About the Execution of Marcie+red for UtilityControlRoom-COL-Z2T3N08
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
10169.044 | 3600000.00 | 3639056.00 | 9518.20 | ?FFTFTTTFFFT??TF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fkordon/mcc2023-input.r490-tall-167912709400970.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2023-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
...................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
=====================================================================
Generated by BenchKit 2-5348
Executing tool marciexred
Input is UtilityControlRoom-COL-Z2T3N08, examination is CTLFireability
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r490-tall-167912709400970
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 536K
-rw-r--r-- 1 mcc users 8.1K Feb 26 14:42 CTLCardinality.txt
-rw-r--r-- 1 mcc users 74K Feb 26 14:42 CTLCardinality.xml
-rw-r--r-- 1 mcc users 6.5K Feb 26 14:40 CTLFireability.txt
-rw-r--r-- 1 mcc users 51K Feb 26 14:40 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.4K Feb 25 17:24 LTLCardinality.txt
-rw-r--r-- 1 mcc users 27K Feb 25 17:24 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.7K Feb 25 17:24 LTLFireability.txt
-rw-r--r-- 1 mcc users 16K Feb 25 17:24 LTLFireability.xml
-rw-r--r-- 1 mcc users 17K Feb 26 14:47 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 156K Feb 26 14:47 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 12K Feb 26 14:45 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 90K Feb 26 14:45 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.9K Feb 25 17:24 UpperBounds.txt
-rw-r--r-- 1 mcc users 4.0K Feb 25 17:24 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Mar 5 18:23 equiv_pt
-rw-r--r-- 1 mcc users 8 Mar 5 18:23 instance
-rw-r--r-- 1 mcc users 5 Mar 5 18:23 iscolored
-rw-r--r-- 1 mcc users 29K Mar 5 18:23 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME UtilityControlRoom-COL-Z2T3N08-CTLFireability-00
FORMULA_NAME UtilityControlRoom-COL-Z2T3N08-CTLFireability-01
FORMULA_NAME UtilityControlRoom-COL-Z2T3N08-CTLFireability-02
FORMULA_NAME UtilityControlRoom-COL-Z2T3N08-CTLFireability-03
FORMULA_NAME UtilityControlRoom-COL-Z2T3N08-CTLFireability-04
FORMULA_NAME UtilityControlRoom-COL-Z2T3N08-CTLFireability-05
FORMULA_NAME UtilityControlRoom-COL-Z2T3N08-CTLFireability-06
FORMULA_NAME UtilityControlRoom-COL-Z2T3N08-CTLFireability-07
FORMULA_NAME UtilityControlRoom-COL-Z2T3N08-CTLFireability-08
FORMULA_NAME UtilityControlRoom-COL-Z2T3N08-CTLFireability-09
FORMULA_NAME UtilityControlRoom-COL-Z2T3N08-CTLFireability-10
FORMULA_NAME UtilityControlRoom-COL-Z2T3N08-CTLFireability-11
FORMULA_NAME UtilityControlRoom-COL-Z2T3N08-CTLFireability-12
FORMULA_NAME UtilityControlRoom-COL-Z2T3N08-CTLFireability-13
FORMULA_NAME UtilityControlRoom-COL-Z2T3N08-CTLFireability-14
FORMULA_NAME UtilityControlRoom-COL-Z2T3N08-CTLFireability-15
=== Now, execution of the tool begins
BK_START 1679359318992
bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marciexred
BK_EXAMINATION=CTLFireability
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=UtilityControlRoom-COL-Z2T3N08
Applying reductions before tool marcie
Invoking reducer
Running Version 202303021504
[2023-03-21 00:42:00] [INFO ] Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, CTLFireability, -timeout, 360, -rebuildPNML]
[2023-03-21 00:42:00] [INFO ] Parsing pnml file : /home/mcc/execution/model.pnml
[2023-03-21 00:42:00] [INFO ] Detected file is not PT type :http://www.pnml.org/version-2009/grammar/symmetricnet
log4j:WARN No appenders could be found for logger (org.apache.axiom.locator.DefaultOMMetaFactoryLocator).
log4j:WARN Please initialize the log4j system properly.
log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.
[2023-03-21 00:42:00] [WARNING] Using fallBack plugin, rng conformance not checked
[2023-03-21 00:42:01] [INFO ] Load time of PNML (colored model parsed with PNMLFW) : 618 ms
[2023-03-21 00:42:01] [INFO ] Imported 13 HL places and 12 HL transitions for a total of 140 PT places and 216.0 transition bindings in 12 ms.
Parsed 16 properties from file /home/mcc/execution/CTLFireability.xml in 12 ms.
[2023-03-21 00:42:01] [INFO ] Built PT skeleton of HLPN with 13 places and 12 transitions 37 arcs in 4 ms.
[2023-03-21 00:42:01] [INFO ] Skeletonized 16 HLPN properties in 3 ms.
Computed a total of 0 stabilizing places and 0 stable transitions
Remains 12 properties that can be checked using skeleton over-approximation.
Ensure Unique test removed 1 transitions
Reduce redundant transitions removed 1 transitions.
Computed a total of 0 stabilizing places and 0 stable transitions
Finished random walk after 334 steps, including 0 resets, run visited all 18 properties in 23 ms. (steps per millisecond=14 )
[2023-03-21 00:42:01] [INFO ] Flatten gal took : 15 ms
[2023-03-21 00:42:01] [INFO ] Flatten gal took : 3 ms
Transition timeout forces synchronizations/join behavior on parameter c of sort Cli
Domain [Cli(8), Z(2), Z(2)] of place MovetoZ breaks symmetries in sort Z
[2023-03-21 00:42:01] [INFO ] Unfolded HLPN to a Petri net with 140 places and 216 transitions 680 arcs in 18 ms.
[2023-03-21 00:42:01] [INFO ] Unfolded 16 HLPN properties in 0 ms.
[2023-03-21 00:42:01] [INFO ] Reduced 8 identical enabling conditions.
[2023-03-21 00:42:01] [INFO ] Reduced 8 identical enabling conditions.
[2023-03-21 00:42:01] [INFO ] Reduced 8 identical enabling conditions.
[2023-03-21 00:42:01] [INFO ] Reduced 8 identical enabling conditions.
[2023-03-21 00:42:01] [INFO ] Reduced 8 identical enabling conditions.
[2023-03-21 00:42:01] [INFO ] Reduced 8 identical enabling conditions.
[2023-03-21 00:42:01] [INFO ] Reduced 8 identical enabling conditions.
Ensure Unique test removed 32 transitions
Reduce redundant transitions removed 32 transitions.
Support contains 140 out of 140 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 140/140 places, 184/184 transitions.
Applied a total of 0 rules in 7 ms. Remains 140 /140 variables (removed 0) and now considering 184/184 (removed 0) transitions.
// Phase 1: matrix 184 rows 140 cols
[2023-03-21 00:42:01] [INFO ] Computed 19 place invariants in 20 ms
[2023-03-21 00:42:01] [INFO ] Implicit Places using invariants in 176 ms returned []
[2023-03-21 00:42:01] [INFO ] Invariant cache hit.
[2023-03-21 00:42:01] [INFO ] Implicit Places using invariants and state equation in 97 ms returned []
Implicit Place search using SMT with State Equation took 297 ms to find 0 implicit places.
[2023-03-21 00:42:01] [INFO ] Invariant cache hit.
[2023-03-21 00:42:01] [INFO ] Dead Transitions using invariants and state equation in 133 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 439 ms. Remains : 140/140 places, 184/184 transitions.
Support contains 140 out of 140 places after structural reductions.
[2023-03-21 00:42:01] [INFO ] Flatten gal took : 24 ms
[2023-03-21 00:42:01] [INFO ] Flatten gal took : 23 ms
[2023-03-21 00:42:02] [INFO ] Input system was already deterministic with 184 transitions.
Finished random walk after 693 steps, including 0 resets, run visited all 29 properties in 46 ms. (steps per millisecond=15 )
[2023-03-21 00:42:02] [INFO ] Flatten gal took : 15 ms
[2023-03-21 00:42:02] [INFO ] Flatten gal took : 21 ms
[2023-03-21 00:42:02] [INFO ] Input system was already deterministic with 184 transitions.
Computed a total of 0 stabilizing places and 0 stable transitions
Starting structural reductions in LTL mode, iteration 0 : 140/140 places, 184/184 transitions.
Discarding 16 places :
Symmetric choice reduction at 0 with 16 rule applications. Total rules 16 place count 124 transition count 168
Iterating global reduction 0 with 16 rules applied. Total rules applied 32 place count 124 transition count 168
Applied a total of 32 rules in 9 ms. Remains 124 /140 variables (removed 16) and now considering 168/184 (removed 16) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 9 ms. Remains : 124/140 places, 168/184 transitions.
[2023-03-21 00:42:02] [INFO ] Flatten gal took : 9 ms
[2023-03-21 00:42:02] [INFO ] Flatten gal took : 10 ms
[2023-03-21 00:42:02] [INFO ] Input system was already deterministic with 168 transitions.
Starting structural reductions in LTL mode, iteration 0 : 140/140 places, 184/184 transitions.
Applied a total of 0 rules in 3 ms. Remains 140 /140 variables (removed 0) and now considering 184/184 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 3 ms. Remains : 140/140 places, 184/184 transitions.
[2023-03-21 00:42:02] [INFO ] Flatten gal took : 7 ms
[2023-03-21 00:42:02] [INFO ] Flatten gal took : 12 ms
[2023-03-21 00:42:02] [INFO ] Input system was already deterministic with 184 transitions.
Starting structural reductions in LTL mode, iteration 0 : 140/140 places, 184/184 transitions.
Applied a total of 0 rules in 1 ms. Remains 140 /140 variables (removed 0) and now considering 184/184 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 2 ms. Remains : 140/140 places, 184/184 transitions.
[2023-03-21 00:42:02] [INFO ] Flatten gal took : 12 ms
[2023-03-21 00:42:02] [INFO ] Flatten gal took : 8 ms
[2023-03-21 00:42:02] [INFO ] Input system was already deterministic with 184 transitions.
Starting structural reductions in LTL mode, iteration 0 : 140/140 places, 184/184 transitions.
Discarding 16 places :
Symmetric choice reduction at 0 with 16 rule applications. Total rules 16 place count 124 transition count 168
Iterating global reduction 0 with 16 rules applied. Total rules applied 32 place count 124 transition count 168
Applied a total of 32 rules in 5 ms. Remains 124 /140 variables (removed 16) and now considering 168/184 (removed 16) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 5 ms. Remains : 124/140 places, 168/184 transitions.
[2023-03-21 00:42:02] [INFO ] Flatten gal took : 7 ms
[2023-03-21 00:42:02] [INFO ] Flatten gal took : 7 ms
[2023-03-21 00:42:02] [INFO ] Input system was already deterministic with 168 transitions.
Starting structural reductions in LTL mode, iteration 0 : 140/140 places, 184/184 transitions.
Discarding 16 places :
Symmetric choice reduction at 0 with 16 rule applications. Total rules 16 place count 124 transition count 168
Iterating global reduction 0 with 16 rules applied. Total rules applied 32 place count 124 transition count 168
Applied a total of 32 rules in 6 ms. Remains 124 /140 variables (removed 16) and now considering 168/184 (removed 16) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 6 ms. Remains : 124/140 places, 168/184 transitions.
[2023-03-21 00:42:02] [INFO ] Flatten gal took : 7 ms
[2023-03-21 00:42:02] [INFO ] Flatten gal took : 7 ms
[2023-03-21 00:42:02] [INFO ] Input system was already deterministic with 168 transitions.
Starting structural reductions in LTL mode, iteration 0 : 140/140 places, 184/184 transitions.
Applied a total of 0 rules in 3 ms. Remains 140 /140 variables (removed 0) and now considering 184/184 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 3 ms. Remains : 140/140 places, 184/184 transitions.
[2023-03-21 00:42:02] [INFO ] Flatten gal took : 7 ms
[2023-03-21 00:42:02] [INFO ] Flatten gal took : 8 ms
[2023-03-21 00:42:02] [INFO ] Input system was already deterministic with 184 transitions.
Starting structural reductions in LTL mode, iteration 0 : 140/140 places, 184/184 transitions.
Discarding 16 places :
Symmetric choice reduction at 0 with 16 rule applications. Total rules 16 place count 124 transition count 168
Iterating global reduction 0 with 16 rules applied. Total rules applied 32 place count 124 transition count 168
Applied a total of 32 rules in 5 ms. Remains 124 /140 variables (removed 16) and now considering 168/184 (removed 16) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 5 ms. Remains : 124/140 places, 168/184 transitions.
[2023-03-21 00:42:02] [INFO ] Flatten gal took : 7 ms
[2023-03-21 00:42:02] [INFO ] Flatten gal took : 8 ms
[2023-03-21 00:42:02] [INFO ] Input system was already deterministic with 168 transitions.
Starting structural reductions in LTL mode, iteration 0 : 140/140 places, 184/184 transitions.
Discarding 16 places :
Symmetric choice reduction at 0 with 16 rule applications. Total rules 16 place count 124 transition count 168
Iterating global reduction 0 with 16 rules applied. Total rules applied 32 place count 124 transition count 168
Applied a total of 32 rules in 5 ms. Remains 124 /140 variables (removed 16) and now considering 168/184 (removed 16) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 5 ms. Remains : 124/140 places, 168/184 transitions.
[2023-03-21 00:42:02] [INFO ] Flatten gal took : 6 ms
[2023-03-21 00:42:02] [INFO ] Flatten gal took : 6 ms
[2023-03-21 00:42:02] [INFO ] Input system was already deterministic with 168 transitions.
Starting structural reductions in LTL mode, iteration 0 : 140/140 places, 184/184 transitions.
Discarding 16 places :
Symmetric choice reduction at 0 with 16 rule applications. Total rules 16 place count 124 transition count 168
Iterating global reduction 0 with 16 rules applied. Total rules applied 32 place count 124 transition count 168
Applied a total of 32 rules in 3 ms. Remains 124 /140 variables (removed 16) and now considering 168/184 (removed 16) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 3 ms. Remains : 124/140 places, 168/184 transitions.
[2023-03-21 00:42:02] [INFO ] Flatten gal took : 6 ms
[2023-03-21 00:42:02] [INFO ] Flatten gal took : 7 ms
[2023-03-21 00:42:02] [INFO ] Input system was already deterministic with 168 transitions.
Starting structural reductions in LTL mode, iteration 0 : 140/140 places, 184/184 transitions.
Discarding 16 places :
Symmetric choice reduction at 0 with 16 rule applications. Total rules 16 place count 124 transition count 168
Iterating global reduction 0 with 16 rules applied. Total rules applied 32 place count 124 transition count 168
Applied a total of 32 rules in 5 ms. Remains 124 /140 variables (removed 16) and now considering 168/184 (removed 16) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 5 ms. Remains : 124/140 places, 168/184 transitions.
[2023-03-21 00:42:02] [INFO ] Flatten gal took : 13 ms
[2023-03-21 00:42:02] [INFO ] Flatten gal took : 6 ms
[2023-03-21 00:42:02] [INFO ] Input system was already deterministic with 168 transitions.
Starting structural reductions in LTL mode, iteration 0 : 140/140 places, 184/184 transitions.
Applied a total of 0 rules in 2 ms. Remains 140 /140 variables (removed 0) and now considering 184/184 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 2 ms. Remains : 140/140 places, 184/184 transitions.
[2023-03-21 00:42:02] [INFO ] Flatten gal took : 6 ms
[2023-03-21 00:42:02] [INFO ] Flatten gal took : 7 ms
[2023-03-21 00:42:03] [INFO ] Input system was already deterministic with 184 transitions.
Starting structural reductions in LTL mode, iteration 0 : 140/140 places, 184/184 transitions.
Discarding 16 places :
Symmetric choice reduction at 0 with 16 rule applications. Total rules 16 place count 124 transition count 168
Iterating global reduction 0 with 16 rules applied. Total rules applied 32 place count 124 transition count 168
Applied a total of 32 rules in 15 ms. Remains 124 /140 variables (removed 16) and now considering 168/184 (removed 16) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 16 ms. Remains : 124/140 places, 168/184 transitions.
[2023-03-21 00:42:03] [INFO ] Flatten gal took : 6 ms
[2023-03-21 00:42:03] [INFO ] Flatten gal took : 11 ms
[2023-03-21 00:42:03] [INFO ] Input system was already deterministic with 168 transitions.
Starting structural reductions in LTL mode, iteration 0 : 140/140 places, 184/184 transitions.
Applied a total of 0 rules in 1 ms. Remains 140 /140 variables (removed 0) and now considering 184/184 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 1 ms. Remains : 140/140 places, 184/184 transitions.
[2023-03-21 00:42:03] [INFO ] Flatten gal took : 6 ms
[2023-03-21 00:42:03] [INFO ] Flatten gal took : 9 ms
[2023-03-21 00:42:03] [INFO ] Input system was already deterministic with 184 transitions.
Starting structural reductions in LTL mode, iteration 0 : 140/140 places, 184/184 transitions.
Applied a total of 0 rules in 1 ms. Remains 140 /140 variables (removed 0) and now considering 184/184 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 1 ms. Remains : 140/140 places, 184/184 transitions.
[2023-03-21 00:42:03] [INFO ] Flatten gal took : 7 ms
[2023-03-21 00:42:03] [INFO ] Flatten gal took : 8 ms
[2023-03-21 00:42:03] [INFO ] Input system was already deterministic with 184 transitions.
Starting structural reductions in LTL mode, iteration 0 : 140/140 places, 184/184 transitions.
Discarding 16 places :
Symmetric choice reduction at 0 with 16 rule applications. Total rules 16 place count 124 transition count 168
Iterating global reduction 0 with 16 rules applied. Total rules applied 32 place count 124 transition count 168
Applied a total of 32 rules in 3 ms. Remains 124 /140 variables (removed 16) and now considering 168/184 (removed 16) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 3 ms. Remains : 124/140 places, 168/184 transitions.
[2023-03-21 00:42:03] [INFO ] Flatten gal took : 5 ms
[2023-03-21 00:42:03] [INFO ] Flatten gal took : 6 ms
[2023-03-21 00:42:03] [INFO ] Input system was already deterministic with 168 transitions.
Starting structural reductions in LTL mode, iteration 0 : 140/140 places, 184/184 transitions.
Applied a total of 0 rules in 1 ms. Remains 140 /140 variables (removed 0) and now considering 184/184 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 1 ms. Remains : 140/140 places, 184/184 transitions.
[2023-03-21 00:42:03] [INFO ] Flatten gal took : 9 ms
[2023-03-21 00:42:03] [INFO ] Flatten gal took : 7 ms
[2023-03-21 00:42:03] [INFO ] Input system was already deterministic with 184 transitions.
[2023-03-21 00:42:03] [INFO ] Flatten gal took : 16 ms
[2023-03-21 00:42:03] [INFO ] Flatten gal took : 17 ms
[2023-03-21 00:42:03] [INFO ] Export to MCC of 16 properties in file /home/mcc/execution/CTLFireability.sr.xml took 17 ms.
[2023-03-21 00:42:03] [INFO ] Export to PNML in file /home/mcc/execution/model.sr.pnml of net with 140 places, 184 transitions and 552 arcs took 1 ms.
Total runtime 3103 ms.
There are residual formulas that ITS could not solve within timeout
timeout --kill-after=10s --signal=SIGINT 1m for testing only
Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: /home/mcc/BenchKit/bin//../reducer/bin//../../marcie/bin/marcie --net-file=model.pnml --mcc-file=CTLFireability.xml --memory=6 --mcc-mode
parse successfull
net created successfully
Net: Petri
(NrP: 140 NrTr: 184 NrArc: 552)
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.003sec
net check time: 0m 0.000sec
init dd package: 0m 2.759sec
RS generation: 0m24.978sec
-> reachability set: #nodes 285072 (2.9e+05) #states 2,607,925,383 (9)
starting MCC model checker
--------------------------
checking: AX [EF [AG [[EF [[[[1<=p97 | 1<=p96] | [1<=p91 | 1<=p90]] | [[1<=p93 | 1<=p92] | [1<=p95 | 1<=p94]]]] & [[[[1<=p32 | 1<=p33] | [1<=p34 | 1<=p35]] | [[1<=p36 | 1<=p37] | [1<=p39 | 1<=p38]]] | [[[1<=p41 | 1<=p40] | [1<=p26 | 1<=p27]] | [[1<=p28 | 1<=p29] | [1<=p30 | 1<=p31]]]]]]]]
normalized: ~ [EX [~ [E [true U ~ [E [true U ~ [[[[[[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]] | [[1<=p41 | 1<=p40] | [1<=p26 | 1<=p27]]] | [[[1<=p36 | 1<=p37] | [1<=p39 | 1<=p38]] | [[1<=p34 | 1<=p35] | [1<=p32 | 1<=p33]]]] & E [true U [[[1<=p95 | 1<=p94] | [1<=p93 | 1<=p92]] | [[1<=p91 | 1<=p90] | [1<=p97 | 1<=p96]]]]]]]]]]]]
abstracting: (1<=p96)
states: 532,849,128 (8)
abstracting: (1<=p97)
states: 532,849,128 (8)
abstracting: (1<=p90)
states: 532,849,128 (8)
abstracting: (1<=p91)
states: 532,849,128 (8)
abstracting: (1<=p92)
states: 532,849,128 (8)
abstracting: (1<=p93)
states: 532,849,128 (8)
abstracting: (1<=p94)
states: 532,849,128 (8)
abstracting: (1<=p95)
states: 532,849,128 (8)
abstracting: (1<=p33)
states: 63,059,864 (7)
abstracting: (1<=p32)
states: 63,059,864 (7)
abstracting: (1<=p35)
states: 63,059,864 (7)
abstracting: (1<=p34)
states: 63,059,864 (7)
abstracting: (1<=p38)
states: 63,059,864 (7)
abstracting: (1<=p39)
states: 63,059,864 (7)
abstracting: (1<=p37)
states: 63,059,864 (7)
abstracting: (1<=p36)
states: 63,059,864 (7)
abstracting: (1<=p27)
states: 63,059,864 (7)
abstracting: (1<=p26)
states: 63,059,864 (7)
abstracting: (1<=p40)
states: 63,059,864 (7)
abstracting: (1<=p41)
states: 63,059,864 (7)
abstracting: (1<=p29)
states: 63,059,864 (7)
abstracting: (1<=p28)
states: 63,059,864 (7)
abstracting: (1<=p31)
states: 63,059,864 (7)
abstracting: (1<=p30)
states: 63,059,864 (7)
.-> the formula is FALSE
FORMULA UtilityControlRoom-COL-Z2T3N08-CTLFireability-09 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m25.238sec
checking: [AF [EX [[[[[[1<=p86 & 1<=p122] | [1<=p83 & 1<=p120]] | [[1<=p81 & 1<=p119] | [1<=p78 & 1<=p118]]] | [[[1<=p76 & 1<=p117] | [1<=p75 & 1<=p116]] | [[1<=p89 & 1<=p123] | [1<=p85 & 1<=p121]]]] | [[[[1<=p82 & 1<=p120] | [1<=p87 & 1<=p122]] | [[1<=p79 & 1<=p118] | [1<=p77 & 1<=p117]]] | [[[1<=p74 & 1<=p116] | [1<=p80 & 1<=p119]] | [[1<=p84 & 1<=p121] | [1<=p88 & 1<=p123]]]]]]] | AG [[[[1<=p114 | 1<=p115] | [1<=p112 | 1<=p113]] | [[1<=p110 | 1<=p111] | [1<=p108 | 1<=p109]]]]]
normalized: [~ [E [true U ~ [[[[1<=p108 | 1<=p109] | [1<=p110 | 1<=p111]] | [[1<=p112 | 1<=p113] | [1<=p114 | 1<=p115]]]]]] | ~ [EG [~ [EX [[[[[[1<=p88 & 1<=p123] | [1<=p84 & 1<=p121]] | [[1<=p80 & 1<=p119] | [1<=p74 & 1<=p116]]] | [[[1<=p77 & 1<=p117] | [1<=p79 & 1<=p118]] | [[1<=p87 & 1<=p122] | [1<=p82 & 1<=p120]]]] | [[[[1<=p85 & 1<=p121] | [1<=p89 & 1<=p123]] | [[1<=p75 & 1<=p116] | [1<=p76 & 1<=p117]]] | [[[1<=p78 & 1<=p118] | [1<=p81 & 1<=p119]] | [[1<=p83 & 1<=p120] | [1<=p86 & 1<=p122]]]]]]]]]]
abstracting: (1<=p122)
states: 1,051,513,148 (9)
abstracting: (1<=p86)
states: 63,059,864 (7)
abstracting: (1<=p120)
states: 1,051,513,148 (9)
abstracting: (1<=p83)
states: 63,059,864 (7)
abstracting: (1<=p119)
states: 1,051,513,148 (9)
abstracting: (1<=p81)
states: 63,059,864 (7)
abstracting: (1<=p118)
states: 1,051,513,148 (9)
abstracting: (1<=p78)
states: 63,059,864 (7)
abstracting: (1<=p117)
states: 1,051,513,148 (9)
abstracting: (1<=p76)
states: 63,059,864 (7)
abstracting: (1<=p116)
states: 1,051,513,148 (9)
abstracting: (1<=p75)
states: 63,059,864 (7)
abstracting: (1<=p123)
states: 1,051,513,148 (9)
abstracting: (1<=p89)
states: 63,059,864 (7)
abstracting: (1<=p121)
states: 1,051,513,148 (9)
abstracting: (1<=p85)
states: 63,059,864 (7)
abstracting: (1<=p120)
states: 1,051,513,148 (9)
abstracting: (1<=p82)
states: 63,059,864 (7)
abstracting: (1<=p122)
states: 1,051,513,148 (9)
abstracting: (1<=p87)
states: 63,059,864 (7)
abstracting: (1<=p118)
states: 1,051,513,148 (9)
abstracting: (1<=p79)
states: 63,059,864 (7)
abstracting: (1<=p117)
states: 1,051,513,148 (9)
abstracting: (1<=p77)
states: 63,059,864 (7)
abstracting: (1<=p116)
states: 1,051,513,148 (9)
abstracting: (1<=p74)
states: 63,059,864 (7)
abstracting: (1<=p119)
states: 1,051,513,148 (9)
abstracting: (1<=p80)
states: 63,059,864 (7)
abstracting: (1<=p121)
states: 1,051,513,148 (9)
abstracting: (1<=p84)
states: 63,059,864 (7)
abstracting: (1<=p123)
states: 1,051,513,148 (9)
abstracting: (1<=p88)
states: 63,059,864 (7)
...................
before gc: list nodes free: 24635
after gc: idd nodes used:4581135, unused:59418865; list nodes free:264367389
.MC time: 3m57.226sec
checking: AX [[AX [EF [[[[p101<=0 & p100<=0] & [p103<=0 & p102<=0]] & [[p106<=0 & p104<=0] & [p107<=0 & p105<=0]]]]] & EF [[AG [[[[p114<=0 & p115<=0] & [p112<=0 & p113<=0]] & [[p110<=0 & p111<=0] & [p108<=0 & p109<=0]]]] & [[[[[1<=p99 & 1<=p135] | [1<=p99 & 1<=p136]] | [[1<=p99 & 1<=p133] | [1<=p99 & 1<=p134]]] | [[[1<=p99 & 1<=p139] | [1<=p99 & 1<=p137]] | [[1<=p99 & 1<=p138] | [1<=p99 & 1<=p127]]]] | [[[[1<=p99 & 1<=p128] | [1<=p99 & 1<=p125]] | [[1<=p99 & 1<=p126] | [1<=p99 & 1<=p131]]] | [[[1<=p99 & 1<=p132] | [1<=p99 & 1<=p129]] | [[1<=p99 & 1<=p130] | [1<=p99 & 1<=p124]]]]]]]]]
normalized: ~ [EX [~ [[E [true U [[[[[[1<=p99 & 1<=p124] | [1<=p99 & 1<=p130]] | [[1<=p99 & 1<=p129] | [1<=p99 & 1<=p132]]] | [[[1<=p99 & 1<=p131] | [1<=p99 & 1<=p126]] | [[1<=p99 & 1<=p125] | [1<=p99 & 1<=p128]]]] | [[[[1<=p99 & 1<=p127] | [1<=p99 & 1<=p138]] | [[1<=p99 & 1<=p137] | [1<=p99 & 1<=p139]]] | [[[1<=p99 & 1<=p134] | [1<=p99 & 1<=p133]] | [[1<=p99 & 1<=p136] | [1<=p99 & 1<=p135]]]]] & ~ [E [true U ~ [[[[p108<=0 & p109<=0] & [p110<=0 & p111<=0]] & [[p112<=0 & p113<=0] & [p114<=0 & p115<=0]]]]]]]] & ~ [EX [~ [E [true U [[[p107<=0 & p105<=0] & [p106<=0 & p104<=0]] & [[p103<=0 & p102<=0] & [p101<=0 & p100<=0]]]]]]]]]]]
abstracting: (p100<=0)
states: 2,432,510,724 (9)
abstracting: (p101<=0)
states: 2,432,510,724 (9)
abstracting: (p102<=0)
states: 2,432,510,724 (9)
abstracting: (p103<=0)
states: 2,432,510,724 (9)
abstracting: (p104<=0)
states: 2,432,510,724 (9)
abstracting: (p106<=0)
states: 2,432,510,724 (9)
abstracting: (p105<=0)
states: 2,432,510,724 (9)
abstracting: (p107<=0)
states: 2,432,510,724 (9)
.abstracting: (p115<=0)
states: 1,556,412,235 (9)
abstracting: (p114<=0)
states: 1,556,412,235 (9)
abstracting: (p113<=0)
states: 1,556,412,235 (9)
abstracting: (p112<=0)
states: 1,556,412,235 (9)
abstracting: (p111<=0)
states: 1,556,412,235 (9)
abstracting: (p110<=0)
states: 1,556,412,235 (9)
abstracting: (p109<=0)
states: 1,556,412,235 (9)
abstracting: (p108<=0)
states: 1,556,412,235 (9)
abstracting: (1<=p135)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p136)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p133)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p134)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p139)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p137)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p138)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p127)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p128)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p125)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p126)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p131)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p132)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p129)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p130)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p124)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
.-> the formula is FALSE
FORMULA UtilityControlRoom-COL-Z2T3N08-CTLFireability-04 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m55.026sec
checking: [AG [[AF [[[[[[1<=p99 & 1<=p135] | [1<=p99 & 1<=p136]] | [[1<=p99 & 1<=p133] | [1<=p99 & 1<=p134]]] | [[[1<=p99 & 1<=p139] | [1<=p99 & 1<=p137]] | [[1<=p99 & 1<=p138] | [1<=p99 & 1<=p127]]]] | [[[[1<=p99 & 1<=p128] | [1<=p99 & 1<=p125]] | [[1<=p99 & 1<=p126] | [1<=p99 & 1<=p131]]] | [[[1<=p99 & 1<=p132] | [1<=p99 & 1<=p129]] | [[1<=p99 & 1<=p130] | [1<=p99 & 1<=p124]]]]]] & EX [AX [[[[1<=p97 | 1<=p96] | [1<=p91 | 1<=p90]] | [[1<=p93 | 1<=p92] | [1<=p95 | 1<=p94]]]]]]] | AF [AG [EF [[[[1<=p97 | 1<=p96] | [1<=p91 | 1<=p90]] | [[1<=p93 | 1<=p92] | [1<=p95 | 1<=p94]]]]]]]
normalized: [~ [EG [E [true U ~ [E [true U [[[1<=p95 | 1<=p94] | [1<=p93 | 1<=p92]] | [[1<=p91 | 1<=p90] | [1<=p97 | 1<=p96]]]]]]]] | ~ [E [true U ~ [[EX [~ [EX [~ [[[[1<=p95 | 1<=p94] | [1<=p93 | 1<=p92]] | [[1<=p91 | 1<=p90] | [1<=p97 | 1<=p96]]]]]]] & ~ [EG [~ [[[[[[1<=p99 & 1<=p124] | [1<=p99 & 1<=p130]] | [[1<=p99 & 1<=p129] | [1<=p99 & 1<=p132]]] | [[[1<=p99 & 1<=p131] | [1<=p99 & 1<=p126]] | [[1<=p99 & 1<=p125] | [1<=p99 & 1<=p128]]]] | [[[[1<=p99 & 1<=p127] | [1<=p99 & 1<=p138]] | [[1<=p99 & 1<=p137] | [1<=p99 & 1<=p139]]] | [[[1<=p99 & 1<=p134] | [1<=p99 & 1<=p133]] | [[1<=p99 & 1<=p136] | [1<=p99 & 1<=p135]]]]]]]]]]]]]
abstracting: (1<=p135)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p136)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p133)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p134)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p139)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p137)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p138)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p127)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p128)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p125)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p126)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p131)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p132)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p129)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p130)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p124)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
...................................
EG iterations: 35
abstracting: (1<=p96)
states: 532,849,128 (8)
abstracting: (1<=p97)
states: 532,849,128 (8)
abstracting: (1<=p90)
states: 532,849,128 (8)
abstracting: (1<=p91)
states: 532,849,128 (8)
abstracting: (1<=p92)
states: 532,849,128 (8)
abstracting: (1<=p93)
states: 532,849,128 (8)
abstracting: (1<=p94)
states: 532,849,128 (8)
abstracting: (1<=p95)
states: 532,849,128 (8)
..abstracting: (1<=p96)
states: 532,849,128 (8)
abstracting: (1<=p97)
states: 532,849,128 (8)
abstracting: (1<=p90)
states: 532,849,128 (8)
abstracting: (1<=p91)
states: 532,849,128 (8)
abstracting: (1<=p92)
states: 532,849,128 (8)
abstracting: (1<=p93)
states: 532,849,128 (8)
abstracting: (1<=p94)
states: 532,849,128 (8)
abstracting: (1<=p95)
states: 532,849,128 (8)
.
EG iterations: 1
-> the formula is TRUE
FORMULA UtilityControlRoom-COL-Z2T3N08-CTLFireability-06 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 2m18.331sec
checking: EX [EF [EG [[[[[[1<=p0 & [1<=p18 & 1<=p98]] | [1<=p1 & [1<=p25 & 1<=p98]]] | [[1<=p1 & [1<=p15 & 1<=p98]] | [1<=p1 & [1<=p13 & 1<=p98]]]] | [[[1<=p0 & [1<=p20 & 1<=p98]] | [1<=p0 & [1<=p10 & 1<=p98]]] | [[1<=p0 & [1<=p16 & 1<=p98]] | [1<=p0 & [1<=p14 & 1<=p98]]]]] | [[[[1<=p0 & [1<=p12 & 1<=p98]] | [1<=p0 & [1<=p24 & 1<=p98]]] | [[1<=p0 & [1<=p22 & 1<=p98]] | [1<=p1 & [1<=p11 & 1<=p98]]]] | [[[1<=p1 & [1<=p23 & 1<=p98]] | [1<=p1 & [1<=p17 & 1<=p98]]] | [[1<=p1 & [1<=p21 & 1<=p98]] | [1<=p1 & [1<=p19 & 1<=p98]]]]]]]]]
normalized: EX [E [true U EG [[[[[[1<=p1 & [1<=p19 & 1<=p98]] | [1<=p1 & [1<=p21 & 1<=p98]]] | [[1<=p1 & [1<=p17 & 1<=p98]] | [1<=p1 & [1<=p23 & 1<=p98]]]] | [[[1<=p1 & [1<=p11 & 1<=p98]] | [1<=p0 & [1<=p22 & 1<=p98]]] | [[1<=p0 & [1<=p24 & 1<=p98]] | [1<=p0 & [1<=p12 & 1<=p98]]]]] | [[[[1<=p0 & [1<=p14 & 1<=p98]] | [1<=p0 & [1<=p16 & 1<=p98]]] | [[1<=p0 & [1<=p10 & 1<=p98]] | [1<=p0 & [1<=p20 & 1<=p98]]]] | [[[1<=p1 & [1<=p13 & 1<=p98]] | [1<=p1 & [1<=p15 & 1<=p98]]] | [[1<=p1 & [1<=p25 & 1<=p98]] | [1<=p0 & [1<=p18 & 1<=p98]]]]]]]]]
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p18)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p25)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p15)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p13)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p20)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p10)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p16)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p14)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p12)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p24)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p22)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p11)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p23)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p17)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p21)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p19)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
.
EG iterations: 1
before gc: list nodes free: 1578454
after gc: idd nodes used:5881586, unused:58118414; list nodes free:262785647
.-> the formula is TRUE
FORMULA UtilityControlRoom-COL-Z2T3N08-CTLFireability-14 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 1m23.551sec
checking: AX [[EG [[[[[1<=p97 | [1<=p96 | 1<=p91]] | [1<=p90 | [1<=p93 | 1<=p92]]] | [[1<=p95 | [1<=p94 | [1<=p86 & 1<=p122]]] | [[1<=p83 & 1<=p120] | [[1<=p81 & 1<=p119] | [1<=p78 & 1<=p118]]]]] | [[[[1<=p76 & 1<=p117] | [[1<=p75 & 1<=p116] | [1<=p89 & 1<=p123]]] | [[1<=p85 & 1<=p121] | [[1<=p82 & 1<=p120] | [1<=p87 & 1<=p122]]]] | [[[1<=p79 & 1<=p118] | [[1<=p77 & 1<=p117] | [1<=p74 & 1<=p116]]] | [[1<=p80 & 1<=p119] | [[1<=p84 & 1<=p121] | [1<=p88 & 1<=p123]]]]]]] | E [AX [~ [[[[1<=p2 | 1<=p3] | [1<=p4 | 1<=p5]] | [[1<=p6 | 1<=p7] | [1<=p8 | 1<=p9]]]]] U EF [AG [[[[1<=p2 | 1<=p3] | [1<=p4 | 1<=p5]] | [[1<=p6 | 1<=p7] | [1<=p8 | 1<=p9]]]]]]]]
normalized: ~ [EX [~ [[E [~ [EX [[[[1<=p8 | 1<=p9] | [1<=p6 | 1<=p7]] | [[1<=p4 | 1<=p5] | [1<=p2 | 1<=p3]]]]] U E [true U ~ [E [true U ~ [[[[1<=p4 | 1<=p5] | [1<=p2 | 1<=p3]] | [[1<=p6 | 1<=p7] | [1<=p8 | 1<=p9]]]]]]]] | EG [[[[[[[1<=p88 & 1<=p123] | [1<=p84 & 1<=p121]] | [1<=p80 & 1<=p119]] | [[[1<=p74 & 1<=p116] | [1<=p77 & 1<=p117]] | [1<=p79 & 1<=p118]]] | [[[[1<=p87 & 1<=p122] | [1<=p82 & 1<=p120]] | [1<=p85 & 1<=p121]] | [[[1<=p89 & 1<=p123] | [1<=p75 & 1<=p116]] | [1<=p76 & 1<=p117]]]] | [[[[[1<=p78 & 1<=p118] | [1<=p81 & 1<=p119]] | [1<=p83 & 1<=p120]] | [1<=p95 | [1<=p94 | [1<=p86 & 1<=p122]]]] | [[1<=p90 | [1<=p93 | 1<=p92]] | [1<=p97 | [1<=p96 | 1<=p91]]]]]]]]]]
abstracting: (1<=p91)
states: 532,849,128 (8)
abstracting: (1<=p96)
states: 532,849,128 (8)
abstracting: (1<=p97)
states: 532,849,128 (8)
abstracting: (1<=p92)
states: 532,849,128 (8)
abstracting: (1<=p93)
states: 532,849,128 (8)
abstracting: (1<=p90)
states: 532,849,128 (8)
abstracting: (1<=p122)
states: 1,051,513,148 (9)
abstracting: (1<=p86)
states: 63,059,864 (7)
abstracting: (1<=p94)
states: 532,849,128 (8)
abstracting: (1<=p95)
states: 532,849,128 (8)
abstracting: (1<=p120)
states: 1,051,513,148 (9)
abstracting: (1<=p83)
states: 63,059,864 (7)
abstracting: (1<=p119)
states: 1,051,513,148 (9)
abstracting: (1<=p81)
states: 63,059,864 (7)
abstracting: (1<=p118)
states: 1,051,513,148 (9)
abstracting: (1<=p78)
states: 63,059,864 (7)
abstracting: (1<=p117)
states: 1,051,513,148 (9)
abstracting: (1<=p76)
states: 63,059,864 (7)
abstracting: (1<=p116)
states: 1,051,513,148 (9)
abstracting: (1<=p75)
states: 63,059,864 (7)
abstracting: (1<=p123)
states: 1,051,513,148 (9)
abstracting: (1<=p89)
states: 63,059,864 (7)
abstracting: (1<=p121)
states: 1,051,513,148 (9)
abstracting: (1<=p85)
states: 63,059,864 (7)
abstracting: (1<=p120)
states: 1,051,513,148 (9)
abstracting: (1<=p82)
states: 63,059,864 (7)
abstracting: (1<=p122)
states: 1,051,513,148 (9)
abstracting: (1<=p87)
states: 63,059,864 (7)
abstracting: (1<=p118)
states: 1,051,513,148 (9)
abstracting: (1<=p79)
states: 63,059,864 (7)
abstracting: (1<=p117)
states: 1,051,513,148 (9)
abstracting: (1<=p77)
states: 63,059,864 (7)
abstracting: (1<=p116)
states: 1,051,513,148 (9)
abstracting: (1<=p74)
states: 63,059,864 (7)
abstracting: (1<=p119)
states: 1,051,513,148 (9)
abstracting: (1<=p80)
states: 63,059,864 (7)
abstracting: (1<=p121)
states: 1,051,513,148 (9)
abstracting: (1<=p84)
states: 63,059,864 (7)
abstracting: (1<=p123)
states: 1,051,513,148 (9)
abstracting: (1<=p88)
states: 63,059,864 (7)
.
EG iterations: 1
abstracting: (1<=p9)
states: 266,424,564 (8)
abstracting: (1<=p8)
states: 266,424,564 (8)
abstracting: (1<=p7)
states: 266,424,564 (8)
abstracting: (1<=p6)
states: 266,424,564 (8)
abstracting: (1<=p3)
states: 266,424,564 (8)
abstracting: (1<=p2)
states: 266,424,564 (8)
abstracting: (1<=p5)
states: 266,424,564 (8)
abstracting: (1<=p4)
states: 266,424,564 (8)
abstracting: (1<=p3)
states: 266,424,564 (8)
abstracting: (1<=p2)
states: 266,424,564 (8)
abstracting: (1<=p5)
states: 266,424,564 (8)
abstracting: (1<=p4)
states: 266,424,564 (8)
abstracting: (1<=p7)
states: 266,424,564 (8)
abstracting: (1<=p6)
states: 266,424,564 (8)
abstracting: (1<=p9)
states: 266,424,564 (8)
abstracting: (1<=p8)
states: 266,424,564 (8)
..-> the formula is TRUE
FORMULA UtilityControlRoom-COL-Z2T3N08-CTLFireability-07 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m42.382sec
checking: AG [~ [E [AX [[[[1<=p101 | 1<=p100] | [1<=p103 | 1<=p102]] | [[1<=p106 | 1<=p104] | [1<=p107 | 1<=p105]]]] U E [[[[[[1<=p65 | 1<=p64] | [1<=p67 | 1<=p66]] | [[1<=p69 | 1<=p68] | [1<=p71 | 1<=p70]]] | [[[1<=p73 | 1<=p72] | [1<=p43 | 1<=p42]] | [[1<=p45 | 1<=p44] | [1<=p47 | 1<=p46]]]] | [[[[1<=p49 | 1<=p48] | [1<=p51 | 1<=p50]] | [[1<=p53 | 1<=p52] | [1<=p55 | 1<=p54]]] | [[[1<=p57 | 1<=p56] | [1<=p59 | 1<=p58]] | [[1<=p61 | 1<=p60] | [1<=p63 | 1<=p62]]]]] U [[[[[1<=p97 | 1<=p96] | [1<=p91 | 1<=p90]] | [[1<=p93 | 1<=p92] | [1<=p95 | 1<=p94]]] & [[[[[1<=p86 & 1<=p122] | [1<=p83 & 1<=p120]] | [[1<=p81 & 1<=p119] | [1<=p78 & 1<=p118]]] | [[[1<=p76 & 1<=p117] | [1<=p75 & 1<=p116]] | [[1<=p89 & 1<=p123] | [1<=p85 & 1<=p121]]]] | [[[[1<=p82 & 1<=p120] | [1<=p87 & 1<=p122]] | [[1<=p79 & 1<=p118] | [1<=p77 & 1<=p117]]] | [[[1<=p74 & 1<=p116] | [1<=p80 & 1<=p119]] | [[1<=p84 & 1<=p121] | [1<=p88 & 1<=p123]]]]]] & [[[[[1<=p32 | 1<=p33] | [1<=p34 | 1<=p35]] | [[1<=p36 | 1<=p37] | [1<=p39 | 1<=p38]]] | [[[1<=p41 | 1<=p40] | [1<=p26 | 1<=p27]] | [[1<=p28 | 1<=p29] | [1<=p30 | 1<=p31]]]] & [[[1<=p2 | 1<=p3] | [1<=p4 | 1<=p5]] | [[1<=p6 | 1<=p7] | [1<=p8 | 1<=p9]]]]]]]]]
normalized: ~ [E [true U E [~ [EX [~ [[[[1<=p107 | 1<=p105] | [1<=p106 | 1<=p104]] | [[1<=p103 | 1<=p102] | [1<=p101 | 1<=p100]]]]]] U E [[[[[[1<=p63 | 1<=p62] | [1<=p61 | 1<=p60]] | [[1<=p59 | 1<=p58] | [1<=p57 | 1<=p56]]] | [[[1<=p55 | 1<=p54] | [1<=p53 | 1<=p52]] | [[1<=p51 | 1<=p50] | [1<=p49 | 1<=p48]]]] | [[[[1<=p47 | 1<=p46] | [1<=p45 | 1<=p44]] | [[1<=p43 | 1<=p42] | [1<=p73 | 1<=p72]]] | [[[1<=p71 | 1<=p70] | [1<=p69 | 1<=p68]] | [[1<=p67 | 1<=p66] | [1<=p65 | 1<=p64]]]]] U [[[[[1<=p8 | 1<=p9] | [1<=p6 | 1<=p7]] | [[1<=p4 | 1<=p5] | [1<=p2 | 1<=p3]]] & [[[[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p41 | 1<=p40]]] | [[[1<=p39 | 1<=p38] | [1<=p36 | 1<=p37]] | [[1<=p34 | 1<=p35] | [1<=p32 | 1<=p33]]]]] & [[[[[[1<=p88 & 1<=p123] | [1<=p84 & 1<=p121]] | [[1<=p80 & 1<=p119] | [1<=p74 & 1<=p116]]] | [[[1<=p77 & 1<=p117] | [1<=p79 & 1<=p118]] | [[1<=p87 & 1<=p122] | [1<=p82 & 1<=p120]]]] | [[[[1<=p85 & 1<=p121] | [1<=p89 & 1<=p123]] | [[1<=p75 & 1<=p116] | [1<=p76 & 1<=p117]]] | [[[1<=p78 & 1<=p118] | [1<=p81 & 1<=p119]] | [[1<=p83 & 1<=p120] | [1<=p86 & 1<=p122]]]]] & [[[1<=p95 | 1<=p94] | [1<=p93 | 1<=p92]] | [[1<=p91 | 1<=p90] | [1<=p97 | 1<=p96]]]]]]]]]
abstracting: (1<=p96)
states: 532,849,128 (8)
abstracting: (1<=p97)
states: 532,849,128 (8)
abstracting: (1<=p90)
states: 532,849,128 (8)
abstracting: (1<=p91)
states: 532,849,128 (8)
abstracting: (1<=p92)
states: 532,849,128 (8)
abstracting: (1<=p93)
states: 532,849,128 (8)
abstracting: (1<=p94)
states: 532,849,128 (8)
abstracting: (1<=p95)
states: 532,849,128 (8)
abstracting: (1<=p122)
states: 1,051,513,148 (9)
abstracting: (1<=p86)
states: 63,059,864 (7)
abstracting: (1<=p120)
states: 1,051,513,148 (9)
abstracting: (1<=p83)
states: 63,059,864 (7)
abstracting: (1<=p119)
states: 1,051,513,148 (9)
abstracting: (1<=p81)
states: 63,059,864 (7)
abstracting: (1<=p118)
states: 1,051,513,148 (9)
abstracting: (1<=p78)
states: 63,059,864 (7)
abstracting: (1<=p117)
states: 1,051,513,148 (9)
abstracting: (1<=p76)
states: 63,059,864 (7)
abstracting: (1<=p116)
states: 1,051,513,148 (9)
abstracting: (1<=p75)
states: 63,059,864 (7)
abstracting: (1<=p123)
states: 1,051,513,148 (9)
abstracting: (1<=p89)
states: 63,059,864 (7)
abstracting: (1<=p121)
states: 1,051,513,148 (9)
abstracting: (1<=p85)
states: 63,059,864 (7)
abstracting: (1<=p120)
states: 1,051,513,148 (9)
abstracting: (1<=p82)
states: 63,059,864 (7)
abstracting: (1<=p122)
states: 1,051,513,148 (9)
abstracting: (1<=p87)
states: 63,059,864 (7)
abstracting: (1<=p118)
states: 1,051,513,148 (9)
abstracting: (1<=p79)
states: 63,059,864 (7)
abstracting: (1<=p117)
states: 1,051,513,148 (9)
abstracting: (1<=p77)
states: 63,059,864 (7)
abstracting: (1<=p116)
states: 1,051,513,148 (9)
abstracting: (1<=p74)
states: 63,059,864 (7)
abstracting: (1<=p119)
states: 1,051,513,148 (9)
abstracting: (1<=p80)
states: 63,059,864 (7)
abstracting: (1<=p121)
states: 1,051,513,148 (9)
abstracting: (1<=p84)
states: 63,059,864 (7)
abstracting: (1<=p123)
states: 1,051,513,148 (9)
abstracting: (1<=p88)
states: 63,059,864 (7)
abstracting: (1<=p33)
states: 63,059,864 (7)
abstracting: (1<=p32)
states: 63,059,864 (7)
abstracting: (1<=p35)
states: 63,059,864 (7)
abstracting: (1<=p34)
states: 63,059,864 (7)
abstracting: (1<=p37)
states: 63,059,864 (7)
abstracting: (1<=p36)
states: 63,059,864 (7)
abstracting: (1<=p38)
states: 63,059,864 (7)
abstracting: (1<=p39)
states: 63,059,864 (7)
abstracting: (1<=p40)
states: 63,059,864 (7)
abstracting: (1<=p41)
states: 63,059,864 (7)
abstracting: (1<=p27)
states: 63,059,864 (7)
abstracting: (1<=p26)
states: 63,059,864 (7)
abstracting: (1<=p29)
states: 63,059,864 (7)
abstracting: (1<=p28)
states: 63,059,864 (7)
abstracting: (1<=p31)
states: 63,059,864 (7)
abstracting: (1<=p30)
states: 63,059,864 (7)
abstracting: (1<=p3)
states: 266,424,564 (8)
abstracting: (1<=p2)
states: 266,424,564 (8)
abstracting: (1<=p5)
states: 266,424,564 (8)
abstracting: (1<=p4)
states: 266,424,564 (8)
abstracting: (1<=p7)
states: 266,424,564 (8)
abstracting: (1<=p6)
states: 266,424,564 (8)
abstracting: (1<=p9)
states: 266,424,564 (8)
abstracting: (1<=p8)
states: 266,424,564 (8)
abstracting: (1<=p64)
states: 63,059,864 (7)
abstracting: (1<=p65)
states: 63,059,864 (7)
abstracting: (1<=p66)
states: 63,059,864 (7)
abstracting: (1<=p67)
states: 63,059,864 (7)
abstracting: (1<=p68)
states: 63,059,864 (7)
abstracting: (1<=p69)
states: 63,059,864 (7)
abstracting: (1<=p70)
states: 63,059,864 (7)
abstracting: (1<=p71)
states: 63,059,864 (7)
abstracting: (1<=p72)
states: 63,059,864 (7)
abstracting: (1<=p73)
states: 63,059,864 (7)
abstracting: (1<=p42)
states: 63,059,864 (7)
abstracting: (1<=p43)
states: 63,059,864 (7)
abstracting: (1<=p44)
states: 63,059,864 (7)
abstracting: (1<=p45)
states: 63,059,864 (7)
abstracting: (1<=p46)
states: 63,059,864 (7)
abstracting: (1<=p47)
states: 63,059,864 (7)
abstracting: (1<=p48)
states: 63,059,864 (7)
abstracting: (1<=p49)
states: 63,059,864 (7)
abstracting: (1<=p50)
states: 63,059,864 (7)
abstracting: (1<=p51)
states: 63,059,864 (7)
abstracting: (1<=p52)
states: 63,059,864 (7)
abstracting: (1<=p53)
states: 63,059,864 (7)
abstracting: (1<=p54)
states: 63,059,864 (7)
abstracting: (1<=p55)
states: 63,059,864 (7)
abstracting: (1<=p56)
states: 63,059,864 (7)
abstracting: (1<=p57)
states: 63,059,864 (7)
abstracting: (1<=p58)
states: 63,059,864 (7)
abstracting: (1<=p59)
states: 63,059,864 (7)
abstracting: (1<=p60)
states: 63,059,864 (7)
abstracting: (1<=p61)
states: 63,059,864 (7)
abstracting: (1<=p62)
states: 63,059,864 (7)
abstracting: (1<=p63)
states: 63,059,864 (7)
abstracting: (1<=p100)
states: 175,414,659 (8)
abstracting: (1<=p101)
states: 175,414,659 (8)
abstracting: (1<=p102)
states: 175,414,659 (8)
abstracting: (1<=p103)
states: 175,414,659 (8)
abstracting: (1<=p104)
states: 175,414,659 (8)
abstracting: (1<=p106)
states: 175,414,659 (8)
abstracting: (1<=p105)
states: 175,414,659 (8)
abstracting: (1<=p107)
states: 175,414,659 (8)
.-> the formula is FALSE
FORMULA UtilityControlRoom-COL-Z2T3N08-CTLFireability-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 2m23.351sec
checking: EF [AX [[[[[[p32<=0 & [p33<=0 & p34<=0]] & [p35<=0 & [p36<=0 & p37<=0]]] & [[p39<=0 & [p38<=0 & p41<=0]] & [p40<=0 & [p26<=0 & p27<=0]]]] & [[[p28<=0 & [p29<=0 & p30<=0]] & [p31<=0 & [[p0<=0 | [p25<=0 | p98<=0]] & [p1<=0 | [p13<=0 | p98<=0]]]]] & [[[p0<=0 | [p20<=0 | p98<=0]] & [[p0<=0 | [p10<=0 | p98<=0]] & [[p21<=0 | p98<=0] | p0<=0]]] & [[p1<=0 | [p12<=0 | p98<=0]] & [[p0<=0 | [p16<=0 | p98<=0]] & [p1<=0 | [p22<=0 | p98<=0]]]]]]] & [[[[[p1<=0 | [p18<=0 | p98<=0]] & [[p0<=0 | [p24<=0 | p98<=0]] & [p0<=0 | [p19<=0 | p98<=0]]]] & [[p1<=0 | [p17<=0 | p98<=0]] & [[p0<=0 | [p15<=0 | p98<=0]] & [p1<=0 | [p21<=0 | p98<=0]]]]] & [[[p0<=0 | [p11<=0 | p98<=0]] & [[p0<=0 | [p13<=0 | p98<=0]] & [p1<=0 | [p20<=0 | p98<=0]]]] & [[p0<=0 | [p18<=0 | p98<=0]] & [[p1<=0 | [p25<=0 | p98<=0]] & [p1<=0 | [p15<=0 | p98<=0]]]]]] & [[[[p0<=0 | [p23<=0 | p98<=0]] & [[p1<=0 | [p10<=0 | p98<=0]] & [p1<=0 | [p24<=0 | p98<=0]]]] & [[p1<=0 | [p16<=0 | p98<=0]] & [[p0<=0 | [p14<=0 | p98<=0]] & [p0<=0 | [p12<=0 | p98<=0]]]]] & [[[p1<=0 | [p14<=0 | p98<=0]] & [[p0<=0 | [p17<=0 | p98<=0]] & [p0<=0 | [p22<=0 | p98<=0]]]] & [[[p1<=0 | [p11<=0 | p98<=0]] & [p1<=0 | [p23<=0 | p98<=0]]] & [[p1<=0 | [p19<=0 | p98<=0]] & [[[[[1<=p75 & 1<=p108] | [1<=p80 & 1<=p111]] | [[1<=p85 & 1<=p113] | [1<=p88 & 1<=p115]]] | [[[1<=p77 & 1<=p109] | [1<=p87 & 1<=p114]] | [[1<=p83 & 1<=p112] | [1<=p81 & 1<=p111]]]] | [[[[1<=p79 & 1<=p110] | [1<=p89 & 1<=p115]] | [[1<=p84 & 1<=p113] | [1<=p82 & 1<=p112]]] | [[[1<=p86 & 1<=p114] | [1<=p76 & 1<=p109]] | [[1<=p78 & 1<=p110] | [1<=p74 & 1<=p108]]]]]]]]]]]]]
normalized: E [true U ~ [EX [~ [[[[[[[[[[[[1<=p74 & 1<=p108] | [1<=p78 & 1<=p110]] | [[1<=p76 & 1<=p109] | [1<=p86 & 1<=p114]]] | [[[1<=p82 & 1<=p112] | [1<=p84 & 1<=p113]] | [[1<=p89 & 1<=p115] | [1<=p79 & 1<=p110]]]] | [[[[1<=p81 & 1<=p111] | [1<=p83 & 1<=p112]] | [[1<=p87 & 1<=p114] | [1<=p77 & 1<=p109]]] | [[[1<=p88 & 1<=p115] | [1<=p85 & 1<=p113]] | [[1<=p80 & 1<=p111] | [1<=p75 & 1<=p108]]]]] & [p1<=0 | [p19<=0 | p98<=0]]] & [[p1<=0 | [p23<=0 | p98<=0]] & [p1<=0 | [p11<=0 | p98<=0]]]] & [[[p0<=0 | [p22<=0 | p98<=0]] & [p0<=0 | [p17<=0 | p98<=0]]] & [p1<=0 | [p14<=0 | p98<=0]]]] & [[[[p0<=0 | [p12<=0 | p98<=0]] & [p0<=0 | [p14<=0 | p98<=0]]] & [p1<=0 | [p16<=0 | p98<=0]]] & [[[p1<=0 | [p24<=0 | p98<=0]] & [p1<=0 | [p10<=0 | p98<=0]]] & [p0<=0 | [p23<=0 | p98<=0]]]]] & [[[[[p1<=0 | [p15<=0 | p98<=0]] & [p1<=0 | [p25<=0 | p98<=0]]] & [p0<=0 | [p18<=0 | p98<=0]]] & [[[p1<=0 | [p20<=0 | p98<=0]] & [p0<=0 | [p13<=0 | p98<=0]]] & [p0<=0 | [p11<=0 | p98<=0]]]] & [[[[p1<=0 | [p21<=0 | p98<=0]] & [p0<=0 | [p15<=0 | p98<=0]]] & [p1<=0 | [p17<=0 | p98<=0]]] & [[[p0<=0 | [p19<=0 | p98<=0]] & [p0<=0 | [p24<=0 | p98<=0]]] & [p1<=0 | [p18<=0 | p98<=0]]]]]] & [[[[[[p1<=0 | [p22<=0 | p98<=0]] & [p0<=0 | [p16<=0 | p98<=0]]] & [p1<=0 | [p12<=0 | p98<=0]]] & [[[p0<=0 | [p21<=0 | p98<=0]] & [p0<=0 | [p10<=0 | p98<=0]]] & [p0<=0 | [p20<=0 | p98<=0]]]] & [[p31<=0 & [[p1<=0 | [p13<=0 | p98<=0]] & [p0<=0 | [p25<=0 | p98<=0]]]] & [p28<=0 & [p29<=0 & p30<=0]]]] & [[[p40<=0 & [p26<=0 & p27<=0]] & [p39<=0 & [p38<=0 & p41<=0]]] & [[p35<=0 & [p36<=0 & p37<=0]] & [p32<=0 & [p33<=0 & p34<=0]]]]]]]]]]
abstracting: (p34<=0)
states: 2,544,865,519 (9)
abstracting: (p33<=0)
states: 2,544,865,519 (9)
abstracting: (p32<=0)
states: 2,544,865,519 (9)
abstracting: (p37<=0)
states: 2,544,865,519 (9)
abstracting: (p36<=0)
states: 2,544,865,519 (9)
abstracting: (p35<=0)
states: 2,544,865,519 (9)
abstracting: (p41<=0)
states: 2,544,865,519 (9)
abstracting: (p38<=0)
states: 2,544,865,519 (9)
abstracting: (p39<=0)
states: 2,544,865,519 (9)
abstracting: (p27<=0)
states: 2,544,865,519 (9)
abstracting: (p26<=0)
states: 2,544,865,519 (9)
abstracting: (p40<=0)
states: 2,544,865,519 (9)
abstracting: (p30<=0)
states: 2,544,865,519 (9)
abstracting: (p29<=0)
states: 2,544,865,519 (9)
abstracting: (p28<=0)
states: 2,544,865,519 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p25<=0)
states: 2,075,076,255 (9)
abstracting: (p0<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p13<=0)
states: 2,075,076,255 (9)
abstracting: (p1<=0)
states: 2,286,743,613 (9)
abstracting: (p31<=0)
states: 2,544,865,519 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p20<=0)
states: 2,075,076,255 (9)
abstracting: (p0<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p10<=0)
states: 2,075,076,255 (9)
abstracting: (p0<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p21<=0)
states: 2,075,076,255 (9)
abstracting: (p0<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p12<=0)
states: 2,075,076,255 (9)
abstracting: (p1<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p16<=0)
states: 2,075,076,255 (9)
abstracting: (p0<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p22<=0)
states: 2,075,076,255 (9)
abstracting: (p1<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p18<=0)
states: 2,075,076,255 (9)
abstracting: (p1<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p24<=0)
states: 2,075,076,255 (9)
abstracting: (p0<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p19<=0)
states: 2,075,076,255 (9)
abstracting: (p0<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p17<=0)
states: 2,075,076,255 (9)
abstracting: (p1<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p15<=0)
states: 2,075,076,255 (9)
abstracting: (p0<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p21<=0)
states: 2,075,076,255 (9)
abstracting: (p1<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p11<=0)
states: 2,075,076,255 (9)
abstracting: (p0<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p13<=0)
states: 2,075,076,255 (9)
abstracting: (p0<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p20<=0)
states: 2,075,076,255 (9)
abstracting: (p1<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p18<=0)
states: 2,075,076,255 (9)
abstracting: (p0<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p25<=0)
states: 2,075,076,255 (9)
abstracting: (p1<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p15<=0)
states: 2,075,076,255 (9)
abstracting: (p1<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p23<=0)
states: 2,075,076,255 (9)
abstracting: (p0<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p10<=0)
states: 2,075,076,255 (9)
abstracting: (p1<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p24<=0)
states: 2,075,076,255 (9)
abstracting: (p1<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p16<=0)
states: 2,075,076,255 (9)
abstracting: (p1<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p14<=0)
states: 2,075,076,255 (9)
abstracting: (p0<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p12<=0)
states: 2,075,076,255 (9)
abstracting: (p0<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p14<=0)
states: 2,075,076,255 (9)
abstracting: (p1<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p17<=0)
states: 2,075,076,255 (9)
abstracting: (p0<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p22<=0)
states: 2,075,076,255 (9)
abstracting: (p0<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p11<=0)
states: 2,075,076,255 (9)
abstracting: (p1<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p23<=0)
states: 2,075,076,255 (9)
abstracting: (p1<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p19<=0)
states: 2,075,076,255 (9)
abstracting: (p1<=0)
states: 2,286,743,613 (9)
abstracting: (1<=p108)
states: 1,051,513,148 (9)
abstracting: (1<=p75)
states: 63,059,864 (7)
abstracting: (1<=p111)
states: 1,051,513,148 (9)
abstracting: (1<=p80)
states: 63,059,864 (7)
abstracting: (1<=p113)
states: 1,051,513,148 (9)
abstracting: (1<=p85)
states: 63,059,864 (7)
abstracting: (1<=p115)
states: 1,051,513,148 (9)
abstracting: (1<=p88)
states: 63,059,864 (7)
abstracting: (1<=p109)
states: 1,051,513,148 (9)
abstracting: (1<=p77)
states: 63,059,864 (7)
abstracting: (1<=p114)
states: 1,051,513,148 (9)
abstracting: (1<=p87)
states: 63,059,864 (7)
abstracting: (1<=p112)
states: 1,051,513,148 (9)
abstracting: (1<=p83)
states: 63,059,864 (7)
abstracting: (1<=p111)
states: 1,051,513,148 (9)
abstracting: (1<=p81)
states: 63,059,864 (7)
abstracting: (1<=p110)
states: 1,051,513,148 (9)
abstracting: (1<=p79)
states: 63,059,864 (7)
abstracting: (1<=p115)
states: 1,051,513,148 (9)
abstracting: (1<=p89)
states: 63,059,864 (7)
abstracting: (1<=p113)
states: 1,051,513,148 (9)
abstracting: (1<=p84)
states: 63,059,864 (7)
abstracting: (1<=p112)
states: 1,051,513,148 (9)
abstracting: (1<=p82)
states: 63,059,864 (7)
abstracting: (1<=p114)
states: 1,051,513,148 (9)
abstracting: (1<=p86)
states: 63,059,864 (7)
abstracting: (1<=p109)
states: 1,051,513,148 (9)
abstracting: (1<=p76)
states: 63,059,864 (7)
abstracting: (1<=p110)
states: 1,051,513,148 (9)
abstracting: (1<=p78)
states: 63,059,864 (7)
abstracting: (1<=p108)
states: 1,051,513,148 (9)
abstracting: (1<=p74)
states: 63,059,864 (7)
.
before gc: list nodes free: 1521128
after gc: idd nodes used:9705823, unused:54294177; list nodes free:245457450
-> the formula is TRUE
FORMULA UtilityControlRoom-COL-Z2T3N08-CTLFireability-03 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 1m46.700sec
checking: ~ [E [EF [AX [[[[[[1<=p65 | 1<=p64] | [1<=p67 | 1<=p66]] | [[1<=p69 | 1<=p68] | [1<=p71 | 1<=p70]]] | [[[1<=p73 | 1<=p72] | [1<=p43 | 1<=p42]] | [[1<=p45 | 1<=p44] | [1<=p47 | 1<=p46]]]] | [[[[1<=p49 | 1<=p48] | [1<=p51 | 1<=p50]] | [[1<=p53 | 1<=p52] | [1<=p55 | 1<=p54]]] | [[[1<=p57 | 1<=p56] | [1<=p59 | 1<=p58]] | [[1<=p61 | 1<=p60] | [1<=p63 | 1<=p62]]]]]]] U [[[AG [[~ [EG [[[[[[1<=p0 & [1<=p18 & 1<=p98]] | [1<=p1 & [1<=p25 & 1<=p98]]] | [[1<=p1 & [1<=p15 & 1<=p98]] | [1<=p1 & [1<=p13 & 1<=p98]]]] | [[[1<=p0 & [1<=p20 & 1<=p98]] | [1<=p0 & [1<=p10 & 1<=p98]]] | [[1<=p0 & [1<=p16 & 1<=p98]] | [1<=p0 & [1<=p14 & 1<=p98]]]]] | [[[[1<=p0 & [1<=p12 & 1<=p98]] | [1<=p0 & [1<=p24 & 1<=p98]]] | [[1<=p0 & [1<=p22 & 1<=p98]] | [1<=p1 & [1<=p11 & 1<=p98]]]] | [[[1<=p1 & [1<=p23 & 1<=p98]] | [1<=p1 & [1<=p17 & 1<=p98]]] | [[1<=p1 & [1<=p21 & 1<=p98]] | [1<=p1 & [1<=p19 & 1<=p98]]]]]]]] & A [[[[[[1<=p86 & 1<=p122] | [1<=p83 & 1<=p120]] | [[1<=p81 & 1<=p119] | [1<=p78 & 1<=p118]]] | [[[1<=p76 & 1<=p117] | [1<=p75 & 1<=p116]] | [[1<=p89 & 1<=p123] | [1<=p85 & 1<=p121]]]] | [[[[1<=p82 & 1<=p120] | [1<=p87 & 1<=p122]] | [[1<=p79 & 1<=p118] | [1<=p77 & 1<=p117]]] | [[[1<=p74 & 1<=p116] | [1<=p80 & 1<=p119]] | [[1<=p84 & 1<=p121] | [1<=p88 & 1<=p123]]]]] U [[[[[1<=p65 | 1<=p64] | [1<=p67 | 1<=p66]] | [[1<=p69 | 1<=p68] | [1<=p71 | 1<=p70]]] | [[[1<=p73 | 1<=p72] | [1<=p43 | 1<=p42]] | [[1<=p45 | 1<=p44] | [1<=p47 | 1<=p46]]]] | [[[[1<=p49 | 1<=p48] | [1<=p51 | 1<=p50]] | [[1<=p53 | 1<=p52] | [1<=p55 | 1<=p54]]] | [[[1<=p57 | 1<=p56] | [1<=p59 | 1<=p58]] | [[1<=p61 | 1<=p60] | [1<=p63 | 1<=p62]]]]]]]] | 1<=p97] | [1<=p96 | 1<=p91]] | [[1<=p90 | 1<=p93] | [1<=p92 | [1<=p95 | 1<=p94]]]]]]
normalized: ~ [E [E [true U ~ [EX [~ [[[[[[1<=p63 | 1<=p62] | [1<=p61 | 1<=p60]] | [[1<=p59 | 1<=p58] | [1<=p57 | 1<=p56]]] | [[[1<=p55 | 1<=p54] | [1<=p53 | 1<=p52]] | [[1<=p51 | 1<=p50] | [1<=p49 | 1<=p48]]]] | [[[[1<=p47 | 1<=p46] | [1<=p45 | 1<=p44]] | [[1<=p43 | 1<=p42] | [1<=p73 | 1<=p72]]] | [[[1<=p71 | 1<=p70] | [1<=p69 | 1<=p68]] | [[1<=p67 | 1<=p66] | [1<=p65 | 1<=p64]]]]]]]]] U [[[1<=p92 | [1<=p95 | 1<=p94]] | [1<=p90 | 1<=p93]] | [[1<=p96 | 1<=p91] | [1<=p97 | ~ [E [true U ~ [[[~ [EG [~ [[[[[[1<=p63 | 1<=p62] | [1<=p61 | 1<=p60]] | [[1<=p59 | 1<=p58] | [1<=p57 | 1<=p56]]] | [[[1<=p55 | 1<=p54] | [1<=p53 | 1<=p52]] | [[1<=p51 | 1<=p50] | [1<=p49 | 1<=p48]]]] | [[[[1<=p47 | 1<=p46] | [1<=p45 | 1<=p44]] | [[1<=p43 | 1<=p42] | [1<=p73 | 1<=p72]]] | [[[1<=p71 | 1<=p70] | [1<=p69 | 1<=p68]] | [[1<=p67 | 1<=p66] | [1<=p65 | 1<=p64]]]]]]]] & ~ [E [~ [[[[[[1<=p63 | 1<=p62] | [1<=p61 | 1<=p60]] | [[1<=p59 | 1<=p58] | [1<=p57 | 1<=p56]]] | [[[1<=p55 | 1<=p54] | [1<=p53 | 1<=p52]] | [[1<=p51 | 1<=p50] | [1<=p49 | 1<=p48]]]] | [[[[1<=p47 | 1<=p46] | [1<=p45 | 1<=p44]] | [[1<=p43 | 1<=p42] | [1<=p73 | 1<=p72]]] | [[[1<=p71 | 1<=p70] | [1<=p69 | 1<=p68]] | [[1<=p67 | 1<=p66] | [1<=p65 | 1<=p64]]]]]] U [~ [[[[[[1<=p88 & 1<=p123] | [1<=p84 & 1<=p121]] | [[1<=p80 & 1<=p119] | [1<=p74 & 1<=p116]]] | [[[1<=p77 & 1<=p117] | [1<=p79 & 1<=p118]] | [[1<=p87 & 1<=p122] | [1<=p82 & 1<=p120]]]] | [[[[1<=p85 & 1<=p121] | [1<=p89 & 1<=p123]] | [[1<=p75 & 1<=p116] | [1<=p76 & 1<=p117]]] | [[[1<=p78 & 1<=p118] | [1<=p81 & 1<=p119]] | [[1<=p83 & 1<=p120] | [1<=p86 & 1<=p122]]]]]] & ~ [[[[[[1<=p63 | 1<=p62] | [1<=p61 | 1<=p60]] | [[1<=p59 | 1<=p58] | [1<=p57 | 1<=p56]]] | [[[1<=p55 | 1<=p54] | [1<=p53 | 1<=p52]] | [[1<=p51 | 1<=p50] | [1<=p49 | 1<=p48]]]] | [[[[1<=p47 | 1<=p46] | [1<=p45 | 1<=p44]] | [[1<=p43 | 1<=p42] | [1<=p73 | 1<=p72]]] | [[[1<=p71 | 1<=p70] | [1<=p69 | 1<=p68]] | [[1<=p67 | 1<=p66] | [1<=p65 | 1<=p64]]]]]]]]]] & ~ [EG [[[[[[1<=p1 & [1<=p19 & 1<=p98]] | [1<=p1 & [1<=p21 & 1<=p98]]] | [[1<=p1 & [1<=p17 & 1<=p98]] | [1<=p1 & [1<=p23 & 1<=p98]]]] | [[[1<=p1 & [1<=p11 & 1<=p98]] | [1<=p0 & [1<=p22 & 1<=p98]]] | [[1<=p0 & [1<=p24 & 1<=p98]] | [1<=p0 & [1<=p12 & 1<=p98]]]]] | [[[[1<=p0 & [1<=p14 & 1<=p98]] | [1<=p0 & [1<=p16 & 1<=p98]]] | [[1<=p0 & [1<=p10 & 1<=p98]] | [1<=p0 & [1<=p20 & 1<=p98]]]] | [[[1<=p1 & [1<=p13 & 1<=p98]] | [1<=p1 & [1<=p15 & 1<=p98]]] | [[1<=p1 & [1<=p25 & 1<=p98]] | [1<=p0 & [1<=p18 & 1<=p98]]]]]]]]]]]]]]]]]
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p18)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p25)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p15)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p13)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p20)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p10)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p16)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p14)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p12)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p24)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p22)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p11)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p23)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p17)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p21)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p19)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
.
EG iterations: 1
abstracting: (1<=p64)
states: 63,059,864 (7)
abstracting: (1<=p65)
states: 63,059,864 (7)
abstracting: (1<=p66)
states: 63,059,864 (7)
abstracting: (1<=p67)
states: 63,059,864 (7)
abstracting: (1<=p68)
states: 63,059,864 (7)
abstracting: (1<=p69)
states: 63,059,864 (7)
abstracting: (1<=p70)
states: 63,059,864 (7)
abstracting: (1<=p71)
states: 63,059,864 (7)
abstracting: (1<=p72)
states: 63,059,864 (7)
abstracting: (1<=p73)
states: 63,059,864 (7)
abstracting: (1<=p42)
states: 63,059,864 (7)
abstracting: (1<=p43)
states: 63,059,864 (7)
abstracting: (1<=p44)
states: 63,059,864 (7)
abstracting: (1<=p45)
states: 63,059,864 (7)
abstracting: (1<=p46)
states: 63,059,864 (7)
abstracting: (1<=p47)
states: 63,059,864 (7)
abstracting: (1<=p48)
states: 63,059,864 (7)
abstracting: (1<=p49)
states: 63,059,864 (7)
abstracting: (1<=p50)
states: 63,059,864 (7)
abstracting: (1<=p51)
states: 63,059,864 (7)
abstracting: (1<=p52)
states: 63,059,864 (7)
abstracting: (1<=p53)
states: 63,059,864 (7)
abstracting: (1<=p54)
states: 63,059,864 (7)
abstracting: (1<=p55)
states: 63,059,864 (7)
abstracting: (1<=p56)
states: 63,059,864 (7)
abstracting: (1<=p57)
states: 63,059,864 (7)
abstracting: (1<=p58)
states: 63,059,864 (7)
abstracting: (1<=p59)
states: 63,059,864 (7)
abstracting: (1<=p60)
states: 63,059,864 (7)
abstracting: (1<=p61)
states: 63,059,864 (7)
abstracting: (1<=p62)
states: 63,059,864 (7)
abstracting: (1<=p63)
states: 63,059,864 (7)
abstracting: (1<=p122)
states: 1,051,513,148 (9)
abstracting: (1<=p86)
states: 63,059,864 (7)
abstracting: (1<=p120)
states: 1,051,513,148 (9)
abstracting: (1<=p83)
states: 63,059,864 (7)
abstracting: (1<=p119)
states: 1,051,513,148 (9)
abstracting: (1<=p81)
states: 63,059,864 (7)
abstracting: (1<=p118)
states: 1,051,513,148 (9)
abstracting: (1<=p78)
states: 63,059,864 (7)
abstracting: (1<=p117)
states: 1,051,513,148 (9)
abstracting: (1<=p76)
states: 63,059,864 (7)
abstracting: (1<=p116)
states: 1,051,513,148 (9)
abstracting: (1<=p75)
states: 63,059,864 (7)
abstracting: (1<=p123)
states: 1,051,513,148 (9)
abstracting: (1<=p89)
states: 63,059,864 (7)
abstracting: (1<=p121)
states: 1,051,513,148 (9)
abstracting: (1<=p85)
states: 63,059,864 (7)
abstracting: (1<=p120)
states: 1,051,513,148 (9)
abstracting: (1<=p82)
states: 63,059,864 (7)
abstracting: (1<=p122)
states: 1,051,513,148 (9)
abstracting: (1<=p87)
states: 63,059,864 (7)
abstracting: (1<=p118)
states: 1,051,513,148 (9)
abstracting: (1<=p79)
states: 63,059,864 (7)
abstracting: (1<=p117)
states: 1,051,513,148 (9)
abstracting: (1<=p77)
states: 63,059,864 (7)
abstracting: (1<=p116)
states: 1,051,513,148 (9)
abstracting: (1<=p74)
states: 63,059,864 (7)
abstracting: (1<=p119)
states: 1,051,513,148 (9)
abstracting: (1<=p80)
states: 63,059,864 (7)
abstracting: (1<=p121)
states: 1,051,513,148 (9)
abstracting: (1<=p84)
states: 63,059,864 (7)
abstracting: (1<=p123)
states: 1,051,513,148 (9)
abstracting: (1<=p88)
states: 63,059,864 (7)
abstracting: (1<=p64)
states: 63,059,864 (7)
abstracting: (1<=p65)
states: 63,059,864 (7)
abstracting: (1<=p66)
states: 63,059,864 (7)
abstracting: (1<=p67)
states: 63,059,864 (7)
abstracting: (1<=p68)
states: 63,059,864 (7)
abstracting: (1<=p69)
states: 63,059,864 (7)
abstracting: (1<=p70)
states: 63,059,864 (7)
abstracting: (1<=p71)
states: 63,059,864 (7)
abstracting: (1<=p72)
states: 63,059,864 (7)
abstracting: (1<=p73)
states: 63,059,864 (7)
abstracting: (1<=p42)
states: 63,059,864 (7)
abstracting: (1<=p43)
states: 63,059,864 (7)
abstracting: (1<=p44)
states: 63,059,864 (7)
abstracting: (1<=p45)
states: 63,059,864 (7)
abstracting: (1<=p46)
states: 63,059,864 (7)
abstracting: (1<=p47)
states: 63,059,864 (7)
abstracting: (1<=p48)
states: 63,059,864 (7)
abstracting: (1<=p49)
states: 63,059,864 (7)
abstracting: (1<=p50)
states: 63,059,864 (7)
abstracting: (1<=p51)
states: 63,059,864 (7)
abstracting: (1<=p52)
states: 63,059,864 (7)
abstracting: (1<=p53)
states: 63,059,864 (7)
abstracting: (1<=p54)
states: 63,059,864 (7)
abstracting: (1<=p55)
states: 63,059,864 (7)
abstracting: (1<=p56)
states: 63,059,864 (7)
abstracting: (1<=p57)
states: 63,059,864 (7)
abstracting: (1<=p58)
states: 63,059,864 (7)
abstracting: (1<=p59)
states: 63,059,864 (7)
abstracting: (1<=p60)
states: 63,059,864 (7)
abstracting: (1<=p61)
states: 63,059,864 (7)
abstracting: (1<=p62)
states: 63,059,864 (7)
abstracting: (1<=p63)
states: 63,059,864 (7)
abstracting: (1<=p64)
states: 63,059,864 (7)
abstracting: (1<=p65)
states: 63,059,864 (7)
abstracting: (1<=p66)
states: 63,059,864 (7)
abstracting: (1<=p67)
states: 63,059,864 (7)
abstracting: (1<=p68)
states: 63,059,864 (7)
abstracting: (1<=p69)
states: 63,059,864 (7)
abstracting: (1<=p70)
states: 63,059,864 (7)
abstracting: (1<=p71)
states: 63,059,864 (7)
abstracting: (1<=p72)
states: 63,059,864 (7)
abstracting: (1<=p73)
states: 63,059,864 (7)
abstracting: (1<=p42)
states: 63,059,864 (7)
abstracting: (1<=p43)
states: 63,059,864 (7)
abstracting: (1<=p44)
states: 63,059,864 (7)
abstracting: (1<=p45)
states: 63,059,864 (7)
abstracting: (1<=p46)
states: 63,059,864 (7)
abstracting: (1<=p47)
states: 63,059,864 (7)
abstracting: (1<=p48)
states: 63,059,864 (7)
abstracting: (1<=p49)
states: 63,059,864 (7)
abstracting: (1<=p50)
states: 63,059,864 (7)
abstracting: (1<=p51)
states: 63,059,864 (7)
abstracting: (1<=p52)
states: 63,059,864 (7)
abstracting: (1<=p53)
states: 63,059,864 (7)
abstracting: (1<=p54)
states: 63,059,864 (7)
abstracting: (1<=p55)
states: 63,059,864 (7)
abstracting: (1<=p56)
states: 63,059,864 (7)
abstracting: (1<=p57)
states: 63,059,864 (7)
abstracting: (1<=p58)
states: 63,059,864 (7)
abstracting: (1<=p59)
states: 63,059,864 (7)
abstracting: (1<=p60)
states: 63,059,864 (7)
abstracting: (1<=p61)
states: 63,059,864 (7)
abstracting: (1<=p62)
states: 63,059,864 (7)
abstracting: (1<=p63)
states: 63,059,864 (7)
..........
EG iterations: 10
abstracting: (1<=p97)
states: 532,849,128 (8)
abstracting: (1<=p91)
states: 532,849,128 (8)
abstracting: (1<=p96)
states: 532,849,128 (8)
abstracting: (1<=p93)
states: 532,849,128 (8)
abstracting: (1<=p90)
states: 532,849,128 (8)
abstracting: (1<=p94)
states: 532,849,128 (8)
abstracting: (1<=p95)
states: 532,849,128 (8)
abstracting: (1<=p92)
states: 532,849,128 (8)
abstracting: (1<=p64)
states: 63,059,864 (7)
abstracting: (1<=p65)
states: 63,059,864 (7)
abstracting: (1<=p66)
states: 63,059,864 (7)
abstracting: (1<=p67)
states: 63,059,864 (7)
abstracting: (1<=p68)
states: 63,059,864 (7)
abstracting: (1<=p69)
states: 63,059,864 (7)
abstracting: (1<=p70)
states: 63,059,864 (7)
abstracting: (1<=p71)
states: 63,059,864 (7)
abstracting: (1<=p72)
states: 63,059,864 (7)
abstracting: (1<=p73)
states: 63,059,864 (7)
abstracting: (1<=p42)
states: 63,059,864 (7)
abstracting: (1<=p43)
states: 63,059,864 (7)
abstracting: (1<=p44)
states: 63,059,864 (7)
abstracting: (1<=p45)
states: 63,059,864 (7)
abstracting: (1<=p46)
states: 63,059,864 (7)
abstracting: (1<=p47)
states: 63,059,864 (7)
abstracting: (1<=p48)
states: 63,059,864 (7)
abstracting: (1<=p49)
states: 63,059,864 (7)
abstracting: (1<=p50)
states: 63,059,864 (7)
abstracting: (1<=p51)
states: 63,059,864 (7)
abstracting: (1<=p52)
states: 63,059,864 (7)
abstracting: (1<=p53)
states: 63,059,864 (7)
abstracting: (1<=p54)
states: 63,059,864 (7)
abstracting: (1<=p55)
states: 63,059,864 (7)
abstracting: (1<=p56)
states: 63,059,864 (7)
abstracting: (1<=p57)
states: 63,059,864 (7)
abstracting: (1<=p58)
states: 63,059,864 (7)
abstracting: (1<=p59)
states: 63,059,864 (7)
abstracting: (1<=p60)
states: 63,059,864 (7)
abstracting: (1<=p61)
states: 63,059,864 (7)
abstracting: (1<=p62)
states: 63,059,864 (7)
abstracting: (1<=p63)
states: 63,059,864 (7)
.-> the formula is FALSE
FORMULA UtilityControlRoom-COL-Z2T3N08-CTLFireability-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 1m28.506sec
checking: AG [E [~ [[[[[[[EF [[[[[[1<=p65 | 1<=p64] | [1<=p67 | 1<=p66]] | [[1<=p69 | 1<=p68] | [1<=p71 | 1<=p70]]] | [[[1<=p73 | 1<=p72] | [1<=p43 | 1<=p42]] | [[1<=p45 | 1<=p44] | [1<=p47 | 1<=p46]]]] | [[[[1<=p49 | 1<=p48] | [1<=p51 | 1<=p50]] | [[1<=p53 | 1<=p52] | [1<=p55 | 1<=p54]]] | [[[1<=p57 | 1<=p56] | [1<=p59 | 1<=p58]] | [[1<=p61 | 1<=p60] | [1<=p63 | 1<=p62]]]]]] | 1<=p65] | [1<=p64 | 1<=p67]] | [[1<=p66 | 1<=p69] | [1<=p68 | 1<=p71]]] | [[[1<=p70 | 1<=p73] | [1<=p72 | 1<=p43]] | [[1<=p42 | 1<=p45] | [1<=p44 | 1<=p47]]]] | [[[[1<=p46 | 1<=p49] | [1<=p48 | 1<=p51]] | [[1<=p50 | 1<=p53] | [1<=p52 | 1<=p55]]] | [[[1<=p54 | 1<=p57] | [1<=p56 | 1<=p59]] | [[1<=p58 | 1<=p61] | [1<=p60 | [1<=p63 | 1<=p62]]]]]] & ~ [AG [[[[[[1<=p75 & 1<=p108] | [1<=p80 & 1<=p111]] | [[1<=p85 & 1<=p113] | [1<=p88 & 1<=p115]]] | [[[1<=p77 & 1<=p109] | [1<=p87 & 1<=p114]] | [[1<=p83 & 1<=p112] | [1<=p81 & 1<=p111]]]] | [[[[1<=p79 & 1<=p110] | [1<=p89 & 1<=p115]] | [[1<=p84 & 1<=p113] | [1<=p82 & 1<=p112]]] | [[[1<=p86 & 1<=p114] | [1<=p76 & 1<=p109]] | [[1<=p78 & 1<=p110] | [1<=p74 & 1<=p108]]]]]]]]] U ~ [[~ [[[[1<=p101 | 1<=p100] | [1<=p103 | 1<=p102]] | [[1<=p106 | 1<=p104] | [1<=p107 | [1<=p105 | EX [[[[[[1<=p0 & [1<=p18 & 1<=p98]] | [1<=p1 & [1<=p25 & 1<=p98]]] | [[1<=p1 & [1<=p15 & 1<=p98]] | [1<=p1 & [1<=p13 & 1<=p98]]]] | [[[1<=p0 & [1<=p20 & 1<=p98]] | [1<=p0 & [1<=p10 & 1<=p98]]] | [[1<=p0 & [1<=p16 & 1<=p98]] | [1<=p0 & [1<=p14 & 1<=p98]]]]] | [[[[1<=p0 & [1<=p12 & 1<=p98]] | [1<=p0 & [1<=p24 & 1<=p98]]] | [[1<=p0 & [1<=p22 & 1<=p98]] | [1<=p1 & [1<=p11 & 1<=p98]]]] | [[[1<=p1 & [1<=p23 & 1<=p98]] | [1<=p1 & [1<=p17 & 1<=p98]]] | [[1<=p1 & [1<=p21 & 1<=p98]] | [1<=p1 & [1<=p19 & 1<=p98]]]]]]]]]]]] & [[[1<=p101 | 1<=p100] | [1<=p103 | 1<=p102]] | [[1<=p106 | 1<=p104] | [1<=p107 | 1<=p105]]]]]]]
normalized: ~ [E [true U ~ [E [~ [[E [true U ~ [[[[[[1<=p74 & 1<=p108] | [1<=p78 & 1<=p110]] | [[1<=p76 & 1<=p109] | [1<=p86 & 1<=p114]]] | [[[1<=p82 & 1<=p112] | [1<=p84 & 1<=p113]] | [[1<=p89 & 1<=p115] | [1<=p79 & 1<=p110]]]] | [[[[1<=p81 & 1<=p111] | [1<=p83 & 1<=p112]] | [[1<=p87 & 1<=p114] | [1<=p77 & 1<=p109]]] | [[[1<=p88 & 1<=p115] | [1<=p85 & 1<=p113]] | [[1<=p80 & 1<=p111] | [1<=p75 & 1<=p108]]]]]]] & [[[[[1<=p60 | [1<=p63 | 1<=p62]] | [1<=p58 | 1<=p61]] | [[1<=p56 | 1<=p59] | [1<=p54 | 1<=p57]]] | [[[1<=p52 | 1<=p55] | [1<=p50 | 1<=p53]] | [[1<=p48 | 1<=p51] | [1<=p46 | 1<=p49]]]] | [[[[1<=p44 | 1<=p47] | [1<=p42 | 1<=p45]] | [[1<=p72 | 1<=p43] | [1<=p70 | 1<=p73]]] | [[[1<=p68 | 1<=p71] | [1<=p66 | 1<=p69]] | [[1<=p64 | 1<=p67] | [1<=p65 | E [true U [[[[[1<=p63 | 1<=p62] | [1<=p61 | 1<=p60]] | [[1<=p59 | 1<=p58] | [1<=p57 | 1<=p56]]] | [[[1<=p55 | 1<=p54] | [1<=p53 | 1<=p52]] | [[1<=p51 | 1<=p50] | [1<=p49 | 1<=p48]]]] | [[[[1<=p47 | 1<=p46] | [1<=p45 | 1<=p44]] | [[1<=p43 | 1<=p42] | [1<=p73 | 1<=p72]]] | [[[1<=p71 | 1<=p70] | [1<=p69 | 1<=p68]] | [[1<=p67 | 1<=p66] | [1<=p65 | 1<=p64]]]]]]]]]]]]] U ~ [[[[[1<=p107 | 1<=p105] | [1<=p106 | 1<=p104]] | [[1<=p103 | 1<=p102] | [1<=p101 | 1<=p100]]] & ~ [[[[1<=p107 | [1<=p105 | EX [[[[[[1<=p1 & [1<=p19 & 1<=p98]] | [1<=p1 & [1<=p21 & 1<=p98]]] | [[1<=p1 & [1<=p17 & 1<=p98]] | [1<=p1 & [1<=p23 & 1<=p98]]]] | [[[1<=p1 & [1<=p11 & 1<=p98]] | [1<=p0 & [1<=p22 & 1<=p98]]] | [[1<=p0 & [1<=p24 & 1<=p98]] | [1<=p0 & [1<=p12 & 1<=p98]]]]] | [[[[1<=p0 & [1<=p14 & 1<=p98]] | [1<=p0 & [1<=p16 & 1<=p98]]] | [[1<=p0 & [1<=p10 & 1<=p98]] | [1<=p0 & [1<=p20 & 1<=p98]]]] | [[[1<=p1 & [1<=p13 & 1<=p98]] | [1<=p1 & [1<=p15 & 1<=p98]]] | [[1<=p1 & [1<=p25 & 1<=p98]] | [1<=p0 & [1<=p18 & 1<=p98]]]]]]]]] | [1<=p106 | 1<=p104]] | [[1<=p103 | 1<=p102] | [1<=p101 | 1<=p100]]]]]]]]]]
abstracting: (1<=p100)
states: 175,414,659 (8)
abstracting: (1<=p101)
states: 175,414,659 (8)
abstracting: (1<=p102)
states: 175,414,659 (8)
abstracting: (1<=p103)
states: 175,414,659 (8)
abstracting: (1<=p104)
states: 175,414,659 (8)
abstracting: (1<=p106)
states: 175,414,659 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p18)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p25)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p15)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p13)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p20)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p10)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p16)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p14)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p12)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p24)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p22)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p11)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p23)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p17)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p21)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p19)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
.abstracting: (1<=p105)
states: 175,414,659 (8)
abstracting: (1<=p107)
states: 175,414,659 (8)
abstracting: (1<=p100)
states: 175,414,659 (8)
abstracting: (1<=p101)
states: 175,414,659 (8)
abstracting: (1<=p102)
states: 175,414,659 (8)
abstracting: (1<=p103)
states: 175,414,659 (8)
abstracting: (1<=p104)
states: 175,414,659 (8)
abstracting: (1<=p106)
states: 175,414,659 (8)
abstracting: (1<=p105)
states: 175,414,659 (8)
abstracting: (1<=p107)
states: 175,414,659 (8)
abstracting: (1<=p64)
states: 63,059,864 (7)
abstracting: (1<=p65)
states: 63,059,864 (7)
abstracting: (1<=p66)
states: 63,059,864 (7)
abstracting: (1<=p67)
states: 63,059,864 (7)
abstracting: (1<=p68)
states: 63,059,864 (7)
abstracting: (1<=p69)
states: 63,059,864 (7)
abstracting: (1<=p70)
states: 63,059,864 (7)
abstracting: (1<=p71)
states: 63,059,864 (7)
abstracting: (1<=p72)
states: 63,059,864 (7)
abstracting: (1<=p73)
states: 63,059,864 (7)
abstracting: (1<=p42)
states: 63,059,864 (7)
abstracting: (1<=p43)
states: 63,059,864 (7)
abstracting: (1<=p44)
states: 63,059,864 (7)
abstracting: (1<=p45)
states: 63,059,864 (7)
abstracting: (1<=p46)
states: 63,059,864 (7)
abstracting: (1<=p47)
states: 63,059,864 (7)
abstracting: (1<=p48)
states: 63,059,864 (7)
abstracting: (1<=p49)
states: 63,059,864 (7)
abstracting: (1<=p50)
states: 63,059,864 (7)
abstracting: (1<=p51)
states: 63,059,864 (7)
abstracting: (1<=p52)
states: 63,059,864 (7)
abstracting: (1<=p53)
states: 63,059,864 (7)
abstracting: (1<=p54)
states: 63,059,864 (7)
abstracting: (1<=p55)
states: 63,059,864 (7)
abstracting: (1<=p56)
states: 63,059,864 (7)
abstracting: (1<=p57)
states: 63,059,864 (7)
abstracting: (1<=p58)
states: 63,059,864 (7)
abstracting: (1<=p59)
states: 63,059,864 (7)
abstracting: (1<=p60)
states: 63,059,864 (7)
abstracting: (1<=p61)
states: 63,059,864 (7)
abstracting: (1<=p62)
states: 63,059,864 (7)
abstracting: (1<=p63)
states: 63,059,864 (7)
abstracting: (1<=p65)
states: 63,059,864 (7)
abstracting: (1<=p67)
states: 63,059,864 (7)
abstracting: (1<=p64)
states: 63,059,864 (7)
abstracting: (1<=p69)
states: 63,059,864 (7)
abstracting: (1<=p66)
states: 63,059,864 (7)
abstracting: (1<=p71)
states: 63,059,864 (7)
abstracting: (1<=p68)
states: 63,059,864 (7)
abstracting: (1<=p73)
states: 63,059,864 (7)
abstracting: (1<=p70)
states: 63,059,864 (7)
abstracting: (1<=p43)
states: 63,059,864 (7)
abstracting: (1<=p72)
states: 63,059,864 (7)
abstracting: (1<=p45)
states: 63,059,864 (7)
abstracting: (1<=p42)
states: 63,059,864 (7)
abstracting: (1<=p47)
states: 63,059,864 (7)
abstracting: (1<=p44)
states: 63,059,864 (7)
abstracting: (1<=p49)
states: 63,059,864 (7)
abstracting: (1<=p46)
states: 63,059,864 (7)
abstracting: (1<=p51)
states: 63,059,864 (7)
abstracting: (1<=p48)
states: 63,059,864 (7)
abstracting: (1<=p53)
states: 63,059,864 (7)
abstracting: (1<=p50)
states: 63,059,864 (7)
abstracting: (1<=p55)
states: 63,059,864 (7)
abstracting: (1<=p52)
states: 63,059,864 (7)
abstracting: (1<=p57)
states: 63,059,864 (7)
abstracting: (1<=p54)
states: 63,059,864 (7)
abstracting: (1<=p59)
states: 63,059,864 (7)
abstracting: (1<=p56)
states: 63,059,864 (7)
abstracting: (1<=p61)
states: 63,059,864 (7)
abstracting: (1<=p58)
states: 63,059,864 (7)
abstracting: (1<=p62)
states: 63,059,864 (7)
abstracting: (1<=p63)
states: 63,059,864 (7)
abstracting: (1<=p60)
states: 63,059,864 (7)
abstracting: (1<=p108)
states: 1,051,513,148 (9)
abstracting: (1<=p75)
states: 63,059,864 (7)
abstracting: (1<=p111)
states: 1,051,513,148 (9)
abstracting: (1<=p80)
states: 63,059,864 (7)
abstracting: (1<=p113)
states: 1,051,513,148 (9)
abstracting: (1<=p85)
states: 63,059,864 (7)
abstracting: (1<=p115)
states: 1,051,513,148 (9)
abstracting: (1<=p88)
states: 63,059,864 (7)
abstracting: (1<=p109)
states: 1,051,513,148 (9)
abstracting: (1<=p77)
states: 63,059,864 (7)
abstracting: (1<=p114)
states: 1,051,513,148 (9)
abstracting: (1<=p87)
states: 63,059,864 (7)
abstracting: (1<=p112)
states: 1,051,513,148 (9)
abstracting: (1<=p83)
states: 63,059,864 (7)
abstracting: (1<=p111)
states: 1,051,513,148 (9)
abstracting: (1<=p81)
states: 63,059,864 (7)
abstracting: (1<=p110)
states: 1,051,513,148 (9)
abstracting: (1<=p79)
states: 63,059,864 (7)
abstracting: (1<=p115)
states: 1,051,513,148 (9)
abstracting: (1<=p89)
states: 63,059,864 (7)
abstracting: (1<=p113)
states: 1,051,513,148 (9)
abstracting: (1<=p84)
states: 63,059,864 (7)
abstracting: (1<=p112)
states: 1,051,513,148 (9)
abstracting: (1<=p82)
states: 63,059,864 (7)
abstracting: (1<=p114)
states: 1,051,513,148 (9)
abstracting: (1<=p86)
states: 63,059,864 (7)
abstracting: (1<=p109)
states: 1,051,513,148 (9)
abstracting: (1<=p76)
states: 63,059,864 (7)
abstracting: (1<=p110)
states: 1,051,513,148 (9)
abstracting: (1<=p78)
states: 63,059,864 (7)
abstracting: (1<=p108)
states: 1,051,513,148 (9)
abstracting: (1<=p74)
states: 63,059,864 (7)
-> the formula is TRUE
FORMULA UtilityControlRoom-COL-Z2T3N08-CTLFireability-05 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m28.055sec
checking: E [AG [A [[[[[[[1<=p0 & [1<=p25 & 1<=p98]] | [1<=p1 & [1<=p13 & 1<=p98]]] | [[1<=p0 & [1<=p20 & 1<=p98]] | [1<=p0 & [1<=p10 & 1<=p98]]]] | [[[1<=p0 & [1<=p21 & 1<=p98]] | [1<=p1 & [1<=p12 & 1<=p98]]] | [[1<=p0 & [1<=p16 & 1<=p98]] | [1<=p1 & [1<=p22 & 1<=p98]]]]] | [[[[1<=p1 & [1<=p18 & 1<=p98]] | [1<=p0 & [1<=p24 & 1<=p98]]] | [[1<=p0 & [1<=p19 & 1<=p98]] | [1<=p1 & [1<=p17 & 1<=p98]]]] | [[[1<=p0 & [1<=p15 & 1<=p98]] | [1<=p1 & [1<=p21 & 1<=p98]]] | [[1<=p0 & [1<=p11 & 1<=p98]] | [1<=p0 & [1<=p13 & 1<=p98]]]]]] | [[[[[1<=p1 & [1<=p20 & 1<=p98]] | [1<=p0 & [1<=p18 & 1<=p98]]] | [[1<=p1 & [1<=p25 & 1<=p98]] | [1<=p1 & [1<=p15 & 1<=p98]]]] | [[[1<=p0 & [1<=p23 & 1<=p98]] | [1<=p1 & [1<=p10 & 1<=p98]]] | [[1<=p1 & [1<=p24 & 1<=p98]] | [1<=p1 & [1<=p16 & 1<=p98]]]]] | [[[[1<=p0 & [1<=p14 & 1<=p98]] | [1<=p0 & [1<=p12 & 1<=p98]]] | [[1<=p1 & [1<=p14 & 1<=p98]] | [1<=p0 & [1<=p17 & 1<=p98]]]] | [[[1<=p0 & [1<=p22 & 1<=p98]] | [1<=p1 & [1<=p11 & 1<=p98]]] | [[1<=p1 & [1<=p23 & 1<=p98]] | [1<=p1 & [1<=p19 & 1<=p98]]]]]]] U EX [~ [[[[[[1<=p75 & 1<=p108] | [1<=p80 & 1<=p111]] | [[1<=p85 & 1<=p113] | [1<=p88 & 1<=p115]]] | [[[1<=p77 & 1<=p109] | [1<=p87 & 1<=p114]] | [[1<=p83 & 1<=p112] | [1<=p81 & 1<=p111]]]] | [[[[1<=p79 & 1<=p110] | [1<=p89 & 1<=p115]] | [[1<=p84 & 1<=p113] | [1<=p82 & 1<=p112]]] | [[[1<=p86 & 1<=p114] | [1<=p76 & 1<=p109]] | [[1<=p78 & 1<=p110] | [1<=p74 & 1<=p108]]]]]]]]] U EG [A [AF [[[[1<=p2 | 1<=p3] | [1<=p4 | 1<=p5]] | [[1<=p6 | 1<=p7] | [1<=p8 | 1<=p9]]]] U [[[[[1<=p65 | 1<=p64] | [1<=p67 | 1<=p66]] | [[1<=p69 | 1<=p68] | [1<=p71 | 1<=p70]]] | [[[1<=p73 | 1<=p72] | [1<=p43 | 1<=p42]] | [[1<=p45 | 1<=p44] | [1<=p47 | 1<=p46]]]] | [[[[1<=p49 | 1<=p48] | [1<=p51 | 1<=p50]] | [[1<=p53 | 1<=p52] | [1<=p55 | 1<=p54]]] | [[[1<=p57 | 1<=p56] | [1<=p59 | 1<=p58]] | [[1<=p61 | 1<=p60] | [1<=p63 | 1<=p62]]]]]]]]
normalized: E [~ [E [true U ~ [[~ [EG [~ [EX [~ [[[[[[1<=p74 & 1<=p108] | [1<=p78 & 1<=p110]] | [[1<=p76 & 1<=p109] | [1<=p86 & 1<=p114]]] | [[[1<=p82 & 1<=p112] | [1<=p84 & 1<=p113]] | [[1<=p89 & 1<=p115] | [1<=p79 & 1<=p110]]]] | [[[[1<=p81 & 1<=p111] | [1<=p83 & 1<=p112]] | [[1<=p87 & 1<=p114] | [1<=p77 & 1<=p109]]] | [[[1<=p88 & 1<=p115] | [1<=p85 & 1<=p113]] | [[1<=p80 & 1<=p111] | [1<=p75 & 1<=p108]]]]]]]]]] & ~ [E [~ [EX [~ [[[[[[1<=p74 & 1<=p108] | [1<=p78 & 1<=p110]] | [[1<=p76 & 1<=p109] | [1<=p86 & 1<=p114]]] | [[[1<=p82 & 1<=p112] | [1<=p84 & 1<=p113]] | [[1<=p89 & 1<=p115] | [1<=p79 & 1<=p110]]]] | [[[[1<=p81 & 1<=p111] | [1<=p83 & 1<=p112]] | [[1<=p87 & 1<=p114] | [1<=p77 & 1<=p109]]] | [[[1<=p88 & 1<=p115] | [1<=p85 & 1<=p113]] | [[1<=p80 & 1<=p111] | [1<=p75 & 1<=p108]]]]]]]] U [~ [[[[[[[1<=p1 & [1<=p13 & 1<=p98]] | [1<=p0 & [1<=p25 & 1<=p98]]] | [[1<=p0 & [1<=p10 & 1<=p98]] | [1<=p0 & [1<=p20 & 1<=p98]]]] | [[[1<=p1 & [1<=p22 & 1<=p98]] | [1<=p0 & [1<=p16 & 1<=p98]]] | [[1<=p1 & [1<=p12 & 1<=p98]] | [1<=p0 & [1<=p21 & 1<=p98]]]]] | [[[[1<=p0 & [1<=p13 & 1<=p98]] | [1<=p0 & [1<=p11 & 1<=p98]]] | [[1<=p1 & [1<=p21 & 1<=p98]] | [1<=p0 & [1<=p15 & 1<=p98]]]] | [[[1<=p1 & [1<=p17 & 1<=p98]] | [1<=p0 & [1<=p19 & 1<=p98]]] | [[1<=p0 & [1<=p24 & 1<=p98]] | [1<=p1 & [1<=p18 & 1<=p98]]]]]] | [[[[[1<=p1 & [1<=p19 & 1<=p98]] | [1<=p1 & [1<=p23 & 1<=p98]]] | [[1<=p1 & [1<=p11 & 1<=p98]] | [1<=p0 & [1<=p22 & 1<=p98]]]] | [[[1<=p0 & [1<=p17 & 1<=p98]] | [1<=p1 & [1<=p14 & 1<=p98]]] | [[1<=p0 & [1<=p12 & 1<=p98]] | [1<=p0 & [1<=p14 & 1<=p98]]]]] | [[[[1<=p1 & [1<=p16 & 1<=p98]] | [1<=p1 & [1<=p24 & 1<=p98]]] | [[1<=p1 & [1<=p10 & 1<=p98]] | [1<=p0 & [1<=p23 & 1<=p98]]]] | [[[1<=p1 & [1<=p15 & 1<=p98]] | [1<=p1 & [1<=p25 & 1<=p98]]] | [[1<=p0 & [1<=p18 & 1<=p98]] | [1<=p1 & [1<=p20 & 1<=p98]]]]]]]] & ~ [EX [~ [[[[[[1<=p74 & 1<=p108] | [1<=p78 & 1<=p110]] | [[1<=p76 & 1<=p109] | [1<=p86 & 1<=p114]]] | [[[1<=p82 & 1<=p112] | [1<=p84 & 1<=p113]] | [[1<=p89 & 1<=p115] | [1<=p79 & 1<=p110]]]] | [[[[1<=p81 & 1<=p111] | [1<=p83 & 1<=p112]] | [[1<=p87 & 1<=p114] | [1<=p77 & 1<=p109]]] | [[[1<=p88 & 1<=p115] | [1<=p85 & 1<=p113]] | [[1<=p80 & 1<=p111] | [1<=p75 & 1<=p108]]]]]]]]]]]]]]] U EG [[~ [EG [~ [[[[[[1<=p63 | 1<=p62] | [1<=p61 | 1<=p60]] | [[1<=p59 | 1<=p58] | [1<=p57 | 1<=p56]]] | [[[1<=p55 | 1<=p54] | [1<=p53 | 1<=p52]] | [[1<=p51 | 1<=p50] | [1<=p49 | 1<=p48]]]] | [[[[1<=p47 | 1<=p46] | [1<=p45 | 1<=p44]] | [[1<=p43 | 1<=p42] | [1<=p73 | 1<=p72]]] | [[[1<=p71 | 1<=p70] | [1<=p69 | 1<=p68]] | [[1<=p67 | 1<=p66] | [1<=p65 | 1<=p64]]]]]]]] & ~ [E [~ [[[[[[1<=p63 | 1<=p62] | [1<=p61 | 1<=p60]] | [[1<=p59 | 1<=p58] | [1<=p57 | 1<=p56]]] | [[[1<=p55 | 1<=p54] | [1<=p53 | 1<=p52]] | [[1<=p51 | 1<=p50] | [1<=p49 | 1<=p48]]]] | [[[[1<=p47 | 1<=p46] | [1<=p45 | 1<=p44]] | [[1<=p43 | 1<=p42] | [1<=p73 | 1<=p72]]] | [[[1<=p71 | 1<=p70] | [1<=p69 | 1<=p68]] | [[1<=p67 | 1<=p66] | [1<=p65 | 1<=p64]]]]]] U [EG [~ [[[[1<=p8 | 1<=p9] | [1<=p6 | 1<=p7]] | [[1<=p4 | 1<=p5] | [1<=p2 | 1<=p3]]]]] & ~ [[[[[[1<=p63 | 1<=p62] | [1<=p61 | 1<=p60]] | [[1<=p59 | 1<=p58] | [1<=p57 | 1<=p56]]] | [[[1<=p55 | 1<=p54] | [1<=p53 | 1<=p52]] | [[1<=p51 | 1<=p50] | [1<=p49 | 1<=p48]]]] | [[[[1<=p47 | 1<=p46] | [1<=p45 | 1<=p44]] | [[1<=p43 | 1<=p42] | [1<=p73 | 1<=p72]]] | [[[1<=p71 | 1<=p70] | [1<=p69 | 1<=p68]] | [[1<=p67 | 1<=p66] | [1<=p65 | 1<=p64]]]]]]]]]]]]
abstracting: (1<=p64)
states: 63,059,864 (7)
abstracting: (1<=p65)
states: 63,059,864 (7)
abstracting: (1<=p66)
states: 63,059,864 (7)
abstracting: (1<=p67)
states: 63,059,864 (7)
abstracting: (1<=p68)
states: 63,059,864 (7)
abstracting: (1<=p69)
states: 63,059,864 (7)
abstracting: (1<=p70)
states: 63,059,864 (7)
abstracting: (1<=p71)
states: 63,059,864 (7)
abstracting: (1<=p72)
states: 63,059,864 (7)
abstracting: (1<=p73)
states: 63,059,864 (7)
abstracting: (1<=p42)
states: 63,059,864 (7)
abstracting: (1<=p43)
states: 63,059,864 (7)
abstracting: (1<=p44)
states: 63,059,864 (7)
abstracting: (1<=p45)
states: 63,059,864 (7)
abstracting: (1<=p46)
states: 63,059,864 (7)
abstracting: (1<=p47)
states: 63,059,864 (7)
abstracting: (1<=p48)
states: 63,059,864 (7)
abstracting: (1<=p49)
states: 63,059,864 (7)
abstracting: (1<=p50)
states: 63,059,864 (7)
abstracting: (1<=p51)
states: 63,059,864 (7)
abstracting: (1<=p52)
states: 63,059,864 (7)
abstracting: (1<=p53)
states: 63,059,864 (7)
abstracting: (1<=p54)
states: 63,059,864 (7)
abstracting: (1<=p55)
states: 63,059,864 (7)
abstracting: (1<=p56)
states: 63,059,864 (7)
abstracting: (1<=p57)
states: 63,059,864 (7)
abstracting: (1<=p58)
states: 63,059,864 (7)
abstracting: (1<=p59)
states: 63,059,864 (7)
abstracting: (1<=p60)
states: 63,059,864 (7)
abstracting: (1<=p61)
states: 63,059,864 (7)
abstracting: (1<=p62)
states: 63,059,864 (7)
abstracting: (1<=p63)
states: 63,059,864 (7)
abstracting: (1<=p3)
states: 266,424,564 (8)
abstracting: (1<=p2)
states: 266,424,564 (8)
abstracting: (1<=p5)
states: 266,424,564 (8)
abstracting: (1<=p4)
states: 266,424,564 (8)
abstracting: (1<=p7)
states: 266,424,564 (8)
abstracting: (1<=p6)
states: 266,424,564 (8)
abstracting: (1<=p9)
states: 266,424,564 (8)
abstracting: (1<=p8)
states: 266,424,564 (8)
.............
before gc: list nodes free: 963565
after gc: idd nodes used:11387915, unused:52612085; list nodes free:238120492
....................
EG iterations: 33
abstracting: (1<=p64)
states: 63,059,864 (7)
abstracting: (1<=p65)
states: 63,059,864 (7)
abstracting: (1<=p66)
states: 63,059,864 (7)
abstracting: (1<=p67)
states: 63,059,864 (7)
abstracting: (1<=p68)
states: 63,059,864 (7)
abstracting: (1<=p69)
states: 63,059,864 (7)
abstracting: (1<=p70)
states: 63,059,864 (7)
abstracting: (1<=p71)
states: 63,059,864 (7)
abstracting: (1<=p72)
states: 63,059,864 (7)
abstracting: (1<=p73)
states: 63,059,864 (7)
abstracting: (1<=p42)
states: 63,059,864 (7)
abstracting: (1<=p43)
states: 63,059,864 (7)
abstracting: (1<=p44)
states: 63,059,864 (7)
abstracting: (1<=p45)
states: 63,059,864 (7)
abstracting: (1<=p46)
states: 63,059,864 (7)
abstracting: (1<=p47)
states: 63,059,864 (7)
abstracting: (1<=p48)
states: 63,059,864 (7)
abstracting: (1<=p49)
states: 63,059,864 (7)
abstracting: (1<=p50)
states: 63,059,864 (7)
abstracting: (1<=p51)
states: 63,059,864 (7)
abstracting: (1<=p52)
states: 63,059,864 (7)
abstracting: (1<=p53)
states: 63,059,864 (7)
abstracting: (1<=p54)
states: 63,059,864 (7)
abstracting: (1<=p55)
states: 63,059,864 (7)
abstracting: (1<=p56)
states: 63,059,864 (7)
abstracting: (1<=p57)
states: 63,059,864 (7)
abstracting: (1<=p58)
states: 63,059,864 (7)
abstracting: (1<=p59)
states: 63,059,864 (7)
abstracting: (1<=p60)
states: 63,059,864 (7)
abstracting: (1<=p61)
states: 63,059,864 (7)
abstracting: (1<=p62)
states: 63,059,864 (7)
abstracting: (1<=p63)
states: 63,059,864 (7)
abstracting: (1<=p64)
states: 63,059,864 (7)
abstracting: (1<=p65)
states: 63,059,864 (7)
abstracting: (1<=p66)
states: 63,059,864 (7)
abstracting: (1<=p67)
states: 63,059,864 (7)
abstracting: (1<=p68)
states: 63,059,864 (7)
abstracting: (1<=p69)
states: 63,059,864 (7)
abstracting: (1<=p70)
states: 63,059,864 (7)
abstracting: (1<=p71)
states: 63,059,864 (7)
abstracting: (1<=p72)
states: 63,059,864 (7)
abstracting: (1<=p73)
states: 63,059,864 (7)
abstracting: (1<=p42)
states: 63,059,864 (7)
abstracting: (1<=p43)
states: 63,059,864 (7)
abstracting: (1<=p44)
states: 63,059,864 (7)
abstracting: (1<=p45)
states: 63,059,864 (7)
abstracting: (1<=p46)
states: 63,059,864 (7)
abstracting: (1<=p47)
states: 63,059,864 (7)
abstracting: (1<=p48)
states: 63,059,864 (7)
abstracting: (1<=p49)
states: 63,059,864 (7)
abstracting: (1<=p50)
states: 63,059,864 (7)
abstracting: (1<=p51)
states: 63,059,864 (7)
abstracting: (1<=p52)
states: 63,059,864 (7)
abstracting: (1<=p53)
states: 63,059,864 (7)
abstracting: (1<=p54)
states: 63,059,864 (7)
abstracting: (1<=p55)
states: 63,059,864 (7)
abstracting: (1<=p56)
states: 63,059,864 (7)
abstracting: (1<=p57)
states: 63,059,864 (7)
abstracting: (1<=p58)
states: 63,059,864 (7)
abstracting: (1<=p59)
states: 63,059,864 (7)
abstracting: (1<=p60)
states: 63,059,864 (7)
abstracting: (1<=p61)
states: 63,059,864 (7)
abstracting: (1<=p62)
states: 63,059,864 (7)
abstracting: (1<=p63)
states: 63,059,864 (7)
..........
EG iterations: 10
.
EG iterations: 1
abstracting: (1<=p108)
states: 1,051,513,148 (9)
abstracting: (1<=p75)
states: 63,059,864 (7)
abstracting: (1<=p111)
states: 1,051,513,148 (9)
abstracting: (1<=p80)
states: 63,059,864 (7)
abstracting: (1<=p113)
states: 1,051,513,148 (9)
abstracting: (1<=p85)
states: 63,059,864 (7)
abstracting: (1<=p115)
states: 1,051,513,148 (9)
abstracting: (1<=p88)
states: 63,059,864 (7)
abstracting: (1<=p109)
states: 1,051,513,148 (9)
abstracting: (1<=p77)
states: 63,059,864 (7)
abstracting: (1<=p114)
states: 1,051,513,148 (9)
abstracting: (1<=p87)
states: 63,059,864 (7)
abstracting: (1<=p112)
states: 1,051,513,148 (9)
abstracting: (1<=p83)
states: 63,059,864 (7)
abstracting: (1<=p111)
states: 1,051,513,148 (9)
abstracting: (1<=p81)
states: 63,059,864 (7)
abstracting: (1<=p110)
states: 1,051,513,148 (9)
abstracting: (1<=p79)
states: 63,059,864 (7)
abstracting: (1<=p115)
states: 1,051,513,148 (9)
abstracting: (1<=p89)
states: 63,059,864 (7)
abstracting: (1<=p113)
states: 1,051,513,148 (9)
abstracting: (1<=p84)
states: 63,059,864 (7)
abstracting: (1<=p112)
states: 1,051,513,148 (9)
abstracting: (1<=p82)
states: 63,059,864 (7)
abstracting: (1<=p114)
states: 1,051,513,148 (9)
abstracting: (1<=p86)
states: 63,059,864 (7)
abstracting: (1<=p109)
states: 1,051,513,148 (9)
abstracting: (1<=p76)
states: 63,059,864 (7)
abstracting: (1<=p110)
states: 1,051,513,148 (9)
abstracting: (1<=p78)
states: 63,059,864 (7)
abstracting: (1<=p108)
states: 1,051,513,148 (9)
abstracting: (1<=p74)
states: 63,059,864 (7)
.abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p20)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p18)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p25)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p15)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p23)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p10)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p24)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p16)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p14)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p12)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p14)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p17)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p22)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p11)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p23)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p19)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p18)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p24)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p19)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p17)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p15)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p21)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p11)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p13)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p21)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p12)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p16)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p22)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p20)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p10)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p25)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p13)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p108)
states: 1,051,513,148 (9)
abstracting: (1<=p75)
states: 63,059,864 (7)
abstracting: (1<=p111)
states: 1,051,513,148 (9)
abstracting: (1<=p80)
states: 63,059,864 (7)
abstracting: (1<=p113)
states: 1,051,513,148 (9)
abstracting: (1<=p85)
states: 63,059,864 (7)
abstracting: (1<=p115)
states: 1,051,513,148 (9)
abstracting: (1<=p88)
states: 63,059,864 (7)
abstracting: (1<=p109)
states: 1,051,513,148 (9)
abstracting: (1<=p77)
states: 63,059,864 (7)
abstracting: (1<=p114)
states: 1,051,513,148 (9)
abstracting: (1<=p87)
states: 63,059,864 (7)
abstracting: (1<=p112)
states: 1,051,513,148 (9)
abstracting: (1<=p83)
states: 63,059,864 (7)
abstracting: (1<=p111)
states: 1,051,513,148 (9)
abstracting: (1<=p81)
states: 63,059,864 (7)
abstracting: (1<=p110)
states: 1,051,513,148 (9)
abstracting: (1<=p79)
states: 63,059,864 (7)
abstracting: (1<=p115)
states: 1,051,513,148 (9)
abstracting: (1<=p89)
states: 63,059,864 (7)
abstracting: (1<=p113)
states: 1,051,513,148 (9)
abstracting: (1<=p84)
states: 63,059,864 (7)
abstracting: (1<=p112)
states: 1,051,513,148 (9)
abstracting: (1<=p82)
states: 63,059,864 (7)
abstracting: (1<=p114)
states: 1,051,513,148 (9)
abstracting: (1<=p86)
states: 63,059,864 (7)
abstracting: (1<=p109)
states: 1,051,513,148 (9)
abstracting: (1<=p76)
states: 63,059,864 (7)
abstracting: (1<=p110)
states: 1,051,513,148 (9)
abstracting: (1<=p78)
states: 63,059,864 (7)
abstracting: (1<=p108)
states: 1,051,513,148 (9)
abstracting: (1<=p74)
states: 63,059,864 (7)
.abstracting: (1<=p108)
states: 1,051,513,148 (9)
abstracting: (1<=p75)
states: 63,059,864 (7)
abstracting: (1<=p111)
states: 1,051,513,148 (9)
abstracting: (1<=p80)
states: 63,059,864 (7)
abstracting: (1<=p113)
states: 1,051,513,148 (9)
abstracting: (1<=p85)
states: 63,059,864 (7)
abstracting: (1<=p115)
states: 1,051,513,148 (9)
abstracting: (1<=p88)
states: 63,059,864 (7)
abstracting: (1<=p109)
states: 1,051,513,148 (9)
abstracting: (1<=p77)
states: 63,059,864 (7)
abstracting: (1<=p114)
states: 1,051,513,148 (9)
abstracting: (1<=p87)
states: 63,059,864 (7)
abstracting: (1<=p112)
states: 1,051,513,148 (9)
abstracting: (1<=p83)
states: 63,059,864 (7)
abstracting: (1<=p111)
states: 1,051,513,148 (9)
abstracting: (1<=p81)
states: 63,059,864 (7)
abstracting: (1<=p110)
states: 1,051,513,148 (9)
abstracting: (1<=p79)
states: 63,059,864 (7)
abstracting: (1<=p115)
states: 1,051,513,148 (9)
abstracting: (1<=p89)
states: 63,059,864 (7)
abstracting: (1<=p113)
states: 1,051,513,148 (9)
abstracting: (1<=p84)
states: 63,059,864 (7)
abstracting: (1<=p112)
states: 1,051,513,148 (9)
abstracting: (1<=p82)
states: 63,059,864 (7)
abstracting: (1<=p114)
states: 1,051,513,148 (9)
abstracting: (1<=p86)
states: 63,059,864 (7)
abstracting: (1<=p109)
states: 1,051,513,148 (9)
abstracting: (1<=p76)
states: 63,059,864 (7)
abstracting: (1<=p110)
states: 1,051,513,148 (9)
abstracting: (1<=p78)
states: 63,059,864 (7)
abstracting: (1<=p108)
states: 1,051,513,148 (9)
abstracting: (1<=p74)
states: 63,059,864 (7)
......................
EG iterations: 21
-> the formula is FALSE
FORMULA UtilityControlRoom-COL-Z2T3N08-CTLFireability-01 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 5m26.467sec
checking: [AG [[[[[1<=p32 | 1<=p33] | [1<=p34 | 1<=p35]] | [[1<=p36 | 1<=p37] | [1<=p39 | 1<=p38]]] | [[[1<=p41 | 1<=p40] | [1<=p26 | 1<=p27]] | [[1<=p28 | 1<=p29] | [1<=p30 | [1<=p31 | EG [[[[[[[p32<=0 & p33<=0] & [p34<=0 & p35<=0]] & [[p36<=0 & p37<=0] & [p39<=0 & p38<=0]]] & [[[p41<=0 & p40<=0] & [p26<=0 & p27<=0]] & [[p28<=0 & p29<=0] & [p30<=0 & p31<=0]]]] | [[[p114<=0 & p115<=0] & [p112<=0 & p113<=0]] & [[p110<=0 & p111<=0] & [p108<=0 & p109<=0]]]] & [[[[[1<=p65 | 1<=p64] | [1<=p67 | 1<=p66]] | [[1<=p69 | 1<=p68] | [1<=p71 | 1<=p70]]] | [[[1<=p73 | 1<=p72] | [1<=p43 | 1<=p42]] | [[1<=p45 | 1<=p44] | [1<=p47 | 1<=p46]]]] | [[[[1<=p49 | 1<=p48] | [1<=p51 | 1<=p50]] | [[1<=p53 | 1<=p52] | [1<=p55 | 1<=p54]]] | [[[1<=p57 | 1<=p56] | [1<=p59 | 1<=p58]] | [[1<=p61 | 1<=p60] | [1<=p63 | 1<=p62]]]]]]]]]]]]] | [AG [EX [AF [[[[[[1<=p86 & 1<=p122] | [1<=p83 & 1<=p120]] | [[1<=p81 & 1<=p119] | [1<=p78 & 1<=p118]]] | [[[1<=p76 & 1<=p117] | [1<=p116 & 1<=p75]] | [[1<=p89 & 1<=p123] | [1<=p85 & 1<=p121]]]] | [[[[1<=p82 & 1<=p120] | [1<=p87 & 1<=p122]] | [[1<=p79 & 1<=p118] | [1<=p77 & 1<=p117]]] | [[[1<=p74 & 1<=p116] | [1<=p80 & 1<=p119]] | [[1<=p84 & 1<=p121] | [1<=p88 & 1<=p123]]]]]]]] & EF [[[[[[1<=p101 | 1<=p100] | [1<=p103 | 1<=p102]] | [[1<=p106 | 1<=p104] | [1<=p107 | 1<=p105]]] & [[[[[[1<=p0 & [1<=p25 & 1<=p98]] | [1<=p1 & [1<=p13 & 1<=p98]]] | [[1<=p0 & [1<=p20 & 1<=p98]] | [1<=p0 & [1<=p10 & 1<=p98]]]] | [[[1<=p0 & [1<=p21 & 1<=p98]] | [1<=p1 & [1<=p12 & 1<=p98]]] | [[1<=p0 & [1<=p16 & 1<=p98]] | [1<=p1 & [1<=p22 & 1<=p98]]]]] | [[[[1<=p1 & [1<=p18 & 1<=p98]] | [1<=p0 & [1<=p24 & 1<=p98]]] | [[1<=p0 & [1<=p19 & 1<=p98]] | [1<=p1 & [1<=p17 & 1<=p98]]]] | [[[1<=p0 & [1<=p15 & 1<=p98]] | [1<=p1 & [1<=p21 & 1<=p98]]] | [[1<=p0 & [1<=p11 & 1<=p98]] | [1<=p0 & [1<=p13 & 1<=p98]]]]]] | [[[[[1<=p1 & [1<=p20 & 1<=p98]] | [1<=p0 & [1<=p18 & 1<=p98]]] | [[1<=p1 & [1<=p25 & 1<=p98]] | [1<=p1 & [1<=p15 & 1<=p98]]]] | [[[1<=p0 & [1<=p23 & 1<=p98]] | [1<=p1 & [1<=p10 & 1<=p98]]] | [[1<=p1 & [1<=p24 & 1<=p98]] | [1<=p1 & [1<=p16 & 1<=p98]]]]] | [[[[1<=p0 & [1<=p14 & 1<=p98]] | [1<=p0 & [1<=p12 & 1<=p98]]] | [[1<=p1 & [1<=p14 & 1<=p98]] | [1<=p0 & [1<=p17 & 1<=p98]]]] | [[[1<=p0 & [1<=p22 & 1<=p98]] | [1<=p1 & [1<=p11 & 1<=p98]]] | [[1<=p1 & [1<=p23 & 1<=p98]] | [1<=p1 & [1<=p19 & 1<=p98]]]]]]]] & [[[[1<=p101 | 1<=p100] | [1<=p103 | 1<=p102]] | [[1<=p106 | 1<=p104] | [1<=p107 | 1<=p105]]] & [[[[1<=p32 | 1<=p33] | [1<=p34 | 1<=p35]] | [[1<=p36 | 1<=p37] | [1<=p39 | 1<=p38]]] | [[[1<=p41 | 1<=p40] | [1<=p26 | 1<=p27]] | [[1<=p28 | 1<=p29] | [1<=p30 | 1<=p31]]]]]]]]]
normalized: [[E [true U [[[[[[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p41 | 1<=p40]]] | [[[1<=p39 | 1<=p38] | [1<=p36 | 1<=p37]] | [[1<=p34 | 1<=p35] | [1<=p32 | 1<=p33]]]] & [[[1<=p107 | 1<=p105] | [1<=p106 | 1<=p104]] | [[1<=p103 | 1<=p102] | [1<=p101 | 1<=p100]]]] & [[[[[[[1<=p1 & [1<=p19 & 1<=p98]] | [1<=p1 & [1<=p23 & 1<=p98]]] | [[1<=p1 & [1<=p11 & 1<=p98]] | [1<=p0 & [1<=p22 & 1<=p98]]]] | [[[1<=p0 & [1<=p17 & 1<=p98]] | [1<=p1 & [1<=p14 & 1<=p98]]] | [[1<=p0 & [1<=p12 & 1<=p98]] | [1<=p0 & [1<=p14 & 1<=p98]]]]] | [[[[1<=p1 & [1<=p16 & 1<=p98]] | [1<=p1 & [1<=p24 & 1<=p98]]] | [[1<=p1 & [1<=p10 & 1<=p98]] | [1<=p0 & [1<=p23 & 1<=p98]]]] | [[[1<=p1 & [1<=p15 & 1<=p98]] | [1<=p1 & [1<=p25 & 1<=p98]]] | [[1<=p0 & [1<=p18 & 1<=p98]] | [1<=p1 & [1<=p20 & 1<=p98]]]]]] | [[[[[1<=p0 & [1<=p13 & 1<=p98]] | [1<=p0 & [1<=p11 & 1<=p98]]] | [[1<=p1 & [1<=p21 & 1<=p98]] | [1<=p0 & [1<=p15 & 1<=p98]]]] | [[[1<=p1 & [1<=p17 & 1<=p98]] | [1<=p0 & [1<=p19 & 1<=p98]]] | [[1<=p0 & [1<=p24 & 1<=p98]] | [1<=p1 & [1<=p18 & 1<=p98]]]]] | [[[[1<=p1 & [1<=p22 & 1<=p98]] | [1<=p0 & [1<=p16 & 1<=p98]]] | [[1<=p1 & [1<=p12 & 1<=p98]] | [1<=p0 & [1<=p21 & 1<=p98]]]] | [[[1<=p0 & [1<=p10 & 1<=p98]] | [1<=p0 & [1<=p20 & 1<=p98]]] | [[1<=p1 & [1<=p13 & 1<=p98]] | [1<=p0 & [1<=p25 & 1<=p98]]]]]]] & [[[1<=p107 | 1<=p105] | [1<=p106 | 1<=p104]] | [[1<=p103 | 1<=p102] | [1<=p101 | 1<=p100]]]]]] & ~ [E [true U ~ [EX [~ [EG [~ [[[[[[1<=p88 & 1<=p123] | [1<=p84 & 1<=p121]] | [[1<=p80 & 1<=p119] | [1<=p74 & 1<=p116]]] | [[[1<=p77 & 1<=p117] | [1<=p79 & 1<=p118]] | [[1<=p87 & 1<=p122] | [1<=p82 & 1<=p120]]]] | [[[[1<=p85 & 1<=p121] | [1<=p89 & 1<=p123]] | [[1<=p116 & 1<=p75] | [1<=p76 & 1<=p117]]] | [[[1<=p78 & 1<=p118] | [1<=p81 & 1<=p119]] | [[1<=p83 & 1<=p120] | [1<=p86 & 1<=p122]]]]]]]]]]]]] | ~ [E [true U ~ [[[[[1<=p30 | [1<=p31 | EG [[[[[[[1<=p63 | 1<=p62] | [1<=p61 | 1<=p60]] | [[1<=p59 | 1<=p58] | [1<=p57 | 1<=p56]]] | [[[1<=p55 | 1<=p54] | [1<=p53 | 1<=p52]] | [[1<=p51 | 1<=p50] | [1<=p49 | 1<=p48]]]] | [[[[1<=p47 | 1<=p46] | [1<=p45 | 1<=p44]] | [[1<=p43 | 1<=p42] | [1<=p73 | 1<=p72]]] | [[[1<=p71 | 1<=p70] | [1<=p69 | 1<=p68]] | [[1<=p67 | 1<=p66] | [1<=p65 | 1<=p64]]]]] & [[[[p108<=0 & p109<=0] & [p110<=0 & p111<=0]] & [[p112<=0 & p113<=0] & [p114<=0 & p115<=0]]] | [[[[p30<=0 & p31<=0] & [p28<=0 & p29<=0]] & [[p26<=0 & p27<=0] & [p41<=0 & p40<=0]]] & [[[p39<=0 & p38<=0] & [p36<=0 & p37<=0]] & [[p34<=0 & p35<=0] & [p32<=0 & p33<=0]]]]]]]]] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p41 | 1<=p40]]] | [[[1<=p39 | 1<=p38] | [1<=p36 | 1<=p37]] | [[1<=p34 | 1<=p35] | [1<=p32 | 1<=p33]]]]]]]]
abstracting: (1<=p33)
states: 63,059,864 (7)
abstracting: (1<=p32)
states: 63,059,864 (7)
abstracting: (1<=p35)
states: 63,059,864 (7)
abstracting: (1<=p34)
states: 63,059,864 (7)
abstracting: (1<=p37)
states: 63,059,864 (7)
abstracting: (1<=p36)
states: 63,059,864 (7)
abstracting: (1<=p38)
states: 63,059,864 (7)
abstracting: (1<=p39)
states: 63,059,864 (7)
abstracting: (1<=p40)
states: 63,059,864 (7)
abstracting: (1<=p41)
states: 63,059,864 (7)
abstracting: (1<=p27)
states: 63,059,864 (7)
abstracting: (1<=p26)
states: 63,059,864 (7)
abstracting: (1<=p29)
states: 63,059,864 (7)
abstracting: (1<=p28)
states: 63,059,864 (7)
abstracting: (p33<=0)
states: 2,544,865,519 (9)
abstracting: (p32<=0)
states: 2,544,865,519 (9)
abstracting: (p35<=0)
states: 2,544,865,519 (9)
abstracting: (p34<=0)
states: 2,544,865,519 (9)
abstracting: (p37<=0)
states: 2,544,865,519 (9)
abstracting: (p36<=0)
states: 2,544,865,519 (9)
abstracting: (p38<=0)
states: 2,544,865,519 (9)
abstracting: (p39<=0)
states: 2,544,865,519 (9)
abstracting: (p40<=0)
states: 2,544,865,519 (9)
abstracting: (p41<=0)
states: 2,544,865,519 (9)
abstracting: (p27<=0)
states: 2,544,865,519 (9)
abstracting: (p26<=0)
states: 2,544,865,519 (9)
abstracting: (p29<=0)
states: 2,544,865,519 (9)
abstracting: (p28<=0)
states: 2,544,865,519 (9)
abstracting: (p31<=0)
states: 2,544,865,519 (9)
abstracting: (p30<=0)
states: 2,544,865,519 (9)
abstracting: (p115<=0)
states: 1,556,412,235 (9)
abstracting: (p114<=0)
states: 1,556,412,235 (9)
abstracting: (p113<=0)
states: 1,556,412,235 (9)
abstracting: (p112<=0)
states: 1,556,412,235 (9)
abstracting: (p111<=0)
states: 1,556,412,235 (9)
abstracting: (p110<=0)
states: 1,556,412,235 (9)
abstracting: (p109<=0)
states: 1,556,412,235 (9)
abstracting: (p108<=0)
states: 1,556,412,235 (9)
abstracting: (1<=p64)
states: 63,059,864 (7)
abstracting: (1<=p65)
states: 63,059,864 (7)
abstracting: (1<=p66)
states: 63,059,864 (7)
abstracting: (1<=p67)
states: 63,059,864 (7)
abstracting: (1<=p68)
states: 63,059,864 (7)
abstracting: (1<=p69)
states: 63,059,864 (7)
abstracting: (1<=p70)
states: 63,059,864 (7)
abstracting: (1<=p71)
states: 63,059,864 (7)
abstracting: (1<=p72)
states: 63,059,864 (7)
abstracting: (1<=p73)
states: 63,059,864 (7)
abstracting: (1<=p42)
states: 63,059,864 (7)
abstracting: (1<=p43)
states: 63,059,864 (7)
abstracting: (1<=p44)
states: 63,059,864 (7)
abstracting: (1<=p45)
states: 63,059,864 (7)
abstracting: (1<=p46)
states: 63,059,864 (7)
abstracting: (1<=p47)
states: 63,059,864 (7)
abstracting: (1<=p48)
states: 63,059,864 (7)
abstracting: (1<=p49)
states: 63,059,864 (7)
abstracting: (1<=p50)
states: 63,059,864 (7)
abstracting: (1<=p51)
states: 63,059,864 (7)
abstracting: (1<=p52)
states: 63,059,864 (7)
abstracting: (1<=p53)
states: 63,059,864 (7)
abstracting: (1<=p54)
states: 63,059,864 (7)
abstracting: (1<=p55)
states: 63,059,864 (7)
abstracting: (1<=p56)
states: 63,059,864 (7)
abstracting: (1<=p57)
states: 63,059,864 (7)
abstracting: (1<=p58)
states: 63,059,864 (7)
abstracting: (1<=p59)
states: 63,059,864 (7)
abstracting: (1<=p60)
states: 63,059,864 (7)
abstracting: (1<=p61)
states: 63,059,864 (7)
abstracting: (1<=p62)
states: 63,059,864 (7)
abstracting: (1<=p63)
states: 63,059,864 (7)
.
EG iterations: 1
abstracting: (1<=p31)
states: 63,059,864 (7)
abstracting: (1<=p30)
states: 63,059,864 (7)
abstracting: (1<=p122)
states: 1,051,513,148 (9)
abstracting: (1<=p86)
states: 63,059,864 (7)
abstracting: (1<=p120)
states: 1,051,513,148 (9)
abstracting: (1<=p83)
states: 63,059,864 (7)
abstracting: (1<=p119)
states: 1,051,513,148 (9)
abstracting: (1<=p81)
states: 63,059,864 (7)
abstracting: (1<=p118)
states: 1,051,513,148 (9)
abstracting: (1<=p78)
states: 63,059,864 (7)
abstracting: (1<=p117)
states: 1,051,513,148 (9)
abstracting: (1<=p76)
states: 63,059,864 (7)
abstracting: (1<=p75)
states: 63,059,864 (7)
abstracting: (1<=p116)
states: 1,051,513,148 (9)
abstracting: (1<=p123)
states: 1,051,513,148 (9)
abstracting: (1<=p89)
states: 63,059,864 (7)
abstracting: (1<=p121)
states: 1,051,513,148 (9)
abstracting: (1<=p85)
states: 63,059,864 (7)
abstracting: (1<=p120)
states: 1,051,513,148 (9)
abstracting: (1<=p82)
states: 63,059,864 (7)
abstracting: (1<=p122)
states: 1,051,513,148 (9)
abstracting: (1<=p87)
states: 63,059,864 (7)
abstracting: (1<=p118)
states: 1,051,513,148 (9)
abstracting: (1<=p79)
states: 63,059,864 (7)
abstracting: (1<=p117)
states: 1,051,513,148 (9)
abstracting: (1<=p77)
states: 63,059,864 (7)
abstracting: (1<=p116)
states: 1,051,513,148 (9)
abstracting: (1<=p74)
states: 63,059,864 (7)
abstracting: (1<=p119)
states: 1,051,513,148 (9)
abstracting: (1<=p80)
states: 63,059,864 (7)
abstracting: (1<=p121)
states: 1,051,513,148 (9)
abstracting: (1<=p84)
states: 63,059,864 (7)
abstracting: (1<=p123)
states: 1,051,513,148 (9)
abstracting: (1<=p88)
states: 63,059,864 (7)
.....
before gc: list nodes free: 2227885
after gc: idd nodes used:10203186, unused:53796814; list nodes free:243348131
..................
EG iterations: 23
.abstracting: (1<=p100)
states: 175,414,659 (8)
abstracting: (1<=p101)
states: 175,414,659 (8)
abstracting: (1<=p102)
states: 175,414,659 (8)
abstracting: (1<=p103)
states: 175,414,659 (8)
abstracting: (1<=p104)
states: 175,414,659 (8)
abstracting: (1<=p106)
states: 175,414,659 (8)
abstracting: (1<=p105)
states: 175,414,659 (8)
abstracting: (1<=p107)
states: 175,414,659 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p25)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p13)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p20)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p10)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p21)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p12)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p16)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p22)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p18)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p24)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p19)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p17)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p15)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p21)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p11)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p13)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p20)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p18)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p25)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p15)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p23)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p10)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p24)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p16)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p14)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p12)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p14)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p17)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p22)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p11)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p23)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p19)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p100)
states: 175,414,659 (8)
abstracting: (1<=p101)
states: 175,414,659 (8)
abstracting: (1<=p102)
states: 175,414,659 (8)
abstracting: (1<=p103)
states: 175,414,659 (8)
abstracting: (1<=p104)
states: 175,414,659 (8)
abstracting: (1<=p106)
states: 175,414,659 (8)
abstracting: (1<=p105)
states: 175,414,659 (8)
abstracting: (1<=p107)
states: 175,414,659 (8)
abstracting: (1<=p33)
states: 63,059,864 (7)
abstracting: (1<=p32)
states: 63,059,864 (7)
abstracting: (1<=p35)
states: 63,059,864 (7)
abstracting: (1<=p34)
states: 63,059,864 (7)
abstracting: (1<=p37)
states: 63,059,864 (7)
abstracting: (1<=p36)
states: 63,059,864 (7)
abstracting: (1<=p38)
states: 63,059,864 (7)
abstracting: (1<=p39)
states: 63,059,864 (7)
abstracting: (1<=p40)
states: 63,059,864 (7)
abstracting: (1<=p41)
states: 63,059,864 (7)
abstracting: (1<=p27)
states: 63,059,864 (7)
abstracting: (1<=p26)
states: 63,059,864 (7)
abstracting: (1<=p29)
states: 63,059,864 (7)
abstracting: (1<=p28)
states: 63,059,864 (7)
abstracting: (1<=p31)
states: 63,059,864 (7)
abstracting: (1<=p30)
states: 63,059,864 (7)
-> the formula is FALSE
FORMULA UtilityControlRoom-COL-Z2T3N08-CTLFireability-02 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 4m 8.125sec
checking: AX [[EF [EG [[[[[[[1<=p0 & [1<=p25 & 1<=p98]] | [1<=p1 & [1<=p13 & 1<=p98]]] | [[1<=p0 & [1<=p20 & 1<=p98]] | [1<=p0 & [1<=p10 & 1<=p98]]]] | [[[1<=p0 & [1<=p21 & 1<=p98]] | [1<=p1 & [1<=p12 & 1<=p98]]] | [[1<=p0 & [1<=p16 & 1<=p98]] | [1<=p1 & [1<=p22 & 1<=p98]]]]] | [[[[1<=p1 & [1<=p18 & 1<=p98]] | [1<=p0 & [1<=p24 & 1<=p98]]] | [[1<=p0 & [1<=p19 & 1<=p98]] | [1<=p1 & [1<=p17 & 1<=p98]]]] | [[[1<=p0 & [1<=p15 & 1<=p98]] | [1<=p1 & [1<=p21 & 1<=p98]]] | [[1<=p0 & [1<=p11 & 1<=p98]] | [1<=p0 & [1<=p13 & 1<=p98]]]]]] | [[[[[1<=p1 & [1<=p20 & 1<=p98]] | [1<=p0 & [1<=p18 & 1<=p98]]] | [[1<=p1 & [1<=p25 & 1<=p98]] | [1<=p1 & [1<=p15 & 1<=p98]]]] | [[[1<=p0 & [1<=p23 & 1<=p98]] | [1<=p1 & [1<=p10 & 1<=p98]]] | [[1<=p1 & [1<=p24 & 1<=p98]] | [1<=p1 & [1<=p16 & 1<=p98]]]]] | [[[[1<=p0 & [1<=p14 & 1<=p98]] | [1<=p0 & [1<=p12 & 1<=p98]]] | [[1<=p1 & [1<=p14 & 1<=p98]] | [1<=p0 & [1<=p17 & 1<=p98]]]] | [[[1<=p0 & [1<=p22 & 1<=p98]] | [1<=p1 & [1<=p11 & 1<=p98]]] | [[1<=p1 & [1<=p23 & 1<=p98]] | [1<=p1 & [1<=p19 & 1<=p98]]]]]]]]] & [[[[EF [[[[[1<=p101 | 1<=p100] | [1<=p103 | 1<=p102]] | [[1<=p106 | 1<=p104] | [1<=p107 | 1<=p105]]] & [[[1<=p114 | 1<=p115] | [1<=p112 | 1<=p113]] | [[1<=p110 | 1<=p111] | [1<=p108 | 1<=p109]]]]] | EG [AF [[[[[[1<=p65 | 1<=p64] | [1<=p67 | 1<=p66]] | [[1<=p69 | 1<=p68] | [1<=p71 | 1<=p70]]] | [[[1<=p73 | 1<=p72] | [1<=p43 | 1<=p42]] | [[1<=p45 | 1<=p44] | [1<=p47 | 1<=p46]]]] | [[[[1<=p57 | 1<=p56] | [1<=p59 | 1<=p58]] | [[1<=p61 | 1<=p60] | [1<=p63 | 1<=p62]]] | [[[1<=p49 | 1<=p48] | [1<=p51 | 1<=p50]] | [[1<=p53 | 1<=p52] | [1<=p55 | 1<=p54]]]]]]]] | [1<=p32 | 1<=p33]] | [[1<=p34 | 1<=p35] | [1<=p36 | [1<=p37 | 1<=p39]]]] | [[[1<=p38 | 1<=p41] | [1<=p40 | [1<=p26 | 1<=p27]]] | [[1<=p28 | 1<=p29] | [1<=p30 | [1<=p31 | [EF [[[[[[1<=p75 & 1<=p108] | [1<=p80 & 1<=p111]] | [[1<=p85 & 1<=p113] | [1<=p88 & 1<=p115]]] | [[[1<=p77 & 1<=p109] | [1<=p87 & 1<=p114]] | [[1<=p83 & 1<=p112] | [1<=p81 & 1<=p111]]]] | [[[[1<=p79 & 1<=p110] | [1<=p89 & 1<=p115]] | [[1<=p84 & 1<=p113] | [1<=p82 & 1<=p112]]] | [[[1<=p86 & 1<=p114] | [1<=p76 & 1<=p109]] | [[1<=p78 & 1<=p110] | [1<=p74 & 1<=p108]]]]]] & A [[[[[[1<=p75 & 1<=p108] | [1<=p80 & 1<=p111]] | [[1<=p85 & 1<=p113] | [1<=p88 & 1<=p115]]] | [[[1<=p77 & 1<=p109] | [1<=p87 & 1<=p114]] | [[1<=p83 & 1<=p112] | [1<=p81 & 1<=p111]]]] | [[[[1<=p79 & 1<=p110] | [1<=p89 & 1<=p115]] | [[1<=p84 & 1<=p113] | [1<=p82 & 1<=p112]]] | [[[1<=p86 & 1<=p114] | [1<=p76 & 1<=p109]] | [[1<=p78 & 1<=p110] | [1<=p74 & 1<=p108]]]]] U E [[[[[[1<=p86 & 1<=p122] | [1<=p83 & 1<=p120]] | [[1<=p81 & 1<=p119] | [1<=p78 & 1<=p118]]] | [[[1<=p76 & 1<=p117] | [1<=p75 & 1<=p116]] | [[1<=p89 & 1<=p123] | [1<=p85 & 1<=p121]]]] | [[[[1<=p82 & 1<=p120] | [1<=p87 & 1<=p122]] | [[1<=p79 & 1<=p118] | [1<=p77 & 1<=p117]]] | [[[1<=p74 & 1<=p116] | [1<=p80 & 1<=p119]] | [[1<=p84 & 1<=p121] | [1<=p88 & 1<=p123]]]]] U [[[[1<=p32 | 1<=p33] | [1<=p34 | 1<=p35]] | [[1<=p36 | 1<=p37] | [1<=p39 | 1<=p38]]] | [[[1<=p41 | 1<=p40] | [1<=p26 | 1<=p27]] | [[1<=p28 | 1<=p29] | [1<=p30 | 1<=p31]]]]]]]]]]]]]]
normalized: ~ [EX [~ [[[[[[1<=p30 | [1<=p31 | [[~ [EG [~ [E [[[[[[1<=p88 & 1<=p123] | [1<=p84 & 1<=p121]] | [[1<=p80 & 1<=p119] | [1<=p74 & 1<=p116]]] | [[[1<=p77 & 1<=p117] | [1<=p79 & 1<=p118]] | [[1<=p87 & 1<=p122] | [1<=p82 & 1<=p120]]]] | [[[[1<=p85 & 1<=p121] | [1<=p89 & 1<=p123]] | [[1<=p75 & 1<=p116] | [1<=p76 & 1<=p117]]] | [[[1<=p78 & 1<=p118] | [1<=p81 & 1<=p119]] | [[1<=p83 & 1<=p120] | [1<=p86 & 1<=p122]]]]] U [[[[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p41 | 1<=p40]]] | [[[1<=p39 | 1<=p38] | [1<=p36 | 1<=p37]] | [[1<=p34 | 1<=p35] | [1<=p32 | 1<=p33]]]]]]]] & ~ [E [~ [E [[[[[[1<=p88 & 1<=p123] | [1<=p84 & 1<=p121]] | [[1<=p80 & 1<=p119] | [1<=p74 & 1<=p116]]] | [[[1<=p77 & 1<=p117] | [1<=p79 & 1<=p118]] | [[1<=p87 & 1<=p122] | [1<=p82 & 1<=p120]]]] | [[[[1<=p85 & 1<=p121] | [1<=p89 & 1<=p123]] | [[1<=p75 & 1<=p116] | [1<=p76 & 1<=p117]]] | [[[1<=p78 & 1<=p118] | [1<=p81 & 1<=p119]] | [[1<=p83 & 1<=p120] | [1<=p86 & 1<=p122]]]]] U [[[[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p41 | 1<=p40]]] | [[[1<=p39 | 1<=p38] | [1<=p36 | 1<=p37]] | [[1<=p34 | 1<=p35] | [1<=p32 | 1<=p33]]]]]] U [~ [[[[[[1<=p74 & 1<=p108] | [1<=p78 & 1<=p110]] | [[1<=p76 & 1<=p109] | [1<=p86 & 1<=p114]]] | [[[1<=p82 & 1<=p112] | [1<=p84 & 1<=p113]] | [[1<=p89 & 1<=p115] | [1<=p79 & 1<=p110]]]] | [[[[1<=p81 & 1<=p111] | [1<=p83 & 1<=p112]] | [[1<=p87 & 1<=p114] | [1<=p77 & 1<=p109]]] | [[[1<=p88 & 1<=p115] | [1<=p85 & 1<=p113]] | [[1<=p80 & 1<=p111] | [1<=p75 & 1<=p108]]]]]] & ~ [E [[[[[[1<=p88 & 1<=p123] | [1<=p84 & 1<=p121]] | [[1<=p80 & 1<=p119] | [1<=p74 & 1<=p116]]] | [[[1<=p77 & 1<=p117] | [1<=p79 & 1<=p118]] | [[1<=p87 & 1<=p122] | [1<=p82 & 1<=p120]]]] | [[[[1<=p85 & 1<=p121] | [1<=p89 & 1<=p123]] | [[1<=p75 & 1<=p116] | [1<=p76 & 1<=p117]]] | [[[1<=p78 & 1<=p118] | [1<=p81 & 1<=p119]] | [[1<=p83 & 1<=p120] | [1<=p86 & 1<=p122]]]]] U [[[[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p41 | 1<=p40]]] | [[[1<=p39 | 1<=p38] | [1<=p36 | 1<=p37]] | [[1<=p34 | 1<=p35] | [1<=p32 | 1<=p33]]]]]]]]]] & E [true U [[[[[1<=p74 & 1<=p108] | [1<=p78 & 1<=p110]] | [[1<=p76 & 1<=p109] | [1<=p86 & 1<=p114]]] | [[[1<=p82 & 1<=p112] | [1<=p84 & 1<=p113]] | [[1<=p89 & 1<=p115] | [1<=p79 & 1<=p110]]]] | [[[[1<=p81 & 1<=p111] | [1<=p83 & 1<=p112]] | [[1<=p87 & 1<=p114] | [1<=p77 & 1<=p109]]] | [[[1<=p88 & 1<=p115] | [1<=p85 & 1<=p113]] | [[1<=p80 & 1<=p111] | [1<=p75 & 1<=p108]]]]]]]]] | [1<=p28 | 1<=p29]] | [[1<=p40 | [1<=p26 | 1<=p27]] | [1<=p38 | 1<=p41]]] | [[[1<=p36 | [1<=p37 | 1<=p39]] | [1<=p34 | 1<=p35]] | [[1<=p32 | 1<=p33] | [EG [~ [EG [~ [[[[[[1<=p55 | 1<=p54] | [1<=p53 | 1<=p52]] | [[1<=p51 | 1<=p50] | [1<=p49 | 1<=p48]]] | [[[1<=p63 | 1<=p62] | [1<=p61 | 1<=p60]] | [[1<=p59 | 1<=p58] | [1<=p57 | 1<=p56]]]] | [[[[1<=p47 | 1<=p46] | [1<=p45 | 1<=p44]] | [[1<=p43 | 1<=p42] | [1<=p73 | 1<=p72]]] | [[[1<=p71 | 1<=p70] | [1<=p69 | 1<=p68]] | [[1<=p67 | 1<=p66] | [1<=p65 | 1<=p64]]]]]]]]] | E [true U [[[[1<=p108 | 1<=p109] | [1<=p110 | 1<=p111]] | [[1<=p112 | 1<=p113] | [1<=p114 | 1<=p115]]] & [[[1<=p107 | 1<=p105] | [1<=p106 | 1<=p104]] | [[1<=p103 | 1<=p102] | [1<=p101 | 1<=p100]]]]]]]]] & E [true U EG [[[[[[[1<=p1 & [1<=p19 & 1<=p98]] | [1<=p1 & [1<=p23 & 1<=p98]]] | [[1<=p1 & [1<=p11 & 1<=p98]] | [1<=p0 & [1<=p22 & 1<=p98]]]] | [[[1<=p0 & [1<=p17 & 1<=p98]] | [1<=p1 & [1<=p14 & 1<=p98]]] | [[1<=p0 & [1<=p12 & 1<=p98]] | [1<=p0 & [1<=p14 & 1<=p98]]]]] | [[[[1<=p1 & [1<=p16 & 1<=p98]] | [1<=p1 & [1<=p24 & 1<=p98]]] | [[1<=p1 & [1<=p10 & 1<=p98]] | [1<=p0 & [1<=p23 & 1<=p98]]]] | [[[1<=p1 & [1<=p15 & 1<=p98]] | [1<=p1 & [1<=p25 & 1<=p98]]] | [[1<=p0 & [1<=p18 & 1<=p98]] | [1<=p1 & [1<=p20 & 1<=p98]]]]]] | [[[[[1<=p0 & [1<=p13 & 1<=p98]] | [1<=p0 & [1<=p11 & 1<=p98]]] | [[1<=p1 & [1<=p21 & 1<=p98]] | [1<=p0 & [1<=p15 & 1<=p98]]]] | [[[1<=p1 & [1<=p17 & 1<=p98]] | [1<=p0 & [1<=p19 & 1<=p98]]] | [[1<=p0 & [1<=p24 & 1<=p98]] | [1<=p1 & [1<=p18 & 1<=p98]]]]] | [[[[1<=p1 & [1<=p22 & 1<=p98]] | [1<=p0 & [1<=p16 & 1<=p98]]] | [[1<=p1 & [1<=p12 & 1<=p98]] | [1<=p0 & [1<=p21 & 1<=p98]]]] | [[[1<=p0 & [1<=p10 & 1<=p98]] | [1<=p0 & [1<=p20 & 1<=p98]]] | [[1<=p1 & [1<=p13 & 1<=p98]] | [1<=p0 & [1<=p25 & 1<=p98]]]]]]]]]]]]]
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p25)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p13)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p20)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p10)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p21)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p12)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p16)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p22)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p18)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p24)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p19)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p17)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p15)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p21)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p11)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p13)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p20)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p18)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p25)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p15)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p23)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p10)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p24)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p16)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p14)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p12)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p14)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p17)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p22)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p11)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p23)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p19)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
.
EG iterations: 1
abstracting: (1<=p100)
states: 175,414,659 (8)
abstracting: (1<=p101)
states: 175,414,659 (8)
abstracting: (1<=p102)
states: 175,414,659 (8)
abstracting: (1<=p103)
states: 175,414,659 (8)
abstracting: (1<=p104)
states: 175,414,659 (8)
abstracting: (1<=p106)
states: 175,414,659 (8)
abstracting: (1<=p105)
states: 175,414,659 (8)
abstracting: (1<=p107)
states: 175,414,659 (8)
abstracting: (1<=p115)
states: 1,051,513,148 (9)
abstracting: (1<=p114)
states: 1,051,513,148 (9)
abstracting: (1<=p113)
states: 1,051,513,148 (9)
abstracting: (1<=p112)
states: 1,051,513,148 (9)
abstracting: (1<=p111)
states: 1,051,513,148 (9)
abstracting: (1<=p110)
states: 1,051,513,148 (9)
abstracting: (1<=p109)
states: 1,051,513,148 (9)
abstracting: (1<=p108)
states: 1,051,513,148 (9)
before gc: list nodes free: 2567806
after gc: idd nodes used:10249077, unused:53750923; list nodes free:243197044
abstracting: (1<=p64)
states: 63,059,864 (7)
abstracting: (1<=p65)
states: 63,059,864 (7)
abstracting: (1<=p66)
states: 63,059,864 (7)
abstracting: (1<=p67)
states: 63,059,864 (7)
abstracting: (1<=p68)
states: 63,059,864 (7)
abstracting: (1<=p69)
states: 63,059,864 (7)
abstracting: (1<=p70)
states: 63,059,864 (7)
abstracting: (1<=p71)
states: 63,059,864 (7)
abstracting: (1<=p72)
states: 63,059,864 (7)
abstracting: (1<=p73)
states: 63,059,864 (7)
abstracting: (1<=p42)
states: 63,059,864 (7)
abstracting: (1<=p43)
states: 63,059,864 (7)
abstracting: (1<=p44)
states: 63,059,864 (7)
abstracting: (1<=p45)
states: 63,059,864 (7)
abstracting: (1<=p46)
states: 63,059,864 (7)
abstracting: (1<=p47)
states: 63,059,864 (7)
abstracting: (1<=p56)
states: 63,059,864 (7)
abstracting: (1<=p57)
states: 63,059,864 (7)
abstracting: (1<=p58)
states: 63,059,864 (7)
abstracting: (1<=p59)
states: 63,059,864 (7)
abstracting: (1<=p60)
states: 63,059,864 (7)
abstracting: (1<=p61)
states: 63,059,864 (7)
abstracting: (1<=p62)
states: 63,059,864 (7)
abstracting: (1<=p63)
states: 63,059,864 (7)
abstracting: (1<=p48)
states: 63,059,864 (7)
abstracting: (1<=p49)
states: 63,059,864 (7)
abstracting: (1<=p50)
states: 63,059,864 (7)
abstracting: (1<=p51)
states: 63,059,864 (7)
abstracting: (1<=p52)
states: 63,059,864 (7)
abstracting: (1<=p53)
states: 63,059,864 (7)
abstracting: (1<=p54)
states: 63,059,864 (7)
abstracting: (1<=p55)
states: 63,059,864 (7)
..........
EG iterations: 10
.
EG iterations: 1
abstracting: (1<=p33)
states: 63,059,864 (7)
abstracting: (1<=p32)
states: 63,059,864 (7)
abstracting: (1<=p35)
states: 63,059,864 (7)
abstracting: (1<=p34)
states: 63,059,864 (7)
abstracting: (1<=p39)
states: 63,059,864 (7)
abstracting: (1<=p37)
states: 63,059,864 (7)
abstracting: (1<=p36)
states: 63,059,864 (7)
abstracting: (1<=p41)
states: 63,059,864 (7)
abstracting: (1<=p38)
states: 63,059,864 (7)
abstracting: (1<=p27)
states: 63,059,864 (7)
abstracting: (1<=p26)
states: 63,059,864 (7)
abstracting: (1<=p40)
states: 63,059,864 (7)
abstracting: (1<=p29)
states: 63,059,864 (7)
abstracting: (1<=p28)
states: 63,059,864 (7)
abstracting: (1<=p108)
states: 1,051,513,148 (9)
abstracting: (1<=p75)
states: 63,059,864 (7)
abstracting: (1<=p111)
states: 1,051,513,148 (9)
abstracting: (1<=p80)
states: 63,059,864 (7)
abstracting: (1<=p113)
states: 1,051,513,148 (9)
abstracting: (1<=p85)
states: 63,059,864 (7)
abstracting: (1<=p115)
states: 1,051,513,148 (9)
abstracting: (1<=p88)
states: 63,059,864 (7)
abstracting: (1<=p109)
states: 1,051,513,148 (9)
abstracting: (1<=p77)
states: 63,059,864 (7)
abstracting: (1<=p114)
states: 1,051,513,148 (9)
abstracting: (1<=p87)
states: 63,059,864 (7)
abstracting: (1<=p112)
states: 1,051,513,148 (9)
abstracting: (1<=p83)
states: 63,059,864 (7)
abstracting: (1<=p111)
states: 1,051,513,148 (9)
abstracting: (1<=p81)
states: 63,059,864 (7)
abstracting: (1<=p110)
states: 1,051,513,148 (9)
abstracting: (1<=p79)
states: 63,059,864 (7)
abstracting: (1<=p115)
states: 1,051,513,148 (9)
abstracting: (1<=p89)
states: 63,059,864 (7)
abstracting: (1<=p113)
states: 1,051,513,148 (9)
abstracting: (1<=p84)
states: 63,059,864 (7)
abstracting: (1<=p112)
states: 1,051,513,148 (9)
abstracting: (1<=p82)
states: 63,059,864 (7)
abstracting: (1<=p114)
states: 1,051,513,148 (9)
abstracting: (1<=p86)
states: 63,059,864 (7)
abstracting: (1<=p109)
states: 1,051,513,148 (9)
abstracting: (1<=p76)
states: 63,059,864 (7)
abstracting: (1<=p110)
states: 1,051,513,148 (9)
abstracting: (1<=p78)
states: 63,059,864 (7)
abstracting: (1<=p108)
states: 1,051,513,148 (9)
abstracting: (1<=p74)
states: 63,059,864 (7)
abstracting: (1<=p33)
states: 63,059,864 (7)
abstracting: (1<=p32)
states: 63,059,864 (7)
abstracting: (1<=p35)
states: 63,059,864 (7)
abstracting: (1<=p34)
states: 63,059,864 (7)
abstracting: (1<=p37)
states: 63,059,864 (7)
abstracting: (1<=p36)
states: 63,059,864 (7)
abstracting: (1<=p38)
states: 63,059,864 (7)
abstracting: (1<=p39)
states: 63,059,864 (7)
abstracting: (1<=p40)
states: 63,059,864 (7)
abstracting: (1<=p41)
states: 63,059,864 (7)
abstracting: (1<=p27)
states: 63,059,864 (7)
abstracting: (1<=p26)
states: 63,059,864 (7)
abstracting: (1<=p29)
states: 63,059,864 (7)
abstracting: (1<=p28)
states: 63,059,864 (7)
abstracting: (1<=p31)
states: 63,059,864 (7)
abstracting: (1<=p30)
states: 63,059,864 (7)
abstracting: (1<=p122)
states: 1,051,513,148 (9)
abstracting: (1<=p86)
states: 63,059,864 (7)
abstracting: (1<=p120)
states: 1,051,513,148 (9)
abstracting: (1<=p83)
states: 63,059,864 (7)
abstracting: (1<=p119)
states: 1,051,513,148 (9)
abstracting: (1<=p81)
states: 63,059,864 (7)
abstracting: (1<=p118)
states: 1,051,513,148 (9)
abstracting: (1<=p78)
states: 63,059,864 (7)
abstracting: (1<=p117)
states: 1,051,513,148 (9)
abstracting: (1<=p76)
states: 63,059,864 (7)
abstracting: (1<=p116)
states: 1,051,513,148 (9)
abstracting: (1<=p75)
states: 63,059,864 (7)
abstracting: (1<=p123)
states: 1,051,513,148 (9)
abstracting: (1<=p89)
states: 63,059,864 (7)
abstracting: (1<=p121)
states: 1,051,513,148 (9)
abstracting: (1<=p85)
states: 63,059,864 (7)
abstracting: (1<=p120)
states: 1,051,513,148 (9)
abstracting: (1<=p82)
states: 63,059,864 (7)
abstracting: (1<=p122)
states: 1,051,513,148 (9)
abstracting: (1<=p87)
states: 63,059,864 (7)
abstracting: (1<=p118)
states: 1,051,513,148 (9)
abstracting: (1<=p79)
states: 63,059,864 (7)
abstracting: (1<=p117)
states: 1,051,513,148 (9)
abstracting: (1<=p77)
states: 63,059,864 (7)
abstracting: (1<=p116)
states: 1,051,513,148 (9)
abstracting: (1<=p74)
states: 63,059,864 (7)
abstracting: (1<=p119)
states: 1,051,513,148 (9)
abstracting: (1<=p80)
states: 63,059,864 (7)
abstracting: (1<=p121)
states: 1,051,513,148 (9)
abstracting: (1<=p84)
states: 63,059,864 (7)
abstracting: (1<=p123)
states: 1,051,513,148 (9)
abstracting: (1<=p88)
states: 63,059,864 (7)
abstracting: (1<=p108)
states: 1,051,513,148 (9)
abstracting: (1<=p75)
states: 63,059,864 (7)
abstracting: (1<=p111)
states: 1,051,513,148 (9)
abstracting: (1<=p80)
states: 63,059,864 (7)
abstracting: (1<=p113)
states: 1,051,513,148 (9)
abstracting: (1<=p85)
states: 63,059,864 (7)
abstracting: (1<=p115)
states: 1,051,513,148 (9)
abstracting: (1<=p88)
states: 63,059,864 (7)
abstracting: (1<=p109)
states: 1,051,513,148 (9)
abstracting: (1<=p77)
states: 63,059,864 (7)
abstracting: (1<=p114)
states: 1,051,513,148 (9)
abstracting: (1<=p87)
states: 63,059,864 (7)
abstracting: (1<=p112)
states: 1,051,513,148 (9)
abstracting: (1<=p83)
states: 63,059,864 (7)
abstracting: (1<=p111)
states: 1,051,513,148 (9)
abstracting: (1<=p81)
states: 63,059,864 (7)
abstracting: (1<=p110)
states: 1,051,513,148 (9)
abstracting: (1<=p79)
states: 63,059,864 (7)
abstracting: (1<=p115)
states: 1,051,513,148 (9)
abstracting: (1<=p89)
states: 63,059,864 (7)
abstracting: (1<=p113)
states: 1,051,513,148 (9)
abstracting: (1<=p84)
states: 63,059,864 (7)
abstracting: (1<=p112)
states: 1,051,513,148 (9)
abstracting: (1<=p82)
states: 63,059,864 (7)
abstracting: (1<=p114)
states: 1,051,513,148 (9)
abstracting: (1<=p86)
states: 63,059,864 (7)
abstracting: (1<=p109)
states: 1,051,513,148 (9)
abstracting: (1<=p76)
states: 63,059,864 (7)
abstracting: (1<=p110)
states: 1,051,513,148 (9)
abstracting: (1<=p78)
states: 63,059,864 (7)
abstracting: (1<=p108)
states: 1,051,513,148 (9)
abstracting: (1<=p74)
states: 63,059,864 (7)
abstracting: (1<=p33)
states: 63,059,864 (7)
abstracting: (1<=p32)
states: 63,059,864 (7)
abstracting: (1<=p35)
states: 63,059,864 (7)
abstracting: (1<=p34)
states: 63,059,864 (7)
abstracting: (1<=p37)
states: 63,059,864 (7)
abstracting: (1<=p36)
states: 63,059,864 (7)
abstracting: (1<=p38)
states: 63,059,864 (7)
abstracting: (1<=p39)
states: 63,059,864 (7)
abstracting: (1<=p40)
states: 63,059,864 (7)
abstracting: (1<=p41)
states: 63,059,864 (7)
abstracting: (1<=p27)
states: 63,059,864 (7)
abstracting: (1<=p26)
states: 63,059,864 (7)
abstracting: (1<=p29)
states: 63,059,864 (7)
abstracting: (1<=p28)
states: 63,059,864 (7)
abstracting: (1<=p31)
states: 63,059,864 (7)
abstracting: (1<=p30)
states: 63,059,864 (7)
abstracting: (1<=p122)
states: 1,051,513,148 (9)
abstracting: (1<=p86)
states: 63,059,864 (7)
abstracting: (1<=p120)
states: 1,051,513,148 (9)
abstracting: (1<=p83)
states: 63,059,864 (7)
abstracting: (1<=p119)
states: 1,051,513,148 (9)
abstracting: (1<=p81)
states: 63,059,864 (7)
abstracting: (1<=p118)
states: 1,051,513,148 (9)
abstracting: (1<=p78)
states: 63,059,864 (7)
abstracting: (1<=p117)
states: 1,051,513,148 (9)
abstracting: (1<=p76)
states: 63,059,864 (7)
abstracting: (1<=p116)
states: 1,051,513,148 (9)
abstracting: (1<=p75)
states: 63,059,864 (7)
abstracting: (1<=p123)
states: 1,051,513,148 (9)
abstracting: (1<=p89)
states: 63,059,864 (7)
abstracting: (1<=p121)
states: 1,051,513,148 (9)
abstracting: (1<=p85)
states: 63,059,864 (7)
abstracting: (1<=p120)
states: 1,051,513,148 (9)
abstracting: (1<=p82)
states: 63,059,864 (7)
abstracting: (1<=p122)
states: 1,051,513,148 (9)
abstracting: (1<=p87)
states: 63,059,864 (7)
abstracting: (1<=p118)
states: 1,051,513,148 (9)
abstracting: (1<=p79)
states: 63,059,864 (7)
abstracting: (1<=p117)
states: 1,051,513,148 (9)
abstracting: (1<=p77)
states: 63,059,864 (7)
abstracting: (1<=p116)
states: 1,051,513,148 (9)
abstracting: (1<=p74)
states: 63,059,864 (7)
abstracting: (1<=p119)
states: 1,051,513,148 (9)
abstracting: (1<=p80)
states: 63,059,864 (7)
abstracting: (1<=p121)
states: 1,051,513,148 (9)
abstracting: (1<=p84)
states: 63,059,864 (7)
abstracting: (1<=p123)
states: 1,051,513,148 (9)
abstracting: (1<=p88)
states: 63,059,864 (7)
abstracting: (1<=p33)
states: 63,059,864 (7)
abstracting: (1<=p32)
states: 63,059,864 (7)
abstracting: (1<=p35)
states: 63,059,864 (7)
abstracting: (1<=p34)
states: 63,059,864 (7)
abstracting: (1<=p37)
states: 63,059,864 (7)
abstracting: (1<=p36)
states: 63,059,864 (7)
abstracting: (1<=p38)
states: 63,059,864 (7)
abstracting: (1<=p39)
states: 63,059,864 (7)
abstracting: (1<=p40)
states: 63,059,864 (7)
abstracting: (1<=p41)
states: 63,059,864 (7)
abstracting: (1<=p27)
states: 63,059,864 (7)
abstracting: (1<=p26)
states: 63,059,864 (7)
abstracting: (1<=p29)
states: 63,059,864 (7)
abstracting: (1<=p28)
states: 63,059,864 (7)
abstracting: (1<=p31)
states: 63,059,864 (7)
abstracting: (1<=p30)
states: 63,059,864 (7)
abstracting: (1<=p122)
states: 1,051,513,148 (9)
abstracting: (1<=p86)
states: 63,059,864 (7)
abstracting: (1<=p120)
states: 1,051,513,148 (9)
abstracting: (1<=p83)
states: 63,059,864 (7)
abstracting: (1<=p119)
states: 1,051,513,148 (9)
abstracting: (1<=p81)
states: 63,059,864 (7)
abstracting: (1<=p118)
states: 1,051,513,148 (9)
abstracting: (1<=p78)
states: 63,059,864 (7)
abstracting: (1<=p117)
states: 1,051,513,148 (9)
abstracting: (1<=p76)
states: 63,059,864 (7)
abstracting: (1<=p116)
states: 1,051,513,148 (9)
abstracting: (1<=p75)
states: 63,059,864 (7)
abstracting: (1<=p123)
states: 1,051,513,148 (9)
abstracting: (1<=p89)
states: 63,059,864 (7)
abstracting: (1<=p121)
states: 1,051,513,148 (9)
abstracting: (1<=p85)
states: 63,059,864 (7)
abstracting: (1<=p120)
states: 1,051,513,148 (9)
abstracting: (1<=p82)
states: 63,059,864 (7)
abstracting: (1<=p122)
states: 1,051,513,148 (9)
abstracting: (1<=p87)
states: 63,059,864 (7)
abstracting: (1<=p118)
states: 1,051,513,148 (9)
abstracting: (1<=p79)
states: 63,059,864 (7)
abstracting: (1<=p117)
states: 1,051,513,148 (9)
abstracting: (1<=p77)
states: 63,059,864 (7)
abstracting: (1<=p116)
states: 1,051,513,148 (9)
abstracting: (1<=p74)
states: 63,059,864 (7)
abstracting: (1<=p119)
states: 1,051,513,148 (9)
abstracting: (1<=p80)
states: 63,059,864 (7)
abstracting: (1<=p121)
states: 1,051,513,148 (9)
abstracting: (1<=p84)
states: 63,059,864 (7)
abstracting: (1<=p123)
states: 1,051,513,148 (9)
abstracting: (1<=p88)
states: 63,059,864 (7)
..............
before gc: list nodes free: 1585807
after gc: idd nodes used:11734772, unused:52265228; list nodes free:236573994
.MC time: 6m50.449sec
checking: E [~ [AX [~ [EG [[[[[[1<=p0 & [1<=p18 & 1<=p98]] | [1<=p1 & [1<=p25 & 1<=p98]]] | [[1<=p1 & [1<=p15 & 1<=p98]] | [1<=p1 & [1<=p13 & 1<=p98]]]] | [[[1<=p0 & [1<=p20 & 1<=p98]] | [1<=p0 & [1<=p10 & 1<=p98]]] | [[1<=p0 & [1<=p16 & 1<=p98]] | [1<=p0 & [1<=p14 & 1<=p98]]]]] | [[[[1<=p0 & [1<=p12 & 1<=p98]] | [1<=p0 & [1<=p24 & 1<=p98]]] | [[1<=p0 & [1<=p22 & 1<=p98]] | [1<=p1 & [1<=p11 & 1<=p98]]]] | [[[1<=p1 & [1<=p23 & 1<=p98]] | [1<=p1 & [1<=p17 & 1<=p98]]] | [[1<=p1 & [1<=p21 & 1<=p98]] | [1<=p1 & [1<=p19 & 1<=p98]]]]]]]]]] U [EX [~ [EF [[[[[[[1<=p86 & 1<=p122] | [1<=p83 & 1<=p120]] | [[1<=p81 & 1<=p119] | [1<=p78 & 1<=p118]]] | [[[1<=p76 & 1<=p117] | [1<=p75 & 1<=p116]] | [[1<=p89 & 1<=p123] | [1<=p85 & 1<=p121]]]] | [[[[1<=p82 & 1<=p120] | [1<=p87 & 1<=p122]] | [[1<=p79 & 1<=p118] | [1<=p77 & 1<=p117]]] | [[[1<=p74 & 1<=p116] | [1<=p80 & 1<=p119]] | [[1<=p84 & 1<=p121] | [1<=p88 & 1<=p123]]]]] & [[[[[1<=p75 & 1<=p108] | [1<=p80 & 1<=p111]] | [[1<=p85 & 1<=p113] | [1<=p88 & 1<=p115]]] | [[[1<=p77 & 1<=p109] | [1<=p87 & 1<=p114]] | [[1<=p83 & 1<=p112] | [1<=p81 & 1<=p111]]]] | [[[[1<=p79 & 1<=p110] | [1<=p89 & 1<=p115]] | [[1<=p84 & 1<=p113] | [1<=p82 & 1<=p112]]] | [[[1<=p86 & 1<=p114] | [1<=p76 & 1<=p109]] | [[1<=p78 & 1<=p110] | [1<=p74 & 1<=p108]]]]]]]]] & [AX [[AF [[[[[[1<=p99 & 1<=p135] | [1<=p99 & 1<=p136]] | [[1<=p99 & 1<=p133] | [1<=p99 & 1<=p134]]] | [[[1<=p99 & 1<=p139] | [1<=p99 & 1<=p137]] | [[1<=p99 & 1<=p138] | [1<=p99 & 1<=p127]]]] | [[[[1<=p99 & 1<=p128] | [1<=p99 & 1<=p125]] | [[1<=p99 & 1<=p126] | [1<=p99 & 1<=p131]]] | [[[1<=p99 & 1<=p132] | [1<=p99 & 1<=p129]] | [[1<=p99 & 1<=p130] | [1<=p99 & 1<=p124]]]]]] & [E [[[[[[1<=p99 & 1<=p135] | [1<=p99 & 1<=p136]] | [[1<=p99 & 1<=p133] | [1<=p99 & 1<=p134]]] | [[[1<=p99 & 1<=p139] | [1<=p99 & 1<=p137]] | [[1<=p99 & 1<=p138] | [1<=p99 & 1<=p127]]]] | [[[[1<=p99 & 1<=p128] | [1<=p99 & 1<=p125]] | [[1<=p99 & 1<=p126] | [1<=p99 & 1<=p131]]] | [[[1<=p99 & 1<=p132] | [1<=p99 & 1<=p129]] | [[1<=p99 & 1<=p130] | [1<=p99 & 1<=p124]]]]] U [[[1<=p114 | 1<=p115] | [1<=p112 | 1<=p113]] | [[1<=p110 | 1<=p111] | [1<=p108 | 1<=p109]]]] & EG [[[[[[[1<=p0 & [1<=p25 & 1<=p98]] | [1<=p1 & [1<=p13 & 1<=p98]]] | [[1<=p0 & [1<=p20 & 1<=p98]] | [1<=p0 & [1<=p10 & 1<=p98]]]] | [[[1<=p0 & [1<=p21 & 1<=p98]] | [1<=p1 & [1<=p12 & 1<=p98]]] | [[1<=p0 & [1<=p16 & 1<=p98]] | [1<=p1 & [1<=p22 & 1<=p98]]]]] | [[[[1<=p1 & [1<=p18 & 1<=p98]] | [1<=p0 & [1<=p24 & 1<=p98]]] | [[1<=p0 & [1<=p19 & 1<=p98]] | [1<=p1 & [1<=p17 & 1<=p98]]]] | [[[1<=p0 & [1<=p15 & 1<=p98]] | [1<=p1 & [1<=p21 & 1<=p98]]] | [[1<=p0 & [1<=p11 & 1<=p98]] | [1<=p0 & [1<=p13 & 1<=p98]]]]]] | [[[[[1<=p1 & [1<=p20 & 1<=p98]] | [1<=p0 & [1<=p18 & 1<=p98]]] | [[1<=p1 & [1<=p25 & 1<=p98]] | [1<=p1 & [1<=p15 & 1<=p98]]]] | [[[1<=p0 & [1<=p23 & 1<=p98]] | [1<=p1 & [1<=p10 & 1<=p98]]] | [[1<=p1 & [1<=p24 & 1<=p98]] | [1<=p1 & [1<=p16 & 1<=p98]]]]] | [[[[1<=p0 & [1<=p14 & 1<=p98]] | [1<=p0 & [1<=p12 & 1<=p98]]] | [[1<=p1 & [1<=p14 & 1<=p98]] | [1<=p0 & [1<=p17 & 1<=p98]]]] | [[[1<=p0 & [1<=p22 & 1<=p98]] | [1<=p1 & [1<=p11 & 1<=p98]]] | [[1<=p1 & [1<=p23 & 1<=p98]] | [1<=p1 & [1<=p19 & 1<=p98]]]]]]]]]]] | [AX [[~ [[[[[1<=p32 | 1<=p33] | [1<=p34 | 1<=p35]] | [[1<=p36 | 1<=p37] | [1<=p39 | 1<=p38]]] | [[[1<=p41 | 1<=p40] | [1<=p26 | 1<=p27]] | [[1<=p28 | 1<=p29] | [1<=p30 | 1<=p31]]]]] | [[[[[1<=p32 | 1<=p33] | [1<=p34 | 1<=p35]] | [[1<=p36 | 1<=p37] | [1<=p39 | 1<=p38]]] | [[[1<=p41 | 1<=p40] | [1<=p26 | 1<=p27]] | [[1<=p28 | 1<=p29] | [1<=p30 | 1<=p31]]]] & [[[1<=p101 | 1<=p100] | [1<=p103 | 1<=p102]] | [[1<=p106 | 1<=p104] | [1<=p107 | 1<=p105]]]]]] & [[[1<=p2 | 1<=p3] | [1<=p4 | 1<=p5]] | [[1<=p6 | 1<=p7] | [1<=p8 | 1<=p9]]]]]]]
normalized: E [EX [EG [[[[[[1<=p1 & [1<=p19 & 1<=p98]] | [1<=p1 & [1<=p21 & 1<=p98]]] | [[1<=p1 & [1<=p17 & 1<=p98]] | [1<=p1 & [1<=p23 & 1<=p98]]]] | [[[1<=p1 & [1<=p11 & 1<=p98]] | [1<=p0 & [1<=p22 & 1<=p98]]] | [[1<=p0 & [1<=p24 & 1<=p98]] | [1<=p0 & [1<=p12 & 1<=p98]]]]] | [[[[1<=p0 & [1<=p14 & 1<=p98]] | [1<=p0 & [1<=p16 & 1<=p98]]] | [[1<=p0 & [1<=p10 & 1<=p98]] | [1<=p0 & [1<=p20 & 1<=p98]]]] | [[[1<=p1 & [1<=p13 & 1<=p98]] | [1<=p1 & [1<=p15 & 1<=p98]]] | [[1<=p1 & [1<=p25 & 1<=p98]] | [1<=p0 & [1<=p18 & 1<=p98]]]]]]]] U [[[[[[1<=p8 | 1<=p9] | [1<=p6 | 1<=p7]] | [[1<=p4 | 1<=p5] | [1<=p2 | 1<=p3]]] & ~ [EX [~ [[[[[[1<=p107 | 1<=p105] | [1<=p106 | 1<=p104]] | [[1<=p103 | 1<=p102] | [1<=p101 | 1<=p100]]] & [[[[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p41 | 1<=p40]]] | [[[1<=p39 | 1<=p38] | [1<=p36 | 1<=p37]] | [[1<=p34 | 1<=p35] | [1<=p32 | 1<=p33]]]]] | ~ [[[[[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p41 | 1<=p40]]] | [[[1<=p39 | 1<=p38] | [1<=p36 | 1<=p37]] | [[1<=p34 | 1<=p35] | [1<=p32 | 1<=p33]]]]]]]]]] | ~ [EX [~ [[[EG [[[[[[[1<=p1 & [1<=p19 & 1<=p98]] | [1<=p1 & [1<=p23 & 1<=p98]]] | [[1<=p1 & [1<=p11 & 1<=p98]] | [1<=p0 & [1<=p22 & 1<=p98]]]] | [[[1<=p0 & [1<=p17 & 1<=p98]] | [1<=p1 & [1<=p14 & 1<=p98]]] | [[1<=p0 & [1<=p12 & 1<=p98]] | [1<=p0 & [1<=p14 & 1<=p98]]]]] | [[[[1<=p1 & [1<=p16 & 1<=p98]] | [1<=p1 & [1<=p24 & 1<=p98]]] | [[1<=p1 & [1<=p10 & 1<=p98]] | [1<=p0 & [1<=p23 & 1<=p98]]]] | [[[1<=p1 & [1<=p15 & 1<=p98]] | [1<=p1 & [1<=p25 & 1<=p98]]] | [[1<=p0 & [1<=p18 & 1<=p98]] | [1<=p1 & [1<=p20 & 1<=p98]]]]]] | [[[[[1<=p0 & [1<=p13 & 1<=p98]] | [1<=p0 & [1<=p11 & 1<=p98]]] | [[1<=p1 & [1<=p21 & 1<=p98]] | [1<=p0 & [1<=p15 & 1<=p98]]]] | [[[1<=p1 & [1<=p17 & 1<=p98]] | [1<=p0 & [1<=p19 & 1<=p98]]] | [[1<=p0 & [1<=p24 & 1<=p98]] | [1<=p1 & [1<=p18 & 1<=p98]]]]] | [[[[1<=p1 & [1<=p22 & 1<=p98]] | [1<=p0 & [1<=p16 & 1<=p98]]] | [[1<=p1 & [1<=p12 & 1<=p98]] | [1<=p0 & [1<=p21 & 1<=p98]]]] | [[[1<=p0 & [1<=p10 & 1<=p98]] | [1<=p0 & [1<=p20 & 1<=p98]]] | [[1<=p1 & [1<=p13 & 1<=p98]] | [1<=p0 & [1<=p25 & 1<=p98]]]]]]]] & E [[[[[[1<=p99 & 1<=p124] | [1<=p99 & 1<=p130]] | [[1<=p99 & 1<=p129] | [1<=p99 & 1<=p132]]] | [[[1<=p99 & 1<=p131] | [1<=p99 & 1<=p126]] | [[1<=p99 & 1<=p125] | [1<=p99 & 1<=p128]]]] | [[[[1<=p99 & 1<=p127] | [1<=p99 & 1<=p138]] | [[1<=p99 & 1<=p137] | [1<=p99 & 1<=p139]]] | [[[1<=p99 & 1<=p134] | [1<=p99 & 1<=p133]] | [[1<=p99 & 1<=p136] | [1<=p99 & 1<=p135]]]]] U [[[1<=p108 | 1<=p109] | [1<=p110 | 1<=p111]] | [[1<=p112 | 1<=p113] | [1<=p114 | 1<=p115]]]]] & ~ [EG [~ [[[[[[1<=p99 & 1<=p124] | [1<=p99 & 1<=p130]] | [[1<=p99 & 1<=p129] | [1<=p99 & 1<=p132]]] | [[[1<=p99 & 1<=p131] | [1<=p99 & 1<=p126]] | [[1<=p99 & 1<=p125] | [1<=p99 & 1<=p128]]]] | [[[[1<=p99 & 1<=p127] | [1<=p99 & 1<=p138]] | [[1<=p99 & 1<=p137] | [1<=p99 & 1<=p139]]] | [[[1<=p99 & 1<=p134] | [1<=p99 & 1<=p133]] | [[1<=p99 & 1<=p136] | [1<=p99 & 1<=p135]]]]]]]]]]]]] & EX [~ [E [true U [[[[[[1<=p74 & 1<=p108] | [1<=p78 & 1<=p110]] | [[1<=p76 & 1<=p109] | [1<=p86 & 1<=p114]]] | [[[1<=p82 & 1<=p112] | [1<=p84 & 1<=p113]] | [[1<=p89 & 1<=p115] | [1<=p79 & 1<=p110]]]] | [[[[1<=p81 & 1<=p111] | [1<=p83 & 1<=p112]] | [[1<=p87 & 1<=p114] | [1<=p77 & 1<=p109]]] | [[[1<=p75 & 1<=p108] | [1<=p80 & 1<=p111]] | [[1<=p88 & 1<=p115] | [1<=p85 & 1<=p113]]]]] & [[[[[1<=p88 & 1<=p123] | [1<=p84 & 1<=p121]] | [[1<=p80 & 1<=p119] | [1<=p74 & 1<=p116]]] | [[[1<=p77 & 1<=p117] | [1<=p79 & 1<=p118]] | [[1<=p87 & 1<=p122] | [1<=p82 & 1<=p120]]]] | [[[[1<=p85 & 1<=p121] | [1<=p89 & 1<=p123]] | [[1<=p75 & 1<=p116] | [1<=p76 & 1<=p117]]] | [[[1<=p78 & 1<=p118] | [1<=p81 & 1<=p119]] | [[1<=p83 & 1<=p120] | [1<=p86 & 1<=p122]]]]]]]]]]]
abstracting: (1<=p122)
states: 1,051,513,148 (9)
abstracting: (1<=p86)
states: 63,059,864 (7)
abstracting: (1<=p120)
states: 1,051,513,148 (9)
abstracting: (1<=p83)
states: 63,059,864 (7)
abstracting: (1<=p119)
states: 1,051,513,148 (9)
abstracting: (1<=p81)
states: 63,059,864 (7)
abstracting: (1<=p118)
states: 1,051,513,148 (9)
abstracting: (1<=p78)
states: 63,059,864 (7)
abstracting: (1<=p117)
states: 1,051,513,148 (9)
abstracting: (1<=p76)
states: 63,059,864 (7)
abstracting: (1<=p116)
states: 1,051,513,148 (9)
abstracting: (1<=p75)
states: 63,059,864 (7)
abstracting: (1<=p123)
states: 1,051,513,148 (9)
abstracting: (1<=p89)
states: 63,059,864 (7)
abstracting: (1<=p121)
states: 1,051,513,148 (9)
abstracting: (1<=p85)
states: 63,059,864 (7)
abstracting: (1<=p120)
states: 1,051,513,148 (9)
abstracting: (1<=p82)
states: 63,059,864 (7)
abstracting: (1<=p122)
states: 1,051,513,148 (9)
abstracting: (1<=p87)
states: 63,059,864 (7)
abstracting: (1<=p118)
states: 1,051,513,148 (9)
abstracting: (1<=p79)
states: 63,059,864 (7)
abstracting: (1<=p117)
states: 1,051,513,148 (9)
abstracting: (1<=p77)
states: 63,059,864 (7)
abstracting: (1<=p116)
states: 1,051,513,148 (9)
abstracting: (1<=p74)
states: 63,059,864 (7)
abstracting: (1<=p119)
states: 1,051,513,148 (9)
abstracting: (1<=p80)
states: 63,059,864 (7)
abstracting: (1<=p121)
states: 1,051,513,148 (9)
abstracting: (1<=p84)
states: 63,059,864 (7)
abstracting: (1<=p123)
states: 1,051,513,148 (9)
abstracting: (1<=p88)
states: 63,059,864 (7)
abstracting: (1<=p113)
states: 1,051,513,148 (9)
abstracting: (1<=p85)
states: 63,059,864 (7)
abstracting: (1<=p115)
states: 1,051,513,148 (9)
abstracting: (1<=p88)
states: 63,059,864 (7)
abstracting: (1<=p111)
states: 1,051,513,148 (9)
abstracting: (1<=p80)
states: 63,059,864 (7)
abstracting: (1<=p108)
states: 1,051,513,148 (9)
abstracting: (1<=p75)
states: 63,059,864 (7)
abstracting: (1<=p109)
states: 1,051,513,148 (9)
abstracting: (1<=p77)
states: 63,059,864 (7)
abstracting: (1<=p114)
states: 1,051,513,148 (9)
abstracting: (1<=p87)
states: 63,059,864 (7)
abstracting: (1<=p112)
states: 1,051,513,148 (9)
abstracting: (1<=p83)
states: 63,059,864 (7)
abstracting: (1<=p111)
states: 1,051,513,148 (9)
abstracting: (1<=p81)
states: 63,059,864 (7)
abstracting: (1<=p110)
states: 1,051,513,148 (9)
abstracting: (1<=p79)
states: 63,059,864 (7)
abstracting: (1<=p115)
states: 1,051,513,148 (9)
abstracting: (1<=p89)
states: 63,059,864 (7)
abstracting: (1<=p113)
states: 1,051,513,148 (9)
abstracting: (1<=p84)
states: 63,059,864 (7)
abstracting: (1<=p112)
states: 1,051,513,148 (9)
abstracting: (1<=p82)
states: 63,059,864 (7)
abstracting: (1<=p114)
states: 1,051,513,148 (9)
abstracting: (1<=p86)
states: 63,059,864 (7)
abstracting: (1<=p109)
states: 1,051,513,148 (9)
abstracting: (1<=p76)
states: 63,059,864 (7)
abstracting: (1<=p110)
states: 1,051,513,148 (9)
abstracting: (1<=p78)
states: 63,059,864 (7)
abstracting: (1<=p108)
states: 1,051,513,148 (9)
abstracting: (1<=p74)
states: 63,059,864 (7)
.abstracting: (1<=p135)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p136)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p133)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p134)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p139)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p137)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p138)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p127)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p128)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p125)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p126)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p131)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p132)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p129)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p130)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p124)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
...................................
EG iterations: 35
abstracting: (1<=p115)
states: 1,051,513,148 (9)
abstracting: (1<=p114)
states: 1,051,513,148 (9)
abstracting: (1<=p113)
states: 1,051,513,148 (9)
abstracting: (1<=p112)
states: 1,051,513,148 (9)
abstracting: (1<=p111)
states: 1,051,513,148 (9)
abstracting: (1<=p110)
states: 1,051,513,148 (9)
abstracting: (1<=p109)
states: 1,051,513,148 (9)
abstracting: (1<=p108)
states: 1,051,513,148 (9)
abstracting: (1<=p135)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p136)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p133)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p134)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p139)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p137)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p138)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p127)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p128)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p125)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p126)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p131)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p132)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p129)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p130)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p124)
states: 31,529,932 (7)
abstracting: (1<=p99)
states: 2,607,925,104 (9)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p25)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p13)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p20)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p10)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p21)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p12)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p16)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p22)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p18)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p24)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p19)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p17)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p15)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p21)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p11)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p13)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p20)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p18)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p25)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p15)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p23)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p10)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p24)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p16)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p14)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p12)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p14)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p17)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p22)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p11)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p23)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p19)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
.
EG iterations: 1
before gc: list nodes free: 963890
after gc: idd nodes used:9948928, unused:54051072; list nodes free:244450956
.abstracting: (1<=p33)
states: 63,059,864 (7)
abstracting: (1<=p32)
states: 63,059,864 (7)
abstracting: (1<=p35)
states: 63,059,864 (7)
abstracting: (1<=p34)
states: 63,059,864 (7)
abstracting: (1<=p37)
states: 63,059,864 (7)
abstracting: (1<=p36)
states: 63,059,864 (7)
abstracting: (1<=p38)
states: 63,059,864 (7)
abstracting: (1<=p39)
states: 63,059,864 (7)
abstracting: (1<=p40)
states: 63,059,864 (7)
abstracting: (1<=p41)
states: 63,059,864 (7)
abstracting: (1<=p27)
states: 63,059,864 (7)
abstracting: (1<=p26)
states: 63,059,864 (7)
abstracting: (1<=p29)
states: 63,059,864 (7)
abstracting: (1<=p28)
states: 63,059,864 (7)
abstracting: (1<=p31)
states: 63,059,864 (7)
abstracting: (1<=p30)
states: 63,059,864 (7)
abstracting: (1<=p33)
states: 63,059,864 (7)
abstracting: (1<=p32)
states: 63,059,864 (7)
abstracting: (1<=p35)
states: 63,059,864 (7)
abstracting: (1<=p34)
states: 63,059,864 (7)
abstracting: (1<=p37)
states: 63,059,864 (7)
abstracting: (1<=p36)
states: 63,059,864 (7)
abstracting: (1<=p38)
states: 63,059,864 (7)
abstracting: (1<=p39)
states: 63,059,864 (7)
abstracting: (1<=p40)
states: 63,059,864 (7)
abstracting: (1<=p41)
states: 63,059,864 (7)
abstracting: (1<=p27)
states: 63,059,864 (7)
abstracting: (1<=p26)
states: 63,059,864 (7)
abstracting: (1<=p29)
states: 63,059,864 (7)
abstracting: (1<=p28)
states: 63,059,864 (7)
abstracting: (1<=p31)
states: 63,059,864 (7)
abstracting: (1<=p30)
states: 63,059,864 (7)
abstracting: (1<=p100)
states: 175,414,659 (8)
abstracting: (1<=p101)
states: 175,414,659 (8)
abstracting: (1<=p102)
states: 175,414,659 (8)
abstracting: (1<=p103)
states: 175,414,659 (8)
abstracting: (1<=p104)
states: 175,414,659 (8)
abstracting: (1<=p106)
states: 175,414,659 (8)
abstracting: (1<=p105)
states: 175,414,659 (8)
abstracting: (1<=p107)
states: 175,414,659 (8)
.abstracting: (1<=p3)
states: 266,424,564 (8)
abstracting: (1<=p2)
states: 266,424,564 (8)
abstracting: (1<=p5)
states: 266,424,564 (8)
abstracting: (1<=p4)
states: 266,424,564 (8)
abstracting: (1<=p7)
states: 266,424,564 (8)
abstracting: (1<=p6)
states: 266,424,564 (8)
abstracting: (1<=p9)
states: 266,424,564 (8)
abstracting: (1<=p8)
states: 266,424,564 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p18)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p25)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p15)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p13)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p20)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p10)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p16)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p14)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p12)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p24)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p22)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p11)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p23)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p17)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p21)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p19)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
.
EG iterations: 1
.-> the formula is FALSE
FORMULA UtilityControlRoom-COL-Z2T3N08-CTLFireability-08 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 5m10.970sec
checking: AF [[~ [E [[EF [[[[[[1<=p108 & 1<=p75] | [1<=p80 & 1<=p111]] | [[1<=p85 & 1<=p113] | [1<=p88 & 1<=p115]]] | [[[1<=p77 & 1<=p109] | [1<=p87 & 1<=p114]] | [[1<=p83 & 1<=p112] | [1<=p81 & 1<=p111]]]] | [[[[1<=p79 & 1<=p110] | [1<=p89 & 1<=p115]] | [[1<=p84 & 1<=p113] | [1<=p82 & 1<=p112]]] | [[[1<=p86 & 1<=p114] | [1<=p76 & 1<=p109]] | [[1<=p78 & 1<=p110] | [1<=p74 & 1<=p108]]]]]] & [[[[[~ [[[[[[1<=p75 & 1<=p108] | [1<=p80 & 1<=p111]] | [[1<=p85 & 1<=p113] | [1<=p88 & 1<=p115]]] | [[[1<=p77 & 1<=p109] | [1<=p87 & 1<=p114]] | [[1<=p83 & 1<=p112] | [1<=p81 & 1<=p111]]]] | [[[[1<=p79 & 1<=p110] | [1<=p89 & 1<=p115]] | [[1<=p84 & 1<=p113] | [1<=p82 & 1<=p112]]] | [[[1<=p86 & 1<=p114] | [1<=p76 & 1<=p109]] | [[1<=p78 & 1<=p110] | [1<=p74 & 1<=p108]]]]]] | 1<=p101] | [1<=p100 | [1<=p103 | 1<=p102]]] | [[1<=p106 | 1<=p104] | [1<=p107 | [1<=p105 | [1<=p0 & [1<=p25 & 1<=p98]]]]]] | [[[[1<=p1 & [1<=p13 & 1<=p98]] | [1<=p0 & [1<=p20 & 1<=p98]]] | [[1<=p0 & [1<=p10 & 1<=p98]] | [[1<=p0 & [1<=p21 & 1<=p98]] | [1<=p1 & [1<=p12 & 1<=p98]]]]] | [[[1<=p0 & [1<=p16 & 1<=p98]] | [[1<=p22 & 1<=p98] & 1<=p1]] | [[1<=p1 & [1<=p18 & 1<=p98]] | [[1<=p0 & [1<=p24 & 1<=p98]] | [1<=p0 & [1<=p19 & 1<=p98]]]]]]] | [[[[[1<=p1 & [1<=p17 & 1<=p98]] | [1<=p0 & [1<=p15 & 1<=p98]]] | [[1<=p1 & [1<=p21 & 1<=p98]] | [[1<=p0 & [1<=p11 & 1<=p98]] | [1<=p0 & [1<=p13 & 1<=p98]]]]] | [[[1<=p1 & [1<=p20 & 1<=p98]] | [1<=p0 & [1<=p18 & 1<=p98]]] | [[1<=p1 & [1<=p25 & 1<=p98]] | [[1<=p1 & [1<=p15 & 1<=p98]] | [1<=p0 & [1<=p23 & 1<=p98]]]]]] | [[[[1<=p1 & [1<=p10 & 1<=p98]] | [1<=p1 & [1<=p24 & 1<=p98]]] | [[1<=p1 & [1<=p16 & 1<=p98]] | [[1<=p0 & [1<=p14 & 1<=p98]] | [1<=p0 & [1<=p12 & 1<=p98]]]]] | [[[1<=p1 & [1<=p14 & 1<=p98]] | [[1<=p0 & [1<=p17 & 1<=p98]] | [1<=p0 & [1<=p22 & 1<=p98]]]] | [[1<=p1 & [1<=p11 & 1<=p98]] | [[1<=p1 & [1<=p23 & 1<=p98]] | [1<=p1 & [1<=p19 & 1<=p98]]]]]]]]] U A [[[[[[[1<=p0 & [1<=p25 & 1<=p98]] | [[1<=p1 & [1<=p13 & 1<=p98]] | [1<=p0 & [1<=p20 & 1<=p98]]]] | [[1<=p0 & [1<=p10 & 1<=p98]] | [[1<=p0 & [1<=p21 & 1<=p98]] | [1<=p1 & [1<=p12 & 1<=p98]]]]] | [[[1<=p0 & [1<=p16 & 1<=p98]] | [[1<=p1 & [1<=p22 & 1<=p98]] | [1<=p1 & [1<=p18 & 1<=p98]]]] | [[1<=p0 & [1<=p24 & 1<=p98]] | [[1<=p0 & [1<=p19 & 1<=p98]] | [1<=p1 & [1<=p17 & 1<=p98]]]]]] | [[[[1<=p0 & [1<=p15 & 1<=p98]] | [[1<=p1 & [1<=p21 & 1<=p98]] | [1<=p0 & [1<=p11 & 1<=p98]]]] | [[1<=p0 & [1<=p13 & 1<=p98]] | [[1<=p1 & [1<=p20 & 1<=p98]] | [1<=p0 & [1<=p18 & 1<=p98]]]]] | [[[1<=p1 & [1<=p25 & 1<=p98]] | [[1<=p1 & [1<=p15 & 1<=p98]] | [1<=p0 & [1<=p23 & 1<=p98]]]] | [[1<=p1 & [1<=p10 & 1<=p98]] | [[1<=p1 & [1<=p24 & 1<=p98]] | [1<=p1 & [1<=p16 & 1<=p98]]]]]]] | [[[[[1<=p0 & [1<=p14 & 1<=p98]] | [[1<=p0 & [1<=p12 & 1<=p98]] | [1<=p1 & [1<=p14 & 1<=p98]]]] | [[1<=p0 & [1<=p17 & 1<=p98]] | [[1<=p0 & [1<=p22 & 1<=p98]] | [1<=p1 & [1<=p11 & 1<=p98]]]]] | [[[1<=p1 & [1<=p23 & 1<=p98]] | [[1<=p1 & [1<=p19 & 1<=p98]] | [1<=p0 & [1<=p18 & 1<=p98]]]] | [[1<=p1 & [1<=p25 & 1<=p98]] | [[1<=p1 & [1<=p13 & 1<=p98]] | [1<=p1 & [1<=p15 & 1<=p98]]]]]] | [[[[1<=p0 & [1<=p20 & 1<=p98]] | [[1<=p0 & [1<=p10 & 1<=p98]] | [1<=p0 & [1<=p16 & 1<=p98]]]] | [[1<=p0 & [1<=p14 & 1<=p98]] | [[1<=p0 & [1<=p12 & 1<=p98]] | [1<=p0 & [1<=p24 & 1<=p98]]]]] | [[[1<=p0 & [1<=p22 & 1<=p98]] | [[1<=p1 & [1<=p11 & 1<=p98]] | [1<=p1 & [1<=p23 & 1<=p98]]]] | [[1<=p1 & [1<=p17 & 1<=p98]] | [[1<=p1 & [1<=p21 & 1<=p98]] | [1<=p1 & [1<=p19 & 1<=p98]]]]]]]] U [[[[[[1<=p0 & [1<=p18 & 1<=p98]] | [[1<=p1 & [1<=p25 & 1<=p98]] | [1<=p1 & [1<=p15 & 1<=p98]]]] | [[1<=p1 & [1<=p13 & 1<=p98]] | [[1<=p0 & [1<=p20 & 1<=p98]] | [1<=p0 & [1<=p10 & 1<=p98]]]]] | [[[1<=p0 & [1<=p16 & 1<=p98]] | [[1<=p0 & [1<=p14 & 1<=p98]] | [1<=p0 & [1<=p12 & 1<=p98]]]] | [[1<=p0 & [1<=p24 & 1<=p98]] | [[1<=p0 & [1<=p22 & 1<=p98]] | [1<=p1 & [1<=p11 & 1<=p98]]]]]] | [[[[1<=p1 & [1<=p23 & 1<=p98]] | [[1<=p1 & [1<=p17 & 1<=p98]] | [1<=p1 & [1<=p21 & 1<=p98]]]] | [[1<=p1 & [1<=p19 & 1<=p98]] | [[1<=p0 & [1<=p25 & 1<=p98]] | [1<=p1 & [1<=p13 & 1<=p98]]]]] | [[[1<=p0 & [1<=p20 & 1<=p98]] | [[1<=p0 & [1<=p10 & 1<=p98]] | [1<=p0 & [1<=p21 & 1<=p98]]]] | [[1<=p1 & [1<=p12 & 1<=p98]] | [[1<=p0 & [1<=p16 & 1<=p98]] | [1<=p1 & [1<=p22 & 1<=p98]]]]]]] | [[[[[1<=p1 & [1<=p18 & 1<=p98]] | [[1<=p0 & [1<=p24 & 1<=p98]] | [1<=p0 & [1<=p19 & 1<=p98]]]] | [[1<=p1 & [1<=p17 & 1<=p98]] | [[1<=p0 & [1<=p15 & 1<=p98]] | [1<=p1 & [1<=p21 & 1<=p98]]]]] | [[[1<=p0 & [1<=p11 & 1<=p98]] | [[1<=p0 & [1<=p13 & 1<=p98]] | [1<=p1 & [1<=p20 & 1<=p98]]]] | [[1<=p0 & [1<=p18 & 1<=p98]] | [[1<=p1 & [1<=p25 & 1<=p98]] | [1<=p1 & [1<=p15 & 1<=p98]]]]]] | [[[[1<=p0 & [1<=p23 & 1<=p98]] | [[1<=p1 & [1<=p10 & 1<=p98]] | [1<=p1 & [1<=p24 & 1<=p98]]]] | [[1<=p1 & [1<=p16 & 1<=p98]] | [[1<=p0 & [1<=p14 & 1<=p98]] | [1<=p0 & [1<=p12 & 1<=p98]]]]] | [[[1<=p1 & [1<=p14 & 1<=p98]] | [[1<=p0 & [1<=p17 & 1<=p98]] | [1<=p0 & [1<=p22 & 1<=p98]]]] | [[[1<=p1 & [1<=p23 & 1<=p98]] | [1<=p1 & [1<=p19 & 1<=p98]]] | [1<=p1 & [1<=p11 & 1<=p98]]]]]]]]]] | [[[[[EX [AF [[[[p97<=0 & p96<=0] & [p91<=0 & p90<=0]] & [[p93<=0 & p92<=0] & [p95<=0 & p94<=0]]]]] & [p0<=0 | [p25<=0 | p98<=0]]] & [[p1<=0 | [p13<=0 | p98<=0]] & [p0<=0 | [p20<=0 | p98<=0]]]] & [[[p0<=0 | [p10<=0 | p98<=0]] & [p0<=0 | [p21<=0 | p98<=0]]] & [[p1<=0 | [p12<=0 | p98<=0]] & [p0<=0 | [p16<=0 | p98<=0]]]]] & [[[[p1<=0 | [p22<=0 | p98<=0]] & [p1<=0 | [p18<=0 | p98<=0]]] & [[p0<=0 | [p24<=0 | p98<=0]] & [p0<=0 | [p19<=0 | p98<=0]]]] & [[[p1<=0 | [p17<=0 | p98<=0]] & [p0<=0 | [p15<=0 | p98<=0]]] & [[p1<=0 | [p21<=0 | p98<=0]] & [p0<=0 | [p11<=0 | p98<=0]]]]]] & [[[[[p0<=0 | [p13<=0 | p98<=0]] & [p1<=0 | [p20<=0 | p98<=0]]] & [[p0<=0 | [p18<=0 | p98<=0]] & [p1<=0 | [p25<=0 | p98<=0]]]] & [[[p1<=0 | [p15<=0 | p98<=0]] & [p0<=0 | [p23<=0 | p98<=0]]] & [[p1<=0 | [p10<=0 | p98<=0]] & [p1<=0 | [p24<=0 | p98<=0]]]]] & [[[[p1<=0 | [p16<=0 | p98<=0]] & [p0<=0 | [p14<=0 | p98<=0]]] & [[p0<=0 | [p12<=0 | p98<=0]] & [p1<=0 | [p14<=0 | p98<=0]]]] & [[[p0<=0 | [p17<=0 | p98<=0]] & [p0<=0 | [p22<=0 | p98<=0]]] & [[p1<=0 | [p11<=0 | p98<=0]] & [[p1<=0 | [p23<=0 | p98<=0]] & [p1<=0 | [p19<=0 | p98<=0]]]]]]]]]]
normalized: ~ [EG [~ [[[[[[[[[p1<=0 | [p19<=0 | p98<=0]] & [p1<=0 | [p23<=0 | p98<=0]]] & [p1<=0 | [p11<=0 | p98<=0]]] & [[p0<=0 | [p22<=0 | p98<=0]] & [p0<=0 | [p17<=0 | p98<=0]]]] & [[[p1<=0 | [p14<=0 | p98<=0]] & [p0<=0 | [p12<=0 | p98<=0]]] & [[p0<=0 | [p14<=0 | p98<=0]] & [p1<=0 | [p16<=0 | p98<=0]]]]] & [[[[p1<=0 | [p24<=0 | p98<=0]] & [p1<=0 | [p10<=0 | p98<=0]]] & [[p0<=0 | [p23<=0 | p98<=0]] & [p1<=0 | [p15<=0 | p98<=0]]]] & [[[p1<=0 | [p25<=0 | p98<=0]] & [p0<=0 | [p18<=0 | p98<=0]]] & [[p1<=0 | [p20<=0 | p98<=0]] & [p0<=0 | [p13<=0 | p98<=0]]]]]] & [[[[[p0<=0 | [p11<=0 | p98<=0]] & [p1<=0 | [p21<=0 | p98<=0]]] & [[p0<=0 | [p15<=0 | p98<=0]] & [p1<=0 | [p17<=0 | p98<=0]]]] & [[[p0<=0 | [p19<=0 | p98<=0]] & [p0<=0 | [p24<=0 | p98<=0]]] & [[p1<=0 | [p18<=0 | p98<=0]] & [p1<=0 | [p22<=0 | p98<=0]]]]] & [[[[p0<=0 | [p16<=0 | p98<=0]] & [p1<=0 | [p12<=0 | p98<=0]]] & [[p0<=0 | [p21<=0 | p98<=0]] & [p0<=0 | [p10<=0 | p98<=0]]]] & [[[p0<=0 | [p20<=0 | p98<=0]] & [p1<=0 | [p13<=0 | p98<=0]]] & [[p0<=0 | [p25<=0 | p98<=0]] & EX [~ [EG [~ [[[[p95<=0 & p94<=0] & [p93<=0 & p92<=0]] & [[p91<=0 & p90<=0] & [p97<=0 & p96<=0]]]]]]]]]]]] | ~ [E [[[[[[[[[1<=p1 & [1<=p19 & 1<=p98]] | [1<=p1 & [1<=p23 & 1<=p98]]] | [1<=p1 & [1<=p11 & 1<=p98]]] | [[[1<=p0 & [1<=p22 & 1<=p98]] | [1<=p0 & [1<=p17 & 1<=p98]]] | [1<=p1 & [1<=p14 & 1<=p98]]]] | [[[[1<=p0 & [1<=p12 & 1<=p98]] | [1<=p0 & [1<=p14 & 1<=p98]]] | [1<=p1 & [1<=p16 & 1<=p98]]] | [[1<=p1 & [1<=p24 & 1<=p98]] | [1<=p1 & [1<=p10 & 1<=p98]]]]] | [[[[[1<=p0 & [1<=p23 & 1<=p98]] | [1<=p1 & [1<=p15 & 1<=p98]]] | [1<=p1 & [1<=p25 & 1<=p98]]] | [[1<=p0 & [1<=p18 & 1<=p98]] | [1<=p1 & [1<=p20 & 1<=p98]]]] | [[[[1<=p0 & [1<=p13 & 1<=p98]] | [1<=p0 & [1<=p11 & 1<=p98]]] | [1<=p1 & [1<=p21 & 1<=p98]]] | [[1<=p0 & [1<=p15 & 1<=p98]] | [1<=p1 & [1<=p17 & 1<=p98]]]]]] | [[[[[[1<=p0 & [1<=p19 & 1<=p98]] | [1<=p0 & [1<=p24 & 1<=p98]]] | [1<=p1 & [1<=p18 & 1<=p98]]] | [[1<=p1 & [1<=p22 & 1<=p98]] | [1<=p0 & [1<=p16 & 1<=p98]]]] | [[[[1<=p1 & [1<=p12 & 1<=p98]] | [1<=p0 & [1<=p21 & 1<=p98]]] | [1<=p0 & [1<=p10 & 1<=p98]]] | [[1<=p0 & [1<=p20 & 1<=p98]] | [1<=p1 & [1<=p13 & 1<=p98]]]]] | [[[1<=p107 | [1<=p105 | [1<=p0 & [1<=p25 & 1<=p98]]]] | [1<=p106 | 1<=p104]] | [[1<=p100 | [1<=p103 | 1<=p102]] | [1<=p101 | ~ [[[[[[1<=p74 & 1<=p108] | [1<=p78 & 1<=p110]] | [[1<=p76 & 1<=p109] | [1<=p86 & 1<=p114]]] | [[[1<=p82 & 1<=p112] | [1<=p84 & 1<=p113]] | [[1<=p89 & 1<=p115] | [1<=p79 & 1<=p110]]]] | [[[[1<=p81 & 1<=p111] | [1<=p83 & 1<=p112]] | [[1<=p87 & 1<=p114] | [1<=p77 & 1<=p109]]] | [[[1<=p88 & 1<=p115] | [1<=p85 & 1<=p113]] | [[1<=p80 & 1<=p111] | [1<=p75 & 1<=p108]]]]]]]]]]] & E [true U [[[[[1<=p74 & 1<=p108] | [1<=p78 & 1<=p110]] | [[1<=p76 & 1<=p109] | [1<=p86 & 1<=p114]]] | [[[1<=p82 & 1<=p112] | [1<=p84 & 1<=p113]] | [[1<=p89 & 1<=p115] | [1<=p79 & 1<=p110]]]] | [[[[1<=p81 & 1<=p111] | [1<=p83 & 1<=p112]] | [[1<=p87 & 1<=p114] | [1<=p77 & 1<=p109]]] | [[[1<=p88 & 1<=p115] | [1<=p85 & 1<=p113]] | [[1<=p80 & 1<=p111] | [1<=p108 & 1<=p75]]]]]]] U [~ [EG [~ [[[[[[[1<=p1 & [1<=p11 & 1<=p98]] | [[1<=p1 & [1<=p19 & 1<=p98]] | [1<=p1 & [1<=p23 & 1<=p98]]]] | [[[1<=p0 & [1<=p22 & 1<=p98]] | [1<=p0 & [1<=p17 & 1<=p98]]] | [1<=p1 & [1<=p14 & 1<=p98]]]] | [[[[1<=p0 & [1<=p12 & 1<=p98]] | [1<=p0 & [1<=p14 & 1<=p98]]] | [1<=p1 & [1<=p16 & 1<=p98]]] | [[[1<=p1 & [1<=p24 & 1<=p98]] | [1<=p1 & [1<=p10 & 1<=p98]]] | [1<=p0 & [1<=p23 & 1<=p98]]]]] | [[[[[1<=p1 & [1<=p15 & 1<=p98]] | [1<=p1 & [1<=p25 & 1<=p98]]] | [1<=p0 & [1<=p18 & 1<=p98]]] | [[[1<=p1 & [1<=p20 & 1<=p98]] | [1<=p0 & [1<=p13 & 1<=p98]]] | [1<=p0 & [1<=p11 & 1<=p98]]]] | [[[[1<=p1 & [1<=p21 & 1<=p98]] | [1<=p0 & [1<=p15 & 1<=p98]]] | [1<=p1 & [1<=p17 & 1<=p98]]] | [[[1<=p0 & [1<=p19 & 1<=p98]] | [1<=p0 & [1<=p24 & 1<=p98]]] | [1<=p1 & [1<=p18 & 1<=p98]]]]]] | [[[[[[1<=p1 & [1<=p22 & 1<=p98]] | [1<=p0 & [1<=p16 & 1<=p98]]] | [1<=p1 & [1<=p12 & 1<=p98]]] | [[[1<=p0 & [1<=p21 & 1<=p98]] | [1<=p0 & [1<=p10 & 1<=p98]]] | [1<=p0 & [1<=p20 & 1<=p98]]]] | [[[[1<=p1 & [1<=p13 & 1<=p98]] | [1<=p0 & [1<=p25 & 1<=p98]]] | [1<=p1 & [1<=p19 & 1<=p98]]] | [[[1<=p1 & [1<=p21 & 1<=p98]] | [1<=p1 & [1<=p17 & 1<=p98]]] | [1<=p1 & [1<=p23 & 1<=p98]]]]] | [[[[[1<=p1 & [1<=p11 & 1<=p98]] | [1<=p0 & [1<=p22 & 1<=p98]]] | [1<=p0 & [1<=p24 & 1<=p98]]] | [[[1<=p0 & [1<=p12 & 1<=p98]] | [1<=p0 & [1<=p14 & 1<=p98]]] | [1<=p0 & [1<=p16 & 1<=p98]]]] | [[[[1<=p0 & [1<=p10 & 1<=p98]] | [1<=p0 & [1<=p20 & 1<=p98]]] | [1<=p1 & [1<=p13 & 1<=p98]]] | [[[1<=p1 & [1<=p15 & 1<=p98]] | [1<=p1 & [1<=p25 & 1<=p98]]] | [1<=p0 & [1<=p18 & 1<=p98]]]]]]]]]] & ~ [E [~ [[[[[[[1<=p1 & [1<=p11 & 1<=p98]] | [[1<=p1 & [1<=p19 & 1<=p98]] | [1<=p1 & [1<=p23 & 1<=p98]]]] | [[[1<=p0 & [1<=p22 & 1<=p98]] | [1<=p0 & [1<=p17 & 1<=p98]]] | [1<=p1 & [1<=p14 & 1<=p98]]]] | [[[[1<=p0 & [1<=p12 & 1<=p98]] | [1<=p0 & [1<=p14 & 1<=p98]]] | [1<=p1 & [1<=p16 & 1<=p98]]] | [[[1<=p1 & [1<=p24 & 1<=p98]] | [1<=p1 & [1<=p10 & 1<=p98]]] | [1<=p0 & [1<=p23 & 1<=p98]]]]] | [[[[[1<=p1 & [1<=p15 & 1<=p98]] | [1<=p1 & [1<=p25 & 1<=p98]]] | [1<=p0 & [1<=p18 & 1<=p98]]] | [[[1<=p1 & [1<=p20 & 1<=p98]] | [1<=p0 & [1<=p13 & 1<=p98]]] | [1<=p0 & [1<=p11 & 1<=p98]]]] | [[[[1<=p1 & [1<=p21 & 1<=p98]] | [1<=p0 & [1<=p15 & 1<=p98]]] | [1<=p1 & [1<=p17 & 1<=p98]]] | [[[1<=p0 & [1<=p19 & 1<=p98]] | [1<=p0 & [1<=p24 & 1<=p98]]] | [1<=p1 & [1<=p18 & 1<=p98]]]]]] | [[[[[[1<=p1 & [1<=p22 & 1<=p98]] | [1<=p0 & [1<=p16 & 1<=p98]]] | [1<=p1 & [1<=p12 & 1<=p98]]] | [[[1<=p0 & [1<=p21 & 1<=p98]] | [1<=p0 & [1<=p10 & 1<=p98]]] | [1<=p0 & [1<=p20 & 1<=p98]]]] | [[[[1<=p1 & [1<=p13 & 1<=p98]] | [1<=p0 & [1<=p25 & 1<=p98]]] | [1<=p1 & [1<=p19 & 1<=p98]]] | [[[1<=p1 & [1<=p21 & 1<=p98]] | [1<=p1 & [1<=p17 & 1<=p98]]] | [1<=p1 & [1<=p23 & 1<=p98]]]]] | [[[[[1<=p1 & [1<=p11 & 1<=p98]] | [1<=p0 & [1<=p22 & 1<=p98]]] | [1<=p0 & [1<=p24 & 1<=p98]]] | [[[1<=p0 & [1<=p12 & 1<=p98]] | [1<=p0 & [1<=p14 & 1<=p98]]] | [1<=p0 & [1<=p16 & 1<=p98]]]] | [[[[1<=p0 & [1<=p10 & 1<=p98]] | [1<=p0 & [1<=p20 & 1<=p98]]] | [1<=p1 & [1<=p13 & 1<=p98]]] | [[[1<=p1 & [1<=p15 & 1<=p98]] | [1<=p1 & [1<=p25 & 1<=p98]]] | [1<=p0 & [1<=p18 & 1<=p98]]]]]]]] U [~ [[[[[[[[1<=p1 & [1<=p19 & 1<=p98]] | [1<=p1 & [1<=p21 & 1<=p98]]] | [1<=p1 & [1<=p17 & 1<=p98]]] | [[[1<=p1 & [1<=p23 & 1<=p98]] | [1<=p1 & [1<=p11 & 1<=p98]]] | [1<=p0 & [1<=p22 & 1<=p98]]]] | [[[[1<=p0 & [1<=p24 & 1<=p98]] | [1<=p0 & [1<=p12 & 1<=p98]]] | [1<=p0 & [1<=p14 & 1<=p98]]] | [[[1<=p0 & [1<=p16 & 1<=p98]] | [1<=p0 & [1<=p10 & 1<=p98]]] | [1<=p0 & [1<=p20 & 1<=p98]]]]] | [[[[[1<=p1 & [1<=p15 & 1<=p98]] | [1<=p1 & [1<=p13 & 1<=p98]]] | [1<=p1 & [1<=p25 & 1<=p98]]] | [[[1<=p0 & [1<=p18 & 1<=p98]] | [1<=p1 & [1<=p19 & 1<=p98]]] | [1<=p1 & [1<=p23 & 1<=p98]]]] | [[[[1<=p1 & [1<=p11 & 1<=p98]] | [1<=p0 & [1<=p22 & 1<=p98]]] | [1<=p0 & [1<=p17 & 1<=p98]]] | [[[1<=p1 & [1<=p14 & 1<=p98]] | [1<=p0 & [1<=p12 & 1<=p98]]] | [1<=p0 & [1<=p14 & 1<=p98]]]]]] | [[[[[[1<=p1 & [1<=p16 & 1<=p98]] | [1<=p1 & [1<=p24 & 1<=p98]]] | [1<=p1 & [1<=p10 & 1<=p98]]] | [[[1<=p0 & [1<=p23 & 1<=p98]] | [1<=p1 & [1<=p15 & 1<=p98]]] | [1<=p1 & [1<=p25 & 1<=p98]]]] | [[[[1<=p0 & [1<=p18 & 1<=p98]] | [1<=p1 & [1<=p20 & 1<=p98]]] | [1<=p0 & [1<=p13 & 1<=p98]]] | [[[1<=p0 & [1<=p11 & 1<=p98]] | [1<=p1 & [1<=p21 & 1<=p98]]] | [1<=p0 & [1<=p15 & 1<=p98]]]]] | [[[[[1<=p1 & [1<=p17 & 1<=p98]] | [1<=p0 & [1<=p19 & 1<=p98]]] | [1<=p0 & [1<=p24 & 1<=p98]]] | [[[1<=p1 & [1<=p18 & 1<=p98]] | [1<=p1 & [1<=p22 & 1<=p98]]] | [1<=p0 & [1<=p16 & 1<=p98]]]] | [[[[1<=p1 & [1<=p12 & 1<=p98]] | [1<=p0 & [1<=p21 & 1<=p98]]] | [1<=p0 & [1<=p10 & 1<=p98]]] | [[[1<=p0 & [1<=p20 & 1<=p98]] | [1<=p1 & [1<=p13 & 1<=p98]]] | [1<=p0 & [1<=p25 & 1<=p98]]]]]]]] & ~ [[[[[[[1<=p1 & [1<=p11 & 1<=p98]] | [[1<=p1 & [1<=p19 & 1<=p98]] | [1<=p1 & [1<=p23 & 1<=p98]]]] | [[[1<=p0 & [1<=p22 & 1<=p98]] | [1<=p0 & [1<=p17 & 1<=p98]]] | [1<=p1 & [1<=p14 & 1<=p98]]]] | [[[[1<=p0 & [1<=p12 & 1<=p98]] | [1<=p0 & [1<=p14 & 1<=p98]]] | [1<=p1 & [1<=p16 & 1<=p98]]] | [[[1<=p1 & [1<=p24 & 1<=p98]] | [1<=p1 & [1<=p10 & 1<=p98]]] | [1<=p0 & [1<=p23 & 1<=p98]]]]] | [[[[[1<=p1 & [1<=p15 & 1<=p98]] | [1<=p1 & [1<=p25 & 1<=p98]]] | [1<=p0 & [1<=p18 & 1<=p98]]] | [[[1<=p1 & [1<=p20 & 1<=p98]] | [1<=p0 & [1<=p13 & 1<=p98]]] | [1<=p0 & [1<=p11 & 1<=p98]]]] | [[[[1<=p1 & [1<=p21 & 1<=p98]] | [1<=p0 & [1<=p15 & 1<=p98]]] | [1<=p1 & [1<=p17 & 1<=p98]]] | [[[1<=p0 & [1<=p19 & 1<=p98]] | [1<=p0 & [1<=p24 & 1<=p98]]] | [1<=p1 & [1<=p18 & 1<=p98]]]]]] | [[[[[[1<=p1 & [1<=p22 & 1<=p98]] | [1<=p0 & [1<=p16 & 1<=p98]]] | [1<=p1 & [1<=p12 & 1<=p98]]] | [[[1<=p0 & [1<=p21 & 1<=p98]] | [1<=p0 & [1<=p10 & 1<=p98]]] | [1<=p0 & [1<=p20 & 1<=p98]]]] | [[[[1<=p1 & [1<=p13 & 1<=p98]] | [1<=p0 & [1<=p25 & 1<=p98]]] | [1<=p1 & [1<=p19 & 1<=p98]]] | [[[1<=p1 & [1<=p21 & 1<=p98]] | [1<=p1 & [1<=p17 & 1<=p98]]] | [1<=p1 & [1<=p23 & 1<=p98]]]]] | [[[[[1<=p1 & [1<=p11 & 1<=p98]] | [1<=p0 & [1<=p22 & 1<=p98]]] | [1<=p0 & [1<=p24 & 1<=p98]]] | [[[1<=p0 & [1<=p12 & 1<=p98]] | [1<=p0 & [1<=p14 & 1<=p98]]] | [1<=p0 & [1<=p16 & 1<=p98]]]] | [[[[1<=p0 & [1<=p10 & 1<=p98]] | [1<=p0 & [1<=p20 & 1<=p98]]] | [1<=p1 & [1<=p13 & 1<=p98]]] | [[[1<=p1 & [1<=p15 & 1<=p98]] | [1<=p1 & [1<=p25 & 1<=p98]]] | [1<=p0 & [1<=p18 & 1<=p98]]]]]]]]]]]]]]]]]]
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p18)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p25)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p15)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p13)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p20)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p10)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p16)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p14)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p12)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p24)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p22)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p11)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p23)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p17)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p21)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p19)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p25)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p13)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p20)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p10)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p21)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p12)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p16)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p22)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p18)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p24)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p19)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p17)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p15)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p21)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p11)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p13)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p20)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p18)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p25)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p15)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p23)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p10)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p24)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p16)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p14)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p12)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p14)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p17)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p22)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p23)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p19)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p11)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p25)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p13)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p20)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p10)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p21)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p12)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p16)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p22)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p18)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p24)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p19)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p17)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p15)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p21)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p11)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p13)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p20)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p18)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p25)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p15)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p23)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p10)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p24)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p16)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p14)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p12)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p14)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p17)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p22)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p11)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p23)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p19)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p18)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p25)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p13)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p15)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p20)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p10)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p16)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p14)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p12)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p24)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p22)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p11)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p23)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p17)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p21)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p19)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p18)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p25)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p15)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p13)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p20)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p10)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p16)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p14)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p12)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p24)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p22)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p11)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p23)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p17)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p21)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p19)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p25)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p13)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p20)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p10)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p21)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p12)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p16)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p22)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p18)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p24)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p19)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p17)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p15)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p21)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p11)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p13)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p20)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p18)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p25)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p15)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p23)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p10)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p24)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p16)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p14)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p12)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p14)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p17)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p22)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p23)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p19)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p11)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p18)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p25)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p15)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p13)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p20)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p10)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p16)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p14)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p12)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p24)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p22)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p11)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p23)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p17)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p21)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p19)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p25)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p13)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p20)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p10)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p21)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p12)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p16)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p22)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p18)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p24)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p19)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p17)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p15)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p21)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p11)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p13)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p20)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p18)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p25)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p15)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p23)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p10)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p24)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p16)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p14)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p12)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p14)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p17)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p22)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p23)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p19)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p11)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
...................
before gc: list nodes free: 54990
after gc: idd nodes used:10246565, unused:53753435; list nodes free:245290685
............
EG iterations: 31
abstracting: (1<=p75)
states: 63,059,864 (7)
abstracting: (1<=p108)
states: 1,051,513,148 (9)
abstracting: (1<=p111)
states: 1,051,513,148 (9)
abstracting: (1<=p80)
states: 63,059,864 (7)
abstracting: (1<=p113)
states: 1,051,513,148 (9)
abstracting: (1<=p85)
states: 63,059,864 (7)
abstracting: (1<=p115)
states: 1,051,513,148 (9)
abstracting: (1<=p88)
states: 63,059,864 (7)
abstracting: (1<=p109)
states: 1,051,513,148 (9)
abstracting: (1<=p77)
states: 63,059,864 (7)
abstracting: (1<=p114)
states: 1,051,513,148 (9)
abstracting: (1<=p87)
states: 63,059,864 (7)
abstracting: (1<=p112)
states: 1,051,513,148 (9)
abstracting: (1<=p83)
states: 63,059,864 (7)
abstracting: (1<=p111)
states: 1,051,513,148 (9)
abstracting: (1<=p81)
states: 63,059,864 (7)
abstracting: (1<=p110)
states: 1,051,513,148 (9)
abstracting: (1<=p79)
states: 63,059,864 (7)
abstracting: (1<=p115)
states: 1,051,513,148 (9)
abstracting: (1<=p89)
states: 63,059,864 (7)
abstracting: (1<=p113)
states: 1,051,513,148 (9)
abstracting: (1<=p84)
states: 63,059,864 (7)
abstracting: (1<=p112)
states: 1,051,513,148 (9)
abstracting: (1<=p82)
states: 63,059,864 (7)
abstracting: (1<=p114)
states: 1,051,513,148 (9)
abstracting: (1<=p86)
states: 63,059,864 (7)
abstracting: (1<=p109)
states: 1,051,513,148 (9)
abstracting: (1<=p76)
states: 63,059,864 (7)
abstracting: (1<=p110)
states: 1,051,513,148 (9)
abstracting: (1<=p78)
states: 63,059,864 (7)
abstracting: (1<=p108)
states: 1,051,513,148 (9)
abstracting: (1<=p74)
states: 63,059,864 (7)
abstracting: (1<=p108)
states: 1,051,513,148 (9)
abstracting: (1<=p75)
states: 63,059,864 (7)
abstracting: (1<=p111)
states: 1,051,513,148 (9)
abstracting: (1<=p80)
states: 63,059,864 (7)
abstracting: (1<=p113)
states: 1,051,513,148 (9)
abstracting: (1<=p85)
states: 63,059,864 (7)
abstracting: (1<=p115)
states: 1,051,513,148 (9)
abstracting: (1<=p88)
states: 63,059,864 (7)
abstracting: (1<=p109)
states: 1,051,513,148 (9)
abstracting: (1<=p77)
states: 63,059,864 (7)
abstracting: (1<=p114)
states: 1,051,513,148 (9)
abstracting: (1<=p87)
states: 63,059,864 (7)
abstracting: (1<=p112)
states: 1,051,513,148 (9)
abstracting: (1<=p83)
states: 63,059,864 (7)
abstracting: (1<=p111)
states: 1,051,513,148 (9)
abstracting: (1<=p81)
states: 63,059,864 (7)
abstracting: (1<=p110)
states: 1,051,513,148 (9)
abstracting: (1<=p79)
states: 63,059,864 (7)
abstracting: (1<=p115)
states: 1,051,513,148 (9)
abstracting: (1<=p89)
states: 63,059,864 (7)
abstracting: (1<=p113)
states: 1,051,513,148 (9)
abstracting: (1<=p84)
states: 63,059,864 (7)
abstracting: (1<=p112)
states: 1,051,513,148 (9)
abstracting: (1<=p82)
states: 63,059,864 (7)
abstracting: (1<=p114)
states: 1,051,513,148 (9)
abstracting: (1<=p86)
states: 63,059,864 (7)
abstracting: (1<=p109)
states: 1,051,513,148 (9)
abstracting: (1<=p76)
states: 63,059,864 (7)
abstracting: (1<=p110)
states: 1,051,513,148 (9)
abstracting: (1<=p78)
states: 63,059,864 (7)
abstracting: (1<=p108)
states: 1,051,513,148 (9)
abstracting: (1<=p74)
states: 63,059,864 (7)
abstracting: (1<=p101)
states: 175,414,659 (8)
abstracting: (1<=p102)
states: 175,414,659 (8)
abstracting: (1<=p103)
states: 175,414,659 (8)
abstracting: (1<=p100)
states: 175,414,659 (8)
abstracting: (1<=p104)
states: 175,414,659 (8)
abstracting: (1<=p106)
states: 175,414,659 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p25)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p105)
states: 175,414,659 (8)
abstracting: (1<=p107)
states: 175,414,659 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p13)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p20)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p10)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p21)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p12)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p16)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p22)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p18)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p24)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p19)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p17)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p15)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p21)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p11)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p13)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p20)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p18)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p25)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p15)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p23)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p10)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p24)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p16)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p14)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p12)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p14)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p17)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p22)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p11)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p23)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p19)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (p96<=0)
states: 2,075,076,255 (9)
abstracting: (p97<=0)
states: 2,075,076,255 (9)
abstracting: (p90<=0)
states: 2,075,076,255 (9)
abstracting: (p91<=0)
states: 2,075,076,255 (9)
abstracting: (p92<=0)
states: 2,075,076,255 (9)
abstracting: (p93<=0)
states: 2,075,076,255 (9)
abstracting: (p94<=0)
states: 2,075,076,255 (9)
abstracting: (p95<=0)
states: 2,075,076,255 (9)
.
EG iterations: 1
.abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p25<=0)
states: 2,075,076,255 (9)
abstracting: (p0<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p13<=0)
states: 2,075,076,255 (9)
abstracting: (p1<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p20<=0)
states: 2,075,076,255 (9)
abstracting: (p0<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p10<=0)
states: 2,075,076,255 (9)
abstracting: (p0<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p21<=0)
states: 2,075,076,255 (9)
abstracting: (p0<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p12<=0)
states: 2,075,076,255 (9)
abstracting: (p1<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p16<=0)
states: 2,075,076,255 (9)
abstracting: (p0<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p22<=0)
states: 2,075,076,255 (9)
abstracting: (p1<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p18<=0)
states: 2,075,076,255 (9)
abstracting: (p1<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p24<=0)
states: 2,075,076,255 (9)
abstracting: (p0<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p19<=0)
states: 2,075,076,255 (9)
abstracting: (p0<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p17<=0)
states: 2,075,076,255 (9)
abstracting: (p1<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p15<=0)
states: 2,075,076,255 (9)
abstracting: (p0<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p21<=0)
states: 2,075,076,255 (9)
abstracting: (p1<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p11<=0)
states: 2,075,076,255 (9)
abstracting: (p0<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p13<=0)
states: 2,075,076,255 (9)
abstracting: (p0<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p20<=0)
states: 2,075,076,255 (9)
abstracting: (p1<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p18<=0)
states: 2,075,076,255 (9)
abstracting: (p0<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p25<=0)
states: 2,075,076,255 (9)
abstracting: (p1<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p15<=0)
states: 2,075,076,255 (9)
abstracting: (p1<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p23<=0)
states: 2,075,076,255 (9)
abstracting: (p0<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p10<=0)
states: 2,075,076,255 (9)
abstracting: (p1<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p24<=0)
states: 2,075,076,255 (9)
abstracting: (p1<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p16<=0)
states: 2,075,076,255 (9)
abstracting: (p1<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p14<=0)
states: 2,075,076,255 (9)
abstracting: (p0<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p12<=0)
states: 2,075,076,255 (9)
abstracting: (p0<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p14<=0)
states: 2,075,076,255 (9)
abstracting: (p1<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p17<=0)
states: 2,075,076,255 (9)
abstracting: (p0<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p22<=0)
states: 2,075,076,255 (9)
abstracting: (p0<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p11<=0)
states: 2,075,076,255 (9)
abstracting: (p1<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p23<=0)
states: 2,075,076,255 (9)
abstracting: (p1<=0)
states: 2,286,743,613 (9)
abstracting: (p98<=0)
states: 1,019,310,936 (9)
abstracting: (p19<=0)
states: 2,075,076,255 (9)
abstracting: (p1<=0)
states: 2,286,743,613 (9)
MC time: 5m35.408sec
checking: [E [~ [E [[AF [[[[[[[1<=p0 & [1<=p25 & 1<=p98]] | [1<=p1 & [1<=p13 & 1<=p98]]] | [[1<=p0 & [1<=p20 & 1<=p98]] | [1<=p0 & [1<=p10 & 1<=p98]]]] | [[[1<=p0 & [1<=p21 & 1<=p98]] | [1<=p1 & [1<=p12 & 1<=p98]]] | [[1<=p0 & [1<=p16 & 1<=p98]] | [1<=p1 & [1<=p22 & 1<=p98]]]]] | [[[[1<=p1 & [1<=p18 & 1<=p98]] | [1<=p0 & [1<=p24 & 1<=p98]]] | [[1<=p0 & [1<=p19 & 1<=p98]] | [1<=p1 & [1<=p17 & 1<=p98]]]] | [[[1<=p0 & [1<=p15 & 1<=p98]] | [1<=p1 & [1<=p21 & 1<=p98]]] | [[1<=p0 & [1<=p11 & 1<=p98]] | [1<=p0 & [1<=p13 & 1<=p98]]]]]] | [[[[[1<=p1 & [1<=p20 & 1<=p98]] | [1<=p0 & [1<=p18 & 1<=p98]]] | [[1<=p1 & [1<=p25 & 1<=p98]] | [1<=p1 & [1<=p15 & 1<=p98]]]] | [[[1<=p0 & [1<=p23 & 1<=p98]] | [1<=p1 & [1<=p10 & 1<=p98]]] | [[1<=p1 & [1<=p24 & 1<=p98]] | [1<=p1 & [1<=p16 & 1<=p98]]]]] | [[[[1<=p0 & [1<=p14 & 1<=p98]] | [1<=p0 & [1<=p12 & 1<=p98]]] | [[1<=p1 & [1<=p14 & 1<=p98]] | [1<=p0 & [1<=p17 & 1<=p98]]]] | [[[1<=p0 & [1<=p22 & 1<=p98]] | [1<=p1 & [1<=p11 & 1<=p98]]] | [[1<=p1 & [1<=p23 & 1<=p98]] | [1<=p1 & [1<=p19 & 1<=p98]]]]]]]] | AF [[[[[[1<=p0 & [1<=p18 & 1<=p98]] | [1<=p1 & [1<=p25 & 1<=p98]]] | [[1<=p1 & [1<=p15 & 1<=p98]] | [1<=p1 & [1<=p13 & 1<=p98]]]] | [[[1<=p0 & [1<=p20 & 1<=p98]] | [1<=p0 & [1<=p10 & 1<=p98]]] | [[1<=p0 & [1<=p16 & 1<=p98]] | [1<=p0 & [1<=p14 & 1<=p98]]]]] | [[[[1<=p0 & [1<=p12 & 1<=p98]] | [1<=p0 & [1<=p24 & 1<=p98]]] | [[1<=p0 & [1<=p22 & 1<=p98]] | [1<=p1 & [1<=p11 & 1<=p98]]]] | [[[1<=p1 & [1<=p23 & 1<=p98]] | [1<=p1 & [1<=p17 & 1<=p98]]] | [[1<=p1 & [1<=p21 & 1<=p98]] | [1<=p1 & [1<=p19 & 1<=p98]]]]]]]] U [[[[[[1<=p65 | 1<=p64] | [1<=p67 | 1<=p66]] | [[1<=p69 | 1<=p68] | [1<=p71 | 1<=p70]]] | [[[1<=p73 | 1<=p72] | [1<=p43 | 1<=p42]] | [[1<=p45 | 1<=p44] | [1<=p47 | 1<=p46]]]] | [[[[1<=p49 | 1<=p48] | [1<=p51 | 1<=p50]] | [[1<=p53 | 1<=p52] | [1<=p55 | 1<=p54]]] | [[[1<=p57 | 1<=p56] | [1<=p59 | 1<=p58]] | [[1<=p61 | 1<=p60] | [1<=p63 | 1<=p62]]]]] & [E [[[[[[1<=p75 & 1<=p108] | [1<=p80 & 1<=p111]] | [[1<=p85 & 1<=p113] | [1<=p88 & 1<=p115]]] | [[[1<=p77 & 1<=p109] | [1<=p87 & 1<=p114]] | [[1<=p83 & 1<=p112] | [1<=p81 & 1<=p111]]]] | [[[[1<=p79 & 1<=p110] | [1<=p89 & 1<=p115]] | [[1<=p84 & 1<=p113] | [1<=p82 & 1<=p112]]] | [[[1<=p86 & 1<=p114] | [1<=p76 & 1<=p109]] | [[1<=p78 & 1<=p110] | [1<=p74 & 1<=p108]]]]] U [[[[[[1<=p0 & [1<=p25 & 1<=p98]] | [1<=p1 & [1<=p13 & 1<=p98]]] | [[1<=p0 & [1<=p20 & 1<=p98]] | [1<=p0 & [1<=p10 & 1<=p98]]]] | [[[1<=p0 & [1<=p21 & 1<=p98]] | [1<=p1 & [1<=p12 & 1<=p98]]] | [[1<=p0 & [1<=p16 & 1<=p98]] | [1<=p1 & [1<=p22 & 1<=p98]]]]] | [[[[1<=p1 & [1<=p18 & 1<=p98]] | [1<=p0 & [1<=p24 & 1<=p98]]] | [[1<=p0 & [1<=p19 & 1<=p98]] | [1<=p1 & [1<=p17 & 1<=p98]]]] | [[[1<=p0 & [1<=p15 & 1<=p98]] | [1<=p1 & [1<=p21 & 1<=p98]]] | [[1<=p0 & [1<=p11 & 1<=p98]] | [1<=p0 & [1<=p13 & 1<=p98]]]]]] | [[[[[1<=p1 & [1<=p20 & 1<=p98]] | [1<=p0 & [1<=p18 & 1<=p98]]] | [[1<=p1 & [1<=p25 & 1<=p98]] | [1<=p1 & [1<=p15 & 1<=p98]]]] | [[[1<=p0 & [1<=p23 & 1<=p98]] | [1<=p1 & [1<=p10 & 1<=p98]]] | [[1<=p1 & [1<=p24 & 1<=p98]] | [1<=p1 & [1<=p16 & 1<=p98]]]]] | [[[[1<=p0 & [1<=p14 & 1<=p98]] | [1<=p0 & [1<=p12 & 1<=p98]]] | [[1<=p1 & [1<=p14 & 1<=p98]] | [1<=p0 & [1<=p17 & 1<=p98]]]] | [[[1<=p0 & [1<=p22 & 1<=p98]] | [1<=p1 & [1<=p11 & 1<=p98]]] | [[1<=p1 & [1<=p23 & 1<=p98]] | [1<=p1 & [1<=p19 & 1<=p98]]]]]]]] | AG [[[[[[1<=p75 & 1<=p108] | [1<=p80 & 1<=p111]] | [[1<=p85 & 1<=p113] | [1<=p88 & 1<=p115]]] | [[[1<=p77 & 1<=p109] | [1<=p87 & 1<=p114]] | [[1<=p83 & 1<=p112] | [1<=p81 & 1<=p111]]]] | [[[[1<=p79 & 1<=p110] | [1<=p89 & 1<=p115]] | [[1<=p84 & 1<=p113] | [1<=p82 & 1<=p112]]] | [[[1<=p86 & 1<=p114] | [1<=p76 & 1<=p109]] | [[1<=p78 & 1<=p110] | [1<=p74 & 1<=p108]]]]]]]]]] U [EF [EG [E [[[[[[[1<=p0 & [1<=p25 & 1<=p98]] | [1<=p1 & [1<=p13 & 1<=p98]]] | [[1<=p0 & [1<=p20 & 1<=p98]] | [1<=p0 & [1<=p10 & 1<=p98]]]] | [[[1<=p0 & [1<=p21 & 1<=p98]] | [1<=p1 & [1<=p12 & 1<=p98]]] | [[1<=p0 & [1<=p16 & 1<=p98]] | [1<=p1 & [1<=p22 & 1<=p98]]]]] | [[[[1<=p1 & [1<=p18 & 1<=p98]] | [1<=p0 & [1<=p24 & 1<=p98]]] | [[1<=p0 & [1<=p19 & 1<=p98]] | [1<=p1 & [1<=p17 & 1<=p98]]]] | [[[1<=p0 & [1<=p15 & 1<=p98]] | [1<=p1 & [1<=p21 & 1<=p98]]] | [[1<=p0 & [1<=p11 & 1<=p98]] | [1<=p0 & [1<=p13 & 1<=p98]]]]]] | [[[[[1<=p1 & [1<=p20 & 1<=p98]] | [1<=p0 & [1<=p18 & 1<=p98]]] | [[1<=p1 & [1<=p25 & 1<=p98]] | [1<=p1 & [1<=p15 & 1<=p98]]]] | [[[1<=p0 & [1<=p23 & 1<=p98]] | [1<=p1 & [1<=p10 & 1<=p98]]] | [[1<=p1 & [1<=p24 & 1<=p98]] | [1<=p1 & [1<=p16 & 1<=p98]]]]] | [[[[1<=p0 & [1<=p14 & 1<=p98]] | [1<=p0 & [1<=p12 & 1<=p98]]] | [[1<=p1 & [1<=p14 & 1<=p98]] | [1<=p0 & [1<=p17 & 1<=p98]]]] | [[[1<=p0 & [1<=p22 & 1<=p98]] | [1<=p1 & [1<=p11 & 1<=p98]]] | [[1<=p1 & [1<=p23 & 1<=p98]] | [1<=p1 & [1<=p19 & 1<=p98]]]]]]] U [[[[[1<=p65 | 1<=p64] | [1<=p67 | 1<=p66]] | [[1<=p69 | 1<=p68] | [1<=p71 | 1<=p70]]] | [[[1<=p73 | 1<=p72] | [1<=p43 | 1<=p42]] | [[1<=p45 | 1<=p44] | [1<=p47 | 1<=p46]]]] | [[[[1<=p49 | 1<=p48] | [1<=p51 | 1<=p50]] | [[1<=p53 | 1<=p52] | [1<=p55 | 1<=p54]]] | [[[1<=p57 | 1<=p56] | [1<=p59 | 1<=p58]] | [[1<=p61 | 1<=p60] | [1<=p63 | 1<=p62]]]]]]]] & AG [EF [[[[[[1<=p65 | 1<=p64] | [1<=p67 | 1<=p66]] | [[1<=p69 | 1<=p68] | [1<=p71 | 1<=p70]]] | [[[1<=p73 | 1<=p72] | [1<=p43 | 1<=p42]] | [[1<=p45 | 1<=p44] | [1<=p47 | 1<=p46]]]] | [[[[1<=p49 | 1<=p48] | [1<=p51 | 1<=p50]] | [[1<=p53 | 1<=p52] | [1<=p55 | 1<=p54]]] | [[[1<=p57 | 1<=p56] | [1<=p59 | 1<=p58]] | [[1<=p61 | 1<=p60] | [1<=p63 | 1<=p62]]]]]]]]] | EF [[[[[[[1<=p99 & 1<=p135] | [[1<=p99 & 1<=p136] | [1<=p99 & 1<=p133]]] | [[1<=p99 & 1<=p134] | [[1<=p99 & 1<=p139] | [1<=p99 & 1<=p137]]]] | [[[1<=p99 & 1<=p138] | [[1<=p99 & 1<=p127] | [1<=p99 & 1<=p128]]] | [[[1<=p99 & 1<=p125] | [1<=p99 & 1<=p126]] | [[1<=p99 & 1<=p131] | [1<=p99 & 1<=p132]]]]] | [[[[1<=p99 & 1<=p129] | [[1<=p99 & 1<=p130] | [1<=p99 & 1<=p124]]] | [EX [[[[[[[1<=p0 & [1<=p25 & 1<=p98]] | [1<=p1 & [1<=p13 & 1<=p98]]] | [[1<=p0 & [1<=p20 & 1<=p98]] | [1<=p0 & [1<=p10 & 1<=p98]]]] | [[[1<=p0 & [1<=p21 & 1<=p98]] | [1<=p1 & [1<=p12 & 1<=p98]]] | [[1<=p0 & [1<=p16 & 1<=p98]] | [1<=p1 & [1<=p22 & 1<=p98]]]]] | [[[[1<=p1 & [1<=p18 & 1<=p98]] | [1<=p0 & [1<=p24 & 1<=p98]]] | [[1<=p0 & [1<=p19 & 1<=p98]] | [1<=p1 & [1<=p17 & 1<=p98]]]] | [[[1<=p0 & [1<=p15 & 1<=p98]] | [1<=p1 & [1<=p21 & 1<=p98]]] | [[1<=p0 & [1<=p11 & 1<=p98]] | [1<=p0 & [1<=p13 & 1<=p98]]]]]] | [[[[[1<=p1 & [1<=p20 & 1<=p98]] | [1<=p0 & [1<=p18 & 1<=p98]]] | [[1<=p1 & [1<=p25 & 1<=p98]] | [1<=p1 & [1<=p15 & 1<=p98]]]] | [[[1<=p0 & [1<=p23 & 1<=p98]] | [1<=p1 & [1<=p10 & 1<=p98]]] | [[1<=p1 & [1<=p24 & 1<=p98]] | [1<=p1 & [1<=p16 & 1<=p98]]]]] | [[[[1<=p0 & [1<=p14 & 1<=p98]] | [1<=p0 & [1<=p12 & 1<=p98]]] | [[1<=p1 & [1<=p14 & 1<=p98]] | [1<=p0 & [1<=p17 & 1<=p98]]]] | [[[1<=p0 & [1<=p22 & 1<=p98]] | [1<=p1 & [1<=p11 & 1<=p98]]] | [[1<=p1 & [1<=p23 & 1<=p98]] | [1<=p1 & [1<=p19 & 1<=p98]]]]]]]] | [1<=p114 | 1<=p115]]] | [[1<=p112 | [1<=p113 | 1<=p110]] | [[1<=p111 | 1<=p108] | [1<=p109 | [[[[[p65<=0 & p64<=0] & [p67<=0 & p66<=0]] & [[p69<=0 & p68<=0] & [p71<=0 & p70<=0]]] & [[[p73<=0 & p72<=0] & [p43<=0 & p42<=0]] & [[p45<=0 & p44<=0] & [p47<=0 & p46<=0]]]] & [[[[p49<=0 & p48<=0] & [p51<=0 & p50<=0]] & [[p53<=0 & p52<=0] & [p55<=0 & p54<=0]]] & [[[p57<=0 & p56<=0] & [p59<=0 & p58<=0]] & [[p61<=0 & p60<=0] & [p63<=0 & [p62<=0 & [[[[1<=p114 | [1<=p115 | 1<=p112]] | [1<=p113 | [1<=p110 | 1<=p111]]] | [[1<=p108 | [1<=p109 | 1<=p32]] | [1<=p33 | [1<=p34 | 1<=p35]]]] | [[[1<=p36 | [1<=p37 | 1<=p39]] | [1<=p38 | [1<=p41 | 1<=p40]]] | [[1<=p26 | [1<=p27 | 1<=p28]] | [1<=p29 | [1<=p30 | 1<=p31]]]]]]]]]]]]]]]] & [A [AX [[[[[[1<=p75 & 1<=p108] | [1<=p80 & 1<=p111]] | [[1<=p85 & 1<=p113] | [1<=p88 & 1<=p115]]] | [[[1<=p77 & 1<=p109] | [1<=p87 & 1<=p114]] | [[1<=p83 & 1<=p112] | [1<=p81 & 1<=p111]]]] | [[[[1<=p79 & 1<=p110] | [1<=p89 & 1<=p115]] | [[1<=p84 & 1<=p113] | [1<=p82 & 1<=p112]]] | [[[1<=p86 & 1<=p114] | [1<=p76 & 1<=p109]] | [[1<=p78 & 1<=p110] | [1<=p74 & 1<=p108]]]]]] U AF [[[[[[1<=p86 & 1<=p122] | [1<=p83 & 1<=p120]] | [[1<=p81 & 1<=p119] | [1<=p78 & 1<=p118]]] | [[[1<=p76 & 1<=p117] | [1<=p75 & 1<=p116]] | [[1<=p89 & 1<=p123] | [1<=p85 & 1<=p121]]]] | [[[[1<=p82 & 1<=p120] | [1<=p87 & 1<=p122]] | [[1<=p79 & 1<=p118] | [1<=p77 & 1<=p117]]] | [[[1<=p74 & 1<=p116] | [1<=p80 & 1<=p119]] | [[1<=p84 & 1<=p121] | [1<=p88 & 1<=p123]]]]]]] & A [[[[1<=p114 | 1<=p115] | [1<=p112 | 1<=p113]] | [[1<=p110 | 1<=p111] | [1<=p108 | 1<=p109]]] U AF [~ [[[[[[[1<=p0 & [1<=p25 & 1<=p98]] | [1<=p1 & [1<=p13 & 1<=p98]]] | [[1<=p0 & [1<=p20 & 1<=p98]] | [1<=p0 & [1<=p10 & 1<=p98]]]] | [[[1<=p0 & [1<=p21 & 1<=p98]] | [1<=p1 & [1<=p12 & 1<=p98]]] | [[1<=p0 & [1<=p16 & 1<=p98]] | [1<=p1 & [1<=p22 & 1<=p98]]]]] | [[[[1<=p1 & [1<=p18 & 1<=p98]] | [1<=p0 & [1<=p24 & 1<=p98]]] | [[1<=p0 & [1<=p19 & 1<=p98]] | [1<=p1 & [1<=p17 & 1<=p98]]]] | [[[1<=p0 & [1<=p15 & 1<=p98]] | [1<=p1 & [1<=p21 & 1<=p98]]] | [[1<=p0 & [1<=p11 & 1<=p98]] | [1<=p0 & [1<=p13 & 1<=p98]]]]]] | [[[[[1<=p1 & [1<=p20 & 1<=p98]] | [1<=p0 & [1<=p18 & 1<=p98]]] | [[1<=p1 & [1<=p25 & 1<=p98]] | [1<=p1 & [1<=p15 & 1<=p98]]]] | [[[1<=p0 & [1<=p23 & 1<=p98]] | [1<=p1 & [1<=p10 & 1<=p98]]] | [[1<=p1 & [1<=p24 & 1<=p98]] | [1<=p1 & [1<=p16 & 1<=p98]]]]] | [[[[1<=p0 & [1<=p14 & 1<=p98]] | [1<=p0 & [1<=p12 & 1<=p98]]] | [[1<=p1 & [1<=p14 & 1<=p98]] | [1<=p0 & [1<=p17 & 1<=p98]]]] | [[[1<=p0 & [1<=p22 & 1<=p98]] | [1<=p1 & [1<=p11 & 1<=p98]]] | [[1<=p1 & [1<=p23 & 1<=p98]] | [1<=p1 & [1<=p19 & 1<=p98]]]]]]]]]]]]]]
normalized: [E [true U [[[~ [EG [EG [[[[[[[1<=p1 & [1<=p19 & 1<=p98]] | [1<=p1 & [1<=p23 & 1<=p98]]] | [[1<=p1 & [1<=p11 & 1<=p98]] | [1<=p0 & [1<=p22 & 1<=p98]]]] | [[[1<=p0 & [1<=p17 & 1<=p98]] | [1<=p1 & [1<=p14 & 1<=p98]]] | [[1<=p0 & [1<=p12 & 1<=p98]] | [1<=p0 & [1<=p14 & 1<=p98]]]]] | [[[[1<=p1 & [1<=p16 & 1<=p98]] | [1<=p1 & [1<=p24 & 1<=p98]]] | [[1<=p1 & [1<=p10 & 1<=p98]] | [1<=p0 & [1<=p23 & 1<=p98]]]] | [[[1<=p1 & [1<=p15 & 1<=p98]] | [1<=p1 & [1<=p25 & 1<=p98]]] | [[1<=p0 & [1<=p18 & 1<=p98]] | [1<=p1 & [1<=p20 & 1<=p98]]]]]] | [[[[[1<=p0 & [1<=p13 & 1<=p98]] | [1<=p0 & [1<=p11 & 1<=p98]]] | [[1<=p1 & [1<=p21 & 1<=p98]] | [1<=p0 & [1<=p15 & 1<=p98]]]] | [[[1<=p1 & [1<=p17 & 1<=p98]] | [1<=p0 & [1<=p19 & 1<=p98]]] | [[1<=p0 & [1<=p24 & 1<=p98]] | [1<=p1 & [1<=p18 & 1<=p98]]]]] | [[[[1<=p1 & [1<=p22 & 1<=p98]] | [1<=p0 & [1<=p16 & 1<=p98]]] | [[1<=p1 & [1<=p12 & 1<=p98]] | [1<=p0 & [1<=p21 & 1<=p98]]]] | [[[1<=p0 & [1<=p10 & 1<=p98]] | [1<=p0 & [1<=p20 & 1<=p98]]] | [[1<=p1 & [1<=p13 & 1<=p98]] | [1<=p0 & [1<=p25 & 1<=p98]]]]]]]]]] & ~ [E [EG [[[[[[[1<=p1 & [1<=p19 & 1<=p98]] | [1<=p1 & [1<=p23 & 1<=p98]]] | [[1<=p1 & [1<=p11 & 1<=p98]] | [1<=p0 & [1<=p22 & 1<=p98]]]] | [[[1<=p0 & [1<=p17 & 1<=p98]] | [1<=p1 & [1<=p14 & 1<=p98]]] | [[1<=p0 & [1<=p12 & 1<=p98]] | [1<=p0 & [1<=p14 & 1<=p98]]]]] | [[[[1<=p1 & [1<=p16 & 1<=p98]] | [1<=p1 & [1<=p24 & 1<=p98]]] | [[1<=p1 & [1<=p10 & 1<=p98]] | [1<=p0 & [1<=p23 & 1<=p98]]]] | [[[1<=p1 & [1<=p15 & 1<=p98]] | [1<=p1 & [1<=p25 & 1<=p98]]] | [[1<=p0 & [1<=p18 & 1<=p98]] | [1<=p1 & [1<=p20 & 1<=p98]]]]]] | [[[[[1<=p0 & [1<=p13 & 1<=p98]] | [1<=p0 & [1<=p11 & 1<=p98]]] | [[1<=p1 & [1<=p21 & 1<=p98]] | [1<=p0 & [1<=p15 & 1<=p98]]]] | [[[1<=p1 & [1<=p17 & 1<=p98]] | [1<=p0 & [1<=p19 & 1<=p98]]] | [[1<=p0 & [1<=p24 & 1<=p98]] | [1<=p1 & [1<=p18 & 1<=p98]]]]] | [[[[1<=p1 & [1<=p22 & 1<=p98]] | [1<=p0 & [1<=p16 & 1<=p98]]] | [[1<=p1 & [1<=p12 & 1<=p98]] | [1<=p0 & [1<=p21 & 1<=p98]]]] | [[[1<=p0 & [1<=p10 & 1<=p98]] | [1<=p0 & [1<=p20 & 1<=p98]]] | [[1<=p1 & [1<=p13 & 1<=p98]] | [1<=p0 & [1<=p25 & 1<=p98]]]]]]]] U [~ [[[[1<=p108 | 1<=p109] | [1<=p110 | 1<=p111]] | [[1<=p112 | 1<=p113] | [1<=p114 | 1<=p115]]]] & EG [[[[[[[1<=p1 & [1<=p19 & 1<=p98]] | [1<=p1 & [1<=p23 & 1<=p98]]] | [[1<=p1 & [1<=p11 & 1<=p98]] | [1<=p0 & [1<=p22 & 1<=p98]]]] | [[[1<=p0 & [1<=p17 & 1<=p98]] | [1<=p1 & [1<=p14 & 1<=p98]]] | [[1<=p0 & [1<=p12 & 1<=p98]] | [1<=p0 & [1<=p14 & 1<=p98]]]]] | [[[[1<=p1 & [1<=p16 & 1<=p98]] | [1<=p1 & [1<=p24 & 1<=p98]]] | [[1<=p1 & [1<=p10 & 1<=p98]] | [1<=p0 & [1<=p23 & 1<=p98]]]] | [[[1<=p1 & [1<=p15 & 1<=p98]] | [1<=p1 & [1<=p25 & 1<=p98]]] | [[1<=p0 & [1<=p18 & 1<=p98]] | [1<=p1 & [1<=p20 & 1<=p98]]]]]] | [[[[[1<=p0 & [1<=p13 & 1<=p98]] | [1<=p0 & [1<=p11 & 1<=p98]]] | [[1<=p1 & [1<=p21 & 1<=p98]] | [1<=p0 & [1<=p15 & 1<=p98]]]] | [[[1<=p1 & [1<=p17 & 1<=p98]] | [1<=p0 & [1<=p19 & 1<=p98]]] | [[1<=p0 & [1<=p24 & 1<=p98]] | [1<=p1 & [1<=p18 & 1<=p98]]]]] | [[[[1<=p1 & [1<=p22 & 1<=p98]] | [1<=p0 & [1<=p16 & 1<=p98]]] | [[1<=p1 & [1<=p12 & 1<=p98]] | [1<=p0 & [1<=p21 & 1<=p98]]]] | [[[1<=p0 & [1<=p10 & 1<=p98]] | [1<=p0 & [1<=p20 & 1<=p98]]] | [[1<=p1 & [1<=p13 & 1<=p98]] | [1<=p0 & [1<=p25 & 1<=p98]]]]]]]]]]]] & [~ [EG [EG [~ [[[[[[1<=p88 & 1<=p123] | [1<=p84 & 1<=p121]] | [[1<=p80 & 1<=p119] | [1<=p74 & 1<=p116]]] | [[[1<=p77 & 1<=p117] | [1<=p79 & 1<=p118]] | [[1<=p87 & 1<=p122] | [1<=p82 & 1<=p120]]]] | [[[[1<=p85 & 1<=p121] | [1<=p89 & 1<=p123]] | [[1<=p75 & 1<=p116] | [1<=p76 & 1<=p117]]] | [[[1<=p78 & 1<=p118] | [1<=p81 & 1<=p119]] | [[1<=p83 & 1<=p120] | [1<=p86 & 1<=p122]]]]]]]]] & ~ [E [EG [~ [[[[[[1<=p88 & 1<=p123] | [1<=p84 & 1<=p121]] | [[1<=p80 & 1<=p119] | [1<=p74 & 1<=p116]]] | [[[1<=p77 & 1<=p117] | [1<=p79 & 1<=p118]] | [[1<=p87 & 1<=p122] | [1<=p82 & 1<=p120]]]] | [[[[1<=p85 & 1<=p121] | [1<=p89 & 1<=p123]] | [[1<=p75 & 1<=p116] | [1<=p76 & 1<=p117]]] | [[[1<=p78 & 1<=p118] | [1<=p81 & 1<=p119]] | [[1<=p83 & 1<=p120] | [1<=p86 & 1<=p122]]]]]]] U [EX [~ [[[[[[1<=p74 & 1<=p108] | [1<=p78 & 1<=p110]] | [[1<=p76 & 1<=p109] | [1<=p86 & 1<=p114]]] | [[[1<=p82 & 1<=p112] | [1<=p84 & 1<=p113]] | [[1<=p89 & 1<=p115] | [1<=p79 & 1<=p110]]]] | [[[[1<=p81 & 1<=p111] | [1<=p83 & 1<=p112]] | [[1<=p87 & 1<=p114] | [1<=p77 & 1<=p109]]] | [[[1<=p88 & 1<=p115] | [1<=p85 & 1<=p113]] | [[1<=p80 & 1<=p111] | [1<=p75 & 1<=p108]]]]]]] & EG [~ [[[[[[1<=p88 & 1<=p123] | [1<=p84 & 1<=p121]] | [[1<=p80 & 1<=p119] | [1<=p74 & 1<=p116]]] | [[[1<=p77 & 1<=p117] | [1<=p79 & 1<=p118]] | [[1<=p87 & 1<=p122] | [1<=p82 & 1<=p120]]]] | [[[[1<=p85 & 1<=p121] | [1<=p89 & 1<=p123]] | [[1<=p75 & 1<=p116] | [1<=p76 & 1<=p117]]] | [[[1<=p78 & 1<=p118] | [1<=p81 & 1<=p119]] | [[1<=p83 & 1<=p120] | [1<=p86 & 1<=p122]]]]]]]]]]]] & [[[[[1<=p109 | [[[[[p63<=0 & [p62<=0 & [[[[1<=p29 | [1<=p30 | 1<=p31]] | [1<=p26 | [1<=p27 | 1<=p28]]] | [[1<=p38 | [1<=p41 | 1<=p40]] | [1<=p36 | [1<=p37 | 1<=p39]]]] | [[[1<=p33 | [1<=p34 | 1<=p35]] | [1<=p108 | [1<=p109 | 1<=p32]]] | [[1<=p113 | [1<=p110 | 1<=p111]] | [1<=p114 | [1<=p115 | 1<=p112]]]]]]] & [p61<=0 & p60<=0]] & [[p59<=0 & p58<=0] & [p57<=0 & p56<=0]]] & [[[p55<=0 & p54<=0] & [p53<=0 & p52<=0]] & [[p51<=0 & p50<=0] & [p49<=0 & p48<=0]]]] & [[[[p47<=0 & p46<=0] & [p45<=0 & p44<=0]] & [[p43<=0 & p42<=0] & [p73<=0 & p72<=0]]] & [[[p71<=0 & p70<=0] & [p69<=0 & p68<=0]] & [[p67<=0 & p66<=0] & [p65<=0 & p64<=0]]]]]] | [1<=p111 | 1<=p108]] | [1<=p112 | [1<=p113 | 1<=p110]]] | [[[1<=p114 | 1<=p115] | EX [[[[[[[1<=p1 & [1<=p19 & 1<=p98]] | [1<=p1 & [1<=p23 & 1<=p98]]] | [[1<=p1 & [1<=p11 & 1<=p98]] | [1<=p0 & [1<=p22 & 1<=p98]]]] | [[[1<=p0 & [1<=p17 & 1<=p98]] | [1<=p1 & [1<=p14 & 1<=p98]]] | [[1<=p0 & [1<=p12 & 1<=p98]] | [1<=p0 & [1<=p14 & 1<=p98]]]]] | [[[[1<=p1 & [1<=p16 & 1<=p98]] | [1<=p1 & [1<=p24 & 1<=p98]]] | [[1<=p1 & [1<=p10 & 1<=p98]] | [1<=p0 & [1<=p23 & 1<=p98]]]] | [[[1<=p1 & [1<=p15 & 1<=p98]] | [1<=p1 & [1<=p25 & 1<=p98]]] | [[1<=p0 & [1<=p18 & 1<=p98]] | [1<=p1 & [1<=p20 & 1<=p98]]]]]] | [[[[[1<=p0 & [1<=p13 & 1<=p98]] | [1<=p0 & [1<=p11 & 1<=p98]]] | [[1<=p1 & [1<=p21 & 1<=p98]] | [1<=p0 & [1<=p15 & 1<=p98]]]] | [[[1<=p1 & [1<=p17 & 1<=p98]] | [1<=p0 & [1<=p19 & 1<=p98]]] | [[1<=p0 & [1<=p24 & 1<=p98]] | [1<=p1 & [1<=p18 & 1<=p98]]]]] | [[[[1<=p1 & [1<=p22 & 1<=p98]] | [1<=p0 & [1<=p16 & 1<=p98]]] | [[1<=p1 & [1<=p12 & 1<=p98]] | [1<=p0 & [1<=p21 & 1<=p98]]]] | [[[1<=p0 & [1<=p10 & 1<=p98]] | [1<=p0 & [1<=p20 & 1<=p98]]] | [[1<=p1 & [1<=p13 & 1<=p98]] | [1<=p0 & [1<=p25 & 1<=p98]]]]]]]]] | [[[1<=p99 & 1<=p124] | [1<=p99 & 1<=p130]] | [1<=p99 & 1<=p129]]]] | [[[[[1<=p99 & 1<=p132] | [1<=p99 & 1<=p131]] | [[1<=p99 & 1<=p126] | [1<=p99 & 1<=p125]]] | [[[1<=p99 & 1<=p128] | [1<=p99 & 1<=p127]] | [1<=p99 & 1<=p138]]] | [[[[1<=p99 & 1<=p137] | [1<=p99 & 1<=p139]] | [1<=p99 & 1<=p134]] | [[[1<=p99 & 1<=p133] | [1<=p99 & 1<=p136]] | [1<=p99 & 1<=p135]]]]]]] | E [~ [E [[~ [EG [~ [[[[[[1<=p1 & [1<=p19 & 1<=p98]] | [1<=p1 & [1<=p21 & 1<=p98]]] | [[1<=p1 & [1<=p17 & 1<=p98]] | [1<=p1 & [1<=p23 & 1<=p98]]]] | [[[1<=p1 & [1<=p11 & 1<=p98]] | [1<=p0 & [1<=p22 & 1<=p98]]] | [[1<=p0 & [1<=p24 & 1<=p98]] | [1<=p0 & [1<=p12 & 1<=p98]]]]] | [[[[1<=p0 & [1<=p14 & 1<=p98]] | [1<=p0 & [1<=p16 & 1<=p98]]] | [[1<=p0 & [1<=p10 & 1<=p98]] | [1<=p0 & [1<=p20 & 1<=p98]]]] | [[[1<=p1 & [1<=p13 & 1<=p98]] | [1<=p1 & [1<=p15 & 1<=p98]]] | [[1<=p1 & [1<=p25 & 1<=p98]] | [1<=p0 & [1<=p18 & 1<=p98]]]]]]]]] | ~ [EG [~ [[[[[[[1<=p1 & [1<=p19 & 1<=p98]] | [1<=p1 & [1<=p23 & 1<=p98]]] | [[1<=p1 & [1<=p11 & 1<=p98]] | [1<=p0 & [1<=p22 & 1<=p98]]]] | [[[1<=p0 & [1<=p17 & 1<=p98]] | [1<=p1 & [1<=p14 & 1<=p98]]] | [[1<=p0 & [1<=p12 & 1<=p98]] | [1<=p0 & [1<=p14 & 1<=p98]]]]] | [[[[1<=p1 & [1<=p16 & 1<=p98]] | [1<=p1 & [1<=p24 & 1<=p98]]] | [[1<=p1 & [1<=p10 & 1<=p98]] | [1<=p0 & [1<=p23 & 1<=p98]]]] | [[[1<=p1 & [1<=p15 & 1<=p98]] | [1<=p1 & [1<=p25 & 1<=p98]]] | [[1<=p0 & [1<=p18 & 1<=p98]] | [1<=p1 & [1<=p20 & 1<=p98]]]]]] | [[[[[1<=p0 & [1<=p13 & 1<=p98]] | [1<=p0 & [1<=p11 & 1<=p98]]] | [[1<=p1 & [1<=p21 & 1<=p98]] | [1<=p0 & [1<=p15 & 1<=p98]]]] | [[[1<=p1 & [1<=p17 & 1<=p98]] | [1<=p0 & [1<=p19 & 1<=p98]]] | [[1<=p0 & [1<=p24 & 1<=p98]] | [1<=p1 & [1<=p18 & 1<=p98]]]]] | [[[[1<=p1 & [1<=p22 & 1<=p98]] | [1<=p0 & [1<=p16 & 1<=p98]]] | [[1<=p1 & [1<=p12 & 1<=p98]] | [1<=p0 & [1<=p21 & 1<=p98]]]] | [[[1<=p0 & [1<=p10 & 1<=p98]] | [1<=p0 & [1<=p20 & 1<=p98]]] | [[1<=p1 & [1<=p13 & 1<=p98]] | [1<=p0 & [1<=p25 & 1<=p98]]]]]]]]]]] U [[~ [E [true U ~ [[[[[[1<=p74 & 1<=p108] | [1<=p78 & 1<=p110]] | [[1<=p76 & 1<=p109] | [1<=p86 & 1<=p114]]] | [[[1<=p82 & 1<=p112] | [1<=p84 & 1<=p113]] | [[1<=p89 & 1<=p115] | [1<=p79 & 1<=p110]]]] | [[[[1<=p81 & 1<=p111] | [1<=p83 & 1<=p112]] | [[1<=p87 & 1<=p114] | [1<=p77 & 1<=p109]]] | [[[1<=p88 & 1<=p115] | [1<=p85 & 1<=p113]] | [[1<=p80 & 1<=p111] | [1<=p75 & 1<=p108]]]]]]]] | E [[[[[[1<=p74 & 1<=p108] | [1<=p78 & 1<=p110]] | [[1<=p76 & 1<=p109] | [1<=p86 & 1<=p114]]] | [[[1<=p82 & 1<=p112] | [1<=p84 & 1<=p113]] | [[1<=p89 & 1<=p115] | [1<=p79 & 1<=p110]]]] | [[[[1<=p81 & 1<=p111] | [1<=p83 & 1<=p112]] | [[1<=p87 & 1<=p114] | [1<=p77 & 1<=p109]]] | [[[1<=p88 & 1<=p115] | [1<=p85 & 1<=p113]] | [[1<=p80 & 1<=p111] | [1<=p75 & 1<=p108]]]]] U [[[[[[1<=p1 & [1<=p19 & 1<=p98]] | [1<=p1 & [1<=p23 & 1<=p98]]] | [[1<=p1 & [1<=p11 & 1<=p98]] | [1<=p0 & [1<=p22 & 1<=p98]]]] | [[[1<=p0 & [1<=p17 & 1<=p98]] | [1<=p1 & [1<=p14 & 1<=p98]]] | [[1<=p0 & [1<=p12 & 1<=p98]] | [1<=p0 & [1<=p14 & 1<=p98]]]]] | [[[[1<=p1 & [1<=p16 & 1<=p98]] | [1<=p1 & [1<=p24 & 1<=p98]]] | [[1<=p1 & [1<=p10 & 1<=p98]] | [1<=p0 & [1<=p23 & 1<=p98]]]] | [[[1<=p1 & [1<=p15 & 1<=p98]] | [1<=p1 & [1<=p25 & 1<=p98]]] | [[1<=p0 & [1<=p18 & 1<=p98]] | [1<=p1 & [1<=p20 & 1<=p98]]]]]] | [[[[[1<=p0 & [1<=p13 & 1<=p98]] | [1<=p0 & [1<=p11 & 1<=p98]]] | [[1<=p1 & [1<=p21 & 1<=p98]] | [1<=p0 & [1<=p15 & 1<=p98]]]] | [[[1<=p1 & [1<=p17 & 1<=p98]] | [1<=p0 & [1<=p19 & 1<=p98]]] | [[1<=p0 & [1<=p24 & 1<=p98]] | [1<=p1 & [1<=p18 & 1<=p98]]]]] | [[[[1<=p1 & [1<=p22 & 1<=p98]] | [1<=p0 & [1<=p16 & 1<=p98]]] | [[1<=p1 & [1<=p12 & 1<=p98]] | [1<=p0 & [1<=p21 & 1<=p98]]]] | [[[1<=p0 & [1<=p10 & 1<=p98]] | [1<=p0 & [1<=p20 & 1<=p98]]] | [[1<=p1 & [1<=p13 & 1<=p98]] | [1<=p0 & [1<=p25 & 1<=p98]]]]]]]]] & [[[[[1<=p63 | 1<=p62] | [1<=p61 | 1<=p60]] | [[1<=p59 | 1<=p58] | [1<=p57 | 1<=p56]]] | [[[1<=p55 | 1<=p54] | [1<=p53 | 1<=p52]] | [[1<=p51 | 1<=p50] | [1<=p49 | 1<=p48]]]] | [[[[1<=p47 | 1<=p46] | [1<=p45 | 1<=p44]] | [[1<=p43 | 1<=p42] | [1<=p73 | 1<=p72]]] | [[[1<=p71 | 1<=p70] | [1<=p69 | 1<=p68]] | [[1<=p67 | 1<=p66] | [1<=p65 | 1<=p64]]]]]]]] U [~ [E [true U ~ [E [true U [[[[[1<=p63 | 1<=p62] | [1<=p61 | 1<=p60]] | [[1<=p59 | 1<=p58] | [1<=p57 | 1<=p56]]] | [[[1<=p55 | 1<=p54] | [1<=p53 | 1<=p52]] | [[1<=p51 | 1<=p50] | [1<=p49 | 1<=p48]]]] | [[[[1<=p47 | 1<=p46] | [1<=p45 | 1<=p44]] | [[1<=p43 | 1<=p42] | [1<=p73 | 1<=p72]]] | [[[1<=p71 | 1<=p70] | [1<=p69 | 1<=p68]] | [[1<=p67 | 1<=p66] | [1<=p65 | 1<=p64]]]]]]]]] & E [true U EG [E [[[[[[[1<=p1 & [1<=p19 & 1<=p98]] | [1<=p1 & [1<=p23 & 1<=p98]]] | [[1<=p1 & [1<=p11 & 1<=p98]] | [1<=p0 & [1<=p22 & 1<=p98]]]] | [[[1<=p0 & [1<=p17 & 1<=p98]] | [1<=p1 & [1<=p14 & 1<=p98]]] | [[1<=p0 & [1<=p12 & 1<=p98]] | [1<=p0 & [1<=p14 & 1<=p98]]]]] | [[[[1<=p1 & [1<=p16 & 1<=p98]] | [1<=p1 & [1<=p24 & 1<=p98]]] | [[1<=p1 & [1<=p10 & 1<=p98]] | [1<=p0 & [1<=p23 & 1<=p98]]]] | [[[1<=p1 & [1<=p15 & 1<=p98]] | [1<=p1 & [1<=p25 & 1<=p98]]] | [[1<=p0 & [1<=p18 & 1<=p98]] | [1<=p1 & [1<=p20 & 1<=p98]]]]]] | [[[[[1<=p0 & [1<=p13 & 1<=p98]] | [1<=p0 & [1<=p11 & 1<=p98]]] | [[1<=p1 & [1<=p21 & 1<=p98]] | [1<=p0 & [1<=p15 & 1<=p98]]]] | [[[1<=p1 & [1<=p17 & 1<=p98]] | [1<=p0 & [1<=p19 & 1<=p98]]] | [[1<=p0 & [1<=p24 & 1<=p98]] | [1<=p1 & [1<=p18 & 1<=p98]]]]] | [[[[1<=p1 & [1<=p22 & 1<=p98]] | [1<=p0 & [1<=p16 & 1<=p98]]] | [[1<=p1 & [1<=p12 & 1<=p98]] | [1<=p0 & [1<=p21 & 1<=p98]]]] | [[[1<=p0 & [1<=p10 & 1<=p98]] | [1<=p0 & [1<=p20 & 1<=p98]]] | [[1<=p1 & [1<=p13 & 1<=p98]] | [1<=p0 & [1<=p25 & 1<=p98]]]]]]] U [[[[[1<=p63 | 1<=p62] | [1<=p61 | 1<=p60]] | [[1<=p59 | 1<=p58] | [1<=p57 | 1<=p56]]] | [[[1<=p55 | 1<=p54] | [1<=p53 | 1<=p52]] | [[1<=p51 | 1<=p50] | [1<=p49 | 1<=p48]]]] | [[[[1<=p47 | 1<=p46] | [1<=p45 | 1<=p44]] | [[1<=p43 | 1<=p42] | [1<=p73 | 1<=p72]]] | [[[1<=p71 | 1<=p70] | [1<=p69 | 1<=p68]] | [[1<=p67 | 1<=p66] | [1<=p65 | 1<=p64]]]]]]]]]]]
abstracting: (1<=p64)
states: 63,059,864 (7)
abstracting: (1<=p65)
states: 63,059,864 (7)
abstracting: (1<=p66)
states: 63,059,864 (7)
abstracting: (1<=p67)
states: 63,059,864 (7)
abstracting: (1<=p68)
states: 63,059,864 (7)
abstracting: (1<=p69)
states: 63,059,864 (7)
abstracting: (1<=p70)
states: 63,059,864 (7)
abstracting: (1<=p71)
states: 63,059,864 (7)
abstracting: (1<=p72)
states: 63,059,864 (7)
abstracting: (1<=p73)
states: 63,059,864 (7)
abstracting: (1<=p42)
states: 63,059,864 (7)
abstracting: (1<=p43)
states: 63,059,864 (7)
abstracting: (1<=p44)
states: 63,059,864 (7)
abstracting: (1<=p45)
states: 63,059,864 (7)
abstracting: (1<=p46)
states: 63,059,864 (7)
abstracting: (1<=p47)
states: 63,059,864 (7)
abstracting: (1<=p48)
states: 63,059,864 (7)
abstracting: (1<=p49)
states: 63,059,864 (7)
abstracting: (1<=p50)
states: 63,059,864 (7)
abstracting: (1<=p51)
states: 63,059,864 (7)
abstracting: (1<=p52)
states: 63,059,864 (7)
abstracting: (1<=p53)
states: 63,059,864 (7)
abstracting: (1<=p54)
states: 63,059,864 (7)
abstracting: (1<=p55)
states: 63,059,864 (7)
abstracting: (1<=p56)
states: 63,059,864 (7)
abstracting: (1<=p57)
states: 63,059,864 (7)
abstracting: (1<=p58)
states: 63,059,864 (7)
abstracting: (1<=p59)
states: 63,059,864 (7)
abstracting: (1<=p60)
states: 63,059,864 (7)
abstracting: (1<=p61)
states: 63,059,864 (7)
abstracting: (1<=p62)
states: 63,059,864 (7)
abstracting: (1<=p63)
states: 63,059,864 (7)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p25)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p13)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p20)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p10)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p21)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p12)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p16)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p22)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p18)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p24)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p19)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p17)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p15)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p21)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p11)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p13)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p20)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p18)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p25)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p15)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p23)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p10)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p24)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p16)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p14)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p12)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p14)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p17)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p22)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p11)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p23)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p19)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
.
EG iterations: 1
abstracting: (1<=p64)
states: 63,059,864 (7)
abstracting: (1<=p65)
states: 63,059,864 (7)
abstracting: (1<=p66)
states: 63,059,864 (7)
abstracting: (1<=p67)
states: 63,059,864 (7)
abstracting: (1<=p68)
states: 63,059,864 (7)
abstracting: (1<=p69)
states: 63,059,864 (7)
abstracting: (1<=p70)
states: 63,059,864 (7)
abstracting: (1<=p71)
states: 63,059,864 (7)
abstracting: (1<=p72)
states: 63,059,864 (7)
abstracting: (1<=p73)
states: 63,059,864 (7)
abstracting: (1<=p42)
states: 63,059,864 (7)
abstracting: (1<=p43)
states: 63,059,864 (7)
abstracting: (1<=p44)
states: 63,059,864 (7)
abstracting: (1<=p45)
states: 63,059,864 (7)
abstracting: (1<=p46)
states: 63,059,864 (7)
abstracting: (1<=p47)
states: 63,059,864 (7)
abstracting: (1<=p48)
states: 63,059,864 (7)
abstracting: (1<=p49)
states: 63,059,864 (7)
abstracting: (1<=p50)
states: 63,059,864 (7)
abstracting: (1<=p51)
states: 63,059,864 (7)
abstracting: (1<=p52)
states: 63,059,864 (7)
abstracting: (1<=p53)
states: 63,059,864 (7)
abstracting: (1<=p54)
states: 63,059,864 (7)
abstracting: (1<=p55)
states: 63,059,864 (7)
abstracting: (1<=p56)
states: 63,059,864 (7)
abstracting: (1<=p57)
states: 63,059,864 (7)
abstracting: (1<=p58)
states: 63,059,864 (7)
abstracting: (1<=p59)
states: 63,059,864 (7)
abstracting: (1<=p60)
states: 63,059,864 (7)
abstracting: (1<=p61)
states: 63,059,864 (7)
abstracting: (1<=p62)
states: 63,059,864 (7)
abstracting: (1<=p63)
states: 63,059,864 (7)
abstracting: (1<=p64)
states: 63,059,864 (7)
abstracting: (1<=p65)
states: 63,059,864 (7)
abstracting: (1<=p66)
states: 63,059,864 (7)
abstracting: (1<=p67)
states: 63,059,864 (7)
abstracting: (1<=p68)
states: 63,059,864 (7)
abstracting: (1<=p69)
states: 63,059,864 (7)
abstracting: (1<=p70)
states: 63,059,864 (7)
abstracting: (1<=p71)
states: 63,059,864 (7)
abstracting: (1<=p72)
states: 63,059,864 (7)
abstracting: (1<=p73)
states: 63,059,864 (7)
abstracting: (1<=p42)
states: 63,059,864 (7)
abstracting: (1<=p43)
states: 63,059,864 (7)
abstracting: (1<=p44)
states: 63,059,864 (7)
abstracting: (1<=p45)
states: 63,059,864 (7)
abstracting: (1<=p46)
states: 63,059,864 (7)
abstracting: (1<=p47)
states: 63,059,864 (7)
abstracting: (1<=p48)
states: 63,059,864 (7)
abstracting: (1<=p49)
states: 63,059,864 (7)
abstracting: (1<=p50)
states: 63,059,864 (7)
abstracting: (1<=p51)
states: 63,059,864 (7)
abstracting: (1<=p52)
states: 63,059,864 (7)
abstracting: (1<=p53)
states: 63,059,864 (7)
abstracting: (1<=p54)
states: 63,059,864 (7)
abstracting: (1<=p55)
states: 63,059,864 (7)
abstracting: (1<=p56)
states: 63,059,864 (7)
abstracting: (1<=p57)
states: 63,059,864 (7)
abstracting: (1<=p58)
states: 63,059,864 (7)
abstracting: (1<=p59)
states: 63,059,864 (7)
abstracting: (1<=p60)
states: 63,059,864 (7)
abstracting: (1<=p61)
states: 63,059,864 (7)
abstracting: (1<=p62)
states: 63,059,864 (7)
abstracting: (1<=p63)
states: 63,059,864 (7)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p25)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p13)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p20)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p10)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p21)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p12)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p16)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p22)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p18)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p24)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p19)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p17)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p15)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p21)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p11)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p13)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p20)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p18)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p25)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p15)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p23)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p10)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p24)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p16)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p14)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p12)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p14)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p17)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p22)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p11)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p23)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p19)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p108)
states: 1,051,513,148 (9)
abstracting: (1<=p75)
states: 63,059,864 (7)
abstracting: (1<=p111)
states: 1,051,513,148 (9)
abstracting: (1<=p80)
states: 63,059,864 (7)
abstracting: (1<=p113)
states: 1,051,513,148 (9)
abstracting: (1<=p85)
states: 63,059,864 (7)
abstracting: (1<=p115)
states: 1,051,513,148 (9)
abstracting: (1<=p88)
states: 63,059,864 (7)
abstracting: (1<=p109)
states: 1,051,513,148 (9)
abstracting: (1<=p77)
states: 63,059,864 (7)
abstracting: (1<=p114)
states: 1,051,513,148 (9)
abstracting: (1<=p87)
states: 63,059,864 (7)
abstracting: (1<=p112)
states: 1,051,513,148 (9)
abstracting: (1<=p83)
states: 63,059,864 (7)
abstracting: (1<=p111)
states: 1,051,513,148 (9)
abstracting: (1<=p81)
states: 63,059,864 (7)
abstracting: (1<=p110)
states: 1,051,513,148 (9)
abstracting: (1<=p79)
states: 63,059,864 (7)
abstracting: (1<=p115)
states: 1,051,513,148 (9)
abstracting: (1<=p89)
states: 63,059,864 (7)
abstracting: (1<=p113)
states: 1,051,513,148 (9)
abstracting: (1<=p84)
states: 63,059,864 (7)
abstracting: (1<=p112)
states: 1,051,513,148 (9)
abstracting: (1<=p82)
states: 63,059,864 (7)
abstracting: (1<=p114)
states: 1,051,513,148 (9)
abstracting: (1<=p86)
states: 63,059,864 (7)
abstracting: (1<=p109)
states: 1,051,513,148 (9)
abstracting: (1<=p76)
states: 63,059,864 (7)
abstracting: (1<=p110)
states: 1,051,513,148 (9)
abstracting: (1<=p78)
states: 63,059,864 (7)
abstracting: (1<=p108)
states: 1,051,513,148 (9)
abstracting: (1<=p74)
states: 63,059,864 (7)
abstracting: (1<=p108)
states: 1,051,513,148 (9)
abstracting: (1<=p75)
states: 63,059,864 (7)
abstracting: (1<=p111)
states: 1,051,513,148 (9)
abstracting: (1<=p80)
states: 63,059,864 (7)
abstracting: (1<=p113)
states: 1,051,513,148 (9)
abstracting: (1<=p85)
states: 63,059,864 (7)
abstracting: (1<=p115)
states: 1,051,513,148 (9)
abstracting: (1<=p88)
states: 63,059,864 (7)
abstracting: (1<=p109)
states: 1,051,513,148 (9)
abstracting: (1<=p77)
states: 63,059,864 (7)
abstracting: (1<=p114)
states: 1,051,513,148 (9)
abstracting: (1<=p87)
states: 63,059,864 (7)
abstracting: (1<=p112)
states: 1,051,513,148 (9)
abstracting: (1<=p83)
states: 63,059,864 (7)
abstracting: (1<=p111)
states: 1,051,513,148 (9)
abstracting: (1<=p81)
states: 63,059,864 (7)
abstracting: (1<=p110)
states: 1,051,513,148 (9)
abstracting: (1<=p79)
states: 63,059,864 (7)
abstracting: (1<=p115)
states: 1,051,513,148 (9)
abstracting: (1<=p89)
states: 63,059,864 (7)
abstracting: (1<=p113)
states: 1,051,513,148 (9)
abstracting: (1<=p84)
states: 63,059,864 (7)
abstracting: (1<=p112)
states: 1,051,513,148 (9)
abstracting: (1<=p82)
states: 63,059,864 (7)
abstracting: (1<=p114)
states: 1,051,513,148 (9)
abstracting: (1<=p86)
states: 63,059,864 (7)
abstracting: (1<=p109)
states: 1,051,513,148 (9)
abstracting: (1<=p76)
states: 63,059,864 (7)
abstracting: (1<=p110)
states: 1,051,513,148 (9)
abstracting: (1<=p78)
states: 63,059,864 (7)
abstracting: (1<=p108)
states: 1,051,513,148 (9)
abstracting: (1<=p74)
states: 63,059,864 (7)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p25)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p13)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p20)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p10)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p21)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p12)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p16)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p22)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p18)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p24)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p19)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p17)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p15)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p21)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p11)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p13)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p20)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p18)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p25)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p15)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p23)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p10)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p24)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p16)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p14)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p12)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p14)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p17)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p22)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p11)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p23)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p19)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
.....
before gc: list nodes free: 2610737
after gc: idd nodes used:11114772, unused:52885228; list nodes free:241333995
.....MC time: 4m 9.020sec
checking: [AF [EX [[[[[[1<=p86 & 1<=p122] | [1<=p83 & 1<=p120]] | [[1<=p81 & 1<=p119] | [1<=p78 & 1<=p118]]] | [[[1<=p76 & 1<=p117] | [1<=p75 & 1<=p116]] | [[1<=p89 & 1<=p123] | [1<=p85 & 1<=p121]]]] | [[[[1<=p82 & 1<=p120] | [1<=p87 & 1<=p122]] | [[1<=p79 & 1<=p118] | [1<=p77 & 1<=p117]]] | [[[1<=p74 & 1<=p116] | [1<=p80 & 1<=p119]] | [[1<=p84 & 1<=p121] | [1<=p88 & 1<=p123]]]]]]] | AG [[[[1<=p114 | 1<=p115] | [1<=p112 | 1<=p113]] | [[1<=p110 | 1<=p111] | [1<=p108 | 1<=p109]]]]]
normalized: [~ [E [true U ~ [[[[1<=p108 | 1<=p109] | [1<=p110 | 1<=p111]] | [[1<=p112 | 1<=p113] | [1<=p114 | 1<=p115]]]]]] | ~ [EG [~ [EX [[[[[[1<=p88 & 1<=p123] | [1<=p84 & 1<=p121]] | [[1<=p80 & 1<=p119] | [1<=p74 & 1<=p116]]] | [[[1<=p77 & 1<=p117] | [1<=p79 & 1<=p118]] | [[1<=p87 & 1<=p122] | [1<=p82 & 1<=p120]]]] | [[[[1<=p85 & 1<=p121] | [1<=p89 & 1<=p123]] | [[1<=p75 & 1<=p116] | [1<=p76 & 1<=p117]]] | [[[1<=p78 & 1<=p118] | [1<=p81 & 1<=p119]] | [[1<=p83 & 1<=p120] | [1<=p86 & 1<=p122]]]]]]]]]]
abstracting: (1<=p122)
states: 1,051,513,148 (9)
abstracting: (1<=p86)
states: 63,059,864 (7)
abstracting: (1<=p120)
states: 1,051,513,148 (9)
abstracting: (1<=p83)
states: 63,059,864 (7)
abstracting: (1<=p119)
states: 1,051,513,148 (9)
abstracting: (1<=p81)
states: 63,059,864 (7)
abstracting: (1<=p118)
states: 1,051,513,148 (9)
abstracting: (1<=p78)
states: 63,059,864 (7)
abstracting: (1<=p117)
states: 1,051,513,148 (9)
abstracting: (1<=p76)
states: 63,059,864 (7)
abstracting: (1<=p116)
states: 1,051,513,148 (9)
abstracting: (1<=p75)
states: 63,059,864 (7)
abstracting: (1<=p123)
states: 1,051,513,148 (9)
abstracting: (1<=p89)
states: 63,059,864 (7)
abstracting: (1<=p121)
states: 1,051,513,148 (9)
abstracting: (1<=p85)
states: 63,059,864 (7)
abstracting: (1<=p120)
states: 1,051,513,148 (9)
abstracting: (1<=p82)
states: 63,059,864 (7)
abstracting: (1<=p122)
states: 1,051,513,148 (9)
abstracting: (1<=p87)
states: 63,059,864 (7)
abstracting: (1<=p118)
states: 1,051,513,148 (9)
abstracting: (1<=p79)
states: 63,059,864 (7)
abstracting: (1<=p117)
states: 1,051,513,148 (9)
abstracting: (1<=p77)
states: 63,059,864 (7)
abstracting: (1<=p116)
states: 1,051,513,148 (9)
abstracting: (1<=p74)
states: 63,059,864 (7)
abstracting: (1<=p119)
states: 1,051,513,148 (9)
abstracting: (1<=p80)
states: 63,059,864 (7)
abstracting: (1<=p121)
states: 1,051,513,148 (9)
abstracting: (1<=p84)
states: 63,059,864 (7)
abstracting: (1<=p123)
states: 1,051,513,148 (9)
abstracting: (1<=p88)
states: 63,059,864 (7)
.............
before gc: list nodes free: 4409386
after gc: idd nodes used:11962294, unused:52037706; list nodes free:237734585
.....................
EG iterations: 33
abstracting: (1<=p115)
states: 1,051,513,148 (9)
abstracting: (1<=p114)
states: 1,051,513,148 (9)
abstracting: (1<=p113)
states: 1,051,513,148 (9)
abstracting: (1<=p112)
states: 1,051,513,148 (9)
abstracting: (1<=p111)
states: 1,051,513,148 (9)
abstracting: (1<=p110)
states: 1,051,513,148 (9)
abstracting: (1<=p109)
states: 1,051,513,148 (9)
abstracting: (1<=p108)
states: 1,051,513,148 (9)
-> the formula is TRUE
FORMULA UtilityControlRoom-COL-Z2T3N08-CTLFireability-11 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 6m29.330sec
checking: AX [[EF [EG [[[[[[[1<=p0 & [1<=p25 & 1<=p98]] | [1<=p1 & [1<=p13 & 1<=p98]]] | [[1<=p0 & [1<=p20 & 1<=p98]] | [1<=p0 & [1<=p10 & 1<=p98]]]] | [[[1<=p0 & [1<=p21 & 1<=p98]] | [1<=p1 & [1<=p12 & 1<=p98]]] | [[1<=p0 & [1<=p16 & 1<=p98]] | [1<=p1 & [1<=p22 & 1<=p98]]]]] | [[[[1<=p1 & [1<=p18 & 1<=p98]] | [1<=p0 & [1<=p24 & 1<=p98]]] | [[1<=p0 & [1<=p19 & 1<=p98]] | [1<=p1 & [1<=p17 & 1<=p98]]]] | [[[1<=p0 & [1<=p15 & 1<=p98]] | [1<=p1 & [1<=p21 & 1<=p98]]] | [[1<=p0 & [1<=p11 & 1<=p98]] | [1<=p0 & [1<=p13 & 1<=p98]]]]]] | [[[[[1<=p1 & [1<=p20 & 1<=p98]] | [1<=p0 & [1<=p18 & 1<=p98]]] | [[1<=p1 & [1<=p25 & 1<=p98]] | [1<=p1 & [1<=p15 & 1<=p98]]]] | [[[1<=p0 & [1<=p23 & 1<=p98]] | [1<=p1 & [1<=p10 & 1<=p98]]] | [[1<=p1 & [1<=p24 & 1<=p98]] | [1<=p1 & [1<=p16 & 1<=p98]]]]] | [[[[1<=p0 & [1<=p14 & 1<=p98]] | [1<=p0 & [1<=p12 & 1<=p98]]] | [[1<=p1 & [1<=p14 & 1<=p98]] | [1<=p0 & [1<=p17 & 1<=p98]]]] | [[[1<=p0 & [1<=p22 & 1<=p98]] | [1<=p1 & [1<=p11 & 1<=p98]]] | [[1<=p1 & [1<=p23 & 1<=p98]] | [1<=p1 & [1<=p19 & 1<=p98]]]]]]]]] & [[[[EF [[[[[1<=p101 | 1<=p100] | [1<=p103 | 1<=p102]] | [[1<=p106 | 1<=p104] | [1<=p107 | 1<=p105]]] & [[[1<=p114 | 1<=p115] | [1<=p112 | 1<=p113]] | [[1<=p110 | 1<=p111] | [1<=p108 | 1<=p109]]]]] | EG [AF [[[[[[1<=p65 | 1<=p64] | [1<=p67 | 1<=p66]] | [[1<=p69 | 1<=p68] | [1<=p71 | 1<=p70]]] | [[[1<=p73 | 1<=p72] | [1<=p43 | 1<=p42]] | [[1<=p45 | 1<=p44] | [1<=p47 | 1<=p46]]]] | [[[[1<=p57 | 1<=p56] | [1<=p59 | 1<=p58]] | [[1<=p61 | 1<=p60] | [1<=p63 | 1<=p62]]] | [[[1<=p49 | 1<=p48] | [1<=p51 | 1<=p50]] | [[1<=p53 | 1<=p52] | [1<=p55 | 1<=p54]]]]]]]] | [1<=p32 | 1<=p33]] | [[1<=p34 | 1<=p35] | [1<=p36 | [1<=p37 | 1<=p39]]]] | [[[1<=p38 | 1<=p41] | [1<=p40 | [1<=p26 | 1<=p27]]] | [[1<=p28 | 1<=p29] | [1<=p30 | [1<=p31 | [EF [[[[[[1<=p75 & 1<=p108] | [1<=p80 & 1<=p111]] | [[1<=p85 & 1<=p113] | [1<=p88 & 1<=p115]]] | [[[1<=p77 & 1<=p109] | [1<=p87 & 1<=p114]] | [[1<=p83 & 1<=p112] | [1<=p81 & 1<=p111]]]] | [[[[1<=p79 & 1<=p110] | [1<=p89 & 1<=p115]] | [[1<=p84 & 1<=p113] | [1<=p82 & 1<=p112]]] | [[[1<=p86 & 1<=p114] | [1<=p76 & 1<=p109]] | [[1<=p78 & 1<=p110] | [1<=p74 & 1<=p108]]]]]] & A [[[[[[1<=p75 & 1<=p108] | [1<=p80 & 1<=p111]] | [[1<=p85 & 1<=p113] | [1<=p88 & 1<=p115]]] | [[[1<=p77 & 1<=p109] | [1<=p87 & 1<=p114]] | [[1<=p83 & 1<=p112] | [1<=p81 & 1<=p111]]]] | [[[[1<=p79 & 1<=p110] | [1<=p89 & 1<=p115]] | [[1<=p84 & 1<=p113] | [1<=p82 & 1<=p112]]] | [[[1<=p86 & 1<=p114] | [1<=p76 & 1<=p109]] | [[1<=p78 & 1<=p110] | [1<=p74 & 1<=p108]]]]] U E [[[[[[1<=p86 & 1<=p122] | [1<=p83 & 1<=p120]] | [[1<=p81 & 1<=p119] | [1<=p78 & 1<=p118]]] | [[[1<=p76 & 1<=p117] | [1<=p75 & 1<=p116]] | [[1<=p89 & 1<=p123] | [1<=p85 & 1<=p121]]]] | [[[[1<=p82 & 1<=p120] | [1<=p87 & 1<=p122]] | [[1<=p79 & 1<=p118] | [1<=p77 & 1<=p117]]] | [[[1<=p74 & 1<=p116] | [1<=p80 & 1<=p119]] | [[1<=p84 & 1<=p121] | [1<=p88 & 1<=p123]]]]] U [[[[1<=p32 | 1<=p33] | [1<=p34 | 1<=p35]] | [[1<=p36 | 1<=p37] | [1<=p39 | 1<=p38]]] | [[[1<=p41 | 1<=p40] | [1<=p26 | 1<=p27]] | [[1<=p28 | 1<=p29] | [1<=p30 | 1<=p31]]]]]]]]]]]]]]
normalized: ~ [EX [~ [[[[[[1<=p32 | 1<=p33] | [EG [~ [EG [~ [[[[[[1<=p55 | 1<=p54] | [1<=p53 | 1<=p52]] | [[1<=p51 | 1<=p50] | [1<=p49 | 1<=p48]]] | [[[1<=p63 | 1<=p62] | [1<=p61 | 1<=p60]] | [[1<=p59 | 1<=p58] | [1<=p57 | 1<=p56]]]] | [[[[1<=p47 | 1<=p46] | [1<=p45 | 1<=p44]] | [[1<=p43 | 1<=p42] | [1<=p73 | 1<=p72]]] | [[[1<=p71 | 1<=p70] | [1<=p69 | 1<=p68]] | [[1<=p67 | 1<=p66] | [1<=p65 | 1<=p64]]]]]]]]] | E [true U [[[[1<=p108 | 1<=p109] | [1<=p110 | 1<=p111]] | [[1<=p112 | 1<=p113] | [1<=p114 | 1<=p115]]] & [[[1<=p107 | 1<=p105] | [1<=p106 | 1<=p104]] | [[1<=p103 | 1<=p102] | [1<=p101 | 1<=p100]]]]]]] | [[1<=p36 | [1<=p37 | 1<=p39]] | [1<=p34 | 1<=p35]]] | [[[1<=p30 | [1<=p31 | [[~ [EG [~ [E [[[[[[1<=p88 & 1<=p123] | [1<=p84 & 1<=p121]] | [[1<=p80 & 1<=p119] | [1<=p74 & 1<=p116]]] | [[[1<=p77 & 1<=p117] | [1<=p79 & 1<=p118]] | [[1<=p87 & 1<=p122] | [1<=p82 & 1<=p120]]]] | [[[[1<=p85 & 1<=p121] | [1<=p89 & 1<=p123]] | [[1<=p75 & 1<=p116] | [1<=p76 & 1<=p117]]] | [[[1<=p78 & 1<=p118] | [1<=p81 & 1<=p119]] | [[1<=p83 & 1<=p120] | [1<=p86 & 1<=p122]]]]] U [[[[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p41 | 1<=p40]]] | [[[1<=p39 | 1<=p38] | [1<=p36 | 1<=p37]] | [[1<=p34 | 1<=p35] | [1<=p32 | 1<=p33]]]]]]]] & ~ [E [~ [E [[[[[[1<=p88 & 1<=p123] | [1<=p84 & 1<=p121]] | [[1<=p80 & 1<=p119] | [1<=p74 & 1<=p116]]] | [[[1<=p77 & 1<=p117] | [1<=p79 & 1<=p118]] | [[1<=p87 & 1<=p122] | [1<=p82 & 1<=p120]]]] | [[[[1<=p85 & 1<=p121] | [1<=p89 & 1<=p123]] | [[1<=p75 & 1<=p116] | [1<=p76 & 1<=p117]]] | [[[1<=p78 & 1<=p118] | [1<=p81 & 1<=p119]] | [[1<=p83 & 1<=p120] | [1<=p86 & 1<=p122]]]]] U [[[[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p41 | 1<=p40]]] | [[[1<=p39 | 1<=p38] | [1<=p36 | 1<=p37]] | [[1<=p34 | 1<=p35] | [1<=p32 | 1<=p33]]]]]] U [~ [[[[[[1<=p74 & 1<=p108] | [1<=p78 & 1<=p110]] | [[1<=p76 & 1<=p109] | [1<=p86 & 1<=p114]]] | [[[1<=p82 & 1<=p112] | [1<=p84 & 1<=p113]] | [[1<=p89 & 1<=p115] | [1<=p79 & 1<=p110]]]] | [[[[1<=p81 & 1<=p111] | [1<=p83 & 1<=p112]] | [[1<=p87 & 1<=p114] | [1<=p77 & 1<=p109]]] | [[[1<=p88 & 1<=p115] | [1<=p85 & 1<=p113]] | [[1<=p80 & 1<=p111] | [1<=p75 & 1<=p108]]]]]] & ~ [E [[[[[[1<=p88 & 1<=p123] | [1<=p84 & 1<=p121]] | [[1<=p80 & 1<=p119] | [1<=p74 & 1<=p116]]] | [[[1<=p77 & 1<=p117] | [1<=p79 & 1<=p118]] | [[1<=p87 & 1<=p122] | [1<=p82 & 1<=p120]]]] | [[[[1<=p85 & 1<=p121] | [1<=p89 & 1<=p123]] | [[1<=p75 & 1<=p116] | [1<=p76 & 1<=p117]]] | [[[1<=p78 & 1<=p118] | [1<=p81 & 1<=p119]] | [[1<=p83 & 1<=p120] | [1<=p86 & 1<=p122]]]]] U [[[[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p41 | 1<=p40]]] | [[[1<=p39 | 1<=p38] | [1<=p36 | 1<=p37]] | [[1<=p34 | 1<=p35] | [1<=p32 | 1<=p33]]]]]]]]]] & E [true U [[[[[1<=p74 & 1<=p108] | [1<=p78 & 1<=p110]] | [[1<=p76 & 1<=p109] | [1<=p86 & 1<=p114]]] | [[[1<=p82 & 1<=p112] | [1<=p84 & 1<=p113]] | [[1<=p89 & 1<=p115] | [1<=p79 & 1<=p110]]]] | [[[[1<=p81 & 1<=p111] | [1<=p83 & 1<=p112]] | [[1<=p87 & 1<=p114] | [1<=p77 & 1<=p109]]] | [[[1<=p88 & 1<=p115] | [1<=p85 & 1<=p113]] | [[1<=p80 & 1<=p111] | [1<=p75 & 1<=p108]]]]]]]]] | [1<=p28 | 1<=p29]] | [[1<=p40 | [1<=p26 | 1<=p27]] | [1<=p38 | 1<=p41]]]] & E [true U EG [[[[[[[1<=p1 & [1<=p19 & 1<=p98]] | [1<=p1 & [1<=p23 & 1<=p98]]] | [[1<=p1 & [1<=p11 & 1<=p98]] | [1<=p0 & [1<=p22 & 1<=p98]]]] | [[[1<=p0 & [1<=p17 & 1<=p98]] | [1<=p1 & [1<=p14 & 1<=p98]]] | [[1<=p0 & [1<=p12 & 1<=p98]] | [1<=p0 & [1<=p14 & 1<=p98]]]]] | [[[[1<=p1 & [1<=p16 & 1<=p98]] | [1<=p1 & [1<=p24 & 1<=p98]]] | [[1<=p1 & [1<=p10 & 1<=p98]] | [1<=p0 & [1<=p23 & 1<=p98]]]] | [[[1<=p1 & [1<=p15 & 1<=p98]] | [1<=p1 & [1<=p25 & 1<=p98]]] | [[1<=p0 & [1<=p18 & 1<=p98]] | [1<=p1 & [1<=p20 & 1<=p98]]]]]] | [[[[[1<=p0 & [1<=p13 & 1<=p98]] | [1<=p0 & [1<=p11 & 1<=p98]]] | [[1<=p1 & [1<=p21 & 1<=p98]] | [1<=p0 & [1<=p15 & 1<=p98]]]] | [[[1<=p1 & [1<=p17 & 1<=p98]] | [1<=p0 & [1<=p19 & 1<=p98]]] | [[1<=p0 & [1<=p24 & 1<=p98]] | [1<=p1 & [1<=p18 & 1<=p98]]]]] | [[[[1<=p1 & [1<=p22 & 1<=p98]] | [1<=p0 & [1<=p16 & 1<=p98]]] | [[1<=p1 & [1<=p12 & 1<=p98]] | [1<=p0 & [1<=p21 & 1<=p98]]]] | [[[1<=p0 & [1<=p10 & 1<=p98]] | [1<=p0 & [1<=p20 & 1<=p98]]] | [[1<=p1 & [1<=p13 & 1<=p98]] | [1<=p0 & [1<=p25 & 1<=p98]]]]]]]]]]]]]
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p25)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p13)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p20)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p10)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p21)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p12)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p16)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p22)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p18)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p24)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p19)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p17)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p15)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p21)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p11)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p13)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p20)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p18)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p25)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p15)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p23)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p10)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p24)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p16)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p14)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p12)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p14)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p17)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p22)
states: 532,849,128 (8)
abstracting: (1<=p0)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p11)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p23)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
abstracting: (1<=p98)
states: 1,588,614,447 (9)
abstracting: (1<=p19)
states: 532,849,128 (8)
abstracting: (1<=p1)
states: 321,181,770 (8)
.
EG iterations: 1
abstracting: (1<=p41)
states: 63,059,864 (7)
abstracting: (1<=p38)
states: 63,059,864 (7)
abstracting: (1<=p27)
states: 63,059,864 (7)
abstracting: (1<=p26)
states: 63,059,864 (7)
abstracting: (1<=p40)
states: 63,059,864 (7)
abstracting: (1<=p29)
states: 63,059,864 (7)
abstracting: (1<=p28)
states: 63,059,864 (7)
abstracting: (1<=p108)
states: 1,051,513,148 (9)
abstracting: (1<=p75)
states: 63,059,864 (7)
abstracting: (1<=p111)
states: 1,051,513,148 (9)
abstracting: (1<=p80)
states: 63,059,864 (7)
abstracting: (1<=p113)
states: 1,051,513,148 (9)
abstracting: (1<=p85)
states: 63,059,864 (7)
abstracting: (1<=p115)
states: 1,051,513,148 (9)
abstracting: (1<=p88)
states: 63,059,864 (7)
abstracting: (1<=p109)
states: 1,051,513,148 (9)
abstracting: (1<=p77)
states: 63,059,864 (7)
abstracting: (1<=p114)
states: 1,051,513,148 (9)
abstracting: (1<=p87)
states: 63,059,864 (7)
abstracting: (1<=p112)
states: 1,051,513,148 (9)
abstracting: (1<=p83)
states: 63,059,864 (7)
abstracting: (1<=p111)
states: 1,051,513,148 (9)
abstracting: (1<=p81)
states: 63,059,864 (7)
abstracting: (1<=p110)
states: 1,051,513,148 (9)
abstracting: (1<=p79)
states: 63,059,864 (7)
abstracting: (1<=p115)
states: 1,051,513,148 (9)
abstracting: (1<=p89)
states: 63,059,864 (7)
abstracting: (1<=p113)
states: 1,051,513,148 (9)
abstracting: (1<=p84)
states: 63,059,864 (7)
abstracting: (1<=p112)
states: 1,051,513,148 (9)
abstracting: (1<=p82)
states: 63,059,864 (7)
abstracting: (1<=p114)
states: 1,051,513,148 (9)
abstracting: (1<=p86)
states: 63,059,864 (7)
abstracting: (1<=p109)
states: 1,051,513,148 (9)
abstracting: (1<=p76)
states: 63,059,864 (7)
abstracting: (1<=p110)
states: 1,051,513,148 (9)
abstracting: (1<=p78)
states: 63,059,864 (7)
abstracting: (1<=p108)
states: 1,051,513,148 (9)
abstracting: (1<=p74)
states: 63,059,864 (7)
abstracting: (1<=p33)
states: 63,059,864 (7)
abstracting: (1<=p32)
states: 63,059,864 (7)
abstracting: (1<=p35)
states: 63,059,864 (7)
abstracting: (1<=p34)
states: 63,059,864 (7)
abstracting: (1<=p37)
states: 63,059,864 (7)
abstracting: (1<=p36)
states: 63,059,864 (7)
abstracting: (1<=p38)
states: 63,059,864 (7)
abstracting: (1<=p39)
states: 63,059,864 (7)
abstracting: (1<=p40)
states: 63,059,864 (7)
abstracting: (1<=p41)
states: 63,059,864 (7)
abstracting: (1<=p27)
states: 63,059,864 (7)
abstracting: (1<=p26)
states: 63,059,864 (7)
abstracting: (1<=p29)
states: 63,059,864 (7)
abstracting: (1<=p28)
states: 63,059,864 (7)
abstracting: (1<=p31)
states: 63,059,864 (7)
abstracting: (1<=p30)
states: 63,059,864 (7)
abstracting: (1<=p122)
states: 1,051,513,148 (9)
abstracting: (1<=p86)
states: 63,059,864 (7)
abstracting: (1<=p120)
states: 1,051,513,148 (9)
abstracting: (1<=p83)
states: 63,059,864 (7)
abstracting: (1<=p119)
states: 1,051,513,148 (9)
abstracting: (1<=p81)
states: 63,059,864 (7)
abstracting: (1<=p118)
states: 1,051,513,148 (9)
abstracting: (1<=p78)
states: 63,059,864 (7)
abstracting: (1<=p117)
states: 1,051,513,148 (9)
abstracting: (1<=p76)
states: 63,059,864 (7)
abstracting: (1<=p116)
states: 1,051,513,148 (9)
abstracting: (1<=p75)
states: 63,059,864 (7)
abstracting: (1<=p123)
states: 1,051,513,148 (9)
abstracting: (1<=p89)
states: 63,059,864 (7)
abstracting: (1<=p121)
states: 1,051,513,148 (9)
abstracting: (1<=p85)
states: 63,059,864 (7)
before gc: list nodes free: 5023885
after gc: idd nodes used:10301785, unused:53698215; list nodes free:244993737
abstracting: (1<=p120)
states: 1,051,513,148 (9)
abstracting: (1<=p82)
states: 63,059,864 (7)
abstracting: (1<=p122)
states: 1,051,513,148 (9)
abstracting: (1<=p87)
states: 63,059,864 (7)
abstracting: (1<=p118)
states: 1,051,513,148 (9)
abstracting: (1<=p79)
states: 63,059,864 (7)
abstracting: (1<=p117)
states: 1,051,513,148 (9)
abstracting: (1<=p77)
states: 63,059,864 (7)
abstracting: (1<=p116)
states: 1,051,513,148 (9)
abstracting: (1<=p74)
states: 63,059,864 (7)
abstracting: (1<=p119)
states: 1,051,513,148 (9)
abstracting: (1<=p80)
states: 63,059,864 (7)
abstracting: (1<=p121)
states: 1,051,513,148 (9)
abstracting: (1<=p84)
states: 63,059,864 (7)
abstracting: (1<=p123)
states: 1,051,513,148 (9)
abstracting: (1<=p88)
states: 63,059,864 (7)
abstracting: (1<=p108)
states: 1,051,513,148 (9)
abstracting: (1<=p75)
states: 63,059,864 (7)
abstracting: (1<=p111)
states: 1,051,513,148 (9)
abstracting: (1<=p80)
states: 63,059,864 (7)
abstracting: (1<=p113)
states: 1,051,513,148 (9)
abstracting: (1<=p85)
states: 63,059,864 (7)
abstracting: (1<=p115)
states: 1,051,513,148 (9)
abstracting: (1<=p88)
states: 63,059,864 (7)
abstracting: (1<=p109)
states: 1,051,513,148 (9)
abstracting: (1<=p77)
states: 63,059,864 (7)
abstracting: (1<=p114)
states: 1,051,513,148 (9)
abstracting: (1<=p87)
states: 63,059,864 (7)
abstracting: (1<=p112)
states: 1,051,513,148 (9)
abstracting: (1<=p83)
states: 63,059,864 (7)
abstracting: (1<=p111)
states: 1,051,513,148 (9)
abstracting: (1<=p81)
states: 63,059,864 (7)
abstracting: (1<=p110)
states: 1,051,513,148 (9)
abstracting: (1<=p79)
states: 63,059,864 (7)
abstracting: (1<=p115)
states: 1,051,513,148 (9)
abstracting: (1<=p89)
states: 63,059,864 (7)
abstracting: (1<=p113)
states: 1,051,513,148 (9)
abstracting: (1<=p84)
states: 63,059,864 (7)
abstracting: (1<=p112)
states: 1,051,513,148 (9)
abstracting: (1<=p82)
states: 63,059,864 (7)
abstracting: (1<=p114)
states: 1,051,513,148 (9)
abstracting: (1<=p86)
states: 63,059,864 (7)
abstracting: (1<=p109)
states: 1,051,513,148 (9)
abstracting: (1<=p76)
states: 63,059,864 (7)
abstracting: (1<=p110)
states: 1,051,513,148 (9)
abstracting: (1<=p78)
states: 63,059,864 (7)
abstracting: (1<=p108)
states: 1,051,513,148 (9)
abstracting: (1<=p74)
states: 63,059,864 (7)
abstracting: (1<=p33)
states: 63,059,864 (7)
abstracting: (1<=p32)
states: 63,059,864 (7)
abstracting: (1<=p35)
states: 63,059,864 (7)
abstracting: (1<=p34)
states: 63,059,864 (7)
abstracting: (1<=p37)
states: 63,059,864 (7)
abstracting: (1<=p36)
states: 63,059,864 (7)
abstracting: (1<=p38)
states: 63,059,864 (7)
abstracting: (1<=p39)
states: 63,059,864 (7)
abstracting: (1<=p40)
states: 63,059,864 (7)
abstracting: (1<=p41)
states: 63,059,864 (7)
abstracting: (1<=p27)
states: 63,059,864 (7)
abstracting: (1<=p26)
states: 63,059,864 (7)
abstracting: (1<=p29)
states: 63,059,864 (7)
abstracting: (1<=p28)
states: 63,059,864 (7)
abstracting: (1<=p31)
states: 63,059,864 (7)
abstracting: (1<=p30)
states: 63,059,864 (7)
abstracting: (1<=p122)
states: 1,051,513,148 (9)
abstracting: (1<=p86)
states: 63,059,864 (7)
abstracting: (1<=p120)
states: 1,051,513,148 (9)
abstracting: (1<=p83)
states: 63,059,864 (7)
abstracting: (1<=p119)
states: 1,051,513,148 (9)
abstracting: (1<=p81)
states: 63,059,864 (7)
abstracting: (1<=p118)
states: 1,051,513,148 (9)
abstracting: (1<=p78)
states: 63,059,864 (7)
abstracting: (1<=p117)
states: 1,051,513,148 (9)
abstracting: (1<=p76)
states: 63,059,864 (7)
abstracting: (1<=p116)
states: 1,051,513,148 (9)
abstracting: (1<=p75)
states: 63,059,864 (7)
abstracting: (1<=p123)
states: 1,051,513,148 (9)
abstracting: (1<=p89)
states: 63,059,864 (7)
abstracting: (1<=p121)
states: 1,051,513,148 (9)
abstracting: (1<=p85)
states: 63,059,864 (7)
abstracting: (1<=p120)
states: 1,051,513,148 (9)
abstracting: (1<=p82)
states: 63,059,864 (7)
abstracting: (1<=p122)
states: 1,051,513,148 (9)
abstracting: (1<=p87)
states: 63,059,864 (7)
abstracting: (1<=p118)
states: 1,051,513,148 (9)
abstracting: (1<=p79)
states: 63,059,864 (7)
abstracting: (1<=p117)
states: 1,051,513,148 (9)
abstracting: (1<=p77)
states: 63,059,864 (7)
abstracting: (1<=p116)
states: 1,051,513,148 (9)
abstracting: (1<=p74)
states: 63,059,864 (7)
abstracting: (1<=p119)
states: 1,051,513,148 (9)
abstracting: (1<=p80)
states: 63,059,864 (7)
abstracting: (1<=p121)
states: 1,051,513,148 (9)
abstracting: (1<=p84)
states: 63,059,864 (7)
abstracting: (1<=p123)
states: 1,051,513,148 (9)
abstracting: (1<=p88)
states: 63,059,864 (7)
abstracting: (1<=p33)
states: 63,059,864 (7)
abstracting: (1<=p32)
states: 63,059,864 (7)
abstracting: (1<=p35)
states: 63,059,864 (7)
abstracting: (1<=p34)
states: 63,059,864 (7)
abstracting: (1<=p37)
states: 63,059,864 (7)
abstracting: (1<=p36)
states: 63,059,864 (7)
abstracting: (1<=p38)
states: 63,059,864 (7)
abstracting: (1<=p39)
states: 63,059,864 (7)
abstracting: (1<=p40)
states: 63,059,864 (7)
abstracting: (1<=p41)
states: 63,059,864 (7)
abstracting: (1<=p27)
states: 63,059,864 (7)
abstracting: (1<=p26)
states: 63,059,864 (7)
abstracting: (1<=p29)
states: 63,059,864 (7)
abstracting: (1<=p28)
states: 63,059,864 (7)
abstracting: (1<=p31)
states: 63,059,864 (7)
abstracting: (1<=p30)
states: 63,059,864 (7)
abstracting: (1<=p122)
states: 1,051,513,148 (9)
abstracting: (1<=p86)
states: 63,059,864 (7)
abstracting: (1<=p120)
states: 1,051,513,148 (9)
abstracting: (1<=p83)
states: 63,059,864 (7)
abstracting: (1<=p119)
states: 1,051,513,148 (9)
abstracting: (1<=p81)
states: 63,059,864 (7)
abstracting: (1<=p118)
states: 1,051,513,148 (9)
abstracting: (1<=p78)
states: 63,059,864 (7)
abstracting: (1<=p117)
states: 1,051,513,148 (9)
abstracting: (1<=p76)
states: 63,059,864 (7)
abstracting: (1<=p116)
states: 1,051,513,148 (9)
abstracting: (1<=p75)
states: 63,059,864 (7)
abstracting: (1<=p123)
states: 1,051,513,148 (9)
abstracting: (1<=p89)
states: 63,059,864 (7)
abstracting: (1<=p121)
states: 1,051,513,148 (9)
abstracting: (1<=p85)
states: 63,059,864 (7)
abstracting: (1<=p120)
states: 1,051,513,148 (9)
abstracting: (1<=p82)
states: 63,059,864 (7)
abstracting: (1<=p122)
states: 1,051,513,148 (9)
abstracting: (1<=p87)
states: 63,059,864 (7)
abstracting: (1<=p118)
states: 1,051,513,148 (9)
abstracting: (1<=p79)
states: 63,059,864 (7)
abstracting: (1<=p117)
states: 1,051,513,148 (9)
abstracting: (1<=p77)
states: 63,059,864 (7)
abstracting: (1<=p116)
states: 1,051,513,148 (9)
abstracting: (1<=p74)
states: 63,059,864 (7)
abstracting: (1<=p119)
states: 1,051,513,148 (9)
abstracting: (1<=p80)
states: 63,059,864 (7)
abstracting: (1<=p121)
states: 1,051,513,148 (9)
abstracting: (1<=p84)
states: 63,059,864 (7)
abstracting: (1<=p123)
states: 1,051,513,148 (9)
abstracting: (1<=p88)
states: 63,059,864 (7)
TIME LIMIT: Killed by timeout after 3600 seconds
MemTotal: 16393216 kB
MemFree: 5974564 kB
After kill :
MemTotal: 16393216 kB
MemFree: 16095700 kB
BK_TIME_CONFINEMENT_REACHED
--------------------
content from stderr:
+ ulimit -s 65536
+ [[ -z '' ]]
+ export LTSMIN_MEM_SIZE=8589934592
+ LTSMIN_MEM_SIZE=8589934592
+ export PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ export LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
+ LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
++ sed s/.jar//
++ perl -pe 's/.*\.//g'
++ ls /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/plugins/fr.lip6.move.gal.application.pnmcc_1.0.0.202303021504.jar
+ VERSION=202303021504
+ echo 'Running Version 202303021504'
+ /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/its-tools -pnfolder /home/mcc/execution -examination CTLFireability -timeout 360 -rebuildPNML
check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.000sec
iterations count:22746 (123), effective:417 (2)
initing FirstDep: 0m 0.000sec
iterations count:2934 (15), effective:123 (0)
iterations count:1225 (6), effective:16 (0)
net_ddint.h:600: Timeout: after 236 sec
iterations count:223 (1), effective:8 (0)
iterations count:2671 (14), effective:109 (0)
iterations count:883 (4), effective:19 (0)
iterations count:2934 (15), effective:123 (0)
iterations count:2751 (14), effective:136 (0)
iterations count:388 (2), effective:8 (0)
iterations count:44072 (239), effective:2482 (13)
iterations count:3819 (20), effective:116 (0)
iterations count:2854 (15), effective:119 (0)
iterations count:6336 (34), effective:327 (1)
iterations count:451 (2), effective:16 (0)
iterations count:2763 (15), effective:140 (0)
iterations count:6127 (33), effective:314 (1)
iterations count:2934 (15), effective:123 (0)
iterations count:2597 (14), effective:100 (0)
iterations count:234 (1), effective:15 (0)
iterations count:184 (1), effective:0 (0)
iterations count:184 (1), effective:0 (0)
iterations count:6336 (34), effective:327 (1)
iterations count:184 (1), effective:0 (0)
iterations count:1363 (7), effective:48 (0)
iterations count:2065 (11), effective:86 (0)
iterations count:3713 (20), effective:192 (1)
iterations count:2389 (12), effective:100 (0)
iterations count:3806 (20), effective:183 (0)
iterations count:2986 (16), effective:167 (0)
iterations count:3694 (20), effective:224 (1)
iterations count:3694 (20), effective:224 (1)
iterations count:449 (2), effective:16 (0)
iterations count:3694 (20), effective:224 (1)
net_ddint.h:600: Timeout: after 409 sec
iterations count:4752 (25), effective:256 (1)
iterations count:3280 (17), effective:120 (0)
iterations count:184 (1), effective:0 (0)
iterations count:2986 (16), effective:167 (0)
iterations count:2955 (16), effective:137 (0)
net_ddint.h:600: Timeout: after 332 sec
iterations count:864 (4), effective:50 (0)
iterations count:2269 (12), effective:72 (0)
iterations count:2597 (14), effective:100 (0)
iterations count:2835 (15), effective:114 (0)
iterations count:234 (1), effective:15 (0)
net_ddint.h:600: Timeout: after 248 sec
iterations count:234 (1), effective:15 (0)
iterations count:2389 (12), effective:100 (0)
iterations count:2986 (16), effective:167 (0)
iterations count:3694 (20), effective:224 (1)
iterations count:3694 (20), effective:224 (1)
iterations count:449 (2), effective:16 (0)
iterations count:3694 (20), effective:224 (1)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="UtilityControlRoom-COL-Z2T3N08"
export BK_EXAMINATION="CTLFireability"
export BK_TOOL="marciexred"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marciexred"
echo " Input is UtilityControlRoom-COL-Z2T3N08, examination is CTLFireability"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r490-tall-167912709400970"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/UtilityControlRoom-COL-Z2T3N08.tgz
mv UtilityControlRoom-COL-Z2T3N08 execution
cd execution
if [ "CTLFireability" = "ReachabilityDeadlock" ] || [ "CTLFireability" = "UpperBounds" ] || [ "CTLFireability" = "QuasiLiveness" ] || [ "CTLFireability" = "StableMarking" ] || [ "CTLFireability" = "Liveness" ] || [ "CTLFireability" = "OneSafe" ] || [ "CTLFireability" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLFireability" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLFireability" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLFireability.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLFireability.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLFireability.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "CTLFireability" = "ReachabilityDeadlock" ] || [ "CTLFireability" = "QuasiLiveness" ] || [ "CTLFireability" = "StableMarking" ] || [ "CTLFireability" = "Liveness" ] || [ "CTLFireability" = "OneSafe" ] ; then
echo "FORMULA_NAME CTLFireability"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;