About the Execution of Marcie for SquareGrid-PT-020102
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
7945.911 | 134279.00 | 134060.00 | 0.00 | FFFTFFTFFFFTFTTT | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fkordon/mcc2023-input.r449-smll-167912641400353.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2023-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
.............................................................................................................................................
=====================================================================
Generated by BenchKit 2-5348
Executing tool marcie
Input is SquareGrid-PT-020102, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r449-smll-167912641400353
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 556K
-rw-r--r-- 1 mcc users 8.6K Feb 25 12:01 CTLCardinality.txt
-rw-r--r-- 1 mcc users 94K Feb 25 12:01 CTLCardinality.xml
-rw-r--r-- 1 mcc users 6.2K Feb 25 11:59 CTLFireability.txt
-rw-r--r-- 1 mcc users 56K Feb 25 11:59 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K Jan 29 11:41 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.3K Jan 29 11:41 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 3.7K Feb 25 17:11 LTLCardinality.txt
-rw-r--r-- 1 mcc users 22K Feb 25 17:11 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.5K Feb 25 17:11 LTLFireability.txt
-rw-r--r-- 1 mcc users 18K Feb 25 17:11 LTLFireability.xml
-rw-r--r-- 1 mcc users 13K Feb 25 12:02 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 122K Feb 25 12:02 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 11K Feb 25 12:01 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 88K Feb 25 12:01 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.7K Feb 25 17:11 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.8K Feb 25 17:11 UpperBounds.xml
-rw-r--r-- 1 mcc users 6 Mar 5 18:23 equiv_col
-rw-r--r-- 1 mcc users 7 Mar 5 18:23 instance
-rw-r--r-- 1 mcc users 6 Mar 5 18:23 iscolored
-rwxr-xr-x 1 mcc users 55K Mar 5 18:23 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME SquareGrid-PT-020102-CTLCardinality-00
FORMULA_NAME SquareGrid-PT-020102-CTLCardinality-01
FORMULA_NAME SquareGrid-PT-020102-CTLCardinality-02
FORMULA_NAME SquareGrid-PT-020102-CTLCardinality-03
FORMULA_NAME SquareGrid-PT-020102-CTLCardinality-04
FORMULA_NAME SquareGrid-PT-020102-CTLCardinality-05
FORMULA_NAME SquareGrid-PT-020102-CTLCardinality-06
FORMULA_NAME SquareGrid-PT-020102-CTLCardinality-07
FORMULA_NAME SquareGrid-PT-020102-CTLCardinality-08
FORMULA_NAME SquareGrid-PT-020102-CTLCardinality-09
FORMULA_NAME SquareGrid-PT-020102-CTLCardinality-10
FORMULA_NAME SquareGrid-PT-020102-CTLCardinality-11
FORMULA_NAME SquareGrid-PT-020102-CTLCardinality-12
FORMULA_NAME SquareGrid-PT-020102-CTLCardinality-13
FORMULA_NAME SquareGrid-PT-020102-CTLCardinality-14
FORMULA_NAME SquareGrid-PT-020102-CTLCardinality-15
=== Now, execution of the tool begins
BK_START 1679270902773
bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marcie
BK_EXAMINATION=CTLCardinality
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=SquareGrid-PT-020102
Not applying reductions.
Model is PT
CTLCardinality PT
timeout --kill-after=10s --signal=SIGINT 1m for testing only
Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: /home/mcc/BenchKit/bin//../marcie/bin/marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --memory=6 --mcc-mode
parse successfull
net created successfully
Net: SquareGrid_PT_020102
(NrP: 68 NrTr: 72 NrArc: 288)
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.001sec
net check time: 0m 0.000sec
init dd package: 0m 3.475sec
RS generation: 0m 0.541sec
-> reachability set: #nodes 2034 (2.0e+03) #states 2,085,423,232,578 (12)
starting MCC model checker
--------------------------
checking: EF [AX [pbl_2_1<=1]]
normalized: E [true U ~ [EX [~ [pbl_2_1<=1]]]]
abstracting: (pbl_2_1<=1)
states: 206,949,950,592 (11)
.-> the formula is TRUE
FORMULA SquareGrid-PT-020102-CTLCardinality-06 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 6.111sec
checking: ~ [EF [AX [AX [1<=pb1_2_2]]]]
normalized: ~ [E [true U ~ [EX [EX [~ [1<=pb1_2_2]]]]]]
abstracting: (1<=pb1_2_2)
states: 794,343,606,432 (11)
..-> the formula is FALSE
FORMULA SquareGrid-PT-020102-CTLCardinality-08 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 6.195sec
checking: AX [EF [EG [AX [AF [pb4_1_2<=1]]]]]
normalized: ~ [EX [~ [E [true U EG [~ [EX [EG [~ [pb4_1_2<=1]]]]]]]]]
abstracting: (pb4_1_2<=1)
states: 1,804,763,408,402 (12)
.....
EG iterations: 5
.......
EG iterations: 6
.-> the formula is TRUE
FORMULA SquareGrid-PT-020102-CTLCardinality-11 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 2.188sec
checking: [~ [EG [EF [1<=p2il_1_2]]] & ~ [EG [p4i_2_2<=1]]]
normalized: [~ [EG [p4i_2_2<=1]] & ~ [EG [E [true U 1<=p2il_1_2]]]]
abstracting: (1<=p2il_1_2)
states: 1,493,062,557,126 (12)
....
EG iterations: 4
abstracting: (p4i_2_2<=1)
states: 2,085,423,232,578 (12)
EG iterations: 0
-> the formula is FALSE
FORMULA SquareGrid-PT-020102-CTLCardinality-00 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.109sec
checking: AG [~ [AG [~ [A [EX [1<=p4il_2_1] U [pb1_1_1<=p4o_1_2 | 2<=p4i_2_1]]]]]]
normalized: ~ [E [true U ~ [E [true U [~ [EG [~ [[pb1_1_1<=p4o_1_2 | 2<=p4i_2_1]]]] & ~ [E [~ [[pb1_1_1<=p4o_1_2 | 2<=p4i_2_1]] U [~ [EX [1<=p4il_2_1]] & ~ [[pb1_1_1<=p4o_1_2 | 2<=p4i_2_1]]]]]]]]]]
abstracting: (2<=p4i_2_1)
states: 0
abstracting: (pb1_1_1<=p4o_1_2)
states: 1,434,418,752,922 (12)
abstracting: (1<=p4il_2_1)
states: 1,493,062,557,126 (12)
.abstracting: (2<=p4i_2_1)
states: 0
abstracting: (pb1_1_1<=p4o_1_2)
states: 1,434,418,752,922 (12)
abstracting: (2<=p4i_2_1)
states: 0
abstracting: (pb1_1_1<=p4o_1_2)
states: 1,434,418,752,922 (12)
......
EG iterations: 6
-> the formula is FALSE
FORMULA SquareGrid-PT-020102-CTLCardinality-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m10.097sec
checking: EG [~ [[AX [[AG [pb3_2_2<=p1il_2_2] & [~ [1<=p4i_2_1] & 1<=p1o_1_1]]] & EF [[1<=p2il_1_2 & A [1<=p3ol_2_2 U p2i_2_2<=pb1_2_1]]]]]]
normalized: EG [~ [[E [true U [1<=p2il_1_2 & [~ [EG [~ [p2i_2_2<=pb1_2_1]]] & ~ [E [~ [p2i_2_2<=pb1_2_1] U [~ [p2i_2_2<=pb1_2_1] & ~ [1<=p3ol_2_2]]]]]]] & ~ [EX [~ [[~ [E [true U ~ [pb3_2_2<=p1il_2_2]]] & [1<=p1o_1_1 & ~ [1<=p4i_2_1]]]]]]]]]
abstracting: (1<=p4i_2_1)
states: 592,360,675,452 (11)
abstracting: (1<=p1o_1_1)
states: 592,360,675,452 (11)
abstracting: (pb3_2_2<=p1il_2_2)
states: 1,661,424,281,626 (12)
.abstracting: (1<=p3ol_2_2)
states: 1,493,062,557,126 (12)
abstracting: (p2i_2_2<=pb1_2_1)
states: 1,710,070,304,850 (12)
abstracting: (p2i_2_2<=pb1_2_1)
states: 1,710,070,304,850 (12)
abstracting: (p2i_2_2<=pb1_2_1)
states: 1,710,070,304,850 (12)
......
EG iterations: 6
abstracting: (1<=p2il_1_2)
states: 1,493,062,557,126 (12)
.....
EG iterations: 5
-> the formula is TRUE
FORMULA SquareGrid-PT-020102-CTLCardinality-14 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 2.813sec
checking: EX [E [[AX [[1<=p2ol_1_2 | 1<=pb2_2_1]] & [1<=p3i_2_2 & [[[p1o_2_1<=2 | p4o_2_2<=p1i_0] | EX [2<=p4il_2_1]] | AG [pbl_1_2<=pb4_2_2]]]] U EF [EF [AG [pb3_2_2<=1]]]]]
normalized: EX [E [[[1<=p3i_2_2 & [~ [E [true U ~ [pbl_1_2<=pb4_2_2]]] | [EX [2<=p4il_2_1] | [p1o_2_1<=2 | p4o_2_2<=p1i_0]]]] & ~ [EX [~ [[1<=p2ol_1_2 | 1<=pb2_2_1]]]]] U E [true U E [true U ~ [E [true U ~ [pb3_2_2<=1]]]]]]]
abstracting: (pb3_2_2<=1)
states: 1,804,763,408,402 (12)
abstracting: (1<=pb2_2_1)
states: 794,343,606,432 (11)
abstracting: (1<=p2ol_1_2)
states: 1,493,062,557,126 (12)
.abstracting: (p4o_2_2<=p1i_0)
states: 1,656,051,315,618 (12)
abstracting: (p1o_2_1<=2)
states: 2,085,423,232,578 (12)
abstracting: (2<=p4il_2_1)
states: 0
.abstracting: (pbl_1_2<=pb4_2_2)
states: 160,161,665,248 (11)
abstracting: (1<=p3i_2_2)
states: 592,360,675,452 (11)
.-> the formula is TRUE
FORMULA SquareGrid-PT-020102-CTLCardinality-03 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 9.063sec
checking: AF [~ [EG [[E [[p2il_1_2<=pb4_1_1 | p3il_2_1<=1] U [p4il_1_1<=p1il_2_1 | pbl_2_1<=p4ol_2_2]] & E [AX [p4ol_2_2<=1] U p4i_1_2<=p1i_2_2]]]]]
normalized: ~ [EG [EG [[E [~ [EX [~ [p4ol_2_2<=1]]] U p4i_1_2<=p1i_2_2] & E [[p2il_1_2<=pb4_1_1 | p3il_2_1<=1] U [p4il_1_1<=p1il_2_1 | pbl_2_1<=p4ol_2_2]]]]]]
abstracting: (pbl_2_1<=p4ol_2_2)
states: 172,760,362,096 (11)
abstracting: (p4il_1_1<=p1il_2_1)
states: 1,656,051,315,618 (12)
abstracting: (p3il_2_1<=1)
states: 2,085,423,232,578 (12)
abstracting: (p2il_1_2<=pb4_1_1)
states: 1,169,696,534,160 (12)
abstracting: (p4i_1_2<=p1i_2_2)
states: 1,656,051,315,618 (12)
abstracting: (p4ol_2_2<=1)
states: 2,085,423,232,578 (12)
.....
EG iterations: 4
.
EG iterations: 1
-> the formula is FALSE
FORMULA SquareGrid-PT-020102-CTLCardinality-04 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.288sec
checking: ~ [EX [[EX [E [pb3_1_1<=0 U ~ [p4il_1_2<=p1il_0]]] & [AF [[[1<=pb2_2_1 & p4ol_2_2<=0] & [2<=p1i_1_2 & pb1_1_1<=pb4_2_2]]] & pb3_2_2<=pb2_2_2]]]]
normalized: ~ [EX [[[pb3_2_2<=pb2_2_2 & ~ [EG [~ [[[2<=p1i_1_2 & pb1_1_1<=pb4_2_2] & [1<=pb2_2_1 & p4ol_2_2<=0]]]]]] & EX [E [pb3_1_1<=0 U ~ [p4il_1_2<=p1il_0]]]]]]
abstracting: (p4il_1_2<=p1il_0)
states: 1,656,051,315,618 (12)
abstracting: (pb3_1_1<=0)
states: 1,291,079,626,146 (12)
.abstracting: (p4ol_2_2<=0)
states: 592,360,675,452 (11)
abstracting: (1<=pb2_2_1)
states: 794,343,606,432 (11)
abstracting: (pb1_1_1<=pb4_2_2)
states: 1,506,492,088,762 (12)
abstracting: (2<=p1i_1_2)
states: 0
EG iterations: 0
abstracting: (pb3_2_2<=pb2_2_2)
states: 1,502,005,900,426 (12)
.-> the formula is TRUE
FORMULA SquareGrid-PT-020102-CTLCardinality-13 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.677sec
checking: ~ [AF [[A [pb2_2_1<=0 U [~ [AF [p4ol_2_1<=pb3_2_1]] | [[2<=p1il_1_2 | p2o_2_2<=p4i_2_1] | [pb3_1_2<=pb3_1_2 & p2il_2_2<=p4o_2_1]]]] & [EG [pb2_1_2<=1] | ~ [EG [~ [p3il_2_1<=0]]]]]]]
normalized: EG [~ [[[~ [EG [~ [p3il_2_1<=0]]] | EG [pb2_1_2<=1]] & [~ [EG [~ [[[[pb3_1_2<=pb3_1_2 & p2il_2_2<=p4o_2_1] | [2<=p1il_1_2 | p2o_2_2<=p4i_2_1]] | EG [~ [p4ol_2_1<=pb3_2_1]]]]]] & ~ [E [~ [[[[pb3_1_2<=pb3_1_2 & p2il_2_2<=p4o_2_1] | [2<=p1il_1_2 | p2o_2_2<=p4i_2_1]] | EG [~ [p4ol_2_1<=pb3_2_1]]]] U [~ [pb2_2_1<=0] & ~ [[[[pb3_1_2<=pb3_1_2 & p2il_2_2<=p4o_2_1] | [2<=p1il_1_2 | p2o_2_2<=p4i_2_1]] | EG [~ [p4ol_2_1<=pb3_2_1]]]]]]]]]]]
abstracting: (p4ol_2_1<=pb3_2_1)
states: 1,169,696,534,160 (12)
................
EG iterations: 16
abstracting: (p2o_2_2<=p4i_2_1)
states: 1,656,051,315,618 (12)
abstracting: (2<=p1il_1_2)
states: 0
abstracting: (p2il_2_2<=p4o_2_1)
states: 1,021,732,592,412 (12)
abstracting: (pb3_1_2<=pb3_1_2)
states: 2,085,423,232,578 (12)
abstracting: (pb2_2_1<=0)
states: 1,291,079,626,146 (12)
abstracting: (p4ol_2_1<=pb3_2_1)
states: 1,169,696,534,160 (12)
................
EG iterations: 16
abstracting: (p2o_2_2<=p4i_2_1)
states: 1,656,051,315,618 (12)
abstracting: (2<=p1il_1_2)
states: 0
abstracting: (p2il_2_2<=p4o_2_1)
states: 1,021,732,592,412 (12)
abstracting: (pb3_1_2<=pb3_1_2)
states: 2,085,423,232,578 (12)
abstracting: (p4ol_2_1<=pb3_2_1)
states: 1,169,696,534,160 (12)
................
EG iterations: 16
abstracting: (p2o_2_2<=p4i_2_1)
states: 1,656,051,315,618 (12)
abstracting: (2<=p1il_1_2)
states: 0
abstracting: (p2il_2_2<=p4o_2_1)
states: 1,021,732,592,412 (12)
abstracting: (pb3_1_2<=pb3_1_2)
states: 2,085,423,232,578 (12)
.......
EG iterations: 7
abstracting: (pb2_1_2<=1)
states: 1,804,763,408,402 (12)
.
EG iterations: 1
abstracting: (p3il_2_1<=0)
states: 592,360,675,452 (11)
......
EG iterations: 6
.......
EG iterations: 7
-> the formula is FALSE
FORMULA SquareGrid-PT-020102-CTLCardinality-09 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 1.767sec
checking: EX [[AF [E [~ [p3o_2_1<=2] U ~ [p2il_2_2<=1]]] | A [E [[p2o_2_2<=0 & pb1_1_1<=1] U ~ [[p2i_2_2<=p1ol_2_1 | pb4_2_2<=1]]] U [p4il_1_2<=p1il_2_2 & [~ [1<=p3o_2_1] & [~ [pb4_2_2<=2] & p1i_1_2<=p2o_2_2]]]]]]
normalized: EX [[[~ [EG [~ [[p4il_1_2<=p1il_2_2 & [[p1i_1_2<=p2o_2_2 & ~ [pb4_2_2<=2]] & ~ [1<=p3o_2_1]]]]]] & ~ [E [~ [[p4il_1_2<=p1il_2_2 & [[p1i_1_2<=p2o_2_2 & ~ [pb4_2_2<=2]] & ~ [1<=p3o_2_1]]]] U [~ [E [[p2o_2_2<=0 & pb1_1_1<=1] U ~ [[p2i_2_2<=p1ol_2_1 | pb4_2_2<=1]]]] & ~ [[p4il_1_2<=p1il_2_2 & [[p1i_1_2<=p2o_2_2 & ~ [pb4_2_2<=2]] & ~ [1<=p3o_2_1]]]]]]]] | ~ [EG [~ [E [~ [p3o_2_1<=2] U ~ [p2il_2_2<=1]]]]]]]
abstracting: (p2il_2_2<=1)
states: 2,085,423,232,578 (12)
abstracting: (p3o_2_1<=2)
states: 2,085,423,232,578 (12)
EG iterations: 0
abstracting: (1<=p3o_2_1)
states: 592,360,675,452 (11)
abstracting: (pb4_2_2<=2)
states: 1,995,286,086,146 (12)
abstracting: (p1i_1_2<=p2o_2_2)
states: 1,656,051,315,618 (12)
abstracting: (p4il_1_2<=p1il_2_2)
states: 1,656,051,315,618 (12)
abstracting: (pb4_2_2<=1)
states: 1,804,763,408,402 (12)
abstracting: (p2i_2_2<=p1ol_2_1)
states: 1,922,434,474,086 (12)
abstracting: (pb1_1_1<=1)
states: 1,804,763,408,402 (12)
abstracting: (p2o_2_2<=0)
states: 1,493,062,557,126 (12)
abstracting: (1<=p3o_2_1)
states: 592,360,675,452 (11)
abstracting: (pb4_2_2<=2)
states: 1,995,286,086,146 (12)
abstracting: (p1i_1_2<=p2o_2_2)
states: 1,656,051,315,618 (12)
abstracting: (p4il_1_2<=p1il_2_2)
states: 1,656,051,315,618 (12)
abstracting: (1<=p3o_2_1)
states: 592,360,675,452 (11)
abstracting: (pb4_2_2<=2)
states: 1,995,286,086,146 (12)
abstracting: (p1i_1_2<=p2o_2_2)
states: 1,656,051,315,618 (12)
abstracting: (p4il_1_2<=p1il_2_2)
states: 1,656,051,315,618 (12)
.....
EG iterations: 5
.-> the formula is FALSE
FORMULA SquareGrid-PT-020102-CTLCardinality-07 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 7.334sec
checking: ~ [[[[AX [~ [[AG [p1ol_1_2<=1] & pb2_2_2<=1]]] & [~ [EG [EX [p1ol_2_2<=p1o_1_1]]] & EF [pb4_1_1<=p1ol_1_1]]] & A [[EX [EX [2<=p4o_2_2]] & EF [2<=p2i_2_2]] U A [p1ol_1_1<=p2il_1_2 U ~ [pb2_1_2<=0]]]] & EX [EG [[AG [p2ol_2_2<=1] | EG [pb3_2_2<=2]]]]]]
normalized: ~ [[EX [EG [[EG [pb3_2_2<=2] | ~ [E [true U ~ [p2ol_2_2<=1]]]]]] & [[~ [EG [~ [[~ [EG [pb2_1_2<=0]] & ~ [E [pb2_1_2<=0 U [pb2_1_2<=0 & ~ [p1ol_1_1<=p2il_1_2]]]]]]]] & ~ [E [~ [[~ [EG [pb2_1_2<=0]] & ~ [E [pb2_1_2<=0 U [pb2_1_2<=0 & ~ [p1ol_1_1<=p2il_1_2]]]]]] U [~ [[E [true U 2<=p2i_2_2] & EX [EX [2<=p4o_2_2]]]] & ~ [[~ [EG [pb2_1_2<=0]] & ~ [E [pb2_1_2<=0 U [pb2_1_2<=0 & ~ [p1ol_1_1<=p2il_1_2]]]]]]]]]] & [[E [true U pb4_1_1<=p1ol_1_1] & ~ [EG [EX [p1ol_2_2<=p1o_1_1]]]] & ~ [EX [[pb2_2_2<=1 & ~ [E [true U ~ [p1ol_1_2<=1]]]]]]]]]]
abstracting: (p1ol_1_2<=1)
states: 2,085,423,232,578 (12)
abstracting: (pb2_2_2<=1)
states: 1,804,763,408,402 (12)
.abstracting: (p1ol_2_2<=p1o_1_1)
states: 1,021,732,592,412 (12)
......
EG iterations: 5
abstracting: (pb4_1_1<=p1ol_1_1)
states: 1,661,424,281,626 (12)
abstracting: (p1ol_1_1<=p2il_1_2)
states: 1,656,051,315,618 (12)
abstracting: (pb2_1_2<=0)
states: 1,291,079,626,146 (12)
abstracting: (pb2_1_2<=0)
states: 1,291,079,626,146 (12)
abstracting: (pb2_1_2<=0)
states: 1,291,079,626,146 (12)
.
EG iterations: 1
abstracting: (2<=p4o_2_2)
states: 0
..abstracting: (2<=p2i_2_2)
states: 0
abstracting: (p1ol_1_1<=p2il_1_2)
states: 1,656,051,315,618 (12)
abstracting: (pb2_1_2<=0)
states: 1,291,079,626,146 (12)
abstracting: (pb2_1_2<=0)
states: 1,291,079,626,146 (12)
abstracting: (pb2_1_2<=0)
states: 1,291,079,626,146 (12)
.
EG iterations: 1
abstracting: (p1ol_1_1<=p2il_1_2)
states: 1,656,051,315,618 (12)
abstracting: (pb2_1_2<=0)
states: 1,291,079,626,146 (12)
abstracting: (pb2_1_2<=0)
states: 1,291,079,626,146 (12)
abstracting: (pb2_1_2<=0)
states: 1,291,079,626,146 (12)
.
EG iterations: 1
.
EG iterations: 1
abstracting: (p2ol_2_2<=1)
states: 2,085,423,232,578 (12)
abstracting: (pb3_2_2<=2)
states: 1,995,286,086,146 (12)
.
EG iterations: 1
EG iterations: 0
.-> the formula is TRUE
FORMULA SquareGrid-PT-020102-CTLCardinality-15 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.933sec
checking: [A [[EF [p1i_0<=2] | [~ [[[[p2i_2_2<=1 & 2<=pb4_1_1] | A [2<=p1il_0 U p1ol_1_1<=p2il_1_2]] & 1<=pb3_1_2]] & [AF [[pb2_1_1<=1 | pbl_2_2<=p1ol_1_2]] | [A [pbl_1_1<=1 U p2i_2_2<=p2ol_2_2] & EG [1<=p2i_1_2]]]]] U ~ [A [[[EG [p2ol_1_2<=1] | EG [pb4_1_1<=0]] & p3il_2_1<=1] U E [~ [p4o_1_2<=2] U EF [1<=p4o_1_1]]]]] & EF [~ [pb1_1_2<=1]]]
normalized: [E [true U ~ [pb1_1_2<=1]] & [~ [EG [[~ [EG [~ [E [~ [p4o_1_2<=2] U E [true U 1<=p4o_1_1]]]]] & ~ [E [~ [E [~ [p4o_1_2<=2] U E [true U 1<=p4o_1_1]]] U [~ [[p3il_2_1<=1 & [EG [pb4_1_1<=0] | EG [p2ol_1_2<=1]]]] & ~ [E [~ [p4o_1_2<=2] U E [true U 1<=p4o_1_1]]]]]]]]] & ~ [E [[~ [EG [~ [E [~ [p4o_1_2<=2] U E [true U 1<=p4o_1_1]]]]] & ~ [E [~ [E [~ [p4o_1_2<=2] U E [true U 1<=p4o_1_1]]] U [~ [[p3il_2_1<=1 & [EG [pb4_1_1<=0] | EG [p2ol_1_2<=1]]]] & ~ [E [~ [p4o_1_2<=2] U E [true U 1<=p4o_1_1]]]]]]] U [~ [[[[[EG [1<=p2i_1_2] & [~ [EG [~ [p2i_2_2<=p2ol_2_2]]] & ~ [E [~ [p2i_2_2<=p2ol_2_2] U [~ [pbl_1_1<=1] & ~ [p2i_2_2<=p2ol_2_2]]]]]] | ~ [EG [~ [[pb2_1_1<=1 | pbl_2_2<=p1ol_1_2]]]]] & ~ [[1<=pb3_1_2 & [[~ [EG [~ [p1ol_1_1<=p2il_1_2]]] & ~ [E [~ [p1ol_1_1<=p2il_1_2] U [~ [2<=p1il_0] & ~ [p1ol_1_1<=p2il_1_2]]]]] | [p2i_2_2<=1 & 2<=pb4_1_1]]]]] | E [true U p1i_0<=2]]] & [~ [EG [~ [E [~ [p4o_1_2<=2] U E [true U 1<=p4o_1_1]]]]] & ~ [E [~ [E [~ [p4o_1_2<=2] U E [true U 1<=p4o_1_1]]] U [~ [[p3il_2_1<=1 & [EG [pb4_1_1<=0] | EG [p2ol_1_2<=1]]]] & ~ [E [~ [p4o_1_2<=2] U E [true U 1<=p4o_1_1]]]]]]]]]]]]
abstracting: (1<=p4o_1_1)
states: 592,360,675,452 (11)
abstracting: (p4o_1_2<=2)
states: 2,085,423,232,578 (12)
abstracting: (p2ol_1_2<=1)
states: 2,085,423,232,578 (12)
EG iterations: 0
abstracting: (pb4_1_1<=0)
states: 1,291,079,626,146 (12)
.
EG iterations: 1
abstracting: (p3il_2_1<=1)
states: 2,085,423,232,578 (12)
abstracting: (1<=p4o_1_1)
states: 592,360,675,452 (11)
abstracting: (p4o_1_2<=2)
states: 2,085,423,232,578 (12)
abstracting: (1<=p4o_1_1)
states: 592,360,675,452 (11)
abstracting: (p4o_1_2<=2)
states: 2,085,423,232,578 (12)
.
EG iterations: 1
abstracting: (p1i_0<=2)
states: 2,085,423,232,578 (12)
abstracting: (2<=pb4_1_1)
states: 280,659,824,176 (11)
abstracting: (p2i_2_2<=1)
states: 2,085,423,232,578 (12)
abstracting: (p1ol_1_1<=p2il_1_2)
states: 1,656,051,315,618 (12)
abstracting: (2<=p1il_0)
states: 0
abstracting: (p1ol_1_1<=p2il_1_2)
states: 1,656,051,315,618 (12)
abstracting: (p1ol_1_1<=p2il_1_2)
states: 1,656,051,315,618 (12)
.......
EG iterations: 7
abstracting: (1<=pb3_1_2)
states: 794,343,606,432 (11)
abstracting: (pbl_2_2<=p1ol_1_2)
states: 172,760,362,096 (11)
abstracting: (pb2_1_1<=1)
states: 1,804,763,408,402 (12)
.....
EG iterations: 5
abstracting: (p2i_2_2<=p2ol_2_2)
states: 1,922,434,474,086 (12)
abstracting: (pbl_1_1<=1)
states: 206,949,950,592 (11)
abstracting: (p2i_2_2<=p2ol_2_2)
states: 1,922,434,474,086 (12)
abstracting: (p2i_2_2<=p2ol_2_2)
states: 1,922,434,474,086 (12)
.....
EG iterations: 5
abstracting: (1<=p2i_1_2)
states: 592,360,675,452 (11)
......
EG iterations: 6
abstracting: (1<=p4o_1_1)
states: 592,360,675,452 (11)
abstracting: (p4o_1_2<=2)
states: 2,085,423,232,578 (12)
abstracting: (p2ol_1_2<=1)
states: 2,085,423,232,578 (12)
EG iterations: 0
abstracting: (pb4_1_1<=0)
states: 1,291,079,626,146 (12)
.
EG iterations: 1
abstracting: (p3il_2_1<=1)
states: 2,085,423,232,578 (12)
abstracting: (1<=p4o_1_1)
states: 592,360,675,452 (11)
abstracting: (p4o_1_2<=2)
states: 2,085,423,232,578 (12)
abstracting: (1<=p4o_1_1)
states: 592,360,675,452 (11)
abstracting: (p4o_1_2<=2)
states: 2,085,423,232,578 (12)
.
EG iterations: 1
abstracting: (1<=p4o_1_1)
states: 592,360,675,452 (11)
abstracting: (p4o_1_2<=2)
states: 2,085,423,232,578 (12)
abstracting: (p2ol_1_2<=1)
states: 2,085,423,232,578 (12)
EG iterations: 0
abstracting: (pb4_1_1<=0)
states: 1,291,079,626,146 (12)
.
EG iterations: 1
abstracting: (p3il_2_1<=1)
states: 2,085,423,232,578 (12)
abstracting: (1<=p4o_1_1)
states: 592,360,675,452 (11)
abstracting: (p4o_1_2<=2)
states: 2,085,423,232,578 (12)
abstracting: (1<=p4o_1_1)
states: 592,360,675,452 (11)
abstracting: (p4o_1_2<=2)
states: 2,085,423,232,578 (12)
.
EG iterations: 1
....
EG iterations: 4
abstracting: (pb1_1_2<=1)
states: 1,804,763,408,402 (12)
-> the formula is FALSE
FORMULA SquareGrid-PT-020102-CTLCardinality-05 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 2.708sec
checking: [AX [~ [[p4il_1_1<=p4i_1_2 | [[EF [pbl_2_1<=pb3_1_1] & 1<=p1ol_1_2] | AX [[p4o_1_2<=2 | p4ol_2_1<=pb1_2_1]]]]]] | A [A [pb1_2_2<=0 U [[EF [pbl_1_1<=1] | [~ [p4ol_2_2<=p1ol_2_2] & AG [p4o_1_1<=pb1_1_2]]] | EG [[1<=p1il_2_1 & p4ol_2_1<=2]]]] U ~ [[~ [[EF [p4ol_1_2<=1] | 1<=pb2_1_2]] | ~ [[[A [p1ol_1_2<=1 U 2<=p4ol_1_2] & p4il_2_1<=1] & A [p4i_2_2<=0 U 1<=p4il_2_2]]]]]]]
normalized: [[~ [EG [[~ [[[p4il_2_1<=1 & [~ [EG [~ [2<=p4ol_1_2]]] & ~ [E [~ [2<=p4ol_1_2] U [~ [p1ol_1_2<=1] & ~ [2<=p4ol_1_2]]]]]] & [~ [EG [~ [1<=p4il_2_2]]] & ~ [E [~ [1<=p4il_2_2] U [~ [p4i_2_2<=0] & ~ [1<=p4il_2_2]]]]]]] | ~ [[1<=pb2_1_2 | E [true U p4ol_1_2<=1]]]]]] & ~ [E [[~ [[[p4il_2_1<=1 & [~ [EG [~ [2<=p4ol_1_2]]] & ~ [E [~ [2<=p4ol_1_2] U [~ [p1ol_1_2<=1] & ~ [2<=p4ol_1_2]]]]]] & [~ [EG [~ [1<=p4il_2_2]]] & ~ [E [~ [1<=p4il_2_2] U [~ [p4i_2_2<=0] & ~ [1<=p4il_2_2]]]]]]] | ~ [[1<=pb2_1_2 | E [true U p4ol_1_2<=1]]]] U [[~ [[[p4il_2_1<=1 & [~ [EG [~ [2<=p4ol_1_2]]] & ~ [E [~ [2<=p4ol_1_2] U [~ [p1ol_1_2<=1] & ~ [2<=p4ol_1_2]]]]]] & [~ [EG [~ [1<=p4il_2_2]]] & ~ [E [~ [1<=p4il_2_2] U [~ [p4i_2_2<=0] & ~ [1<=p4il_2_2]]]]]]] | ~ [[1<=pb2_1_2 | E [true U p4ol_1_2<=1]]]] & ~ [[~ [EG [~ [[[[~ [E [true U ~ [p4o_1_1<=pb1_1_2]]] & ~ [p4ol_2_2<=p1ol_2_2]] | E [true U pbl_1_1<=1]] | EG [[1<=p1il_2_1 & p4ol_2_1<=2]]]]]] & ~ [E [~ [[[[~ [E [true U ~ [p4o_1_1<=pb1_1_2]]] & ~ [p4ol_2_2<=p1ol_2_2]] | E [true U pbl_1_1<=1]] | EG [[1<=p1il_2_1 & p4ol_2_1<=2]]]] U [~ [[[[~ [E [true U ~ [p4o_1_1<=pb1_1_2]]] & ~ [p4ol_2_2<=p1ol_2_2]] | E [true U pbl_1_1<=1]] | EG [[1<=p1il_2_1 & p4ol_2_1<=2]]]] & ~ [pb1_2_2<=0]]]]]]]]]] | ~ [EX [[p4il_1_1<=p4i_1_2 | [~ [EX [~ [[p4o_1_2<=2 | p4ol_2_1<=pb1_2_1]]]] | [1<=p1ol_1_2 & E [true U pbl_2_1<=pb3_1_1]]]]]]]
abstracting: (pbl_2_1<=pb3_1_1)
states: 160,161,665,248 (11)
abstracting: (1<=p1ol_1_2)
states: 1,493,062,557,126 (12)
abstracting: (p4ol_2_1<=pb1_2_1)
states: 1,169,696,534,160 (12)
abstracting: (p4o_1_2<=2)
states: 2,085,423,232,578 (12)
.abstracting: (p4il_1_1<=p4i_1_2)
states: 1,021,732,592,412 (12)
.abstracting: (pb1_2_2<=0)
states: 1,291,079,626,146 (12)
abstracting: (p4ol_2_1<=2)
states: 2,085,423,232,578 (12)
abstracting: (1<=p1il_2_1)
states: 1,493,062,557,126 (12)
......
EG iterations: 6
abstracting: (pbl_1_1<=1)
states: 206,949,950,592 (11)
abstracting: (p4ol_2_2<=p1ol_2_2)
states: 1,656,051,315,618 (12)
abstracting: (p4o_1_1<=pb1_1_2)
states: 1,710,070,304,850 (12)
abstracting: (p4ol_2_1<=2)
states: 2,085,423,232,578 (12)
abstracting: (1<=p1il_2_1)
states: 1,493,062,557,126 (12)
......
EG iterations: 6
abstracting: (pbl_1_1<=1)
states: 206,949,950,592 (11)
abstracting: (p4ol_2_2<=p1ol_2_2)
states: 1,656,051,315,618 (12)
abstracting: (p4o_1_1<=pb1_1_2)
states: 1,710,070,304,850 (12)
abstracting: (p4ol_2_1<=2)
states: 2,085,423,232,578 (12)
abstracting: (1<=p1il_2_1)
states: 1,493,062,557,126 (12)
......
EG iterations: 6
abstracting: (pbl_1_1<=1)
states: 206,949,950,592 (11)
abstracting: (p4ol_2_2<=p1ol_2_2)
states: 1,656,051,315,618 (12)
abstracting: (p4o_1_1<=pb1_1_2)
states: 1,710,070,304,850 (12)
............
EG iterations: 12
abstracting: (p4ol_1_2<=1)
states: 2,085,423,232,578 (12)
abstracting: (1<=pb2_1_2)
states: 794,343,606,432 (11)
abstracting: (1<=p4il_2_2)
states: 1,493,062,557,126 (12)
abstracting: (p4i_2_2<=0)
states: 1,493,062,557,126 (12)
abstracting: (1<=p4il_2_2)
states: 1,493,062,557,126 (12)
abstracting: (1<=p4il_2_2)
states: 1,493,062,557,126 (12)
......
EG iterations: 6
abstracting: (2<=p4ol_1_2)
states: 0
abstracting: (p1ol_1_2<=1)
states: 2,085,423,232,578 (12)
abstracting: (2<=p4ol_1_2)
states: 0
abstracting: (2<=p4ol_1_2)
states: 0
EG iterations: 0
abstracting: (p4il_2_1<=1)
states: 2,085,423,232,578 (12)
abstracting: (p4ol_1_2<=1)
states: 2,085,423,232,578 (12)
abstracting: (1<=pb2_1_2)
states: 794,343,606,432 (11)
abstracting: (1<=p4il_2_2)
states: 1,493,062,557,126 (12)
abstracting: (p4i_2_2<=0)
states: 1,493,062,557,126 (12)
abstracting: (1<=p4il_2_2)
states: 1,493,062,557,126 (12)
abstracting: (1<=p4il_2_2)
states: 1,493,062,557,126 (12)
......
EG iterations: 6
abstracting: (2<=p4ol_1_2)
states: 0
abstracting: (p1ol_1_2<=1)
states: 2,085,423,232,578 (12)
abstracting: (2<=p4ol_1_2)
states: 0
abstracting: (2<=p4ol_1_2)
states: 0
EG iterations: 0
abstracting: (p4il_2_1<=1)
states: 2,085,423,232,578 (12)
abstracting: (p4ol_1_2<=1)
states: 2,085,423,232,578 (12)
abstracting: (1<=pb2_1_2)
states: 794,343,606,432 (11)
abstracting: (1<=p4il_2_2)
states: 1,493,062,557,126 (12)
abstracting: (p4i_2_2<=0)
states: 1,493,062,557,126 (12)
abstracting: (1<=p4il_2_2)
states: 1,493,062,557,126 (12)
abstracting: (1<=p4il_2_2)
states: 1,493,062,557,126 (12)
......
EG iterations: 6
abstracting: (2<=p4ol_1_2)
states: 0
abstracting: (p1ol_1_2<=1)
states: 2,085,423,232,578 (12)
abstracting: (2<=p4ol_1_2)
states: 0
abstracting: (2<=p4ol_1_2)
states: 0
EG iterations: 0
abstracting: (p4il_2_1<=1)
states: 2,085,423,232,578 (12)
EG iterations: 0
-> the formula is FALSE
FORMULA SquareGrid-PT-020102-CTLCardinality-01 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m19.399sec
checking: A [AX [~ [[[~ [[p4o_2_1<=2 | pbl_1_2<=pb3_2_1]] & ~ [[1<=p4i_1_1 | 2<=pb4_1_1]]] | AX [[pb4_1_1<=2 & 2<=p4i_1_1]]]]] U [[[[~ [p3i_2_2<=pb2_2_1] & pb3_2_2<=0] | [[~ [[1<=pb1_2_1 & p4il_1_2<=pbl_1_2]] | E [p4i_2_2<=2 U 1<=p4ol_1_1]] & [A [pb2_1_2<=p2i_2_2 U 2<=pbl_1_2] | p3i_2_2<=2]]] & EG [~ [1<=p2ol_2_2]]] | [1<=p1i_0 | AX [[p4i_1_1<=p2o_1_2 & [EF [2<=p3o_2_1] | AX [p1o_1_1<=p4i_2_2]]]]]]]
normalized: [~ [EG [~ [[[1<=p1i_0 | ~ [EX [~ [[p4i_1_1<=p2o_1_2 & [~ [EX [~ [p1o_1_1<=p4i_2_2]]] | E [true U 2<=p3o_2_1]]]]]]] | [EG [~ [1<=p2ol_2_2]] & [[[p3i_2_2<=2 | [~ [EG [~ [2<=pbl_1_2]]] & ~ [E [~ [2<=pbl_1_2] U [~ [pb2_1_2<=p2i_2_2] & ~ [2<=pbl_1_2]]]]]] & [E [p4i_2_2<=2 U 1<=p4ol_1_1] | ~ [[1<=pb1_2_1 & p4il_1_2<=pbl_1_2]]]] | [pb3_2_2<=0 & ~ [p3i_2_2<=pb2_2_1]]]]]]]] & ~ [E [~ [[[1<=p1i_0 | ~ [EX [~ [[p4i_1_1<=p2o_1_2 & [~ [EX [~ [p1o_1_1<=p4i_2_2]]] | E [true U 2<=p3o_2_1]]]]]]] | [EG [~ [1<=p2ol_2_2]] & [[[p3i_2_2<=2 | [~ [EG [~ [2<=pbl_1_2]]] & ~ [E [~ [2<=pbl_1_2] U [~ [pb2_1_2<=p2i_2_2] & ~ [2<=pbl_1_2]]]]]] & [E [p4i_2_2<=2 U 1<=p4ol_1_1] | ~ [[1<=pb1_2_1 & p4il_1_2<=pbl_1_2]]]] | [pb3_2_2<=0 & ~ [p3i_2_2<=pb2_2_1]]]]]] U [~ [[[1<=p1i_0 | ~ [EX [~ [[p4i_1_1<=p2o_1_2 & [~ [EX [~ [p1o_1_1<=p4i_2_2]]] | E [true U 2<=p3o_2_1]]]]]]] | [EG [~ [1<=p2ol_2_2]] & [[[p3i_2_2<=2 | [~ [EG [~ [2<=pbl_1_2]]] & ~ [E [~ [2<=pbl_1_2] U [~ [pb2_1_2<=p2i_2_2] & ~ [2<=pbl_1_2]]]]]] & [E [p4i_2_2<=2 U 1<=p4ol_1_1] | ~ [[1<=pb1_2_1 & p4il_1_2<=pbl_1_2]]]] | [pb3_2_2<=0 & ~ [p3i_2_2<=pb2_2_1]]]]]] & EX [[~ [EX [~ [[pb4_1_1<=2 & 2<=p4i_1_1]]]] | [~ [[1<=p4i_1_1 | 2<=pb4_1_1]] & ~ [[p4o_2_1<=2 | pbl_1_2<=pb3_2_1]]]]]]]]]
abstracting: (pbl_1_2<=pb3_2_1)
states: 160,161,665,248 (11)
abstracting: (p4o_2_1<=2)
states: 2,085,423,232,578 (12)
abstracting: (2<=pb4_1_1)
states: 280,659,824,176 (11)
abstracting: (1<=p4i_1_1)
states: 592,360,675,452 (11)
abstracting: (2<=p4i_1_1)
states: 0
abstracting: (pb4_1_1<=2)
states: 1,995,286,086,146 (12)
..abstracting: (p3i_2_2<=pb2_2_1)
states: 1,710,070,304,850 (12)
abstracting: (pb3_2_2<=0)
states: 1,291,079,626,146 (12)
abstracting: (p4il_1_2<=pbl_1_2)
states: 2,034,138,849,834 (12)
abstracting: (1<=pb1_2_1)
states: 794,343,606,432 (11)
abstracting: (1<=p4ol_1_1)
states: 1,493,062,557,126 (12)
abstracting: (p4i_2_2<=2)
states: 2,085,423,232,578 (12)
abstracting: (2<=pbl_1_2)
states: 1,878,473,281,986 (12)
abstracting: (pb2_1_2<=p2i_2_2)
states: 1,434,418,752,922 (12)
abstracting: (2<=pbl_1_2)
states: 1,878,473,281,986 (12)
abstracting: (2<=pbl_1_2)
states: 1,878,473,281,986 (12)
.....
EG iterations: 5
abstracting: (p3i_2_2<=2)
states: 2,085,423,232,578 (12)
abstracting: (1<=p2ol_2_2)
states: 1,493,062,557,126 (12)
.....
EG iterations: 5
abstracting: (2<=p3o_2_1)
states: 0
abstracting: (p1o_1_1<=p4i_2_2)
states: 1,656,051,315,618 (12)
.abstracting: (p4i_1_1<=p2o_1_2)
states: 1,656,051,315,618 (12)
.abstracting: (1<=p1i_0)
states: 592,360,675,452 (11)
abstracting: (p3i_2_2<=pb2_2_1)
states: 1,710,070,304,850 (12)
abstracting: (pb3_2_2<=0)
states: 1,291,079,626,146 (12)
abstracting: (p4il_1_2<=pbl_1_2)
states: 2,034,138,849,834 (12)
abstracting: (1<=pb1_2_1)
states: 794,343,606,432 (11)
abstracting: (1<=p4ol_1_1)
states: 1,493,062,557,126 (12)
abstracting: (p4i_2_2<=2)
states: 2,085,423,232,578 (12)
abstracting: (2<=pbl_1_2)
states: 1,878,473,281,986 (12)
abstracting: (pb2_1_2<=p2i_2_2)
states: 1,434,418,752,922 (12)
abstracting: (2<=pbl_1_2)
states: 1,878,473,281,986 (12)
abstracting: (2<=pbl_1_2)
states: 1,878,473,281,986 (12)
.....
EG iterations: 5
abstracting: (p3i_2_2<=2)
states: 2,085,423,232,578 (12)
abstracting: (1<=p2ol_2_2)
states: 1,493,062,557,126 (12)
.....
EG iterations: 5
abstracting: (2<=p3o_2_1)
states: 0
abstracting: (p1o_1_1<=p4i_2_2)
states: 1,656,051,315,618 (12)
.abstracting: (p4i_1_1<=p2o_1_2)
states: 1,656,051,315,618 (12)
.abstracting: (1<=p1i_0)
states: 592,360,675,452 (11)
abstracting: (p3i_2_2<=pb2_2_1)
states: 1,710,070,304,850 (12)
abstracting: (pb3_2_2<=0)
states: 1,291,079,626,146 (12)
abstracting: (p4il_1_2<=pbl_1_2)
states: 2,034,138,849,834 (12)
abstracting: (1<=pb1_2_1)
states: 794,343,606,432 (11)
abstracting: (1<=p4ol_1_1)
states: 1,493,062,557,126 (12)
abstracting: (p4i_2_2<=2)
states: 2,085,423,232,578 (12)
abstracting: (2<=pbl_1_2)
states: 1,878,473,281,986 (12)
abstracting: (pb2_1_2<=p2i_2_2)
states: 1,434,418,752,922 (12)
abstracting: (2<=pbl_1_2)
states: 1,878,473,281,986 (12)
abstracting: (2<=pbl_1_2)
states: 1,878,473,281,986 (12)
.....
EG iterations: 5
abstracting: (p3i_2_2<=2)
states: 2,085,423,232,578 (12)
abstracting: (1<=p2ol_2_2)
states: 1,493,062,557,126 (12)
.....
EG iterations: 5
abstracting: (2<=p3o_2_1)
states: 0
abstracting: (p1o_1_1<=p4i_2_2)
states: 1,656,051,315,618 (12)
.abstracting: (p4i_1_1<=p2o_1_2)
states: 1,656,051,315,618 (12)
.abstracting: (1<=p1i_0)
states: 592,360,675,452 (11)
............
EG iterations: 12
-> the formula is FALSE
FORMULA SquareGrid-PT-020102-CTLCardinality-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m48.482sec
checking: E [[AX [[[~ [2<=p1i_2_2] & AX [2<=pb3_2_1]] & AG [~ [p2il_2_2<=1]]]] | E [~ [E [A [pbl_2_2<=p3ol_2_1 U pb2_1_1<=1] U A [1<=p2il_2_2 U pb1_2_2<=2]]] U A [[[1<=p4ol_1_1 | p1ol_1_2<=pb4_2_2] | [p3il_2_1<=p4ol_1_1 & pb1_1_1<=1]] U [~ [2<=p3o_2_1] | [1<=p4il_1_2 & p1ol_1_2<=0]]]]] U A [[[AG [E [p2o_2_2<=2 U p1o_1_1<=pb3_2_1]] & AF [[p4i_1_1<=0 & 1<=p1il_2_1]]] & AX [[AG [2<=p4i_2_1] | 1<=p1il_0]]] U [[~ [[[p1il_2_2<=0 | p1o_1_2<=p4ol_2_1] & E [pb1_1_1<=p3o_2_2 U p2o_1_2<=1]]] & EF [E [p4o_2_2<=p3i_2_1 U 2<=p1ol_2_2]]] & AG [2<=pb2_1_1]]]]
normalized: E [[E [~ [E [[~ [EG [~ [pb2_1_1<=1]]] & ~ [E [~ [pb2_1_1<=1] U [~ [pbl_2_2<=p3ol_2_1] & ~ [pb2_1_1<=1]]]]] U [~ [EG [~ [pb1_2_2<=2]]] & ~ [E [~ [pb1_2_2<=2] U [~ [1<=p2il_2_2] & ~ [pb1_2_2<=2]]]]]]] U [~ [EG [~ [[[1<=p4il_1_2 & p1ol_1_2<=0] | ~ [2<=p3o_2_1]]]]] & ~ [E [~ [[[1<=p4il_1_2 & p1ol_1_2<=0] | ~ [2<=p3o_2_1]]] U [~ [[[1<=p4il_1_2 & p1ol_1_2<=0] | ~ [2<=p3o_2_1]]] & ~ [[[p3il_2_1<=p4ol_1_1 & pb1_1_1<=1] | [1<=p4ol_1_1 | p1ol_1_2<=pb4_2_2]]]]]]]] | ~ [EX [~ [[~ [E [true U p2il_2_2<=1]] & [~ [EX [~ [2<=pb3_2_1]]] & ~ [2<=p1i_2_2]]]]]]] U [~ [EG [~ [[[~ [[E [pb1_1_1<=p3o_2_2 U p2o_1_2<=1] & [p1il_2_2<=0 | p1o_1_2<=p4ol_2_1]]] & E [true U E [p4o_2_2<=p3i_2_1 U 2<=p1ol_2_2]]] & ~ [E [true U ~ [2<=pb2_1_1]]]]]]] & ~ [E [~ [[[~ [[E [pb1_1_1<=p3o_2_2 U p2o_1_2<=1] & [p1il_2_2<=0 | p1o_1_2<=p4ol_2_1]]] & E [true U E [p4o_2_2<=p3i_2_1 U 2<=p1ol_2_2]]] & ~ [E [true U ~ [2<=pb2_1_1]]]]] U [~ [[[~ [[E [pb1_1_1<=p3o_2_2 U p2o_1_2<=1] & [p1il_2_2<=0 | p1o_1_2<=p4ol_2_1]]] & E [true U E [p4o_2_2<=p3i_2_1 U 2<=p1ol_2_2]]] & ~ [E [true U ~ [2<=pb2_1_1]]]]] & ~ [[~ [EX [~ [[1<=p1il_0 | ~ [E [true U ~ [2<=p4i_2_1]]]]]]] & [~ [EG [~ [[p4i_1_1<=0 & 1<=p1il_2_1]]]] & ~ [E [true U ~ [E [p2o_2_2<=2 U p1o_1_1<=pb3_2_1]]]]]]]]]]]]
abstracting: (p1o_1_1<=pb3_2_1)
states: 1,710,070,304,850 (12)
abstracting: (p2o_2_2<=2)
states: 2,085,423,232,578 (12)
abstracting: (1<=p1il_2_1)
states: 1,493,062,557,126 (12)
abstracting: (p4i_1_1<=0)
states: 1,493,062,557,126 (12)
......
EG iterations: 6
abstracting: (2<=p4i_2_1)
states: 0
abstracting: (1<=p1il_0)
states: 1,493,062,557,126 (12)
.abstracting: (2<=pb2_1_1)
states: 280,659,824,176 (11)
abstracting: (2<=p1ol_2_2)
states: 0
abstracting: (p4o_2_2<=p3i_2_1)
states: 1,656,051,315,618 (12)
abstracting: (p1o_1_2<=p4ol_2_1)
states: 1,922,434,474,086 (12)
abstracting: (p1il_2_2<=0)
states: 592,360,675,452 (11)
abstracting: (p2o_1_2<=1)
states: 2,085,423,232,578 (12)
abstracting: (pb1_1_1<=p3o_2_2)
states: 1,434,418,752,922 (12)
abstracting: (2<=pb2_1_1)
states: 280,659,824,176 (11)
abstracting: (2<=p1ol_2_2)
states: 0
abstracting: (p4o_2_2<=p3i_2_1)
states: 1,656,051,315,618 (12)
abstracting: (p1o_1_2<=p4ol_2_1)
states: 1,922,434,474,086 (12)
abstracting: (p1il_2_2<=0)
states: 592,360,675,452 (11)
abstracting: (p2o_1_2<=1)
states: 2,085,423,232,578 (12)
abstracting: (pb1_1_1<=p3o_2_2)
states: 1,434,418,752,922 (12)
abstracting: (2<=pb2_1_1)
states: 280,659,824,176 (11)
abstracting: (2<=p1ol_2_2)
states: 0
abstracting: (p4o_2_2<=p3i_2_1)
states: 1,656,051,315,618 (12)
abstracting: (p1o_1_2<=p4ol_2_1)
states: 1,922,434,474,086 (12)
abstracting: (p1il_2_2<=0)
states: 592,360,675,452 (11)
abstracting: (p2o_1_2<=1)
states: 2,085,423,232,578 (12)
abstracting: (pb1_1_1<=p3o_2_2)
states: 1,434,418,752,922 (12)
EG iterations: 0
abstracting: (2<=p1i_2_2)
states: 0
abstracting: (2<=pb3_2_1)
states: 280,659,824,176 (11)
.abstracting: (p2il_2_2<=1)
states: 2,085,423,232,578 (12)
.abstracting: (p1ol_1_2<=pb4_2_2)
states: 1,169,696,534,160 (12)
abstracting: (1<=p4ol_1_1)
states: 1,493,062,557,126 (12)
abstracting: (pb1_1_1<=1)
states: 1,804,763,408,402 (12)
abstracting: (p3il_2_1<=p4ol_1_1)
states: 1,656,051,315,618 (12)
abstracting: (2<=p3o_2_1)
states: 0
abstracting: (p1ol_1_2<=0)
states: 592,360,675,452 (11)
abstracting: (1<=p4il_1_2)
states: 1,493,062,557,126 (12)
abstracting: (2<=p3o_2_1)
states: 0
abstracting: (p1ol_1_2<=0)
states: 592,360,675,452 (11)
abstracting: (1<=p4il_1_2)
states: 1,493,062,557,126 (12)
abstracting: (2<=p3o_2_1)
states: 0
abstracting: (p1ol_1_2<=0)
states: 592,360,675,452 (11)
abstracting: (1<=p4il_1_2)
states: 1,493,062,557,126 (12)
.
EG iterations: 1
abstracting: (pb1_2_2<=2)
states: 1,995,286,086,146 (12)
abstracting: (1<=p2il_2_2)
states: 1,493,062,557,126 (12)
abstracting: (pb1_2_2<=2)
states: 1,995,286,086,146 (12)
abstracting: (pb1_2_2<=2)
states: 1,995,286,086,146 (12)
.....
EG iterations: 5
abstracting: (pb2_1_1<=1)
states: 1,804,763,408,402 (12)
abstracting: (pbl_2_2<=p3ol_2_1)
states: 172,760,362,096 (11)
abstracting: (pb2_1_1<=1)
states: 1,804,763,408,402 (12)
abstracting: (pb2_1_1<=1)
states: 1,804,763,408,402 (12)
.....
EG iterations: 5
-> the formula is FALSE
FORMULA SquareGrid-PT-020102-CTLCardinality-02 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 7.666sec
totally nodes used: 28054047 (2.8e+07)
number of garbage collections: 0
fire ops cache: hits/miss/sum: 248844326 186181861 435026187
used/not used/entry size/cache size: 64166519 2942345 16 1024MB
basic ops cache: hits/miss/sum: 37316058 28459721 65775779
used/not used/entry size/cache size: 15564815 1212401 12 192MB
unary ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 8 128MB
abstract ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 12 192MB
state nr cache: hits/miss/sum: 127198 92988 220186
used/not used/entry size/cache size: 92454 8296154 32 256MB
max state cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 8388608 32 256MB
uniqueHash elements/entry size/size: 67108864 4 256MB
0 45437862
1 17095347
2 3706014
3 644733
4 119329
5 35888
6 19140
7 11174
8 7384
9 5455
>= 10 26538
Total processing time: 2m14.195sec
BK_STOP 1679271037052
--------------------
content from stderr:
check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.001sec
iterations count:11383 (158), effective:1118 (15)
initing FirstDep: 0m 0.000sec
iterations count:19204 (266), effective:1840 (25)
iterations count:21477 (298), effective:2250 (31)
iterations count:8862 (123), effective:1020 (14)
iterations count:335 (4), effective:22 (0)
iterations count:18380 (255), effective:1810 (25)
iterations count:966 (13), effective:110 (1)
iterations count:11918 (165), effective:976 (13)
iterations count:3061 (42), effective:266 (3)
iterations count:1206 (16), effective:97 (1)
iterations count:4093 (56), effective:422 (5)
iterations count:3133 (43), effective:271 (3)
iterations count:31980 (444), effective:3252 (45)
iterations count:72 (1), effective:0 (0)
iterations count:2336 (32), effective:181 (2)
iterations count:72 (1), effective:0 (0)
iterations count:137 (1), effective:10 (0)
iterations count:229 (3), effective:14 (0)
iterations count:1220 (16), effective:85 (1)
iterations count:896 (12), effective:75 (1)
iterations count:3462 (48), effective:292 (4)
iterations count:8082 (112), effective:811 (11)
iterations count:441 (6), effective:42 (0)
iterations count:265 (3), effective:16 (0)
iterations count:265 (3), effective:16 (0)
iterations count:72 (1), effective:0 (0)
iterations count:265 (3), effective:16 (0)
iterations count:963 (13), effective:69 (0)
iterations count:72 (1), effective:0 (0)
iterations count:963 (13), effective:69 (0)
iterations count:72 (1), effective:0 (0)
iterations count:963 (13), effective:69 (0)
iterations count:72 (1), effective:0 (0)
iterations count:72 (1), effective:0 (0)
iterations count:72 (1), effective:0 (0)
iterations count:778 (10), effective:69 (0)
iterations count:963 (13), effective:69 (0)
iterations count:72 (1), effective:0 (0)
iterations count:963 (13), effective:69 (0)
iterations count:72 (1), effective:0 (0)
iterations count:963 (13), effective:69 (0)
iterations count:72 (1), effective:0 (0)
iterations count:963 (13), effective:69 (0)
iterations count:72 (1), effective:0 (0)
iterations count:963 (13), effective:69 (0)
iterations count:72 (1), effective:0 (0)
iterations count:963 (13), effective:69 (0)
iterations count:72 (1), effective:0 (0)
iterations count:2533 (35), effective:213 (2)
iterations count:7491 (104), effective:594 (8)
iterations count:4965 (68), effective:367 (5)
iterations count:1591 (22), effective:144 (2)
iterations count:4965 (68), effective:367 (5)
iterations count:1591 (22), effective:144 (2)
iterations count:571 (7), effective:40 (0)
iterations count:4965 (68), effective:367 (5)
iterations count:1591 (22), effective:144 (2)
iterations count:72 (1), effective:0 (0)
iterations count:72 (1), effective:0 (0)
iterations count:72 (1), effective:0 (0)
iterations count:72 (1), effective:0 (0)
iterations count:30170 (419), effective:2884 (40)
iterations count:72 (1), effective:0 (0)
iterations count:72 (1), effective:0 (0)
iterations count:321 (4), effective:22 (0)
iterations count:2974 (41), effective:276 (3)
iterations count:321 (4), effective:22 (0)
iterations count:2974 (41), effective:276 (3)
iterations count:91080 (1265), effective:8247 (114)
iterations count:321 (4), effective:22 (0)
iterations count:2974 (41), effective:276 (3)
iterations count:924 (12), effective:63 (0)
iterations count:31426 (436), effective:2891 (40)
iterations count:72 (1), effective:0 (0)
iterations count:1944 (27), effective:142 (1)
iterations count:72 (1), effective:0 (0)
iterations count:1944 (27), effective:142 (1)
iterations count:72 (1), effective:0 (0)
iterations count:1010 (14), effective:77 (1)
iterations count:1944 (27), effective:142 (1)
iterations count:72 (1), effective:0 (0)
iterations count:72 (1), effective:0 (0)
iterations count:1143 (15), effective:95 (1)
iterations count:1146 (15), effective:91 (1)
iterations count:10414 (144), effective:1162 (16)
iterations count:72 (1), effective:0 (0)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="SquareGrid-PT-020102"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marcie"
echo " Input is SquareGrid-PT-020102, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r449-smll-167912641400353"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/SquareGrid-PT-020102.tgz
mv SquareGrid-PT-020102 execution
cd execution
if [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "UpperBounds" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] || [ "CTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME CTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;