About the Execution of Marcie+red for StigmergyElection-PT-10a
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
6556.392 | 132735.00 | 168684.00 | 2696.40 | FTTTFTTFTTFTFTFF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fkordon/mcc2023-input.r458-smll-167912650600682.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2023-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
...................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
=====================================================================
Generated by BenchKit 2-5348
Executing tool marciexred
Input is StigmergyElection-PT-10a, examination is CTLFireability
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r458-smll-167912650600682
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 51M
-rw-r--r-- 1 mcc users 9.4K Feb 26 16:33 CTLCardinality.txt
-rw-r--r-- 1 mcc users 111K Feb 26 16:33 CTLCardinality.xml
-rw-r--r-- 1 mcc users 5.3K Feb 26 16:22 CTLFireability.txt
-rw-r--r-- 1 mcc users 43K Feb 26 16:22 CTLFireability.xml
-rw-r--r-- 1 mcc users 3.8K Feb 25 17:15 LTLCardinality.txt
-rw-r--r-- 1 mcc users 26K Feb 25 17:15 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.3K Feb 25 17:15 LTLFireability.txt
-rw-r--r-- 1 mcc users 16K Feb 25 17:15 LTLFireability.xml
-rw-r--r-- 1 mcc users 12K Feb 26 16:58 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 129K Feb 26 16:58 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 7.3K Feb 26 16:42 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 57K Feb 26 16:42 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.7K Feb 25 17:15 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.8K Feb 25 17:15 UpperBounds.xml
-rw-r--r-- 1 mcc users 6 Mar 5 18:23 equiv_col
-rw-r--r-- 1 mcc users 4 Mar 5 18:23 instance
-rw-r--r-- 1 mcc users 6 Mar 5 18:23 iscolored
-rw-r--r-- 1 mcc users 50M Mar 5 18:23 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME StigmergyElection-PT-10a-CTLFireability-00
FORMULA_NAME StigmergyElection-PT-10a-CTLFireability-01
FORMULA_NAME StigmergyElection-PT-10a-CTLFireability-02
FORMULA_NAME StigmergyElection-PT-10a-CTLFireability-03
FORMULA_NAME StigmergyElection-PT-10a-CTLFireability-04
FORMULA_NAME StigmergyElection-PT-10a-CTLFireability-05
FORMULA_NAME StigmergyElection-PT-10a-CTLFireability-06
FORMULA_NAME StigmergyElection-PT-10a-CTLFireability-07
FORMULA_NAME StigmergyElection-PT-10a-CTLFireability-08
FORMULA_NAME StigmergyElection-PT-10a-CTLFireability-09
FORMULA_NAME StigmergyElection-PT-10a-CTLFireability-10
FORMULA_NAME StigmergyElection-PT-10a-CTLFireability-11
FORMULA_NAME StigmergyElection-PT-10a-CTLFireability-12
FORMULA_NAME StigmergyElection-PT-10a-CTLFireability-13
FORMULA_NAME StigmergyElection-PT-10a-CTLFireability-14
FORMULA_NAME StigmergyElection-PT-10a-CTLFireability-15
=== Now, execution of the tool begins
BK_START 1679601460009
bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marciexred
BK_EXAMINATION=CTLFireability
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=StigmergyElection-PT-10a
Applying reductions before tool marcie
Invoking reducer
Running Version 202303021504
[2023-03-23 19:57:44] [INFO ] Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, CTLFireability, -timeout, 360, -rebuildPNML]
[2023-03-23 19:57:44] [INFO ] Parsing pnml file : /home/mcc/execution/model.pnml
[2023-03-23 19:57:47] [INFO ] Load time of PNML (sax parser for PT used): 2825 ms
[2023-03-23 19:57:47] [INFO ] Transformed 142 places.
[2023-03-23 19:57:47] [INFO ] Transformed 50162 transitions.
[2023-03-23 19:57:47] [INFO ] Found NUPN structural information;
[2023-03-23 19:57:48] [INFO ] Parsed PT model containing 142 places and 50162 transitions and 999212 arcs in 3501 ms.
Parsed 16 properties from file /home/mcc/execution/CTLFireability.xml in 47 ms.
Ensure Unique test removed 47924 transitions
Reduce redundant transitions removed 47924 transitions.
Support contains 11 out of 142 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 142/142 places, 2238/2238 transitions.
Discarding 18 places :
Symmetric choice reduction at 0 with 18 rule applications. Total rules 18 place count 124 transition count 2211
Iterating global reduction 0 with 18 rules applied. Total rules applied 36 place count 124 transition count 2211
Discarding 9 places :
Symmetric choice reduction at 0 with 9 rule applications. Total rules 45 place count 115 transition count 2193
Iterating global reduction 0 with 9 rules applied. Total rules applied 54 place count 115 transition count 2193
Applied a total of 54 rules in 167 ms. Remains 115 /142 variables (removed 27) and now considering 2193/2238 (removed 45) transitions.
[2023-03-23 19:57:49] [INFO ] Flow matrix only has 2181 transitions (discarded 12 similar events)
// Phase 1: matrix 2181 rows 115 cols
[2023-03-23 19:57:49] [INFO ] Computed 2 place invariants in 62 ms
[2023-03-23 19:57:49] [INFO ] Implicit Places using invariants in 433 ms returned []
[2023-03-23 19:57:49] [INFO ] Flow matrix only has 2181 transitions (discarded 12 similar events)
[2023-03-23 19:57:49] [INFO ] Invariant cache hit.
[2023-03-23 19:57:50] [INFO ] State equation strengthened by 2095 read => feed constraints.
[2023-03-23 19:57:51] [INFO ] Implicit Places using invariants and state equation in 1612 ms returned []
Implicit Place search using SMT with State Equation took 2106 ms to find 0 implicit places.
[2023-03-23 19:57:51] [INFO ] Flow matrix only has 2181 transitions (discarded 12 similar events)
[2023-03-23 19:57:51] [INFO ] Invariant cache hit.
[2023-03-23 19:57:52] [INFO ] Dead Transitions using invariants and state equation in 1616 ms found 0 transitions.
Starting structural reductions in LTL mode, iteration 1 : 115/142 places, 2193/2238 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 3900 ms. Remains : 115/142 places, 2193/2238 transitions.
Support contains 11 out of 115 places after structural reductions.
[2023-03-23 19:57:53] [INFO ] Flatten gal took : 414 ms
[2023-03-23 19:57:53] [INFO ] Flatten gal took : 229 ms
[2023-03-23 19:57:54] [INFO ] Input system was already deterministic with 2193 transitions.
Incomplete random walk after 10000 steps, including 4 resets, run finished after 1546 ms. (steps per millisecond=6 ) properties (out of 15) seen :10
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 37 ms. (steps per millisecond=270 ) properties (out of 5) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 27 ms. (steps per millisecond=370 ) properties (out of 5) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 23 ms. (steps per millisecond=434 ) properties (out of 5) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 35 ms. (steps per millisecond=285 ) properties (out of 5) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 27 ms. (steps per millisecond=370 ) properties (out of 5) seen :0
Running SMT prover for 5 properties.
[2023-03-23 19:57:56] [INFO ] Flow matrix only has 2181 transitions (discarded 12 similar events)
[2023-03-23 19:57:56] [INFO ] Invariant cache hit.
[2023-03-23 19:57:56] [INFO ] After 146ms SMT Verify possible using all constraints in real domain returned unsat :2 sat :0 real:3
[2023-03-23 19:57:56] [INFO ] [Nat]Absence check using 2 positive place invariants in 2 ms returned sat
[2023-03-23 19:57:56] [INFO ] After 105ms SMT Verify possible using all constraints in natural domain returned unsat :5 sat :0
Fused 5 Parikh solutions to 0 different solutions.
Parikh walk visited 0 properties in 0 ms.
Successfully simplified 5 atomic propositions for a total of 16 simplifications.
FORMULA StigmergyElection-PT-10a-CTLFireability-02 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
[2023-03-23 19:57:57] [INFO ] Flatten gal took : 146 ms
[2023-03-23 19:57:57] [INFO ] Flatten gal took : 158 ms
[2023-03-23 19:57:57] [INFO ] Input system was already deterministic with 2193 transitions.
Computed a total of 22 stabilizing places and 21 stable transitions
Starting structural reductions in LTL mode, iteration 0 : 115/115 places, 2193/2193 transitions.
Discarding 1 places :
Symmetric choice reduction at 0 with 1 rule applications. Total rules 1 place count 114 transition count 2191
Iterating global reduction 0 with 1 rules applied. Total rules applied 2 place count 114 transition count 2191
Discarding 1 places :
Symmetric choice reduction at 0 with 1 rule applications. Total rules 3 place count 113 transition count 2189
Iterating global reduction 0 with 1 rules applied. Total rules applied 4 place count 113 transition count 2189
Applied a total of 4 rules in 42 ms. Remains 113 /115 variables (removed 2) and now considering 2189/2193 (removed 4) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 45 ms. Remains : 113/115 places, 2189/2193 transitions.
[2023-03-23 19:57:58] [INFO ] Flatten gal took : 127 ms
[2023-03-23 19:57:58] [INFO ] Flatten gal took : 140 ms
[2023-03-23 19:57:58] [INFO ] Input system was already deterministic with 2189 transitions.
Starting structural reductions in LTL mode, iteration 0 : 115/115 places, 2193/2193 transitions.
Discarding 1 places :
Symmetric choice reduction at 0 with 1 rule applications. Total rules 1 place count 114 transition count 2191
Iterating global reduction 0 with 1 rules applied. Total rules applied 2 place count 114 transition count 2191
Discarding 1 places :
Symmetric choice reduction at 0 with 1 rule applications. Total rules 3 place count 113 transition count 2189
Iterating global reduction 0 with 1 rules applied. Total rules applied 4 place count 113 transition count 2189
Applied a total of 4 rules in 39 ms. Remains 113 /115 variables (removed 2) and now considering 2189/2193 (removed 4) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 42 ms. Remains : 113/115 places, 2189/2193 transitions.
[2023-03-23 19:57:58] [INFO ] Flatten gal took : 139 ms
[2023-03-23 19:57:58] [INFO ] Flatten gal took : 154 ms
[2023-03-23 19:57:59] [INFO ] Input system was already deterministic with 2189 transitions.
Starting structural reductions in LTL mode, iteration 0 : 115/115 places, 2193/2193 transitions.
Discarding 1 places :
Symmetric choice reduction at 0 with 1 rule applications. Total rules 1 place count 114 transition count 2191
Iterating global reduction 0 with 1 rules applied. Total rules applied 2 place count 114 transition count 2191
Discarding 1 places :
Symmetric choice reduction at 0 with 1 rule applications. Total rules 3 place count 113 transition count 2189
Iterating global reduction 0 with 1 rules applied. Total rules applied 4 place count 113 transition count 2189
Applied a total of 4 rules in 30 ms. Remains 113 /115 variables (removed 2) and now considering 2189/2193 (removed 4) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 32 ms. Remains : 113/115 places, 2189/2193 transitions.
[2023-03-23 19:57:59] [INFO ] Flatten gal took : 120 ms
[2023-03-23 19:57:59] [INFO ] Flatten gal took : 135 ms
[2023-03-23 19:57:59] [INFO ] Input system was already deterministic with 2189 transitions.
Starting structural reductions in SI_CTL mode, iteration 0 : 115/115 places, 2193/2193 transitions.
Reduce places removed 1 places and 1 transitions.
Reduce places removed 1 places and 0 transitions.
Drop transitions removed 20 transitions
Trivial Post-agglo rules discarded 20 transitions
Performed 20 trivial Post agglomeration. Transition count delta: 20
Iterating post reduction 0 with 21 rules applied. Total rules applied 21 place count 113 transition count 2172
Reduce places removed 20 places and 0 transitions.
Iterating post reduction 1 with 20 rules applied. Total rules applied 41 place count 93 transition count 2172
Performed 12 Pre agglomeration using Quasi-Persistent + Divergent Free condition..
Pre-agglomeration after 2 with 12 Pre rules applied. Total rules applied 41 place count 93 transition count 2160
Deduced a syphon composed of 12 places in 1 ms
Reduce places removed 12 places and 0 transitions.
Iterating global reduction 2 with 24 rules applied. Total rules applied 65 place count 81 transition count 2160
Discarding 20 places :
Symmetric choice reduction at 2 with 20 rule applications. Total rules 85 place count 61 transition count 2139
Iterating global reduction 2 with 20 rules applied. Total rules applied 105 place count 61 transition count 2139
Ensure Unique test removed 511 transitions
Reduce isomorphic transitions removed 511 transitions.
Iterating post reduction 2 with 511 rules applied. Total rules applied 616 place count 61 transition count 1628
Performed 9 Pre agglomeration using Quasi-Persistent + Divergent Free condition..
Pre-agglomeration after 3 with 9 Pre rules applied. Total rules applied 616 place count 61 transition count 1619
Deduced a syphon composed of 9 places in 1 ms
Reduce places removed 9 places and 0 transitions.
Iterating global reduction 3 with 18 rules applied. Total rules applied 634 place count 52 transition count 1619
Discarding 1 places :
Symmetric choice reduction at 3 with 1 rule applications. Total rules 635 place count 51 transition count 1617
Iterating global reduction 3 with 1 rules applied. Total rules applied 636 place count 51 transition count 1617
Ensure Unique test removed 512 transitions
Reduce isomorphic transitions removed 512 transitions.
Iterating post reduction 3 with 512 rules applied. Total rules applied 1148 place count 51 transition count 1105
Drop transitions removed 10 transitions
Redundant transition composition rules discarded 10 transitions
Iterating global reduction 4 with 10 rules applied. Total rules applied 1158 place count 51 transition count 1095
Performed 10 Post agglomeration using F-continuation condition.Transition count delta: 10
Deduced a syphon composed of 10 places in 1 ms
Reduce places removed 10 places and 0 transitions.
Iterating global reduction 4 with 20 rules applied. Total rules applied 1178 place count 41 transition count 1085
Applied a total of 1178 rules in 1303 ms. Remains 41 /115 variables (removed 74) and now considering 1085/2193 (removed 1108) transitions.
Finished structural reductions in SI_CTL mode , in 1 iterations and 1306 ms. Remains : 41/115 places, 1085/2193 transitions.
[2023-03-23 19:58:01] [INFO ] Flatten gal took : 59 ms
[2023-03-23 19:58:01] [INFO ] Flatten gal took : 66 ms
[2023-03-23 19:58:01] [INFO ] Input system was already deterministic with 1085 transitions.
Starting structural reductions in LTL mode, iteration 0 : 115/115 places, 2193/2193 transitions.
Discarding 1 places :
Symmetric choice reduction at 0 with 1 rule applications. Total rules 1 place count 114 transition count 2191
Iterating global reduction 0 with 1 rules applied. Total rules applied 2 place count 114 transition count 2191
Discarding 1 places :
Symmetric choice reduction at 0 with 1 rule applications. Total rules 3 place count 113 transition count 2189
Iterating global reduction 0 with 1 rules applied. Total rules applied 4 place count 113 transition count 2189
Applied a total of 4 rules in 31 ms. Remains 113 /115 variables (removed 2) and now considering 2189/2193 (removed 4) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 31 ms. Remains : 113/115 places, 2189/2193 transitions.
[2023-03-23 19:58:01] [INFO ] Flatten gal took : 119 ms
[2023-03-23 19:58:01] [INFO ] Flatten gal took : 134 ms
[2023-03-23 19:58:02] [INFO ] Input system was already deterministic with 2189 transitions.
Starting structural reductions in LTL mode, iteration 0 : 115/115 places, 2193/2193 transitions.
Discarding 1 places :
Symmetric choice reduction at 0 with 1 rule applications. Total rules 1 place count 114 transition count 2191
Iterating global reduction 0 with 1 rules applied. Total rules applied 2 place count 114 transition count 2191
Discarding 1 places :
Symmetric choice reduction at 0 with 1 rule applications. Total rules 3 place count 113 transition count 2189
Iterating global reduction 0 with 1 rules applied. Total rules applied 4 place count 113 transition count 2189
Applied a total of 4 rules in 26 ms. Remains 113 /115 variables (removed 2) and now considering 2189/2193 (removed 4) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 27 ms. Remains : 113/115 places, 2189/2193 transitions.
[2023-03-23 19:58:02] [INFO ] Flatten gal took : 120 ms
[2023-03-23 19:58:02] [INFO ] Flatten gal took : 134 ms
[2023-03-23 19:58:02] [INFO ] Input system was already deterministic with 2189 transitions.
Starting structural reductions in LTL mode, iteration 0 : 115/115 places, 2193/2193 transitions.
Discarding 1 places :
Symmetric choice reduction at 0 with 1 rule applications. Total rules 1 place count 114 transition count 2191
Iterating global reduction 0 with 1 rules applied. Total rules applied 2 place count 114 transition count 2191
Discarding 1 places :
Symmetric choice reduction at 0 with 1 rule applications. Total rules 3 place count 113 transition count 2189
Iterating global reduction 0 with 1 rules applied. Total rules applied 4 place count 113 transition count 2189
Applied a total of 4 rules in 29 ms. Remains 113 /115 variables (removed 2) and now considering 2189/2193 (removed 4) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 29 ms. Remains : 113/115 places, 2189/2193 transitions.
[2023-03-23 19:58:02] [INFO ] Flatten gal took : 135 ms
[2023-03-23 19:58:03] [INFO ] Flatten gal took : 152 ms
[2023-03-23 19:58:03] [INFO ] Input system was already deterministic with 2189 transitions.
Starting structural reductions in SI_CTL mode, iteration 0 : 115/115 places, 2193/2193 transitions.
Reduce places removed 1 places and 1 transitions.
Reduce places removed 1 places and 0 transitions.
Drop transitions removed 20 transitions
Trivial Post-agglo rules discarded 20 transitions
Performed 20 trivial Post agglomeration. Transition count delta: 20
Iterating post reduction 0 with 21 rules applied. Total rules applied 21 place count 113 transition count 2172
Reduce places removed 20 places and 0 transitions.
Iterating post reduction 1 with 20 rules applied. Total rules applied 41 place count 93 transition count 2172
Performed 12 Pre agglomeration using Quasi-Persistent + Divergent Free condition..
Pre-agglomeration after 2 with 12 Pre rules applied. Total rules applied 41 place count 93 transition count 2160
Deduced a syphon composed of 12 places in 1 ms
Reduce places removed 12 places and 0 transitions.
Iterating global reduction 2 with 24 rules applied. Total rules applied 65 place count 81 transition count 2160
Discarding 20 places :
Symmetric choice reduction at 2 with 20 rule applications. Total rules 85 place count 61 transition count 2139
Iterating global reduction 2 with 20 rules applied. Total rules applied 105 place count 61 transition count 2139
Ensure Unique test removed 511 transitions
Reduce isomorphic transitions removed 511 transitions.
Iterating post reduction 2 with 511 rules applied. Total rules applied 616 place count 61 transition count 1628
Performed 9 Pre agglomeration using Quasi-Persistent + Divergent Free condition..
Pre-agglomeration after 3 with 9 Pre rules applied. Total rules applied 616 place count 61 transition count 1619
Deduced a syphon composed of 9 places in 1 ms
Reduce places removed 9 places and 0 transitions.
Iterating global reduction 3 with 18 rules applied. Total rules applied 634 place count 52 transition count 1619
Discarding 1 places :
Symmetric choice reduction at 3 with 1 rule applications. Total rules 635 place count 51 transition count 1617
Iterating global reduction 3 with 1 rules applied. Total rules applied 636 place count 51 transition count 1617
Ensure Unique test removed 512 transitions
Reduce isomorphic transitions removed 512 transitions.
Iterating post reduction 3 with 512 rules applied. Total rules applied 1148 place count 51 transition count 1105
Drop transitions removed 10 transitions
Redundant transition composition rules discarded 10 transitions
Iterating global reduction 4 with 10 rules applied. Total rules applied 1158 place count 51 transition count 1095
Performed 10 Post agglomeration using F-continuation condition.Transition count delta: 10
Deduced a syphon composed of 10 places in 0 ms
Reduce places removed 10 places and 0 transitions.
Iterating global reduction 4 with 20 rules applied. Total rules applied 1178 place count 41 transition count 1085
Applied a total of 1178 rules in 905 ms. Remains 41 /115 variables (removed 74) and now considering 1085/2193 (removed 1108) transitions.
Finished structural reductions in SI_CTL mode , in 1 iterations and 906 ms. Remains : 41/115 places, 1085/2193 transitions.
[2023-03-23 19:58:04] [INFO ] Flatten gal took : 59 ms
[2023-03-23 19:58:04] [INFO ] Flatten gal took : 65 ms
[2023-03-23 19:58:04] [INFO ] Input system was already deterministic with 1085 transitions.
Finished random walk after 10 steps, including 0 resets, run visited all 1 properties in 1 ms. (steps per millisecond=10 )
FORMULA StigmergyElection-PT-10a-CTLFireability-08 TRUE TECHNIQUES TOPOLOGICAL RANDOM_WALK
Starting structural reductions in SI_CTL mode, iteration 0 : 115/115 places, 2193/2193 transitions.
Reduce places removed 1 places and 1 transitions.
Reduce places removed 1 places and 0 transitions.
Drop transitions removed 20 transitions
Trivial Post-agglo rules discarded 20 transitions
Performed 20 trivial Post agglomeration. Transition count delta: 20
Iterating post reduction 0 with 21 rules applied. Total rules applied 21 place count 113 transition count 2172
Reduce places removed 20 places and 0 transitions.
Iterating post reduction 1 with 20 rules applied. Total rules applied 41 place count 93 transition count 2172
Performed 12 Pre agglomeration using Quasi-Persistent + Divergent Free condition..
Pre-agglomeration after 2 with 12 Pre rules applied. Total rules applied 41 place count 93 transition count 2160
Deduced a syphon composed of 12 places in 0 ms
Reduce places removed 12 places and 0 transitions.
Iterating global reduction 2 with 24 rules applied. Total rules applied 65 place count 81 transition count 2160
Discarding 20 places :
Symmetric choice reduction at 2 with 20 rule applications. Total rules 85 place count 61 transition count 2139
Iterating global reduction 2 with 20 rules applied. Total rules applied 105 place count 61 transition count 2139
Ensure Unique test removed 511 transitions
Reduce isomorphic transitions removed 511 transitions.
Iterating post reduction 2 with 511 rules applied. Total rules applied 616 place count 61 transition count 1628
Performed 9 Pre agglomeration using Quasi-Persistent + Divergent Free condition..
Pre-agglomeration after 3 with 9 Pre rules applied. Total rules applied 616 place count 61 transition count 1619
Deduced a syphon composed of 9 places in 0 ms
Reduce places removed 9 places and 0 transitions.
Iterating global reduction 3 with 18 rules applied. Total rules applied 634 place count 52 transition count 1619
Discarding 1 places :
Symmetric choice reduction at 3 with 1 rule applications. Total rules 635 place count 51 transition count 1617
Iterating global reduction 3 with 1 rules applied. Total rules applied 636 place count 51 transition count 1617
Ensure Unique test removed 512 transitions
Reduce isomorphic transitions removed 512 transitions.
Iterating post reduction 3 with 512 rules applied. Total rules applied 1148 place count 51 transition count 1105
Drop transitions removed 10 transitions
Redundant transition composition rules discarded 10 transitions
Iterating global reduction 4 with 10 rules applied. Total rules applied 1158 place count 51 transition count 1095
Performed 10 Post agglomeration using F-continuation condition.Transition count delta: 10
Deduced a syphon composed of 10 places in 0 ms
Reduce places removed 10 places and 0 transitions.
Iterating global reduction 4 with 20 rules applied. Total rules applied 1178 place count 41 transition count 1085
Applied a total of 1178 rules in 963 ms. Remains 41 /115 variables (removed 74) and now considering 1085/2193 (removed 1108) transitions.
Finished structural reductions in SI_CTL mode , in 1 iterations and 964 ms. Remains : 41/115 places, 1085/2193 transitions.
[2023-03-23 19:58:05] [INFO ] Flatten gal took : 65 ms
[2023-03-23 19:58:05] [INFO ] Flatten gal took : 74 ms
[2023-03-23 19:58:05] [INFO ] Input system was already deterministic with 1085 transitions.
Starting structural reductions in LTL mode, iteration 0 : 115/115 places, 2193/2193 transitions.
Discarding 1 places :
Symmetric choice reduction at 0 with 1 rule applications. Total rules 1 place count 114 transition count 2191
Iterating global reduction 0 with 1 rules applied. Total rules applied 2 place count 114 transition count 2191
Discarding 1 places :
Symmetric choice reduction at 0 with 1 rule applications. Total rules 3 place count 113 transition count 2189
Iterating global reduction 0 with 1 rules applied. Total rules applied 4 place count 113 transition count 2189
Applied a total of 4 rules in 26 ms. Remains 113 /115 variables (removed 2) and now considering 2189/2193 (removed 4) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 27 ms. Remains : 113/115 places, 2189/2193 transitions.
[2023-03-23 19:58:06] [INFO ] Flatten gal took : 130 ms
[2023-03-23 19:58:06] [INFO ] Flatten gal took : 142 ms
[2023-03-23 19:58:06] [INFO ] Input system was already deterministic with 2189 transitions.
Starting structural reductions in SI_CTL mode, iteration 0 : 115/115 places, 2193/2193 transitions.
Reduce places removed 1 places and 1 transitions.
Reduce places removed 1 places and 0 transitions.
Drop transitions removed 20 transitions
Trivial Post-agglo rules discarded 20 transitions
Performed 20 trivial Post agglomeration. Transition count delta: 20
Iterating post reduction 0 with 21 rules applied. Total rules applied 21 place count 113 transition count 2172
Reduce places removed 20 places and 0 transitions.
Iterating post reduction 1 with 20 rules applied. Total rules applied 41 place count 93 transition count 2172
Performed 12 Pre agglomeration using Quasi-Persistent + Divergent Free condition..
Pre-agglomeration after 2 with 12 Pre rules applied. Total rules applied 41 place count 93 transition count 2160
Deduced a syphon composed of 12 places in 1 ms
Reduce places removed 12 places and 0 transitions.
Iterating global reduction 2 with 24 rules applied. Total rules applied 65 place count 81 transition count 2160
Discarding 20 places :
Symmetric choice reduction at 2 with 20 rule applications. Total rules 85 place count 61 transition count 2139
Iterating global reduction 2 with 20 rules applied. Total rules applied 105 place count 61 transition count 2139
Ensure Unique test removed 511 transitions
Reduce isomorphic transitions removed 511 transitions.
Iterating post reduction 2 with 511 rules applied. Total rules applied 616 place count 61 transition count 1628
Performed 9 Pre agglomeration using Quasi-Persistent + Divergent Free condition..
Pre-agglomeration after 3 with 9 Pre rules applied. Total rules applied 616 place count 61 transition count 1619
Deduced a syphon composed of 9 places in 1 ms
Reduce places removed 9 places and 0 transitions.
Iterating global reduction 3 with 18 rules applied. Total rules applied 634 place count 52 transition count 1619
Discarding 1 places :
Symmetric choice reduction at 3 with 1 rule applications. Total rules 635 place count 51 transition count 1617
Iterating global reduction 3 with 1 rules applied. Total rules applied 636 place count 51 transition count 1617
Ensure Unique test removed 512 transitions
Reduce isomorphic transitions removed 512 transitions.
Iterating post reduction 3 with 512 rules applied. Total rules applied 1148 place count 51 transition count 1105
Drop transitions removed 10 transitions
Redundant transition composition rules discarded 10 transitions
Iterating global reduction 4 with 10 rules applied. Total rules applied 1158 place count 51 transition count 1095
Performed 10 Post agglomeration using F-continuation condition.Transition count delta: 10
Deduced a syphon composed of 10 places in 1 ms
Reduce places removed 10 places and 0 transitions.
Iterating global reduction 4 with 20 rules applied. Total rules applied 1178 place count 41 transition count 1085
Applied a total of 1178 rules in 615 ms. Remains 41 /115 variables (removed 74) and now considering 1085/2193 (removed 1108) transitions.
Finished structural reductions in SI_CTL mode , in 1 iterations and 621 ms. Remains : 41/115 places, 1085/2193 transitions.
[2023-03-23 19:58:07] [INFO ] Flatten gal took : 58 ms
[2023-03-23 19:58:07] [INFO ] Flatten gal took : 67 ms
[2023-03-23 19:58:07] [INFO ] Input system was already deterministic with 1085 transitions.
Starting structural reductions in LTL mode, iteration 0 : 115/115 places, 2193/2193 transitions.
Discarding 1 places :
Symmetric choice reduction at 0 with 1 rule applications. Total rules 1 place count 114 transition count 2191
Iterating global reduction 0 with 1 rules applied. Total rules applied 2 place count 114 transition count 2191
Discarding 1 places :
Symmetric choice reduction at 0 with 1 rule applications. Total rules 3 place count 113 transition count 2189
Iterating global reduction 0 with 1 rules applied. Total rules applied 4 place count 113 transition count 2189
Applied a total of 4 rules in 25 ms. Remains 113 /115 variables (removed 2) and now considering 2189/2193 (removed 4) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 25 ms. Remains : 113/115 places, 2189/2193 transitions.
[2023-03-23 19:58:07] [INFO ] Flatten gal took : 121 ms
[2023-03-23 19:58:07] [INFO ] Flatten gal took : 137 ms
[2023-03-23 19:58:07] [INFO ] Input system was already deterministic with 2189 transitions.
Starting structural reductions in SI_CTL mode, iteration 0 : 115/115 places, 2193/2193 transitions.
Reduce places removed 1 places and 1 transitions.
Reduce places removed 1 places and 0 transitions.
Drop transitions removed 20 transitions
Trivial Post-agglo rules discarded 20 transitions
Performed 20 trivial Post agglomeration. Transition count delta: 20
Iterating post reduction 0 with 21 rules applied. Total rules applied 21 place count 113 transition count 2172
Reduce places removed 20 places and 0 transitions.
Iterating post reduction 1 with 20 rules applied. Total rules applied 41 place count 93 transition count 2172
Performed 12 Pre agglomeration using Quasi-Persistent + Divergent Free condition..
Pre-agglomeration after 2 with 12 Pre rules applied. Total rules applied 41 place count 93 transition count 2160
Deduced a syphon composed of 12 places in 1 ms
Reduce places removed 12 places and 0 transitions.
Iterating global reduction 2 with 24 rules applied. Total rules applied 65 place count 81 transition count 2160
Discarding 20 places :
Symmetric choice reduction at 2 with 20 rule applications. Total rules 85 place count 61 transition count 2139
Iterating global reduction 2 with 20 rules applied. Total rules applied 105 place count 61 transition count 2139
Ensure Unique test removed 511 transitions
Reduce isomorphic transitions removed 511 transitions.
Iterating post reduction 2 with 511 rules applied. Total rules applied 616 place count 61 transition count 1628
Performed 9 Pre agglomeration using Quasi-Persistent + Divergent Free condition..
Pre-agglomeration after 3 with 9 Pre rules applied. Total rules applied 616 place count 61 transition count 1619
Deduced a syphon composed of 9 places in 0 ms
Reduce places removed 9 places and 0 transitions.
Iterating global reduction 3 with 18 rules applied. Total rules applied 634 place count 52 transition count 1619
Discarding 1 places :
Symmetric choice reduction at 3 with 1 rule applications. Total rules 635 place count 51 transition count 1617
Iterating global reduction 3 with 1 rules applied. Total rules applied 636 place count 51 transition count 1617
Ensure Unique test removed 512 transitions
Reduce isomorphic transitions removed 512 transitions.
Iterating post reduction 3 with 512 rules applied. Total rules applied 1148 place count 51 transition count 1105
Drop transitions removed 10 transitions
Redundant transition composition rules discarded 10 transitions
Iterating global reduction 4 with 10 rules applied. Total rules applied 1158 place count 51 transition count 1095
Performed 10 Post agglomeration using F-continuation condition.Transition count delta: 10
Deduced a syphon composed of 10 places in 0 ms
Reduce places removed 10 places and 0 transitions.
Iterating global reduction 4 with 20 rules applied. Total rules applied 1178 place count 41 transition count 1085
Applied a total of 1178 rules in 786 ms. Remains 41 /115 variables (removed 74) and now considering 1085/2193 (removed 1108) transitions.
Finished structural reductions in SI_CTL mode , in 1 iterations and 795 ms. Remains : 41/115 places, 1085/2193 transitions.
[2023-03-23 19:58:08] [INFO ] Flatten gal took : 98 ms
[2023-03-23 19:58:08] [INFO ] Flatten gal took : 73 ms
[2023-03-23 19:58:09] [INFO ] Input system was already deterministic with 1085 transitions.
Starting structural reductions in SI_CTL mode, iteration 0 : 115/115 places, 2193/2193 transitions.
Reduce places removed 1 places and 1 transitions.
Reduce places removed 1 places and 0 transitions.
Drop transitions removed 20 transitions
Trivial Post-agglo rules discarded 20 transitions
Performed 20 trivial Post agglomeration. Transition count delta: 20
Iterating post reduction 0 with 21 rules applied. Total rules applied 21 place count 113 transition count 2172
Reduce places removed 20 places and 0 transitions.
Iterating post reduction 1 with 20 rules applied. Total rules applied 41 place count 93 transition count 2172
Performed 12 Pre agglomeration using Quasi-Persistent + Divergent Free condition..
Pre-agglomeration after 2 with 12 Pre rules applied. Total rules applied 41 place count 93 transition count 2160
Deduced a syphon composed of 12 places in 1 ms
Reduce places removed 12 places and 0 transitions.
Iterating global reduction 2 with 24 rules applied. Total rules applied 65 place count 81 transition count 2160
Discarding 20 places :
Symmetric choice reduction at 2 with 20 rule applications. Total rules 85 place count 61 transition count 2139
Iterating global reduction 2 with 20 rules applied. Total rules applied 105 place count 61 transition count 2139
Ensure Unique test removed 511 transitions
Reduce isomorphic transitions removed 511 transitions.
Iterating post reduction 2 with 511 rules applied. Total rules applied 616 place count 61 transition count 1628
Performed 9 Pre agglomeration using Quasi-Persistent + Divergent Free condition..
Pre-agglomeration after 3 with 9 Pre rules applied. Total rules applied 616 place count 61 transition count 1619
Deduced a syphon composed of 9 places in 1 ms
Reduce places removed 9 places and 0 transitions.
Iterating global reduction 3 with 18 rules applied. Total rules applied 634 place count 52 transition count 1619
Discarding 1 places :
Symmetric choice reduction at 3 with 1 rule applications. Total rules 635 place count 51 transition count 1617
Iterating global reduction 3 with 1 rules applied. Total rules applied 636 place count 51 transition count 1617
Ensure Unique test removed 512 transitions
Reduce isomorphic transitions removed 512 transitions.
Iterating post reduction 3 with 512 rules applied. Total rules applied 1148 place count 51 transition count 1105
Drop transitions removed 10 transitions
Redundant transition composition rules discarded 10 transitions
Iterating global reduction 4 with 10 rules applied. Total rules applied 1158 place count 51 transition count 1095
Performed 10 Post agglomeration using F-continuation condition.Transition count delta: 10
Deduced a syphon composed of 10 places in 0 ms
Reduce places removed 10 places and 0 transitions.
Iterating global reduction 4 with 20 rules applied. Total rules applied 1178 place count 41 transition count 1085
Applied a total of 1178 rules in 633 ms. Remains 41 /115 variables (removed 74) and now considering 1085/2193 (removed 1108) transitions.
Finished structural reductions in SI_CTL mode , in 1 iterations and 633 ms. Remains : 41/115 places, 1085/2193 transitions.
[2023-03-23 19:58:09] [INFO ] Flatten gal took : 59 ms
[2023-03-23 19:58:09] [INFO ] Flatten gal took : 68 ms
[2023-03-23 19:58:10] [INFO ] Input system was already deterministic with 1085 transitions.
Starting structural reductions in LTL mode, iteration 0 : 115/115 places, 2193/2193 transitions.
Discarding 1 places :
Symmetric choice reduction at 0 with 1 rule applications. Total rules 1 place count 114 transition count 2191
Iterating global reduction 0 with 1 rules applied. Total rules applied 2 place count 114 transition count 2191
Discarding 1 places :
Symmetric choice reduction at 0 with 1 rule applications. Total rules 3 place count 113 transition count 2189
Iterating global reduction 0 with 1 rules applied. Total rules applied 4 place count 113 transition count 2189
Applied a total of 4 rules in 23 ms. Remains 113 /115 variables (removed 2) and now considering 2189/2193 (removed 4) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 23 ms. Remains : 113/115 places, 2189/2193 transitions.
[2023-03-23 19:58:10] [INFO ] Flatten gal took : 122 ms
[2023-03-23 19:58:10] [INFO ] Flatten gal took : 138 ms
[2023-03-23 19:58:10] [INFO ] Input system was already deterministic with 2189 transitions.
[2023-03-23 19:58:10] [INFO ] Flatten gal took : 136 ms
[2023-03-23 19:58:10] [INFO ] Flatten gal took : 154 ms
[2023-03-23 19:58:10] [INFO ] Export to MCC of 14 properties in file /home/mcc/execution/CTLFireability.sr.xml took 12 ms.
[2023-03-23 19:58:11] [INFO ] Export to PNML in file /home/mcc/execution/model.sr.pnml of net with 115 places, 2193 transitions and 41502 arcs took 50 ms.
Total runtime 26586 ms.
There are residual formulas that ITS could not solve within timeout
timeout --kill-after=10s --signal=SIGINT 1m for testing only
Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: /home/mcc/BenchKit/bin//../reducer/bin//../../marcie/bin/marcie --net-file=model.pnml --mcc-file=CTLFireability.xml --memory=6 --mcc-mode
parse successfull
net created successfully
Net: Petri
(NrP: 115 NrTr: 2193 NrArc: 41502)
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.371sec
net check time: 0m 0.008sec
init dd package: 0m 3.657sec
RS generation: 0m37.278sec
-> reachability set: #nodes 165323 (1.7e+05) #states 10,853,607 (7)
starting MCC model checker
--------------------------
checking: AX [EF [[[[[p32<=1 & 1<=p32] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]] & [[1<=p10 & p10<=1] & [1<=p21 & p21<=1]]] & [[[p76<=1 & 1<=p76] & [1<=p65 & p65<=1]] & [[p87<=1 & 1<=p87] & [[p100<=1 & 1<=p100] & [1<=p111 & p111<=1]]]]]]]
normalized: ~ [EX [~ [E [true U [[[[p76<=1 & 1<=p76] & [1<=p65 & p65<=1]] & [[[1<=p111 & p111<=1] & [p100<=1 & 1<=p100]] & [p87<=1 & 1<=p87]]] & [[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[[1<=p43 & p43<=1] & [1<=p54 & p54<=1]] & [p32<=1 & 1<=p32]]]]]]]]
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
.-> the formula is TRUE
FORMULA StigmergyElection-PT-10a-CTLFireability-05 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m15.493sec
checking: AX [EG [[[[[[0<=p111 & p111<=0] | [0<=p100 & p100<=0]] | [0<=p87 & p87<=0]] | [[0<=p76 & p76<=0] | [0<=p65 & p65<=0]]] | [[[[0<=p54 & p54<=0] | [0<=p43 & p43<=0]] | [0<=p32 & p32<=0]] | [[0<=p21 & p21<=0] | [0<=p10 & p10<=0]]]]]]
normalized: ~ [EX [~ [EG [[[[[0<=p21 & p21<=0] | [0<=p10 & p10<=0]] | [[0<=p32 & p32<=0] | [[0<=p43 & p43<=0] | [0<=p54 & p54<=0]]]] | [[[0<=p65 & p65<=0] | [0<=p76 & p76<=0]] | [[0<=p87 & p87<=0] | [[0<=p100 & p100<=0] | [0<=p111 & p111<=0]]]]]]]]]
abstracting: (p111<=0)
states: 8,625,181 (6)
abstracting: (0<=p111)
states: 10,853,607 (7)
abstracting: (p100<=0)
states: 8,638,303 (6)
abstracting: (0<=p100)
states: 10,853,607 (7)
abstracting: (p87<=0)
states: 8,625,181 (6)
abstracting: (0<=p87)
states: 10,853,607 (7)
abstracting: (p76<=0)
states: 8,625,181 (6)
abstracting: (0<=p76)
states: 10,853,607 (7)
abstracting: (p65<=0)
states: 8,625,181 (6)
abstracting: (0<=p65)
states: 10,853,607 (7)
abstracting: (p54<=0)
states: 8,625,181 (6)
abstracting: (0<=p54)
states: 10,853,607 (7)
abstracting: (p43<=0)
states: 8,625,181 (6)
abstracting: (0<=p43)
states: 10,853,607 (7)
abstracting: (p32<=0)
states: 8,625,181 (6)
abstracting: (0<=p32)
states: 10,853,607 (7)
abstracting: (p10<=0)
states: 8,625,181 (6)
abstracting: (0<=p10)
states: 10,853,607 (7)
abstracting: (p21<=0)
states: 8,625,181 (6)
abstracting: (0<=p21)
states: 10,853,607 (7)
......................
EG iterations: 22
.-> the formula is FALSE
FORMULA StigmergyElection-PT-10a-CTLFireability-07 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m31.413sec
checking: AF [EG [[[[[[1<=p111 & p111<=1] & [1<=p100 & p100<=1]] & [1<=p87 & p87<=1]] & [[1<=p76 & p76<=1] & [1<=p65 & p65<=1]]] & [[[[1<=p54 & p54<=1] & [1<=p43 & p43<=1]] & [1<=p32 & p32<=1]] & [[1<=p21 & p21<=1] & [1<=p10 & p10<=1]]]]]]
normalized: ~ [EG [~ [EG [[[[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]]]]]]
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
.
EG iterations: 1
......................
EG iterations: 22
-> the formula is TRUE
FORMULA StigmergyElection-PT-10a-CTLFireability-11 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.078sec
checking: EG [EF [[[[[[1<=p111 & p111<=1] & [1<=p100 & p100<=1]] & [1<=p87 & p87<=1]] & [[1<=p76 & p76<=1] & [1<=p65 & p65<=1]]] & [[[[1<=p54 & p54<=1] & [1<=p43 & p43<=1]] & [1<=p32 & p32<=1]] & [[1<=p21 & p21<=1] & [1<=p10 & p10<=1]]]]]]
normalized: EG [E [true U [[[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]]]]
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
.
EG iterations: 1
-> the formula is TRUE
FORMULA StigmergyElection-PT-10a-CTLFireability-13 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.184sec
checking: AF [[AF [[[[[[1<=p111 & p111<=1] & [1<=p100 & p100<=1]] & [1<=p87 & p87<=1]] & [[1<=p76 & p76<=1] & [1<=p65 & p65<=1]]] & [[[[1<=p54 & p54<=1] & [1<=p43 & p43<=1]] & [1<=p32 & p32<=1]] & [[1<=p21 & p21<=1] & [1<=p10 & p10<=1]]]]] & EG [AX [[[[[[0<=p111 & p111<=0] | [0<=p100 & p100<=0]] | [0<=p87 & p87<=0]] | [[0<=p76 & p76<=0] | [0<=p65 & p65<=0]]] | [[[[0<=p54 & p54<=0] | [0<=p43 & p43<=0]] | [0<=p32 & p32<=0]] | [[0<=p21 & p21<=0] | [0<=p10 & p10<=0]]]]]]]]
normalized: ~ [EG [~ [[EG [~ [EX [~ [[[[[0<=p10 & p10<=0] | [0<=p21 & p21<=0]] | [[0<=p32 & p32<=0] | [[0<=p43 & p43<=0] | [0<=p54 & p54<=0]]]] | [[[0<=p65 & p65<=0] | [0<=p76 & p76<=0]] | [[0<=p87 & p87<=0] | [[0<=p100 & p100<=0] | [0<=p111 & p111<=0]]]]]]]]] & ~ [EG [~ [[[[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]]]]]]]]]
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
......................
EG iterations: 22
abstracting: (p111<=0)
states: 8,625,181 (6)
abstracting: (0<=p111)
states: 10,853,607 (7)
abstracting: (p100<=0)
states: 8,638,303 (6)
abstracting: (0<=p100)
states: 10,853,607 (7)
abstracting: (p87<=0)
states: 8,625,181 (6)
abstracting: (0<=p87)
states: 10,853,607 (7)
abstracting: (p76<=0)
states: 8,625,181 (6)
abstracting: (0<=p76)
states: 10,853,607 (7)
abstracting: (p65<=0)
states: 8,625,181 (6)
abstracting: (0<=p65)
states: 10,853,607 (7)
abstracting: (p54<=0)
states: 8,625,181 (6)
abstracting: (0<=p54)
states: 10,853,607 (7)
abstracting: (p43<=0)
states: 8,625,181 (6)
abstracting: (0<=p43)
states: 10,853,607 (7)
abstracting: (p32<=0)
states: 8,625,181 (6)
abstracting: (0<=p32)
states: 10,853,607 (7)
abstracting: (p21<=0)
states: 8,625,181 (6)
abstracting: (0<=p21)
states: 10,853,607 (7)
abstracting: (p10<=0)
states: 8,625,181 (6)
abstracting: (0<=p10)
states: 10,853,607 (7)
......................
EG iterations: 21
EG iterations: 0
-> the formula is FALSE
FORMULA StigmergyElection-PT-10a-CTLFireability-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 1.837sec
checking: AG [[[[[p54<=0 & 0<=p54] | [[p65<=0 & 0<=p65] | [p76<=0 & 0<=p76]]] | [[[0<=p100 & p100<=0] | [p111<=0 & 0<=p111]] | [0<=p87 & p87<=0]]] | [[AG [[[[[[p21<=0 & 0<=p21] | [p10<=0 & 0<=p10]] | [[[0<=p54 & p54<=0] | [p43<=0 & 0<=p43]] | [p32<=0 & 0<=p32]]] | [[[0<=p87 & p87<=0] | [[p111<=0 & 0<=p111] | [0<=p100 & p100<=0]]] | [[p76<=0 & 0<=p76] | [0<=p65 & p65<=0]]]] | [[[[0<=p87 & p87<=0] | [[p100<=0 & 0<=p100] | [0<=p111 & p111<=0]]] | [[0<=p76 & p76<=0] | [0<=p65 & p65<=0]]] | [[[p21<=0 & 0<=p21] | [p10<=0 & 0<=p10]] | [[[0<=p43 & p43<=0] | [p54<=0 & 0<=p54]] | [p32<=0 & 0<=p32]]]]]] | [p10<=0 & 0<=p10]] | [[p21<=0 & 0<=p21] | [[p32<=0 & 0<=p32] | [p43<=0 & 0<=p43]]]]]]
normalized: ~ [E [true U ~ [[[[[[p43<=0 & 0<=p43] | [p32<=0 & 0<=p32]] | [p21<=0 & 0<=p21]] | [[p10<=0 & 0<=p10] | ~ [E [true U ~ [[[[[[p32<=0 & 0<=p32] | [[p54<=0 & 0<=p54] | [0<=p43 & p43<=0]]] | [[p10<=0 & 0<=p10] | [p21<=0 & 0<=p21]]] | [[[0<=p65 & p65<=0] | [0<=p76 & p76<=0]] | [[[0<=p111 & p111<=0] | [p100<=0 & 0<=p100]] | [0<=p87 & p87<=0]]]] | [[[[0<=p65 & p65<=0] | [p76<=0 & 0<=p76]] | [[[0<=p100 & p100<=0] | [p111<=0 & 0<=p111]] | [0<=p87 & p87<=0]]] | [[[p32<=0 & 0<=p32] | [[p43<=0 & 0<=p43] | [0<=p54 & p54<=0]]] | [[p10<=0 & 0<=p10] | [p21<=0 & 0<=p21]]]]]]]]]] | [[[0<=p87 & p87<=0] | [[p111<=0 & 0<=p111] | [0<=p100 & p100<=0]]] | [[[p76<=0 & 0<=p76] | [p65<=0 & 0<=p65]] | [p54<=0 & 0<=p54]]]]]]]
abstracting: (0<=p54)
states: 10,853,607 (7)
abstracting: (p54<=0)
states: 8,625,181 (6)
abstracting: (0<=p65)
states: 10,853,607 (7)
abstracting: (p65<=0)
states: 8,625,181 (6)
abstracting: (0<=p76)
states: 10,853,607 (7)
abstracting: (p76<=0)
states: 8,625,181 (6)
abstracting: (p100<=0)
states: 8,638,303 (6)
abstracting: (0<=p100)
states: 10,853,607 (7)
abstracting: (0<=p111)
states: 10,853,607 (7)
abstracting: (p111<=0)
states: 8,625,181 (6)
abstracting: (p87<=0)
states: 8,625,181 (6)
abstracting: (0<=p87)
states: 10,853,607 (7)
abstracting: (0<=p21)
states: 10,853,607 (7)
abstracting: (p21<=0)
states: 8,625,181 (6)
abstracting: (0<=p10)
states: 10,853,607 (7)
abstracting: (p10<=0)
states: 8,625,181 (6)
abstracting: (p54<=0)
states: 8,625,181 (6)
abstracting: (0<=p54)
states: 10,853,607 (7)
abstracting: (0<=p43)
states: 10,853,607 (7)
abstracting: (p43<=0)
states: 8,625,181 (6)
abstracting: (0<=p32)
states: 10,853,607 (7)
abstracting: (p32<=0)
states: 8,625,181 (6)
abstracting: (p87<=0)
states: 8,625,181 (6)
abstracting: (0<=p87)
states: 10,853,607 (7)
abstracting: (0<=p111)
states: 10,853,607 (7)
abstracting: (p111<=0)
states: 8,625,181 (6)
abstracting: (p100<=0)
states: 8,638,303 (6)
abstracting: (0<=p100)
states: 10,853,607 (7)
abstracting: (0<=p76)
states: 10,853,607 (7)
abstracting: (p76<=0)
states: 8,625,181 (6)
abstracting: (p65<=0)
states: 8,625,181 (6)
abstracting: (0<=p65)
states: 10,853,607 (7)
abstracting: (p87<=0)
states: 8,625,181 (6)
abstracting: (0<=p87)
states: 10,853,607 (7)
abstracting: (0<=p100)
states: 10,853,607 (7)
abstracting: (p100<=0)
states: 8,638,303 (6)
abstracting: (p111<=0)
states: 8,625,181 (6)
abstracting: (0<=p111)
states: 10,853,607 (7)
abstracting: (p76<=0)
states: 8,625,181 (6)
abstracting: (0<=p76)
states: 10,853,607 (7)
abstracting: (p65<=0)
states: 8,625,181 (6)
abstracting: (0<=p65)
states: 10,853,607 (7)
abstracting: (0<=p21)
states: 10,853,607 (7)
abstracting: (p21<=0)
states: 8,625,181 (6)
abstracting: (0<=p10)
states: 10,853,607 (7)
abstracting: (p10<=0)
states: 8,625,181 (6)
abstracting: (p43<=0)
states: 8,625,181 (6)
abstracting: (0<=p43)
states: 10,853,607 (7)
abstracting: (0<=p54)
states: 10,853,607 (7)
abstracting: (p54<=0)
states: 8,625,181 (6)
abstracting: (0<=p32)
states: 10,853,607 (7)
abstracting: (p32<=0)
states: 8,625,181 (6)
abstracting: (0<=p10)
states: 10,853,607 (7)
abstracting: (p10<=0)
states: 8,625,181 (6)
abstracting: (0<=p21)
states: 10,853,607 (7)
abstracting: (p21<=0)
states: 8,625,181 (6)
abstracting: (0<=p32)
states: 10,853,607 (7)
abstracting: (p32<=0)
states: 8,625,181 (6)
abstracting: (0<=p43)
states: 10,853,607 (7)
abstracting: (p43<=0)
states: 8,625,181 (6)
-> the formula is FALSE
FORMULA StigmergyElection-PT-10a-CTLFireability-04 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.054sec
checking: EG [[[[[[0<=p111 & p111<=0] | [0<=p100 & p100<=0]] | [0<=p87 & p87<=0]] | [[[0<=p76 & p76<=0] | [0<=p65 & p65<=0]] | [0<=p54 & p54<=0]]] | [[[[0<=p43 & p43<=0] | [0<=p32 & p32<=0]] | [0<=p21 & p21<=0]] | [[0<=p10 & p10<=0] | ~ [A [AF [[[[[[1<=p111 & p111<=1] & [1<=p100 & p100<=1]] & [1<=p87 & p87<=1]] & [[1<=p76 & p76<=1] & [1<=p65 & p65<=1]]] & [[[[1<=p54 & p54<=1] & [1<=p43 & p43<=1]] & [1<=p32 & p32<=1]] & [[1<=p21 & p21<=1] & [1<=p10 & p10<=1]]]]] U EX [[[[[[[1<=p111 & p111<=1] & [1<=p100 & p100<=1]] & [1<=p87 & p87<=1]] & [[1<=p76 & p76<=1] & [1<=p65 & p65<=1]]] & [[[[1<=p54 & p54<=1] & [1<=p43 & p43<=1]] & [1<=p32 & p32<=1]] & [[1<=p21 & p21<=1] & [1<=p10 & p10<=1]]]] & [[[[[1<=p111 & p111<=1] & [1<=p100 & p100<=1]] & [1<=p87 & p87<=1]] & [[1<=p76 & p76<=1] & [1<=p65 & p65<=1]]] & [[[[1<=p54 & p54<=1] & [1<=p43 & p43<=1]] & [1<=p32 & p32<=1]] & [[1<=p21 & p21<=1] & [1<=p10 & p10<=1]]]]]]]]]]]]
normalized: EG [[[[~ [[~ [EG [~ [EX [[[[[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]] & [[[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]]]]]]] & ~ [E [~ [EX [[[[[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]] & [[[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]]]]] U [EG [~ [[[[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]]]] & ~ [EX [[[[[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]] & [[[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]]]]]]]]]] | [0<=p10 & p10<=0]] | [[0<=p21 & p21<=0] | [[0<=p32 & p32<=0] | [0<=p43 & p43<=0]]]] | [[[0<=p54 & p54<=0] | [[0<=p65 & p65<=0] | [0<=p76 & p76<=0]]] | [[0<=p87 & p87<=0] | [[0<=p100 & p100<=0] | [0<=p111 & p111<=0]]]]]]
abstracting: (p111<=0)
states: 8,625,181 (6)
abstracting: (0<=p111)
states: 10,853,607 (7)
abstracting: (p100<=0)
states: 8,638,303 (6)
abstracting: (0<=p100)
states: 10,853,607 (7)
abstracting: (p87<=0)
states: 8,625,181 (6)
abstracting: (0<=p87)
states: 10,853,607 (7)
abstracting: (p76<=0)
states: 8,625,181 (6)
abstracting: (0<=p76)
states: 10,853,607 (7)
abstracting: (p65<=0)
states: 8,625,181 (6)
abstracting: (0<=p65)
states: 10,853,607 (7)
abstracting: (p54<=0)
states: 8,625,181 (6)
abstracting: (0<=p54)
states: 10,853,607 (7)
abstracting: (p43<=0)
states: 8,625,181 (6)
abstracting: (0<=p43)
states: 10,853,607 (7)
abstracting: (p32<=0)
states: 8,625,181 (6)
abstracting: (0<=p32)
states: 10,853,607 (7)
abstracting: (p21<=0)
states: 8,625,181 (6)
abstracting: (0<=p21)
states: 10,853,607 (7)
abstracting: (p10<=0)
states: 8,625,181 (6)
abstracting: (0<=p10)
states: 10,853,607 (7)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
.abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
......................
EG iterations: 22
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
.abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
......................
EG iterations: 21
......................
EG iterations: 22
-> the formula is FALSE
FORMULA StigmergyElection-PT-10a-CTLFireability-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 2.750sec
checking: EX [EF [[E [[[[[[[p43<=1 & 1<=p43] & [1<=p54 & p54<=1]] & [1<=p32 & p32<=1]] & [[p10<=1 & 1<=p10] & [p21<=1 & 1<=p21]]] & [[[[1<=p111 & p111<=1] & [p100<=1 & 1<=p100]] & [1<=p87 & p87<=1]] & [[1<=p76 & p76<=1] & [p65<=1 & 1<=p65]]]] & [[[[[1<=p111 & p111<=1] & [1<=p100 & p100<=1]] & [1<=p87 & p87<=1]] & [[1<=p76 & p76<=1] & [1<=p65 & p65<=1]]] & [[[[1<=p54 & p54<=1] & [1<=p43 & p43<=1]] & [1<=p32 & p32<=1]] & [[1<=p21 & p21<=1] & [1<=p10 & p10<=1]]]]] U [[[[[p43<=1 & 1<=p43] & [1<=p32 & p32<=1]] & [1<=p21 & p21<=1]] & [[1<=p10 & p10<=1] & EG [[[[[p32<=1 & 1<=p32] & [[1<=p54 & p54<=1] & [p43<=1 & 1<=p43]]] & [[1<=p21 & p21<=1] & [p10<=1 & 1<=p10]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[p87<=1 & 1<=p87] & [[1<=p100 & p100<=1] & [p111<=1 & 1<=p111]]]]]]]] & [[[1<=p54 & p54<=1] & [[1<=p65 & p65<=1] & [1<=p76 & p76<=1]]] & [[[p100<=1 & 1<=p100] & [1<=p111 & p111<=1]] & [p87<=1 & 1<=p87]]]]] & AG [[[[[[1<=p111 & p111<=1] & [1<=p100 & p100<=1]] & [1<=p87 & p87<=1]] & [[1<=p76 & p76<=1] & [1<=p65 & p65<=1]]] & [[[[1<=p54 & p54<=1] & [1<=p43 & p43<=1]] & [1<=p32 & p32<=1]] & [[p21<=1 & 1<=p21] & [p10<=1 & 1<=p10]]]]]]]]
normalized: EX [E [true U [~ [E [true U ~ [[[[[p10<=1 & 1<=p10] & [p21<=1 & 1<=p21]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]]]]] & E [[[[[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]] & [[[[p65<=1 & 1<=p65] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[p100<=1 & 1<=p100] & [1<=p111 & p111<=1]]]] & [[[p21<=1 & 1<=p21] & [p10<=1 & 1<=p10]] & [[1<=p32 & p32<=1] & [[1<=p54 & p54<=1] & [p43<=1 & 1<=p43]]]]]] U [[[[p87<=1 & 1<=p87] & [[1<=p111 & p111<=1] & [p100<=1 & 1<=p100]]] & [[[1<=p76 & p76<=1] & [1<=p65 & p65<=1]] & [1<=p54 & p54<=1]]] & [[EG [[[[[[p111<=1 & 1<=p111] & [1<=p100 & p100<=1]] & [p87<=1 & 1<=p87]] & [[1<=p76 & p76<=1] & [1<=p65 & p65<=1]]] & [[[p10<=1 & 1<=p10] & [1<=p21 & p21<=1]] & [[[p43<=1 & 1<=p43] & [1<=p54 & p54<=1]] & [p32<=1 & 1<=p32]]]]] & [1<=p10 & p10<=1]] & [[1<=p21 & p21<=1] & [[1<=p32 & p32<=1] & [p43<=1 & 1<=p43]]]]]]]]]
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
.
EG iterations: 1
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
.-> the formula is FALSE
FORMULA StigmergyElection-PT-10a-CTLFireability-00 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.330sec
checking: AG [[[[EX [AX [[[[[1<=p87 & p87<=1] & [[p100<=1 & 1<=p100] & [1<=p111 & p111<=1]]] & [[p76<=1 & 1<=p76] & [p65<=1 & 1<=p65]]] & [[[1<=p10 & p10<=1] & [p21<=1 & 1<=p21]] & [[p32<=1 & 1<=p32] & [[p43<=1 & 1<=p43] & [p54<=1 & 1<=p54]]]]]]] & EG [[AF [[[[[[1<=p111 & p111<=1] & [p100<=1 & 1<=p100]] & [1<=p87 & p87<=1]] & [[p76<=1 & 1<=p76] & [1<=p65 & p65<=1]]] & [[[p10<=1 & 1<=p10] & [p21<=1 & 1<=p21]] & [[[1<=p43 & p43<=1] & [1<=p54 & p54<=1]] & [p32<=1 & 1<=p32]]]]] & EX [[[[[1<=p87 & p87<=1] & [[p100<=1 & 1<=p100] & [p111<=1 & 1<=p111]]] & [[1<=p65 & p65<=1] & [p76<=1 & 1<=p76]]] & [[[1<=p21 & p21<=1] & [p10<=1 & 1<=p10]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [p54<=1 & 1<=p54]]]]]]]]] | AF [EG [[[[[p10<=1 & 1<=p10] & [p21<=1 & 1<=p21]] & [[[1<=p54 & p54<=1] & [1<=p43 & p43<=1]] & [p32<=1 & 1<=p32]]] & [[[1<=p76 & p76<=1] & [1<=p65 & p65<=1]] & [[p87<=1 & 1<=p87] & [[p100<=1 & 1<=p100] & [1<=p111 & p111<=1]]]]]]]] & AX [EG [[[[[0<=p76 & p76<=0] | [0<=p65 & p65<=0]] | [[p87<=0 & 0<=p87] | [[p100<=0 & 0<=p100] | [p111<=0 & 0<=p111]]]] | [[[0<=p10 & p10<=0] | [0<=p21 & p21<=0]] | [[p32<=0 & 0<=p32] | [[p43<=0 & 0<=p43] | [p54<=0 & 0<=p54]]]]]]]]]
normalized: ~ [E [true U ~ [[~ [EX [~ [EG [[[[[[p54<=0 & 0<=p54] | [p43<=0 & 0<=p43]] | [p32<=0 & 0<=p32]] | [[0<=p21 & p21<=0] | [0<=p10 & p10<=0]]] | [[[[p111<=0 & 0<=p111] | [p100<=0 & 0<=p100]] | [p87<=0 & 0<=p87]] | [[0<=p65 & p65<=0] | [0<=p76 & p76<=0]]]]]]]] & [~ [EG [~ [EG [[[[[[1<=p111 & p111<=1] & [p100<=1 & 1<=p100]] & [p87<=1 & 1<=p87]] & [[1<=p65 & p65<=1] & [1<=p76 & p76<=1]]] & [[[p32<=1 & 1<=p32] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]] & [[p21<=1 & 1<=p21] & [p10<=1 & 1<=p10]]]]]]]] | [EG [[EX [[[[[[p54<=1 & 1<=p54] & [1<=p43 & p43<=1]] & [1<=p32 & p32<=1]] & [[p10<=1 & 1<=p10] & [1<=p21 & p21<=1]]] & [[[p76<=1 & 1<=p76] & [1<=p65 & p65<=1]] & [[[p111<=1 & 1<=p111] & [p100<=1 & 1<=p100]] & [1<=p87 & p87<=1]]]]] & ~ [EG [~ [[[[[p32<=1 & 1<=p32] & [[1<=p54 & p54<=1] & [1<=p43 & p43<=1]]] & [[p21<=1 & 1<=p21] & [p10<=1 & 1<=p10]]] & [[[1<=p65 & p65<=1] & [p76<=1 & 1<=p76]] & [[1<=p87 & p87<=1] & [[p100<=1 & 1<=p100] & [1<=p111 & p111<=1]]]]]]]]]] & EX [~ [EX [~ [[[[[[p54<=1 & 1<=p54] & [p43<=1 & 1<=p43]] & [p32<=1 & 1<=p32]] & [[p21<=1 & 1<=p21] & [1<=p10 & p10<=1]]] & [[[p65<=1 & 1<=p65] & [p76<=1 & 1<=p76]] & [[[1<=p111 & p111<=1] & [p100<=1 & 1<=p100]] & [1<=p87 & p87<=1]]]]]]]]]]]]]]
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
..abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
......................
EG iterations: 22
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
..
EG iterations: 1
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
.
EG iterations: 1
......................
EG iterations: 22
abstracting: (p76<=0)
states: 8,625,181 (6)
abstracting: (0<=p76)
states: 10,853,607 (7)
abstracting: (p65<=0)
states: 8,625,181 (6)
abstracting: (0<=p65)
states: 10,853,607 (7)
abstracting: (0<=p87)
states: 10,853,607 (7)
abstracting: (p87<=0)
states: 8,625,181 (6)
abstracting: (0<=p100)
states: 10,853,607 (7)
abstracting: (p100<=0)
states: 8,638,303 (6)
abstracting: (0<=p111)
states: 10,853,607 (7)
abstracting: (p111<=0)
states: 8,625,181 (6)
abstracting: (p10<=0)
states: 8,625,181 (6)
abstracting: (0<=p10)
states: 10,853,607 (7)
abstracting: (p21<=0)
states: 8,625,181 (6)
abstracting: (0<=p21)
states: 10,853,607 (7)
abstracting: (0<=p32)
states: 10,853,607 (7)
abstracting: (p32<=0)
states: 8,625,181 (6)
abstracting: (0<=p43)
states: 10,853,607 (7)
abstracting: (p43<=0)
states: 8,625,181 (6)
abstracting: (0<=p54)
states: 10,853,607 (7)
abstracting: (p54<=0)
states: 8,625,181 (6)
......................
EG iterations: 22
.-> the formula is FALSE
FORMULA StigmergyElection-PT-10a-CTLFireability-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.232sec
checking: EF [[[[[[[[[0<=p111 & p111<=0] | [0<=p100 & p100<=0]] | [0<=p87 & p87<=0]] | [[0<=p76 & p76<=0] | [0<=p65 & p65<=0]]] | [[[[0<=p54 & p54<=0] | [0<=p43 & p43<=0]] | [0<=p32 & p32<=0]] | [[0<=p21 & p21<=0] | [0<=p10 & p10<=0]]]] & EG [[[[[[0<=p111 & p111<=0] | [0<=p100 & p100<=0]] | [0<=p87 & p87<=0]] | [[0<=p76 & p76<=0] | [0<=p65 & p65<=0]]] | [[[[0<=p54 & p54<=0] | [0<=p43 & p43<=0]] | [0<=p32 & p32<=0]] | [[0<=p21 & p21<=0] | [0<=p10 & p10<=0]]]]]] | EX [EG [[[[[[1<=p111 & p111<=1] & [1<=p100 & p100<=1]] & [1<=p87 & p87<=1]] & [[1<=p76 & p76<=1] & [1<=p65 & p65<=1]]] & [[[[1<=p54 & p54<=1] & [1<=p43 & p43<=1]] & [1<=p32 & p32<=1]] & [[1<=p21 & p21<=1] & [1<=p10 & p10<=1]]]]]]] | [AF [EG [[[[[[0<=p111 & p111<=0] | [0<=p100 & p100<=0]] | [0<=p87 & p87<=0]] | [[0<=p76 & p76<=0] | [0<=p65 & p65<=0]]] | [[[[0<=p54 & p54<=0] | [0<=p43 & p43<=0]] | [0<=p32 & p32<=0]] | [[0<=p21 & p21<=0] | [0<=p10 & p10<=0]]]]]] | A [[[[[[1<=p111 & p111<=1] & [p100<=1 & 1<=p100]] & [p87<=1 & 1<=p87]] & [[1<=p76 & p76<=1] & [1<=p65 & p65<=1]]] & [[[[1<=p54 & p54<=1] & [p43<=1 & 1<=p43]] & [1<=p32 & p32<=1]] & [[1<=p10 & p10<=1] & [1<=p21 & p21<=1]]]] U AX [[[[[[1<=p111 & p111<=1] & [1<=p100 & p100<=1]] & [1<=p87 & p87<=1]] & [[1<=p76 & p76<=1] & [1<=p65 & p65<=1]]] & [[[[1<=p54 & p54<=1] & [1<=p43 & p43<=1]] & [1<=p32 & p32<=1]] & [[1<=p21 & p21<=1] & [1<=p10 & p10<=1]]]]]]]]]
normalized: E [true U [[[~ [EG [EX [~ [[[[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]]]]]] & ~ [E [EX [~ [[[[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]]]] U [~ [[[[[1<=p21 & p21<=1] & [1<=p10 & p10<=1]] & [[1<=p32 & p32<=1] & [[p43<=1 & 1<=p43] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[p87<=1 & 1<=p87] & [[p100<=1 & 1<=p100] & [1<=p111 & p111<=1]]]]]] & EX [~ [[[[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]]]]]]]] | ~ [EG [~ [EG [[[[[0<=p10 & p10<=0] | [0<=p21 & p21<=0]] | [[0<=p32 & p32<=0] | [[0<=p43 & p43<=0] | [0<=p54 & p54<=0]]]] | [[[0<=p65 & p65<=0] | [0<=p76 & p76<=0]] | [[0<=p87 & p87<=0] | [[0<=p100 & p100<=0] | [0<=p111 & p111<=0]]]]]]]]]] | [EX [EG [[[[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]]]] | [EG [[[[[0<=p10 & p10<=0] | [0<=p21 & p21<=0]] | [[0<=p32 & p32<=0] | [[0<=p43 & p43<=0] | [0<=p54 & p54<=0]]]] | [[[0<=p65 & p65<=0] | [0<=p76 & p76<=0]] | [[0<=p87 & p87<=0] | [[0<=p100 & p100<=0] | [0<=p111 & p111<=0]]]]]] & [[[[0<=p10 & p10<=0] | [0<=p21 & p21<=0]] | [[0<=p32 & p32<=0] | [[0<=p43 & p43<=0] | [0<=p54 & p54<=0]]]] | [[[0<=p65 & p65<=0] | [0<=p76 & p76<=0]] | [[0<=p87 & p87<=0] | [[0<=p100 & p100<=0] | [0<=p111 & p111<=0]]]]]]]]]
abstracting: (p111<=0)
states: 8,625,181 (6)
abstracting: (0<=p111)
states: 10,853,607 (7)
abstracting: (p100<=0)
states: 8,638,303 (6)
abstracting: (0<=p100)
states: 10,853,607 (7)
abstracting: (p87<=0)
states: 8,625,181 (6)
abstracting: (0<=p87)
states: 10,853,607 (7)
abstracting: (p76<=0)
states: 8,625,181 (6)
abstracting: (0<=p76)
states: 10,853,607 (7)
abstracting: (p65<=0)
states: 8,625,181 (6)
abstracting: (0<=p65)
states: 10,853,607 (7)
abstracting: (p54<=0)
states: 8,625,181 (6)
abstracting: (0<=p54)
states: 10,853,607 (7)
abstracting: (p43<=0)
states: 8,625,181 (6)
abstracting: (0<=p43)
states: 10,853,607 (7)
abstracting: (p32<=0)
states: 8,625,181 (6)
abstracting: (0<=p32)
states: 10,853,607 (7)
abstracting: (p21<=0)
states: 8,625,181 (6)
abstracting: (0<=p21)
states: 10,853,607 (7)
abstracting: (p10<=0)
states: 8,625,181 (6)
abstracting: (0<=p10)
states: 10,853,607 (7)
abstracting: (p111<=0)
states: 8,625,181 (6)
abstracting: (0<=p111)
states: 10,853,607 (7)
abstracting: (p100<=0)
states: 8,638,303 (6)
abstracting: (0<=p100)
states: 10,853,607 (7)
abstracting: (p87<=0)
states: 8,625,181 (6)
abstracting: (0<=p87)
states: 10,853,607 (7)
abstracting: (p76<=0)
states: 8,625,181 (6)
abstracting: (0<=p76)
states: 10,853,607 (7)
abstracting: (p65<=0)
states: 8,625,181 (6)
abstracting: (0<=p65)
states: 10,853,607 (7)
abstracting: (p54<=0)
states: 8,625,181 (6)
abstracting: (0<=p54)
states: 10,853,607 (7)
abstracting: (p43<=0)
states: 8,625,181 (6)
abstracting: (0<=p43)
states: 10,853,607 (7)
abstracting: (p32<=0)
states: 8,625,181 (6)
abstracting: (0<=p32)
states: 10,853,607 (7)
abstracting: (p21<=0)
states: 8,625,181 (6)
abstracting: (0<=p21)
states: 10,853,607 (7)
abstracting: (p10<=0)
states: 8,625,181 (6)
abstracting: (0<=p10)
states: 10,853,607 (7)
......................
EG iterations: 22
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
.
EG iterations: 1
.abstracting: (p111<=0)
states: 8,625,181 (6)
abstracting: (0<=p111)
states: 10,853,607 (7)
abstracting: (p100<=0)
states: 8,638,303 (6)
abstracting: (0<=p100)
states: 10,853,607 (7)
abstracting: (p87<=0)
states: 8,625,181 (6)
abstracting: (0<=p87)
states: 10,853,607 (7)
abstracting: (p76<=0)
states: 8,625,181 (6)
abstracting: (0<=p76)
states: 10,853,607 (7)
abstracting: (p65<=0)
states: 8,625,181 (6)
abstracting: (0<=p65)
states: 10,853,607 (7)
abstracting: (p54<=0)
states: 8,625,181 (6)
abstracting: (0<=p54)
states: 10,853,607 (7)
abstracting: (p43<=0)
states: 8,625,181 (6)
abstracting: (0<=p43)
states: 10,853,607 (7)
abstracting: (p32<=0)
states: 8,625,181 (6)
abstracting: (0<=p32)
states: 10,853,607 (7)
abstracting: (p21<=0)
states: 8,625,181 (6)
abstracting: (0<=p21)
states: 10,853,607 (7)
abstracting: (p10<=0)
states: 8,625,181 (6)
abstracting: (0<=p10)
states: 10,853,607 (7)
......................
EG iterations: 22
.
EG iterations: 1
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
.abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
.abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
......................
EG iterations: 21
-> the formula is TRUE
FORMULA StigmergyElection-PT-10a-CTLFireability-06 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 1.405sec
checking: EG [AG [EF [[[[[[[[1<=p54 & p54<=1] & [1<=p43 & p43<=1]] & [1<=p32 & p32<=1]] & [[1<=p21 & p21<=1] & [1<=p10 & p10<=1]]] & [[[p65<=1 & 1<=p65] & [p76<=1 & 1<=p76]] & [[p87<=1 & 1<=p87] & [[p100<=1 & 1<=p100] & [p111<=1 & 1<=p111]]]]] | [[[[[0<=p87 & p87<=0] | [[0<=p100 & p100<=0] | [0<=p111 & p111<=0]]] | [[0<=p76 & p76<=0] | [0<=p65 & p65<=0]]] | [[[0<=p21 & p21<=0] | [p10<=0 & 0<=p10]] | [[p32<=0 & 0<=p32] | [[p43<=0 & 0<=p43] | [p54<=0 & 0<=p54]]]]] & A [[[[[[1<=p111 & p111<=1] & [1<=p100 & p100<=1]] & [1<=p87 & p87<=1]] & [[1<=p76 & p76<=1] & [1<=p65 & p65<=1]]] & [[[1<=p21 & p21<=1] & [1<=p10 & p10<=1]] & [[p32<=1 & 1<=p32] & [[1<=p54 & p54<=1] & [p43<=1 & 1<=p43]]]]] U [[[[p10<=1 & 1<=p10] & [p21<=1 & 1<=p21]] & [[p32<=1 & 1<=p32] & [[1<=p54 & p54<=1] & [p43<=1 & 1<=p43]]]] & [[[1<=p76 & p76<=1] & [1<=p65 & p65<=1]] & [[1<=p87 & p87<=1] & [[p100<=1 & 1<=p100] & [p111<=1 & 1<=p111]]]]]]]] | E [[[[[[1<=p54 & p54<=1] & [1<=p43 & p43<=1]] & [1<=p32 & p32<=1]] & [[1<=p21 & p21<=1] & [1<=p10 & p10<=1]]] & [[[[1<=p111 & p111<=1] & [1<=p100 & p100<=1]] & [1<=p87 & p87<=1]] & [[1<=p76 & p76<=1] & [1<=p65 & p65<=1]]]] U [[[[1<=p32 & p32<=1] & [[p54<=1 & 1<=p54] & [p43<=1 & 1<=p43]]] & [[1<=p10 & p10<=1] & [1<=p21 & p21<=1]]] & [[[1<=p76 & p76<=1] & [p65<=1 & 1<=p65]] & [[1<=p87 & p87<=1] & [[1<=p111 & p111<=1] & [p100<=1 & 1<=p100]]]]]]]]]]
normalized: EG [~ [E [true U ~ [E [true U [E [[[[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]] & [[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]]] U [[[[[p100<=1 & 1<=p100] & [1<=p111 & p111<=1]] & [1<=p87 & p87<=1]] & [[p65<=1 & 1<=p65] & [1<=p76 & p76<=1]]] & [[[1<=p21 & p21<=1] & [1<=p10 & p10<=1]] & [[[p43<=1 & 1<=p43] & [p54<=1 & 1<=p54]] & [1<=p32 & p32<=1]]]]] | [[[~ [EG [~ [[[[[[p111<=1 & 1<=p111] & [p100<=1 & 1<=p100]] & [1<=p87 & p87<=1]] & [[1<=p65 & p65<=1] & [1<=p76 & p76<=1]]] & [[[[p43<=1 & 1<=p43] & [1<=p54 & p54<=1]] & [p32<=1 & 1<=p32]] & [[p21<=1 & 1<=p21] & [p10<=1 & 1<=p10]]]]]]] & ~ [E [~ [[[[[[p111<=1 & 1<=p111] & [p100<=1 & 1<=p100]] & [1<=p87 & p87<=1]] & [[1<=p65 & p65<=1] & [1<=p76 & p76<=1]]] & [[[[p43<=1 & 1<=p43] & [1<=p54 & p54<=1]] & [p32<=1 & 1<=p32]] & [[p21<=1 & 1<=p21] & [p10<=1 & 1<=p10]]]]] U [~ [[[[[[p43<=1 & 1<=p43] & [1<=p54 & p54<=1]] & [p32<=1 & 1<=p32]] & [[1<=p10 & p10<=1] & [1<=p21 & p21<=1]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]]] & ~ [[[[[[p111<=1 & 1<=p111] & [p100<=1 & 1<=p100]] & [1<=p87 & p87<=1]] & [[1<=p65 & p65<=1] & [1<=p76 & p76<=1]]] & [[[[p43<=1 & 1<=p43] & [1<=p54 & p54<=1]] & [p32<=1 & 1<=p32]] & [[p21<=1 & 1<=p21] & [p10<=1 & 1<=p10]]]]]]]]] & [[[[[p54<=0 & 0<=p54] | [p43<=0 & 0<=p43]] | [p32<=0 & 0<=p32]] | [[p10<=0 & 0<=p10] | [0<=p21 & p21<=0]]] | [[[0<=p65 & p65<=0] | [0<=p76 & p76<=0]] | [[[0<=p111 & p111<=0] | [0<=p100 & p100<=0]] | [0<=p87 & p87<=0]]]]] | [[[[[p111<=1 & 1<=p111] & [p100<=1 & 1<=p100]] & [p87<=1 & 1<=p87]] & [[p76<=1 & 1<=p76] & [p65<=1 & 1<=p65]]] & [[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]]]]]]]]]]
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (p87<=0)
states: 8,625,181 (6)
abstracting: (0<=p87)
states: 10,853,607 (7)
abstracting: (p100<=0)
states: 8,638,303 (6)
abstracting: (0<=p100)
states: 10,853,607 (7)
abstracting: (p111<=0)
states: 8,625,181 (6)
abstracting: (0<=p111)
states: 10,853,607 (7)
abstracting: (p76<=0)
states: 8,625,181 (6)
abstracting: (0<=p76)
states: 10,853,607 (7)
abstracting: (p65<=0)
states: 8,625,181 (6)
abstracting: (0<=p65)
states: 10,853,607 (7)
abstracting: (p21<=0)
states: 8,625,181 (6)
abstracting: (0<=p21)
states: 10,853,607 (7)
abstracting: (0<=p10)
states: 10,853,607 (7)
abstracting: (p10<=0)
states: 8,625,181 (6)
abstracting: (0<=p32)
states: 10,853,607 (7)
abstracting: (p32<=0)
states: 8,625,181 (6)
abstracting: (0<=p43)
states: 10,853,607 (7)
abstracting: (p43<=0)
states: 8,625,181 (6)
abstracting: (0<=p54)
states: 10,853,607 (7)
abstracting: (p54<=0)
states: 8,625,181 (6)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
......................
EG iterations: 22
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
.
EG iterations: 1
-> the formula is FALSE
FORMULA StigmergyElection-PT-10a-CTLFireability-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.418sec
checking: [AF [EX [AX [AF [[[[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[p87<=1 & 1<=p87] & [[1<=p111 & p111<=1] & [p100<=1 & 1<=p100]]]] & [[[[1<=p54 & p54<=1] & [p43<=1 & 1<=p43]] & [p32<=1 & 1<=p32]] & [[p10<=1 & 1<=p10] & [1<=p21 & p21<=1]]]]]]]] & AF [~ [A [[E [[[[[1<=p65 & p65<=1] & [p76<=1 & 1<=p76]] & [[1<=p87 & p87<=1] & [[p111<=1 & 1<=p111] & [p100<=1 & 1<=p100]]]] & [[[p21<=1 & 1<=p21] & [p10<=1 & 1<=p10]] & [[p32<=1 & 1<=p32] & [[1<=p43 & p43<=1] & [p54<=1 & 1<=p54]]]]] U [[[[1<=p21 & p21<=1] & [p10<=1 & 1<=p10]] & [[[1<=p54 & p54<=1] & [p43<=1 & 1<=p43]] & [1<=p32 & p32<=1]]] & [[[[p100<=1 & 1<=p100] & [p111<=1 & 1<=p111]] & [1<=p87 & p87<=1]] & [[p76<=1 & 1<=p76] & [1<=p65 & p65<=1]]]]] & [EX [[[[[[p111<=1 & 1<=p111] & [p100<=1 & 1<=p100]] & [1<=p87 & p87<=1]] & [[1<=p76 & p76<=1] & [1<=p65 & p65<=1]]] & [[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[[1<=p43 & p43<=1] & [p54<=1 & 1<=p54]] & [1<=p32 & p32<=1]]]]] & ~ [[[[[1<=p21 & p21<=1] & [p10<=1 & 1<=p10]] & [[p32<=1 & 1<=p32] & [[p43<=1 & 1<=p43] & [1<=p54 & p54<=1]]]] & [[[1<=p76 & p76<=1] & [1<=p65 & p65<=1]] & [[p87<=1 & 1<=p87] & [[p100<=1 & 1<=p100] & [1<=p111 & p111<=1]]]]]]]] U ~ [[[[[[[1<=p100 & p100<=1] & [1<=p111 & p111<=1]] & [p87<=1 & 1<=p87]] & [[1<=p65 & p65<=1] & [p76<=1 & 1<=p76]]] & [[[p10<=1 & 1<=p10] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[p43<=1 & 1<=p43] & [p54<=1 & 1<=p54]]]]] & [[[[p65<=1 & 1<=p65] & [p76<=1 & 1<=p76]] & [[p87<=1 & 1<=p87] & [[1<=p111 & p111<=1] & [1<=p100 & p100<=1]]]] & [[[1<=p10 & p10<=1] & [p21<=1 & 1<=p21]] & [[p32<=1 & 1<=p32] & [[1<=p43 & p43<=1] & [p54<=1 & 1<=p54]]]]]]]]]]]
normalized: [~ [EG [[~ [EG [[[[[[[p54<=1 & 1<=p54] & [1<=p43 & p43<=1]] & [p32<=1 & 1<=p32]] & [[p21<=1 & 1<=p21] & [1<=p10 & p10<=1]]] & [[[[1<=p100 & p100<=1] & [1<=p111 & p111<=1]] & [p87<=1 & 1<=p87]] & [[p76<=1 & 1<=p76] & [p65<=1 & 1<=p65]]]] & [[[[[p54<=1 & 1<=p54] & [p43<=1 & 1<=p43]] & [1<=p32 & p32<=1]] & [[1<=p21 & p21<=1] & [p10<=1 & 1<=p10]]] & [[[p76<=1 & 1<=p76] & [1<=p65 & p65<=1]] & [[p87<=1 & 1<=p87] & [[1<=p111 & p111<=1] & [1<=p100 & p100<=1]]]]]]]] & ~ [E [[[[[[[p54<=1 & 1<=p54] & [1<=p43 & p43<=1]] & [p32<=1 & 1<=p32]] & [[p21<=1 & 1<=p21] & [1<=p10 & p10<=1]]] & [[[[1<=p100 & p100<=1] & [1<=p111 & p111<=1]] & [p87<=1 & 1<=p87]] & [[p76<=1 & 1<=p76] & [p65<=1 & 1<=p65]]]] & [[[[[p54<=1 & 1<=p54] & [p43<=1 & 1<=p43]] & [1<=p32 & p32<=1]] & [[1<=p21 & p21<=1] & [p10<=1 & 1<=p10]]] & [[[p76<=1 & 1<=p76] & [1<=p65 & p65<=1]] & [[p87<=1 & 1<=p87] & [[1<=p111 & p111<=1] & [1<=p100 & p100<=1]]]]]] U [~ [[[~ [[[[[[1<=p111 & p111<=1] & [p100<=1 & 1<=p100]] & [p87<=1 & 1<=p87]] & [[1<=p65 & p65<=1] & [1<=p76 & p76<=1]]] & [[[[1<=p54 & p54<=1] & [p43<=1 & 1<=p43]] & [p32<=1 & 1<=p32]] & [[p10<=1 & 1<=p10] & [1<=p21 & p21<=1]]]]] & EX [[[[[1<=p32 & p32<=1] & [[p54<=1 & 1<=p54] & [1<=p43 & p43<=1]]] & [[1<=p21 & p21<=1] & [1<=p10 & p10<=1]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[p100<=1 & 1<=p100] & [p111<=1 & 1<=p111]]]]]]] & E [[[[[[p54<=1 & 1<=p54] & [1<=p43 & p43<=1]] & [p32<=1 & 1<=p32]] & [[p10<=1 & 1<=p10] & [p21<=1 & 1<=p21]]] & [[[[p100<=1 & 1<=p100] & [p111<=1 & 1<=p111]] & [1<=p87 & p87<=1]] & [[p76<=1 & 1<=p76] & [1<=p65 & p65<=1]]]] U [[[[1<=p65 & p65<=1] & [p76<=1 & 1<=p76]] & [[1<=p87 & p87<=1] & [[p111<=1 & 1<=p111] & [p100<=1 & 1<=p100]]]] & [[[1<=p32 & p32<=1] & [[p43<=1 & 1<=p43] & [1<=p54 & p54<=1]]] & [[p10<=1 & 1<=p10] & [1<=p21 & p21<=1]]]]]]] & [[[[[[p54<=1 & 1<=p54] & [1<=p43 & p43<=1]] & [p32<=1 & 1<=p32]] & [[p21<=1 & 1<=p21] & [1<=p10 & p10<=1]]] & [[[[1<=p100 & p100<=1] & [1<=p111 & p111<=1]] & [p87<=1 & 1<=p87]] & [[p76<=1 & 1<=p76] & [p65<=1 & 1<=p65]]]] & [[[[[p54<=1 & 1<=p54] & [p43<=1 & 1<=p43]] & [1<=p32 & p32<=1]] & [[1<=p21 & p21<=1] & [p10<=1 & 1<=p10]]] & [[[p76<=1 & 1<=p76] & [1<=p65 & p65<=1]] & [[p87<=1 & 1<=p87] & [[1<=p111 & p111<=1] & [1<=p100 & p100<=1]]]]]]]]]]]] & ~ [EG [~ [EX [~ [EX [EG [~ [[[[[1<=p21 & p21<=1] & [p10<=1 & 1<=p10]] & [[p32<=1 & 1<=p32] & [[p43<=1 & 1<=p43] & [1<=p54 & p54<=1]]]] & [[[[p100<=1 & 1<=p100] & [1<=p111 & p111<=1]] & [p87<=1 & 1<=p87]] & [[1<=p76 & p76<=1] & [1<=p65 & p65<=1]]]]]]]]]]]]]
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
......................
EG iterations: 22
...
EG iterations: 1
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
.abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
.
EG iterations: 1
......................
EG iterations: 22
-> the formula is TRUE
FORMULA StigmergyElection-PT-10a-CTLFireability-01 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.271sec
checking: AF [~ [A [[[[[[1<=p111 & p111<=1] & [1<=p100 & p100<=1]] & [1<=p87 & p87<=1]] & [[[1<=p76 & p76<=1] & [1<=p65 & p65<=1]] & [1<=p54 & p54<=1]]] & [[[[1<=p43 & p43<=1] & [1<=p32 & p32<=1]] & [1<=p21 & p21<=1]] & [[1<=p10 & p10<=1] & A [EF [[[[[[1<=p111 & p111<=1] & [1<=p100 & p100<=1]] & [1<=p87 & p87<=1]] & [[1<=p76 & p76<=1] & [1<=p65 & p65<=1]]] & [[[[1<=p54 & p54<=1] & [1<=p43 & p43<=1]] & [1<=p32 & p32<=1]] & [[1<=p21 & p21<=1] & [1<=p10 & p10<=1]]]]] U [[[[[[1<=p111 & p111<=1] & [1<=p100 & p100<=1]] & [1<=p87 & p87<=1]] & [[1<=p76 & p76<=1] & [1<=p65 & p65<=1]]] & [[[[1<=p54 & p54<=1] & [1<=p43 & p43<=1]] & [1<=p32 & p32<=1]] & [[1<=p21 & p21<=1] & [1<=p10 & p10<=1]]]] & [[[[[1<=p111 & p111<=1] & [1<=p100 & p100<=1]] & [1<=p87 & p87<=1]] & [[1<=p76 & p76<=1] & [1<=p65 & p65<=1]]] & [[[[1<=p54 & p54<=1] & [1<=p43 & p43<=1]] & [1<=p32 & p32<=1]] & [[1<=p21 & p21<=1] & [1<=p10 & p10<=1]]]]]]]]] U ~ [[[A [[[[[[1<=p111 & p111<=1] & [1<=p100 & p100<=1]] & [1<=p87 & p87<=1]] & [[1<=p76 & p76<=1] & [1<=p65 & p65<=1]]] & [[[[1<=p54 & p54<=1] & [1<=p43 & p43<=1]] & [1<=p32 & p32<=1]] & [[1<=p21 & p21<=1] & [1<=p10 & p10<=1]]]] U [[[[[1<=p111 & p111<=1] & [1<=p100 & p100<=1]] & [1<=p87 & p87<=1]] & [[1<=p76 & p76<=1] & [1<=p65 & p65<=1]]] & [[[[1<=p54 & p54<=1] & [1<=p43 & p43<=1]] & [1<=p32 & p32<=1]] & [[1<=p21 & p21<=1] & [1<=p10 & p10<=1]]]]] & ~ [[[[[[1<=p111 & p111<=1] & [1<=p100 & p100<=1]] & [1<=p87 & p87<=1]] & [[1<=p76 & p76<=1] & [1<=p65 & p65<=1]]] & [[[[1<=p54 & p54<=1] & [1<=p43 & p43<=1]] & [1<=p32 & p32<=1]] & [[1<=p21 & p21<=1] & [1<=p10 & p10<=1]]]]]] | [[[[[1<=p111 & p111<=1] & [1<=p100 & p100<=1]] & [1<=p87 & p87<=1]] & [[1<=p76 & p76<=1] & [1<=p65 & p65<=1]]] & [[[[1<=p54 & p54<=1] & [1<=p43 & p43<=1]] & [1<=p32 & p32<=1]] & [[1<=p21 & p21<=1] & [1<=p10 & p10<=1]]]]]]]]]
normalized: ~ [EG [[~ [EG [[[[[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]] | [~ [[[[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]]] & [~ [EG [~ [[[[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]]]]] & ~ [E [~ [[[[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]]] U [~ [[[[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]]] & ~ [[[[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]]]]]]]]]]] & ~ [E [[[[[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]] | [~ [[[[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]]] & [~ [EG [~ [[[[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]]]]] & ~ [E [~ [[[[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]]] U [~ [[[[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]]] & ~ [[[[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]]]]]]]]] U [~ [[[[[~ [EG [~ [[[[[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]] & [[[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]]]]]] & ~ [E [~ [[[[[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]] & [[[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]]]] U [~ [E [true U [[[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]]]] & ~ [[[[[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]] & [[[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]]]]]]]] & [1<=p10 & p10<=1]] & [[1<=p21 & p21<=1] & [[1<=p32 & p32<=1] & [1<=p43 & p43<=1]]]] & [[[1<=p54 & p54<=1] & [[1<=p65 & p65<=1] & [1<=p76 & p76<=1]]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]]] & [[[[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]] | [~ [[[[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]]] & [~ [EG [~ [[[[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]]]]] & ~ [E [~ [[[[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]]] U [~ [[[[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]]] & ~ [[[[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[1<=p43 & p43<=1] & [1<=p54 & p54<=1]]]] & [[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]]]]]]]]]]]]]]]]]
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
......................
EG iterations: 22
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
......................
EG iterations: 22
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
......................
EG iterations: 22
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
......................
EG iterations: 22
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
.
EG iterations: 1
......................
EG iterations: 22
-> the formula is TRUE
FORMULA StigmergyElection-PT-10a-CTLFireability-09 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.307sec
checking: [EF [[[[[[p87<=1 & 1<=p87] & [[p111<=1 & 1<=p111] & [p100<=1 & 1<=p100]]] & [[p76<=1 & 1<=p76] & [p65<=1 & 1<=p65]]] & [[[p32<=1 & 1<=p32] & [[p43<=1 & 1<=p43] & [p54<=1 & 1<=p54]]] & [[1<=p10 & p10<=1] & [p21<=1 & 1<=p21]]]] | EF [[AG [[[[[[p43<=1 & 1<=p43] & [p54<=1 & 1<=p54]] & [1<=p32 & p32<=1]] & [[p10<=1 & 1<=p10] & [p21<=1 & 1<=p21]]] & [[[1<=p76 & p76<=1] & [p65<=1 & 1<=p65]] & [[[1<=p111 & p111<=1] & [1<=p100 & p100<=1]] & [1<=p87 & p87<=1]]]]] | [[[[[[1<=p111 & p111<=1] & [p100<=1 & 1<=p100]] & [p87<=1 & 1<=p87]] & [[p76<=1 & 1<=p76] & [1<=p65 & p65<=1]]] & [[[1<=p10 & p10<=1] & [p21<=1 & 1<=p21]] & [[1<=p32 & p32<=1] & [[p43<=1 & 1<=p43] & [p54<=1 & 1<=p54]]]]] | AF [[[[[1<=p21 & p21<=1] & [1<=p10 & p10<=1]] & [[1<=p32 & p32<=1] & [[p43<=1 & 1<=p43] & [1<=p54 & p54<=1]]]] & [[[1<=p76 & p76<=1] & [1<=p65 & p65<=1]] & [[p87<=1 & 1<=p87] & [[p100<=1 & 1<=p100] & [1<=p111 & p111<=1]]]]]]]]]]] & [AG [[[[[[[0<=p111 & p111<=0] | [p100<=0 & 0<=p100]] | [p87<=0 & 0<=p87]] | [[0<=p65 & p65<=0] | [p76<=0 & 0<=p76]]] | [[[0<=p21 & p21<=0] | [0<=p10 & p10<=0]] | [[p32<=0 & 0<=p32] | [[p43<=0 & 0<=p43] | [p54<=0 & 0<=p54]]]]] & EX [[[[[[0<=p54 & p54<=0] | [p43<=0 & 0<=p43]] | [0<=p32 & p32<=0]] | [[p10<=0 & 0<=p10] | [0<=p21 & p21<=0]]] | [[[p76<=0 & 0<=p76] | [0<=p65 & p65<=0]] | [[p87<=0 & 0<=p87] | [[p100<=0 & 0<=p100] | [p111<=0 & 0<=p111]]]]]]]] | ~ [A [[AX [[[[[1<=p32 & p32<=1] & [[p43<=1 & 1<=p43] & [p54<=1 & 1<=p54]]] & [[1<=p21 & p21<=1] & [1<=p10 & p10<=1]]] & [[[p65<=1 & 1<=p65] & [p76<=1 & 1<=p76]] & [[[1<=p100 & p100<=1] & [p111<=1 & 1<=p111]] & [p87<=1 & 1<=p87]]]]] & [[[[[[1<=p21 & p21<=1] & [1<=p10 & p10<=1]] & [[p32<=1 & 1<=p32] & [[p54<=1 & 1<=p54] & [p43<=1 & 1<=p43]]]] & [[[p87<=1 & 1<=p87] & [[p100<=1 & 1<=p100] & [p111<=1 & 1<=p111]]] & [[1<=p76 & p76<=1] & [1<=p65 & p65<=1]]]] & [[[[[1<=p54 & p54<=1] & [p43<=1 & 1<=p43]] & [p32<=1 & 1<=p32]] & [[p10<=1 & 1<=p10] & [1<=p21 & p21<=1]]] & [[[p65<=1 & 1<=p65] & [p76<=1 & 1<=p76]] & [[p87<=1 & 1<=p87] & [[p111<=1 & 1<=p111] & [p100<=1 & 1<=p100]]]]]] | [[[[[1<=p87 & p87<=1] & [[p111<=1 & 1<=p111] & [p100<=1 & 1<=p100]]] & [[p76<=1 & 1<=p76] & [1<=p65 & p65<=1]]] & [[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[p32<=1 & 1<=p32] & [[p54<=1 & 1<=p54] & [1<=p43 & p43<=1]]]]] | [[[[1<=p32 & p32<=1] & [[1<=p54 & p54<=1] & [p43<=1 & 1<=p43]]] & [[1<=p21 & p21<=1] & [1<=p10 & p10<=1]]] & [[[1<=p76 & p76<=1] & [1<=p65 & p65<=1]] & [[1<=p87 & p87<=1] & [[1<=p111 & p111<=1] & [p100<=1 & 1<=p100]]]]]]]] U [~ [[[[[p65<=1 & 1<=p65] & [p76<=1 & 1<=p76]] & [[[p100<=1 & 1<=p100] & [p111<=1 & 1<=p111]] & [p87<=1 & 1<=p87]]] & [[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[1<=p32 & p32<=1] & [[p54<=1 & 1<=p54] & [1<=p43 & p43<=1]]]]]] & EG [[[[[[1<=p100 & p100<=1] & [p111<=1 & 1<=p111]] & [1<=p87 & p87<=1]] & [[p76<=1 & 1<=p76] & [1<=p65 & p65<=1]]] & [[[1<=p21 & p21<=1] & [1<=p10 & p10<=1]] & [[1<=p32 & p32<=1] & [[1<=p54 & p54<=1] & [1<=p43 & p43<=1]]]]]]]]]]]
normalized: [[~ [[~ [EG [~ [[EG [[[[[[1<=p43 & p43<=1] & [1<=p54 & p54<=1]] & [1<=p32 & p32<=1]] & [[1<=p10 & p10<=1] & [1<=p21 & p21<=1]]] & [[[1<=p65 & p65<=1] & [p76<=1 & 1<=p76]] & [[1<=p87 & p87<=1] & [[p111<=1 & 1<=p111] & [1<=p100 & p100<=1]]]]]] & ~ [[[[[[1<=p43 & p43<=1] & [p54<=1 & 1<=p54]] & [1<=p32 & p32<=1]] & [[1<=p21 & p21<=1] & [1<=p10 & p10<=1]]] & [[[p87<=1 & 1<=p87] & [[p111<=1 & 1<=p111] & [p100<=1 & 1<=p100]]] & [[p76<=1 & 1<=p76] & [p65<=1 & 1<=p65]]]]]]]]] & ~ [E [~ [[EG [[[[[[1<=p43 & p43<=1] & [1<=p54 & p54<=1]] & [1<=p32 & p32<=1]] & [[1<=p10 & p10<=1] & [1<=p21 & p21<=1]]] & [[[1<=p65 & p65<=1] & [p76<=1 & 1<=p76]] & [[1<=p87 & p87<=1] & [[p111<=1 & 1<=p111] & [1<=p100 & p100<=1]]]]]] & ~ [[[[[[1<=p43 & p43<=1] & [p54<=1 & 1<=p54]] & [1<=p32 & p32<=1]] & [[1<=p21 & p21<=1] & [1<=p10 & p10<=1]]] & [[[p87<=1 & 1<=p87] & [[p111<=1 & 1<=p111] & [p100<=1 & 1<=p100]]] & [[p76<=1 & 1<=p76] & [p65<=1 & 1<=p65]]]]]]] U [~ [[[[[[[[[p100<=1 & 1<=p100] & [1<=p111 & p111<=1]] & [1<=p87 & p87<=1]] & [[1<=p65 & p65<=1] & [1<=p76 & p76<=1]]] & [[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[[p43<=1 & 1<=p43] & [1<=p54 & p54<=1]] & [1<=p32 & p32<=1]]]] | [[[[[1<=p43 & p43<=1] & [p54<=1 & 1<=p54]] & [p32<=1 & 1<=p32]] & [[1<=p21 & p21<=1] & [1<=p10 & p10<=1]]] & [[[1<=p65 & p65<=1] & [p76<=1 & 1<=p76]] & [[[p100<=1 & 1<=p100] & [p111<=1 & 1<=p111]] & [1<=p87 & p87<=1]]]]] | [[[[[[p100<=1 & 1<=p100] & [p111<=1 & 1<=p111]] & [p87<=1 & 1<=p87]] & [[p76<=1 & 1<=p76] & [p65<=1 & 1<=p65]]] & [[[1<=p21 & p21<=1] & [p10<=1 & 1<=p10]] & [[p32<=1 & 1<=p32] & [[p43<=1 & 1<=p43] & [1<=p54 & p54<=1]]]]] & [[[[1<=p65 & p65<=1] & [1<=p76 & p76<=1]] & [[[p111<=1 & 1<=p111] & [p100<=1 & 1<=p100]] & [p87<=1 & 1<=p87]]] & [[[[p43<=1 & 1<=p43] & [p54<=1 & 1<=p54]] & [p32<=1 & 1<=p32]] & [[1<=p10 & p10<=1] & [1<=p21 & p21<=1]]]]]] & ~ [EX [~ [[[[[p87<=1 & 1<=p87] & [[p111<=1 & 1<=p111] & [1<=p100 & p100<=1]]] & [[p76<=1 & 1<=p76] & [p65<=1 & 1<=p65]]] & [[[1<=p10 & p10<=1] & [1<=p21 & p21<=1]] & [[[p54<=1 & 1<=p54] & [p43<=1 & 1<=p43]] & [1<=p32 & p32<=1]]]]]]]]] & ~ [[EG [[[[[[1<=p43 & p43<=1] & [1<=p54 & p54<=1]] & [1<=p32 & p32<=1]] & [[1<=p10 & p10<=1] & [1<=p21 & p21<=1]]] & [[[1<=p65 & p65<=1] & [p76<=1 & 1<=p76]] & [[1<=p87 & p87<=1] & [[p111<=1 & 1<=p111] & [1<=p100 & p100<=1]]]]]] & ~ [[[[[[1<=p43 & p43<=1] & [p54<=1 & 1<=p54]] & [1<=p32 & p32<=1]] & [[1<=p21 & p21<=1] & [1<=p10 & p10<=1]]] & [[[p87<=1 & 1<=p87] & [[p111<=1 & 1<=p111] & [p100<=1 & 1<=p100]]] & [[p76<=1 & 1<=p76] & [p65<=1 & 1<=p65]]]]]]]]]]]] | ~ [E [true U ~ [[EX [[[[[[p111<=0 & 0<=p111] | [p100<=0 & 0<=p100]] | [p87<=0 & 0<=p87]] | [[0<=p65 & p65<=0] | [p76<=0 & 0<=p76]]] | [[[0<=p21 & p21<=0] | [p10<=0 & 0<=p10]] | [[0<=p32 & p32<=0] | [[p43<=0 & 0<=p43] | [0<=p54 & p54<=0]]]]]] & [[[[[p54<=0 & 0<=p54] | [p43<=0 & 0<=p43]] | [p32<=0 & 0<=p32]] | [[0<=p10 & p10<=0] | [0<=p21 & p21<=0]]] | [[[p76<=0 & 0<=p76] | [0<=p65 & p65<=0]] | [[p87<=0 & 0<=p87] | [[p100<=0 & 0<=p100] | [0<=p111 & p111<=0]]]]]]]]]] & E [true U [E [true U [[~ [EG [~ [[[[[[1<=p111 & p111<=1] & [p100<=1 & 1<=p100]] & [p87<=1 & 1<=p87]] & [[1<=p65 & p65<=1] & [1<=p76 & p76<=1]]] & [[[[1<=p54 & p54<=1] & [p43<=1 & 1<=p43]] & [1<=p32 & p32<=1]] & [[1<=p10 & p10<=1] & [1<=p21 & p21<=1]]]]]]] | [[[[[p54<=1 & 1<=p54] & [p43<=1 & 1<=p43]] & [1<=p32 & p32<=1]] & [[p21<=1 & 1<=p21] & [1<=p10 & p10<=1]]] & [[[1<=p65 & p65<=1] & [p76<=1 & 1<=p76]] & [[p87<=1 & 1<=p87] & [[p100<=1 & 1<=p100] & [1<=p111 & p111<=1]]]]]] | ~ [E [true U ~ [[[[[1<=p87 & p87<=1] & [[1<=p100 & p100<=1] & [1<=p111 & p111<=1]]] & [[p65<=1 & 1<=p65] & [1<=p76 & p76<=1]]] & [[[p21<=1 & 1<=p21] & [p10<=1 & 1<=p10]] & [[1<=p32 & p32<=1] & [[p54<=1 & 1<=p54] & [p43<=1 & 1<=p43]]]]]]]]]] | [[[[p21<=1 & 1<=p21] & [1<=p10 & p10<=1]] & [[[p54<=1 & 1<=p54] & [p43<=1 & 1<=p43]] & [p32<=1 & 1<=p32]]] & [[[p65<=1 & 1<=p65] & [p76<=1 & 1<=p76]] & [[[p100<=1 & 1<=p100] & [p111<=1 & 1<=p111]] & [p87<=1 & 1<=p87]]]]]]]
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
......................
EG iterations: 22
abstracting: (p111<=0)
states: 8,625,181 (6)
abstracting: (0<=p111)
states: 10,853,607 (7)
abstracting: (0<=p100)
states: 10,853,607 (7)
abstracting: (p100<=0)
states: 8,638,303 (6)
abstracting: (0<=p87)
states: 10,853,607 (7)
abstracting: (p87<=0)
states: 8,625,181 (6)
abstracting: (p65<=0)
states: 8,625,181 (6)
abstracting: (0<=p65)
states: 10,853,607 (7)
abstracting: (0<=p76)
states: 10,853,607 (7)
abstracting: (p76<=0)
states: 8,625,181 (6)
abstracting: (p21<=0)
states: 8,625,181 (6)
abstracting: (0<=p21)
states: 10,853,607 (7)
abstracting: (p10<=0)
states: 8,625,181 (6)
abstracting: (0<=p10)
states: 10,853,607 (7)
abstracting: (0<=p32)
states: 10,853,607 (7)
abstracting: (p32<=0)
states: 8,625,181 (6)
abstracting: (0<=p43)
states: 10,853,607 (7)
abstracting: (p43<=0)
states: 8,625,181 (6)
abstracting: (0<=p54)
states: 10,853,607 (7)
abstracting: (p54<=0)
states: 8,625,181 (6)
abstracting: (p54<=0)
states: 8,625,181 (6)
abstracting: (0<=p54)
states: 10,853,607 (7)
abstracting: (0<=p43)
states: 10,853,607 (7)
abstracting: (p43<=0)
states: 8,625,181 (6)
abstracting: (p32<=0)
states: 8,625,181 (6)
abstracting: (0<=p32)
states: 10,853,607 (7)
abstracting: (0<=p10)
states: 10,853,607 (7)
abstracting: (p10<=0)
states: 8,625,181 (6)
abstracting: (p21<=0)
states: 8,625,181 (6)
abstracting: (0<=p21)
states: 10,853,607 (7)
abstracting: (0<=p76)
states: 10,853,607 (7)
abstracting: (p76<=0)
states: 8,625,181 (6)
abstracting: (p65<=0)
states: 8,625,181 (6)
abstracting: (0<=p65)
states: 10,853,607 (7)
abstracting: (0<=p87)
states: 10,853,607 (7)
abstracting: (p87<=0)
states: 8,625,181 (6)
abstracting: (0<=p100)
states: 10,853,607 (7)
abstracting: (p100<=0)
states: 8,638,303 (6)
abstracting: (0<=p111)
states: 10,853,607 (7)
abstracting: (p111<=0)
states: 8,625,181 (6)
.abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
.
EG iterations: 1
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
.abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
.
EG iterations: 1
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
abstracting: (p100<=1)
states: 10,853,607 (7)
abstracting: (1<=p100)
states: 2,215,304 (6)
abstracting: (1<=p111)
states: 2,228,426 (6)
abstracting: (p111<=1)
states: 10,853,607 (7)
abstracting: (p87<=1)
states: 10,853,607 (7)
abstracting: (1<=p87)
states: 2,228,426 (6)
abstracting: (1<=p76)
states: 2,228,426 (6)
abstracting: (p76<=1)
states: 10,853,607 (7)
abstracting: (p65<=1)
states: 10,853,607 (7)
abstracting: (1<=p65)
states: 2,228,426 (6)
abstracting: (p21<=1)
states: 10,853,607 (7)
abstracting: (1<=p21)
states: 2,228,426 (6)
abstracting: (p10<=1)
states: 10,853,607 (7)
abstracting: (1<=p10)
states: 2,228,426 (6)
abstracting: (p32<=1)
states: 10,853,607 (7)
abstracting: (1<=p32)
states: 2,228,426 (6)
abstracting: (p54<=1)
states: 10,853,607 (7)
abstracting: (1<=p54)
states: 2,228,426 (6)
abstracting: (p43<=1)
states: 10,853,607 (7)
abstracting: (1<=p43)
states: 2,228,426 (6)
.
EG iterations: 1
EG iterations: 0
-> the formula is TRUE
FORMULA StigmergyElection-PT-10a-CTLFireability-03 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.230sec
totally nodes used: 15149258 (1.5e+07)
number of garbage collections: 0
fire ops cache: hits/miss/sum: 46587061 157243081 203830142
used/not used/entry size/cache size: 60420223 6688641 16 1024MB
basic ops cache: hits/miss/sum: 1946356 6280982 8227338
used/not used/entry size/cache size: 7539517 9237699 12 192MB
unary ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 8 128MB
abstract ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 12 192MB
state nr cache: hits/miss/sum: 93076 266719 359795
used/not used/entry size/cache size: 263151 8125457 32 256MB
max state cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 8388608 32 256MB
uniqueHash elements/entry size/size: 67108864 4 256MB
0 55071597
1 9537854
2 1987737
3 424750
4 74566
5 10920
6 1270
7 164
8 6
9 0
>= 10 0
Total processing time: 1m40.508sec
BK_STOP 1679601592744
--------------------
content from stderr:
+ ulimit -s 65536
+ [[ -z '' ]]
+ export LTSMIN_MEM_SIZE=8589934592
+ LTSMIN_MEM_SIZE=8589934592
+ export PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ export LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
+ LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
++ sed s/.jar//
++ perl -pe 's/.*\.//g'
++ ls /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/plugins/fr.lip6.move.gal.application.pnmcc_1.0.0.202303021504.jar
+ VERSION=202303021504
+ echo 'Running Version 202303021504'
+ /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/its-tools -pnfolder /home/mcc/execution -examination CTLFireability -timeout 360 -rebuildPNML
check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.014sec
129254 130683 133684 137359 142723 151014 159145 173604
iterations count:805972 (367), effective:1964 (0)
initing FirstDep: 0m 0.013sec
iterations count:18608 (8), effective:103 (0)
iterations count:18608 (8), effective:103 (0)
iterations count:18608 (8), effective:103 (0)
iterations count:18608 (8), effective:103 (0)
iterations count:2193 (1), effective:0 (0)
iterations count:2193 (1), effective:0 (0)
iterations count:2302 (1), effective:1 (0)
iterations count:2193 (1), effective:0 (0)
iterations count:2302 (1), effective:1 (0)
iterations count:3172 (1), effective:39 (0)
iterations count:2193 (1), effective:0 (0)
iterations count:2193 (1), effective:0 (0)
iterations count:18608 (8), effective:103 (0)
iterations count:18775 (8), effective:104 (0)
iterations count:2193 (1), effective:0 (0)
iterations count:2193 (1), effective:0 (0)
iterations count:2193 (1), effective:0 (0)
iterations count:18608 (8), effective:103 (0)
iterations count:2325 (1), effective:10 (0)
iterations count:2193 (1), effective:0 (0)
iterations count:2193 (1), effective:0 (0)
iterations count:2302 (1), effective:1 (0)
iterations count:16690 (7), effective:62 (0)
iterations count:2193 (1), effective:0 (0)
iterations count:17669 (8), effective:101 (0)
iterations count:2193 (1), effective:0 (0)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="StigmergyElection-PT-10a"
export BK_EXAMINATION="CTLFireability"
export BK_TOOL="marciexred"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marciexred"
echo " Input is StigmergyElection-PT-10a, examination is CTLFireability"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r458-smll-167912650600682"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/StigmergyElection-PT-10a.tgz
mv StigmergyElection-PT-10a execution
cd execution
if [ "CTLFireability" = "ReachabilityDeadlock" ] || [ "CTLFireability" = "UpperBounds" ] || [ "CTLFireability" = "QuasiLiveness" ] || [ "CTLFireability" = "StableMarking" ] || [ "CTLFireability" = "Liveness" ] || [ "CTLFireability" = "OneSafe" ] || [ "CTLFireability" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLFireability" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLFireability" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLFireability.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLFireability.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLFireability.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "CTLFireability" = "ReachabilityDeadlock" ] || [ "CTLFireability" = "QuasiLiveness" ] || [ "CTLFireability" = "StableMarking" ] || [ "CTLFireability" = "Liveness" ] || [ "CTLFireability" = "OneSafe" ] ; then
echo "FORMULA_NAME CTLFireability"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;