fond
Model Checking Contest 2023
13th edition, Paris, France, April 26, 2023 (at TOOLympics II)
Execution of r298-tall-167873951400225
Last Updated
May 14, 2023

About the Execution of Marcie+red for Philosophers-PT-000200

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
9301.903 3600000.00 3639936.00 6653.20 T??????TFFTFFFTF normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Formatting '/data/fkordon/mcc2023-input.r298-tall-167873951400225.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2023-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
..................................................................
=====================================================================
Generated by BenchKit 2-5348
Executing tool marciexred
Input is Philosophers-PT-000200, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r298-tall-167873951400225
=====================================================================

--------------------
preparation of the directory to be used:
/home/mcc/execution
total 7.2M
-rw-r--r-- 1 mcc users 171K Feb 25 13:22 CTLCardinality.txt
-rw-r--r-- 1 mcc users 960K Feb 25 13:22 CTLCardinality.xml
-rw-r--r-- 1 mcc users 117K Feb 25 13:14 CTLFireability.txt
-rw-r--r-- 1 mcc users 762K Feb 25 13:14 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K Jan 29 11:40 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.8K Jan 29 11:40 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 75K Feb 25 16:33 LTLCardinality.txt
-rw-r--r-- 1 mcc users 295K Feb 25 16:33 LTLCardinality.xml
-rw-r--r-- 1 mcc users 69K Feb 25 16:33 LTLFireability.txt
-rw-r--r-- 1 mcc users 332K Feb 25 16:33 LTLFireability.xml
-rw-r--r-- 1 mcc users 310K Feb 25 13:36 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 1.7M Feb 25 13:36 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 261K Feb 25 13:30 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 1.7M Feb 25 13:30 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 20K Feb 25 16:33 UpperBounds.txt
-rw-r--r-- 1 mcc users 55K Feb 25 16:33 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Mar 5 18:23 equiv_col
-rw-r--r-- 1 mcc users 7 Mar 5 18:23 instance
-rw-r--r-- 1 mcc users 6 Mar 5 18:23 iscolored
-rw-r--r-- 1 mcc users 445K Mar 5 18:23 model.pnml

--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME Philosophers-PT-000200-CTLCardinality-00
FORMULA_NAME Philosophers-PT-000200-CTLCardinality-01
FORMULA_NAME Philosophers-PT-000200-CTLCardinality-02
FORMULA_NAME Philosophers-PT-000200-CTLCardinality-03
FORMULA_NAME Philosophers-PT-000200-CTLCardinality-04
FORMULA_NAME Philosophers-PT-000200-CTLCardinality-05
FORMULA_NAME Philosophers-PT-000200-CTLCardinality-06
FORMULA_NAME Philosophers-PT-000200-CTLCardinality-07
FORMULA_NAME Philosophers-PT-000200-CTLCardinality-08
FORMULA_NAME Philosophers-PT-000200-CTLCardinality-09
FORMULA_NAME Philosophers-PT-000200-CTLCardinality-10
FORMULA_NAME Philosophers-PT-000200-CTLCardinality-11
FORMULA_NAME Philosophers-PT-000200-CTLCardinality-12
FORMULA_NAME Philosophers-PT-000200-CTLCardinality-13
FORMULA_NAME Philosophers-PT-000200-CTLCardinality-14
FORMULA_NAME Philosophers-PT-000200-CTLCardinality-15

=== Now, execution of the tool begins

BK_START 1679482030979

bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marciexred
BK_EXAMINATION=CTLCardinality
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=Philosophers-PT-000200
Applying reductions before tool marcie
Invoking reducer
Running Version 202303021504
[2023-03-22 10:47:12] [INFO ] Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, CTLCardinality, -timeout, 360, -rebuildPNML]
[2023-03-22 10:47:12] [INFO ] Parsing pnml file : /home/mcc/execution/model.pnml
[2023-03-22 10:47:12] [INFO ] Load time of PNML (sax parser for PT used): 87 ms
[2023-03-22 10:47:12] [INFO ] Transformed 1000 places.
[2023-03-22 10:47:12] [INFO ] Transformed 1000 transitions.
[2023-03-22 10:47:12] [INFO ] Parsed PT model containing 1000 places and 1000 transitions and 3200 arcs in 148 ms.
Parsed 16 properties from file /home/mcc/execution/CTLCardinality.xml in 73 ms.
Support contains 1000 out of 1000 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 1000/1000 places, 1000/1000 transitions.
Applied a total of 0 rules in 20 ms. Remains 1000 /1000 variables (removed 0) and now considering 1000/1000 (removed 0) transitions.
// Phase 1: matrix 1000 rows 1000 cols
[2023-03-22 10:47:12] [INFO ] Computed 400 place invariants in 27 ms
[2023-03-22 10:47:13] [INFO ] Implicit Places using invariants in 578 ms returned []
[2023-03-22 10:47:13] [INFO ] Invariant cache hit.
[2023-03-22 10:47:13] [INFO ] Implicit Places using invariants and state equation in 501 ms returned []
Implicit Place search using SMT with State Equation took 1105 ms to find 0 implicit places.
[2023-03-22 10:47:13] [INFO ] Invariant cache hit.
[2023-03-22 10:47:14] [INFO ] Dead Transitions using invariants and state equation in 514 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 1642 ms. Remains : 1000/1000 places, 1000/1000 transitions.
Support contains 1000 out of 1000 places after structural reductions.
[2023-03-22 10:47:14] [INFO ] Initial state reduction rules for CTL removed 1 formulas.
[2023-03-22 10:47:14] [INFO ] Flatten gal took : 94 ms
FORMULA Philosophers-PT-000200-CTLCardinality-00 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
[2023-03-22 10:47:14] [INFO ] Flatten gal took : 60 ms
[2023-03-22 10:47:14] [INFO ] Input system was already deterministic with 1000 transitions.
Incomplete random walk after 10000 steps, including 2 resets, run finished after 867 ms. (steps per millisecond=11 ) properties (out of 58) seen :50
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 111 ms. (steps per millisecond=90 ) properties (out of 8) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 197 ms. (steps per millisecond=50 ) properties (out of 8) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 108 ms. (steps per millisecond=92 ) properties (out of 8) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 206 ms. (steps per millisecond=48 ) properties (out of 8) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 114 ms. (steps per millisecond=87 ) properties (out of 8) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 67 ms. (steps per millisecond=149 ) properties (out of 8) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 67 ms. (steps per millisecond=149 ) properties (out of 8) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 75 ms. (steps per millisecond=133 ) properties (out of 8) seen :0
Running SMT prover for 8 properties.
[2023-03-22 10:47:16] [INFO ] Invariant cache hit.
[2023-03-22 10:47:17] [INFO ] [Real]Absence check using 400 positive place invariants in 70 ms returned sat
[2023-03-22 10:47:18] [INFO ] After 1080ms SMT Verify possible using all constraints in real domain returned unsat :1 sat :0 real:7
[2023-03-22 10:47:18] [INFO ] [Nat]Absence check using 400 positive place invariants in 64 ms returned sat
[2023-03-22 10:47:20] [INFO ] After 1574ms SMT Verify possible using state equation in natural domain returned unsat :5 sat :3
[2023-03-22 10:47:21] [INFO ] After 2827ms SMT Verify possible using trap constraints in natural domain returned unsat :5 sat :3
Attempting to minimize the solution found.
Minimization took 1231 ms.
[2023-03-22 10:47:22] [INFO ] After 4467ms SMT Verify possible using all constraints in natural domain returned unsat :5 sat :3
Fused 8 Parikh solutions to 3 different solutions.
Finished Parikh walk after 260 steps, including 0 resets, run visited all 2 properties in 10 ms. (steps per millisecond=26 )
Parikh walk visited 3 properties in 67 ms.
Successfully simplified 5 atomic propositions for a total of 15 simplifications.
[2023-03-22 10:47:22] [INFO ] Initial state reduction rules for CTL removed 2 formulas.
[2023-03-22 10:47:22] [INFO ] Flatten gal took : 42 ms
[2023-03-22 10:47:22] [INFO ] Initial state reduction rules for CTL removed 1 formulas.
FORMULA Philosophers-PT-000200-CTLCardinality-14 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA Philosophers-PT-000200-CTLCardinality-11 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA Philosophers-PT-000200-CTLCardinality-07 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
[2023-03-22 10:47:22] [INFO ] Flatten gal took : 44 ms
[2023-03-22 10:47:22] [INFO ] Input system was already deterministic with 1000 transitions.
Computed a total of 0 stabilizing places and 0 stable transitions
Starting structural reductions in LTL mode, iteration 0 : 1000/1000 places, 1000/1000 transitions.
Applied a total of 0 rules in 39 ms. Remains 1000 /1000 variables (removed 0) and now considering 1000/1000 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 39 ms. Remains : 1000/1000 places, 1000/1000 transitions.
[2023-03-22 10:47:23] [INFO ] Flatten gal took : 32 ms
[2023-03-22 10:47:23] [INFO ] Flatten gal took : 33 ms
[2023-03-22 10:47:23] [INFO ] Input system was already deterministic with 1000 transitions.
Starting structural reductions in LTL mode, iteration 0 : 1000/1000 places, 1000/1000 transitions.
Applied a total of 0 rules in 46 ms. Remains 1000 /1000 variables (removed 0) and now considering 1000/1000 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 46 ms. Remains : 1000/1000 places, 1000/1000 transitions.
[2023-03-22 10:47:23] [INFO ] Flatten gal took : 26 ms
[2023-03-22 10:47:23] [INFO ] Flatten gal took : 29 ms
[2023-03-22 10:47:23] [INFO ] Input system was already deterministic with 1000 transitions.
Starting structural reductions in LTL mode, iteration 0 : 1000/1000 places, 1000/1000 transitions.
Applied a total of 0 rules in 4 ms. Remains 1000 /1000 variables (removed 0) and now considering 1000/1000 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 5 ms. Remains : 1000/1000 places, 1000/1000 transitions.
[2023-03-22 10:47:23] [INFO ] Flatten gal took : 29 ms
[2023-03-22 10:47:23] [INFO ] Flatten gal took : 30 ms
[2023-03-22 10:47:23] [INFO ] Input system was already deterministic with 1000 transitions.
Starting structural reductions in SI_CTL mode, iteration 0 : 1000/1000 places, 1000/1000 transitions.
Performed 200 Post agglomeration using F-continuation condition.Transition count delta: 200
Deduced a syphon composed of 200 places in 0 ms
Reduce places removed 200 places and 0 transitions.
Iterating global reduction 0 with 400 rules applied. Total rules applied 400 place count 800 transition count 800
Applied a total of 400 rules in 161 ms. Remains 800 /1000 variables (removed 200) and now considering 800/1000 (removed 200) transitions.
Finished structural reductions in SI_CTL mode , in 1 iterations and 161 ms. Remains : 800/1000 places, 800/1000 transitions.
[2023-03-22 10:47:23] [INFO ] Flatten gal took : 22 ms
[2023-03-22 10:47:23] [INFO ] Flatten gal took : 20 ms
[2023-03-22 10:47:23] [INFO ] Input system was already deterministic with 800 transitions.
Starting structural reductions in LTL mode, iteration 0 : 1000/1000 places, 1000/1000 transitions.
Applied a total of 0 rules in 3 ms. Remains 1000 /1000 variables (removed 0) and now considering 1000/1000 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 4 ms. Remains : 1000/1000 places, 1000/1000 transitions.
[2023-03-22 10:47:23] [INFO ] Flatten gal took : 25 ms
[2023-03-22 10:47:23] [INFO ] Flatten gal took : 25 ms
[2023-03-22 10:47:23] [INFO ] Input system was already deterministic with 1000 transitions.
Starting structural reductions in SI_CTL mode, iteration 0 : 1000/1000 places, 1000/1000 transitions.
Applied a total of 0 rules in 18 ms. Remains 1000 /1000 variables (removed 0) and now considering 1000/1000 (removed 0) transitions.
Finished structural reductions in SI_CTL mode , in 1 iterations and 18 ms. Remains : 1000/1000 places, 1000/1000 transitions.
[2023-03-22 10:47:23] [INFO ] Flatten gal took : 23 ms
[2023-03-22 10:47:23] [INFO ] Flatten gal took : 24 ms
[2023-03-22 10:47:23] [INFO ] Input system was already deterministic with 1000 transitions.
Starting structural reductions in SI_CTL mode, iteration 0 : 1000/1000 places, 1000/1000 transitions.
Performed 198 Post agglomeration using F-continuation condition.Transition count delta: 198
Deduced a syphon composed of 198 places in 1 ms
Reduce places removed 198 places and 0 transitions.
Iterating global reduction 0 with 396 rules applied. Total rules applied 396 place count 802 transition count 802
Applied a total of 396 rules in 59 ms. Remains 802 /1000 variables (removed 198) and now considering 802/1000 (removed 198) transitions.
Finished structural reductions in SI_CTL mode , in 1 iterations and 59 ms. Remains : 802/1000 places, 802/1000 transitions.
[2023-03-22 10:47:24] [INFO ] Flatten gal took : 17 ms
[2023-03-22 10:47:24] [INFO ] Flatten gal took : 19 ms
[2023-03-22 10:47:24] [INFO ] Input system was already deterministic with 802 transitions.
Starting structural reductions in LTL mode, iteration 0 : 1000/1000 places, 1000/1000 transitions.
Applied a total of 0 rules in 12 ms. Remains 1000 /1000 variables (removed 0) and now considering 1000/1000 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 12 ms. Remains : 1000/1000 places, 1000/1000 transitions.
[2023-03-22 10:47:24] [INFO ] Flatten gal took : 21 ms
[2023-03-22 10:47:24] [INFO ] Flatten gal took : 23 ms
[2023-03-22 10:47:24] [INFO ] Input system was already deterministic with 1000 transitions.
Starting structural reductions in LTL mode, iteration 0 : 1000/1000 places, 1000/1000 transitions.
Applied a total of 0 rules in 12 ms. Remains 1000 /1000 variables (removed 0) and now considering 1000/1000 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 12 ms. Remains : 1000/1000 places, 1000/1000 transitions.
[2023-03-22 10:47:24] [INFO ] Flatten gal took : 25 ms
[2023-03-22 10:47:24] [INFO ] Flatten gal took : 23 ms
[2023-03-22 10:47:24] [INFO ] Input system was already deterministic with 1000 transitions.
Starting structural reductions in SI_CTL mode, iteration 0 : 1000/1000 places, 1000/1000 transitions.
Performed 196 Post agglomeration using F-continuation condition.Transition count delta: 196
Deduced a syphon composed of 196 places in 0 ms
Reduce places removed 196 places and 0 transitions.
Iterating global reduction 0 with 392 rules applied. Total rules applied 392 place count 804 transition count 804
Applied a total of 392 rules in 51 ms. Remains 804 /1000 variables (removed 196) and now considering 804/1000 (removed 196) transitions.
Finished structural reductions in SI_CTL mode , in 1 iterations and 51 ms. Remains : 804/1000 places, 804/1000 transitions.
[2023-03-22 10:47:24] [INFO ] Flatten gal took : 17 ms
[2023-03-22 10:47:24] [INFO ] Flatten gal took : 18 ms
[2023-03-22 10:47:24] [INFO ] Input system was already deterministic with 804 transitions.
Starting structural reductions in LTL mode, iteration 0 : 1000/1000 places, 1000/1000 transitions.
Applied a total of 0 rules in 15 ms. Remains 1000 /1000 variables (removed 0) and now considering 1000/1000 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 15 ms. Remains : 1000/1000 places, 1000/1000 transitions.
[2023-03-22 10:47:24] [INFO ] Flatten gal took : 20 ms
[2023-03-22 10:47:24] [INFO ] Flatten gal took : 21 ms
[2023-03-22 10:47:24] [INFO ] Input system was already deterministic with 1000 transitions.
Starting structural reductions in LTL mode, iteration 0 : 1000/1000 places, 1000/1000 transitions.
Applied a total of 0 rules in 11 ms. Remains 1000 /1000 variables (removed 0) and now considering 1000/1000 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 11 ms. Remains : 1000/1000 places, 1000/1000 transitions.
[2023-03-22 10:47:24] [INFO ] Flatten gal took : 20 ms
[2023-03-22 10:47:24] [INFO ] Flatten gal took : 21 ms
[2023-03-22 10:47:24] [INFO ] Input system was already deterministic with 1000 transitions.
[2023-03-22 10:47:24] [INFO ] Flatten gal took : 25 ms
[2023-03-22 10:47:24] [INFO ] Flatten gal took : 24 ms
[2023-03-22 10:47:24] [INFO ] Export to MCC of 12 properties in file /home/mcc/execution/CTLCardinality.sr.xml took 6 ms.
[2023-03-22 10:47:24] [INFO ] Export to PNML in file /home/mcc/execution/model.sr.pnml of net with 1000 places, 1000 transitions and 3200 arcs took 5 ms.
Total runtime 12492 ms.
There are residual formulas that ITS could not solve within timeout
timeout --kill-after=10s --signal=SIGINT 1m for testing only

Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets

authors: Alex Tovchigrechko (IDD package and CTL model checking)

Martin Schwarick (Symbolic numerical analysis and CSL model checking)

Christian Rohr (Simulative and approximative numerical model checking)

marcie@informatik.tu-cottbus.de

called as: /home/mcc/BenchKit/bin//../reducer/bin//../../marcie/bin/marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --memory=6 --mcc-mode

parse successfull
net created successfully

Net: Petri
(NrP: 1000 NrTr: 1000 NrArc: 3200)

parse formulas
formulas created successfully
place and transition orderings generation:0m 0.070sec

net check time: 0m 0.000sec

init dd package: 0m 2.704sec


RS generation: 0m 0.756sec


-> reachability set: #nodes 5180 (5.2e+03) #states 265,613,988,875,874,769,338,781,322,035,779,626,829,233,452,653,394,495,974,574,961,739,092,490,901,302,182,994,384,699,044,001 (95)



starting MCC model checker
--------------------------

checking: EX [EG [1<=p135]]
normalized: EX [EG [1<=p135]]

abstracting: (1<=p135)
states: 118,050,661,722,611,008,595,013,920,904,790,945,257,437,090,068,175,331,544,255,538,550,707,773,733,912,081,330,837,644,019,556 (95)
.
EG iterations: 1
.-> the formula is TRUE

FORMULA Philosophers-PT-000200-CTLCardinality-10 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 1.369sec

checking: AG [[~ [1<=p386] | EG [~ [p380<=p802]]]]
normalized: ~ [E [true U ~ [[EG [~ [p380<=p802]] | ~ [1<=p386]]]]]

abstracting: (1<=p386)
states: 59,025,330,861,305,504,297,506,960,452,395,472,628,718,545,034,087,665,772,127,769,275,353,886,866,956,040,665,418,822,009,778 (94)
abstracting: (p380<=p802)
states: 196,751,102,871,018,347,658,356,534,841,318,242,095,728,483,446,958,885,907,092,564,251,179,622,889,853,468,884,729,406,699,260 (95)
...
EG iterations: 3
-> the formula is FALSE

FORMULA Philosophers-PT-000200-CTLCardinality-08 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m44.106sec

checking: AG [EX [AG [[EF [p255<=0] & AF [p512<=p988]]]]]
normalized: ~ [E [true U ~ [EX [~ [E [true U ~ [[~ [EG [~ [p512<=p988]]] & E [true U p255<=0]]]]]]]]]

abstracting: (p255<=0)
states: 177,075,992,583,916,512,892,520,881,357,186,417,886,155,635,102,262,997,316,383,307,826,061,660,600,868,121,996,256,466,029,334 (95)
abstracting: (p512<=p988)
states: 213,147,028,110,269,876,629,886,246,078,094,762,270,372,523,734,205,459,732,683,611,272,111,258,130,674,591,291,790,190,590,865 (95)
.
EG iterations: 1
.-> the formula is FALSE

FORMULA Philosophers-PT-000200-CTLCardinality-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 4.564sec

checking: EX [AX [[1<=p799 & AX [[E [p771<=0 U p942<=p687] | [1<=p635 | p335<=p115]]]]]]
normalized: EX [~ [EX [~ [[1<=p799 & ~ [EX [~ [[E [p771<=0 U p942<=p687] | [1<=p635 | p335<=p115]]]]]]]]]]

abstracting: (p335<=p115)
states: 216,426,213,158,120,182,424,192,188,325,450,066,305,301,331,791,654,774,497,801,820,676,297,585,178,838,815,773,202,347,369,186 (95)
abstracting: (1<=p635)
states: 59,025,330,861,305,504,297,506,960,452,395,472,628,718,545,034,087,665,772,127,769,275,353,886,866,956,040,665,418,822,009,778 (94)
abstracting: (p942<=p687)
states: 242,659,693,540,922,628,778,639,726,304,292,498,584,731,796,251,249,292,618,747,495,909,788,201,564,152,611,624,499,601,595,754 (95)
abstracting: (p771<=0)
states: 236,101,323,445,222,017,190,027,841,809,581,890,514,874,180,136,350,663,088,511,077,101,415,547,467,824,162,661,675,288,039,112 (95)
.abstracting: (1<=p799)
states: 59,025,330,861,305,504,297,506,960,452,395,472,628,718,545,034,087,665,772,127,769,275,353,886,866,956,040,665,418,822,009,778 (94)
..-> the formula is FALSE

FORMULA Philosophers-PT-000200-CTLCardinality-09 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 6.617sec

checking: AG [[EG [~ [E [[p461<=p159 & p528<=p529] U ~ [p876<=0]]]] | [[AG [p19<=0] & ~ [1<=p503]] & [~ [1<=p629] & p457<=p868]]]]
normalized: ~ [E [true U ~ [[EG [~ [E [[p461<=p159 & p528<=p529] U ~ [p876<=0]]]] | [[p457<=p868 & ~ [1<=p629]] & [~ [1<=p503] & ~ [E [true U ~ [p19<=0]]]]]]]]]

abstracting: (p19<=0)
states: 147,563,327,153,263,760,743,767,401,130,988,681,571,796,362,585,219,164,430,319,423,188,384,717,167,390,101,663,547,055,024,445 (95)
abstracting: (1<=p503)
states: 59,025,330,861,305,504,297,506,960,452,395,472,628,718,545,034,087,665,772,127,769,275,353,886,866,956,040,665,418,822,009,778 (94)
abstracting: (1<=p629)
states: 59,025,330,861,305,504,297,506,960,452,395,472,628,718,545,034,087,665,772,127,769,275,353,886,866,956,040,665,418,822,009,778 (94)
abstracting: (p457<=p868)
states: 213,147,028,110,269,876,629,886,246,078,094,762,270,372,523,734,205,459,732,683,611,272,111,258,130,674,591,291,790,190,590,865 (95)
abstracting: (p876<=0)
states: 236,101,323,445,222,017,190,027,841,809,581,890,514,874,180,136,350,663,088,511,077,101,415,547,467,824,162,661,675,288,039,112 (95)
abstracting: (p528<=p529)
states: 226,263,768,301,671,099,807,110,015,067,515,978,410,087,755,964,002,718,793,156,448,888,856,566,323,331,489,217,438,817,704,149 (95)
abstracting: (p461<=p159)
states: 232,822,138,397,371,711,395,721,899,562,226,586,479,945,372,078,901,348,323,392,867,697,229,220,419,659,938,180,263,131,260,791 (95)
.....
EG iterations: 5
-> the formula is FALSE

FORMULA Philosophers-PT-000200-CTLCardinality-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m32.765sec

checking: [AG [[AF [~ [p660<=0]] | p589<=p224]] & E [EG [[[~ [EX [1<=p302]] & EX [1<=p787]] & [p35<=1 & ~ [p301<=p521]]]] U [p274<=p105 & E [[[~ [1<=p703] & EF [p242<=0]] | ~ [[p589<=p593 | p357<=p411]]] U ~ [1<=p721]]]]]
normalized: [E [EG [[[p35<=1 & ~ [p301<=p521]] & [EX [1<=p787] & ~ [EX [1<=p302]]]]] U [p274<=p105 & E [[~ [[p589<=p593 | p357<=p411]] | [E [true U p242<=0] & ~ [1<=p703]]] U ~ [1<=p721]]]] & ~ [E [true U ~ [[p589<=p224 | ~ [EG [p660<=0]]]]]]]

abstracting: (p660<=0)
states: 206,588,658,014,569,265,041,274,361,583,384,154,200,514,907,619,306,830,202,447,192,463,738,604,034,346,142,328,965,877,034,223 (95)
.
EG iterations: 1
abstracting: (p589<=p224)
states: 226,263,768,301,671,099,807,110,015,067,515,978,410,087,755,964,002,718,793,156,448,888,856,566,323,331,489,217,438,817,704,149 (95)
abstracting: (1<=p721)
states: 59,025,330,861,305,504,297,506,960,452,395,472,628,718,545,034,087,665,772,127,769,275,353,886,866,956,040,665,418,822,009,778 (94)
abstracting: (1<=p703)
states: 59,025,330,861,305,504,297,506,960,452,395,472,628,718,545,034,087,665,772,127,769,275,353,886,866,956,040,665,418,822,009,778 (94)
abstracting: (p242<=0)
states: 177,075,992,583,916,512,892,520,881,357,186,417,886,155,635,102,262,997,316,383,307,826,061,660,600,868,121,996,256,466,029,334 (95)
abstracting: (p357<=p411)
states: 206,588,658,014,569,265,041,274,361,583,384,154,200,514,907,619,306,830,202,447,192,463,738,604,034,346,142,328,965,877,034,223 (95)
abstracting: (p589<=p593)
states: 219,705,398,205,970,488,218,498,130,572,805,370,340,230,139,849,104,089,262,920,030,080,483,912,227,003,040,254,614,504,147,507 (95)
abstracting: (p274<=p105)
states: 216,426,213,158,120,182,424,192,188,325,450,066,305,301,331,791,654,774,497,801,820,676,297,585,178,838,815,773,202,347,369,186 (95)
abstracting: (1<=p302)
states: 88,537,996,291,958,256,446,260,440,678,593,208,943,077,817,551,131,498,658,191,653,913,030,830,300,434,060,998,128,233,014,667 (94)
.abstracting: (1<=p787)
states: 59,025,330,861,305,504,297,506,960,452,395,472,628,718,545,034,087,665,772,127,769,275,353,886,866,956,040,665,418,822,009,778 (94)
.abstracting: (p301<=p521)
states: 196,751,102,871,018,347,658,356,534,841,318,242,095,728,483,446,958,885,907,092,564,251,179,622,889,853,468,884,729,406,699,260 (95)
abstracting: (p35<=1)
states: 265,613,988,875,874,769,338,781,322,035,779,626,829,233,452,653,394,495,974,574,961,739,092,490,901,302,182,994,384,699,044,001 (95)
.....
EG iterations: 5
-> the formula is FALSE

FORMULA Philosophers-PT-000200-CTLCardinality-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m18.873sec

checking: AF [AX [EG [EX [~ [sum(p412, p411, p410, p409, p408, p407, p406, p405, p404, p403, p402, p401, p400, p399, p398, p397, p392, p391, p389, p380, p379, p378, p377, p376, p375, p374, p373, p372, p371, p370, p369, p368, p367, p366, p365, p364, p363, p362, p361, p360, p359, p358, p357, p356, p355, p354, p353, p352, p351, p350, p349, p348, p347, p346, p345, p344, p343, p342, p341, p340, p339, p338, p337, p336, p335, p334, p333, p332, p331, p330, p329, p328, p327, p326, p325, p324, p323, p322, p321, p320, p319, p318, p317, p316, p315, p314, p313, p312, p311, p310, p309, p308, p307, p306, p305, p304, p303, p302, p301, p300, p299, p298, p297, p296, p295, p294, p293, p292, p291, p290, p289, p288, p287, p286, p285, p284, p283, p282, p281, p280, p279, p278, p277, p276, p275, p274, p273, p272, p271, p270, p269, p268, p267, p266, p265, p264, p263, p262, p261, p260, p259, p258, p257, p256, p255, p254, p253, p252, p251, p250, p249, p248, p247, p246, p245, p244, p243, p242, p241, p240, p239, p238, p237, p236, p235, p234, p233, p232, p231, p230, p229, p228, p227, p226, p225, p224, p223, p222, p221, p220, p219, p218, p217, p216, p215, p214, p213, p212, p211, p210, p209, p208, p207, p206, p205, p195, p192, p191, p190, p189)<=78]]]]]
normalized: ~ [EG [EX [~ [EG [EX [~ [sum(p412, p411, p410, p409, p408, p407, p406, p405, p404, p403, p402, p401, p400, p399, p398, p397, p392, p391, p389, p380, p379, p378, p377, p376, p375, p374, p373, p372, p371, p370, p369, p368, p367, p366, p365, p364, p363, p362, p361, p360, p359, p358, p357, p356, p355, p354, p353, p352, p351, p350, p349, p348, p347, p346, p345, p344, p343, p342, p341, p340, p339, p338, p337, p336, p335, p334, p333, p332, p331, p330, p329, p328, p327, p326, p325, p324, p323, p322, p321, p320, p319, p318, p317, p316, p315, p314, p313, p312, p311, p310, p309, p308, p307, p306, p305, p304, p303, p302, p301, p300, p299, p298, p297, p296, p295, p294, p293, p292, p291, p290, p289, p288, p287, p286, p285, p284, p283, p282, p281, p280, p279, p278, p277, p276, p275, p274, p273, p272, p271, p270, p269, p268, p267, p266, p265, p264, p263, p262, p261, p260, p259, p258, p257, p256, p255, p254, p253, p252, p251, p250, p249, p248, p247, p246, p245, p244, p243, p242, p241, p240, p239, p238, p237, p236, p235, p234, p233, p232, p231, p230, p229, p228, p227, p226, p225, p224, p223, p222, p221, p220, p219, p218, p217, p216, p215, p214, p213, p212, p211, p210, p209, p208, p207, p206, p205, p195, p192, p191, p190, p189)<=78]]]]]]]

abstracting: (sum(p412, p411, p410, p409, p408, p407, p406, p405, p404, p403, p402, p401, p400, p399, p398, p397, p392, p391, p389, p380, p379, p378, p377, p376, p375, p374, p373, p372, p371, p370, p369, p368, p367, p366, p365, p364, p363, p362, p361, p360, p359, p358, p357, p356, p355, p354, p353, p352, p351, p350, p349, p348, p347, p346, p345, p344, p343, p342, p341, p340, p339, p338, p337, p336, p335, p334, p333, p332, p331, p330, p329, p328, p327, p326, p325, p324, p323, p322, p321, p320, p319, p318, p317, p316, p315, p314, p313, p312, p311, p310, p309, p308, p307, p306, p305, p304, p303, p302, p301, p300, p299, p298, p297, p296, p295, p294, p293, p292, p291, p290, p289, p288, p287, p286, p285, p284, p283, p282, p281, p280, p279, p278, p277, p276, p275, p274, p273, p272, p271, p270, p269, p268, p267, p266, p265, p264, p263, p262, p261, p260, p259, p258, p257, p256, p255, p254, p253, p252, p251, p250, p249, p248, p247, p246, p245, p244, p243, p242, p241, p240, p239, p238, p237, p236, p235, p234, p233, p232, p231, p230, p229, p228, p227, p226, p225, p224, p223, p222, p221, p220, p219, p218, p217, p216, p215, p214, p213, p212, p211, p210, p209, p208, p207, p206, p205, p195, p192, p191, p190, p189)<=78)
MC time: 9m42.014sec

checking: AF [AG [sum(p632, p630, p629, p628, p627, p626, p625, p624, p623, p622, p621, p620, p619, p618, p617, p616, p615, p614, p613, p612, p611, p610, p609, p608, p607, p606, p605, p572, p571, p570, p569, p568, p567, p566, p565, p564, p563, p562, p561, p560, p559, p558, p557, p556, p555, p554, p553, p552, p551, p550, p549, p548, p547, p546, p545, p544, p543, p542, p541, p540, p539, p538, p537, p536, p535, p534, p533, p532, p531, p530, p529, p528, p527, p526, p525, p524, p523, p522, p521, p520, p519, p518, p517, p516, p515, p514, p513, p512, p511, p510, p509, p508, p507, p506, p505, p504, p503, p502, p501, p500, p499, p498, p497, p496, p495, p494, p493, p492, p491, p490, p489, p488, p487, p486, p485, p484, p483, p482, p481, p480, p479, p478, p477, p476, p475, p474, p473, p472, p471, p470, p469, p468, p467, p466, p465, p464, p463, p462, p461, p460, p459, p458, p457, p456, p455, p454, p453, p452, p451, p450, p449, p448, p447, p446, p445, p444, p443, p442, p441, p440, p439, p438, p437, p436, p435, p434, p433, p432, p431, p430, p429, p428, p427, p426, p425, p424, p423, p422, p421, p420, p419, p418, p417, p416, p415, p414, p413, p396, p395, p394, p393, p390, p388, p387, p386, p385, p384, p383, p382, p381)<=18]]
normalized: ~ [EG [E [true U ~ [sum(p632, p630, p629, p628, p627, p626, p625, p624, p623, p622, p621, p620, p619, p618, p617, p616, p615, p614, p613, p612, p611, p610, p609, p608, p607, p606, p605, p572, p571, p570, p569, p568, p567, p566, p565, p564, p563, p562, p561, p560, p559, p558, p557, p556, p555, p554, p553, p552, p551, p550, p549, p548, p547, p546, p545, p544, p543, p542, p541, p540, p539, p538, p537, p536, p535, p534, p533, p532, p531, p530, p529, p528, p527, p526, p525, p524, p523, p522, p521, p520, p519, p518, p517, p516, p515, p514, p513, p512, p511, p510, p509, p508, p507, p506, p505, p504, p503, p502, p501, p500, p499, p498, p497, p496, p495, p494, p493, p492, p491, p490, p489, p488, p487, p486, p485, p484, p483, p482, p481, p480, p479, p478, p477, p476, p475, p474, p473, p472, p471, p470, p469, p468, p467, p466, p465, p464, p463, p462, p461, p460, p459, p458, p457, p456, p455, p454, p453, p452, p451, p450, p449, p448, p447, p446, p445, p444, p443, p442, p441, p440, p439, p438, p437, p436, p435, p434, p433, p432, p431, p430, p429, p428, p427, p426, p425, p424, p423, p422, p421, p420, p419, p418, p417, p416, p415, p414, p413, p396, p395, p394, p393, p390, p388, p387, p386, p385, p384, p383, p382, p381)<=18]]]]

abstracting: (sum(p632, p630, p629, p628, p627, p626, p625, p624, p623, p622, p621, p620, p619, p618, p617, p616, p615, p614, p613, p612, p611, p610, p609, p608, p607, p606, p605, p572, p571, p570, p569, p568, p567, p566, p565, p564, p563, p562, p561, p560, p559, p558, p557, p556, p555, p554, p553, p552, p551, p550, p549, p548, p547, p546, p545, p544, p543, p542, p541, p540, p539, p538, p537, p536, p535, p534, p533, p532, p531, p530, p529, p528, p527, p526, p525, p524, p523, p522, p521, p520, p519, p518, p517, p516, p515, p514, p513, p512, p511, p510, p509, p508, p507, p506, p505, p504, p503, p502, p501, p500, p499, p498, p497, p496, p495, p494, p493, p492, p491, p490, p489, p488, p487, p486, p485, p484, p483, p482, p481, p480, p479, p478, p477, p476, p475, p474, p473, p472, p471, p470, p469, p468, p467, p466, p465, p464, p463, p462, p461, p460, p459, p458, p457, p456, p455, p454, p453, p452, p451, p450, p449, p448, p447, p446, p445, p444, p443, p442, p441, p440, p439, p438, p437, p436, p435, p434, p433, p432, p431, p430, p429, p428, p427, p426, p425, p424, p423, p422, p421, p420, p419, p418, p417, p416, p415, p414, p413, p396, p395, p394, p393, p390, p388, p387, p386, p385, p384, p383, p382, p381)<=18)
MC time: 8m 5.000sec

checking: AG [EF [AX [sum(p828, p827, p826, p825, p824, p823, p822, p821, p820, p819, p818, p817, p816, p815, p814, p813, p812, p811, p810, p809, p808, p807, p806, p805, p804, p803, p802, p801, p800, p799, p798, p797, p787, p786, p785, p764, p763, p762, p761, p760, p759, p758, p757, p756, p755, p754, p753, p752, p751, p750, p749, p748, p747, p746, p745, p744, p743, p742, p741, p740, p739, p738, p737, p736, p735, p734, p733, p732, p731, p730, p729, p728, p727, p726, p725, p724, p723, p722, p721, p720, p719, p718, p717, p716, p715, p714, p713, p712, p711, p710, p709, p708, p707, p706, p705, p704, p703, p702, p701, p700, p699, p698, p697, p696, p695, p694, p693, p692, p691, p690, p689, p688, p687, p686, p685, p684, p683, p682, p681, p680, p679, p678, p677, p676, p675, p674, p673, p672, p671, p670, p669, p668, p667, p666, p665, p664, p663, p662, p661, p660, p659, p658, p657, p656, p655, p654, p653, p652, p651, p650, p649, p648, p647, p646, p645, p644, p643, p642, p641, p640, p639, p638, p637, p636, p635, p634, p633, p631, p604, p603, p602, p601, p600, p599, p598, p597, p596, p595, p594, p593, p592, p591, p590, p589, p588, p587, p586, p585, p584, p583, p582, p581, p580, p579, p578, p577, p576, p575, p574, p573)<=sum(p999, p998, p997, p996, p995, p994, p993, p992, p991, p990, p989, p988, p987, p986, p985, p984, p983, p982, p981, p980, p979, p978, p977, p976, p975, p974, p973, p972, p971, p970, p969, p968, p967, p966, p965, p964, p963, p962, p961, p960, p959, p958, p957, p956, p955, p954, p953, p952, p951, p950, p949, p948, p947, p946, p945, p944, p943, p942, p941, p940, p939, p938, p937, p936, p935, p934, p933, p932, p931, p930, p929, p928, p927, p926, p925, p924, p923, p922, p921, p920, p919, p918, p917, p916, p915, p914, p913, p912, p911, p910, p909, p908, p907, p906, p905, p904, p903, p902, p901, p900, p899, p898, p897, p896, p895, p894, p893, p892, p891, p890, p889, p888, p887, p886, p885, p884, p883, p882, p881, p880, p879, p878, p877, p876, p875, p874, p873, p872, p871, p870, p869, p868, p867, p866, p865, p864, p863, p862, p861, p860, p859, p858, p857, p856, p855, p854, p853, p852, p851, p850, p849, p848, p847, p846, p845, p844, p843, p842, p841, p840, p839, p838, p837, p836, p835, p834, p833, p832, p831, p830, p829, p796, p795, p794, p793, p792, p791, p790, p789, p788, p784, p783, p782, p781, p780, p779, p778, p777, p776, p775, p774, p773, p772, p771, p770, p769, p768, p767, p766, p765)]]]
normalized: ~ [E [true U ~ [E [true U ~ [EX [~ [sum(p828, p827, p826, p825, p824, p823, p822, p821, p820, p819, p818, p817, p816, p815, p814, p813, p812, p811, p810, p809, p808, p807, p806, p805, p804, p803, p802, p801, p800, p799, p798, p797, p787, p786, p785, p764, p763, p762, p761, p760, p759, p758, p757, p756, p755, p754, p753, p752, p751, p750, p749, p748, p747, p746, p745, p744, p743, p742, p741, p740, p739, p738, p737, p736, p735, p734, p733, p732, p731, p730, p729, p728, p727, p726, p725, p724, p723, p722, p721, p720, p719, p718, p717, p716, p715, p714, p713, p712, p711, p710, p709, p708, p707, p706, p705, p704, p703, p702, p701, p700, p699, p698, p697, p696, p695, p694, p693, p692, p691, p690, p689, p688, p687, p686, p685, p684, p683, p682, p681, p680, p679, p678, p677, p676, p675, p674, p673, p672, p671, p670, p669, p668, p667, p666, p665, p664, p663, p662, p661, p660, p659, p658, p657, p656, p655, p654, p653, p652, p651, p650, p649, p648, p647, p646, p645, p644, p643, p642, p641, p640, p639, p638, p637, p636, p635, p634, p633, p631, p604, p603, p602, p601, p600, p599, p598, p597, p596, p595, p594, p593, p592, p591, p590, p589, p588, p587, p586, p585, p584, p583, p582, p581, p580, p579, p578, p577, p576, p575, p574, p573)<=sum(p999, p998, p997, p996, p995, p994, p993, p992, p991, p990, p989, p988, p987, p986, p985, p984, p983, p982, p981, p980, p979, p978, p977, p976, p975, p974, p973, p972, p971, p970, p969, p968, p967, p966, p965, p964, p963, p962, p961, p960, p959, p958, p957, p956, p955, p954, p953, p952, p951, p950, p949, p948, p947, p946, p945, p944, p943, p942, p941, p940, p939, p938, p937, p936, p935, p934, p933, p932, p931, p930, p929, p928, p927, p926, p925, p924, p923, p922, p921, p920, p919, p918, p917, p916, p915, p914, p913, p912, p911, p910, p909, p908, p907, p906, p905, p904, p903, p902, p901, p900, p899, p898, p897, p896, p895, p894, p893, p892, p891, p890, p889, p888, p887, p886, p885, p884, p883, p882, p881, p880, p879, p878, p877, p876, p875, p874, p873, p872, p871, p870, p869, p868, p867, p866, p865, p864, p863, p862, p861, p860, p859, p858, p857, p856, p855, p854, p853, p852, p851, p850, p849, p848, p847, p846, p845, p844, p843, p842, p841, p840, p839, p838, p837, p836, p835, p834, p833, p832, p831, p830, p829, p796, p795, p794, p793, p792, p791, p790, p789, p788, p784, p783, p782, p781, p780, p779, p778, p777, p776, p775, p774, p773, p772, p771, p770, p769, p768, p767, p766, p765)]]]]]]]

abstracting: (sum(p828, p827, p826, p825, p824, p823, p822, p821, p820, p819, p818, p817, p816, p815, p814, p813, p812, p811, p810, p809, p808, p807, p806, p805, p804, p803, p802, p801, p800, p799, p798, p797, p787, p786, p785, p764, p763, p762, p761, p760, p759, p758, p757, p756, p755, p754, p753, p752, p751, p750, p749, p748, p747, p746, p745, p744, p743, p742, p741, p740, p739, p738, p737, p736, p735, p734, p733, p732, p731, p730, p729, p728, p727, p726, p725, p724, p723, p722, p721, p720, p719, p718, p717, p716, p715, p714, p713, p712, p711, p710, p709, p708, p707, p706, p705, p704, p703, p702, p701, p700, p699, p698, p697, p696, p695, p694, p693, p692, p691, p690, p689, p688, p687, p686, p685, p684, p683, p682, p681, p680, p679, p678, p677, p676, p675, p674, p673, p672, p671, p670, p669, p668, p667, p666, p665, p664, p663, p662, p661, p660, p659, p658, p657, p656, p655, p654, p653, p652, p651, p650, p649, p648, p647, p646, p645, p644, p643, p642, p641, p640, p639, p638, p637, p636, p635, p634, p633, p631, p604, p603, p602, p601, p600, p599, p598, p597, p596, p595, p594, p593, p592, p591, p590, p589, p588, p587, p586, p585, p584, p583, p582, p581, p580, p579, p578, p577, p576, p575, p574, p573)<=sum(p999, p998, p997, p996, p995, p994, p993, p992, p991, p990, p989, p988, p987, p986, p985, p984, p983, p982, p981, p980, p979, p978, p977, p976, p975, p974, p973, p972, p971, p970, p969, p968, p967, p966, p965, p964, p963, p962, p961, p960, p959, p958, p957, p956, p955, p954, p953, p952, p951, p950, p949, p948, p947, p946, p945, p944, p943, p942, p941, p940, p939, p938, p937, p936, p935, p934, p933, p932, p931, p930, p929, p928, p927, p926, p925, p924, p923, p922, p921, p920, p919, p918, p917, p916, p915, p914, p913, p912, p911, p910, p909, p908, p907, p906, p905, p904, p903, p902, p901, p900, p899, p898, p897, p896, p895, p894, p893, p892, p891, p890, p889, p888, p887, p886, p885, p884, p883, p882, p881, p880, p879, p878, p877, p876, p875, p874, p873, p872, p871, p870, p869, p868, p867, p866, p865, p864, p863, p862, p861, p860, p859, p858, p857, p856, p855, p854, p853, p852, p851, p850, p849, p848, p847, p846, p845, p844, p843, p842, p841, p840, p839, p838, p837, p836, p835, p834, p833, p832, p831, p830, p829, p796, p795, p794, p793, p792, p791, p790, p789, p788, p784, p783, p782, p781, p780, p779, p778, p777, p776, p775, p774, p773, p772, p771, p770, p769, p768, p767, p766, p765))
MC time: 6m44.001sec

checking: [EG [[EF [[[~ [sum(p999, p998, p997, p996, p995, p994, p993, p992, p991, p990, p989, p988, p987, p986, p985, p984, p983, p982, p981, p980, p979, p978, p977, p976, p975, p974, p973, p972, p971, p970, p969, p968, p967, p966, p965, p964, p963, p962, p961, p960, p959, p958, p957, p956, p955, p954, p953, p952, p951, p950, p949, p948, p947, p946, p945, p944, p943, p942, p941, p940, p939, p938, p937, p936, p935, p934, p933, p932, p931, p930, p929, p928, p927, p926, p925, p924, p923, p922, p921, p920, p919, p918, p917, p916, p915, p914, p913, p912, p911, p910, p909, p908, p907, p906, p905, p904, p903, p902, p901, p900, p899, p898, p897, p896, p895, p894, p893, p892, p891, p890, p889, p888, p887, p886, p885, p884, p883, p882, p881, p880, p879, p878, p877, p876, p875, p874, p873, p872, p871, p870, p869, p868, p867, p866, p865, p864, p863, p862, p861, p860, p859, p858, p857, p856, p855, p854, p853, p852, p851, p850, p849, p848, p847, p846, p845, p844, p843, p842, p841, p840, p839, p838, p837, p836, p835, p834, p833, p832, p831, p830, p829, p796, p795, p794, p793, p792, p791, p790, p789, p788, p784, p783, p782, p781, p780, p779, p778, p777, p776, p775, p774, p773, p772, p771, p770, p769, p768, p767, p766, p765)<=9] & ~ [46<=sum(p204, p203, p202, p201, p200, p199, p198, p197, p196, p194, p193, p188, p187, p186, p185, p184, p183, p182, p181, p180, p179, p178, p177, p176, p175, p174, p173, p172, p171, p170, p169, p168, p167, p166, p165, p164, p163, p162, p161, p160, p159, p158, p157, p156, p155, p154, p153, p152, p151, p150, p149, p148, p147, p146, p145, p144, p143, p142, p141, p140, p139, p138, p137, p136, p135, p134, p133, p132, p131, p130, p129, p128, p127, p126, p125, p124, p123, p122, p121, p120, p119, p118, p117, p116, p115, p114, p113, p112, p111, p110, p109, p108, p107, p106, p105, p104, p103, p102, p101, p100, p99, p98, p97, p96, p95, p94, p93, p92, p91, p90, p89, p88, p87, p86, p85, p84, p83, p82, p81, p80, p79, p78, p77, p76, p75, p74, p73, p72, p71, p70, p69, p68, p67, p66, p65, p64, p63, p62, p61, p60, p59, p58, p57, p56, p55, p54, p53, p52, p51, p50, p49, p48, p47, p46, p45, p44, p43, p42, p41, p40, p39, p38, p37, p36, p35, p34, p33, p32, p31, p30, p29, p28, p27, p26, p25, p24, p23, p22, p21, p20, p19, p18, p17, p16, p15, p14, p13, p12, p11, p10, p9, p8, p7, p6, p5, p4, p3, p2, p1, p0)]] | ~ [E [64<=sum(p632, p630, p629, p628, p627, p626, p625, p624, p623, p622, p621, p620, p619, p618, p617, p616, p615, p614, p613, p612, p611, p610, p609, p608, p607, p606, p605, p572, p571, p570, p569, p568, p567, p566, p565, p564, p563, p562, p561, p560, p559, p558, p557, p556, p555, p554, p553, p552, p551, p550, p549, p548, p547, p546, p545, p544, p543, p542, p541, p540, p539, p538, p537, p536, p535, p534, p533, p532, p531, p530, p529, p528, p527, p526, p525, p524, p523, p522, p521, p520, p519, p518, p517, p516, p515, p514, p513, p512, p511, p510, p509, p508, p507, p506, p505, p504, p503, p502, p501, p500, p499, p498, p497, p496, p495, p494, p493, p492, p491, p490, p489, p488, p487, p486, p485, p484, p483, p482, p481, p480, p479, p478, p477, p476, p475, p474, p473, p472, p471, p470, p469, p468, p467, p466, p465, p464, p463, p462, p461, p460, p459, p458, p457, p456, p455, p454, p453, p452, p451, p450, p449, p448, p447, p446, p445, p444, p443, p442, p441, p440, p439, p438, p437, p436, p435, p434, p433, p432, p431, p430, p429, p428, p427, p426, p425, p424, p423, p422, p421, p420, p419, p418, p417, p416, p415, p414, p413, p396, p395, p394, p393, p390, p388, p387, p386, p385, p384, p383, p382, p381) U sum(p828, p827, p826, p825, p824, p823, p822, p821, p820, p819, p818, p817, p816, p815, p814, p813, p812, p811, p810, p809, p808, p807, p806, p805, p804, p803, p802, p801, p800, p799, p798, p797, p787, p786, p785, p764, p763, p762, p761, p760, p759, p758, p757, p756, p755, p754, p753, p752, p751, p750, p749, p748, p747, p746, p745, p744, p743, p742, p741, p740, p739, p738, p737, p736, p735, p734, p733, p732, p731, p730, p729, p728, p727, p726, p725, p724, p723, p722, p721, p720, p719, p718, p717, p716, p715, p714, p713, p712, p711, p710, p709, p708, p707, p706, p705, p704, p703, p702, p701, p700, p699, p698, p697, p696, p695, p694, p693, p692, p691, p690, p689, p688, p687, p686, p685, p684, p683, p682, p681, p680, p679, p678, p677, p676, p675, p674, p673, p672, p671, p670, p669, p668, p667, p666, p665, p664, p663, p662, p661, p660, p659, p658, p657, p656, p655, p654, p653, p652, p651, p650, p649, p648, p647, p646, p645, p644, p643, p642, p641, p640, p639, p638, p637, p636, p635, p634, p633, p631, p604, p603, p602, p601, p600, p599, p598, p597, p596, p595, p594, p593, p592, p591, p590, p589, p588, p587, p586, p585, p584, p583, p582, p581, p580, p579, p578, p577, p576, p575, p574, p573)<=40]]]] & [AX [AF [~ [sum(p204, p203, p202, p201, p200, p199, p198, p197, p196, p194, p193, p188, p187, p186, p185, p184, p183, p182, p181, p180, p179, p178, p177, p176, p175, p174, p173, p172, p171, p170, p169, p168, p167, p166, p165, p164, p163, p162, p161, p160, p159, p158, p157, p156, p155, p154, p153, p152, p151, p150, p149, p148, p147, p146, p145, p144, p143, p142, p141, p140, p139, p138, p137, p136, p135, p134, p133, p132, p131, p130, p129, p128, p127, p126, p125, p124, p123, p122, p121, p120, p119, p118, p117, p116, p115, p114, p113, p112, p111, p110, p109, p108, p107, p106, p105, p104, p103, p102, p101, p100, p99, p98, p97, p96, p95, p94, p93, p92, p91, p90, p89, p88, p87, p86, p85, p84, p83, p82, p81, p80, p79, p78, p77, p76, p75, p74, p73, p72, p71, p70, p69, p68, p67, p66, p65, p64, p63, p62, p61, p60, p59, p58, p57, p56, p55, p54, p53, p52, p51, p50, p49, p48, p47, p46, p45, p44, p43, p42, p41, p40, p39, p38, p37, p36, p35, p34, p33, p32, p31, p30, p29, p28, p27, p26, p25, p24, p23, p22, p21, p20, p19, p18, p17, p16, p15, p14, p13, p12, p11, p10, p9, p8, p7, p6, p5, p4, p3, p2, p1, p0)<=sum(p412, p411, p410, p409, p408, p407, p406, p405, p404, p403, p402, p401, p400, p399, p398, p397, p392, p391, p389, p380, p379, p378, p377, p376, p375, p374, p373, p372, p371, p370, p369, p368, p367, p366, p365, p364, p363, p362, p361, p360, p359, p358, p357, p356, p355, p354, p353, p352, p351, p350, p349, p348, p347, p346, p345, p344, p343, p342, p341, p340, p339, p338, p337, p336, p335, p334, p333, p332, p331, p330, p329, p328, p327, p326, p325, p324, p323, p322, p321, p320, p319, p318, p317, p316, p315, p314, p313, p312, p311, p310, p309, p308, p307, p306, p305, p304, p303, p302, p301, p300, p299, p298, p297, p296, p295, p294, p293, p292, p291, p290, p289, p288, p287, p286, p285, p284, p283, p282, p281, p280, p279, p278, p277, p276, p275, p274, p273, p272, p271, p270, p269, p268, p267, p266, p265, p264, p263, p262, p261, p260, p259, p258, p257, p256, p255, p254, p253, p252, p251, p250, p249, p248, p247, p246, p245, p244, p243, p242, p241, p240, p239, p238, p237, p236, p235, p234, p233, p232, p231, p230, p229, p228, p227, p226, p225, p224, p223, p222, p221, p220, p219, p218, p217, p216, p215, p214, p213, p212, p211, p210, p209, p208, p207, p206, p205, p195, p192, p191, p190, p189)]]] & ~ [82<=sum(p632, p630, p629, p628, p627, p626, p625, p624, p623, p622, p621, p620, p619, p618, p617, p616, p615, p614, p613, p612, p611, p610, p609, p608, p607, p606, p605, p572, p571, p570, p569, p568, p567, p566, p565, p564, p563, p562, p561, p560, p559, p558, p557, p556, p555, p554, p553, p552, p551, p550, p549, p548, p547, p546, p545, p544, p543, p542, p541, p540, p539, p538, p537, p536, p535, p534, p533, p532, p531, p530, p529, p528, p527, p526, p525, p524, p523, p522, p521, p520, p519, p518, p517, p516, p515, p514, p513, p512, p511, p510, p509, p508, p507, p506, p505, p504, p503, p502, p501, p500, p499, p498, p497, p496, p495, p494, p493, p492, p491, p490, p489, p488, p487, p486, p485, p484, p483, p482, p481, p480, p479, p478, p477, p476, p475, p474, p473, p472, p471, p470, p469, p468, p467, p466, p465, p464, p463, p462, p461, p460, p459, p458, p457, p456, p455, p454, p453, p452, p451, p450, p449, p448, p447, p446, p445, p444, p443, p442, p441, p440, p439, p438, p437, p436, p435, p434, p433, p432, p431, p430, p429, p428, p427, p426, p425, p424, p423, p422, p421, p420, p419, p418, p417, p416, p415, p414, p413, p396, p395, p394, p393, p390, p388, p387, p386, p385, p384, p383, p382, p381)]]]] | AX [EF [~ [sum(p999, p998, p997, p996, p995, p994, p993, p992, p991, p990, p989, p988, p987, p986, p985, p984, p983, p982, p981, p980, p979, p978, p977, p976, p975, p974, p973, p972, p971, p970, p969, p968, p967, p966, p965, p964, p963, p962, p961, p960, p959, p958, p957, p956, p955, p954, p953, p952, p951, p950, p949, p948, p947, p946, p945, p944, p943, p942, p941, p940, p939, p938, p937, p936, p935, p934, p933, p932, p931, p930, p929, p928, p927, p926, p925, p924, p923, p922, p921, p920, p919, p918, p917, p916, p915, p914, p913, p912, p911, p910, p909, p908, p907, p906, p905, p904, p903, p902, p901, p900, p899, p898, p897, p896, p895, p894, p893, p892, p891, p890, p889, p888, p887, p886, p885, p884, p883, p882, p881, p880, p879, p878, p877, p876, p875, p874, p873, p872, p871, p870, p869, p868, p867, p866, p865, p864, p863, p862, p861, p860, p859, p858, p857, p856, p855, p854, p853, p852, p851, p850, p849, p848, p847, p846, p845, p844, p843, p842, p841, p840, p839, p838, p837, p836, p835, p834, p833, p832, p831, p830, p829, p796, p795, p794, p793, p792, p791, p790, p789, p788, p784, p783, p782, p781, p780, p779, p778, p777, p776, p775, p774, p773, p772, p771, p770, p769, p768, p767, p766, p765)<=42]]]]
normalized: [EG [[[~ [EX [EG [sum(p204, p203, p202, p201, p200, p199, p198, p197, p196, p194, p193, p188, p187, p186, p185, p184, p183, p182, p181, p180, p179, p178, p177, p176, p175, p174, p173, p172, p171, p170, p169, p168, p167, p166, p165, p164, p163, p162, p161, p160, p159, p158, p157, p156, p155, p154, p153, p152, p151, p150, p149, p148, p147, p146, p145, p144, p143, p142, p141, p140, p139, p138, p137, p136, p135, p134, p133, p132, p131, p130, p129, p128, p127, p126, p125, p124, p123, p122, p121, p120, p119, p118, p117, p116, p115, p114, p113, p112, p111, p110, p109, p108, p107, p106, p105, p104, p103, p102, p101, p100, p99, p98, p97, p96, p95, p94, p93, p92, p91, p90, p89, p88, p87, p86, p85, p84, p83, p82, p81, p80, p79, p78, p77, p76, p75, p74, p73, p72, p71, p70, p69, p68, p67, p66, p65, p64, p63, p62, p61, p60, p59, p58, p57, p56, p55, p54, p53, p52, p51, p50, p49, p48, p47, p46, p45, p44, p43, p42, p41, p40, p39, p38, p37, p36, p35, p34, p33, p32, p31, p30, p29, p28, p27, p26, p25, p24, p23, p22, p21, p20, p19, p18, p17, p16, p15, p14, p13, p12, p11, p10, p9, p8, p7, p6, p5, p4, p3, p2, p1, p0)<=sum(p412, p411, p410, p409, p408, p407, p406, p405, p404, p403, p402, p401, p400, p399, p398, p397, p392, p391, p389, p380, p379, p378, p377, p376, p375, p374, p373, p372, p371, p370, p369, p368, p367, p366, p365, p364, p363, p362, p361, p360, p359, p358, p357, p356, p355, p354, p353, p352, p351, p350, p349, p348, p347, p346, p345, p344, p343, p342, p341, p340, p339, p338, p337, p336, p335, p334, p333, p332, p331, p330, p329, p328, p327, p326, p325, p324, p323, p322, p321, p320, p319, p318, p317, p316, p315, p314, p313, p312, p311, p310, p309, p308, p307, p306, p305, p304, p303, p302, p301, p300, p299, p298, p297, p296, p295, p294, p293, p292, p291, p290, p289, p288, p287, p286, p285, p284, p283, p282, p281, p280, p279, p278, p277, p276, p275, p274, p273, p272, p271, p270, p269, p268, p267, p266, p265, p264, p263, p262, p261, p260, p259, p258, p257, p256, p255, p254, p253, p252, p251, p250, p249, p248, p247, p246, p245, p244, p243, p242, p241, p240, p239, p238, p237, p236, p235, p234, p233, p232, p231, p230, p229, p228, p227, p226, p225, p224, p223, p222, p221, p220, p219, p218, p217, p216, p215, p214, p213, p212, p211, p210, p209, p208, p207, p206, p205, p195, p192, p191, p190, p189)]]] & ~ [82<=sum(p632, p630, p629, p628, p627, p626, p625, p624, p623, p622, p621, p620, p619, p618, p617, p616, p615, p614, p613, p612, p611, p610, p609, p608, p607, p606, p605, p572, p571, p570, p569, p568, p567, p566, p565, p564, p563, p562, p561, p560, p559, p558, p557, p556, p555, p554, p553, p552, p551, p550, p549, p548, p547, p546, p545, p544, p543, p542, p541, p540, p539, p538, p537, p536, p535, p534, p533, p532, p531, p530, p529, p528, p527, p526, p525, p524, p523, p522, p521, p520, p519, p518, p517, p516, p515, p514, p513, p512, p511, p510, p509, p508, p507, p506, p505, p504, p503, p502, p501, p500, p499, p498, p497, p496, p495, p494, p493, p492, p491, p490, p489, p488, p487, p486, p485, p484, p483, p482, p481, p480, p479, p478, p477, p476, p475, p474, p473, p472, p471, p470, p469, p468, p467, p466, p465, p464, p463, p462, p461, p460, p459, p458, p457, p456, p455, p454, p453, p452, p451, p450, p449, p448, p447, p446, p445, p444, p443, p442, p441, p440, p439, p438, p437, p436, p435, p434, p433, p432, p431, p430, p429, p428, p427, p426, p425, p424, p423, p422, p421, p420, p419, p418, p417, p416, p415, p414, p413, p396, p395, p394, p393, p390, p388, p387, p386, p385, p384, p383, p382, p381)]] & E [true U [[~ [sum(p999, p998, p997, p996, p995, p994, p993, p992, p991, p990, p989, p988, p987, p986, p985, p984, p983, p982, p981, p980, p979, p978, p977, p976, p975, p974, p973, p972, p971, p970, p969, p968, p967, p966, p965, p964, p963, p962, p961, p960, p959, p958, p957, p956, p955, p954, p953, p952, p951, p950, p949, p948, p947, p946, p945, p944, p943, p942, p941, p940, p939, p938, p937, p936, p935, p934, p933, p932, p931, p930, p929, p928, p927, p926, p925, p924, p923, p922, p921, p920, p919, p918, p917, p916, p915, p914, p913, p912, p911, p910, p909, p908, p907, p906, p905, p904, p903, p902, p901, p900, p899, p898, p897, p896, p895, p894, p893, p892, p891, p890, p889, p888, p887, p886, p885, p884, p883, p882, p881, p880, p879, p878, p877, p876, p875, p874, p873, p872, p871, p870, p869, p868, p867, p866, p865, p864, p863, p862, p861, p860, p859, p858, p857, p856, p855, p854, p853, p852, p851, p850, p849, p848, p847, p846, p845, p844, p843, p842, p841, p840, p839, p838, p837, p836, p835, p834, p833, p832, p831, p830, p829, p796, p795, p794, p793, p792, p791, p790, p789, p788, p784, p783, p782, p781, p780, p779, p778, p777, p776, p775, p774, p773, p772, p771, p770, p769, p768, p767, p766, p765)<=9] & ~ [46<=sum(p204, p203, p202, p201, p200, p199, p198, p197, p196, p194, p193, p188, p187, p186, p185, p184, p183, p182, p181, p180, p179, p178, p177, p176, p175, p174, p173, p172, p171, p170, p169, p168, p167, p166, p165, p164, p163, p162, p161, p160, p159, p158, p157, p156, p155, p154, p153, p152, p151, p150, p149, p148, p147, p146, p145, p144, p143, p142, p141, p140, p139, p138, p137, p136, p135, p134, p133, p132, p131, p130, p129, p128, p127, p126, p125, p124, p123, p122, p121, p120, p119, p118, p117, p116, p115, p114, p113, p112, p111, p110, p109, p108, p107, p106, p105, p104, p103, p102, p101, p100, p99, p98, p97, p96, p95, p94, p93, p92, p91, p90, p89, p88, p87, p86, p85, p84, p83, p82, p81, p80, p79, p78, p77, p76, p75, p74, p73, p72, p71, p70, p69, p68, p67, p66, p65, p64, p63, p62, p61, p60, p59, p58, p57, p56, p55, p54, p53, p52, p51, p50, p49, p48, p47, p46, p45, p44, p43, p42, p41, p40, p39, p38, p37, p36, p35, p34, p33, p32, p31, p30, p29, p28, p27, p26, p25, p24, p23, p22, p21, p20, p19, p18, p17, p16, p15, p14, p13, p12, p11, p10, p9, p8, p7, p6, p5, p4, p3, p2, p1, p0)]] | ~ [E [64<=sum(p632, p630, p629, p628, p627, p626, p625, p624, p623, p622, p621, p620, p619, p618, p617, p616, p615, p614, p613, p612, p611, p610, p609, p608, p607, p606, p605, p572, p571, p570, p569, p568, p567, p566, p565, p564, p563, p562, p561, p560, p559, p558, p557, p556, p555, p554, p553, p552, p551, p550, p549, p548, p547, p546, p545, p544, p543, p542, p541, p540, p539, p538, p537, p536, p535, p534, p533, p532, p531, p530, p529, p528, p527, p526, p525, p524, p523, p522, p521, p520, p519, p518, p517, p516, p515, p514, p513, p512, p511, p510, p509, p508, p507, p506, p505, p504, p503, p502, p501, p500, p499, p498, p497, p496, p495, p494, p493, p492, p491, p490, p489, p488, p487, p486, p485, p484, p483, p482, p481, p480, p479, p478, p477, p476, p475, p474, p473, p472, p471, p470, p469, p468, p467, p466, p465, p464, p463, p462, p461, p460, p459, p458, p457, p456, p455, p454, p453, p452, p451, p450, p449, p448, p447, p446, p445, p444, p443, p442, p441, p440, p439, p438, p437, p436, p435, p434, p433, p432, p431, p430, p429, p428, p427, p426, p425, p424, p423, p422, p421, p420, p419, p418, p417, p416, p415, p414, p413, p396, p395, p394, p393, p390, p388, p387, p386, p385, p384, p383, p382, p381) U sum(p828, p827, p826, p825, p824, p823, p822, p821, p820, p819, p818, p817, p816, p815, p814, p813, p812, p811, p810, p809, p808, p807, p806, p805, p804, p803, p802, p801, p800, p799, p798, p797, p787, p786, p785, p764, p763, p762, p761, p760, p759, p758, p757, p756, p755, p754, p753, p752, p751, p750, p749, p748, p747, p746, p745, p744, p743, p742, p741, p740, p739, p738, p737, p736, p735, p734, p733, p732, p731, p730, p729, p728, p727, p726, p725, p724, p723, p722, p721, p720, p719, p718, p717, p716, p715, p714, p713, p712, p711, p710, p709, p708, p707, p706, p705, p704, p703, p702, p701, p700, p699, p698, p697, p696, p695, p694, p693, p692, p691, p690, p689, p688, p687, p686, p685, p684, p683, p682, p681, p680, p679, p678, p677, p676, p675, p674, p673, p672, p671, p670, p669, p668, p667, p666, p665, p664, p663, p662, p661, p660, p659, p658, p657, p656, p655, p654, p653, p652, p651, p650, p649, p648, p647, p646, p645, p644, p643, p642, p641, p640, p639, p638, p637, p636, p635, p634, p633, p631, p604, p603, p602, p601, p600, p599, p598, p597, p596, p595, p594, p593, p592, p591, p590, p589, p588, p587, p586, p585, p584, p583, p582, p581, p580, p579, p578, p577, p576, p575, p574, p573)<=40]]]]]] | ~ [EX [~ [E [true U ~ [sum(p999, p998, p997, p996, p995, p994, p993, p992, p991, p990, p989, p988, p987, p986, p985, p984, p983, p982, p981, p980, p979, p978, p977, p976, p975, p974, p973, p972, p971, p970, p969, p968, p967, p966, p965, p964, p963, p962, p961, p960, p959, p958, p957, p956, p955, p954, p953, p952, p951, p950, p949, p948, p947, p946, p945, p944, p943, p942, p941, p940, p939, p938, p937, p936, p935, p934, p933, p932, p931, p930, p929, p928, p927, p926, p925, p924, p923, p922, p921, p920, p919, p918, p917, p916, p915, p914, p913, p912, p911, p910, p909, p908, p907, p906, p905, p904, p903, p902, p901, p900, p899, p898, p897, p896, p895, p894, p893, p892, p891, p890, p889, p888, p887, p886, p885, p884, p883, p882, p881, p880, p879, p878, p877, p876, p875, p874, p873, p872, p871, p870, p869, p868, p867, p866, p865, p864, p863, p862, p861, p860, p859, p858, p857, p856, p855, p854, p853, p852, p851, p850, p849, p848, p847, p846, p845, p844, p843, p842, p841, p840, p839, p838, p837, p836, p835, p834, p833, p832, p831, p830, p829, p796, p795, p794, p793, p792, p791, p790, p789, p788, p784, p783, p782, p781, p780, p779, p778, p777, p776, p775, p774, p773, p772, p771, p770, p769, p768, p767, p766, p765)<=42]]]]]]

abstracting: (sum(p999, p998, p997, p996, p995, p994, p993, p992, p991, p990, p989, p988, p987, p986, p985, p984, p983, p982, p981, p980, p979, p978, p977, p976, p975, p974, p973, p972, p971, p970, p969, p968, p967, p966, p965, p964, p963, p962, p961, p960, p959, p958, p957, p956, p955, p954, p953, p952, p951, p950, p949, p948, p947, p946, p945, p944, p943, p942, p941, p940, p939, p938, p937, p936, p935, p934, p933, p932, p931, p930, p929, p928, p927, p926, p925, p924, p923, p922, p921, p920, p919, p918, p917, p916, p915, p914, p913, p912, p911, p910, p909, p908, p907, p906, p905, p904, p903, p902, p901, p900, p899, p898, p897, p896, p895, p894, p893, p892, p891, p890, p889, p888, p887, p886, p885, p884, p883, p882, p881, p880, p879, p878, p877, p876, p875, p874, p873, p872, p871, p870, p869, p868, p867, p866, p865, p864, p863, p862, p861, p860, p859, p858, p857, p856, p855, p854, p853, p852, p851, p850, p849, p848, p847, p846, p845, p844, p843, p842, p841, p840, p839, p838, p837, p836, p835, p834, p833, p832, p831, p830, p829, p796, p795, p794, p793, p792, p791, p790, p789, p788, p784, p783, p782, p781, p780, p779, p778, p777, p776, p775, p774, p773, p772, p771, p770, p769, p768, p767, p766, p765)<=42)
MC time: 5m36.999sec

checking: E [AG [EF [[sum(p412, p411, p410, p409, p408, p407, p406, p405, p404, p403, p402, p401, p400, p399, p398, p397, p392, p391, p389, p380, p379, p378, p377, p376, p375, p374, p373, p372, p371, p370, p369, p368, p367, p366, p365, p364, p363, p362, p361, p360, p359, p358, p357, p356, p355, p354, p353, p352, p351, p350, p349, p348, p347, p346, p345, p344, p343, p342, p341, p340, p339, p338, p337, p336, p335, p334, p333, p332, p331, p330, p329, p328, p327, p326, p325, p324, p323, p322, p321, p320, p319, p318, p317, p316, p315, p314, p313, p312, p311, p310, p309, p308, p307, p306, p305, p304, p303, p302, p301, p300, p299, p298, p297, p296, p295, p294, p293, p292, p291, p290, p289, p288, p287, p286, p285, p284, p283, p282, p281, p280, p279, p278, p277, p276, p275, p274, p273, p272, p271, p270, p269, p268, p267, p266, p265, p264, p263, p262, p261, p260, p259, p258, p257, p256, p255, p254, p253, p252, p251, p250, p249, p248, p247, p246, p245, p244, p243, p242, p241, p240, p239, p238, p237, p236, p235, p234, p233, p232, p231, p230, p229, p228, p227, p226, p225, p224, p223, p222, p221, p220, p219, p218, p217, p216, p215, p214, p213, p212, p211, p210, p209, p208, p207, p206, p205, p195, p192, p191, p190, p189)<=sum(p999, p998, p997, p996, p995, p994, p993, p992, p991, p990, p989, p988, p987, p986, p985, p984, p983, p982, p981, p980, p979, p978, p977, p976, p975, p974, p973, p972, p971, p970, p969, p968, p967, p966, p965, p964, p963, p962, p961, p960, p959, p958, p957, p956, p955, p954, p953, p952, p951, p950, p949, p948, p947, p946, p945, p944, p943, p942, p941, p940, p939, p938, p937, p936, p935, p934, p933, p932, p931, p930, p929, p928, p927, p926, p925, p924, p923, p922, p921, p920, p919, p918, p917, p916, p915, p914, p913, p912, p911, p910, p909, p908, p907, p906, p905, p904, p903, p902, p901, p900, p899, p898, p897, p896, p895, p894, p893, p892, p891, p890, p889, p888, p887, p886, p885, p884, p883, p882, p881, p880, p879, p878, p877, p876, p875, p874, p873, p872, p871, p870, p869, p868, p867, p866, p865, p864, p863, p862, p861, p860, p859, p858, p857, p856, p855, p854, p853, p852, p851, p850, p849, p848, p847, p846, p845, p844, p843, p842, p841, p840, p839, p838, p837, p836, p835, p834, p833, p832, p831, p830, p829, p796, p795, p794, p793, p792, p791, p790, p789, p788, p784, p783, p782, p781, p780, p779, p778, p777, p776, p775, p774, p773, p772, p771, p770, p769, p768, p767, p766, p765) | sum(p204, p203, p202, p201, p200, p199, p198, p197, p196, p194, p193, p188, p187, p186, p185, p184, p183, p182, p181, p180, p179, p178, p177, p176, p175, p174, p173, p172, p171, p170, p169, p168, p167, p166, p165, p164, p163, p162, p161, p160, p159, p158, p157, p156, p155, p154, p153, p152, p151, p150, p149, p148, p147, p146, p145, p144, p143, p142, p141, p140, p139, p138, p137, p136, p135, p134, p133, p132, p131, p130, p129, p128, p127, p126, p125, p124, p123, p122, p121, p120, p119, p118, p117, p116, p115, p114, p113, p112, p111, p110, p109, p108, p107, p106, p105, p104, p103, p102, p101, p100, p99, p98, p97, p96, p95, p94, p93, p92, p91, p90, p89, p88, p87, p86, p85, p84, p83, p82, p81, p80, p79, p78, p77, p76, p75, p74, p73, p72, p71, p70, p69, p68, p67, p66, p65, p64, p63, p62, p61, p60, p59, p58, p57, p56, p55, p54, p53, p52, p51, p50, p49, p48, p47, p46, p45, p44, p43, p42, p41, p40, p39, p38, p37, p36, p35, p34, p33, p32, p31, p30, p29, p28, p27, p26, p25, p24, p23, p22, p21, p20, p19, p18, p17, p16, p15, p14, p13, p12, p11, p10, p9, p8, p7, p6, p5, p4, p3, p2, p1, p0)<=70]]] U [~ [AF [~ [sum(p632, p630, p629, p628, p627, p626, p625, p624, p623, p622, p621, p620, p619, p618, p617, p616, p615, p614, p613, p612, p611, p610, p609, p608, p607, p606, p605, p572, p571, p570, p569, p568, p567, p566, p565, p564, p563, p562, p561, p560, p559, p558, p557, p556, p555, p554, p553, p552, p551, p550, p549, p548, p547, p546, p545, p544, p543, p542, p541, p540, p539, p538, p537, p536, p535, p534, p533, p532, p531, p530, p529, p528, p527, p526, p525, p524, p523, p522, p521, p520, p519, p518, p517, p516, p515, p514, p513, p512, p511, p510, p509, p508, p507, p506, p505, p504, p503, p502, p501, p500, p499, p498, p497, p496, p495, p494, p493, p492, p491, p490, p489, p488, p487, p486, p485, p484, p483, p482, p481, p480, p479, p478, p477, p476, p475, p474, p473, p472, p471, p470, p469, p468, p467, p466, p465, p464, p463, p462, p461, p460, p459, p458, p457, p456, p455, p454, p453, p452, p451, p450, p449, p448, p447, p446, p445, p444, p443, p442, p441, p440, p439, p438, p437, p436, p435, p434, p433, p432, p431, p430, p429, p428, p427, p426, p425, p424, p423, p422, p421, p420, p419, p418, p417, p416, p415, p414, p413, p396, p395, p394, p393, p390, p388, p387, p386, p385, p384, p383, p382, p381)<=sum(p828, p827, p826, p825, p824, p823, p822, p821, p820, p819, p818, p817, p816, p815, p814, p813, p812, p811, p810, p809, p808, p807, p806, p805, p804, p803, p802, p801, p800, p799, p798, p797, p787, p786, p785, p764, p763, p762, p761, p760, p759, p758, p757, p756, p755, p754, p753, p752, p751, p750, p749, p748, p747, p746, p745, p744, p743, p742, p741, p740, p739, p738, p737, p736, p735, p734, p733, p732, p731, p730, p729, p728, p727, p726, p725, p724, p723, p722, p721, p720, p719, p718, p717, p716, p715, p714, p713, p712, p711, p710, p709, p708, p707, p706, p705, p704, p703, p702, p701, p700, p699, p698, p697, p696, p695, p694, p693, p692, p691, p690, p689, p688, p687, p686, p685, p684, p683, p682, p681, p680, p679, p678, p677, p676, p675, p674, p673, p672, p671, p670, p669, p668, p667, p666, p665, p664, p663, p662, p661, p660, p659, p658, p657, p656, p655, p654, p653, p652, p651, p650, p649, p648, p647, p646, p645, p644, p643, p642, p641, p640, p639, p638, p637, p636, p635, p634, p633, p631, p604, p603, p602, p601, p600, p599, p598, p597, p596, p595, p594, p593, p592, p591, p590, p589, p588, p587, p586, p585, p584, p583, p582, p581, p580, p579, p578, p577, p576, p575, p574, p573)]]] | [AX [sum(p828, p827, p826, p825, p824, p823, p822, p821, p820, p819, p818, p817, p816, p815, p814, p813, p812, p811, p810, p809, p808, p807, p806, p805, p804, p803, p802, p801, p800, p799, p798, p797, p787, p786, p785, p764, p763, p762, p761, p760, p759, p758, p757, p756, p755, p754, p753, p752, p751, p750, p749, p748, p747, p746, p745, p744, p743, p742, p741, p740, p739, p738, p737, p736, p735, p734, p733, p732, p731, p730, p729, p728, p727, p726, p725, p724, p723, p722, p721, p720, p719, p718, p717, p716, p715, p714, p713, p712, p711, p710, p709, p708, p707, p706, p705, p704, p703, p702, p701, p700, p699, p698, p697, p696, p695, p694, p693, p692, p691, p690, p689, p688, p687, p686, p685, p684, p683, p682, p681, p680, p679, p678, p677, p676, p675, p674, p673, p672, p671, p670, p669, p668, p667, p666, p665, p664, p663, p662, p661, p660, p659, p658, p657, p656, p655, p654, p653, p652, p651, p650, p649, p648, p647, p646, p645, p644, p643, p642, p641, p640, p639, p638, p637, p636, p635, p634, p633, p631, p604, p603, p602, p601, p600, p599, p598, p597, p596, p595, p594, p593, p592, p591, p590, p589, p588, p587, p586, p585, p584, p583, p582, p581, p580, p579, p578, p577, p576, p575, p574, p573)<=sum(p632, p630, p629, p628, p627, p626, p625, p624, p623, p622, p621, p620, p619, p618, p617, p616, p615, p614, p613, p612, p611, p610, p609, p608, p607, p606, p605, p572, p571, p570, p569, p568, p567, p566, p565, p564, p563, p562, p561, p560, p559, p558, p557, p556, p555, p554, p553, p552, p551, p550, p549, p548, p547, p546, p545, p544, p543, p542, p541, p540, p539, p538, p537, p536, p535, p534, p533, p532, p531, p530, p529, p528, p527, p526, p525, p524, p523, p522, p521, p520, p519, p518, p517, p516, p515, p514, p513, p512, p511, p510, p509, p508, p507, p506, p505, p504, p503, p502, p501, p500, p499, p498, p497, p496, p495, p494, p493, p492, p491, p490, p489, p488, p487, p486, p485, p484, p483, p482, p481, p480, p479, p478, p477, p476, p475, p474, p473, p472, p471, p470, p469, p468, p467, p466, p465, p464, p463, p462, p461, p460, p459, p458, p457, p456, p455, p454, p453, p452, p451, p450, p449, p448, p447, p446, p445, p444, p443, p442, p441, p440, p439, p438, p437, p436, p435, p434, p433, p432, p431, p430, p429, p428, p427, p426, p425, p424, p423, p422, p421, p420, p419, p418, p417, p416, p415, p414, p413, p396, p395, p394, p393, p390, p388, p387, p386, p385, p384, p383, p382, p381)] | EX [EG [[sum(p412, p411, p410, p409, p408, p407, p406, p405, p404, p403, p402, p401, p400, p399, p398, p397, p392, p391, p389, p380, p379, p378, p377, p376, p375, p374, p373, p372, p371, p370, p369, p368, p367, p366, p365, p364, p363, p362, p361, p360, p359, p358, p357, p356, p355, p354, p353, p352, p351, p350, p349, p348, p347, p346, p345, p344, p343, p342, p341, p340, p339, p338, p337, p336, p335, p334, p333, p332, p331, p330, p329, p328, p327, p326, p325, p324, p323, p322, p321, p320, p319, p318, p317, p316, p315, p314, p313, p312, p311, p310, p309, p308, p307, p306, p305, p304, p303, p302, p301, p300, p299, p298, p297, p296, p295, p294, p293, p292, p291, p290, p289, p288, p287, p286, p285, p284, p283, p282, p281, p280, p279, p278, p277, p276, p275, p274, p273, p272, p271, p270, p269, p268, p267, p266, p265, p264, p263, p262, p261, p260, p259, p258, p257, p256, p255, p254, p253, p252, p251, p250, p249, p248, p247, p246, p245, p244, p243, p242, p241, p240, p239, p238, p237, p236, p235, p234, p233, p232, p231, p230, p229, p228, p227, p226, p225, p224, p223, p222, p221, p220, p219, p218, p217, p216, p215, p214, p213, p212, p211, p210, p209, p208, p207, p206, p205, p195, p192, p191, p190, p189)<=7 & sum(p999, p998, p997, p996, p995, p994, p993, p992, p991, p990, p989, p988, p987, p986, p985, p984, p983, p982, p981, p980, p979, p978, p977, p976, p975, p974, p973, p972, p971, p970, p969, p968, p967, p966, p965, p964, p963, p962, p961, p960, p959, p958, p957, p956, p955, p954, p953, p952, p951, p950, p949, p948, p947, p946, p945, p944, p943, p942, p941, p940, p939, p938, p937, p936, p935, p934, p933, p932, p931, p930, p929, p928, p927, p926, p925, p924, p923, p922, p921, p920, p919, p918, p917, p916, p915, p914, p913, p912, p911, p910, p909, p908, p907, p906, p905, p904, p903, p902, p901, p900, p899, p898, p897, p896, p895, p894, p893, p892, p891, p890, p889, p888, p887, p886, p885, p884, p883, p882, p881, p880, p879, p878, p877, p876, p875, p874, p873, p872, p871, p870, p869, p868, p867, p866, p865, p864, p863, p862, p861, p860, p859, p858, p857, p856, p855, p854, p853, p852, p851, p850, p849, p848, p847, p846, p845, p844, p843, p842, p841, p840, p839, p838, p837, p836, p835, p834, p833, p832, p831, p830, p829, p796, p795, p794, p793, p792, p791, p790, p789, p788, p784, p783, p782, p781, p780, p779, p778, p777, p776, p775, p774, p773, p772, p771, p770, p769, p768, p767, p766, p765)<=sum(p632, p630, p629, p628, p627, p626, p625, p624, p623, p622, p621, p620, p619, p618, p617, p616, p615, p614, p613, p612, p611, p610, p609, p608, p607, p606, p605, p572, p571, p570, p569, p568, p567, p566, p565, p564, p563, p562, p561, p560, p559, p558, p557, p556, p555, p554, p553, p552, p551, p550, p549, p548, p547, p546, p545, p544, p543, p542, p541, p540, p539, p538, p537, p536, p535, p534, p533, p532, p531, p530, p529, p528, p527, p526, p525, p524, p523, p522, p521, p520, p519, p518, p517, p516, p515, p514, p513, p512, p511, p510, p509, p508, p507, p506, p505, p504, p503, p502, p501, p500, p499, p498, p497, p496, p495, p494, p493, p492, p491, p490, p489, p488, p487, p486, p485, p484, p483, p482, p481, p480, p479, p478, p477, p476, p475, p474, p473, p472, p471, p470, p469, p468, p467, p466, p465, p464, p463, p462, p461, p460, p459, p458, p457, p456, p455, p454, p453, p452, p451, p450, p449, p448, p447, p446, p445, p444, p443, p442, p441, p440, p439, p438, p437, p436, p435, p434, p433, p432, p431, p430, p429, p428, p427, p426, p425, p424, p423, p422, p421, p420, p419, p418, p417, p416, p415, p414, p413, p396, p395, p394, p393, p390, p388, p387, p386, p385, p384, p383, p382, p381)]]]]]]
normalized: E [~ [E [true U ~ [E [true U [sum(p412, p411, p410, p409, p408, p407, p406, p405, p404, p403, p402, p401, p400, p399, p398, p397, p392, p391, p389, p380, p379, p378, p377, p376, p375, p374, p373, p372, p371, p370, p369, p368, p367, p366, p365, p364, p363, p362, p361, p360, p359, p358, p357, p356, p355, p354, p353, p352, p351, p350, p349, p348, p347, p346, p345, p344, p343, p342, p341, p340, p339, p338, p337, p336, p335, p334, p333, p332, p331, p330, p329, p328, p327, p326, p325, p324, p323, p322, p321, p320, p319, p318, p317, p316, p315, p314, p313, p312, p311, p310, p309, p308, p307, p306, p305, p304, p303, p302, p301, p300, p299, p298, p297, p296, p295, p294, p293, p292, p291, p290, p289, p288, p287, p286, p285, p284, p283, p282, p281, p280, p279, p278, p277, p276, p275, p274, p273, p272, p271, p270, p269, p268, p267, p266, p265, p264, p263, p262, p261, p260, p259, p258, p257, p256, p255, p254, p253, p252, p251, p250, p249, p248, p247, p246, p245, p244, p243, p242, p241, p240, p239, p238, p237, p236, p235, p234, p233, p232, p231, p230, p229, p228, p227, p226, p225, p224, p223, p222, p221, p220, p219, p218, p217, p216, p215, p214, p213, p212, p211, p210, p209, p208, p207, p206, p205, p195, p192, p191, p190, p189)<=sum(p999, p998, p997, p996, p995, p994, p993, p992, p991, p990, p989, p988, p987, p986, p985, p984, p983, p982, p981, p980, p979, p978, p977, p976, p975, p974, p973, p972, p971, p970, p969, p968, p967, p966, p965, p964, p963, p962, p961, p960, p959, p958, p957, p956, p955, p954, p953, p952, p951, p950, p949, p948, p947, p946, p945, p944, p943, p942, p941, p940, p939, p938, p937, p936, p935, p934, p933, p932, p931, p930, p929, p928, p927, p926, p925, p924, p923, p922, p921, p920, p919, p918, p917, p916, p915, p914, p913, p912, p911, p910, p909, p908, p907, p906, p905, p904, p903, p902, p901, p900, p899, p898, p897, p896, p895, p894, p893, p892, p891, p890, p889, p888, p887, p886, p885, p884, p883, p882, p881, p880, p879, p878, p877, p876, p875, p874, p873, p872, p871, p870, p869, p868, p867, p866, p865, p864, p863, p862, p861, p860, p859, p858, p857, p856, p855, p854, p853, p852, p851, p850, p849, p848, p847, p846, p845, p844, p843, p842, p841, p840, p839, p838, p837, p836, p835, p834, p833, p832, p831, p830, p829, p796, p795, p794, p793, p792, p791, p790, p789, p788, p784, p783, p782, p781, p780, p779, p778, p777, p776, p775, p774, p773, p772, p771, p770, p769, p768, p767, p766, p765) | sum(p204, p203, p202, p201, p200, p199, p198, p197, p196, p194, p193, p188, p187, p186, p185, p184, p183, p182, p181, p180, p179, p178, p177, p176, p175, p174, p173, p172, p171, p170, p169, p168, p167, p166, p165, p164, p163, p162, p161, p160, p159, p158, p157, p156, p155, p154, p153, p152, p151, p150, p149, p148, p147, p146, p145, p144, p143, p142, p141, p140, p139, p138, p137, p136, p135, p134, p133, p132, p131, p130, p129, p128, p127, p126, p125, p124, p123, p122, p121, p120, p119, p118, p117, p116, p115, p114, p113, p112, p111, p110, p109, p108, p107, p106, p105, p104, p103, p102, p101, p100, p99, p98, p97, p96, p95, p94, p93, p92, p91, p90, p89, p88, p87, p86, p85, p84, p83, p82, p81, p80, p79, p78, p77, p76, p75, p74, p73, p72, p71, p70, p69, p68, p67, p66, p65, p64, p63, p62, p61, p60, p59, p58, p57, p56, p55, p54, p53, p52, p51, p50, p49, p48, p47, p46, p45, p44, p43, p42, p41, p40, p39, p38, p37, p36, p35, p34, p33, p32, p31, p30, p29, p28, p27, p26, p25, p24, p23, p22, p21, p20, p19, p18, p17, p16, p15, p14, p13, p12, p11, p10, p9, p8, p7, p6, p5, p4, p3, p2, p1, p0)<=70]]]]] U [EG [sum(p632, p630, p629, p628, p627, p626, p625, p624, p623, p622, p621, p620, p619, p618, p617, p616, p615, p614, p613, p612, p611, p610, p609, p608, p607, p606, p605, p572, p571, p570, p569, p568, p567, p566, p565, p564, p563, p562, p561, p560, p559, p558, p557, p556, p555, p554, p553, p552, p551, p550, p549, p548, p547, p546, p545, p544, p543, p542, p541, p540, p539, p538, p537, p536, p535, p534, p533, p532, p531, p530, p529, p528, p527, p526, p525, p524, p523, p522, p521, p520, p519, p518, p517, p516, p515, p514, p513, p512, p511, p510, p509, p508, p507, p506, p505, p504, p503, p502, p501, p500, p499, p498, p497, p496, p495, p494, p493, p492, p491, p490, p489, p488, p487, p486, p485, p484, p483, p482, p481, p480, p479, p478, p477, p476, p475, p474, p473, p472, p471, p470, p469, p468, p467, p466, p465, p464, p463, p462, p461, p460, p459, p458, p457, p456, p455, p454, p453, p452, p451, p450, p449, p448, p447, p446, p445, p444, p443, p442, p441, p440, p439, p438, p437, p436, p435, p434, p433, p432, p431, p430, p429, p428, p427, p426, p425, p424, p423, p422, p421, p420, p419, p418, p417, p416, p415, p414, p413, p396, p395, p394, p393, p390, p388, p387, p386, p385, p384, p383, p382, p381)<=sum(p828, p827, p826, p825, p824, p823, p822, p821, p820, p819, p818, p817, p816, p815, p814, p813, p812, p811, p810, p809, p808, p807, p806, p805, p804, p803, p802, p801, p800, p799, p798, p797, p787, p786, p785, p764, p763, p762, p761, p760, p759, p758, p757, p756, p755, p754, p753, p752, p751, p750, p749, p748, p747, p746, p745, p744, p743, p742, p741, p740, p739, p738, p737, p736, p735, p734, p733, p732, p731, p730, p729, p728, p727, p726, p725, p724, p723, p722, p721, p720, p719, p718, p717, p716, p715, p714, p713, p712, p711, p710, p709, p708, p707, p706, p705, p704, p703, p702, p701, p700, p699, p698, p697, p696, p695, p694, p693, p692, p691, p690, p689, p688, p687, p686, p685, p684, p683, p682, p681, p680, p679, p678, p677, p676, p675, p674, p673, p672, p671, p670, p669, p668, p667, p666, p665, p664, p663, p662, p661, p660, p659, p658, p657, p656, p655, p654, p653, p652, p651, p650, p649, p648, p647, p646, p645, p644, p643, p642, p641, p640, p639, p638, p637, p636, p635, p634, p633, p631, p604, p603, p602, p601, p600, p599, p598, p597, p596, p595, p594, p593, p592, p591, p590, p589, p588, p587, p586, p585, p584, p583, p582, p581, p580, p579, p578, p577, p576, p575, p574, p573)] | [~ [EX [~ [sum(p828, p827, p826, p825, p824, p823, p822, p821, p820, p819, p818, p817, p816, p815, p814, p813, p812, p811, p810, p809, p808, p807, p806, p805, p804, p803, p802, p801, p800, p799, p798, p797, p787, p786, p785, p764, p763, p762, p761, p760, p759, p758, p757, p756, p755, p754, p753, p752, p751, p750, p749, p748, p747, p746, p745, p744, p743, p742, p741, p740, p739, p738, p737, p736, p735, p734, p733, p732, p731, p730, p729, p728, p727, p726, p725, p724, p723, p722, p721, p720, p719, p718, p717, p716, p715, p714, p713, p712, p711, p710, p709, p708, p707, p706, p705, p704, p703, p702, p701, p700, p699, p698, p697, p696, p695, p694, p693, p692, p691, p690, p689, p688, p687, p686, p685, p684, p683, p682, p681, p680, p679, p678, p677, p676, p675, p674, p673, p672, p671, p670, p669, p668, p667, p666, p665, p664, p663, p662, p661, p660, p659, p658, p657, p656, p655, p654, p653, p652, p651, p650, p649, p648, p647, p646, p645, p644, p643, p642, p641, p640, p639, p638, p637, p636, p635, p634, p633, p631, p604, p603, p602, p601, p600, p599, p598, p597, p596, p595, p594, p593, p592, p591, p590, p589, p588, p587, p586, p585, p584, p583, p582, p581, p580, p579, p578, p577, p576, p575, p574, p573)<=sum(p632, p630, p629, p628, p627, p626, p625, p624, p623, p622, p621, p620, p619, p618, p617, p616, p615, p614, p613, p612, p611, p610, p609, p608, p607, p606, p605, p572, p571, p570, p569, p568, p567, p566, p565, p564, p563, p562, p561, p560, p559, p558, p557, p556, p555, p554, p553, p552, p551, p550, p549, p548, p547, p546, p545, p544, p543, p542, p541, p540, p539, p538, p537, p536, p535, p534, p533, p532, p531, p530, p529, p528, p527, p526, p525, p524, p523, p522, p521, p520, p519, p518, p517, p516, p515, p514, p513, p512, p511, p510, p509, p508, p507, p506, p505, p504, p503, p502, p501, p500, p499, p498, p497, p496, p495, p494, p493, p492, p491, p490, p489, p488, p487, p486, p485, p484, p483, p482, p481, p480, p479, p478, p477, p476, p475, p474, p473, p472, p471, p470, p469, p468, p467, p466, p465, p464, p463, p462, p461, p460, p459, p458, p457, p456, p455, p454, p453, p452, p451, p450, p449, p448, p447, p446, p445, p444, p443, p442, p441, p440, p439, p438, p437, p436, p435, p434, p433, p432, p431, p430, p429, p428, p427, p426, p425, p424, p423, p422, p421, p420, p419, p418, p417, p416, p415, p414, p413, p396, p395, p394, p393, p390, p388, p387, p386, p385, p384, p383, p382, p381)]]] | EX [EG [[sum(p412, p411, p410, p409, p408, p407, p406, p405, p404, p403, p402, p401, p400, p399, p398, p397, p392, p391, p389, p380, p379, p378, p377, p376, p375, p374, p373, p372, p371, p370, p369, p368, p367, p366, p365, p364, p363, p362, p361, p360, p359, p358, p357, p356, p355, p354, p353, p352, p351, p350, p349, p348, p347, p346, p345, p344, p343, p342, p341, p340, p339, p338, p337, p336, p335, p334, p333, p332, p331, p330, p329, p328, p327, p326, p325, p324, p323, p322, p321, p320, p319, p318, p317, p316, p315, p314, p313, p312, p311, p310, p309, p308, p307, p306, p305, p304, p303, p302, p301, p300, p299, p298, p297, p296, p295, p294, p293, p292, p291, p290, p289, p288, p287, p286, p285, p284, p283, p282, p281, p280, p279, p278, p277, p276, p275, p274, p273, p272, p271, p270, p269, p268, p267, p266, p265, p264, p263, p262, p261, p260, p259, p258, p257, p256, p255, p254, p253, p252, p251, p250, p249, p248, p247, p246, p245, p244, p243, p242, p241, p240, p239, p238, p237, p236, p235, p234, p233, p232, p231, p230, p229, p228, p227, p226, p225, p224, p223, p222, p221, p220, p219, p218, p217, p216, p215, p214, p213, p212, p211, p210, p209, p208, p207, p206, p205, p195, p192, p191, p190, p189)<=7 & sum(p999, p998, p997, p996, p995, p994, p993, p992, p991, p990, p989, p988, p987, p986, p985, p984, p983, p982, p981, p980, p979, p978, p977, p976, p975, p974, p973, p972, p971, p970, p969, p968, p967, p966, p965, p964, p963, p962, p961, p960, p959, p958, p957, p956, p955, p954, p953, p952, p951, p950, p949, p948, p947, p946, p945, p944, p943, p942, p941, p940, p939, p938, p937, p936, p935, p934, p933, p932, p931, p930, p929, p928, p927, p926, p925, p924, p923, p922, p921, p920, p919, p918, p917, p916, p915, p914, p913, p912, p911, p910, p909, p908, p907, p906, p905, p904, p903, p902, p901, p900, p899, p898, p897, p896, p895, p894, p893, p892, p891, p890, p889, p888, p887, p886, p885, p884, p883, p882, p881, p880, p879, p878, p877, p876, p875, p874, p873, p872, p871, p870, p869, p868, p867, p866, p865, p864, p863, p862, p861, p860, p859, p858, p857, p856, p855, p854, p853, p852, p851, p850, p849, p848, p847, p846, p845, p844, p843, p842, p841, p840, p839, p838, p837, p836, p835, p834, p833, p832, p831, p830, p829, p796, p795, p794, p793, p792, p791, p790, p789, p788, p784, p783, p782, p781, p780, p779, p778, p777, p776, p775, p774, p773, p772, p771, p770, p769, p768, p767, p766, p765)<=sum(p632, p630, p629, p628, p627, p626, p625, p624, p623, p622, p621, p620, p619, p618, p617, p616, p615, p614, p613, p612, p611, p610, p609, p608, p607, p606, p605, p572, p571, p570, p569, p568, p567, p566, p565, p564, p563, p562, p561, p560, p559, p558, p557, p556, p555, p554, p553, p552, p551, p550, p549, p548, p547, p546, p545, p544, p543, p542, p541, p540, p539, p538, p537, p536, p535, p534, p533, p532, p531, p530, p529, p528, p527, p526, p525, p524, p523, p522, p521, p520, p519, p518, p517, p516, p515, p514, p513, p512, p511, p510, p509, p508, p507, p506, p505, p504, p503, p502, p501, p500, p499, p498, p497, p496, p495, p494, p493, p492, p491, p490, p489, p488, p487, p486, p485, p484, p483, p482, p481, p480, p479, p478, p477, p476, p475, p474, p473, p472, p471, p470, p469, p468, p467, p466, p465, p464, p463, p462, p461, p460, p459, p458, p457, p456, p455, p454, p453, p452, p451, p450, p449, p448, p447, p446, p445, p444, p443, p442, p441, p440, p439, p438, p437, p436, p435, p434, p433, p432, p431, p430, p429, p428, p427, p426, p425, p424, p423, p422, p421, p420, p419, p418, p417, p416, p415, p414, p413, p396, p395, p394, p393, p390, p388, p387, p386, p385, p384, p383, p382, p381)]]]]]]

abstracting: (sum(p999, p998, p997, p996, p995, p994, p993, p992, p991, p990, p989, p988, p987, p986, p985, p984, p983, p982, p981, p980, p979, p978, p977, p976, p975, p974, p973, p972, p971, p970, p969, p968, p967, p966, p965, p964, p963, p962, p961, p960, p959, p958, p957, p956, p955, p954, p953, p952, p951, p950, p949, p948, p947, p946, p945, p944, p943, p942, p941, p940, p939, p938, p937, p936, p935, p934, p933, p932, p931, p930, p929, p928, p927, p926, p925, p924, p923, p922, p921, p920, p919, p918, p917, p916, p915, p914, p913, p912, p911, p910, p909, p908, p907, p906, p905, p904, p903, p902, p901, p900, p899, p898, p897, p896, p895, p894, p893, p892, p891, p890, p889, p888, p887, p886, p885, p884, p883, p882, p881, p880, p879, p878, p877, p876, p875, p874, p873, p872, p871, p870, p869, p868, p867, p866, p865, p864, p863, p862, p861, p860, p859, p858, p857, p856, p855, p854, p853, p852, p851, p850, p849, p848, p847, p846, p845, p844, p843, p842, p841, p840, p839, p838, p837, p836, p835, p834, p833, p832, p831, p830, p829, p796, p795, p794, p793, p792, p791, p790, p789, p788, p784, p783, p782, p781, p780, p779, p778, p777, p776, p775, p774, p773, p772, p771, p770, p769, p768, p767, p766, p765)<=sum(p632, p630, p629, p628, p627, p626, p625, p624, p623, p622, p621, p620, p619, p618, p617, p616, p615, p614, p613, p612, p611, p610, p609, p608, p607, p606, p605, p572, p571, p570, p569, p568, p567, p566, p565, p564, p563, p562, p561, p560, p559, p558, p557, p556, p555, p554, p553, p552, p551, p550, p549, p548, p547, p546, p545, p544, p543, p542, p541, p540, p539, p538, p537, p536, p535, p534, p533, p532, p531, p530, p529, p528, p527, p526, p525, p524, p523, p522, p521, p520, p519, p518, p517, p516, p515, p514, p513, p512, p511, p510, p509, p508, p507, p506, p505, p504, p503, p502, p501, p500, p499, p498, p497, p496, p495, p494, p493, p492, p491, p490, p489, p488, p487, p486, p485, p484, p483, p482, p481, p480, p479, p478, p477, p476, p475, p474, p473, p472, p471, p470, p469, p468, p467, p466, p465, p464, p463, p462, p461, p460, p459, p458, p457, p456, p455, p454, p453, p452, p451, p450, p449, p448, p447, p446, p445, p444, p443, p442, p441, p440, p439, p438, p437, p436, p435, p434, p433, p432, p431, p430, p429, p428, p427, p426, p425, p424, p423, p422, p421, p420, p419, p418, p417, p416, p415, p414, p413, p396, p395, p394, p393, p390, p388, p387, p386, p385, p384, p383, p382, p381))
MC time: 4m40.991sec

checking: EG [~ [A [[A [sum(p828, p827, p826, p825, p824, p823, p822, p821, p820, p819, p818, p817, p816, p815, p814, p813, p812, p811, p810, p809, p808, p807, p806, p805, p804, p803, p802, p801, p800, p799, p798, p797, p787, p786, p785, p764, p763, p762, p761, p760, p759, p758, p757, p756, p755, p754, p753, p752, p751, p750, p749, p748, p747, p746, p745, p744, p743, p742, p741, p740, p739, p738, p737, p736, p735, p734, p733, p732, p731, p730, p729, p728, p727, p726, p725, p724, p723, p722, p721, p720, p719, p718, p717, p716, p715, p714, p713, p712, p711, p710, p709, p708, p707, p706, p705, p704, p703, p702, p701, p700, p699, p698, p697, p696, p695, p694, p693, p692, p691, p690, p689, p688, p687, p686, p685, p684, p683, p682, p681, p680, p679, p678, p677, p676, p675, p674, p673, p672, p671, p670, p669, p668, p667, p666, p665, p664, p663, p662, p661, p660, p659, p658, p657, p656, p655, p654, p653, p652, p651, p650, p649, p648, p647, p646, p645, p644, p643, p642, p641, p640, p639, p638, p637, p636, p635, p634, p633, p631, p604, p603, p602, p601, p600, p599, p598, p597, p596, p595, p594, p593, p592, p591, p590, p589, p588, p587, p586, p585, p584, p583, p582, p581, p580, p579, p578, p577, p576, p575, p574, p573)<=sum(p999, p998, p997, p996, p995, p994, p993, p992, p991, p990, p989, p988, p987, p986, p985, p984, p983, p982, p981, p980, p979, p978, p977, p976, p975, p974, p973, p972, p971, p970, p969, p968, p967, p966, p965, p964, p963, p962, p961, p960, p959, p958, p957, p956, p955, p954, p953, p952, p951, p950, p949, p948, p947, p946, p945, p944, p943, p942, p941, p940, p939, p938, p937, p936, p935, p934, p933, p932, p931, p930, p929, p928, p927, p926, p925, p924, p923, p922, p921, p920, p919, p918, p917, p916, p915, p914, p913, p912, p911, p910, p909, p908, p907, p906, p905, p904, p903, p902, p901, p900, p899, p898, p897, p896, p895, p894, p893, p892, p891, p890, p889, p888, p887, p886, p885, p884, p883, p882, p881, p880, p879, p878, p877, p876, p875, p874, p873, p872, p871, p870, p869, p868, p867, p866, p865, p864, p863, p862, p861, p860, p859, p858, p857, p856, p855, p854, p853, p852, p851, p850, p849, p848, p847, p846, p845, p844, p843, p842, p841, p840, p839, p838, p837, p836, p835, p834, p833, p832, p831, p830, p829, p796, p795, p794, p793, p792, p791, p790, p789, p788, p784, p783, p782, p781, p780, p779, p778, p777, p776, p775, p774, p773, p772, p771, p770, p769, p768, p767, p766, p765) U AF [38<=sum(p204, p203, p202, p201, p200, p199, p198, p197, p196, p194, p193, p188, p187, p186, p185, p184, p183, p182, p181, p180, p179, p178, p177, p176, p175, p174, p173, p172, p171, p170, p169, p168, p167, p166, p165, p164, p163, p162, p161, p160, p159, p158, p157, p156, p155, p154, p153, p152, p151, p150, p149, p148, p147, p146, p145, p144, p143, p142, p141, p140, p139, p138, p137, p136, p135, p134, p133, p132, p131, p130, p129, p128, p127, p126, p125, p124, p123, p122, p121, p120, p119, p118, p117, p116, p115, p114, p113, p112, p111, p110, p109, p108, p107, p106, p105, p104, p103, p102, p101, p100, p99, p98, p97, p96, p95, p94, p93, p92, p91, p90, p89, p88, p87, p86, p85, p84, p83, p82, p81, p80, p79, p78, p77, p76, p75, p74, p73, p72, p71, p70, p69, p68, p67, p66, p65, p64, p63, p62, p61, p60, p59, p58, p57, p56, p55, p54, p53, p52, p51, p50, p49, p48, p47, p46, p45, p44, p43, p42, p41, p40, p39, p38, p37, p36, p35, p34, p33, p32, p31, p30, p29, p28, p27, p26, p25, p24, p23, p22, p21, p20, p19, p18, p17, p16, p15, p14, p13, p12, p11, p10, p9, p8, p7, p6, p5, p4, p3, p2, p1, p0)]] | 54<=sum(p204, p203, p202, p201, p200, p199, p198, p197, p196, p194, p193, p188, p187, p186, p185, p184, p183, p182, p181, p180, p179, p178, p177, p176, p175, p174, p173, p172, p171, p170, p169, p168, p167, p166, p165, p164, p163, p162, p161, p160, p159, p158, p157, p156, p155, p154, p153, p152, p151, p150, p149, p148, p147, p146, p145, p144, p143, p142, p141, p140, p139, p138, p137, p136, p135, p134, p133, p132, p131, p130, p129, p128, p127, p126, p125, p124, p123, p122, p121, p120, p119, p118, p117, p116, p115, p114, p113, p112, p111, p110, p109, p108, p107, p106, p105, p104, p103, p102, p101, p100, p99, p98, p97, p96, p95, p94, p93, p92, p91, p90, p89, p88, p87, p86, p85, p84, p83, p82, p81, p80, p79, p78, p77, p76, p75, p74, p73, p72, p71, p70, p69, p68, p67, p66, p65, p64, p63, p62, p61, p60, p59, p58, p57, p56, p55, p54, p53, p52, p51, p50, p49, p48, p47, p46, p45, p44, p43, p42, p41, p40, p39, p38, p37, p36, p35, p34, p33, p32, p31, p30, p29, p28, p27, p26, p25, p24, p23, p22, p21, p20, p19, p18, p17, p16, p15, p14, p13, p12, p11, p10, p9, p8, p7, p6, p5, p4, p3, p2, p1, p0)] U [[[sum(p632, p630, p629, p628, p627, p626, p625, p624, p623, p622, p621, p620, p619, p618, p617, p616, p615, p614, p613, p612, p611, p610, p609, p608, p607, p606, p605, p572, p571, p570, p569, p568, p567, p566, p565, p564, p563, p562, p561, p560, p559, p558, p557, p556, p555, p554, p553, p552, p551, p550, p549, p548, p547, p546, p545, p544, p543, p542, p541, p540, p539, p538, p537, p536, p535, p534, p533, p532, p531, p530, p529, p528, p527, p526, p525, p524, p523, p522, p521, p520, p519, p518, p517, p516, p515, p514, p513, p512, p511, p510, p509, p508, p507, p506, p505, p504, p503, p502, p501, p500, p499, p498, p497, p496, p495, p494, p493, p492, p491, p490, p489, p488, p487, p486, p485, p484, p483, p482, p481, p480, p479, p478, p477, p476, p475, p474, p473, p472, p471, p470, p469, p468, p467, p466, p465, p464, p463, p462, p461, p460, p459, p458, p457, p456, p455, p454, p453, p452, p451, p450, p449, p448, p447, p446, p445, p444, p443, p442, p441, p440, p439, p438, p437, p436, p435, p434, p433, p432, p431, p430, p429, p428, p427, p426, p425, p424, p423, p422, p421, p420, p419, p418, p417, p416, p415, p414, p413, p396, p395, p394, p393, p390, p388, p387, p386, p385, p384, p383, p382, p381)<=89 | EG [72<=sum(p999, p998, p997, p996, p995, p994, p993, p992, p991, p990, p989, p988, p987, p986, p985, p984, p983, p982, p981, p980, p979, p978, p977, p976, p975, p974, p973, p972, p971, p970, p969, p968, p967, p966, p965, p964, p963, p962, p961, p960, p959, p958, p957, p956, p955, p954, p953, p952, p951, p950, p949, p948, p947, p946, p945, p944, p943, p942, p941, p940, p939, p938, p937, p936, p935, p934, p933, p932, p931, p930, p929, p928, p927, p926, p925, p924, p923, p922, p921, p920, p919, p918, p917, p916, p915, p914, p913, p912, p911, p910, p909, p908, p907, p906, p905, p904, p903, p902, p901, p900, p899, p898, p897, p896, p895, p894, p893, p892, p891, p890, p889, p888, p887, p886, p885, p884, p883, p882, p881, p880, p879, p878, p877, p876, p875, p874, p873, p872, p871, p870, p869, p868, p867, p866, p865, p864, p863, p862, p861, p860, p859, p858, p857, p856, p855, p854, p853, p852, p851, p850, p849, p848, p847, p846, p845, p844, p843, p842, p841, p840, p839, p838, p837, p836, p835, p834, p833, p832, p831, p830, p829, p796, p795, p794, p793, p792, p791, p790, p789, p788, p784, p783, p782, p781, p780, p779, p778, p777, p776, p775, p774, p773, p772, p771, p770, p769, p768, p767, p766, p765)]] & EF [86<=sum(p632, p630, p629, p628, p627, p626, p625, p624, p623, p622, p621, p620, p619, p618, p617, p616, p615, p614, p613, p612, p611, p610, p609, p608, p607, p606, p605, p572, p571, p570, p569, p568, p567, p566, p565, p564, p563, p562, p561, p560, p559, p558, p557, p556, p555, p554, p553, p552, p551, p550, p549, p548, p547, p546, p545, p544, p543, p542, p541, p540, p539, p538, p537, p536, p535, p534, p533, p532, p531, p530, p529, p528, p527, p526, p525, p524, p523, p522, p521, p520, p519, p518, p517, p516, p515, p514, p513, p512, p511, p510, p509, p508, p507, p506, p505, p504, p503, p502, p501, p500, p499, p498, p497, p496, p495, p494, p493, p492, p491, p490, p489, p488, p487, p486, p485, p484, p483, p482, p481, p480, p479, p478, p477, p476, p475, p474, p473, p472, p471, p470, p469, p468, p467, p466, p465, p464, p463, p462, p461, p460, p459, p458, p457, p456, p455, p454, p453, p452, p451, p450, p449, p448, p447, p446, p445, p444, p443, p442, p441, p440, p439, p438, p437, p436, p435, p434, p433, p432, p431, p430, p429, p428, p427, p426, p425, p424, p423, p422, p421, p420, p419, p418, p417, p416, p415, p414, p413, p396, p395, p394, p393, p390, p388, p387, p386, p385, p384, p383, p382, p381)]] & [sum(p412, p411, p410, p409, p408, p407, p406, p405, p404, p403, p402, p401, p400, p399, p398, p397, p392, p391, p389, p380, p379, p378, p377, p376, p375, p374, p373, p372, p371, p370, p369, p368, p367, p366, p365, p364, p363, p362, p361, p360, p359, p358, p357, p356, p355, p354, p353, p352, p351, p350, p349, p348, p347, p346, p345, p344, p343, p342, p341, p340, p339, p338, p337, p336, p335, p334, p333, p332, p331, p330, p329, p328, p327, p326, p325, p324, p323, p322, p321, p320, p319, p318, p317, p316, p315, p314, p313, p312, p311, p310, p309, p308, p307, p306, p305, p304, p303, p302, p301, p300, p299, p298, p297, p296, p295, p294, p293, p292, p291, p290, p289, p288, p287, p286, p285, p284, p283, p282, p281, p280, p279, p278, p277, p276, p275, p274, p273, p272, p271, p270, p269, p268, p267, p266, p265, p264, p263, p262, p261, p260, p259, p258, p257, p256, p255, p254, p253, p252, p251, p250, p249, p248, p247, p246, p245, p244, p243, p242, p241, p240, p239, p238, p237, p236, p235, p234, p233, p232, p231, p230, p229, p228, p227, p226, p225, p224, p223, p222, p221, p220, p219, p218, p217, p216, p215, p214, p213, p212, p211, p210, p209, p208, p207, p206, p205, p195, p192, p191, p190, p189)<=52 & [[89<=sum(p632, p630, p629, p628, p627, p626, p625, p624, p623, p622, p621, p620, p619, p618, p617, p616, p615, p614, p613, p612, p611, p610, p609, p608, p607, p606, p605, p572, p571, p570, p569, p568, p567, p566, p565, p564, p563, p562, p561, p560, p559, p558, p557, p556, p555, p554, p553, p552, p551, p550, p549, p548, p547, p546, p545, p544, p543, p542, p541, p540, p539, p538, p537, p536, p535, p534, p533, p532, p531, p530, p529, p528, p527, p526, p525, p524, p523, p522, p521, p520, p519, p518, p517, p516, p515, p514, p513, p512, p511, p510, p509, p508, p507, p506, p505, p504, p503, p502, p501, p500, p499, p498, p497, p496, p495, p494, p493, p492, p491, p490, p489, p488, p487, p486, p485, p484, p483, p482, p481, p480, p479, p478, p477, p476, p475, p474, p473, p472, p471, p470, p469, p468, p467, p466, p465, p464, p463, p462, p461, p460, p459, p458, p457, p456, p455, p454, p453, p452, p451, p450, p449, p448, p447, p446, p445, p444, p443, p442, p441, p440, p439, p438, p437, p436, p435, p434, p433, p432, p431, p430, p429, p428, p427, p426, p425, p424, p423, p422, p421, p420, p419, p418, p417, p416, p415, p414, p413, p396, p395, p394, p393, p390, p388, p387, p386, p385, p384, p383, p382, p381) | sum(p828, p827, p826, p825, p824, p823, p822, p821, p820, p819, p818, p817, p816, p815, p814, p813, p812, p811, p810, p809, p808, p807, p806, p805, p804, p803, p802, p801, p800, p799, p798, p797, p787, p786, p785, p764, p763, p762, p761, p760, p759, p758, p757, p756, p755, p754, p753, p752, p751, p750, p749, p748, p747, p746, p745, p744, p743, p742, p741, p740, p739, p738, p737, p736, p735, p734, p733, p732, p731, p730, p729, p728, p727, p726, p725, p724, p723, p722, p721, p720, p719, p718, p717, p716, p715, p714, p713, p712, p711, p710, p709, p708, p707, p706, p705, p704, p703, p702, p701, p700, p699, p698, p697, p696, p695, p694, p693, p692, p691, p690, p689, p688, p687, p686, p685, p684, p683, p682, p681, p680, p679, p678, p677, p676, p675, p674, p673, p672, p671, p670, p669, p668, p667, p666, p665, p664, p663, p662, p661, p660, p659, p658, p657, p656, p655, p654, p653, p652, p651, p650, p649, p648, p647, p646, p645, p644, p643, p642, p641, p640, p639, p638, p637, p636, p635, p634, p633, p631, p604, p603, p602, p601, p600, p599, p598, p597, p596, p595, p594, p593, p592, p591, p590, p589, p588, p587, p586, p585, p584, p583, p582, p581, p580, p579, p578, p577, p576, p575, p574, p573)<=32] & sum(p999, p998, p997, p996, p995, p994, p993, p992, p991, p990, p989, p988, p987, p986, p985, p984, p983, p982, p981, p980, p979, p978, p977, p976, p975, p974, p973, p972, p971, p970, p969, p968, p967, p966, p965, p964, p963, p962, p961, p960, p959, p958, p957, p956, p955, p954, p953, p952, p951, p950, p949, p948, p947, p946, p945, p944, p943, p942, p941, p940, p939, p938, p937, p936, p935, p934, p933, p932, p931, p930, p929, p928, p927, p926, p925, p924, p923, p922, p921, p920, p919, p918, p917, p916, p915, p914, p913, p912, p911, p910, p909, p908, p907, p906, p905, p904, p903, p902, p901, p900, p899, p898, p897, p896, p895, p894, p893, p892, p891, p890, p889, p888, p887, p886, p885, p884, p883, p882, p881, p880, p879, p878, p877, p876, p875, p874, p873, p872, p871, p870, p869, p868, p867, p866, p865, p864, p863, p862, p861, p860, p859, p858, p857, p856, p855, p854, p853, p852, p851, p850, p849, p848, p847, p846, p845, p844, p843, p842, p841, p840, p839, p838, p837, p836, p835, p834, p833, p832, p831, p830, p829, p796, p795, p794, p793, p792, p791, p790, p789, p788, p784, p783, p782, p781, p780, p779, p778, p777, p776, p775, p774, p773, p772, p771, p770, p769, p768, p767, p766, p765)<=66]]]]]]
normalized: EG [~ [[~ [E [~ [[[E [true U 86<=sum(p632, p630, p629, p628, p627, p626, p625, p624, p623, p622, p621, p620, p619, p618, p617, p616, p615, p614, p613, p612, p611, p610, p609, p608, p607, p606, p605, p572, p571, p570, p569, p568, p567, p566, p565, p564, p563, p562, p561, p560, p559, p558, p557, p556, p555, p554, p553, p552, p551, p550, p549, p548, p547, p546, p545, p544, p543, p542, p541, p540, p539, p538, p537, p536, p535, p534, p533, p532, p531, p530, p529, p528, p527, p526, p525, p524, p523, p522, p521, p520, p519, p518, p517, p516, p515, p514, p513, p512, p511, p510, p509, p508, p507, p506, p505, p504, p503, p502, p501, p500, p499, p498, p497, p496, p495, p494, p493, p492, p491, p490, p489, p488, p487, p486, p485, p484, p483, p482, p481, p480, p479, p478, p477, p476, p475, p474, p473, p472, p471, p470, p469, p468, p467, p466, p465, p464, p463, p462, p461, p460, p459, p458, p457, p456, p455, p454, p453, p452, p451, p450, p449, p448, p447, p446, p445, p444, p443, p442, p441, p440, p439, p438, p437, p436, p435, p434, p433, p432, p431, p430, p429, p428, p427, p426, p425, p424, p423, p422, p421, p420, p419, p418, p417, p416, p415, p414, p413, p396, p395, p394, p393, p390, p388, p387, p386, p385, p384, p383, p382, p381)] & [sum(p632, p630, p629, p628, p627, p626, p625, p624, p623, p622, p621, p620, p619, p618, p617, p616, p615, p614, p613, p612, p611, p610, p609, p608, p607, p606, p605, p572, p571, p570, p569, p568, p567, p566, p565, p564, p563, p562, p561, p560, p559, p558, p557, p556, p555, p554, p553, p552, p551, p550, p549, p548, p547, p546, p545, p544, p543, p542, p541, p540, p539, p538, p537, p536, p535, p534, p533, p532, p531, p530, p529, p528, p527, p526, p525, p524, p523, p522, p521, p520, p519, p518, p517, p516, p515, p514, p513, p512, p511, p510, p509, p508, p507, p506, p505, p504, p503, p502, p501, p500, p499, p498, p497, p496, p495, p494, p493, p492, p491, p490, p489, p488, p487, p486, p485, p484, p483, p482, p481, p480, p479, p478, p477, p476, p475, p474, p473, p472, p471, p470, p469, p468, p467, p466, p465, p464, p463, p462, p461, p460, p459, p458, p457, p456, p455, p454, p453, p452, p451, p450, p449, p448, p447, p446, p445, p444, p443, p442, p441, p440, p439, p438, p437, p436, p435, p434, p433, p432, p431, p430, p429, p428, p427, p426, p425, p424, p423, p422, p421, p420, p419, p418, p417, p416, p415, p414, p413, p396, p395, p394, p393, p390, p388, p387, p386, p385, p384, p383, p382, p381)<=89 | EG [72<=sum(p999, p998, p997, p996, p995, p994, p993, p992, p991, p990, p989, p988, p987, p986, p985, p984, p983, p982, p981, p980, p979, p978, p977, p976, p975, p974, p973, p972, p971, p970, p969, p968, p967, p966, p965, p964, p963, p962, p961, p960, p959, p958, p957, p956, p955, p954, p953, p952, p951, p950, p949, p948, p947, p946, p945, p944, p943, p942, p941, p940, p939, p938, p937, p936, p935, p934, p933, p932, p931, p930, p929, p928, p927, p926, p925, p924, p923, p922, p921, p920, p919, p918, p917, p916, p915, p914, p913, p912, p911, p910, p909, p908, p907, p906, p905, p904, p903, p902, p901, p900, p899, p898, p897, p896, p895, p894, p893, p892, p891, p890, p889, p888, p887, p886, p885, p884, p883, p882, p881, p880, p879, p878, p877, p876, p875, p874, p873, p872, p871, p870, p869, p868, p867, p866, p865, p864, p863, p862, p861, p860, p859, p858, p857, p856, p855, p854, p853, p852, p851, p850, p849, p848, p847, p846, p845, p844, p843, p842, p841, p840, p839, p838, p837, p836, p835, p834, p833, p832, p831, p830, p829, p796, p795, p794, p793, p792, p791, p790, p789, p788, p784, p783, p782, p781, p780, p779, p778, p777, p776, p775, p774, p773, p772, p771, p770, p769, p768, p767, p766, p765)]]] & [sum(p412, p411, p410, p409, p408, p407, p406, p405, p404, p403, p402, p401, p400, p399, p398, p397, p392, p391, p389, p380, p379, p378, p377, p376, p375, p374, p373, p372, p371, p370, p369, p368, p367, p366, p365, p364, p363, p362, p361, p360, p359, p358, p357, p356, p355, p354, p353, p352, p351, p350, p349, p348, p347, p346, p345, p344, p343, p342, p341, p340, p339, p338, p337, p336, p335, p334, p333, p332, p331, p330, p329, p328, p327, p326, p325, p324, p323, p322, p321, p320, p319, p318, p317, p316, p315, p314, p313, p312, p311, p310, p309, p308, p307, p306, p305, p304, p303, p302, p301, p300, p299, p298, p297, p296, p295, p294, p293, p292, p291, p290, p289, p288, p287, p286, p285, p284, p283, p282, p281, p280, p279, p278, p277, p276, p275, p274, p273, p272, p271, p270, p269, p268, p267, p266, p265, p264, p263, p262, p261, p260, p259, p258, p257, p256, p255, p254, p253, p252, p251, p250, p249, p248, p247, p246, p245, p244, p243, p242, p241, p240, p239, p238, p237, p236, p235, p234, p233, p232, p231, p230, p229, p228, p227, p226, p225, p224, p223, p222, p221, p220, p219, p218, p217, p216, p215, p214, p213, p212, p211, p210, p209, p208, p207, p206, p205, p195, p192, p191, p190, p189)<=52 & [sum(p999, p998, p997, p996, p995, p994, p993, p992, p991, p990, p989, p988, p987, p986, p985, p984, p983, p982, p981, p980, p979, p978, p977, p976, p975, p974, p973, p972, p971, p970, p969, p968, p967, p966, p965, p964, p963, p962, p961, p960, p959, p958, p957, p956, p955, p954, p953, p952, p951, p950, p949, p948, p947, p946, p945, p944, p943, p942, p941, p940, p939, p938, p937, p936, p935, p934, p933, p932, p931, p930, p929, p928, p927, p926, p925, p924, p923, p922, p921, p920, p919, p918, p917, p916, p915, p914, p913, p912, p911, p910, p909, p908, p907, p906, p905, p904, p903, p902, p901, p900, p899, p898, p897, p896, p895, p894, p893, p892, p891, p890, p889, p888, p887, p886, p885, p884, p883, p882, p881, p880, p879, p878, p877, p876, p875, p874, p873, p872, p871, p870, p869, p868, p867, p866, p865, p864, p863, p862, p861, p860, p859, p858, p857, p856, p855, p854, p853, p852, p851, p850, p849, p848, p847, p846, p845, p844, p843, p842, p841, p840, p839, p838, p837, p836, p835, p834, p833, p832, p831, p830, p829, p796, p795, p794, p793, p792, p791, p790, p789, p788, p784, p783, p782, p781, p780, p779, p778, p777, p776, p775, p774, p773, p772, p771, p770, p769, p768, p767, p766, p765)<=66 & [89<=sum(p632, p630, p629, p628, p627, p626, p625, p624, p623, p622, p621, p620, p619, p618, p617, p616, p615, p614, p613, p612, p611, p610, p609, p608, p607, p606, p605, p572, p571, p570, p569, p568, p567, p566, p565, p564, p563, p562, p561, p560, p559, p558, p557, p556, p555, p554, p553, p552, p551, p550, p549, p548, p547, p546, p545, p544, p543, p542, p541, p540, p539, p538, p537, p536, p535, p534, p533, p532, p531, p530, p529, p528, p527, p526, p525, p524, p523, p522, p521, p520, p519, p518, p517, p516, p515, p514, p513, p512, p511, p510, p509, p508, p507, p506, p505, p504, p503, p502, p501, p500, p499, p498, p497, p496, p495, p494, p493, p492, p491, p490, p489, p488, p487, p486, p485, p484, p483, p482, p481, p480, p479, p478, p477, p476, p475, p474, p473, p472, p471, p470, p469, p468, p467, p466, p465, p464, p463, p462, p461, p460, p459, p458, p457, p456, p455, p454, p453, p452, p451, p450, p449, p448, p447, p446, p445, p444, p443, p442, p441, p440, p439, p438, p437, p436, p435, p434, p433, p432, p431, p430, p429, p428, p427, p426, p425, p424, p423, p422, p421, p420, p419, p418, p417, p416, p415, p414, p413, p396, p395, p394, p393, p390, p388, p387, p386, p385, p384, p383, p382, p381) | sum(p828, p827, p826, p825, p824, p823, p822, p821, p820, p819, p818, p817, p816, p815, p814, p813, p812, p811, p810, p809, p808, p807, p806, p805, p804, p803, p802, p801, p800, p799, p798, p797, p787, p786, p785, p764, p763, p762, p761, p760, p759, p758, p757, p756, p755, p754, p753, p752, p751, p750, p749, p748, p747, p746, p745, p744, p743, p742, p741, p740, p739, p738, p737, p736, p735, p734, p733, p732, p731, p730, p729, p728, p727, p726, p725, p724, p723, p722, p721, p720, p719, p718, p717, p716, p715, p714, p713, p712, p711, p710, p709, p708, p707, p706, p705, p704, p703, p702, p701, p700, p699, p698, p697, p696, p695, p694, p693, p692, p691, p690, p689, p688, p687, p686, p685, p684, p683, p682, p681, p680, p679, p678, p677, p676, p675, p674, p673, p672, p671, p670, p669, p668, p667, p666, p665, p664, p663, p662, p661, p660, p659, p658, p657, p656, p655, p654, p653, p652, p651, p650, p649, p648, p647, p646, p645, p644, p643, p642, p641, p640, p639, p638, p637, p636, p635, p634, p633, p631, p604, p603, p602, p601, p600, p599, p598, p597, p596, p595, p594, p593, p592, p591, p590, p589, p588, p587, p586, p585, p584, p583, p582, p581, p580, p579, p578, p577, p576, p575, p574, p573)<=32]]]]] U [~ [[54<=sum(p204, p203, p202, p201, p200, p199, p198, p197, p196, p194, p193, p188, p187, p186, p185, p184, p183, p182, p181, p180, p179, p178, p177, p176, p175, p174, p173, p172, p171, p170, p169, p168, p167, p166, p165, p164, p163, p162, p161, p160, p159, p158, p157, p156, p155, p154, p153, p152, p151, p150, p149, p148, p147, p146, p145, p144, p143, p142, p141, p140, p139, p138, p137, p136, p135, p134, p133, p132, p131, p130, p129, p128, p127, p126, p125, p124, p123, p122, p121, p120, p119, p118, p117, p116, p115, p114, p113, p112, p111, p110, p109, p108, p107, p106, p105, p104, p103, p102, p101, p100, p99, p98, p97, p96, p95, p94, p93, p92, p91, p90, p89, p88, p87, p86, p85, p84, p83, p82, p81, p80, p79, p78, p77, p76, p75, p74, p73, p72, p71, p70, p69, p68, p67, p66, p65, p64, p63, p62, p61, p60, p59, p58, p57, p56, p55, p54, p53, p52, p51, p50, p49, p48, p47, p46, p45, p44, p43, p42, p41, p40, p39, p38, p37, p36, p35, p34, p33, p32, p31, p30, p29, p28, p27, p26, p25, p24, p23, p22, p21, p20, p19, p18, p17, p16, p15, p14, p13, p12, p11, p10, p9, p8, p7, p6, p5, p4, p3, p2, p1, p0) | [~ [EG [EG [~ [38<=sum(p204, p203, p202, p201, p200, p199, p198, p197, p196, p194, p193, p188, p187, p186, p185, p184, p183, p182, p181, p180, p179, p178, p177, p176, p175, p174, p173, p172, p171, p170, p169, p168, p167, p166, p165, p164, p163, p162, p161, p160, p159, p158, p157, p156, p155, p154, p153, p152, p151, p150, p149, p148, p147, p146, p145, p144, p143, p142, p141, p140, p139, p138, p137, p136, p135, p134, p133, p132, p131, p130, p129, p128, p127, p126, p125, p124, p123, p122, p121, p120, p119, p118, p117, p116, p115, p114, p113, p112, p111, p110, p109, p108, p107, p106, p105, p104, p103, p102, p101, p100, p99, p98, p97, p96, p95, p94, p93, p92, p91, p90, p89, p88, p87, p86, p85, p84, p83, p82, p81, p80, p79, p78, p77, p76, p75, p74, p73, p72, p71, p70, p69, p68, p67, p66, p65, p64, p63, p62, p61, p60, p59, p58, p57, p56, p55, p54, p53, p52, p51, p50, p49, p48, p47, p46, p45, p44, p43, p42, p41, p40, p39, p38, p37, p36, p35, p34, p33, p32, p31, p30, p29, p28, p27, p26, p25, p24, p23, p22, p21, p20, p19, p18, p17, p16, p15, p14, p13, p12, p11, p10, p9, p8, p7, p6, p5, p4, p3, p2, p1, p0)]]]] & ~ [E [EG [~ [38<=sum(p204, p203, p202, p201, p200, p199, p198, p197, p196, p194, p193, p188, p187, p186, p185, p184, p183, p182, p181, p180, p179, p178, p177, p176, p175, p174, p173, p172, p171, p170, p169, p168, p167, p166, p165, p164, p163, p162, p161, p160, p159, p158, p157, p156, p155, p154, p153, p152, p151, p150, p149, p148, p147, p146, p145, p144, p143, p142, p141, p140, p139, p138, p137, p136, p135, p134, p133, p132, p131, p130, p129, p128, p127, p126, p125, p124, p123, p122, p121, p120, p119, p118, p117, p116, p115, p114, p113, p112, p111, p110, p109, p108, p107, p106, p105, p104, p103, p102, p101, p100, p99, p98, p97, p96, p95, p94, p93, p92, p91, p90, p89, p88, p87, p86, p85, p84, p83, p82, p81, p80, p79, p78, p77, p76, p75, p74, p73, p72, p71, p70, p69, p68, p67, p66, p65, p64, p63, p62, p61, p60, p59, p58, p57, p56, p55, p54, p53, p52, p51, p50, p49, p48, p47, p46, p45, p44, p43, p42, p41, p40, p39, p38, p37, p36, p35, p34, p33, p32, p31, p30, p29, p28, p27, p26, p25, p24, p23, p22, p21, p20, p19, p18, p17, p16, p15, p14, p13, p12, p11, p10, p9, p8, p7, p6, p5, p4, p3, p2, p1, p0)]] U [EG [~ [38<=sum(p204, p203, p202, p201, p200, p199, p198, p197, p196, p194, p193, p188, p187, p186, p185, p184, p183, p182, p181, p180, p179, p178, p177, p176, p175, p174, p173, p172, p171, p170, p169, p168, p167, p166, p165, p164, p163, p162, p161, p160, p159, p158, p157, p156, p155, p154, p153, p152, p151, p150, p149, p148, p147, p146, p145, p144, p143, p142, p141, p140, p139, p138, p137, p136, p135, p134, p133, p132, p131, p130, p129, p128, p127, p126, p125, p124, p123, p122, p121, p120, p119, p118, p117, p116, p115, p114, p113, p112, p111, p110, p109, p108, p107, p106, p105, p104, p103, p102, p101, p100, p99, p98, p97, p96, p95, p94, p93, p92, p91, p90, p89, p88, p87, p86, p85, p84, p83, p82, p81, p80, p79, p78, p77, p76, p75, p74, p73, p72, p71, p70, p69, p68, p67, p66, p65, p64, p63, p62, p61, p60, p59, p58, p57, p56, p55, p54, p53, p52, p51, p50, p49, p48, p47, p46, p45, p44, p43, p42, p41, p40, p39, p38, p37, p36, p35, p34, p33, p32, p31, p30, p29, p28, p27, p26, p25, p24, p23, p22, p21, p20, p19, p18, p17, p16, p15, p14, p13, p12, p11, p10, p9, p8, p7, p6, p5, p4, p3, p2, p1, p0)]] & ~ [sum(p828, p827, p826, p825, p824, p823, p822, p821, p820, p819, p818, p817, p816, p815, p814, p813, p812, p811, p810, p809, p808, p807, p806, p805, p804, p803, p802, p801, p800, p799, p798, p797, p787, p786, p785, p764, p763, p762, p761, p760, p759, p758, p757, p756, p755, p754, p753, p752, p751, p750, p749, p748, p747, p746, p745, p744, p743, p742, p741, p740, p739, p738, p737, p736, p735, p734, p733, p732, p731, p730, p729, p728, p727, p726, p725, p724, p723, p722, p721, p720, p719, p718, p717, p716, p715, p714, p713, p712, p711, p710, p709, p708, p707, p706, p705, p704, p703, p702, p701, p700, p699, p698, p697, p696, p695, p694, p693, p692, p691, p690, p689, p688, p687, p686, p685, p684, p683, p682, p681, p680, p679, p678, p677, p676, p675, p674, p673, p672, p671, p670, p669, p668, p667, p666, p665, p664, p663, p662, p661, p660, p659, p658, p657, p656, p655, p654, p653, p652, p651, p650, p649, p648, p647, p646, p645, p644, p643, p642, p641, p640, p639, p638, p637, p636, p635, p634, p633, p631, p604, p603, p602, p601, p600, p599, p598, p597, p596, p595, p594, p593, p592, p591, p590, p589, p588, p587, p586, p585, p584, p583, p582, p581, p580, p579, p578, p577, p576, p575, p574, p573)<=sum(p999, p998, p997, p996, p995, p994, p993, p992, p991, p990, p989, p988, p987, p986, p985, p984, p983, p982, p981, p980, p979, p978, p977, p976, p975, p974, p973, p972, p971, p970, p969, p968, p967, p966, p965, p964, p963, p962, p961, p960, p959, p958, p957, p956, p955, p954, p953, p952, p951, p950, p949, p948, p947, p946, p945, p944, p943, p942, p941, p940, p939, p938, p937, p936, p935, p934, p933, p932, p931, p930, p929, p928, p927, p926, p925, p924, p923, p922, p921, p920, p919, p918, p917, p916, p915, p914, p913, p912, p911, p910, p909, p908, p907, p906, p905, p904, p903, p902, p901, p900, p899, p898, p897, p896, p895, p894, p893, p892, p891, p890, p889, p888, p887, p886, p885, p884, p883, p882, p881, p880, p879, p878, p877, p876, p875, p874, p873, p872, p871, p870, p869, p868, p867, p866, p865, p864, p863, p862, p861, p860, p859, p858, p857, p856, p855, p854, p853, p852, p851, p850, p849, p848, p847, p846, p845, p844, p843, p842, p841, p840, p839, p838, p837, p836, p835, p834, p833, p832, p831, p830, p829, p796, p795, p794, p793, p792, p791, p790, p789, p788, p784, p783, p782, p781, p780, p779, p778, p777, p776, p775, p774, p773, p772, p771, p770, p769, p768, p767, p766, p765)]]]]]]] & ~ [[[E [true U 86<=sum(p632, p630, p629, p628, p627, p626, p625, p624, p623, p622, p621, p620, p619, p618, p617, p616, p615, p614, p613, p612, p611, p610, p609, p608, p607, p606, p605, p572, p571, p570, p569, p568, p567, p566, p565, p564, p563, p562, p561, p560, p559, p558, p557, p556, p555, p554, p553, p552, p551, p550, p549, p548, p547, p546, p545, p544, p543, p542, p541, p540, p539, p538, p537, p536, p535, p534, p533, p532, p531, p530, p529, p528, p527, p526, p525, p524, p523, p522, p521, p520, p519, p518, p517, p516, p515, p514, p513, p512, p511, p510, p509, p508, p507, p506, p505, p504, p503, p502, p501, p500, p499, p498, p497, p496, p495, p494, p493, p492, p491, p490, p489, p488, p487, p486, p485, p484, p483, p482, p481, p480, p479, p478, p477, p476, p475, p474, p473, p472, p471, p470, p469, p468, p467, p466, p465, p464, p463, p462, p461, p460, p459, p458, p457, p456, p455, p454, p453, p452, p451, p450, p449, p448, p447, p446, p445, p444, p443, p442, p441, p440, p439, p438, p437, p436, p435, p434, p433, p432, p431, p430, p429, p428, p427, p426, p425, p424, p423, p422, p421, p420, p419, p418, p417, p416, p415, p414, p413, p396, p395, p394, p393, p390, p388, p387, p386, p385, p384, p383, p382, p381)] & [sum(p632, p630, p629, p628, p627, p626, p625, p624, p623, p622, p621, p620, p619, p618, p617, p616, p615, p614, p613, p612, p611, p610, p609, p608, p607, p606, p605, p572, p571, p570, p569, p568, p567, p566, p565, p564, p563, p562, p561, p560, p559, p558, p557, p556, p555, p554, p553, p552, p551, p550, p549, p548, p547, p546, p545, p544, p543, p542, p541, p540, p539, p538, p537, p536, p535, p534, p533, p532, p531, p530, p529, p528, p527, p526, p525, p524, p523, p522, p521, p520, p519, p518, p517, p516, p515, p514, p513, p512, p511, p510, p509, p508, p507, p506, p505, p504, p503, p502, p501, p500, p499, p498, p497, p496, p495, p494, p493, p492, p491, p490, p489, p488, p487, p486, p485, p484, p483, p482, p481, p480, p479, p478, p477, p476, p475, p474, p473, p472, p471, p470, p469, p468, p467, p466, p465, p464, p463, p462, p461, p460, p459, p458, p457, p456, p455, p454, p453, p452, p451, p450, p449, p448, p447, p446, p445, p444, p443, p442, p441, p440, p439, p438, p437, p436, p435, p434, p433, p432, p431, p430, p429, p428, p427, p426, p425, p424, p423, p422, p421, p420, p419, p418, p417, p416, p415, p414, p413, p396, p395, p394, p393, p390, p388, p387, p386, p385, p384, p383, p382, p381)<=89 | EG [72<=sum(p999, p998, p997, p996, p995, p994, p993, p992, p991, p990, p989, p988, p987, p986, p985, p984, p983, p982, p981, p980, p979, p978, p977, p976, p975, p974, p973, p972, p971, p970, p969, p968, p967, p966, p965, p964, p963, p962, p961, p960, p959, p958, p957, p956, p955, p954, p953, p952, p951, p950, p949, p948, p947, p946, p945, p944, p943, p942, p941, p940, p939, p938, p937, p936, p935, p934, p933, p932, p931, p930, p929, p928, p927, p926, p925, p924, p923, p922, p921, p920, p919, p918, p917, p916, p915, p914, p913, p912, p911, p910, p909, p908, p907, p906, p905, p904, p903, p902, p901, p900, p899, p898, p897, p896, p895, p894, p893, p892, p891, p890, p889, p888, p887, p886, p885, p884, p883, p882, p881, p880, p879, p878, p877, p876, p875, p874, p873, p872, p871, p870, p869, p868, p867, p866, p865, p864, p863, p862, p861, p860, p859, p858, p857, p856, p855, p854, p853, p852, p851, p850, p849, p848, p847, p846, p845, p844, p843, p842, p841, p840, p839, p838, p837, p836, p835, p834, p833, p832, p831, p830, p829, p796, p795, p794, p793, p792, p791, p790, p789, p788, p784, p783, p782, p781, p780, p779, p778, p777, p776, p775, p774, p773, p772, p771, p770, p769, p768, p767, p766, p765)]]] & [sum(p412, p411, p410, p409, p408, p407, p406, p405, p404, p403, p402, p401, p400, p399, p398, p397, p392, p391, p389, p380, p379, p378, p377, p376, p375, p374, p373, p372, p371, p370, p369, p368, p367, p366, p365, p364, p363, p362, p361, p360, p359, p358, p357, p356, p355, p354, p353, p352, p351, p350, p349, p348, p347, p346, p345, p344, p343, p342, p341, p340, p339, p338, p337, p336, p335, p334, p333, p332, p331, p330, p329, p328, p327, p326, p325, p324, p323, p322, p321, p320, p319, p318, p317, p316, p315, p314, p313, p312, p311, p310, p309, p308, p307, p306, p305, p304, p303, p302, p301, p300, p299, p298, p297, p296, p295, p294, p293, p292, p291, p290, p289, p288, p287, p286, p285, p284, p283, p282, p281, p280, p279, p278, p277, p276, p275, p274, p273, p272, p271, p270, p269, p268, p267, p266, p265, p264, p263, p262, p261, p260, p259, p258, p257, p256, p255, p254, p253, p252, p251, p250, p249, p248, p247, p246, p245, p244, p243, p242, p241, p240, p239, p238, p237, p236, p235, p234, p233, p232, p231, p230, p229, p228, p227, p226, p225, p224, p223, p222, p221, p220, p219, p218, p217, p216, p215, p214, p213, p212, p211, p210, p209, p208, p207, p206, p205, p195, p192, p191, p190, p189)<=52 & [sum(p999, p998, p997, p996, p995, p994, p993, p992, p991, p990, p989, p988, p987, p986, p985, p984, p983, p982, p981, p980, p979, p978, p977, p976, p975, p974, p973, p972, p971, p970, p969, p968, p967, p966, p965, p964, p963, p962, p961, p960, p959, p958, p957, p956, p955, p954, p953, p952, p951, p950, p949, p948, p947, p946, p945, p944, p943, p942, p941, p940, p939, p938, p937, p936, p935, p934, p933, p932, p931, p930, p929, p928, p927, p926, p925, p924, p923, p922, p921, p920, p919, p918, p917, p916, p915, p914, p913, p912, p911, p910, p909, p908, p907, p906, p905, p904, p903, p902, p901, p900, p899, p898, p897, p896, p895, p894, p893, p892, p891, p890, p889, p888, p887, p886, p885, p884, p883, p882, p881, p880, p879, p878, p877, p876, p875, p874, p873, p872, p871, p870, p869, p868, p867, p866, p865, p864, p863, p862, p861, p860, p859, p858, p857, p856, p855, p854, p853, p852, p851, p850, p849, p848, p847, p846, p845, p844, p843, p842, p841, p840, p839, p838, p837, p836, p835, p834, p833, p832, p831, p830, p829, p796, p795, p794, p793, p792, p791, p790, p789, p788, p784, p783, p782, p781, p780, p779, p778, p777, p776, p775, p774, p773, p772, p771, p770, p769, p768, p767, p766, p765)<=66 & [89<=sum(p632, p630, p629, p628, p627, p626, p625, p624, p623, p622, p621, p620, p619, p618, p617, p616, p615, p614, p613, p612, p611, p610, p609, p608, p607, p606, p605, p572, p571, p570, p569, p568, p567, p566, p565, p564, p563, p562, p561, p560, p559, p558, p557, p556, p555, p554, p553, p552, p551, p550, p549, p548, p547, p546, p545, p544, p543, p542, p541, p540, p539, p538, p537, p536, p535, p534, p533, p532, p531, p530, p529, p528, p527, p526, p525, p524, p523, p522, p521, p520, p519, p518, p517, p516, p515, p514, p513, p512, p511, p510, p509, p508, p507, p506, p505, p504, p503, p502, p501, p500, p499, p498, p497, p496, p495, p494, p493, p492, p491, p490, p489, p488, p487, p486, p485, p484, p483, p482, p481, p480, p479, p478, p477, p476, p475, p474, p473, p472, p471, p470, p469, p468, p467, p466, p465, p464, p463, p462, p461, p460, p459, p458, p457, p456, p455, p454, p453, p452, p451, p450, p449, p448, p447, p446, p445, p444, p443, p442, p441, p440, p439, p438, p437, p436, p435, p434, p433, p432, p431, p430, p429, p428, p427, p426, p425, p424, p423, p422, p421, p420, p419, p418, p417, p416, p415, p414, p413, p396, p395, p394, p393, p390, p388, p387, p386, p385, p384, p383, p382, p381) | sum(p828, p827, p826, p825, p824, p823, p822, p821, p820, p819, p818, p817, p816, p815, p814, p813, p812, p811, p810, p809, p808, p807, p806, p805, p804, p803, p802, p801, p800, p799, p798, p797, p787, p786, p785, p764, p763, p762, p761, p760, p759, p758, p757, p756, p755, p754, p753, p752, p751, p750, p749, p748, p747, p746, p745, p744, p743, p742, p741, p740, p739, p738, p737, p736, p735, p734, p733, p732, p731, p730, p729, p728, p727, p726, p725, p724, p723, p722, p721, p720, p719, p718, p717, p716, p715, p714, p713, p712, p711, p710, p709, p708, p707, p706, p705, p704, p703, p702, p701, p700, p699, p698, p697, p696, p695, p694, p693, p692, p691, p690, p689, p688, p687, p686, p685, p684, p683, p682, p681, p680, p679, p678, p677, p676, p675, p674, p673, p672, p671, p670, p669, p668, p667, p666, p665, p664, p663, p662, p661, p660, p659, p658, p657, p656, p655, p654, p653, p652, p651, p650, p649, p648, p647, p646, p645, p644, p643, p642, p641, p640, p639, p638, p637, p636, p635, p634, p633, p631, p604, p603, p602, p601, p600, p599, p598, p597, p596, p595, p594, p593, p592, p591, p590, p589, p588, p587, p586, p585, p584, p583, p582, p581, p580, p579, p578, p577, p576, p575, p574, p573)<=32]]]]]]]] & ~ [EG [~ [[[E [true U 86<=sum(p632, p630, p629, p628, p627, p626, p625, p624, p623, p622, p621, p620, p619, p618, p617, p616, p615, p614, p613, p612, p611, p610, p609, p608, p607, p606, p605, p572, p571, p570, p569, p568, p567, p566, p565, p564, p563, p562, p561, p560, p559, p558, p557, p556, p555, p554, p553, p552, p551, p550, p549, p548, p547, p546, p545, p544, p543, p542, p541, p540, p539, p538, p537, p536, p535, p534, p533, p532, p531, p530, p529, p528, p527, p526, p525, p524, p523, p522, p521, p520, p519, p518, p517, p516, p515, p514, p513, p512, p511, p510, p509, p508, p507, p506, p505, p504, p503, p502, p501, p500, p499, p498, p497, p496, p495, p494, p493, p492, p491, p490, p489, p488, p487, p486, p485, p484, p483, p482, p481, p480, p479, p478, p477, p476, p475, p474, p473, p472, p471, p470, p469, p468, p467, p466, p465, p464, p463, p462, p461, p460, p459, p458, p457, p456, p455, p454, p453, p452, p451, p450, p449, p448, p447, p446, p445, p444, p443, p442, p441, p440, p439, p438, p437, p436, p435, p434, p433, p432, p431, p430, p429, p428, p427, p426, p425, p424, p423, p422, p421, p420, p419, p418, p417, p416, p415, p414, p413, p396, p395, p394, p393, p390, p388, p387, p386, p385, p384, p383, p382, p381)] & [sum(p632, p630, p629, p628, p627, p626, p625, p624, p623, p622, p621, p620, p619, p618, p617, p616, p615, p614, p613, p612, p611, p610, p609, p608, p607, p606, p605, p572, p571, p570, p569, p568, p567, p566, p565, p564, p563, p562, p561, p560, p559, p558, p557, p556, p555, p554, p553, p552, p551, p550, p549, p548, p547, p546, p545, p544, p543, p542, p541, p540, p539, p538, p537, p536, p535, p534, p533, p532, p531, p530, p529, p528, p527, p526, p525, p524, p523, p522, p521, p520, p519, p518, p517, p516, p515, p514, p513, p512, p511, p510, p509, p508, p507, p506, p505, p504, p503, p502, p501, p500, p499, p498, p497, p496, p495, p494, p493, p492, p491, p490, p489, p488, p487, p486, p485, p484, p483, p482, p481, p480, p479, p478, p477, p476, p475, p474, p473, p472, p471, p470, p469, p468, p467, p466, p465, p464, p463, p462, p461, p460, p459, p458, p457, p456, p455, p454, p453, p452, p451, p450, p449, p448, p447, p446, p445, p444, p443, p442, p441, p440, p439, p438, p437, p436, p435, p434, p433, p432, p431, p430, p429, p428, p427, p426, p425, p424, p423, p422, p421, p420, p419, p418, p417, p416, p415, p414, p413, p396, p395, p394, p393, p390, p388, p387, p386, p385, p384, p383, p382, p381)<=89 | EG [72<=sum(p999, p998, p997, p996, p995, p994, p993, p992, p991, p990, p989, p988, p987, p986, p985, p984, p983, p982, p981, p980, p979, p978, p977, p976, p975, p974, p973, p972, p971, p970, p969, p968, p967, p966, p965, p964, p963, p962, p961, p960, p959, p958, p957, p956, p955, p954, p953, p952, p951, p950, p949, p948, p947, p946, p945, p944, p943, p942, p941, p940, p939, p938, p937, p936, p935, p934, p933, p932, p931, p930, p929, p928, p927, p926, p925, p924, p923, p922, p921, p920, p919, p918, p917, p916, p915, p914, p913, p912, p911, p910, p909, p908, p907, p906, p905, p904, p903, p902, p901, p900, p899, p898, p897, p896, p895, p894, p893, p892, p891, p890, p889, p888, p887, p886, p885, p884, p883, p882, p881, p880, p879, p878, p877, p876, p875, p874, p873, p872, p871, p870, p869, p868, p867, p866, p865, p864, p863, p862, p861, p860, p859, p858, p857, p856, p855, p854, p853, p852, p851, p850, p849, p848, p847, p846, p845, p844, p843, p842, p841, p840, p839, p838, p837, p836, p835, p834, p833, p832, p831, p830, p829, p796, p795, p794, p793, p792, p791, p790, p789, p788, p784, p783, p782, p781, p780, p779, p778, p777, p776, p775, p774, p773, p772, p771, p770, p769, p768, p767, p766, p765)]]] & [sum(p412, p411, p410, p409, p408, p407, p406, p405, p404, p403, p402, p401, p400, p399, p398, p397, p392, p391, p389, p380, p379, p378, p377, p376, p375, p374, p373, p372, p371, p370, p369, p368, p367, p366, p365, p364, p363, p362, p361, p360, p359, p358, p357, p356, p355, p354, p353, p352, p351, p350, p349, p348, p347, p346, p345, p344, p343, p342, p341, p340, p339, p338, p337, p336, p335, p334, p333, p332, p331, p330, p329, p328, p327, p326, p325, p324, p323, p322, p321, p320, p319, p318, p317, p316, p315, p314, p313, p312, p311, p310, p309, p308, p307, p306, p305, p304, p303, p302, p301, p300, p299, p298, p297, p296, p295, p294, p293, p292, p291, p290, p289, p288, p287, p286, p285, p284, p283, p282, p281, p280, p279, p278, p277, p276, p275, p274, p273, p272, p271, p270, p269, p268, p267, p266, p265, p264, p263, p262, p261, p260, p259, p258, p257, p256, p255, p254, p253, p252, p251, p250, p249, p248, p247, p246, p245, p244, p243, p242, p241, p240, p239, p238, p237, p236, p235, p234, p233, p232, p231, p230, p229, p228, p227, p226, p225, p224, p223, p222, p221, p220, p219, p218, p217, p216, p215, p214, p213, p212, p211, p210, p209, p208, p207, p206, p205, p195, p192, p191, p190, p189)<=52 & [sum(p999, p998, p997, p996, p995, p994, p993, p992, p991, p990, p989, p988, p987, p986, p985, p984, p983, p982, p981, p980, p979, p978, p977, p976, p975, p974, p973, p972, p971, p970, p969, p968, p967, p966, p965, p964, p963, p962, p961, p960, p959, p958, p957, p956, p955, p954, p953, p952, p951, p950, p949, p948, p947, p946, p945, p944, p943, p942, p941, p940, p939, p938, p937, p936, p935, p934, p933, p932, p931, p930, p929, p928, p927, p926, p925, p924, p923, p922, p921, p920, p919, p918, p917, p916, p915, p914, p913, p912, p911, p910, p909, p908, p907, p906, p905, p904, p903, p902, p901, p900, p899, p898, p897, p896, p895, p894, p893, p892, p891, p890, p889, p888, p887, p886, p885, p884, p883, p882, p881, p880, p879, p878, p877, p876, p875, p874, p873, p872, p871, p870, p869, p868, p867, p866, p865, p864, p863, p862, p861, p860, p859, p858, p857, p856, p855, p854, p853, p852, p851, p850, p849, p848, p847, p846, p845, p844, p843, p842, p841, p840, p839, p838, p837, p836, p835, p834, p833, p832, p831, p830, p829, p796, p795, p794, p793, p792, p791, p790, p789, p788, p784, p783, p782, p781, p780, p779, p778, p777, p776, p775, p774, p773, p772, p771, p770, p769, p768, p767, p766, p765)<=66 & [89<=sum(p632, p630, p629, p628, p627, p626, p625, p624, p623, p622, p621, p620, p619, p618, p617, p616, p615, p614, p613, p612, p611, p610, p609, p608, p607, p606, p605, p572, p571, p570, p569, p568, p567, p566, p565, p564, p563, p562, p561, p560, p559, p558, p557, p556, p555, p554, p553, p552, p551, p550, p549, p548, p547, p546, p545, p544, p543, p542, p541, p540, p539, p538, p537, p536, p535, p534, p533, p532, p531, p530, p529, p528, p527, p526, p525, p524, p523, p522, p521, p520, p519, p518, p517, p516, p515, p514, p513, p512, p511, p510, p509, p508, p507, p506, p505, p504, p503, p502, p501, p500, p499, p498, p497, p496, p495, p494, p493, p492, p491, p490, p489, p488, p487, p486, p485, p484, p483, p482, p481, p480, p479, p478, p477, p476, p475, p474, p473, p472, p471, p470, p469, p468, p467, p466, p465, p464, p463, p462, p461, p460, p459, p458, p457, p456, p455, p454, p453, p452, p451, p450, p449, p448, p447, p446, p445, p444, p443, p442, p441, p440, p439, p438, p437, p436, p435, p434, p433, p432, p431, p430, p429, p428, p427, p426, p425, p424, p423, p422, p421, p420, p419, p418, p417, p416, p415, p414, p413, p396, p395, p394, p393, p390, p388, p387, p386, p385, p384, p383, p382, p381) | sum(p828, p827, p826, p825, p824, p823, p822, p821, p820, p819, p818, p817, p816, p815, p814, p813, p812, p811, p810, p809, p808, p807, p806, p805, p804, p803, p802, p801, p800, p799, p798, p797, p787, p786, p785, p764, p763, p762, p761, p760, p759, p758, p757, p756, p755, p754, p753, p752, p751, p750, p749, p748, p747, p746, p745, p744, p743, p742, p741, p740, p739, p738, p737, p736, p735, p734, p733, p732, p731, p730, p729, p728, p727, p726, p725, p724, p723, p722, p721, p720, p719, p718, p717, p716, p715, p714, p713, p712, p711, p710, p709, p708, p707, p706, p705, p704, p703, p702, p701, p700, p699, p698, p697, p696, p695, p694, p693, p692, p691, p690, p689, p688, p687, p686, p685, p684, p683, p682, p681, p680, p679, p678, p677, p676, p675, p674, p673, p672, p671, p670, p669, p668, p667, p666, p665, p664, p663, p662, p661, p660, p659, p658, p657, p656, p655, p654, p653, p652, p651, p650, p649, p648, p647, p646, p645, p644, p643, p642, p641, p640, p639, p638, p637, p636, p635, p634, p633, p631, p604, p603, p602, p601, p600, p599, p598, p597, p596, p595, p594, p593, p592, p591, p590, p589, p588, p587, p586, p585, p584, p583, p582, p581, p580, p579, p578, p577, p576, p575, p574, p573)<=32]]]]]]]]]]

abstracting: (sum(p828, p827, p826, p825, p824, p823, p822, p821, p820, p819, p818, p817, p816, p815, p814, p813, p812, p811, p810, p809, p808, p807, p806, p805, p804, p803, p802, p801, p800, p799, p798, p797, p787, p786, p785, p764, p763, p762, p761, p760, p759, p758, p757, p756, p755, p754, p753, p752, p751, p750, p749, p748, p747, p746, p745, p744, p743, p742, p741, p740, p739, p738, p737, p736, p735, p734, p733, p732, p731, p730, p729, p728, p727, p726, p725, p724, p723, p722, p721, p720, p719, p718, p717, p716, p715, p714, p713, p712, p711, p710, p709, p708, p707, p706, p705, p704, p703, p702, p701, p700, p699, p698, p697, p696, p695, p694, p693, p692, p691, p690, p689, p688, p687, p686, p685, p684, p683, p682, p681, p680, p679, p678, p677, p676, p675, p674, p673, p672, p671, p670, p669, p668, p667, p666, p665, p664, p663, p662, p661, p660, p659, p658, p657, p656, p655, p654, p653, p652, p651, p650, p649, p648, p647, p646, p645, p644, p643, p642, p641, p640, p639, p638, p637, p636, p635, p634, p633, p631, p604, p603, p602, p601, p600, p599, p598, p597, p596, p595, p594, p593, p592, p591, p590, p589, p588, p587, p586, p585, p584, p583, p582, p581, p580, p579, p578, p577, p576, p575, p574, p573)<=32)
TIME LIMIT: Killed by timeout after 3600 seconds
MemTotal: 16393216 kB
MemFree: 6837260 kB
After kill :
MemTotal: 16393216 kB
MemFree: 16089860 kB

BK_TIME_CONFINEMENT_REACHED

--------------------
content from stderr:

+ ulimit -s 65536
+ [[ -z '' ]]
+ export LTSMIN_MEM_SIZE=8589934592
+ LTSMIN_MEM_SIZE=8589934592
+ export PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ export LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
+ LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
++ sed s/.jar//
++ perl -pe 's/.*\.//g'
++ ls /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/plugins/fr.lip6.move.gal.application.pnmcc_1.0.0.202303021504.jar
+ VERSION=202303021504
+ echo 'Running Version 202303021504'
+ /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/its-tools -pnfolder /home/mcc/execution -examination CTLCardinality -timeout 360 -rebuildPNML
check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok


initing FirstDep: 0m 0.008sec


iterations count:4593 (4), effective:600 (0)

initing FirstDep: 0m 0.006sec

6383
iterations count:152013 (152), effective:25848 (25)

iterations count:1811 (1), effective:143 (0)

iterations count:5990 (5), effective:693 (0)

iterations count:1955 (1), effective:200 (0)

iterations count:1401 (1), effective:80 (0)

iterations count:8121 (8), effective:794 (0)

iterations count:6302 (6), effective:730 (0)

iterations count:33809 (33), effective:4825 (4)

iterations count:8548 (8), effective:868 (0)

iterations count:1569 (1), effective:99 (0)

iterations count:2865 (2), effective:270 (0)

iterations count:4313 (4), effective:542 (0)

idd.h:1025: Timeout: after 581 sec


idd.h:1025: Timeout: after 484 sec


idd.h:1025: Timeout: after 403 sec


idd.h:1025: Timeout: after 336 sec


idd.h:1025: Timeout: after 280 sec


idd.h:1025: Timeout: after 233 sec

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="Philosophers-PT-000200"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marciexred"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marciexred"
echo " Input is Philosophers-PT-000200, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r298-tall-167873951400225"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"

tar xzf /home/mcc/BenchKit/INPUTS/Philosophers-PT-000200.tgz
mv Philosophers-PT-000200 execution
cd execution
if [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "UpperBounds" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] || [ "CTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh

echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' CTLCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME CTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;