About the Execution of Marcie for Sudoku-PT-AN03
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
5484.327 | 3600000.00 | 3600080.00 | 9.80 | T?TFTT?FTTTFFFTF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fkordon/mcc2023-input.r481-tall-167912691600177.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2023-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
.......................................................................................................................................................................................................................................................................
=====================================================================
Generated by BenchKit 2-5348
Executing tool marcie
Input is Sudoku-PT-AN03, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r481-tall-167912691600177
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 932K
-rw-r--r-- 1 mcc users 15K Feb 26 09:36 CTLCardinality.txt
-rw-r--r-- 1 mcc users 97K Feb 26 09:36 CTLCardinality.xml
-rw-r--r-- 1 mcc users 26K Feb 26 09:35 CTLFireability.txt
-rw-r--r-- 1 mcc users 143K Feb 26 09:35 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K Jan 29 11:41 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.6K Jan 29 11:41 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 9.9K Feb 25 17:16 LTLCardinality.txt
-rw-r--r-- 1 mcc users 47K Feb 25 17:16 LTLCardinality.xml
-rw-r--r-- 1 mcc users 14K Feb 25 17:16 LTLFireability.txt
-rw-r--r-- 1 mcc users 53K Feb 25 17:16 LTLFireability.xml
-rw-r--r-- 1 mcc users 25K Feb 26 09:38 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 145K Feb 26 09:38 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 44K Feb 26 09:37 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 225K Feb 26 09:37 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 3.0K Feb 25 17:16 UpperBounds.txt
-rw-r--r-- 1 mcc users 7.0K Feb 25 17:16 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Mar 5 18:23 equiv_col
-rw-r--r-- 1 mcc users 5 Mar 5 18:23 instance
-rw-r--r-- 1 mcc users 6 Mar 5 18:23 iscolored
-rw-r--r-- 1 mcc users 21K Mar 5 18:23 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME Sudoku-PT-AN03-CTLCardinality-00
FORMULA_NAME Sudoku-PT-AN03-CTLCardinality-01
FORMULA_NAME Sudoku-PT-AN03-CTLCardinality-02
FORMULA_NAME Sudoku-PT-AN03-CTLCardinality-03
FORMULA_NAME Sudoku-PT-AN03-CTLCardinality-04
FORMULA_NAME Sudoku-PT-AN03-CTLCardinality-05
FORMULA_NAME Sudoku-PT-AN03-CTLCardinality-06
FORMULA_NAME Sudoku-PT-AN03-CTLCardinality-07
FORMULA_NAME Sudoku-PT-AN03-CTLCardinality-08
FORMULA_NAME Sudoku-PT-AN03-CTLCardinality-09
FORMULA_NAME Sudoku-PT-AN03-CTLCardinality-10
FORMULA_NAME Sudoku-PT-AN03-CTLCardinality-11
FORMULA_NAME Sudoku-PT-AN03-CTLCardinality-12
FORMULA_NAME Sudoku-PT-AN03-CTLCardinality-13
FORMULA_NAME Sudoku-PT-AN03-CTLCardinality-14
FORMULA_NAME Sudoku-PT-AN03-CTLCardinality-15
=== Now, execution of the tool begins
BK_START 1679146297899
bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marcie
BK_EXAMINATION=CTLCardinality
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=Sudoku-PT-AN03
Not applying reductions.
Model is PT
CTLCardinality PT
timeout --kill-after=10s --signal=SIGINT 1m for testing only
Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: /home/mcc/BenchKit/bin//../marcie/bin/marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --memory=6 --mcc-mode
parse successfull
net created successfully
Net: Sudoku_PT_AN03
(NrP: 54 NrTr: 27 NrArc: 108)
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec
net check time: 0m 0.000sec
init dd package: 0m 2.815sec
RS generation: 0m 0.035sec
-> reachability set: #nodes 7338 (7.3e+03) #states 11,776 (4)
starting MCC model checker
--------------------------
checking: AX [AX [EF [1<=Board_0_0_0]]]
normalized: ~ [EX [EX [~ [E [true U 1<=Board_0_0_0]]]]]
abstracting: (1<=Board_0_0_0)
states: 2,097 (3)
..-> the formula is FALSE
FORMULA Sudoku-PT-AN03-CTLCardinality-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.129sec
checking: EX [EF [AG [[AG [Columns_1_1<=Rows_0_2] & Rows_1_0<=1]]]]
normalized: EX [E [true U ~ [E [true U ~ [[Rows_1_0<=1 & ~ [E [true U ~ [Columns_1_1<=Rows_0_2]]]]]]]]]
abstracting: (Columns_1_1<=Rows_0_2)
states: 8,789 (3)
abstracting: (Rows_1_0<=1)
states: 11,776 (4)
.-> the formula is TRUE
FORMULA Sudoku-PT-AN03-CTLCardinality-08 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.158sec
checking: EG [EX [[~ [EF [EG [Cells_1_2<=Cells_1_1]]] | ~ [AG [[Columns_1_2<=Board_0_1_2 & Rows_2_1<=Board_2_0_1]]]]]]
normalized: EG [EX [[E [true U ~ [[Columns_1_2<=Board_0_1_2 & Rows_2_1<=Board_2_0_1]]] | ~ [E [true U EG [Cells_1_2<=Cells_1_1]]]]]]
abstracting: (Cells_1_2<=Cells_1_1)
states: 8,509 (3)
....
EG iterations: 4
abstracting: (Rows_2_1<=Board_2_0_1)
states: 6,291 (3)
abstracting: (Columns_1_2<=Board_0_1_2)
states: 6,291 (3)
..........
EG iterations: 9
-> the formula is FALSE
FORMULA Sudoku-PT-AN03-CTLCardinality-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.305sec
checking: AF [AX [[AF [[~ [1<=Rows_2_2] & ~ [Board_1_1_0<=1]]] | [1<=Cells_2_2 & [AG [Cells_2_0<=0] | ~ [[Board_1_0_2<=Rows_2_2 & 1<=Cells_2_0]]]]]]]
normalized: ~ [EG [EX [~ [[[1<=Cells_2_2 & [~ [[Board_1_0_2<=Rows_2_2 & 1<=Cells_2_0]] | ~ [E [true U ~ [Cells_2_0<=0]]]]] | ~ [EG [~ [[~ [Board_1_1_0<=1] & ~ [1<=Rows_2_2]]]]]]]]]]
abstracting: (1<=Rows_2_2)
states: 5,485 (3)
abstracting: (Board_1_1_0<=1)
states: 11,776 (4)
EG iterations: 0
abstracting: (Cells_2_0<=0)
states: 6,291 (3)
abstracting: (1<=Cells_2_0)
states: 5,485 (3)
abstracting: (Board_1_0_2<=Rows_2_2)
states: 10,768 (4)
abstracting: (1<=Cells_2_2)
states: 5,485 (3)
...........
EG iterations: 10
-> the formula is TRUE
FORMULA Sudoku-PT-AN03-CTLCardinality-09 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.174sec
checking: EG [[~ [AX [[[~ [Board_1_1_1<=Board_1_1_1] | AX [Board_1_0_2<=Rows_2_0]] | EG [1<=Columns_1_1]]]] | ~ [Board_1_2_2<=Rows_2_0]]]
normalized: EG [[~ [Board_1_2_2<=Rows_2_0] | EX [~ [[EG [1<=Columns_1_1] | [~ [EX [~ [Board_1_0_2<=Rows_2_0]]] | ~ [Board_1_1_1<=Board_1_1_1]]]]]]]
abstracting: (Board_1_1_1<=Board_1_1_1)
states: 11,776 (4)
abstracting: (Board_1_0_2<=Rows_2_0)
states: 10,628 (4)
.abstracting: (1<=Columns_1_1)
states: 5,485 (3)
........
EG iterations: 8
.abstracting: (Board_1_2_2<=Rows_2_0)
states: 10,628 (4)
........
EG iterations: 8
-> the formula is FALSE
FORMULA Sudoku-PT-AN03-CTLCardinality-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.231sec
checking: ~ [EG [EF [AG [80<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0)]]]]
normalized: ~ [EG [E [true U ~ [E [true U ~ [80<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0)]]]]]]
abstracting: (80<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0))
states: 0
.
EG iterations: 1
-> the formula is TRUE
FORMULA Sudoku-PT-AN03-CTLCardinality-02 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.025sec
checking: EG [E [Board_1_2_1<=Board_2_2_2 U [[A [AG [1<=Rows_1_0] U E [Board_1_0_0<=Rows_2_1 U Board_1_1_2<=1]] | ~ [[~ [Board_0_1_0<=0] & [Cells_2_2<=1 | 1<=Board_2_1_1]]]] | EG [AX [Board_2_0_0<=1]]]]]
normalized: EG [E [Board_1_2_1<=Board_2_2_2 U [EG [~ [EX [~ [Board_2_0_0<=1]]]] | [~ [[[Cells_2_2<=1 | 1<=Board_2_1_1] & ~ [Board_0_1_0<=0]]] | [~ [EG [~ [E [Board_1_0_0<=Rows_2_1 U Board_1_1_2<=1]]]] & ~ [E [~ [E [Board_1_0_0<=Rows_2_1 U Board_1_1_2<=1]] U [E [true U ~ [1<=Rows_1_0]] & ~ [E [Board_1_0_0<=Rows_2_1 U Board_1_1_2<=1]]]]]]]]]]
abstracting: (Board_1_1_2<=1)
states: 11,776 (4)
abstracting: (Board_1_0_0<=Rows_2_1)
states: 10,628 (4)
abstracting: (1<=Rows_1_0)
states: 5,485 (3)
abstracting: (Board_1_1_2<=1)
states: 11,776 (4)
abstracting: (Board_1_0_0<=Rows_2_1)
states: 10,628 (4)
abstracting: (Board_1_1_2<=1)
states: 11,776 (4)
abstracting: (Board_1_0_0<=Rows_2_1)
states: 10,628 (4)
.
EG iterations: 1
abstracting: (Board_0_1_0<=0)
states: 9,679 (3)
abstracting: (1<=Board_2_1_1)
states: 2,097 (3)
abstracting: (Cells_2_2<=1)
states: 11,776 (4)
abstracting: (Board_2_0_0<=1)
states: 11,776 (4)
.
EG iterations: 0
abstracting: (Board_1_2_1<=Board_2_2_2)
states: 10,183 (4)
EG iterations: 0
-> the formula is TRUE
FORMULA Sudoku-PT-AN03-CTLCardinality-10 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.067sec
checking: E [[EG [[AX [~ [1<=Cells_2_1]] | Cells_2_2<=Board_0_2_2]] & [EX [EG [[Columns_2_1<=Cells_0_0 & 1<=Board_1_1_0]]] & ~ [[Cells_2_0<=Board_1_0_1 & ~ [[1<=Board_1_2_1 & Board_2_1_2<=1]]]]]] U EG [~ [AX [[EG [Cells_0_0<=1] | [Columns_1_0<=0 | 1<=Columns_0_2]]]]]]
normalized: E [[[~ [[Cells_2_0<=Board_1_0_1 & ~ [[1<=Board_1_2_1 & Board_2_1_2<=1]]]] & EX [EG [[Columns_2_1<=Cells_0_0 & 1<=Board_1_1_0]]]] & EG [[Cells_2_2<=Board_0_2_2 | ~ [EX [1<=Cells_2_1]]]]] U EG [EX [~ [[[Columns_1_0<=0 | 1<=Columns_0_2] | EG [Cells_0_0<=1]]]]]]
abstracting: (Cells_0_0<=1)
states: 11,776 (4)
EG iterations: 0
abstracting: (1<=Columns_0_2)
states: 5,485 (3)
abstracting: (Columns_1_0<=0)
states: 6,291 (3)
..
EG iterations: 1
abstracting: (1<=Cells_2_1)
states: 5,485 (3)
.abstracting: (Cells_2_2<=Board_0_2_2)
states: 7,380 (3)
.
EG iterations: 1
abstracting: (1<=Board_1_1_0)
states: 2,097 (3)
abstracting: (Columns_2_1<=Cells_0_0)
states: 8,789 (3)
....
EG iterations: 4
.abstracting: (Board_2_1_2<=1)
states: 11,776 (4)
abstracting: (1<=Board_1_2_1)
states: 2,097 (3)
abstracting: (Cells_2_0<=Board_1_0_1)
states: 7,380 (3)
-> the formula is FALSE
FORMULA Sudoku-PT-AN03-CTLCardinality-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.069sec
checking: AG [[[[A [[~ [Rows_2_1<=1] | ~ [1<=Board_1_0_1]] U AF [1<=Cells_2_2]] & [[[~ [1<=Cells_0_1] & [Board_1_0_2<=1 | Board_0_1_2<=Cells_2_0]] | AF [Cells_1_2<=1]] & EX [[Board_0_2_1<=Cells_2_0 & 1<=Board_1_1_1]]]] | [E [[[1<=Board_0_2_0 & 1<=Board_0_1_0] & E [1<=Board_0_1_0 U Columns_1_1<=Columns_2_1]] U [Board_2_0_2<=Cells_0_2 | [Columns_0_2<=Columns_0_1 & 1<=Columns_2_0]]] & [EF [[1<=Rows_1_0 | 1<=Board_1_0_0]] & 1<=Cells_0_1]]] | A [AG [EX [1<=Board_1_1_2]] U Board_2_1_0<=1]]]
normalized: ~ [E [true U ~ [[[~ [EG [~ [Board_2_1_0<=1]]] & ~ [E [~ [Board_2_1_0<=1] U [E [true U ~ [EX [1<=Board_1_1_2]]] & ~ [Board_2_1_0<=1]]]]] | [[[1<=Cells_0_1 & E [true U [1<=Rows_1_0 | 1<=Board_1_0_0]]] & E [[E [1<=Board_0_1_0 U Columns_1_1<=Columns_2_1] & [1<=Board_0_2_0 & 1<=Board_0_1_0]] U [Board_2_0_2<=Cells_0_2 | [Columns_0_2<=Columns_0_1 & 1<=Columns_2_0]]]] | [[EX [[Board_0_2_1<=Cells_2_0 & 1<=Board_1_1_1]] & [~ [EG [~ [Cells_1_2<=1]]] | [[Board_1_0_2<=1 | Board_0_1_2<=Cells_2_0] & ~ [1<=Cells_0_1]]]] & [~ [EG [EG [~ [1<=Cells_2_2]]]] & ~ [E [EG [~ [1<=Cells_2_2]] U [~ [[~ [1<=Board_1_0_1] | ~ [Rows_2_1<=1]]] & EG [~ [1<=Cells_2_2]]]]]]]]]]]]
abstracting: (1<=Cells_2_2)
states: 5,485 (3)
.
EG iterations: 1
abstracting: (Rows_2_1<=1)
states: 11,776 (4)
abstracting: (1<=Board_1_0_1)
states: 2,097 (3)
abstracting: (1<=Cells_2_2)
states: 5,485 (3)
.
EG iterations: 1
abstracting: (1<=Cells_2_2)
states: 5,485 (3)
.
EG iterations: 1
.
EG iterations: 1
abstracting: (1<=Cells_0_1)
states: 5,485 (3)
abstracting: (Board_0_1_2<=Cells_2_0)
states: 10,628 (4)
abstracting: (Board_1_0_2<=1)
states: 11,776 (4)
abstracting: (Cells_1_2<=1)
states: 11,776 (4)
.
EG iterations: 1
abstracting: (1<=Board_1_1_1)
states: 2,097 (3)
abstracting: (Board_0_2_1<=Cells_2_0)
states: 10,628 (4)
.abstracting: (1<=Columns_2_0)
states: 5,485 (3)
abstracting: (Columns_0_2<=Columns_0_1)
states: 8,509 (3)
abstracting: (Board_2_0_2<=Cells_0_2)
states: 10,628 (4)
abstracting: (1<=Board_0_1_0)
states: 2,097 (3)
abstracting: (1<=Board_0_2_0)
states: 2,097 (3)
abstracting: (Columns_1_1<=Columns_2_1)
states: 8,509 (3)
abstracting: (1<=Board_0_1_0)
states: 2,097 (3)
abstracting: (1<=Board_1_0_0)
states: 2,097 (3)
abstracting: (1<=Rows_1_0)
states: 5,485 (3)
abstracting: (1<=Cells_0_1)
states: 5,485 (3)
abstracting: (Board_2_1_0<=1)
states: 11,776 (4)
abstracting: (1<=Board_1_1_2)
states: 2,097 (3)
.abstracting: (Board_2_1_0<=1)
states: 11,776 (4)
abstracting: (Board_2_1_0<=1)
states: 11,776 (4)
.
EG iterations: 1
-> the formula is TRUE
FORMULA Sudoku-PT-AN03-CTLCardinality-14 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.201sec
checking: EF [~ [sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)<=64]]
normalized: E [true U ~ [sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)<=64]]
abstracting: (sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)<=64)
states: 11,776 (4)
-> the formula is FALSE
FORMULA Sudoku-PT-AN03-CTLCardinality-03 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 5m32.132sec
checking: ~ [EF [29<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)]]
normalized: ~ [E [true U 29<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)]]
abstracting: (29<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0))
states: 0
-> the formula is TRUE
FORMULA Sudoku-PT-AN03-CTLCardinality-05 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 5m16.933sec
checking: AF [AX [[EF [AG [sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)<=77]] & AG [[AX [33<=sum(Cells_2_2, Cells_2_1, Cells_2_0, Cells_1_2, Cells_1_1, Cells_1_0, Cells_0_2, Cells_0_1, Cells_0_0)] & sum(Cells_2_2, Cells_2_1, Cells_2_0, Cells_1_2, Cells_1_1, Cells_1_0, Cells_0_2, Cells_0_1, Cells_0_0)<=5]]]]]
normalized: ~ [EG [EX [~ [[~ [E [true U ~ [[sum(Cells_2_2, Cells_2_1, Cells_2_0, Cells_1_2, Cells_1_1, Cells_1_0, Cells_0_2, Cells_0_1, Cells_0_0)<=5 & ~ [EX [~ [33<=sum(Cells_2_2, Cells_2_1, Cells_2_0, Cells_1_2, Cells_1_1, Cells_1_0, Cells_0_2, Cells_0_1, Cells_0_0)]]]]]]] & E [true U ~ [E [true U ~ [sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)<=77]]]]]]]]]
abstracting: (sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)<=77)
states: 11,776 (4)
abstracting: (33<=sum(Cells_2_2, Cells_2_1, Cells_2_0, Cells_1_2, Cells_1_1, Cells_1_0, Cells_0_2, Cells_0_1, Cells_0_0))
states: 0
.abstracting: (sum(Cells_2_2, Cells_2_1, Cells_2_0, Cells_1_2, Cells_1_1, Cells_1_0, Cells_0_2, Cells_0_1, Cells_0_0)<=5)
states: 10,200 (4)
..........
EG iterations: 9
-> the formula is TRUE
FORMULA Sudoku-PT-AN03-CTLCardinality-04 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 5m20.394sec
checking: ~ [[[EF [sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0)<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0)] | ~ [AF [EX [[11<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0) & 75<=sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)]]]]] & ~ [AX [[26<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0) | EF [100<=sum(Cells_2_2, Cells_2_1, Cells_2_0, Cells_1_2, Cells_1_1, Cells_1_0, Cells_0_2, Cells_0_1, Cells_0_0)]]]]]]
normalized: ~ [[EX [~ [[26<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0) | E [true U 100<=sum(Cells_2_2, Cells_2_1, Cells_2_0, Cells_1_2, Cells_1_1, Cells_1_0, Cells_0_2, Cells_0_1, Cells_0_0)]]]] & [EG [~ [EX [[11<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0) & 75<=sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)]]]] | E [true U sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0)<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0)]]]]
abstracting: (sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0)<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0))
states: 11,776 (4)
abstracting: (75<=sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0))
states: 0
abstracting: (11<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0))
states: 0
.
EG iterations: 0
abstracting: (100<=sum(Cells_2_2, Cells_2_1, Cells_2_0, Cells_1_2, Cells_1_1, Cells_1_0, Cells_0_2, Cells_0_1, Cells_0_0))
states: 0
abstracting: (26<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0))
states: 0
.-> the formula is FALSE
FORMULA Sudoku-PT-AN03-CTLCardinality-07 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 5m19.210sec
checking: EF [~ [AF [[~ [[~ [sum(Cells_2_2, Cells_2_1, Cells_2_0, Cells_1_2, Cells_1_1, Cells_1_0, Cells_0_2, Cells_0_1, Cells_0_0)<=19] | ~ [78<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)]]] | [74<=sum(Cells_2_2, Cells_2_1, Cells_2_0, Cells_1_2, Cells_1_1, Cells_1_0, Cells_0_2, Cells_0_1, Cells_0_0) | [AF [25<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0)] | [sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)<=64 & 14<=sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)]]]]]]]
normalized: E [true U EG [~ [[[74<=sum(Cells_2_2, Cells_2_1, Cells_2_0, Cells_1_2, Cells_1_1, Cells_1_0, Cells_0_2, Cells_0_1, Cells_0_0) | [[sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)<=64 & 14<=sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)] | ~ [EG [~ [25<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0)]]]]] | ~ [[~ [78<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)] | ~ [sum(Cells_2_2, Cells_2_1, Cells_2_0, Cells_1_2, Cells_1_1, Cells_1_0, Cells_0_2, Cells_0_1, Cells_0_0)<=19]]]]]]]
abstracting: (sum(Cells_2_2, Cells_2_1, Cells_2_0, Cells_1_2, Cells_1_1, Cells_1_0, Cells_0_2, Cells_0_1, Cells_0_0)<=19)
states: 11,776 (4)
abstracting: (78<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0))
states: 0
abstracting: (25<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0))
states: 0
EG iterations: 0
abstracting: (14<=sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0))
states: 0
abstracting: (sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)<=64)
states: 11,776 (4)
abstracting: (74<=sum(Cells_2_2, Cells_2_1, Cells_2_0, Cells_1_2, Cells_1_1, Cells_1_0, Cells_0_2, Cells_0_1, Cells_0_0))
states: 0
EG iterations: 0
-> the formula is TRUE
FORMULA Sudoku-PT-AN03-CTLCardinality-00 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 5m18.142sec
checking: [A [AG [~ [EF [EX [sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)]]]] U AG [62<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0)]] | A [AX [A [E [99<=sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0) U sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=56] U EG [sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)]]] U [[AG [~ [A [sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=41 U 8<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)]]] & ~ [[EG [3<=sum(Cells_2_2, Cells_2_1, Cells_2_0, Cells_1_2, Cells_1_1, Cells_1_0, Cells_0_2, Cells_0_1, Cells_0_0)] & A [sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0) U 41<=sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)]]]] & sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=8]]]
normalized: [[~ [EG [~ [[sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=8 & [~ [[[~ [EG [~ [41<=sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)]]] & ~ [E [~ [41<=sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)] U [~ [sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0)] & ~ [41<=sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)]]]]] & EG [3<=sum(Cells_2_2, Cells_2_1, Cells_2_0, Cells_1_2, Cells_1_1, Cells_1_0, Cells_0_2, Cells_0_1, Cells_0_0)]]] & ~ [E [true U [~ [EG [~ [8<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)]]] & ~ [E [~ [8<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)] U [~ [sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=41] & ~ [8<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)]]]]]]]]]]]] & ~ [E [~ [[sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=8 & [~ [[[~ [EG [~ [41<=sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)]]] & ~ [E [~ [41<=sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)] U [~ [sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0)] & ~ [41<=sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)]]]]] & EG [3<=sum(Cells_2_2, Cells_2_1, Cells_2_0, Cells_1_2, Cells_1_1, Cells_1_0, Cells_0_2, Cells_0_1, Cells_0_0)]]] & ~ [E [true U [~ [EG [~ [8<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)]]] & ~ [E [~ [8<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)] U [~ [sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=41] & ~ [8<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)]]]]]]]]]] U [EX [~ [[~ [EG [~ [EG [sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)]]]] & ~ [E [~ [EG [sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)]] U [~ [E [99<=sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0) U sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=56]] & ~ [EG [sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)]]]]]]]] & ~ [[sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=8 & [~ [[[~ [EG [~ [41<=sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)]]] & ~ [E [~ [41<=sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)] U [~ [sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0)] & ~ [41<=sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)]]]]] & EG [3<=sum(Cells_2_2, Cells_2_1, Cells_2_0, Cells_1_2, Cells_1_1, Cells_1_0, Cells_0_2, Cells_0_1, Cells_0_0)]]] & ~ [E [true U [~ [EG [~ [8<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)]]] & ~ [E [~ [8<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)] U [~ [sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=41] & ~ [8<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)]]]]]]]]]]]]]] | [~ [EG [E [true U ~ [62<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0)]]]] & ~ [E [E [true U ~ [62<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0)]] U [E [true U E [true U EX [sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)]]] & E [true U ~ [62<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0)]]]]]]]
abstracting: (62<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0))
states: 0
abstracting: (sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0))
states: 11,776 (4)
.abstracting: (62<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0))
states: 0
abstracting: (62<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0))
states: 0
EG iterations: 0
abstracting: (8<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0))
states: 120
abstracting: (sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=41)
states: 11,776 (4)
abstracting: (8<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0))
states: 120
abstracting: (8<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0))
states: 120
......
EG iterations: 6
abstracting: (3<=sum(Cells_2_2, Cells_2_1, Cells_2_0, Cells_1_2, Cells_1_1, Cells_1_0, Cells_0_2, Cells_0_1, Cells_0_0))
states: 10,900 (4)
.....
EG iterations: 5
abstracting: (41<=sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0))
states: 0
abstracting: (sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0))
MC time: 16m35.012sec
checking: [AG [[EX [[EG [63<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0)] | sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=89]] & [sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0) | [[[sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0) | ~ [sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=sum(Cells_2_2, Cells_2_1, Cells_2_0, Cells_1_2, Cells_1_1, Cells_1_0, Cells_0_2, Cells_0_1, Cells_0_0)]] & [86<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0) | sum(Cells_2_2, Cells_2_1, Cells_2_0, Cells_1_2, Cells_1_1, Cells_1_0, Cells_0_2, Cells_0_1, Cells_0_0)<=66]] | 63<=sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)]]]] | AF [AG [~ [[sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0) & sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=49]]]]]
normalized: [~ [EG [E [true U [sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0) & sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=49]]]] | ~ [E [true U ~ [[[sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0) | [63<=sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0) | [[86<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0) | sum(Cells_2_2, Cells_2_1, Cells_2_0, Cells_1_2, Cells_1_1, Cells_1_0, Cells_0_2, Cells_0_1, Cells_0_0)<=66] & [sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0) | ~ [sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=sum(Cells_2_2, Cells_2_1, Cells_2_0, Cells_1_2, Cells_1_1, Cells_1_0, Cells_0_2, Cells_0_1, Cells_0_0)]]]]] & EX [[sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=89 | EG [63<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0)]]]]]]]]
abstracting: (63<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0))
states: 0
.
EG iterations: 1
abstracting: (sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=89)
states: 11,776 (4)
.abstracting: (sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=sum(Cells_2_2, Cells_2_1, Cells_2_0, Cells_1_2, Cells_1_1, Cells_1_0, Cells_0_2, Cells_0_1, Cells_0_0))
states: 11,776 (4)
abstracting: (sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0))
MC time: 8m18.000sec
checking: [A [AG [~ [EF [EX [sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)]]]] U AG [62<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0)]] | A [AX [A [E [99<=sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0) U sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=56] U EG [sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)]]] U [[AG [~ [A [sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=41 U 8<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)]]] & ~ [[EG [3<=sum(Cells_2_2, Cells_2_1, Cells_2_0, Cells_1_2, Cells_1_1, Cells_1_0, Cells_0_2, Cells_0_1, Cells_0_0)] & A [sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0) U 41<=sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)]]]] & sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=8]]]
normalized: [[~ [EG [~ [[sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=8 & [~ [[[~ [EG [~ [41<=sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)]]] & ~ [E [~ [41<=sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)] U [~ [sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0)] & ~ [41<=sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)]]]]] & EG [3<=sum(Cells_2_2, Cells_2_1, Cells_2_0, Cells_1_2, Cells_1_1, Cells_1_0, Cells_0_2, Cells_0_1, Cells_0_0)]]] & ~ [E [true U [~ [EG [~ [8<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)]]] & ~ [E [~ [8<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)] U [~ [sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=41] & ~ [8<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)]]]]]]]]]]]] & ~ [E [~ [[sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=8 & [~ [[[~ [EG [~ [41<=sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)]]] & ~ [E [~ [41<=sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)] U [~ [sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0)] & ~ [41<=sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)]]]]] & EG [3<=sum(Cells_2_2, Cells_2_1, Cells_2_0, Cells_1_2, Cells_1_1, Cells_1_0, Cells_0_2, Cells_0_1, Cells_0_0)]]] & ~ [E [true U [~ [EG [~ [8<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)]]] & ~ [E [~ [8<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)] U [~ [sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=41] & ~ [8<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)]]]]]]]]]] U [EX [~ [[~ [EG [~ [EG [sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)]]]] & ~ [E [~ [EG [sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)]] U [~ [EG [sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)]] & ~ [E [99<=sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0) U sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=56]]]]]]]] & ~ [[sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=8 & [~ [[[~ [EG [~ [41<=sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)]]] & ~ [E [~ [41<=sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)] U [~ [sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0)] & ~ [41<=sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)]]]]] & EG [3<=sum(Cells_2_2, Cells_2_1, Cells_2_0, Cells_1_2, Cells_1_1, Cells_1_0, Cells_0_2, Cells_0_1, Cells_0_0)]]] & ~ [E [true U [~ [EG [~ [8<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)]]] & ~ [E [~ [8<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)] U [~ [sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=41] & ~ [8<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0)]]]]]]]]]]]]]] | [~ [EG [E [true U ~ [62<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0)]]]] & ~ [E [E [true U ~ [62<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0)]] U [E [true U E [true U EX [sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)]]] & E [true U ~ [62<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0)]]]]]]]
abstracting: (62<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0))
states: 0
abstracting: (sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0))
states: 11,776 (4)
.abstracting: (62<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0))
states: 0
abstracting: (62<=sum(Columns_2_2, Columns_2_1, Columns_2_0, Columns_1_2, Columns_1_1, Columns_1_0, Columns_0_2, Columns_0_1, Columns_0_0))
states: 0
EG iterations: 0
abstracting: (8<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0))
states: 120
abstracting: (sum(Rows_2_2, Rows_2_1, Rows_2_0, Rows_1_2, Rows_1_1, Rows_1_0, Rows_0_2, Rows_0_1, Rows_0_0)<=41)
states: 11,776 (4)
abstracting: (8<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0))
states: 120
abstracting: (8<=sum(Board_2_2_2, Board_2_2_1, Board_2_2_0, Board_2_1_2, Board_2_1_1, Board_2_1_0, Board_2_0_2, Board_2_0_1, Board_2_0_0, Board_1_2_2, Board_1_2_1, Board_1_2_0, Board_1_1_2, Board_1_1_1, Board_1_1_0, Board_1_0_2, Board_1_0_1, Board_1_0_0, Board_0_2_2, Board_0_2_1, Board_0_2_0, Board_0_1_2, Board_0_1_1, Board_0_1_0, Board_0_0_2, Board_0_0_1, Board_0_0_0))
states: 120
......
EG iterations: 6
TIME LIMIT: Killed by timeout after 3600 seconds
MemTotal: 16393916 kB
MemFree: 10742936 kB
After kill :
MemTotal: 16393916 kB
MemFree: 16181608 kB
BK_TIME_CONFINEMENT_REACHED
--------------------
content from stderr:
check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.000sec
iterations count:327 (12), effective:27 (1)
initing FirstDep: 0m 0.000sec
iterations count:28 (1), effective:1 (0)
iterations count:41 (1), effective:3 (0)
iterations count:27 (1), effective:0 (0)
iterations count:168 (6), effective:14 (0)
iterations count:57 (2), effective:3 (0)
iterations count:27 (1), effective:0 (0)
iterations count:27 (1), effective:0 (0)
iterations count:27 (1), effective:0 (0)
iterations count:27 (1), effective:0 (0)
iterations count:57 (2), effective:3 (0)
iterations count:27 (1), effective:0 (0)
iterations count:27 (1), effective:0 (0)
iterations count:27 (1), effective:0 (0)
iterations count:37 (1), effective:1 (0)
iterations count:56 (2), effective:2 (0)
iterations count:27 (1), effective:0 (0)
iterations count:27 (1), effective:0 (0)
iterations count:327 (12), effective:27 (1)
iterations count:27 (1), effective:0 (0)
iterations count:27 (1), effective:0 (0)
iterations count:27 (1), effective:0 (0)
iterations count:27 (1), effective:0 (0)
iterations count:27 (1), effective:0 (0)
iterations count:27 (1), effective:0 (0)
iterations count:27 (1), effective:0 (0)
iterations count:27 (1), effective:0 (0)
iterations count:27 (1), effective:0 (0)
iterations count:27 (1), effective:0 (0)
iterations count:156 (5), effective:18 (0)
idd.h:1025: Timeout: after 994 sec
idd.h:1025: Timeout: after 497 sec
iterations count:27 (1), effective:0 (0)
iterations count:27 (1), effective:0 (0)
iterations count:27 (1), effective:0 (0)
iterations count:27 (1), effective:0 (0)
iterations count:27 (1), effective:0 (0)
iterations count:27 (1), effective:0 (0)
iterations count:156 (5), effective:18 (0)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="Sudoku-PT-AN03"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marcie"
echo " Input is Sudoku-PT-AN03, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r481-tall-167912691600177"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/Sudoku-PT-AN03.tgz
mv Sudoku-PT-AN03 execution
cd execution
if [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "UpperBounds" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] || [ "CTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME CTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;