timeout: after 180 sec


idd.h:1025: Timeout: after 162 sec


iterations count:44 (3), effective:11 (0)

idd.h:1025: Timeout: after 145 sec

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="CryptoMiner-COL-D03N100"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marcie"
echo " Input is CryptoMiner-COL-D03N100, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r513-tall-167987240600089"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"

tar xzf /home/mcc/BenchKit/INPUTS/CryptoMiner-COL-D03N100.tgz
mv CryptoMiner-COL-D03N100 execution
cd execution
if [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "UpperBounds" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] || [ "CTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh

echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' CTLCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME CTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;