About the Execution of Marcie for TwoPhaseLocking-PT-nC00020vN
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
5448.451 | 4964.00 | 4990.00 | 70.00 | TTFFFTFFFTFTFTFT | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fkordon/mcc2023-input.r481-tall-167912692500809.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2023-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
....................................................................................
=====================================================================
Generated by BenchKit 2-5348
Executing tool marcie
Input is TwoPhaseLocking-PT-nC00020vN, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r481-tall-167912692500809
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 468K
-rw-r--r-- 1 mcc users 8.2K Feb 25 17:31 CTLCardinality.txt
-rw-r--r-- 1 mcc users 86K Feb 25 17:31 CTLCardinality.xml
-rw-r--r-- 1 mcc users 4.9K Feb 25 17:28 CTLFireability.txt
-rw-r--r-- 1 mcc users 40K Feb 25 17:28 CTLFireability.xml
-rw-r--r-- 1 mcc users 3.8K Feb 25 17:22 LTLCardinality.txt
-rw-r--r-- 1 mcc users 24K Feb 25 17:22 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.4K Feb 25 17:22 LTLFireability.txt
-rw-r--r-- 1 mcc users 17K Feb 25 17:22 LTLFireability.xml
-rw-r--r-- 1 mcc users 12K Feb 25 17:32 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 116K Feb 25 17:32 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 12K Feb 25 17:31 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 98K Feb 25 17:31 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.8K Feb 25 17:22 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.9K Feb 25 17:22 UpperBounds.xml
-rw-r--r-- 1 mcc users 6 Mar 5 18:23 equiv_col
-rw-r--r-- 1 mcc users 10 Mar 5 18:23 instance
-rw-r--r-- 1 mcc users 6 Mar 5 18:23 iscolored
-rw-r--r-- 1 mcc users 4.6K Mar 5 18:23 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME TwoPhaseLocking-PT-nC00020vN-CTLCardinality-00
FORMULA_NAME TwoPhaseLocking-PT-nC00020vN-CTLCardinality-01
FORMULA_NAME TwoPhaseLocking-PT-nC00020vN-CTLCardinality-02
FORMULA_NAME TwoPhaseLocking-PT-nC00020vN-CTLCardinality-03
FORMULA_NAME TwoPhaseLocking-PT-nC00020vN-CTLCardinality-04
FORMULA_NAME TwoPhaseLocking-PT-nC00020vN-CTLCardinality-05
FORMULA_NAME TwoPhaseLocking-PT-nC00020vN-CTLCardinality-06
FORMULA_NAME TwoPhaseLocking-PT-nC00020vN-CTLCardinality-07
FORMULA_NAME TwoPhaseLocking-PT-nC00020vN-CTLCardinality-08
FORMULA_NAME TwoPhaseLocking-PT-nC00020vN-CTLCardinality-09
FORMULA_NAME TwoPhaseLocking-PT-nC00020vN-CTLCardinality-10
FORMULA_NAME TwoPhaseLocking-PT-nC00020vN-CTLCardinality-11
FORMULA_NAME TwoPhaseLocking-PT-nC00020vN-CTLCardinality-12
FORMULA_NAME TwoPhaseLocking-PT-nC00020vN-CTLCardinality-13
FORMULA_NAME TwoPhaseLocking-PT-nC00020vN-CTLCardinality-14
FORMULA_NAME TwoPhaseLocking-PT-nC00020vN-CTLCardinality-15
=== Now, execution of the tool begins
BK_START 1679868347978
bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marcie
BK_EXAMINATION=CTLCardinality
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=TwoPhaseLocking-PT-nC00020vN
Not applying reductions.
Model is PT
CTLCardinality PT
timeout --kill-after=10s --signal=SIGINT 1m for testing only
Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: /home/mcc/BenchKit/bin//../marcie/bin/marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --memory=6 --mcc-mode
parse successfull
net created successfully
Net: TwoPhaseLocking_PT_nC00020vN
(NrP: 8 NrTr: 6 NrArc: 18)
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec
net check time: 0m 0.000sec
init dd package: 0m 2.934sec
RS generation: 0m 0.008sec
-> reachability set: #nodes 1210 (1.2e+03) #states 7,997 (3)
starting MCC model checker
--------------------------
checking: EF [AF [AG [~ [EG [haveA2<=resA]]]]]
normalized: E [true U ~ [EG [E [true U EG [haveA2<=resA]]]]]
abstracting: (haveA2<=resA)
states: 4,549 (3)
.....
EG iterations: 5
EG iterations: 0
-> the formula is FALSE
FORMULA TwoPhaseLocking-PT-nC00020vN-CTLCardinality-06 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.024sec
checking: EF [EX [EG [A [AF [resB<=7] U 15<=haveA2andB]]]]
normalized: E [true U EX [EG [[~ [EG [~ [15<=haveA2andB]]] & ~ [E [~ [15<=haveA2andB] U [EG [~ [resB<=7]] & ~ [15<=haveA2andB]]]]]]]]
abstracting: (15<=haveA2andB)
states: 0
abstracting: (resB<=7)
states: 6,989 (3)
..
EG iterations: 2
abstracting: (15<=haveA2andB)
states: 0
abstracting: (15<=haveA2andB)
states: 0
EG iterations: 0
.
EG iterations: 1
.-> the formula is FALSE
FORMULA TwoPhaseLocking-PT-nC00020vN-CTLCardinality-08 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.015sec
checking: AG [EF [[haveA<=1 & ~ [AF [~ [5<=resB]]]]]]
normalized: ~ [E [true U ~ [E [true U [EG [5<=resB] & haveA<=1]]]]]
abstracting: (haveA<=1)
states: 3,650 (3)
abstracting: (5<=resB)
states: 3,150 (3)
..
EG iterations: 2
-> the formula is TRUE
FORMULA TwoPhaseLocking-PT-nC00020vN-CTLCardinality-09 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.011sec
checking: ~ [EF [AX [~ [[[1<=resB | ~ [8<=haveAandB]] | haveA2andB<=4]]]]]
normalized: ~ [E [true U ~ [EX [[[~ [8<=haveAandB] | 1<=resB] | haveA2andB<=4]]]]]
abstracting: (haveA2andB<=4)
states: 7,367 (3)
abstracting: (1<=resB)
states: 7,007 (3)
abstracting: (8<=haveAandB)
states: 48
.-> the formula is TRUE
FORMULA TwoPhaseLocking-PT-nC00020vN-CTLCardinality-01 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.002sec
checking: EG [EF [AF [A [haveA2<=1 U [resB<=0 & haveAandB<=haveA2]]]]]
normalized: EG [E [true U ~ [EG [~ [[~ [EG [~ [[resB<=0 & haveAandB<=haveA2]]]] & ~ [E [~ [[resB<=0 & haveAandB<=haveA2]] U [~ [haveA2<=1] & ~ [[resB<=0 & haveAandB<=haveA2]]]]]]]]]]]
abstracting: (haveAandB<=haveA2)
states: 5,267 (3)
abstracting: (resB<=0)
states: 990
abstracting: (haveA2<=1)
states: 3,650 (3)
abstracting: (haveAandB<=haveA2)
states: 5,267 (3)
abstracting: (resB<=0)
states: 990
abstracting: (haveAandB<=haveA2)
states: 5,267 (3)
abstracting: (resB<=0)
states: 990
...
EG iterations: 3
.
EG iterations: 1
EG iterations: 0
-> the formula is TRUE
FORMULA TwoPhaseLocking-PT-nC00020vN-CTLCardinality-05 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.014sec
checking: ~ [A [A [~ [EX [EX [16<=haveA2]]] U AF [haveA2<=haveA]] U 1<=haveA2andB]]
normalized: ~ [[~ [EG [~ [1<=haveA2andB]]] & ~ [E [~ [1<=haveA2andB] U [~ [[~ [EG [EG [~ [haveA2<=haveA]]]] & ~ [E [EG [~ [haveA2<=haveA]] U [EX [EX [16<=haveA2]] & EG [~ [haveA2<=haveA]]]]]]] & ~ [1<=haveA2andB]]]]]]
abstracting: (1<=haveA2andB)
states: 5,291 (3)
abstracting: (haveA2<=haveA)
states: 4,544 (3)
..
EG iterations: 2
abstracting: (16<=haveA2)
states: 0
..abstracting: (haveA2<=haveA)
states: 4,544 (3)
..
EG iterations: 2
abstracting: (haveA2<=haveA)
states: 4,544 (3)
..
EG iterations: 2
.
EG iterations: 1
abstracting: (1<=haveA2andB)
states: 5,291 (3)
abstracting: (1<=haveA2andB)
states: 5,291 (3)
......................................................
EG iterations: 54
-> the formula is FALSE
FORMULA TwoPhaseLocking-PT-nC00020vN-CTLCardinality-07 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.027sec
checking: AG [~ [[EF [AG [resB<=18]] & AG [[[haveA<=5 & [haveA<=6 & haveB<=18]] & [[16<=resB | resA<=Clients] & E [13<=haveA U 18<=haveA2andB]]]]]]]
normalized: ~ [E [true U [~ [E [true U ~ [[[E [13<=haveA U 18<=haveA2andB] & [16<=resB | resA<=Clients]] & [haveA<=5 & [haveA<=6 & haveB<=18]]]]]] & E [true U ~ [E [true U ~ [resB<=18]]]]]]]
abstracting: (resB<=18)
states: 7,997 (3)
abstracting: (haveB<=18)
states: 7,997 (3)
abstracting: (haveA<=6)
states: 7,623 (3)
abstracting: (haveA<=5)
states: 7,274 (3)
abstracting: (resA<=Clients)
states: 7,942 (3)
abstracting: (16<=resB)
states: 0
abstracting: (18<=haveA2andB)
states: 0
abstracting: (13<=haveA)
states: 0
-> the formula is TRUE
FORMULA TwoPhaseLocking-PT-nC00020vN-CTLCardinality-00 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.006sec
checking: EX [[EF [AF [[A [2<=haveAandB U 13<=haveB] & 7<=haveB]]] & AF [[[A [haveA2andB<=haveA2andB U haveAandB<=3] & resA<=resB] | ~ [haveA2<=resA]]]]]
normalized: EX [[~ [EG [~ [[~ [haveA2<=resA] | [[~ [EG [~ [haveAandB<=3]]] & ~ [E [~ [haveAandB<=3] U [~ [haveA2andB<=haveA2andB] & ~ [haveAandB<=3]]]]] & resA<=resB]]]]] & E [true U ~ [EG [~ [[[~ [EG [~ [13<=haveB]]] & ~ [E [~ [13<=haveB] U [~ [2<=haveAandB] & ~ [13<=haveB]]]]] & 7<=haveB]]]]]]]
abstracting: (7<=haveB)
states: 1,592 (3)
abstracting: (13<=haveB)
states: 0
abstracting: (2<=haveAandB)
states: 3,366 (3)
abstracting: (13<=haveB)
states: 0
abstracting: (13<=haveB)
states: 0
EG iterations: 0
EG iterations: 0
abstracting: (resA<=resB)
states: 5,995 (3)
abstracting: (haveAandB<=3)
states: 6,821 (3)
abstracting: (haveA2andB<=haveA2andB)
states: 7,997 (3)
abstracting: (haveAandB<=3)
states: 6,821 (3)
abstracting: (haveAandB<=3)
states: 6,821 (3)
..
EG iterations: 2
abstracting: (haveA2<=resA)
states: 4,549 (3)
....
EG iterations: 4
.-> the formula is FALSE
FORMULA TwoPhaseLocking-PT-nC00020vN-CTLCardinality-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.015sec
checking: ~ [E [EX [AG [7<=haveB]] U [E [Clients<=Clients U 13<=Clients] & [[EX [1<=haveA2] | [~ [Clients<=resA] | haveB<=17]] & AX [EF [resB<=haveAandB]]]]]]
normalized: ~ [E [EX [~ [E [true U ~ [7<=haveB]]]] U [[~ [EX [~ [E [true U resB<=haveAandB]]]] & [[haveB<=17 | ~ [Clients<=resA]] | EX [1<=haveA2]]] & E [Clients<=Clients U 13<=Clients]]]]
abstracting: (13<=Clients)
states: 792
abstracting: (Clients<=Clients)
states: 7,997 (3)
abstracting: (1<=haveA2)
states: 5,996 (3)
.abstracting: (Clients<=resA)
states: 231
abstracting: (haveB<=17)
states: 7,997 (3)
abstracting: (resB<=haveAandB)
states: 2,698 (3)
.abstracting: (7<=haveB)
states: 1,592 (3)
.-> the formula is FALSE
FORMULA TwoPhaseLocking-PT-nC00020vN-CTLCardinality-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.015sec
checking: E [A [A [[haveA2<=11 & [~ [haveB<=haveA] | [haveA2<=haveA2 | resB<=9]]] U A [haveA2<=8 U AG [haveA2andB<=19]]] U ~ [EX [AF [6<=haveA2andB]]]] U AG [~ [EF [haveB<=haveAandB]]]]
normalized: E [[~ [EG [EX [~ [EG [~ [6<=haveA2andB]]]]]] & ~ [E [EX [~ [EG [~ [6<=haveA2andB]]]] U [~ [[~ [EG [~ [[~ [EG [E [true U ~ [haveA2andB<=19]]]] & ~ [E [E [true U ~ [haveA2andB<=19]] U [~ [haveA2<=8] & E [true U ~ [haveA2andB<=19]]]]]]]]] & ~ [E [~ [[~ [EG [E [true U ~ [haveA2andB<=19]]]] & ~ [E [E [true U ~ [haveA2andB<=19]] U [~ [haveA2<=8] & E [true U ~ [haveA2andB<=19]]]]]]] U [~ [[haveA2<=11 & [[haveA2<=haveA2 | resB<=9] | ~ [haveB<=haveA]]]] & ~ [[~ [EG [E [true U ~ [haveA2andB<=19]]]] & ~ [E [E [true U ~ [haveA2andB<=19]] U [~ [haveA2<=8] & E [true U ~ [haveA2andB<=19]]]]]]]]]]]] & EX [~ [EG [~ [6<=haveA2andB]]]]]]]] U ~ [E [true U E [true U haveB<=haveAandB]]]]
abstracting: (haveB<=haveAandB)
states: 2,709 (3)
abstracting: (6<=haveA2andB)
states: 308
.
EG iterations: 1
.abstracting: (haveA2andB<=19)
states: 7,997 (3)
abstracting: (haveA2<=8)
states: 7,941 (3)
abstracting: (haveA2andB<=19)
states: 7,997 (3)
abstracting: (haveA2andB<=19)
states: 7,997 (3)
.
EG iterations: 1
abstracting: (haveB<=haveA)
states: 3,003 (3)
abstracting: (resB<=9)
states: 7,755 (3)
abstracting: (haveA2<=haveA2)
states: 7,997 (3)
abstracting: (haveA2<=11)
states: 7,997 (3)
abstracting: (haveA2andB<=19)
states: 7,997 (3)
abstracting: (haveA2<=8)
states: 7,941 (3)
abstracting: (haveA2andB<=19)
states: 7,997 (3)
abstracting: (haveA2andB<=19)
states: 7,997 (3)
.
EG iterations: 1
abstracting: (haveA2andB<=19)
states: 7,997 (3)
abstracting: (haveA2<=8)
states: 7,941 (3)
abstracting: (haveA2andB<=19)
states: 7,997 (3)
abstracting: (haveA2andB<=19)
states: 7,997 (3)
.
EG iterations: 1
.
EG iterations: 1
abstracting: (6<=haveA2andB)
states: 308
.
EG iterations: 1
.abstracting: (6<=haveA2andB)
states: 308
.
EG iterations: 1
...
EG iterations: 2
-> the formula is FALSE
FORMULA TwoPhaseLocking-PT-nC00020vN-CTLCardinality-04 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.010sec
checking: ~ [E [EX [[[~ [AG [16<=resB]] & EF [haveA2<=12]] & resB<=11]] U [[~ [haveA2<=11] & ~ [[EG [haveB<=haveB] | [AX [haveA2andB<=haveAandB] & haveB<=15]]]] & haveB<=haveA2]]]
normalized: ~ [E [EX [[resB<=11 & [E [true U haveA2<=12] & E [true U ~ [16<=resB]]]]] U [haveB<=haveA2 & [~ [[[haveB<=15 & ~ [EX [~ [haveA2andB<=haveAandB]]]] | EG [haveB<=haveB]]] & ~ [haveA2<=11]]]]]
abstracting: (haveA2<=11)
states: 7,997 (3)
abstracting: (haveB<=haveB)
states: 7,997 (3)
EG iterations: 0
abstracting: (haveA2andB<=haveAandB)
states: 4,784 (3)
.abstracting: (haveB<=15)
states: 7,997 (3)
abstracting: (haveB<=haveA2)
states: 3,003 (3)
abstracting: (16<=resB)
states: 0
abstracting: (haveA2<=12)
states: 7,997 (3)
abstracting: (resB<=11)
states: 7,997 (3)
.-> the formula is TRUE
FORMULA TwoPhaseLocking-PT-nC00020vN-CTLCardinality-15 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.007sec
checking: [[EF [~ [haveAandB<=haveAandB]] | EG [resB<=haveAandB]] & E [~ [AG [~ [6<=haveAandB]]] U [AG [[haveB<=haveB & [AF [haveB<=16] | [14<=haveB & resA<=8]]]] | EG [[E [Clients<=18 U haveA2andB<=haveAandB] | haveA<=haveA2andB]]]]]
normalized: [E [E [true U 6<=haveAandB] U [EG [[E [Clients<=18 U haveA2andB<=haveAandB] | haveA<=haveA2andB]] | ~ [E [true U ~ [[haveB<=haveB & [[14<=haveB & resA<=8] | ~ [EG [~ [haveB<=16]]]]]]]]]] & [EG [resB<=haveAandB] | E [true U ~ [haveAandB<=haveAandB]]]]
abstracting: (haveAandB<=haveAandB)
states: 7,997 (3)
abstracting: (resB<=haveAandB)
states: 2,698 (3)
.....................
EG iterations: 21
abstracting: (haveB<=16)
states: 7,997 (3)
.
EG iterations: 1
abstracting: (resA<=8)
states: 7,939 (3)
abstracting: (14<=haveB)
states: 0
abstracting: (haveB<=haveB)
states: 7,997 (3)
abstracting: (haveA<=haveA2andB)
states: 4,066 (3)
abstracting: (haveA2andB<=haveAandB)
states: 4,784 (3)
abstracting: (Clients<=18)
states: 7,991 (3)
EG iterations: 0
abstracting: (6<=haveAandB)
states: 308
-> the formula is FALSE
FORMULA TwoPhaseLocking-PT-nC00020vN-CTLCardinality-03 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.011sec
checking: [AG [[AG [EX [haveA2andB<=resB]] | [AG [[[Clients<=0 & haveB<=resA] | [6<=resA & resB<=8]]] | ~ [10<=haveA]]]] | E [~ [AG [~ [haveB<=haveA2andB]]] U EX [[~ [[A [Clients<=6 U haveB<=haveB] & resA<=13]] & AG [EG [13<=haveA]]]]]]
normalized: [E [E [true U haveB<=haveA2andB] U EX [[~ [E [true U ~ [EG [13<=haveA]]]] & ~ [[resA<=13 & [~ [EG [~ [haveB<=haveB]]] & ~ [E [~ [haveB<=haveB] U [~ [Clients<=6] & ~ [haveB<=haveB]]]]]]]]]] | ~ [E [true U ~ [[[~ [10<=haveA] | ~ [E [true U ~ [[[6<=resA & resB<=8] | [Clients<=0 & haveB<=resA]]]]]] | ~ [E [true U ~ [EX [haveA2andB<=resB]]]]]]]]]
abstracting: (haveA2andB<=resB)
states: 6,184 (3)
.abstracting: (haveB<=resA)
states: 3,003 (3)
abstracting: (Clients<=0)
states: 41
abstracting: (resB<=8)
states: 7,444 (3)
abstracting: (6<=resA)
states: 728
abstracting: (10<=haveA)
states: 11
abstracting: (haveB<=haveB)
states: 7,997 (3)
abstracting: (Clients<=6)
states: 2,233 (3)
abstracting: (haveB<=haveB)
states: 7,997 (3)
abstracting: (haveB<=haveB)
states: 7,997 (3)
.
EG iterations: 1
abstracting: (resA<=13)
states: 7,997 (3)
abstracting: (13<=haveA)
states: 0
.
EG iterations: 1
.abstracting: (haveB<=haveA2andB)
states: 2,709 (3)
-> the formula is FALSE
FORMULA TwoPhaseLocking-PT-nC00020vN-CTLCardinality-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.014sec
checking: [AF [E [E [AF [haveAandB<=9] U [[20<=resB & haveA<=resA] & [haveA2andB<=1 & haveA2andB<=resB]]] U [[[~ [haveA2andB<=5] & haveA<=18] & 12<=haveA] & [~ [8<=haveAandB] & [AG [12<=haveA2andB] & EX [20<=Clients]]]]]] & [EG [AG [[EX [haveAandB<=haveA2] | EF [17<=Clients]]]] | ~ [EG [~ [[Clients<=17 | EX [resB<=11]]]]]]]
normalized: [[~ [EG [~ [[Clients<=17 | EX [resB<=11]]]]] | EG [~ [E [true U ~ [[E [true U 17<=Clients] | EX [haveAandB<=haveA2]]]]]]] & ~ [EG [~ [E [E [~ [EG [~ [haveAandB<=9]]] U [[haveA2andB<=1 & haveA2andB<=resB] & [20<=resB & haveA<=resA]]] U [[[EX [20<=Clients] & ~ [E [true U ~ [12<=haveA2andB]]]] & ~ [8<=haveAandB]] & [12<=haveA & [haveA<=18 & ~ [haveA2andB<=5]]]]]]]]]
abstracting: (haveA2andB<=5)
states: 7,689 (3)
abstracting: (haveA<=18)
states: 7,997 (3)
abstracting: (12<=haveA)
states: 0
abstracting: (8<=haveAandB)
states: 48
abstracting: (12<=haveA2andB)
states: 0
abstracting: (20<=Clients)
states: 1
.abstracting: (haveA<=resA)
states: 4,549 (3)
abstracting: (20<=resB)
states: 0
abstracting: (haveA2andB<=resB)
states: 6,184 (3)
abstracting: (haveA2andB<=1)
states: 4,631 (3)
abstracting: (haveAandB<=9)
states: 7,995 (3)
..
EG iterations: 2
EG iterations: 0
abstracting: (haveAandB<=haveA2)
states: 5,267 (3)
.abstracting: (17<=Clients)
states: 56
EG iterations: 0
abstracting: (resB<=11)
states: 7,997 (3)
.abstracting: (Clients<=17)
states: 7,976 (3)
.
EG iterations: 1
-> the formula is FALSE
FORMULA TwoPhaseLocking-PT-nC00020vN-CTLCardinality-02 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.011sec
checking: AF [E [~ [[[A [haveA2andB<=haveA U 16<=resB] & E [haveAandB<=haveB U 20<=haveAandB]] & [A [resB<=16 U haveB<=16] | [[haveAandB<=17 | haveA2andB<=haveA2] & ~ [Clients<=10]]]]] U [AF [~ [[haveA2andB<=10 & 11<=haveA2]]] | A [A [1<=Clients U haveAandB<=haveAandB] U [EX [haveAandB<=haveAandB] | [Clients<=11 | haveAandB<=haveA2andB]]]]]]
normalized: ~ [EG [~ [E [~ [[[[~ [Clients<=10] & [haveAandB<=17 | haveA2andB<=haveA2]] | [~ [EG [~ [haveB<=16]]] & ~ [E [~ [haveB<=16] U [~ [resB<=16] & ~ [haveB<=16]]]]]] & [E [haveAandB<=haveB U 20<=haveAandB] & [~ [EG [~ [16<=resB]]] & ~ [E [~ [16<=resB] U [~ [haveA2andB<=haveA] & ~ [16<=resB]]]]]]]] U [[~ [EG [~ [[[Clients<=11 | haveAandB<=haveA2andB] | EX [haveAandB<=haveAandB]]]]] & ~ [E [~ [[[Clients<=11 | haveAandB<=haveA2andB] | EX [haveAandB<=haveAandB]]] U [~ [[~ [EG [~ [haveAandB<=haveAandB]]] & ~ [E [~ [haveAandB<=haveAandB] U [~ [1<=Clients] & ~ [haveAandB<=haveAandB]]]]]] & ~ [[[Clients<=11 | haveAandB<=haveA2andB] | EX [haveAandB<=haveAandB]]]]]]] | ~ [EG [[haveA2andB<=10 & 11<=haveA2]]]]]]]]
abstracting: (11<=haveA2)
states: 0
abstracting: (haveA2andB<=10)
states: 7,997 (3)
.
EG iterations: 1
abstracting: (haveAandB<=haveAandB)
states: 7,997 (3)
.abstracting: (haveAandB<=haveA2andB)
states: 4,784 (3)
abstracting: (Clients<=11)
states: 6,710 (3)
abstracting: (haveAandB<=haveAandB)
states: 7,997 (3)
abstracting: (1<=Clients)
states: 7,956 (3)
abstracting: (haveAandB<=haveAandB)
states: 7,997 (3)
abstracting: (haveAandB<=haveAandB)
states: 7,997 (3)
.
EG iterations: 1
abstracting: (haveAandB<=haveAandB)
states: 7,997 (3)
.abstracting: (haveAandB<=haveA2andB)
states: 4,784 (3)
abstracting: (Clients<=11)
states: 6,710 (3)
abstracting: (haveAandB<=haveAandB)
states: 7,997 (3)
.abstracting: (haveAandB<=haveA2andB)
states: 4,784 (3)
abstracting: (Clients<=11)
states: 6,710 (3)
.
EG iterations: 1
abstracting: (16<=resB)
states: 0
abstracting: (haveA2andB<=haveA)
states: 5,267 (3)
abstracting: (16<=resB)
states: 0
abstracting: (16<=resB)
states: 0
EG iterations: 0
abstracting: (20<=haveAandB)
states: 0
abstracting: (haveAandB<=haveB)
states: 6,184 (3)
abstracting: (haveB<=16)
states: 7,997 (3)
abstracting: (resB<=16)
states: 7,997 (3)
abstracting: (haveB<=16)
states: 7,997 (3)
abstracting: (haveB<=16)
states: 7,997 (3)
.
EG iterations: 1
abstracting: (haveA2andB<=haveA2)
states: 5,267 (3)
abstracting: (haveAandB<=17)
states: 7,997 (3)
abstracting: (Clients<=10)
states: 5,995 (3)
.
EG iterations: 1
-> the formula is TRUE
FORMULA TwoPhaseLocking-PT-nC00020vN-CTLCardinality-13 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.011sec
checking: [~ [AX [[Clients<=12 & A [[EG [5<=Clients] & [11<=haveA2 & Clients<=resB]] U ~ [AG [resA<=resA]]]]]] | E [~ [[[A [Clients<=20 U AF [haveAandB<=resB]] & [~ [AF [haveAandB<=19]] | [~ [haveA2andB<=13] | haveAandB<=haveA2andB]]] | E [[[haveA2<=18 & haveA<=resB] | EG [haveA2<=2]] U [[9<=haveA2 | resB<=7] | [Clients<=3 | resA<=haveA2]]]]] U [[AF [~ [[haveAandB<=14 | haveA2<=Clients]]] & 3<=haveA2] & ~ [[[[resA<=3 & haveAandB<=haveAandB] & [A [resA<=14 U haveA<=haveA] & [resB<=13 & resB<=20]]] & A [EG [4<=haveA2andB] U [haveAandB<=3 & resA<=20]]]]]]]
normalized: [E [~ [[E [[EG [haveA2<=2] | [haveA2<=18 & haveA<=resB]] U [[Clients<=3 | resA<=haveA2] | [9<=haveA2 | resB<=7]]] | [[[haveAandB<=haveA2andB | ~ [haveA2andB<=13]] | EG [~ [haveAandB<=19]]] & [~ [EG [EG [~ [haveAandB<=resB]]]] & ~ [E [EG [~ [haveAandB<=resB]] U [~ [Clients<=20] & EG [~ [haveAandB<=resB]]]]]]]]] U [~ [[[~ [EG [~ [[haveAandB<=3 & resA<=20]]]] & ~ [E [~ [[haveAandB<=3 & resA<=20]] U [~ [EG [4<=haveA2andB]] & ~ [[haveAandB<=3 & resA<=20]]]]]] & [[[resB<=13 & resB<=20] & [~ [EG [~ [haveA<=haveA]]] & ~ [E [~ [haveA<=haveA] U [~ [resA<=14] & ~ [haveA<=haveA]]]]]] & [resA<=3 & haveAandB<=haveAandB]]]] & [3<=haveA2 & ~ [EG [[haveAandB<=14 | haveA2<=Clients]]]]]] | EX [~ [[Clients<=12 & [~ [EG [~ [E [true U ~ [resA<=resA]]]]] & ~ [E [~ [E [true U ~ [resA<=resA]]] U [~ [[[11<=haveA2 & Clients<=resB] & EG [5<=Clients]]] & ~ [E [true U ~ [resA<=resA]]]]]]]]]]]
abstracting: (resA<=resA)
states: 7,997 (3)
abstracting: (5<=Clients)
states: 7,000 (3)
.
EG iterations: 1
abstracting: (Clients<=resB)
states: 461
abstracting: (11<=haveA2)
states: 0
abstracting: (resA<=resA)
states: 7,997 (3)
abstracting: (resA<=resA)
states: 7,997 (3)
EG iterations: 0
abstracting: (Clients<=12)
states: 7,205 (3)
.abstracting: (haveA2<=Clients)
states: 7,378 (3)
abstracting: (haveAandB<=14)
states: 7,997 (3)
EG iterations: 0
abstracting: (3<=haveA2)
states: 3,028 (3)
abstracting: (haveAandB<=haveAandB)
states: 7,997 (3)
abstracting: (resA<=3)
states: 5,981 (3)
abstracting: (haveA<=haveA)
states: 7,997 (3)
abstracting: (resA<=14)
states: 7,997 (3)
abstracting: (haveA<=haveA)
states: 7,997 (3)
abstracting: (haveA<=haveA)
states: 7,997 (3)
.
EG iterations: 1
abstracting: (resB<=20)
states: 7,997 (3)
abstracting: (resB<=13)
states: 7,997 (3)
abstracting: (resA<=20)
states: 7,997 (3)
abstracting: (haveAandB<=3)
states: 6,821 (3)
abstracting: (4<=haveA2andB)
states: 1,176 (3)
..
EG iterations: 2
abstracting: (resA<=20)
states: 7,997 (3)
abstracting: (haveAandB<=3)
states: 6,821 (3)
abstracting: (resA<=20)
states: 7,997 (3)
abstracting: (haveAandB<=3)
states: 6,821 (3)
..
EG iterations: 2
abstracting: (haveAandB<=resB)
states: 6,184 (3)
....................
EG iterations: 20
abstracting: (Clients<=20)
states: 7,997 (3)
abstracting: (haveAandB<=resB)
states: 6,184 (3)
....................
EG iterations: 20
abstracting: (haveAandB<=resB)
states: 6,184 (3)
....................
EG iterations: 20
.
EG iterations: 1
abstracting: (haveAandB<=19)
states: 7,997 (3)
.
EG iterations: 1
abstracting: (haveA2andB<=13)
states: 7,997 (3)
abstracting: (haveAandB<=haveA2andB)
states: 4,784 (3)
abstracting: (resB<=7)
states: 6,989 (3)
abstracting: (9<=haveA2)
states: 56
abstracting: (resA<=haveA2)
states: 4,539 (3)
abstracting: (Clients<=3)
states: 591
abstracting: (haveA<=resB)
states: 6,005 (3)
abstracting: (haveA2<=18)
states: 7,997 (3)
abstracting: (haveA2<=2)
states: 4,969 (3)
.
EG iterations: 1
-> the formula is TRUE
FORMULA TwoPhaseLocking-PT-nC00020vN-CTLCardinality-11 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.020sec
totally nodes used: 37969 (3.8e+04)
number of garbage collections: 0
fire ops cache: hits/miss/sum: 354380 120802 475182
used/not used/entry size/cache size: 152213 66956651 16 1024MB
basic ops cache: hits/miss/sum: 163982 140856 304838
used/not used/entry size/cache size: 194516 16582700 12 192MB
unary ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 8 128MB
abstract ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 12 192MB
state nr cache: hits/miss/sum: 26977 10689 37666
used/not used/entry size/cache size: 10689 8377919 32 256MB
max state cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 8388608 32 256MB
uniqueHash elements/entry size/size: 67108864 4 256MB
0 67074766
1 32407
2 1289
3 197
4 36
5 25
6 10
7 12
8 3
9 12
>= 10 107
Total processing time: 0m 4.916sec
BK_STOP 1679868352942
--------------------
content from stderr:
check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.002sec
iterations count:256 (42), effective:80 (13)
initing FirstDep: 0m 0.000sec
iterations count:31 (5), effective:9 (1)
iterations count:170 (28), effective:47 (7)
iterations count:255 (42), effective:76 (12)
iterations count:46 (7), effective:12 (2)
iterations count:137 (22), effective:57 (9)
iterations count:17 (2), effective:10 (1)
iterations count:6 (1), effective:0 (0)
iterations count:6 (1), effective:0 (0)
iterations count:51 (8), effective:9 (1)
iterations count:269 (44), effective:80 (13)
iterations count:40 (6), effective:19 (3)
iterations count:79 (13), effective:21 (3)
iterations count:6 (1), effective:0 (0)
iterations count:141 (23), effective:46 (7)
iterations count:6 (1), effective:0 (0)
iterations count:6 (1), effective:0 (0)
iterations count:6 (1), effective:0 (0)
iterations count:51 (8), effective:20 (3)
iterations count:150 (25), effective:50 (8)
iterations count:6 (1), effective:0 (0)
iterations count:167 (27), effective:71 (11)
iterations count:16 (2), effective:5 (0)
iterations count:148 (24), effective:43 (7)
iterations count:6 (1), effective:0 (0)
iterations count:170 (28), effective:48 (8)
iterations count:6 (1), effective:0 (0)
iterations count:345 (57), effective:102 (17)
iterations count:183 (30), effective:59 (9)
iterations count:6 (1), effective:0 (0)
iterations count:6 (1), effective:0 (0)
iterations count:18 (3), effective:3 (0)
iterations count:18 (3), effective:8 (1)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="TwoPhaseLocking-PT-nC00020vN"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marcie"
echo " Input is TwoPhaseLocking-PT-nC00020vN, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r481-tall-167912692500809"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/TwoPhaseLocking-PT-nC00020vN.tgz
mv TwoPhaseLocking-PT-nC00020vN execution
cd execution
if [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "UpperBounds" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] || [ "CTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME CTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;