fond
Model Checking Contest 2023
13th edition, Paris, France, April 26, 2023 (at TOOLympics II)
Execution of r458-smll-167912650400522
Last Updated
May 14, 2023

About the Execution of Marcie+red for StigmergyCommit-PT-10a

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
9913.939 3600000.00 3656405.00 48698.70 ???T??????F????T normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Formatting '/data/fkordon/mcc2023-input.r458-smll-167912650400522.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2023-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
...................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
=====================================================================
Generated by BenchKit 2-5348
Executing tool marciexred
Input is StigmergyCommit-PT-10a, examination is CTLFireability
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r458-smll-167912650400522
=====================================================================

--------------------
preparation of the directory to be used:
/home/mcc/execution
total 155M
-rw-r--r-- 1 mcc users 7.6K Feb 26 11:13 CTLCardinality.txt
-rw-r--r-- 1 mcc users 86K Feb 26 11:13 CTLCardinality.xml
-rw-r--r-- 1 mcc users 4.8K Feb 26 11:09 CTLFireability.txt
-rw-r--r-- 1 mcc users 38K Feb 26 11:09 CTLFireability.xml
-rw-r--r-- 1 mcc users 3.9K Feb 25 17:13 LTLCardinality.txt
-rw-r--r-- 1 mcc users 24K Feb 25 17:13 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.5K Feb 25 17:13 LTLFireability.txt
-rw-r--r-- 1 mcc users 19K Feb 25 17:13 LTLFireability.xml
-rw-r--r-- 1 mcc users 11K Feb 26 11:23 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 112K Feb 26 11:23 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 7.9K Feb 26 11:16 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 61K Feb 26 11:16 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.7K Feb 25 17:13 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.7K Feb 25 17:13 UpperBounds.xml
-rw-r--r-- 1 mcc users 6 Mar 5 18:23 equiv_col
-rw-r--r-- 1 mcc users 4 Mar 5 18:23 instance
-rw-r--r-- 1 mcc users 6 Mar 5 18:23 iscolored
-rw-r--r-- 1 mcc users 155M Mar 5 18:23 model.pnml

--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME StigmergyCommit-PT-10a-CTLFireability-00
FORMULA_NAME StigmergyCommit-PT-10a-CTLFireability-01
FORMULA_NAME StigmergyCommit-PT-10a-CTLFireability-02
FORMULA_NAME StigmergyCommit-PT-10a-CTLFireability-03
FORMULA_NAME StigmergyCommit-PT-10a-CTLFireability-04
FORMULA_NAME StigmergyCommit-PT-10a-CTLFireability-05
FORMULA_NAME StigmergyCommit-PT-10a-CTLFireability-06
FORMULA_NAME StigmergyCommit-PT-10a-CTLFireability-07
FORMULA_NAME StigmergyCommit-PT-10a-CTLFireability-08
FORMULA_NAME StigmergyCommit-PT-10a-CTLFireability-09
FORMULA_NAME StigmergyCommit-PT-10a-CTLFireability-10
FORMULA_NAME StigmergyCommit-PT-10a-CTLFireability-11
FORMULA_NAME StigmergyCommit-PT-10a-CTLFireability-12
FORMULA_NAME StigmergyCommit-PT-10a-CTLFireability-13
FORMULA_NAME StigmergyCommit-PT-10a-CTLFireability-14
FORMULA_NAME StigmergyCommit-PT-10a-CTLFireability-15

=== Now, execution of the tool begins

BK_START 1679506362265

bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marciexred
BK_EXAMINATION=CTLFireability
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=StigmergyCommit-PT-10a
Applying reductions before tool marcie
Invoking reducer
Running Version 202303021504
[2023-03-22 17:32:46] [INFO ] Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, CTLFireability, -timeout, 360, -rebuildPNML]
[2023-03-22 17:32:46] [INFO ] Parsing pnml file : /home/mcc/execution/model.pnml
[2023-03-22 17:32:53] [INFO ] Load time of PNML (sax parser for PT used): 6890 ms
[2023-03-22 17:32:53] [INFO ] Transformed 400 places.
[2023-03-22 17:32:54] [INFO ] Transformed 136960 transitions.
[2023-03-22 17:32:54] [INFO ] Found NUPN structural information;
[2023-03-22 17:32:54] [INFO ] Parsed PT model containing 400 places and 136960 transitions and 3002181 arcs in 8340 ms.
Parsed 16 properties from file /home/mcc/execution/CTLFireability.xml in 66 ms.
Ensure Unique test removed 132345 transitions
Reduce redundant transitions removed 132345 transitions.
Support contains 11 out of 400 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 400/400 places, 4615/4615 transitions.
Discarding 88 places :
Symmetric choice reduction at 0 with 88 rule applications. Total rules 88 place count 312 transition count 4516
Iterating global reduction 0 with 88 rules applied. Total rules applied 176 place count 312 transition count 4516
Ensure Unique test removed 11 transitions
Reduce isomorphic transitions removed 11 transitions.
Iterating post reduction 0 with 11 rules applied. Total rules applied 187 place count 312 transition count 4505
Discarding 45 places :
Symmetric choice reduction at 1 with 45 rule applications. Total rules 232 place count 267 transition count 4449
Iterating global reduction 1 with 45 rules applied. Total rules applied 277 place count 267 transition count 4449
Ensure Unique test removed 11 transitions
Reduce isomorphic transitions removed 11 transitions.
Iterating post reduction 1 with 11 rules applied. Total rules applied 288 place count 267 transition count 4438
Discarding 11 places :
Symmetric choice reduction at 2 with 11 rule applications. Total rules 299 place count 256 transition count 4427
Iterating global reduction 2 with 11 rules applied. Total rules applied 310 place count 256 transition count 4427
Discarding 11 places :
Symmetric choice reduction at 2 with 11 rule applications. Total rules 321 place count 245 transition count 4416
Iterating global reduction 2 with 11 rules applied. Total rules applied 332 place count 245 transition count 4416
Discarding 11 places :
Symmetric choice reduction at 2 with 11 rule applications. Total rules 343 place count 234 transition count 4405
Iterating global reduction 2 with 11 rules applied. Total rules applied 354 place count 234 transition count 4405
Discarding 11 places :
Symmetric choice reduction at 2 with 11 rule applications. Total rules 365 place count 223 transition count 4394
Iterating global reduction 2 with 11 rules applied. Total rules applied 376 place count 223 transition count 4394
Ensure Unique test removed 11 transitions
Reduce isomorphic transitions removed 11 transitions.
Iterating post reduction 2 with 11 rules applied. Total rules applied 387 place count 223 transition count 4383
Applied a total of 387 rules in 313 ms. Remains 223 /400 variables (removed 177) and now considering 4383/4615 (removed 232) transitions.
[2023-03-22 17:32:56] [INFO ] Flow matrix only has 4371 transitions (discarded 12 similar events)
// Phase 1: matrix 4371 rows 223 cols
[2023-03-22 17:32:56] [INFO ] Computed 2 place invariants in 96 ms
[2023-03-22 17:32:56] [INFO ] Implicit Places using invariants in 529 ms returned []
[2023-03-22 17:32:57] [INFO ] Flow matrix only has 4371 transitions (discarded 12 similar events)
[2023-03-22 17:32:57] [INFO ] Invariant cache hit.
[2023-03-22 17:32:58] [INFO ] State equation strengthened by 4192 read => feed constraints.
[2023-03-22 17:32:59] [INFO ] Implicit Places using invariants and state equation in 2432 ms returned []
Implicit Place search using SMT with State Equation took 3000 ms to find 0 implicit places.
[2023-03-22 17:32:59] [INFO ] Flow matrix only has 4371 transitions (discarded 12 similar events)
[2023-03-22 17:32:59] [INFO ] Invariant cache hit.
[2023-03-22 17:33:03] [INFO ] Dead Transitions using invariants and state equation in 4378 ms found 0 transitions.
Starting structural reductions in LTL mode, iteration 1 : 223/400 places, 4383/4615 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 7697 ms. Remains : 223/400 places, 4383/4615 transitions.
Support contains 11 out of 223 places after structural reductions.
[2023-03-22 17:33:05] [INFO ] Flatten gal took : 880 ms
[2023-03-22 17:33:05] [INFO ] Flatten gal took : 432 ms
[2023-03-22 17:33:06] [INFO ] Input system was already deterministic with 4383 transitions.
Incomplete random walk after 10000 steps, including 2 resets, run finished after 3555 ms. (steps per millisecond=2 ) properties (out of 11) seen :9
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 43 ms. (steps per millisecond=232 ) properties (out of 2) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 31 ms. (steps per millisecond=322 ) properties (out of 2) seen :0
Running SMT prover for 2 properties.
[2023-03-22 17:33:10] [INFO ] Flow matrix only has 4371 transitions (discarded 12 similar events)
[2023-03-22 17:33:10] [INFO ] Invariant cache hit.
[2023-03-22 17:33:10] [INFO ] After 72ms SMT Verify possible using all constraints in real domain returned unsat :2 sat :0
Fused 2 Parikh solutions to 0 different solutions.
Parikh walk visited 0 properties in 1 ms.
Successfully simplified 2 atomic propositions for a total of 16 simplifications.
[2023-03-22 17:33:11] [INFO ] Initial state reduction rules for CTL removed 1 formulas.
[2023-03-22 17:33:11] [INFO ] Flatten gal took : 468 ms
FORMULA StigmergyCommit-PT-10a-CTLFireability-03 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
[2023-03-22 17:33:11] [INFO ] Flatten gal took : 394 ms
[2023-03-22 17:33:12] [INFO ] Input system was already deterministic with 4383 transitions.
Computed a total of 68 stabilizing places and 67 stable transitions
Starting structural reductions in LTL mode, iteration 0 : 223/223 places, 4383/4383 transitions.
Applied a total of 0 rules in 23 ms. Remains 223 /223 variables (removed 0) and now considering 4383/4383 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 29 ms. Remains : 223/223 places, 4383/4383 transitions.
[2023-03-22 17:33:12] [INFO ] Flatten gal took : 274 ms
[2023-03-22 17:33:13] [INFO ] Flatten gal took : 296 ms
[2023-03-22 17:33:13] [INFO ] Input system was already deterministic with 4383 transitions.
Starting structural reductions in LTL mode, iteration 0 : 223/223 places, 4383/4383 transitions.
Applied a total of 0 rules in 24 ms. Remains 223 /223 variables (removed 0) and now considering 4383/4383 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 25 ms. Remains : 223/223 places, 4383/4383 transitions.
[2023-03-22 17:33:14] [INFO ] Flatten gal took : 268 ms
[2023-03-22 17:33:14] [INFO ] Flatten gal took : 305 ms
[2023-03-22 17:33:15] [INFO ] Input system was already deterministic with 4383 transitions.
Starting structural reductions in SI_CTL mode, iteration 0 : 223/223 places, 4383/4383 transitions.
Reduce places removed 1 places and 1 transitions.
Reduce places removed 1 places and 0 transitions.
Drop transitions removed 110 transitions
Trivial Post-agglo rules discarded 110 transitions
Performed 110 trivial Post agglomeration. Transition count delta: 110
Iterating post reduction 0 with 111 rules applied. Total rules applied 111 place count 221 transition count 4272
Reduce places removed 110 places and 0 transitions.
Ensure Unique test removed 21 transitions
Reduce isomorphic transitions removed 21 transitions.
Drop transitions removed 11 transitions
Trivial Post-agglo rules discarded 11 transitions
Performed 11 trivial Post agglomeration. Transition count delta: 11
Iterating post reduction 1 with 142 rules applied. Total rules applied 253 place count 111 transition count 4240
Reduce places removed 11 places and 0 transitions.
Ensure Unique test removed 11 transitions
Reduce isomorphic transitions removed 11 transitions.
Iterating post reduction 2 with 22 rules applied. Total rules applied 275 place count 100 transition count 4229
Performed 10 Pre agglomeration using Quasi-Persistent + Divergent Free condition..
Pre-agglomeration after 3 with 10 Pre rules applied. Total rules applied 275 place count 100 transition count 4219
Deduced a syphon composed of 10 places in 3 ms
Reduce places removed 10 places and 0 transitions.
Iterating global reduction 3 with 20 rules applied. Total rules applied 295 place count 90 transition count 4219
Discarding 21 places :
Symmetric choice reduction at 3 with 21 rule applications. Total rules 316 place count 69 transition count 4198
Iterating global reduction 3 with 21 rules applied. Total rules applied 337 place count 69 transition count 4198
Ensure Unique test removed 2047 transitions
Reduce isomorphic transitions removed 2047 transitions.
Iterating post reduction 3 with 2047 rules applied. Total rules applied 2384 place count 69 transition count 2151
Performed 11 Pre agglomeration using Quasi-Persistent + Divergent Free condition..
Pre-agglomeration after 4 with 11 Pre rules applied. Total rules applied 2384 place count 69 transition count 2140
Deduced a syphon composed of 11 places in 2 ms
Reduce places removed 11 places and 0 transitions.
Iterating global reduction 4 with 22 rules applied. Total rules applied 2406 place count 58 transition count 2140
Performed 1 Post agglomeration using F-continuation condition.Transition count delta: 1
Deduced a syphon composed of 1 places in 2 ms
Reduce places removed 1 places and 0 transitions.
Iterating global reduction 4 with 2 rules applied. Total rules applied 2408 place count 57 transition count 2139
Ensure Unique test removed 1 transitions
Reduce isomorphic transitions removed 1 transitions.
Iterating post reduction 4 with 1 rules applied. Total rules applied 2409 place count 57 transition count 2138
Drop transitions removed 11 transitions
Redundant transition composition rules discarded 11 transitions
Iterating global reduction 5 with 11 rules applied. Total rules applied 2420 place count 57 transition count 2127
Performed 11 Post agglomeration using F-continuation condition.Transition count delta: 11
Deduced a syphon composed of 11 places in 1 ms
Reduce places removed 11 places and 0 transitions.
Iterating global reduction 5 with 22 rules applied. Total rules applied 2442 place count 46 transition count 2116
Reduce places removed 1 places and 1 transitions.
Iterating global reduction 5 with 1 rules applied. Total rules applied 2443 place count 45 transition count 2115
Applied a total of 2443 rules in 4423 ms. Remains 45 /223 variables (removed 178) and now considering 2115/4383 (removed 2268) transitions.
Finished structural reductions in SI_CTL mode , in 1 iterations and 4427 ms. Remains : 45/223 places, 2115/4383 transitions.
[2023-03-22 17:33:19] [INFO ] Flatten gal took : 130 ms
[2023-03-22 17:33:19] [INFO ] Flatten gal took : 145 ms
[2023-03-22 17:33:20] [INFO ] Input system was already deterministic with 2115 transitions.
Starting structural reductions in SI_CTL mode, iteration 0 : 223/223 places, 4383/4383 transitions.
Reduce places removed 1 places and 1 transitions.
Reduce places removed 1 places and 0 transitions.
Drop transitions removed 110 transitions
Trivial Post-agglo rules discarded 110 transitions
Performed 110 trivial Post agglomeration. Transition count delta: 110
Iterating post reduction 0 with 111 rules applied. Total rules applied 111 place count 221 transition count 4272
Reduce places removed 110 places and 0 transitions.
Ensure Unique test removed 21 transitions
Reduce isomorphic transitions removed 21 transitions.
Drop transitions removed 11 transitions
Trivial Post-agglo rules discarded 11 transitions
Performed 11 trivial Post agglomeration. Transition count delta: 11
Iterating post reduction 1 with 142 rules applied. Total rules applied 253 place count 111 transition count 4240
Reduce places removed 11 places and 0 transitions.
Ensure Unique test removed 11 transitions
Reduce isomorphic transitions removed 11 transitions.
Iterating post reduction 2 with 22 rules applied. Total rules applied 275 place count 100 transition count 4229
Performed 10 Pre agglomeration using Quasi-Persistent + Divergent Free condition..
Pre-agglomeration after 3 with 10 Pre rules applied. Total rules applied 275 place count 100 transition count 4219
Deduced a syphon composed of 10 places in 2 ms
Reduce places removed 10 places and 0 transitions.
Iterating global reduction 3 with 20 rules applied. Total rules applied 295 place count 90 transition count 4219
Discarding 21 places :
Symmetric choice reduction at 3 with 21 rule applications. Total rules 316 place count 69 transition count 4198
Iterating global reduction 3 with 21 rules applied. Total rules applied 337 place count 69 transition count 4198
Ensure Unique test removed 2047 transitions
Reduce isomorphic transitions removed 2047 transitions.
Iterating post reduction 3 with 2047 rules applied. Total rules applied 2384 place count 69 transition count 2151
Performed 11 Pre agglomeration using Quasi-Persistent + Divergent Free condition..
Pre-agglomeration after 4 with 11 Pre rules applied. Total rules applied 2384 place count 69 transition count 2140
Deduced a syphon composed of 11 places in 1 ms
Reduce places removed 11 places and 0 transitions.
Iterating global reduction 4 with 22 rules applied. Total rules applied 2406 place count 58 transition count 2140
Performed 1 Post agglomeration using F-continuation condition.Transition count delta: 1
Deduced a syphon composed of 1 places in 1 ms
Reduce places removed 1 places and 0 transitions.
Iterating global reduction 4 with 2 rules applied. Total rules applied 2408 place count 57 transition count 2139
Ensure Unique test removed 1 transitions
Reduce isomorphic transitions removed 1 transitions.
Iterating post reduction 4 with 1 rules applied. Total rules applied 2409 place count 57 transition count 2138
Drop transitions removed 11 transitions
Redundant transition composition rules discarded 11 transitions
Iterating global reduction 5 with 11 rules applied. Total rules applied 2420 place count 57 transition count 2127
Performed 11 Post agglomeration using F-continuation condition.Transition count delta: 11
Deduced a syphon composed of 11 places in 0 ms
Reduce places removed 11 places and 0 transitions.
Iterating global reduction 5 with 22 rules applied. Total rules applied 2442 place count 46 transition count 2116
Reduce places removed 1 places and 1 transitions.
Iterating global reduction 5 with 1 rules applied. Total rules applied 2443 place count 45 transition count 2115
Applied a total of 2443 rules in 3765 ms. Remains 45 /223 variables (removed 178) and now considering 2115/4383 (removed 2268) transitions.
Finished structural reductions in SI_CTL mode , in 1 iterations and 3766 ms. Remains : 45/223 places, 2115/4383 transitions.
[2023-03-22 17:33:23] [INFO ] Flatten gal took : 126 ms
[2023-03-22 17:33:24] [INFO ] Flatten gal took : 143 ms
[2023-03-22 17:33:24] [INFO ] Input system was already deterministic with 2115 transitions.
Starting structural reductions in LTL mode, iteration 0 : 223/223 places, 4383/4383 transitions.
Applied a total of 0 rules in 18 ms. Remains 223 /223 variables (removed 0) and now considering 4383/4383 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 18 ms. Remains : 223/223 places, 4383/4383 transitions.
[2023-03-22 17:33:24] [INFO ] Flatten gal took : 261 ms
[2023-03-22 17:33:24] [INFO ] Flatten gal took : 290 ms
[2023-03-22 17:33:25] [INFO ] Input system was already deterministic with 4383 transitions.
Starting structural reductions in LTL mode, iteration 0 : 223/223 places, 4383/4383 transitions.
Applied a total of 0 rules in 18 ms. Remains 223 /223 variables (removed 0) and now considering 4383/4383 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 18 ms. Remains : 223/223 places, 4383/4383 transitions.
[2023-03-22 17:33:25] [INFO ] Flatten gal took : 260 ms
[2023-03-22 17:33:26] [INFO ] Flatten gal took : 322 ms
[2023-03-22 17:33:26] [INFO ] Input system was already deterministic with 4383 transitions.
Starting structural reductions in LTL mode, iteration 0 : 223/223 places, 4383/4383 transitions.
Applied a total of 0 rules in 18 ms. Remains 223 /223 variables (removed 0) and now considering 4383/4383 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 18 ms. Remains : 223/223 places, 4383/4383 transitions.
[2023-03-22 17:33:27] [INFO ] Flatten gal took : 288 ms
[2023-03-22 17:33:27] [INFO ] Flatten gal took : 285 ms
[2023-03-22 17:33:27] [INFO ] Input system was already deterministic with 4383 transitions.
Starting structural reductions in LTL mode, iteration 0 : 223/223 places, 4383/4383 transitions.
Applied a total of 0 rules in 17 ms. Remains 223 /223 variables (removed 0) and now considering 4383/4383 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 19 ms. Remains : 223/223 places, 4383/4383 transitions.
[2023-03-22 17:33:28] [INFO ] Flatten gal took : 262 ms
[2023-03-22 17:33:28] [INFO ] Flatten gal took : 289 ms
[2023-03-22 17:33:29] [INFO ] Input system was already deterministic with 4383 transitions.
Starting structural reductions in LTL mode, iteration 0 : 223/223 places, 4383/4383 transitions.
Applied a total of 0 rules in 17 ms. Remains 223 /223 variables (removed 0) and now considering 4383/4383 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 19 ms. Remains : 223/223 places, 4383/4383 transitions.
[2023-03-22 17:33:29] [INFO ] Flatten gal took : 257 ms
[2023-03-22 17:33:29] [INFO ] Flatten gal took : 296 ms
[2023-03-22 17:33:30] [INFO ] Input system was already deterministic with 4383 transitions.
Starting structural reductions in LTL mode, iteration 0 : 223/223 places, 4383/4383 transitions.
Applied a total of 0 rules in 21 ms. Remains 223 /223 variables (removed 0) and now considering 4383/4383 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 21 ms. Remains : 223/223 places, 4383/4383 transitions.
[2023-03-22 17:33:30] [INFO ] Flatten gal took : 368 ms
[2023-03-22 17:33:31] [INFO ] Flatten gal took : 434 ms
[2023-03-22 17:33:31] [INFO ] Input system was already deterministic with 4383 transitions.
Starting structural reductions in LTL mode, iteration 0 : 223/223 places, 4383/4383 transitions.
Applied a total of 0 rules in 35 ms. Remains 223 /223 variables (removed 0) and now considering 4383/4383 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 35 ms. Remains : 223/223 places, 4383/4383 transitions.
[2023-03-22 17:33:32] [INFO ] Flatten gal took : 438 ms
[2023-03-22 17:33:32] [INFO ] Flatten gal took : 374 ms
[2023-03-22 17:33:33] [INFO ] Input system was already deterministic with 4383 transitions.
Starting structural reductions in LTL mode, iteration 0 : 223/223 places, 4383/4383 transitions.
Applied a total of 0 rules in 17 ms. Remains 223 /223 variables (removed 0) and now considering 4383/4383 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 18 ms. Remains : 223/223 places, 4383/4383 transitions.
[2023-03-22 17:33:33] [INFO ] Flatten gal took : 301 ms
[2023-03-22 17:33:34] [INFO ] Flatten gal took : 496 ms
[2023-03-22 17:33:34] [INFO ] Input system was already deterministic with 4383 transitions.
Starting structural reductions in LTL mode, iteration 0 : 223/223 places, 4383/4383 transitions.
Applied a total of 0 rules in 16 ms. Remains 223 /223 variables (removed 0) and now considering 4383/4383 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 18 ms. Remains : 223/223 places, 4383/4383 transitions.
[2023-03-22 17:33:35] [INFO ] Flatten gal took : 258 ms
[2023-03-22 17:33:35] [INFO ] Flatten gal took : 305 ms
[2023-03-22 17:33:36] [INFO ] Input system was already deterministic with 4383 transitions.
Starting structural reductions in LTL mode, iteration 0 : 223/223 places, 4383/4383 transitions.
Applied a total of 0 rules in 18 ms. Remains 223 /223 variables (removed 0) and now considering 4383/4383 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 20 ms. Remains : 223/223 places, 4383/4383 transitions.
[2023-03-22 17:33:36] [INFO ] Flatten gal took : 255 ms
[2023-03-22 17:33:36] [INFO ] Flatten gal took : 290 ms
[2023-03-22 17:33:37] [INFO ] Input system was already deterministic with 4383 transitions.
Starting structural reductions in SI_CTL mode, iteration 0 : 223/223 places, 4383/4383 transitions.
Reduce places removed 1 places and 1 transitions.
Reduce places removed 1 places and 0 transitions.
Drop transitions removed 110 transitions
Trivial Post-agglo rules discarded 110 transitions
Performed 110 trivial Post agglomeration. Transition count delta: 110
Iterating post reduction 0 with 111 rules applied. Total rules applied 111 place count 221 transition count 4272
Reduce places removed 110 places and 0 transitions.
Ensure Unique test removed 21 transitions
Reduce isomorphic transitions removed 21 transitions.
Drop transitions removed 11 transitions
Trivial Post-agglo rules discarded 11 transitions
Performed 11 trivial Post agglomeration. Transition count delta: 11
Iterating post reduction 1 with 142 rules applied. Total rules applied 253 place count 111 transition count 4240
Reduce places removed 11 places and 0 transitions.
Ensure Unique test removed 11 transitions
Reduce isomorphic transitions removed 11 transitions.
Iterating post reduction 2 with 22 rules applied. Total rules applied 275 place count 100 transition count 4229
Performed 10 Pre agglomeration using Quasi-Persistent + Divergent Free condition..
Pre-agglomeration after 3 with 10 Pre rules applied. Total rules applied 275 place count 100 transition count 4219
Deduced a syphon composed of 10 places in 1 ms
Reduce places removed 10 places and 0 transitions.
Iterating global reduction 3 with 20 rules applied. Total rules applied 295 place count 90 transition count 4219
Discarding 21 places :
Symmetric choice reduction at 3 with 21 rule applications. Total rules 316 place count 69 transition count 4198
Iterating global reduction 3 with 21 rules applied. Total rules applied 337 place count 69 transition count 4198
Ensure Unique test removed 2047 transitions
Reduce isomorphic transitions removed 2047 transitions.
Iterating post reduction 3 with 2047 rules applied. Total rules applied 2384 place count 69 transition count 2151
Performed 11 Pre agglomeration using Quasi-Persistent + Divergent Free condition..
Pre-agglomeration after 4 with 11 Pre rules applied. Total rules applied 2384 place count 69 transition count 2140
Deduced a syphon composed of 11 places in 1 ms
Reduce places removed 11 places and 0 transitions.
Iterating global reduction 4 with 22 rules applied. Total rules applied 2406 place count 58 transition count 2140
Performed 1 Post agglomeration using F-continuation condition.Transition count delta: 1
Deduced a syphon composed of 1 places in 1 ms
Reduce places removed 1 places and 0 transitions.
Iterating global reduction 4 with 2 rules applied. Total rules applied 2408 place count 57 transition count 2139
Ensure Unique test removed 1 transitions
Reduce isomorphic transitions removed 1 transitions.
Iterating post reduction 4 with 1 rules applied. Total rules applied 2409 place count 57 transition count 2138
Drop transitions removed 11 transitions
Redundant transition composition rules discarded 11 transitions
Iterating global reduction 5 with 11 rules applied. Total rules applied 2420 place count 57 transition count 2127
Performed 11 Post agglomeration using F-continuation condition.Transition count delta: 11
Deduced a syphon composed of 11 places in 0 ms
Reduce places removed 11 places and 0 transitions.
Iterating global reduction 5 with 22 rules applied. Total rules applied 2442 place count 46 transition count 2116
Reduce places removed 1 places and 1 transitions.
Iterating global reduction 5 with 1 rules applied. Total rules applied 2443 place count 45 transition count 2115
Applied a total of 2443 rules in 3246 ms. Remains 45 /223 variables (removed 178) and now considering 2115/4383 (removed 2268) transitions.
Finished structural reductions in SI_CTL mode , in 1 iterations and 3246 ms. Remains : 45/223 places, 2115/4383 transitions.
[2023-03-22 17:33:40] [INFO ] Flatten gal took : 125 ms
[2023-03-22 17:33:40] [INFO ] Flatten gal took : 142 ms
[2023-03-22 17:33:41] [INFO ] Input system was already deterministic with 2115 transitions.
[2023-03-22 17:33:41] [INFO ] Flatten gal took : 288 ms
[2023-03-22 17:33:41] [INFO ] Flatten gal took : 291 ms
[2023-03-22 17:33:41] [INFO ] Export to MCC of 15 properties in file /home/mcc/execution/CTLFireability.sr.xml took 13 ms.
[2023-03-22 17:33:41] [INFO ] Export to PNML in file /home/mcc/execution/model.sr.pnml of net with 223 places, 4383 transitions and 91073 arcs took 82 ms.
Total runtime 55498 ms.
There are residual formulas that ITS could not solve within timeout
timeout --kill-after=10s --signal=SIGINT 1m for testing only

Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets

authors: Alex Tovchigrechko (IDD package and CTL model checking)

Martin Schwarick (Symbolic numerical analysis and CSL model checking)

Christian Rohr (Simulative and approximative numerical model checking)

marcie@informatik.tu-cottbus.de

called as: /home/mcc/BenchKit/bin//../reducer/bin//../../marcie/bin/marcie --net-file=model.pnml --mcc-file=CTLFireability.xml --memory=6 --mcc-mode

parse successfull
net created successfully

Net: Petri
(NrP: 223 NrTr: 4383 NrArc: 91073)

parse formulas
formulas created successfully
place and transition orderings generation:0m 1.654sec

net check time: 0m 0.019sec

init dd package: 0m 3.147sec


RS generation: 4m37.494sec


-> reachability set: #nodes 796255 (8.0e+05) #states 2,595,122,620 (9)



starting MCC model checker
--------------------------

checking: EX [AF [[[[[p15<=1 & 1<=p15] & [p35<=1 & 1<=p35]] & [[p55<=1 & 1<=p55] & [[p75<=1 & 1<=p75] & [p95<=1 & 1<=p95]]]] & [[[p115<=1 & 1<=p115] & [[p135<=1 & 1<=p135] & [p155<=1 & 1<=p155]]] & [[p175<=1 & 1<=p175] & [[p195<=1 & 1<=p195] & [p215<=1 & 1<=p215]]]]]]]
normalized: EX [~ [EG [~ [[[[[p115<=1 & 1<=p115] & [[p155<=1 & 1<=p155] & [p135<=1 & 1<=p135]]] & [[[p195<=1 & 1<=p195] & [p215<=1 & 1<=p215]] & [p175<=1 & 1<=p175]]] & [[[p35<=1 & 1<=p35] & [p15<=1 & 1<=p15]] & [[[p75<=1 & 1<=p75] & [p95<=1 & 1<=p95]] & [p55<=1 & 1<=p55]]]]]]]]

abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
........MC time: 3m42.414sec

checking: EF [AG [[[[[p15<=0 & 0<=p15] | [p35<=0 & 0<=p35]] | [[p55<=0 & 0<=p55] | [[p75<=0 & 0<=p75] | [p95<=0 & 0<=p95]]]] | [[[p115<=0 & 0<=p115] | [[p135<=0 & 0<=p135] | [p155<=0 & 0<=p155]]] | [[p175<=0 & 0<=p175] | [[p195<=0 & 0<=p195] | [p215<=0 & 0<=p215]]]]]]]
normalized: E [true U ~ [E [true U ~ [[[[[[p135<=0 & 0<=p135] | [p155<=0 & 0<=p155]] | [p115<=0 & 0<=p115]] | [[[p215<=0 & 0<=p215] | [p195<=0 & 0<=p195]] | [p175<=0 & 0<=p175]]] | [[[[p95<=0 & 0<=p95] | [p75<=0 & 0<=p75]] | [p55<=0 & 0<=p55]] | [[p35<=0 & 0<=p35] | [p15<=0 & 0<=p15]]]]]]]]

abstracting: (0<=p15)
states: 2,595,122,620 (9)
abstracting: (p15<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p35)
states: 2,595,122,620 (9)
abstracting: (p35<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p55)
states: 2,595,122,620 (9)
abstracting: (p55<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p75)
states: 2,595,122,620 (9)
abstracting: (p75<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p95)
states: 2,595,122,620 (9)
abstracting: (p95<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p175)
states: 2,595,122,620 (9)
abstracting: (p175<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p195)
states: 2,595,122,620 (9)
abstracting: (p195<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p215)
states: 2,595,122,620 (9)
abstracting: (p215<=0)
states: 2,301,892,130 (9)
abstracting: (0<=p115)
states: 2,595,122,620 (9)
abstracting: (p115<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p155)
states: 2,595,122,620 (9)
abstracting: (p155<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p135)
states: 2,595,122,620 (9)
abstracting: (p135<=0)
states: 2,221,184,918 (9)
-> the formula is TRUE

FORMULA StigmergyCommit-PT-10a-CTLFireability-15 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 2m 2.912sec

checking: EX [EG [[AG [[[[[[0<=p215 & p215<=0] | [0<=p195 & p195<=0]] | [0<=p175 & p175<=0]] | [[[0<=p155 & p155<=0] | [0<=p135 & p135<=0]] | [0<=p115 & p115<=0]]] | [[[[0<=p95 & p95<=0] | [p75<=0 & 0<=p75]] | [0<=p55 & p55<=0]] | [[p35<=0 & 0<=p35] | [0<=p15 & p15<=0]]]]] | EG [[[[[[0<=p155 & p155<=0] | [p135<=0 & 0<=p135]] | [0<=p115 & p115<=0]] | [[p175<=0 & 0<=p175] | [[0<=p195 & p195<=0] | [0<=p215 & p215<=0]]]] | [[[0<=p55 & p55<=0] | [[0<=p75 & p75<=0] | [p95<=0 & 0<=p95]]] | [[0<=p35 & p35<=0] | [p15<=0 & 0<=p15]]]]]]]]
normalized: EX [EG [[EG [[[[[p15<=0 & 0<=p15] | [0<=p35 & p35<=0]] | [[[p95<=0 & 0<=p95] | [0<=p75 & p75<=0]] | [0<=p55 & p55<=0]]] | [[[[0<=p215 & p215<=0] | [0<=p195 & p195<=0]] | [p175<=0 & 0<=p175]] | [[0<=p115 & p115<=0] | [[p135<=0 & 0<=p135] | [0<=p155 & p155<=0]]]]]] | ~ [E [true U ~ [[[[[0<=p15 & p15<=0] | [p35<=0 & 0<=p35]] | [[0<=p55 & p55<=0] | [[p75<=0 & 0<=p75] | [0<=p95 & p95<=0]]]] | [[[0<=p115 & p115<=0] | [[0<=p135 & p135<=0] | [0<=p155 & p155<=0]]] | [[0<=p175 & p175<=0] | [[0<=p195 & p195<=0] | [0<=p215 & p215<=0]]]]]]]]]]]

abstracting: (p215<=0)
states: 2,301,892,130 (9)
abstracting: (0<=p215)
states: 2,595,122,620 (9)
abstracting: (p195<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p195)
states: 2,595,122,620 (9)
abstracting: (p175<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p175)
states: 2,595,122,620 (9)
abstracting: (p155<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p155)
states: 2,595,122,620 (9)
abstracting: (p135<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p135)
states: 2,595,122,620 (9)
abstracting: (p115<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p115)
states: 2,595,122,620 (9)
abstracting: (p95<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p95)
states: 2,595,122,620 (9)
abstracting: (0<=p75)
states: 2,595,122,620 (9)
abstracting: (p75<=0)
states: 2,221,184,918 (9)
abstracting: (p55<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p55)
states: 2,595,122,620 (9)
abstracting: (0<=p35)
states: 2,595,122,620 (9)
abstracting: (p35<=0)
states: 2,221,184,918 (9)
abstracting: (p15<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p15)
states: 2,595,122,620 (9)
abstracting: (p155<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p155)
states: 2,595,122,620 (9)
abstracting: (0<=p135)
states: 2,595,122,620 (9)
abstracting: (p135<=0)
states: 2,221,184,918 (9)
abstracting: (p115<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p115)
states: 2,595,122,620 (9)
abstracting: (0<=p175)
states: 2,595,122,620 (9)
abstracting: (p175<=0)
states: 2,221,184,918 (9)
abstracting: (p195<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p195)
states: 2,595,122,620 (9)
abstracting: (p215<=0)
states: 2,301,892,130 (9)
abstracting: (0<=p215)
states: 2,595,122,620 (9)
abstracting: (p55<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p55)
states: 2,595,122,620 (9)
abstracting: (p75<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p75)
states: 2,595,122,620 (9)
abstracting: (0<=p95)
states: 2,595,122,620 (9)
abstracting: (p95<=0)
states: 2,221,184,918 (9)
abstracting: (p35<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p35)
states: 2,595,122,620 (9)
abstracting: (0<=p15)
states: 2,595,122,620 (9)
abstracting: (p15<=0)
states: 2,221,184,918 (9)
.......MC time: 3m33.118sec

checking: AX [AG [~ [A [[[[[[1<=p215 & p215<=1] & [1<=p195 & p195<=1]] & [1<=p175 & p175<=1]] & [[[1<=p155 & p155<=1] & [1<=p135 & p135<=1]] & [1<=p115 & p115<=1]]] & [[[[1<=p95 & p95<=1] & [1<=p75 & p75<=1]] & [1<=p55 & p55<=1]] & [[1<=p35 & p35<=1] & [1<=p15 & p15<=1]]]] U [[[[[1<=p215 & p215<=1] & [1<=p195 & p195<=1]] & [1<=p175 & p175<=1]] & [[[1<=p155 & p155<=1] & [1<=p135 & p135<=1]] & [1<=p115 & p115<=1]]] & [[[[1<=p95 & p95<=1] & [1<=p75 & p75<=1]] & [1<=p55 & p55<=1]] & [[1<=p35 & p35<=1] & [1<=p15 & p15<=1]]]]]]]]
normalized: ~ [EX [E [true U [~ [EG [~ [[[[[1<=p15 & p15<=1] & [1<=p35 & p35<=1]] & [[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [1<=p95 & p95<=1]]]] & [[[1<=p115 & p115<=1] & [[1<=p135 & p135<=1] & [1<=p155 & p155<=1]]] & [[1<=p175 & p175<=1] & [[1<=p195 & p195<=1] & [1<=p215 & p215<=1]]]]]]]] & ~ [E [~ [[[[[1<=p15 & p15<=1] & [1<=p35 & p35<=1]] & [[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [1<=p95 & p95<=1]]]] & [[[1<=p115 & p115<=1] & [[1<=p135 & p135<=1] & [1<=p155 & p155<=1]]] & [[1<=p175 & p175<=1] & [[1<=p195 & p195<=1] & [1<=p215 & p215<=1]]]]]] U [~ [[[[[1<=p15 & p15<=1] & [1<=p35 & p35<=1]] & [[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [1<=p95 & p95<=1]]]] & [[[1<=p115 & p115<=1] & [[1<=p135 & p135<=1] & [1<=p155 & p155<=1]]] & [[1<=p175 & p175<=1] & [[1<=p195 & p195<=1] & [1<=p215 & p215<=1]]]]]] & ~ [[[[[1<=p15 & p15<=1] & [1<=p35 & p35<=1]] & [[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [1<=p95 & p95<=1]]]] & [[[1<=p115 & p115<=1] & [[1<=p135 & p135<=1] & [1<=p155 & p155<=1]]] & [[1<=p175 & p175<=1] & [[1<=p195 & p195<=1] & [1<=p215 & p215<=1]]]]]]]]]]]]]

abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
....MC time: 3m17.032sec

checking: ~ [E [[[[[[1<=p95 & p95<=1] & [p75<=1 & 1<=p75]] & [1<=p55 & p55<=1]] & [[1<=p35 & p35<=1] & [1<=p15 & p15<=1]]] & [[[[p155<=1 & 1<=p155] & [1<=p135 & p135<=1]] & [p115<=1 & 1<=p115]] & [[1<=p175 & p175<=1] & [[1<=p215 & p215<=1] & [p195<=1 & 1<=p195]]]]] U [[[[[1<=p35 & p35<=1] & [1<=p15 & p15<=1]] & [[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [p95<=1 & 1<=p95]]]] & [[[p115<=1 & 1<=p115] & [[p135<=1 & 1<=p135] & [p155<=1 & 1<=p155]]] & [[p175<=1 & 1<=p175] & [[p195<=1 & 1<=p195] & [p215<=1 & 1<=p215]]]]] | ~ [AF [[[[[p15<=1 & 1<=p15] & [p35<=1 & 1<=p35]] & [[p55<=1 & 1<=p55] & [[p75<=1 & 1<=p75] & [p95<=1 & 1<=p95]]]] & [[[p115<=1 & 1<=p115] & [[p135<=1 & 1<=p135] & [p155<=1 & 1<=p155]]] & [[p175<=1 & 1<=p175] & [[p195<=1 & 1<=p195] & [p215<=1 & 1<=p215]]]]]]]]]]
normalized: ~ [E [[[[[[p195<=1 & 1<=p195] & [1<=p215 & p215<=1]] & [1<=p175 & p175<=1]] & [[p115<=1 & 1<=p115] & [[1<=p135 & p135<=1] & [p155<=1 & 1<=p155]]]] & [[[1<=p15 & p15<=1] & [1<=p35 & p35<=1]] & [[1<=p55 & p55<=1] & [[p75<=1 & 1<=p75] & [1<=p95 & p95<=1]]]]] U [EG [~ [[[[[[p215<=1 & 1<=p215] & [p195<=1 & 1<=p195]] & [p175<=1 & 1<=p175]] & [[[p155<=1 & 1<=p155] & [p135<=1 & 1<=p135]] & [p115<=1 & 1<=p115]]] & [[[[p95<=1 & 1<=p95] & [p75<=1 & 1<=p75]] & [p55<=1 & 1<=p55]] & [[p35<=1 & 1<=p35] & [p15<=1 & 1<=p15]]]]]] | [[[[[p215<=1 & 1<=p215] & [p195<=1 & 1<=p195]] & [p175<=1 & 1<=p175]] & [[[p155<=1 & 1<=p155] & [p135<=1 & 1<=p135]] & [p115<=1 & 1<=p115]]] & [[[[p95<=1 & 1<=p95] & [1<=p75 & p75<=1]] & [1<=p55 & p55<=1]] & [[1<=p15 & p15<=1] & [1<=p35 & p35<=1]]]]]]]

abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
.........MC time: 3m 3.238sec

checking: [AX [EX [EG [[[[[[1<=p215 & p215<=1] & [1<=p195 & p195<=1]] & [1<=p175 & p175<=1]] & [[[1<=p155 & p155<=1] & [1<=p135 & p135<=1]] & [1<=p115 & p115<=1]]] & [[[[1<=p95 & p95<=1] & [1<=p75 & p75<=1]] & [1<=p55 & p55<=1]] & [[1<=p35 & p35<=1] & [1<=p15 & p15<=1]]]]]]] | AF [EX [AG [[EG [[[[[[1<=p215 & p215<=1] & [1<=p195 & p195<=1]] & [1<=p175 & p175<=1]] & [[[1<=p155 & p155<=1] & [1<=p135 & p135<=1]] & [1<=p115 & p115<=1]]] & [[[[1<=p95 & p95<=1] & [1<=p75 & p75<=1]] & [1<=p55 & p55<=1]] & [[1<=p35 & p35<=1] & [1<=p15 & p15<=1]]]]] & [[[[[0<=p215 & p215<=0] | [0<=p195 & p195<=0]] | [0<=p175 & p175<=0]] | [[[0<=p155 & p155<=0] | [0<=p135 & p135<=0]] | [0<=p115 & p115<=0]]] | [[[[0<=p95 & p95<=0] | [0<=p75 & p75<=0]] | [0<=p55 & p55<=0]] | [[0<=p35 & p35<=0] | [0<=p15 & p15<=0]]]]]]]]]
normalized: [~ [EG [~ [EX [~ [E [true U ~ [[[[[[0<=p15 & p15<=0] | [0<=p35 & p35<=0]] | [[0<=p55 & p55<=0] | [[0<=p75 & p75<=0] | [0<=p95 & p95<=0]]]] | [[[0<=p115 & p115<=0] | [[0<=p135 & p135<=0] | [0<=p155 & p155<=0]]] | [[0<=p175 & p175<=0] | [[0<=p195 & p195<=0] | [0<=p215 & p215<=0]]]]] & EG [[[[[1<=p15 & p15<=1] & [1<=p35 & p35<=1]] & [[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [1<=p95 & p95<=1]]]] & [[[1<=p115 & p115<=1] & [[1<=p135 & p135<=1] & [1<=p155 & p155<=1]]] & [[1<=p175 & p175<=1] & [[1<=p195 & p195<=1] & [1<=p215 & p215<=1]]]]]]]]]]]]]] | ~ [EX [~ [EX [EG [[[[[1<=p15 & p15<=1] & [1<=p35 & p35<=1]] & [[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [1<=p95 & p95<=1]]]] & [[[1<=p115 & p115<=1] & [[1<=p135 & p135<=1] & [1<=p155 & p155<=1]]] & [[1<=p175 & p175<=1] & [[1<=p195 & p195<=1] & [1<=p215 & p215<=1]]]]]]]]]]]

abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
.
EG iterations: 1
..abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
.
EG iterations: 1
abstracting: (p215<=0)
states: 2,301,892,130 (9)
abstracting: (0<=p215)
states: 2,595,122,620 (9)
abstracting: (p195<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p195)
states: 2,595,122,620 (9)
abstracting: (p175<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p175)
states: 2,595,122,620 (9)
abstracting: (p155<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p155)
states: 2,595,122,620 (9)
abstracting: (p135<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p135)
states: 2,595,122,620 (9)
abstracting: (p115<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p115)
states: 2,595,122,620 (9)
abstracting: (p95<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p95)
states: 2,595,122,620 (9)
abstracting: (p75<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p75)
states: 2,595,122,620 (9)
abstracting: (p55<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p55)
states: 2,595,122,620 (9)
abstracting: (p35<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p35)
states: 2,595,122,620 (9)
abstracting: (p15<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p15)
states: 2,595,122,620 (9)
.
EG iterations: 0
-> the formula is FALSE

FORMULA StigmergyCommit-PT-10a-CTLFireability-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 2m24.439sec

checking: AF [[AF [[[[[[[1<=p215 & p215<=1] & [1<=p195 & p195<=1]] & [1<=p175 & p175<=1]] & [[[1<=p155 & p155<=1] & [1<=p135 & p135<=1]] & [1<=p115 & p115<=1]]] & [[[[1<=p95 & p95<=1] & [1<=p75 & p75<=1]] & [1<=p55 & p55<=1]] & [[1<=p35 & p35<=1] & [1<=p15 & p15<=1]]]] & [[[[[1<=p215 & p215<=1] & [1<=p195 & p195<=1]] & [1<=p175 & p175<=1]] & [[[1<=p155 & p155<=1] & [1<=p135 & p135<=1]] & [1<=p115 & p115<=1]]] & [[[[1<=p95 & p95<=1] & [1<=p75 & p75<=1]] & [1<=p55 & p55<=1]] & [[1<=p35 & p35<=1] & [1<=p15 & p15<=1]]]]]] & AF [AX [[EX [[[[[[1<=p215 & p215<=1] & [1<=p195 & p195<=1]] & [1<=p175 & p175<=1]] & [[[1<=p155 & p155<=1] & [1<=p135 & p135<=1]] & [1<=p115 & p115<=1]]] & [[[[1<=p95 & p95<=1] & [1<=p75 & p75<=1]] & [1<=p55 & p55<=1]] & [[1<=p35 & p35<=1] & [1<=p15 & p15<=1]]]]] | EF [[[[[[1<=p215 & p215<=1] & [1<=p195 & p195<=1]] & [1<=p175 & p175<=1]] & [[[1<=p155 & p155<=1] & [1<=p135 & p135<=1]] & [1<=p115 & p115<=1]]] & [[[[1<=p95 & p95<=1] & [1<=p75 & p75<=1]] & [1<=p55 & p55<=1]] & [[1<=p35 & p35<=1] & [1<=p15 & p15<=1]]]]]]]]]]
normalized: ~ [EG [~ [[~ [EG [EX [~ [[E [true U [[[[1<=p15 & p15<=1] & [1<=p35 & p35<=1]] & [[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [1<=p95 & p95<=1]]]] & [[[1<=p115 & p115<=1] & [[1<=p135 & p135<=1] & [1<=p155 & p155<=1]]] & [[1<=p175 & p175<=1] & [[1<=p195 & p195<=1] & [1<=p215 & p215<=1]]]]]] | EX [[[[[1<=p15 & p15<=1] & [1<=p35 & p35<=1]] & [[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [1<=p95 & p95<=1]]]] & [[[1<=p115 & p115<=1] & [[1<=p135 & p135<=1] & [1<=p155 & p155<=1]]] & [[1<=p175 & p175<=1] & [[1<=p195 & p195<=1] & [1<=p215 & p215<=1]]]]]]]]]]] & ~ [EG [~ [[[[[[1<=p15 & p15<=1] & [1<=p35 & p35<=1]] & [[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [1<=p95 & p95<=1]]]] & [[[1<=p115 & p115<=1] & [[1<=p135 & p135<=1] & [1<=p155 & p155<=1]]] & [[1<=p175 & p175<=1] & [[1<=p195 & p195<=1] & [1<=p215 & p215<=1]]]]] & [[[[1<=p15 & p15<=1] & [1<=p35 & p35<=1]] & [[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [1<=p95 & p95<=1]]]] & [[[1<=p115 & p115<=1] & [[1<=p135 & p135<=1] & [1<=p155 & p155<=1]]] & [[1<=p175 & p175<=1] & [[1<=p195 & p195<=1] & [1<=p215 & p215<=1]]]]]]]]]]]]]

abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
......MC time: 2m52.090sec

checking: A [[~ [AG [[[[EF [[[[[p15<=1 & 1<=p15] & [p35<=1 & 1<=p35]] & [[p55<=1 & 1<=p55] & [[p75<=1 & 1<=p75] & [p95<=1 & 1<=p95]]]] & [[[p115<=1 & 1<=p115] & [[p135<=1 & 1<=p135] & [p155<=1 & 1<=p155]]] & [[p175<=1 & 1<=p175] & [[p195<=1 & 1<=p195] & [p215<=1 & 1<=p215]]]]]] & [[p15<=1 & 1<=p15] & [p35<=1 & 1<=p35]]] & [[p55<=1 & 1<=p55] & [[p75<=1 & 1<=p75] & [p95<=1 & 1<=p95]]]] & [[[p115<=1 & 1<=p115] & [[p135<=1 & 1<=p135] & [p155<=1 & 1<=p155]]] & [[p175<=1 & 1<=p175] & [[p195<=1 & 1<=p195] & [p215<=1 & 1<=p215]]]]]]] & AF [AX [[[[[p15<=1 & 1<=p15] & [p35<=1 & 1<=p35]] & [[p55<=1 & 1<=p55] & [[p75<=1 & 1<=p75] & [p95<=1 & 1<=p95]]]] & [[[p115<=1 & 1<=p115] & [[p135<=1 & 1<=p135] & [p155<=1 & 1<=p155]]] & [[p175<=1 & 1<=p175] & [[p195<=1 & 1<=p195] & [p215<=1 & 1<=p215]]]]]]]] U [[[[p15<=1 & 1<=p15] & [p35<=1 & 1<=p35]] & [[p55<=1 & 1<=p55] & [[p75<=1 & 1<=p75] & [p95<=1 & 1<=p95]]]] & [[[p115<=1 & 1<=p115] & [[p135<=1 & 1<=p135] & [p155<=1 & 1<=p155]]] & [[p175<=1 & 1<=p175] & [[p195<=1 & 1<=p195] & [p215<=1 & 1<=p215]]]]]]
normalized: [~ [EG [~ [[[[[[p215<=1 & 1<=p215] & [p195<=1 & 1<=p195]] & [p175<=1 & 1<=p175]] & [[[p155<=1 & 1<=p155] & [p135<=1 & 1<=p135]] & [p115<=1 & 1<=p115]]] & [[[[p95<=1 & 1<=p95] & [p75<=1 & 1<=p75]] & [p55<=1 & 1<=p55]] & [[p35<=1 & 1<=p35] & [p15<=1 & 1<=p15]]]]]]] & ~ [E [~ [[[[[[p215<=1 & 1<=p215] & [p195<=1 & 1<=p195]] & [p175<=1 & 1<=p175]] & [[[p155<=1 & 1<=p155] & [p135<=1 & 1<=p135]] & [p115<=1 & 1<=p115]]] & [[[[p95<=1 & 1<=p95] & [p75<=1 & 1<=p75]] & [p55<=1 & 1<=p55]] & [[p35<=1 & 1<=p35] & [p15<=1 & 1<=p15]]]]] U [~ [[~ [EG [EX [~ [[[[[[p215<=1 & 1<=p215] & [p195<=1 & 1<=p195]] & [p175<=1 & 1<=p175]] & [[[p155<=1 & 1<=p155] & [p135<=1 & 1<=p135]] & [p115<=1 & 1<=p115]]] & [[[[p95<=1 & 1<=p95] & [p75<=1 & 1<=p75]] & [p55<=1 & 1<=p55]] & [[p35<=1 & 1<=p35] & [p15<=1 & 1<=p15]]]]]]]] & E [true U ~ [[[[[[p215<=1 & 1<=p215] & [p195<=1 & 1<=p195]] & [p175<=1 & 1<=p175]] & [[[p155<=1 & 1<=p155] & [p135<=1 & 1<=p135]] & [p115<=1 & 1<=p115]]] & [[[[p95<=1 & 1<=p95] & [p75<=1 & 1<=p75]] & [p55<=1 & 1<=p55]] & [[[p35<=1 & 1<=p35] & [p15<=1 & 1<=p15]] & E [true U [[[[[p215<=1 & 1<=p215] & [p195<=1 & 1<=p195]] & [p175<=1 & 1<=p175]] & [[[p155<=1 & 1<=p155] & [p135<=1 & 1<=p135]] & [p115<=1 & 1<=p115]]] & [[[[p95<=1 & 1<=p95] & [p75<=1 & 1<=p75]] & [p55<=1 & 1<=p55]] & [[p35<=1 & 1<=p35] & [p15<=1 & 1<=p15]]]]]]]]]]]] & ~ [[[[[[p215<=1 & 1<=p215] & [p195<=1 & 1<=p195]] & [p175<=1 & 1<=p175]] & [[[p155<=1 & 1<=p155] & [p135<=1 & 1<=p135]] & [p115<=1 & 1<=p115]]] & [[[[p95<=1 & 1<=p95] & [p75<=1 & 1<=p75]] & [p55<=1 & 1<=p55]] & [[p35<=1 & 1<=p35] & [p15<=1 & 1<=p15]]]]]]]]]

abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
MC time: 2m39.344sec

checking: [EG [EX [[EX [[[[[p15<=0 & 0<=p15] | [p35<=0 & 0<=p35]] | [[p55<=0 & 0<=p55] | [[p75<=0 & 0<=p75] | [p95<=0 & 0<=p95]]]] | [[[p115<=0 & 0<=p115] | [[p135<=0 & 0<=p135] | [p155<=0 & 0<=p155]]] | [[p175<=0 & 0<=p175] | [[p195<=0 & 0<=p195] | [p215<=0 & 0<=p215]]]]]] & A [[[[[p15<=1 & 1<=p15] & [p35<=1 & 1<=p35]] & [[p55<=1 & 1<=p55] & [[p75<=1 & 1<=p75] & [p95<=1 & 1<=p95]]]] & [[[p115<=1 & 1<=p115] & [[p135<=1 & 1<=p135] & [p155<=1 & 1<=p155]]] & [[p175<=1 & 1<=p175] & [[p195<=1 & 1<=p195] & [p215<=1 & 1<=p215]]]]] U ~ [[[[[p15<=1 & 1<=p15] & [p35<=1 & 1<=p35]] & [[p55<=1 & 1<=p55] & [[p75<=1 & 1<=p75] & [p95<=1 & 1<=p95]]]] & [[[p115<=1 & 1<=p115] & [[p135<=1 & 1<=p135] & [p155<=1 & 1<=p155]]] & [[p175<=1 & 1<=p175] & [[p195<=1 & 1<=p195] & [p215<=1 & 1<=p215]]]]]]]]]] & AG [AX [EG [[[[[p15<=0 & 0<=p15] | [p35<=0 & 0<=p35]] | [[p55<=0 & 0<=p55] | [[p75<=0 & 0<=p75] | [p95<=0 & 0<=p95]]]] | [[[p115<=0 & 0<=p115] | [[p135<=0 & 0<=p135] | [p155<=0 & 0<=p155]]] | [[p175<=0 & 0<=p175] | [[p195<=0 & 0<=p195] | [p215<=0 & 0<=p215]]]]]]]]]
normalized: [~ [E [true U EX [~ [EG [[[[[[p215<=0 & 0<=p215] | [p195<=0 & 0<=p195]] | [p175<=0 & 0<=p175]] | [[[p155<=0 & 0<=p155] | [p135<=0 & 0<=p135]] | [p115<=0 & 0<=p115]]] | [[[[p95<=0 & 0<=p95] | [p75<=0 & 0<=p75]] | [p55<=0 & 0<=p55]] | [[p35<=0 & 0<=p35] | [p15<=0 & 0<=p15]]]]]]]]] & EG [EX [[[~ [EG [[[[[[p215<=1 & 1<=p215] & [p195<=1 & 1<=p195]] & [p175<=1 & 1<=p175]] & [[[p155<=1 & 1<=p155] & [p135<=1 & 1<=p135]] & [p115<=1 & 1<=p115]]] & [[[[p95<=1 & 1<=p95] & [p75<=1 & 1<=p75]] & [p55<=1 & 1<=p55]] & [[p35<=1 & 1<=p35] & [p15<=1 & 1<=p15]]]]]] & ~ [E [[[[[[p215<=1 & 1<=p215] & [p195<=1 & 1<=p195]] & [p175<=1 & 1<=p175]] & [[[p155<=1 & 1<=p155] & [p135<=1 & 1<=p135]] & [p115<=1 & 1<=p115]]] & [[[[p95<=1 & 1<=p95] & [p75<=1 & 1<=p75]] & [p55<=1 & 1<=p55]] & [[p35<=1 & 1<=p35] & [p15<=1 & 1<=p15]]]] U [~ [[[[[[p215<=1 & 1<=p215] & [p195<=1 & 1<=p195]] & [p175<=1 & 1<=p175]] & [[[p155<=1 & 1<=p155] & [p135<=1 & 1<=p135]] & [p115<=1 & 1<=p115]]] & [[[[p95<=1 & 1<=p95] & [p75<=1 & 1<=p75]] & [p55<=1 & 1<=p55]] & [[p35<=1 & 1<=p35] & [p15<=1 & 1<=p15]]]]] & [[[[[p215<=1 & 1<=p215] & [p195<=1 & 1<=p195]] & [p175<=1 & 1<=p175]] & [[[p155<=1 & 1<=p155] & [p135<=1 & 1<=p135]] & [p115<=1 & 1<=p115]]] & [[[[p95<=1 & 1<=p95] & [p75<=1 & 1<=p75]] & [p55<=1 & 1<=p55]] & [[p35<=1 & 1<=p35] & [p15<=1 & 1<=p15]]]]]]]] & EX [[[[[[p215<=0 & 0<=p215] | [p195<=0 & 0<=p195]] | [p175<=0 & 0<=p175]] | [[[p155<=0 & 0<=p155] | [p135<=0 & 0<=p135]] | [p115<=0 & 0<=p115]]] | [[[[p95<=0 & 0<=p95] | [p75<=0 & 0<=p75]] | [p55<=0 & 0<=p55]] | [[p35<=0 & 0<=p35] | [p15<=0 & 0<=p15]]]]]]]]]

abstracting: (0<=p15)
states: 2,595,122,620 (9)
abstracting: (p15<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p35)
states: 2,595,122,620 (9)
abstracting: (p35<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p55)
states: 2,595,122,620 (9)
abstracting: (p55<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p75)
states: 2,595,122,620 (9)
abstracting: (p75<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p95)
states: 2,595,122,620 (9)
abstracting: (p95<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p115)
states: 2,595,122,620 (9)
abstracting: (p115<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p135)
states: 2,595,122,620 (9)
abstracting: (p135<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p155)
states: 2,595,122,620 (9)
abstracting: (p155<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p175)
states: 2,595,122,620 (9)
abstracting: (p175<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p195)
states: 2,595,122,620 (9)
abstracting: (p195<=0)
states: 2,221,184,918 (9)
abstracting: (0<=p215)
states: 2,595,122,620 (9)
abstracting: (p215<=0)
states: 2,301,892,130 (9)
.abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
.
EG iterations: 1
......MC time: 2m27.014sec

checking: AX [E [[[[[[1<=p215 & p215<=1] & [1<=p195 & p195<=1]] & [1<=p175 & p175<=1]] & [[[1<=p155 & p155<=1] & [1<=p135 & p135<=1]] & [1<=p115 & p115<=1]]] & [[[[1<=p95 & p95<=1] & [1<=p75 & p75<=1]] & [1<=p55 & p55<=1]] & [[1<=p35 & p35<=1] & [p15<=1 & 1<=p15]]]] U [AF [[[[[[[1<=p155 & p155<=1] & [p135<=1 & 1<=p135]] & [[1<=p175 & p175<=1] & [[1<=p195 & p195<=1] & [p215<=1 & 1<=p215]]]] & [[[p55<=1 & 1<=p55] & [p75<=1 & 1<=p75]] & [[p95<=1 & 1<=p95] & [p115<=1 & 1<=p115]]]] & [[[[p195<=1 & 1<=p195] & [p215<=1 & 1<=p215]] & [[p15<=1 & 1<=p15] & [p35<=1 & 1<=p35]]] & [[[1<=p115 & p115<=1] & [1<=p135 & p135<=1]] & [[1<=p155 & p155<=1] & [p175<=1 & 1<=p175]]]]] & [[[[[1<=p95 & p95<=1] & [p75<=1 & 1<=p75]] & [[p35<=1 & 1<=p35] & [1<=p55 & p55<=1]]] & [[[1<=p195 & p195<=1] & [p175<=1 & 1<=p175]] & [[1<=p215 & p215<=1] & [p15<=1 & 1<=p15]]]] & [[[[1<=p55 & p55<=1] & [1<=p75 & p75<=1]] & [[1<=p35 & p35<=1] & [p15<=1 & 1<=p15]]] & [[[1<=p95 & p95<=1] & [p115<=1 & 1<=p115]] & [[p135<=1 & 1<=p135] & [p155<=1 & 1<=p155]]]]]]] & EF [[[[[[[1<=p175 & p175<=1] & [[p215<=1 & 1<=p215] & [1<=p195 & p195<=1]]] & [[[1<=p155 & p155<=1] & [p135<=1 & 1<=p135]] & [p115<=1 & 1<=p115]]] & [[[[1<=p95 & p95<=1] & [p75<=1 & 1<=p75]] & [p55<=1 & 1<=p55]] & [[1<=p35 & p35<=1] & [p15<=1 & 1<=p15]]]] & [[[[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [p95<=1 & 1<=p95]]] & [[p15<=1 & 1<=p15] & [p35<=1 & 1<=p35]]] & [[[1<=p175 & p175<=1] & [[p195<=1 & 1<=p195] & [1<=p215 & p215<=1]]] & [[1<=p115 & p115<=1] & [[1<=p135 & p135<=1] & [p155<=1 & 1<=p155]]]]]] | [[[[[p95<=1 & 1<=p95] & [p75<=1 & 1<=p75]] & [p55<=1 & 1<=p55]] & [[1<=p15 & p15<=1] & [p35<=1 & 1<=p35]]] & [[[p115<=1 & 1<=p115] & [[1<=p135 & p135<=1] & [p155<=1 & 1<=p155]]] & [[1<=p175 & p175<=1] & [[p195<=1 & 1<=p195] & [p215<=1 & 1<=p215]]]]]]]]]]
normalized: ~ [EX [~ [E [[[[[p15<=1 & 1<=p15] & [1<=p35 & p35<=1]] & [[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [1<=p95 & p95<=1]]]] & [[[1<=p115 & p115<=1] & [[1<=p135 & p135<=1] & [1<=p155 & p155<=1]]] & [[1<=p175 & p175<=1] & [[1<=p195 & p195<=1] & [1<=p215 & p215<=1]]]]] U [E [true U [[[[[[p215<=1 & 1<=p215] & [p195<=1 & 1<=p195]] & [1<=p175 & p175<=1]] & [[[p155<=1 & 1<=p155] & [1<=p135 & p135<=1]] & [p115<=1 & 1<=p115]]] & [[[p35<=1 & 1<=p35] & [1<=p15 & p15<=1]] & [[p55<=1 & 1<=p55] & [[p75<=1 & 1<=p75] & [p95<=1 & 1<=p95]]]]] | [[[[[[p155<=1 & 1<=p155] & [1<=p135 & p135<=1]] & [1<=p115 & p115<=1]] & [[[1<=p215 & p215<=1] & [p195<=1 & 1<=p195]] & [1<=p175 & p175<=1]]] & [[[p35<=1 & 1<=p35] & [p15<=1 & 1<=p15]] & [[[p95<=1 & 1<=p95] & [1<=p75 & p75<=1]] & [1<=p55 & p55<=1]]]] & [[[[p15<=1 & 1<=p15] & [1<=p35 & p35<=1]] & [[p55<=1 & 1<=p55] & [[p75<=1 & 1<=p75] & [1<=p95 & p95<=1]]]] & [[[p115<=1 & 1<=p115] & [[p135<=1 & 1<=p135] & [1<=p155 & p155<=1]]] & [[[1<=p195 & p195<=1] & [p215<=1 & 1<=p215]] & [1<=p175 & p175<=1]]]]]]] & ~ [EG [~ [[[[[[[p155<=1 & 1<=p155] & [p135<=1 & 1<=p135]] & [[p115<=1 & 1<=p115] & [1<=p95 & p95<=1]]] & [[[p15<=1 & 1<=p15] & [1<=p35 & p35<=1]] & [[1<=p75 & p75<=1] & [1<=p55 & p55<=1]]]] & [[[[p15<=1 & 1<=p15] & [1<=p215 & p215<=1]] & [[p175<=1 & 1<=p175] & [1<=p195 & p195<=1]]] & [[[1<=p55 & p55<=1] & [p35<=1 & 1<=p35]] & [[p75<=1 & 1<=p75] & [1<=p95 & p95<=1]]]]] & [[[[[p175<=1 & 1<=p175] & [1<=p155 & p155<=1]] & [[1<=p135 & p135<=1] & [1<=p115 & p115<=1]]] & [[[p35<=1 & 1<=p35] & [p15<=1 & 1<=p15]] & [[p215<=1 & 1<=p215] & [p195<=1 & 1<=p195]]]] & [[[[p115<=1 & 1<=p115] & [p95<=1 & 1<=p95]] & [[p75<=1 & 1<=p75] & [p55<=1 & 1<=p55]]] & [[[[p215<=1 & 1<=p215] & [1<=p195 & p195<=1]] & [1<=p175 & p175<=1]] & [[p135<=1 & 1<=p135] & [1<=p155 & p155<=1]]]]]]]]]]]]]]

abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
.........MC time: 2m15.368sec

checking: EG [[[[[[[p155<=1 & 1<=p155] & [p135<=1 & 1<=p135]] & [p115<=1 & 1<=p115]] & [[1<=p175 & p175<=1] & [[1<=p215 & p215<=1] & [p195<=1 & 1<=p195]]]] & [[[p15<=1 & 1<=p15] & [p35<=1 & 1<=p35]] & [[1<=p55 & p55<=1] & [[1<=p95 & p95<=1] & [1<=p75 & p75<=1]]]]] | A [~ [E [[[[[[[1<=p215 & p215<=1] & [1<=p195 & p195<=1]] & [p175<=1 & 1<=p175]] & [[[1<=p135 & p135<=1] & [p155<=1 & 1<=p155]] & [p115<=1 & 1<=p115]]] & [[[1<=p35 & p35<=1] & [1<=p15 & p15<=1]] & [[p55<=1 & 1<=p55] & [[1<=p75 & p75<=1] & [p95<=1 & 1<=p95]]]]] & [[[[[1<=p215 & p215<=1] & [p195<=1 & 1<=p195]] & [p175<=1 & 1<=p175]] & [[1<=p115 & p115<=1] & [[1<=p155 & p155<=1] & [1<=p135 & p135<=1]]]] & [[[p15<=1 & 1<=p15] & [p35<=1 & 1<=p35]] & [[[p75<=1 & 1<=p75] & [1<=p95 & p95<=1]] & [p55<=1 & 1<=p55]]]]] U [[[[1<=p35 & p35<=1] & [p15<=1 & 1<=p15]] & [[[p75<=1 & 1<=p75] & [p95<=1 & 1<=p95]] & [p55<=1 & 1<=p55]]] & [[[p175<=1 & 1<=p175] & [[1<=p195 & p195<=1] & [p215<=1 & 1<=p215]]] & [[p115<=1 & 1<=p115] & [[1<=p135 & p135<=1] & [p155<=1 & 1<=p155]]]]]]] U [AX [E [[[[[[1<=p95 & p95<=1] & [1<=p75 & p75<=1]] & [1<=p55 & p55<=1]] & [[p35<=1 & 1<=p35] & [1<=p15 & p15<=1]]] & [[[1<=p175 & p175<=1] & [[p195<=1 & 1<=p195] & [1<=p215 & p215<=1]]] & [[[p155<=1 & 1<=p155] & [p135<=1 & 1<=p135]] & [1<=p115 & p115<=1]]]] U [[[[1<=p55 & p55<=1] & [[p95<=1 & 1<=p95] & [p75<=1 & 1<=p75]]] & [[1<=p15 & p15<=1] & [p35<=1 & 1<=p35]]] & [[[1<=p175 & p175<=1] & [[1<=p215 & p215<=1] & [1<=p195 & p195<=1]]] & [[[p135<=1 & 1<=p135] & [1<=p155 & p155<=1]] & [p115<=1 & 1<=p115]]]]]] | [[[[1<=p55 & p55<=1] & [[p75<=1 & 1<=p75] & [p95<=1 & 1<=p95]]] & [[1<=p35 & p35<=1] & [1<=p15 & p15<=1]]] & [[[1<=p115 & p115<=1] & [[1<=p135 & p135<=1] & [1<=p155 & p155<=1]]] & [[1<=p175 & p175<=1] & [[1<=p195 & p195<=1] & [1<=p215 & p215<=1]]]]]]]]]
normalized: EG [[[~ [EG [~ [[[[[[[1<=p215 & p215<=1] & [1<=p195 & p195<=1]] & [1<=p175 & p175<=1]] & [[[1<=p155 & p155<=1] & [1<=p135 & p135<=1]] & [1<=p115 & p115<=1]]] & [[[1<=p15 & p15<=1] & [1<=p35 & p35<=1]] & [[[p95<=1 & 1<=p95] & [p75<=1 & 1<=p75]] & [1<=p55 & p55<=1]]]] | ~ [EX [~ [E [[[[[1<=p115 & p115<=1] & [[p135<=1 & 1<=p135] & [p155<=1 & 1<=p155]]] & [[[1<=p215 & p215<=1] & [p195<=1 & 1<=p195]] & [1<=p175 & p175<=1]]] & [[[1<=p15 & p15<=1] & [p35<=1 & 1<=p35]] & [[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [1<=p95 & p95<=1]]]]] U [[[[p115<=1 & 1<=p115] & [[1<=p155 & p155<=1] & [p135<=1 & 1<=p135]]] & [[[1<=p195 & p195<=1] & [1<=p215 & p215<=1]] & [1<=p175 & p175<=1]]] & [[[p35<=1 & 1<=p35] & [1<=p15 & p15<=1]] & [[[p75<=1 & 1<=p75] & [p95<=1 & 1<=p95]] & [1<=p55 & p55<=1]]]]]]]]]]]] & ~ [E [~ [[[[[[[1<=p215 & p215<=1] & [1<=p195 & p195<=1]] & [1<=p175 & p175<=1]] & [[[1<=p155 & p155<=1] & [1<=p135 & p135<=1]] & [1<=p115 & p115<=1]]] & [[[1<=p15 & p15<=1] & [1<=p35 & p35<=1]] & [[[p95<=1 & 1<=p95] & [p75<=1 & 1<=p75]] & [1<=p55 & p55<=1]]]] | ~ [EX [~ [E [[[[[1<=p115 & p115<=1] & [[p135<=1 & 1<=p135] & [p155<=1 & 1<=p155]]] & [[[1<=p215 & p215<=1] & [p195<=1 & 1<=p195]] & [1<=p175 & p175<=1]]] & [[[1<=p15 & p15<=1] & [p35<=1 & 1<=p35]] & [[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [1<=p95 & p95<=1]]]]] U [[[[p115<=1 & 1<=p115] & [[1<=p155 & p155<=1] & [p135<=1 & 1<=p135]]] & [[[1<=p195 & p195<=1] & [1<=p215 & p215<=1]] & [1<=p175 & p175<=1]]] & [[[p35<=1 & 1<=p35] & [1<=p15 & p15<=1]] & [[[p75<=1 & 1<=p75] & [p95<=1 & 1<=p95]] & [1<=p55 & p55<=1]]]]]]]]]] U [E [[[[[[p55<=1 & 1<=p55] & [[1<=p95 & p95<=1] & [p75<=1 & 1<=p75]]] & [[p35<=1 & 1<=p35] & [p15<=1 & 1<=p15]]] & [[[[1<=p135 & p135<=1] & [1<=p155 & p155<=1]] & [1<=p115 & p115<=1]] & [[p175<=1 & 1<=p175] & [[p195<=1 & 1<=p195] & [1<=p215 & p215<=1]]]]] & [[[[[p95<=1 & 1<=p95] & [1<=p75 & p75<=1]] & [p55<=1 & 1<=p55]] & [[1<=p15 & p15<=1] & [1<=p35 & p35<=1]]] & [[[p115<=1 & 1<=p115] & [[p155<=1 & 1<=p155] & [1<=p135 & p135<=1]]] & [[p175<=1 & 1<=p175] & [[1<=p195 & p195<=1] & [1<=p215 & p215<=1]]]]]] U [[[[[p155<=1 & 1<=p155] & [1<=p135 & p135<=1]] & [p115<=1 & 1<=p115]] & [[[p215<=1 & 1<=p215] & [1<=p195 & p195<=1]] & [p175<=1 & 1<=p175]]] & [[[p55<=1 & 1<=p55] & [[p95<=1 & 1<=p95] & [p75<=1 & 1<=p75]]] & [[p15<=1 & 1<=p15] & [1<=p35 & p35<=1]]]]] & ~ [[[[[[[1<=p215 & p215<=1] & [1<=p195 & p195<=1]] & [1<=p175 & p175<=1]] & [[[1<=p155 & p155<=1] & [1<=p135 & p135<=1]] & [1<=p115 & p115<=1]]] & [[[1<=p15 & p15<=1] & [1<=p35 & p35<=1]] & [[[p95<=1 & 1<=p95] & [p75<=1 & 1<=p75]] & [1<=p55 & p55<=1]]]] | ~ [EX [~ [E [[[[[1<=p115 & p115<=1] & [[p135<=1 & 1<=p135] & [p155<=1 & 1<=p155]]] & [[[1<=p215 & p215<=1] & [p195<=1 & 1<=p195]] & [1<=p175 & p175<=1]]] & [[[1<=p15 & p15<=1] & [p35<=1 & 1<=p35]] & [[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [1<=p95 & p95<=1]]]]] U [[[[p115<=1 & 1<=p115] & [[1<=p155 & p155<=1] & [p135<=1 & 1<=p135]]] & [[[1<=p195 & p195<=1] & [1<=p215 & p215<=1]] & [1<=p175 & p175<=1]]] & [[[p35<=1 & 1<=p35] & [1<=p15 & p15<=1]] & [[[p75<=1 & 1<=p75] & [p95<=1 & 1<=p95]] & [1<=p55 & p55<=1]]]]]]]]]]]]]] | [[[[[1<=p75 & p75<=1] & [1<=p95 & p95<=1]] & [1<=p55 & p55<=1]] & [[p35<=1 & 1<=p35] & [p15<=1 & 1<=p15]]] & [[[[p195<=1 & 1<=p195] & [1<=p215 & p215<=1]] & [1<=p175 & p175<=1]] & [[p115<=1 & 1<=p115] & [[p135<=1 & 1<=p135] & [p155<=1 & 1<=p155]]]]]]]

abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
.abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
.abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
.abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
........
before gc: list nodes free: 45947

after gc: idd nodes used:2221570, unused:61778430; list nodes free:271614360
MC time: 2m 5.064sec

checking: AF [[A [[[[[[1<=p215 & p215<=1] & [1<=p195 & p195<=1]] & [1<=p175 & p175<=1]] & [[[1<=p155 & p155<=1] & [1<=p135 & p135<=1]] & [1<=p115 & p115<=1]]] & [[[[1<=p95 & p95<=1] & [1<=p75 & p75<=1]] & [1<=p55 & p55<=1]] & [[1<=p35 & p35<=1] & [1<=p15 & p15<=1]]]] U E [[[[[[1<=p215 & p215<=1] & [1<=p195 & p195<=1]] & [1<=p175 & p175<=1]] & [[[1<=p155 & p155<=1] & [1<=p135 & p135<=1]] & [1<=p115 & p115<=1]]] & [[[[1<=p95 & p95<=1] & [1<=p75 & p75<=1]] & [1<=p55 & p55<=1]] & [[1<=p35 & p35<=1] & [1<=p15 & p15<=1]]]] U AX [[[[[[1<=p215 & p215<=1] & [1<=p195 & p195<=1]] & [1<=p175 & p175<=1]] & [[[1<=p155 & p155<=1] & [1<=p135 & p135<=1]] & [1<=p115 & p115<=1]]] & [[[[1<=p95 & p95<=1] & [1<=p75 & p75<=1]] & [1<=p55 & p55<=1]] & [[1<=p35 & p35<=1] & [1<=p15 & p15<=1]]]]]]] & AX [[[[[[[[1<=p95 & p95<=1] & [1<=p75 & p75<=1]] & [1<=p55 & p55<=1]] & [[1<=p35 & p35<=1] & [1<=p15 & p15<=1]]] & [[[1<=p215 & p215<=1] & [1<=p195 & p195<=1]] & [[1<=p175 & p175<=1] & [1<=p155 & p155<=1]]]] & [[[[1<=p135 & p135<=1] & [1<=p115 & p115<=1]] & [[1<=p95 & p95<=1] & [1<=p75 & p75<=1]]] & [[[1<=p55 & p55<=1] & [1<=p35 & p35<=1]] & [[1<=p15 & p15<=1] & EG [[[[[[0<=p215 & p215<=0] | [0<=p195 & p195<=0]] | [0<=p175 & p175<=0]] | [[[0<=p155 & p155<=0] | [0<=p135 & p135<=0]] | [0<=p115 & p115<=0]]] | [[[[0<=p95 & p95<=0] | [0<=p75 & p75<=0]] | [0<=p55 & p55<=0]] | [[0<=p35 & p35<=0] | [0<=p15 & p15<=0]]]]]]]]] & [[[[[1<=p175 & p175<=1] & [1<=p155 & p155<=1]] & [[1<=p135 & p135<=1] & [1<=p115 & p115<=1]]] & [[[1<=p195 & p195<=1] & [1<=p215 & p215<=1]] & [[p15<=1 & 1<=p15] & [p35<=1 & 1<=p35]]]] & [[[[p55<=1 & 1<=p55] & [p75<=1 & 1<=p75]] & [[p95<=1 & 1<=p95] & [p115<=1 & 1<=p115]]] & [[[p135<=1 & 1<=p135] & [p155<=1 & 1<=p155]] & [[p175<=1 & 1<=p175] & [[p195<=1 & 1<=p195] & [p215<=1 & 1<=p215]]]]]]]]]]
normalized: ~ [EG [~ [[~ [EX [~ [[[[[[[[p215<=1 & 1<=p215] & [p195<=1 & 1<=p195]] & [p175<=1 & 1<=p175]] & [[p155<=1 & 1<=p155] & [p135<=1 & 1<=p135]]] & [[[p115<=1 & 1<=p115] & [p95<=1 & 1<=p95]] & [[p75<=1 & 1<=p75] & [p55<=1 & 1<=p55]]]] & [[[[p35<=1 & 1<=p35] & [p15<=1 & 1<=p15]] & [[1<=p215 & p215<=1] & [1<=p195 & p195<=1]]] & [[[1<=p115 & p115<=1] & [1<=p135 & p135<=1]] & [[1<=p155 & p155<=1] & [1<=p175 & p175<=1]]]]] & [[[[EG [[[[[0<=p15 & p15<=0] | [0<=p35 & p35<=0]] | [[0<=p55 & p55<=0] | [[0<=p75 & p75<=0] | [0<=p95 & p95<=0]]]] | [[[0<=p115 & p115<=0] | [[0<=p135 & p135<=0] | [0<=p155 & p155<=0]]] | [[0<=p175 & p175<=0] | [[0<=p195 & p195<=0] | [0<=p215 & p215<=0]]]]]] & [1<=p15 & p15<=1]] & [[1<=p35 & p35<=1] & [1<=p55 & p55<=1]]] & [[[1<=p75 & p75<=1] & [1<=p95 & p95<=1]] & [[1<=p115 & p115<=1] & [1<=p135 & p135<=1]]]] & [[[[1<=p155 & p155<=1] & [1<=p175 & p175<=1]] & [[1<=p195 & p195<=1] & [1<=p215 & p215<=1]]] & [[[1<=p15 & p15<=1] & [1<=p35 & p35<=1]] & [[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [1<=p95 & p95<=1]]]]]]]]]] & [~ [EG [~ [E [[[[[1<=p15 & p15<=1] & [1<=p35 & p35<=1]] & [[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [1<=p95 & p95<=1]]]] & [[[1<=p115 & p115<=1] & [[1<=p135 & p135<=1] & [1<=p155 & p155<=1]]] & [[1<=p175 & p175<=1] & [[1<=p195 & p195<=1] & [1<=p215 & p215<=1]]]]] U ~ [EX [~ [[[[[1<=p15 & p15<=1] & [1<=p35 & p35<=1]] & [[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [1<=p95 & p95<=1]]]] & [[[1<=p115 & p115<=1] & [[1<=p135 & p135<=1] & [1<=p155 & p155<=1]]] & [[1<=p175 & p175<=1] & [[1<=p195 & p195<=1] & [1<=p215 & p215<=1]]]]]]]]]]]] & ~ [E [~ [E [[[[[1<=p15 & p15<=1] & [1<=p35 & p35<=1]] & [[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [1<=p95 & p95<=1]]]] & [[[1<=p115 & p115<=1] & [[1<=p135 & p135<=1] & [1<=p155 & p155<=1]]] & [[1<=p175 & p175<=1] & [[1<=p195 & p195<=1] & [1<=p215 & p215<=1]]]]] U ~ [EX [~ [[[[[1<=p15 & p15<=1] & [1<=p35 & p35<=1]] & [[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [1<=p95 & p95<=1]]]] & [[[1<=p115 & p115<=1] & [[1<=p135 & p135<=1] & [1<=p155 & p155<=1]]] & [[1<=p175 & p175<=1] & [[1<=p195 & p195<=1] & [1<=p215 & p215<=1]]]]]]]]]] U [~ [[[[[1<=p15 & p15<=1] & [1<=p35 & p35<=1]] & [[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [1<=p95 & p95<=1]]]] & [[[1<=p115 & p115<=1] & [[1<=p135 & p135<=1] & [1<=p155 & p155<=1]]] & [[1<=p175 & p175<=1] & [[1<=p195 & p195<=1] & [1<=p215 & p215<=1]]]]]] & ~ [E [[[[[1<=p15 & p15<=1] & [1<=p35 & p35<=1]] & [[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [1<=p95 & p95<=1]]]] & [[[1<=p115 & p115<=1] & [[1<=p135 & p135<=1] & [1<=p155 & p155<=1]]] & [[1<=p175 & p175<=1] & [[1<=p195 & p195<=1] & [1<=p215 & p215<=1]]]]] U ~ [EX [~ [[[[[1<=p15 & p15<=1] & [1<=p35 & p35<=1]] & [[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [1<=p95 & p95<=1]]]] & [[[1<=p115 & p115<=1] & [[1<=p135 & p135<=1] & [1<=p155 & p155<=1]]] & [[1<=p175 & p175<=1] & [[1<=p195 & p195<=1] & [1<=p215 & p215<=1]]]]]]]]]]]]]]]]]]

abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
.abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
.abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
MC time: 1m55.509sec

checking: ~ [A [AF [E [~ [[[[[p15<=1 & 1<=p15] & [p35<=1 & 1<=p35]] & [[p55<=1 & 1<=p55] & [[p75<=1 & 1<=p75] & [p95<=1 & 1<=p95]]]] & [[[p175<=1 & 1<=p175] & [[p195<=1 & 1<=p195] & [p215<=1 & 1<=p215]]] & [[1<=p115 & p115<=1] & [[p135<=1 & 1<=p135] & [p155<=1 & 1<=p155]]]]]] U [[[[[p135<=1 & 1<=p135] & [p155<=1 & 1<=p155]] & [1<=p115 & p115<=1]] & [[p175<=1 & 1<=p175] & [[p215<=1 & 1<=p215] & [p195<=1 & 1<=p195]]]] & [[[1<=p35 & p35<=1] & [p15<=1 & 1<=p15]] & [[[1<=p95 & p95<=1] & [p75<=1 & 1<=p75]] & [p55<=1 & 1<=p55]]]]]] U AG [[[[[1<=p175 & p175<=1] & [[p195<=1 & 1<=p195] & [p215<=1 & 1<=p215]]] & [[1<=p115 & p115<=1] & [[p135<=1 & 1<=p135] & [p155<=1 & 1<=p155]]]] & [[[[[[[[[[1<=p115 & p115<=1] & [p95<=1 & 1<=p95]] & [[1<=p55 & p55<=1] & [1<=p75 & p75<=1]]] & [[[p135<=1 & 1<=p135] & [1<=p155 & p155<=1]] & [[1<=p175 & p175<=1] & [[1<=p215 & p215<=1] & [p195<=1 & 1<=p195]]]]] & [[[[p35<=1 & 1<=p35] & [1<=p15 & p15<=1]] & [[p215<=1 & 1<=p215] & [p195<=1 & 1<=p195]]] & [[[1<=p135 & p135<=1] & [1<=p115 & p115<=1]] & [[p155<=1 & 1<=p155] & [p175<=1 & 1<=p175]]]]] & [[[[[1<=p15 & p15<=1] & [1<=p215 & p215<=1]] & [[1<=p195 & p195<=1] & [1<=p175 & p175<=1]]] & [[[p75<=1 & 1<=p75] & [p95<=1 & 1<=p95]] & [[p35<=1 & 1<=p35] & [p55<=1 & 1<=p55]]]] & [[[[1<=p35 & p35<=1] & [1<=p15 & p15<=1]] & [[1<=p55 & p55<=1] & [1<=p75 & p75<=1]]] & [[[1<=p95 & p95<=1] & [p115<=1 & 1<=p115]] & [[p135<=1 & 1<=p135] & [p155<=1 & 1<=p155]]]]]] | [[[[1<=p115 & p115<=1] & [[p135<=1 & 1<=p135] & [1<=p155 & p155<=1]]] & [[1<=p175 & p175<=1] & [[p195<=1 & 1<=p195] & [p215<=1 & 1<=p215]]]] & [[[[1<=p95 & p95<=1] & [p75<=1 & 1<=p75]] & [1<=p55 & p55<=1]] & [[p35<=1 & 1<=p35] & [p15<=1 & 1<=p15]]]]] | AG [[[[[[1<=p155 & p155<=1] & [p135<=1 & 1<=p135]] & [p115<=1 & 1<=p115]] & [[[1<=p215 & p215<=1] & [1<=p195 & p195<=1]] & [1<=p175 & p175<=1]]] & [[[1<=p15 & p15<=1] & [p35<=1 & 1<=p35]] & [[[1<=p75 & p75<=1] & [p95<=1 & 1<=p95]] & [p55<=1 & 1<=p55]]]]]] & [[1<=p15 & p15<=1] & [1<=p35 & p35<=1]]] & [[1<=p55 & p55<=1] & [[p75<=1 & 1<=p75] & [p95<=1 & 1<=p95]]]]]]]]
normalized: ~ [[~ [EG [E [true U ~ [[[[[[p95<=1 & 1<=p95] & [p75<=1 & 1<=p75]] & [1<=p55 & p55<=1]] & [[[1<=p35 & p35<=1] & [1<=p15 & p15<=1]] & [~ [E [true U ~ [[[[[p55<=1 & 1<=p55] & [[p95<=1 & 1<=p95] & [1<=p75 & p75<=1]]] & [[p35<=1 & 1<=p35] & [1<=p15 & p15<=1]]] & [[[1<=p175 & p175<=1] & [[1<=p195 & p195<=1] & [1<=p215 & p215<=1]]] & [[p115<=1 & 1<=p115] & [[p135<=1 & 1<=p135] & [1<=p155 & p155<=1]]]]]]]] | [[[[[p15<=1 & 1<=p15] & [p35<=1 & 1<=p35]] & [[1<=p55 & p55<=1] & [[p75<=1 & 1<=p75] & [1<=p95 & p95<=1]]]] & [[[[p215<=1 & 1<=p215] & [p195<=1 & 1<=p195]] & [1<=p175 & p175<=1]] & [[[1<=p155 & p155<=1] & [p135<=1 & 1<=p135]] & [1<=p115 & p115<=1]]]] | [[[[[[p155<=1 & 1<=p155] & [p135<=1 & 1<=p135]] & [[p115<=1 & 1<=p115] & [1<=p95 & p95<=1]]] & [[[1<=p75 & p75<=1] & [1<=p55 & p55<=1]] & [[1<=p15 & p15<=1] & [1<=p35 & p35<=1]]]] & [[[[p55<=1 & 1<=p55] & [p35<=1 & 1<=p35]] & [[p95<=1 & 1<=p95] & [p75<=1 & 1<=p75]]] & [[[1<=p175 & p175<=1] & [1<=p195 & p195<=1]] & [[1<=p215 & p215<=1] & [1<=p15 & p15<=1]]]]] & [[[[[p175<=1 & 1<=p175] & [p155<=1 & 1<=p155]] & [[1<=p115 & p115<=1] & [1<=p135 & p135<=1]]] & [[[p195<=1 & 1<=p195] & [p215<=1 & 1<=p215]] & [[1<=p15 & p15<=1] & [p35<=1 & 1<=p35]]]] & [[[[[p195<=1 & 1<=p195] & [1<=p215 & p215<=1]] & [1<=p175 & p175<=1]] & [[1<=p155 & p155<=1] & [p135<=1 & 1<=p135]]] & [[[1<=p75 & p75<=1] & [1<=p55 & p55<=1]] & [[p95<=1 & 1<=p95] & [1<=p115 & p115<=1]]]]]]]]]] & [[[[p155<=1 & 1<=p155] & [p135<=1 & 1<=p135]] & [1<=p115 & p115<=1]] & [[[p215<=1 & 1<=p215] & [p195<=1 & 1<=p195]] & [1<=p175 & p175<=1]]]]]]]] & ~ [E [E [true U ~ [[[[[[p95<=1 & 1<=p95] & [p75<=1 & 1<=p75]] & [1<=p55 & p55<=1]] & [[[1<=p35 & p35<=1] & [1<=p15 & p15<=1]] & [~ [E [true U ~ [[[[[p55<=1 & 1<=p55] & [[p95<=1 & 1<=p95] & [1<=p75 & p75<=1]]] & [[p35<=1 & 1<=p35] & [1<=p15 & p15<=1]]] & [[[1<=p175 & p175<=1] & [[1<=p195 & p195<=1] & [1<=p215 & p215<=1]]] & [[p115<=1 & 1<=p115] & [[p135<=1 & 1<=p135] & [1<=p155 & p155<=1]]]]]]]] | [[[[[p15<=1 & 1<=p15] & [p35<=1 & 1<=p35]] & [[1<=p55 & p55<=1] & [[p75<=1 & 1<=p75] & [1<=p95 & p95<=1]]]] & [[[[p215<=1 & 1<=p215] & [p195<=1 & 1<=p195]] & [1<=p175 & p175<=1]] & [[[1<=p155 & p155<=1] & [p135<=1 & 1<=p135]] & [1<=p115 & p115<=1]]]] | [[[[[[p155<=1 & 1<=p155] & [p135<=1 & 1<=p135]] & [[p115<=1 & 1<=p115] & [1<=p95 & p95<=1]]] & [[[1<=p75 & p75<=1] & [1<=p55 & p55<=1]] & [[1<=p15 & p15<=1] & [1<=p35 & p35<=1]]]] & [[[[p55<=1 & 1<=p55] & [p35<=1 & 1<=p35]] & [[p95<=1 & 1<=p95] & [p75<=1 & 1<=p75]]] & [[[1<=p175 & p175<=1] & [1<=p195 & p195<=1]] & [[1<=p215 & p215<=1] & [1<=p15 & p15<=1]]]]] & [[[[[p175<=1 & 1<=p175] & [p155<=1 & 1<=p155]] & [[1<=p115 & p115<=1] & [1<=p135 & p135<=1]]] & [[[p195<=1 & 1<=p195] & [p215<=1 & 1<=p215]] & [[1<=p15 & p15<=1] & [p35<=1 & 1<=p35]]]] & [[[[[p195<=1 & 1<=p195] & [1<=p215 & p215<=1]] & [1<=p175 & p175<=1]] & [[1<=p155 & p155<=1] & [p135<=1 & 1<=p135]]] & [[[1<=p75 & p75<=1] & [1<=p55 & p55<=1]] & [[p95<=1 & 1<=p95] & [1<=p115 & p115<=1]]]]]]]]]] & [[[[p155<=1 & 1<=p155] & [p135<=1 & 1<=p135]] & [1<=p115 & p115<=1]] & [[[p215<=1 & 1<=p215] & [p195<=1 & 1<=p195]] & [1<=p175 & p175<=1]]]]]] U [EG [~ [E [~ [[[[[[p155<=1 & 1<=p155] & [p135<=1 & 1<=p135]] & [1<=p115 & p115<=1]] & [[[p215<=1 & 1<=p215] & [p195<=1 & 1<=p195]] & [p175<=1 & 1<=p175]]] & [[[[p95<=1 & 1<=p95] & [p75<=1 & 1<=p75]] & [p55<=1 & 1<=p55]] & [[p35<=1 & 1<=p35] & [p15<=1 & 1<=p15]]]]] U [[[[p55<=1 & 1<=p55] & [[p75<=1 & 1<=p75] & [1<=p95 & p95<=1]]] & [[p15<=1 & 1<=p15] & [1<=p35 & p35<=1]]] & [[[[p195<=1 & 1<=p195] & [p215<=1 & 1<=p215]] & [p175<=1 & 1<=p175]] & [[1<=p115 & p115<=1] & [[p155<=1 & 1<=p155] & [p135<=1 & 1<=p135]]]]]]]] & E [true U ~ [[[[[[p95<=1 & 1<=p95] & [p75<=1 & 1<=p75]] & [1<=p55 & p55<=1]] & [[[1<=p35 & p35<=1] & [1<=p15 & p15<=1]] & [~ [E [true U ~ [[[[[p55<=1 & 1<=p55] & [[p95<=1 & 1<=p95] & [1<=p75 & p75<=1]]] & [[p35<=1 & 1<=p35] & [1<=p15 & p15<=1]]] & [[[1<=p175 & p175<=1] & [[1<=p195 & p195<=1] & [1<=p215 & p215<=1]]] & [[p115<=1 & 1<=p115] & [[p135<=1 & 1<=p135] & [1<=p155 & p155<=1]]]]]]]] | [[[[[p15<=1 & 1<=p15] & [p35<=1 & 1<=p35]] & [[1<=p55 & p55<=1] & [[p75<=1 & 1<=p75] & [1<=p95 & p95<=1]]]] & [[[[p215<=1 & 1<=p215] & [p195<=1 & 1<=p195]] & [1<=p175 & p175<=1]] & [[[1<=p155 & p155<=1] & [p135<=1 & 1<=p135]] & [1<=p115 & p115<=1]]]] | [[[[[[p155<=1 & 1<=p155] & [p135<=1 & 1<=p135]] & [[p115<=1 & 1<=p115] & [1<=p95 & p95<=1]]] & [[[1<=p75 & p75<=1] & [1<=p55 & p55<=1]] & [[1<=p15 & p15<=1] & [1<=p35 & p35<=1]]]] & [[[[p55<=1 & 1<=p55] & [p35<=1 & 1<=p35]] & [[p95<=1 & 1<=p95] & [p75<=1 & 1<=p75]]] & [[[1<=p175 & p175<=1] & [1<=p195 & p195<=1]] & [[1<=p215 & p215<=1] & [1<=p15 & p15<=1]]]]] & [[[[[p175<=1 & 1<=p175] & [p155<=1 & 1<=p155]] & [[1<=p115 & p115<=1] & [1<=p135 & p135<=1]]] & [[[p195<=1 & 1<=p195] & [p215<=1 & 1<=p215]] & [[1<=p15 & p15<=1] & [p35<=1 & 1<=p35]]]] & [[[[[p195<=1 & 1<=p195] & [1<=p215 & p215<=1]] & [1<=p175 & p175<=1]] & [[1<=p155 & p155<=1] & [p135<=1 & 1<=p135]]] & [[[1<=p75 & p75<=1] & [1<=p55 & p55<=1]] & [[p95<=1 & 1<=p95] & [1<=p115 & p115<=1]]]]]]]]]] & [[[[p155<=1 & 1<=p155] & [p135<=1 & 1<=p135]] & [1<=p115 & p115<=1]] & [[[p215<=1 & 1<=p215] & [p195<=1 & 1<=p195]] & [1<=p175 & p175<=1]]]]]]]]]]]

abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
MC time: 1m46.999sec

checking: A [AG [~ [[[[[p15<=1 & 1<=p15] & [p35<=1 & 1<=p35]] & [[p55<=1 & 1<=p55] & [[p75<=1 & 1<=p75] & [p95<=1 & 1<=p95]]]] & [[[p115<=1 & 1<=p115] & [[p135<=1 & 1<=p135] & [p155<=1 & 1<=p155]]] & [[p175<=1 & 1<=p175] & [[p195<=1 & 1<=p195] & [p215<=1 & 1<=p215]]]]]]] U A [[~ [[~ [[[[[[[p215<=1 & 1<=p215] & [p195<=1 & 1<=p195]] & [p175<=1 & 1<=p175]] & [[[1<=p135 & p135<=1] & [p155<=1 & 1<=p155]] & [p115<=1 & 1<=p115]]] & [[[[1<=p95 & p95<=1] & [1<=p75 & p75<=1]] & [1<=p55 & p55<=1]] & [[p15<=1 & 1<=p15] & [1<=p35 & p35<=1]]]] & [[[[1<=p115 & p115<=1] & [[1<=p135 & p135<=1] & [1<=p155 & p155<=1]]] & [[[1<=p215 & p215<=1] & [1<=p195 & p195<=1]] & [p175<=1 & 1<=p175]]] & [[[p35<=1 & 1<=p35] & [1<=p15 & p15<=1]] & [[1<=p55 & p55<=1] & [[p75<=1 & 1<=p75] & [p95<=1 & 1<=p95]]]]]]] | AG [[[[[[1<=p215 & p215<=1] & [1<=p195 & p195<=1]] & [1<=p175 & p175<=1]] & [[[1<=p155 & p155<=1] & [1<=p135 & p135<=1]] & [1<=p115 & p115<=1]]] & [[[[1<=p95 & p95<=1] & [1<=p75 & p75<=1]] & [1<=p55 & p55<=1]] & [[1<=p35 & p35<=1] & [1<=p15 & p15<=1]]]]]]] & E [~ [[[[[p15<=1 & 1<=p15] & [p35<=1 & 1<=p35]] & [[p55<=1 & 1<=p55] & [[p75<=1 & 1<=p75] & [p95<=1 & 1<=p95]]]] & [[[p115<=1 & 1<=p115] & [[p135<=1 & 1<=p135] & [p155<=1 & 1<=p155]]] & [[p175<=1 & 1<=p175] & [[p195<=1 & 1<=p195] & [p215<=1 & 1<=p215]]]]]] U [~ [[[[[[p215<=1 & 1<=p215] & [p195<=1 & 1<=p195]] & [p175<=1 & 1<=p175]] & [[[1<=p155 & p155<=1] & [1<=p135 & p135<=1]] & [1<=p115 & p115<=1]]] & [[[[1<=p95 & p95<=1] & [1<=p75 & p75<=1]] & [1<=p55 & p55<=1]] & [[1<=p35 & p35<=1] & [p15<=1 & 1<=p15]]]]] & AF [[[[[1<=p55 & p55<=1] & [[p95<=1 & 1<=p95] & [p75<=1 & 1<=p75]]] & [[1<=p35 & p35<=1] & [1<=p15 & p15<=1]]] & [[[[p155<=1 & 1<=p155] & [1<=p135 & p135<=1]] & [p115<=1 & 1<=p115]] & [[p175<=1 & 1<=p175] & [[1<=p215 & p215<=1] & [p195<=1 & 1<=p195]]]]]]]]] U AX [[[[[[p95<=1 & 1<=p95] & [1<=p75 & p75<=1]] & [1<=p55 & p55<=1]] & [[1<=p15 & p15<=1] & [1<=p35 & p35<=1]]] & [[[1<=p115 & p115<=1] & [[p135<=1 & 1<=p135] & [1<=p155 & p155<=1]]] & [[p175<=1 & 1<=p175] & [[1<=p195 & p195<=1] & [1<=p215 & p215<=1]]]]]]]]
normalized: [~ [EG [~ [[~ [EG [EX [~ [[[[[[1<=p215 & p215<=1] & [1<=p195 & p195<=1]] & [p175<=1 & 1<=p175]] & [[[1<=p155 & p155<=1] & [p135<=1 & 1<=p135]] & [1<=p115 & p115<=1]]] & [[[1<=p15 & p15<=1] & [1<=p35 & p35<=1]] & [[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [p95<=1 & 1<=p95]]]]]]]]] & ~ [E [EX [~ [[[[[[1<=p215 & p215<=1] & [1<=p195 & p195<=1]] & [p175<=1 & 1<=p175]] & [[[1<=p155 & p155<=1] & [p135<=1 & 1<=p135]] & [1<=p115 & p115<=1]]] & [[[1<=p15 & p15<=1] & [1<=p35 & p35<=1]] & [[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [p95<=1 & 1<=p95]]]]]]] U [~ [[E [~ [[[[[[p215<=1 & 1<=p215] & [p195<=1 & 1<=p195]] & [p175<=1 & 1<=p175]] & [[[p155<=1 & 1<=p155] & [p135<=1 & 1<=p135]] & [p115<=1 & 1<=p115]]] & [[[[p95<=1 & 1<=p95] & [p75<=1 & 1<=p75]] & [p55<=1 & 1<=p55]] & [[p35<=1 & 1<=p35] & [p15<=1 & 1<=p15]]]]] U [~ [EG [~ [[[[[[p195<=1 & 1<=p195] & [1<=p215 & p215<=1]] & [p175<=1 & 1<=p175]] & [[p115<=1 & 1<=p115] & [[1<=p135 & p135<=1] & [p155<=1 & 1<=p155]]]] & [[[1<=p15 & p15<=1] & [1<=p35 & p35<=1]] & [[[p75<=1 & 1<=p75] & [p95<=1 & 1<=p95]] & [1<=p55 & p55<=1]]]]]]] & ~ [[[[[p15<=1 & 1<=p15] & [1<=p35 & p35<=1]] & [[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [1<=p95 & p95<=1]]]] & [[[1<=p115 & p115<=1] & [[1<=p135 & p135<=1] & [1<=p155 & p155<=1]]] & [[p175<=1 & 1<=p175] & [[p195<=1 & 1<=p195] & [p215<=1 & 1<=p215]]]]]]]] & ~ [[~ [E [true U ~ [[[[[1<=p15 & p15<=1] & [1<=p35 & p35<=1]] & [[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [1<=p95 & p95<=1]]]] & [[[1<=p115 & p115<=1] & [[1<=p135 & p135<=1] & [1<=p155 & p155<=1]]] & [[1<=p175 & p175<=1] & [[1<=p195 & p195<=1] & [1<=p215 & p215<=1]]]]]]]] | ~ [[[[[[[p95<=1 & 1<=p95] & [p75<=1 & 1<=p75]] & [1<=p55 & p55<=1]] & [[1<=p15 & p15<=1] & [p35<=1 & 1<=p35]]] & [[[p175<=1 & 1<=p175] & [[1<=p195 & p195<=1] & [1<=p215 & p215<=1]]] & [[[1<=p155 & p155<=1] & [1<=p135 & p135<=1]] & [1<=p115 & p115<=1]]]] & [[[[1<=p35 & p35<=1] & [p15<=1 & 1<=p15]] & [[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [1<=p95 & p95<=1]]]] & [[[p115<=1 & 1<=p115] & [[p155<=1 & 1<=p155] & [1<=p135 & p135<=1]]] & [[p175<=1 & 1<=p175] & [[p195<=1 & 1<=p195] & [p215<=1 & 1<=p215]]]]]]]]]]] & EX [~ [[[[[[1<=p215 & p215<=1] & [1<=p195 & p195<=1]] & [p175<=1 & 1<=p175]] & [[[1<=p155 & p155<=1] & [p135<=1 & 1<=p135]] & [1<=p115 & p115<=1]]] & [[[1<=p15 & p15<=1] & [1<=p35 & p35<=1]] & [[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [p95<=1 & 1<=p95]]]]]]]]]]]]]] & ~ [E [~ [[~ [EG [EX [~ [[[[[[1<=p215 & p215<=1] & [1<=p195 & p195<=1]] & [p175<=1 & 1<=p175]] & [[[1<=p155 & p155<=1] & [p135<=1 & 1<=p135]] & [1<=p115 & p115<=1]]] & [[[1<=p15 & p15<=1] & [1<=p35 & p35<=1]] & [[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [p95<=1 & 1<=p95]]]]]]]]] & ~ [E [EX [~ [[[[[[1<=p215 & p215<=1] & [1<=p195 & p195<=1]] & [p175<=1 & 1<=p175]] & [[[1<=p155 & p155<=1] & [p135<=1 & 1<=p135]] & [1<=p115 & p115<=1]]] & [[[1<=p15 & p15<=1] & [1<=p35 & p35<=1]] & [[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [p95<=1 & 1<=p95]]]]]]] U [~ [[E [~ [[[[[[p215<=1 & 1<=p215] & [p195<=1 & 1<=p195]] & [p175<=1 & 1<=p175]] & [[[p155<=1 & 1<=p155] & [p135<=1 & 1<=p135]] & [p115<=1 & 1<=p115]]] & [[[[p95<=1 & 1<=p95] & [p75<=1 & 1<=p75]] & [p55<=1 & 1<=p55]] & [[p35<=1 & 1<=p35] & [p15<=1 & 1<=p15]]]]] U [~ [EG [~ [[[[[[p195<=1 & 1<=p195] & [1<=p215 & p215<=1]] & [p175<=1 & 1<=p175]] & [[p115<=1 & 1<=p115] & [[1<=p135 & p135<=1] & [p155<=1 & 1<=p155]]]] & [[[1<=p15 & p15<=1] & [1<=p35 & p35<=1]] & [[[p75<=1 & 1<=p75] & [p95<=1 & 1<=p95]] & [1<=p55 & p55<=1]]]]]]] & ~ [[[[[p15<=1 & 1<=p15] & [1<=p35 & p35<=1]] & [[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [1<=p95 & p95<=1]]]] & [[[1<=p115 & p115<=1] & [[1<=p135 & p135<=1] & [1<=p155 & p155<=1]]] & [[p175<=1 & 1<=p175] & [[p195<=1 & 1<=p195] & [p215<=1 & 1<=p215]]]]]]]] & ~ [[~ [E [true U ~ [[[[[1<=p15 & p15<=1] & [1<=p35 & p35<=1]] & [[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [1<=p95 & p95<=1]]]] & [[[1<=p115 & p115<=1] & [[1<=p135 & p135<=1] & [1<=p155 & p155<=1]]] & [[1<=p175 & p175<=1] & [[1<=p195 & p195<=1] & [1<=p215 & p215<=1]]]]]]]] | ~ [[[[[[[p95<=1 & 1<=p95] & [p75<=1 & 1<=p75]] & [1<=p55 & p55<=1]] & [[1<=p15 & p15<=1] & [p35<=1 & 1<=p35]]] & [[[p175<=1 & 1<=p175] & [[1<=p195 & p195<=1] & [1<=p215 & p215<=1]]] & [[[1<=p155 & p155<=1] & [1<=p135 & p135<=1]] & [1<=p115 & p115<=1]]]] & [[[[1<=p35 & p35<=1] & [p15<=1 & 1<=p15]] & [[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [1<=p95 & p95<=1]]]] & [[[p115<=1 & 1<=p115] & [[p155<=1 & 1<=p155] & [1<=p135 & p135<=1]]] & [[p175<=1 & 1<=p175] & [[p195<=1 & 1<=p195] & [p215<=1 & 1<=p215]]]]]]]]]]] & EX [~ [[[[[[1<=p215 & p215<=1] & [1<=p195 & p195<=1]] & [p175<=1 & 1<=p175]] & [[[1<=p155 & p155<=1] & [p135<=1 & 1<=p135]] & [1<=p115 & p115<=1]]] & [[[1<=p15 & p15<=1] & [1<=p35 & p35<=1]] & [[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [p95<=1 & 1<=p95]]]]]]]]]]]] U [E [true U [[[[[p215<=1 & 1<=p215] & [p195<=1 & 1<=p195]] & [p175<=1 & 1<=p175]] & [[[p155<=1 & 1<=p155] & [p135<=1 & 1<=p135]] & [p115<=1 & 1<=p115]]] & [[[[p95<=1 & 1<=p95] & [p75<=1 & 1<=p75]] & [p55<=1 & 1<=p55]] & [[p35<=1 & 1<=p35] & [p15<=1 & 1<=p15]]]]] & ~ [[~ [EG [EX [~ [[[[[[1<=p215 & p215<=1] & [1<=p195 & p195<=1]] & [p175<=1 & 1<=p175]] & [[[1<=p155 & p155<=1] & [p135<=1 & 1<=p135]] & [1<=p115 & p115<=1]]] & [[[1<=p15 & p15<=1] & [1<=p35 & p35<=1]] & [[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [p95<=1 & 1<=p95]]]]]]]]] & ~ [E [EX [~ [[[[[[1<=p215 & p215<=1] & [1<=p195 & p195<=1]] & [p175<=1 & 1<=p175]] & [[[1<=p155 & p155<=1] & [p135<=1 & 1<=p135]] & [1<=p115 & p115<=1]]] & [[[1<=p15 & p15<=1] & [1<=p35 & p35<=1]] & [[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [p95<=1 & 1<=p95]]]]]]] U [~ [[E [~ [[[[[[p215<=1 & 1<=p215] & [p195<=1 & 1<=p195]] & [p175<=1 & 1<=p175]] & [[[p155<=1 & 1<=p155] & [p135<=1 & 1<=p135]] & [p115<=1 & 1<=p115]]] & [[[[p95<=1 & 1<=p95] & [p75<=1 & 1<=p75]] & [p55<=1 & 1<=p55]] & [[p35<=1 & 1<=p35] & [p15<=1 & 1<=p15]]]]] U [~ [EG [~ [[[[[[p195<=1 & 1<=p195] & [1<=p215 & p215<=1]] & [p175<=1 & 1<=p175]] & [[p115<=1 & 1<=p115] & [[1<=p135 & p135<=1] & [p155<=1 & 1<=p155]]]] & [[[1<=p15 & p15<=1] & [1<=p35 & p35<=1]] & [[[p75<=1 & 1<=p75] & [p95<=1 & 1<=p95]] & [1<=p55 & p55<=1]]]]]]] & ~ [[[[[p15<=1 & 1<=p15] & [1<=p35 & p35<=1]] & [[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [1<=p95 & p95<=1]]]] & [[[1<=p115 & p115<=1] & [[1<=p135 & p135<=1] & [1<=p155 & p155<=1]]] & [[p175<=1 & 1<=p175] & [[p195<=1 & 1<=p195] & [p215<=1 & 1<=p215]]]]]]]] & ~ [[~ [E [true U ~ [[[[[1<=p15 & p15<=1] & [1<=p35 & p35<=1]] & [[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [1<=p95 & p95<=1]]]] & [[[1<=p115 & p115<=1] & [[1<=p135 & p135<=1] & [1<=p155 & p155<=1]]] & [[1<=p175 & p175<=1] & [[1<=p195 & p195<=1] & [1<=p215 & p215<=1]]]]]]]] | ~ [[[[[[[p95<=1 & 1<=p95] & [p75<=1 & 1<=p75]] & [1<=p55 & p55<=1]] & [[1<=p15 & p15<=1] & [p35<=1 & 1<=p35]]] & [[[p175<=1 & 1<=p175] & [[1<=p195 & p195<=1] & [1<=p215 & p215<=1]]] & [[[1<=p155 & p155<=1] & [1<=p135 & p135<=1]] & [1<=p115 & p115<=1]]]] & [[[[1<=p35 & p35<=1] & [p15<=1 & 1<=p15]] & [[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [1<=p95 & p95<=1]]]] & [[[p115<=1 & 1<=p115] & [[p155<=1 & 1<=p155] & [1<=p135 & p135<=1]]] & [[p175<=1 & 1<=p175] & [[p195<=1 & 1<=p195] & [p215<=1 & 1<=p215]]]]]]]]]]] & EX [~ [[[[[[1<=p215 & p215<=1] & [1<=p195 & p195<=1]] & [p175<=1 & 1<=p175]] & [[[1<=p155 & p155<=1] & [p135<=1 & 1<=p135]] & [1<=p115 & p115<=1]]] & [[[1<=p15 & p15<=1] & [1<=p35 & p35<=1]] & [[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [p95<=1 & 1<=p95]]]]]]]]]]]]]]]]

abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
.abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
.....MC time: 1m38.064sec

checking: [EF [[[[[p115<=1 & 1<=p115] & [[p155<=1 & 1<=p155] & [1<=p135 & p135<=1]]] & [[p175<=1 & 1<=p175] & [[1<=p215 & p215<=1] & [1<=p195 & p195<=1]]]] & [[[[p75<=1 & 1<=p75] & [1<=p95 & p95<=1]] & [1<=p55 & p55<=1]] & [[p15<=1 & 1<=p15] & [p35<=1 & 1<=p35]]]]] & A [[[[EF [EG [[[[[[p155<=1 & 1<=p155] & [p135<=1 & 1<=p135]] & [p115<=1 & 1<=p115]] & [[1<=p175 & p175<=1] & [[p195<=1 & 1<=p195] & [1<=p215 & p215<=1]]]] & [[[[1<=p95 & p95<=1] & [p75<=1 & 1<=p75]] & [p55<=1 & 1<=p55]] & [[1<=p15 & p15<=1] & [1<=p35 & p35<=1]]]]]] | EF [[[[[1<=p175 & p175<=1] & [[p195<=1 & 1<=p195] & [p215<=1 & 1<=p215]]] & [[[1<=p135 & p135<=1] & [p155<=1 & 1<=p155]] & [1<=p115 & p115<=1]]] & [[[p55<=1 & 1<=p55] & [[1<=p75 & p75<=1] & [p95<=1 & 1<=p95]]] & [[1<=p15 & p15<=1] & [p35<=1 & 1<=p35]]]]]] | [[[[1<=p55 & p55<=1] & [[1<=p75 & p75<=1] & [p95<=1 & 1<=p95]]] & [[p15<=1 & 1<=p15] & [p35<=1 & 1<=p35]]] & [[[1<=p175 & p175<=1] & [[1<=p215 & p215<=1] & [1<=p195 & p195<=1]]] & [[[p135<=1 & 1<=p135] & [1<=p155 & p155<=1]] & [1<=p115 & p115<=1]]]]] & [~ [E [[[[[[[1<=p195 & p195<=1] & [p215<=1 & 1<=p215]] & [1<=p175 & p175<=1]] & [[1<=p115 & p115<=1] & [[p155<=1 & 1<=p155] & [p135<=1 & 1<=p135]]]] & [[[[1<=p75 & p75<=1] & [p95<=1 & 1<=p95]] & [p55<=1 & 1<=p55]] & [[1<=p35 & p35<=1] & [p15<=1 & 1<=p15]]]] & [[[[[1<=p155 & p155<=1] & [1<=p135 & p135<=1]] & [p115<=1 & 1<=p115]] & [[[1<=p215 & p215<=1] & [1<=p195 & p195<=1]] & [p175<=1 & 1<=p175]]] & [[[1<=p55 & p55<=1] & [[1<=p95 & p95<=1] & [p75<=1 & 1<=p75]]] & [[1<=p15 & p15<=1] & [p35<=1 & 1<=p35]]]]] U [[[[1<=p35 & p35<=1] & [1<=p15 & p15<=1]] & [[1<=p55 & p55<=1] & [[1<=p95 & p95<=1] & [p75<=1 & 1<=p75]]]] & [[[[1<=p215 & p215<=1] & [p195<=1 & 1<=p195]] & [1<=p175 & p175<=1]] & [[p115<=1 & 1<=p115] & [[1<=p135 & p135<=1] & [p155<=1 & 1<=p155]]]]]]] | EX [EG [[[[[1<=p55 & p55<=1] & [[1<=p95 & p95<=1] & [p75<=1 & 1<=p75]]] & [[p15<=1 & 1<=p15] & [p35<=1 & 1<=p35]]] & [[[p175<=1 & 1<=p175] & [[1<=p215 & p215<=1] & [p195<=1 & 1<=p195]]] & [[1<=p115 & p115<=1] & [[1<=p155 & p155<=1] & [1<=p135 & p135<=1]]]]]]]]] U EG [[[[[p55<=1 & 1<=p55] & [[1<=p75 & p75<=1] & [1<=p95 & p95<=1]]] & [[1<=p35 & p35<=1] & [p15<=1 & 1<=p15]]] & [[[[p215<=1 & 1<=p215] & [p195<=1 & 1<=p195]] & [p175<=1 & 1<=p175]] & [[1<=p115 & p115<=1] & [[1<=p155 & p155<=1] & [p135<=1 & 1<=p135]]]]]]]]
normalized: [[~ [EG [~ [EG [[[[[[p135<=1 & 1<=p135] & [1<=p155 & p155<=1]] & [1<=p115 & p115<=1]] & [[p175<=1 & 1<=p175] & [[p195<=1 & 1<=p195] & [p215<=1 & 1<=p215]]]] & [[[p15<=1 & 1<=p15] & [1<=p35 & p35<=1]] & [[[1<=p95 & p95<=1] & [1<=p75 & p75<=1]] & [p55<=1 & 1<=p55]]]]]]]] & ~ [E [~ [EG [[[[[[p135<=1 & 1<=p135] & [1<=p155 & p155<=1]] & [1<=p115 & p115<=1]] & [[p175<=1 & 1<=p175] & [[p195<=1 & 1<=p195] & [p215<=1 & 1<=p215]]]] & [[[p15<=1 & 1<=p15] & [1<=p35 & p35<=1]] & [[[1<=p95 & p95<=1] & [1<=p75 & p75<=1]] & [p55<=1 & 1<=p55]]]]]] U [~ [[[EX [EG [[[[[[1<=p135 & p135<=1] & [1<=p155 & p155<=1]] & [1<=p115 & p115<=1]] & [[[p195<=1 & 1<=p195] & [1<=p215 & p215<=1]] & [p175<=1 & 1<=p175]]] & [[[p35<=1 & 1<=p35] & [p15<=1 & 1<=p15]] & [[[p75<=1 & 1<=p75] & [1<=p95 & p95<=1]] & [1<=p55 & p55<=1]]]]]] | ~ [E [[[[[[p35<=1 & 1<=p35] & [1<=p15 & p15<=1]] & [[[p75<=1 & 1<=p75] & [1<=p95 & p95<=1]] & [1<=p55 & p55<=1]]] & [[[p175<=1 & 1<=p175] & [[1<=p195 & p195<=1] & [1<=p215 & p215<=1]]] & [[p115<=1 & 1<=p115] & [[1<=p135 & p135<=1] & [1<=p155 & p155<=1]]]]] & [[[[p15<=1 & 1<=p15] & [1<=p35 & p35<=1]] & [[p55<=1 & 1<=p55] & [[p95<=1 & 1<=p95] & [1<=p75 & p75<=1]]]] & [[[[p135<=1 & 1<=p135] & [p155<=1 & 1<=p155]] & [1<=p115 & p115<=1]] & [[1<=p175 & p175<=1] & [[p215<=1 & 1<=p215] & [1<=p195 & p195<=1]]]]]] U [[[[[p155<=1 & 1<=p155] & [1<=p135 & p135<=1]] & [p115<=1 & 1<=p115]] & [[1<=p175 & p175<=1] & [[p195<=1 & 1<=p195] & [1<=p215 & p215<=1]]]] & [[[[p75<=1 & 1<=p75] & [1<=p95 & p95<=1]] & [1<=p55 & p55<=1]] & [[1<=p15 & p15<=1] & [1<=p35 & p35<=1]]]]]]] & [[[[[1<=p115 & p115<=1] & [[1<=p155 & p155<=1] & [p135<=1 & 1<=p135]]] & [[[1<=p195 & p195<=1] & [1<=p215 & p215<=1]] & [1<=p175 & p175<=1]]] & [[[p35<=1 & 1<=p35] & [p15<=1 & 1<=p15]] & [[[p95<=1 & 1<=p95] & [1<=p75 & p75<=1]] & [1<=p55 & p55<=1]]]] | [E [true U [[[[p35<=1 & 1<=p35] & [1<=p15 & p15<=1]] & [[[p95<=1 & 1<=p95] & [1<=p75 & p75<=1]] & [p55<=1 & 1<=p55]]] & [[[1<=p115 & p115<=1] & [[p155<=1 & 1<=p155] & [1<=p135 & p135<=1]]] & [[[p215<=1 & 1<=p215] & [p195<=1 & 1<=p195]] & [1<=p175 & p175<=1]]]]] | E [true U EG [[[[[1<=p35 & p35<=1] & [1<=p15 & p15<=1]] & [[p55<=1 & 1<=p55] & [[p75<=1 & 1<=p75] & [1<=p95 & p95<=1]]]] & [[[[1<=p215 & p215<=1] & [p195<=1 & 1<=p195]] & [1<=p175 & p175<=1]] & [[p115<=1 & 1<=p115] & [[p135<=1 & 1<=p135] & [p155<=1 & 1<=p155]]]]]]]]]]] & ~ [EG [[[[[[p135<=1 & 1<=p135] & [1<=p155 & p155<=1]] & [1<=p115 & p115<=1]] & [[p175<=1 & 1<=p175] & [[p195<=1 & 1<=p195] & [p215<=1 & 1<=p215]]]] & [[[p15<=1 & 1<=p15] & [1<=p35 & p35<=1]] & [[[1<=p95 & p95<=1] & [1<=p75 & p75<=1]] & [p55<=1 & 1<=p55]]]]]]]]]] & E [true U [[[[p35<=1 & 1<=p35] & [p15<=1 & 1<=p15]] & [[1<=p55 & p55<=1] & [[1<=p95 & p95<=1] & [p75<=1 & 1<=p75]]]] & [[[[1<=p195 & p195<=1] & [1<=p215 & p215<=1]] & [p175<=1 & 1<=p175]] & [[[1<=p135 & p135<=1] & [p155<=1 & 1<=p155]] & [p115<=1 & 1<=p115]]]]]]

abstracting: (1<=p115)
states: 373,937,702 (8)
abstracting: (p115<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p155)
states: 373,937,702 (8)
abstracting: (p155<=1)
states: 2,595,122,620 (9)
abstracting: (p135<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p135)
states: 373,937,702 (8)
abstracting: (1<=p175)
states: 373,937,702 (8)
abstracting: (p175<=1)
states: 2,595,122,620 (9)
abstracting: (p215<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p215)
states: 293,230,490 (8)
abstracting: (p195<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p195)
states: 373,937,702 (8)
abstracting: (1<=p75)
states: 373,937,702 (8)
abstracting: (p75<=1)
states: 2,595,122,620 (9)
abstracting: (p95<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p95)
states: 373,937,702 (8)
abstracting: (p55<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p55)
states: 373,937,702 (8)
abstracting: (1<=p15)
states: 373,937,702 (8)
abstracting: (p15<=1)
states: 2,595,122,620 (9)
abstracting: (1<=p35)
states: 373,937,702 (8)
abstracting: (p35<=1)
states: 2,595,122,620 (9)
TIME LIMIT: Killed by timeout after 3600 seconds
MemTotal: 16393216 kB
MemFree: 6044312 kB
After kill :
MemTotal: 16393216 kB
MemFree: 15912168 kB

BK_TIME_CONFINEMENT_REACHED

--------------------
content from stderr:

+ ulimit -s 65536
+ [[ -z '' ]]
+ export LTSMIN_MEM_SIZE=8589934592
+ LTSMIN_MEM_SIZE=8589934592
+ export PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ export LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
+ LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
++ sed s/.jar//
++ perl -pe 's/.*\.//g'
++ ls /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/plugins/fr.lip6.move.gal.application.pnmcc_1.0.0.202303021504.jar
+ VERSION=202303021504
+ echo 'Running Version 202303021504'
+ /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/its-tools -pnfolder /home/mcc/execution -examination CTLFireability -timeout 360 -rebuildPNML
check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok


initing FirstDep: 0m 0.048sec

505577 600396 631525 633133 634571 636132 638540 640961 644663 649205 651274 658966 665116 675429 677859 685705 692472 697203 703820 710480 717024 723484 736879 747982 755747 763934 775173 785435 800614
iterations count:2980371 (679), effective:4519 (1)

initing FirstDep: 0m 0.048sec


net_ddint.h:600: Timeout: after 221 sec


iterations count:43794 (9), effective:210 (0)

iterations count:43782 (9), effective:211 (0)

iterations count:43794 (9), effective:210 (0)

net_ddint.h:600: Timeout: after 212 sec


iterations count:4383 (1), effective:0 (0)

net_ddint.h:600: Timeout: after 196 sec


net_ddint.h:600: Timeout: after 182 sec


iterations count:4383 (1), effective:0 (0)

net_ddint.h:600: Timeout: after 171 sec


iterations count:43794 (9), effective:210 (0)

iterations count:4547 (1), effective:1 (0)

net_ddint.h:600: Timeout: after 158 sec


net_ddint.h:600: Timeout: after 146 sec


net_ddint.h:600: Timeout: after 134 sec


iterations count:4383 (1), effective:0 (0)

iterations count:4383 (1), effective:0 (0)

iterations count:4383 (1), effective:0 (0)

iterations count:4383 (1), effective:0 (0)

net_ddint.h:600: Timeout: after 124 sec


iterations count:4383 (1), effective:0 (0)

iterations count:4383 (1), effective:0 (0)

sat_reach.icc:155: Timeout: after 114 sec


iterations count:4547 (1), effective:1 (0)

iterations count:4547 (1), effective:1 (0)

sat_reach.icc:155: Timeout: after 106 sec


iterations count:4547 (1), effective:1 (0)

net_ddint.h:600: Timeout: after 97 sec


sat_reach.icc:155: Timeout: after 90 sec

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="StigmergyCommit-PT-10a"
export BK_EXAMINATION="CTLFireability"
export BK_TOOL="marciexred"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marciexred"
echo " Input is StigmergyCommit-PT-10a, examination is CTLFireability"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r458-smll-167912650400522"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"

tar xzf /home/mcc/BenchKit/INPUTS/StigmergyCommit-PT-10a.tgz
mv StigmergyCommit-PT-10a execution
cd execution
if [ "CTLFireability" = "ReachabilityDeadlock" ] || [ "CTLFireability" = "UpperBounds" ] || [ "CTLFireability" = "QuasiLiveness" ] || [ "CTLFireability" = "StableMarking" ] || [ "CTLFireability" = "Liveness" ] || [ "CTLFireability" = "OneSafe" ] || [ "CTLFireability" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh

echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLFireability" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLFireability" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLFireability.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLFireability.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLFireability.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' CTLFireability.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ "CTLFireability" = "ReachabilityDeadlock" ] || [ "CTLFireability" = "QuasiLiveness" ] || [ "CTLFireability" = "StableMarking" ] || [ "CTLFireability" = "Liveness" ] || [ "CTLFireability" = "OneSafe" ] ; then
echo "FORMULA_NAME CTLFireability"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;