About the Execution of Marcie+red for Philosophers-PT-000100
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
6504.180 | 3600000.00 | 3636966.00 | 9550.30 | ?TT?????TTTTFTTT | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fkordon/mcc2023-input.r298-tall-167873951400217.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2023-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
=====================================================================
Generated by BenchKit 2-5348
Executing tool marciexred
Input is Philosophers-PT-000100, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r298-tall-167873951400217
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 5.3M
-rw-r--r-- 1 mcc users 98K Feb 25 13:16 CTLCardinality.txt
-rw-r--r-- 1 mcc users 597K Feb 25 13:16 CTLCardinality.xml
-rw-r--r-- 1 mcc users 48K Feb 25 13:10 CTLFireability.txt
-rw-r--r-- 1 mcc users 326K Feb 25 13:10 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K Jan 29 11:40 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.8K Jan 29 11:40 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 53K Feb 25 16:32 LTLCardinality.txt
-rw-r--r-- 1 mcc users 210K Feb 25 16:32 LTLCardinality.xml
-rw-r--r-- 1 mcc users 36K Feb 25 16:33 LTLFireability.txt
-rw-r--r-- 1 mcc users 181K Feb 25 16:33 LTLFireability.xml
-rw-r--r-- 1 mcc users 145K Feb 25 13:30 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 860K Feb 25 13:30 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 323K Feb 25 13:25 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 2.2M Feb 25 13:25 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 11K Feb 25 16:33 UpperBounds.txt
-rw-r--r-- 1 mcc users 29K Feb 25 16:33 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Mar 5 18:23 equiv_col
-rw-r--r-- 1 mcc users 7 Mar 5 18:23 instance
-rw-r--r-- 1 mcc users 6 Mar 5 18:23 iscolored
-rw-r--r-- 1 mcc users 215K Mar 5 18:23 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME Philosophers-PT-000100-CTLCardinality-00
FORMULA_NAME Philosophers-PT-000100-CTLCardinality-01
FORMULA_NAME Philosophers-PT-000100-CTLCardinality-02
FORMULA_NAME Philosophers-PT-000100-CTLCardinality-03
FORMULA_NAME Philosophers-PT-000100-CTLCardinality-04
FORMULA_NAME Philosophers-PT-000100-CTLCardinality-05
FORMULA_NAME Philosophers-PT-000100-CTLCardinality-06
FORMULA_NAME Philosophers-PT-000100-CTLCardinality-07
FORMULA_NAME Philosophers-PT-000100-CTLCardinality-08
FORMULA_NAME Philosophers-PT-000100-CTLCardinality-09
FORMULA_NAME Philosophers-PT-000100-CTLCardinality-10
FORMULA_NAME Philosophers-PT-000100-CTLCardinality-11
FORMULA_NAME Philosophers-PT-000100-CTLCardinality-12
FORMULA_NAME Philosophers-PT-000100-CTLCardinality-13
FORMULA_NAME Philosophers-PT-000100-CTLCardinality-14
FORMULA_NAME Philosophers-PT-000100-CTLCardinality-15
=== Now, execution of the tool begins
BK_START 1679479605002
bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marciexred
BK_EXAMINATION=CTLCardinality
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=Philosophers-PT-000100
Applying reductions before tool marcie
Invoking reducer
Running Version 202303021504
[2023-03-22 10:06:46] [INFO ] Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, CTLCardinality, -timeout, 360, -rebuildPNML]
[2023-03-22 10:06:46] [INFO ] Parsing pnml file : /home/mcc/execution/model.pnml
[2023-03-22 10:06:46] [INFO ] Load time of PNML (sax parser for PT used): 68 ms
[2023-03-22 10:06:46] [INFO ] Transformed 500 places.
[2023-03-22 10:06:46] [INFO ] Transformed 500 transitions.
[2023-03-22 10:06:46] [INFO ] Found NUPN structural information;
[2023-03-22 10:06:46] [INFO ] Parsed PT model containing 500 places and 500 transitions and 1600 arcs in 131 ms.
Parsed 16 properties from file /home/mcc/execution/CTLCardinality.xml in 36 ms.
Initial state reduction rules removed 1 formulas.
FORMULA Philosophers-PT-000100-CTLCardinality-01 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
Support contains 500 out of 500 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 500/500 places, 500/500 transitions.
Applied a total of 0 rules in 11 ms. Remains 500 /500 variables (removed 0) and now considering 500/500 (removed 0) transitions.
// Phase 1: matrix 500 rows 500 cols
[2023-03-22 10:06:46] [INFO ] Computed 200 place invariants in 25 ms
[2023-03-22 10:06:47] [INFO ] Implicit Places using invariants in 448 ms returned []
[2023-03-22 10:06:47] [INFO ] Invariant cache hit.
[2023-03-22 10:06:47] [INFO ] Implicit Places using invariants and state equation in 284 ms returned []
Implicit Place search using SMT with State Equation took 756 ms to find 0 implicit places.
[2023-03-22 10:06:47] [INFO ] Invariant cache hit.
[2023-03-22 10:06:47] [INFO ] Dead Transitions using invariants and state equation in 318 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 1087 ms. Remains : 500/500 places, 500/500 transitions.
Support contains 500 out of 500 places after structural reductions.
[2023-03-22 10:06:47] [INFO ] Flatten gal took : 60 ms
[2023-03-22 10:06:47] [INFO ] Flatten gal took : 33 ms
[2023-03-22 10:06:48] [INFO ] Input system was already deterministic with 500 transitions.
FORMULA Philosophers-PT-000100-CTLCardinality-10 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
Incomplete random walk after 10000 steps, including 2 resets, run finished after 510 ms. (steps per millisecond=19 ) properties (out of 43) seen :36
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 55 ms. (steps per millisecond=181 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 64 ms. (steps per millisecond=156 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 53 ms. (steps per millisecond=188 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 60 ms. (steps per millisecond=166 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 72 ms. (steps per millisecond=138 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 54 ms. (steps per millisecond=185 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 105 ms. (steps per millisecond=95 ) properties (out of 7) seen :0
Running SMT prover for 7 properties.
[2023-03-22 10:06:49] [INFO ] Invariant cache hit.
[2023-03-22 10:06:49] [INFO ] [Real]Absence check using 200 positive place invariants in 37 ms returned sat
[2023-03-22 10:06:49] [INFO ] After 264ms SMT Verify possible using all constraints in real domain returned unsat :0 sat :0 real:7
[2023-03-22 10:06:49] [INFO ] [Nat]Absence check using 200 positive place invariants in 27 ms returned sat
[2023-03-22 10:06:50] [INFO ] After 712ms SMT Verify possible using state equation in natural domain returned unsat :2 sat :5
[2023-03-22 10:06:51] [INFO ] After 1412ms SMT Verify possible using trap constraints in natural domain returned unsat :2 sat :5
Attempting to minimize the solution found.
Minimization took 577 ms.
[2023-03-22 10:06:51] [INFO ] After 2280ms SMT Verify possible using all constraints in natural domain returned unsat :2 sat :5
Fused 7 Parikh solutions to 5 different solutions.
Finished Parikh walk after 124 steps, including 0 resets, run visited all 1 properties in 3 ms. (steps per millisecond=41 )
Parikh walk visited 5 properties in 20 ms.
Successfully simplified 2 atomic propositions for a total of 14 simplifications.
[2023-03-22 10:06:51] [INFO ] Flatten gal took : 25 ms
[2023-03-22 10:06:51] [INFO ] Flatten gal took : 26 ms
[2023-03-22 10:06:51] [INFO ] Input system was already deterministic with 500 transitions.
Computed a total of 0 stabilizing places and 0 stable transitions
Starting structural reductions in LTL mode, iteration 0 : 500/500 places, 500/500 transitions.
Applied a total of 0 rules in 27 ms. Remains 500 /500 variables (removed 0) and now considering 500/500 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 27 ms. Remains : 500/500 places, 500/500 transitions.
[2023-03-22 10:06:51] [INFO ] Flatten gal took : 21 ms
[2023-03-22 10:06:51] [INFO ] Flatten gal took : 22 ms
[2023-03-22 10:06:52] [INFO ] Input system was already deterministic with 500 transitions.
Starting structural reductions in SI_CTL mode, iteration 0 : 500/500 places, 500/500 transitions.
Performed 100 Post agglomeration using F-continuation condition.Transition count delta: 100
Deduced a syphon composed of 100 places in 1 ms
Reduce places removed 100 places and 0 transitions.
Iterating global reduction 0 with 200 rules applied. Total rules applied 200 place count 400 transition count 400
Applied a total of 200 rules in 46 ms. Remains 400 /500 variables (removed 100) and now considering 400/500 (removed 100) transitions.
Finished structural reductions in SI_CTL mode , in 1 iterations and 46 ms. Remains : 400/500 places, 400/500 transitions.
[2023-03-22 10:06:52] [INFO ] Flatten gal took : 15 ms
[2023-03-22 10:06:52] [INFO ] Flatten gal took : 15 ms
[2023-03-22 10:06:52] [INFO ] Input system was already deterministic with 400 transitions.
Finished random walk after 116 steps, including 0 resets, run visited all 1 properties in 5 ms. (steps per millisecond=23 )
FORMULA Philosophers-PT-000100-CTLCardinality-02 TRUE TECHNIQUES TOPOLOGICAL RANDOM_WALK
Starting structural reductions in SI_CTL mode, iteration 0 : 500/500 places, 500/500 transitions.
Applied a total of 0 rules in 16 ms. Remains 500 /500 variables (removed 0) and now considering 500/500 (removed 0) transitions.
Finished structural reductions in SI_CTL mode , in 1 iterations and 16 ms. Remains : 500/500 places, 500/500 transitions.
[2023-03-22 10:06:52] [INFO ] Flatten gal took : 16 ms
[2023-03-22 10:06:52] [INFO ] Flatten gal took : 16 ms
[2023-03-22 10:06:52] [INFO ] Input system was already deterministic with 500 transitions.
Starting structural reductions in LTL mode, iteration 0 : 500/500 places, 500/500 transitions.
Applied a total of 0 rules in 5 ms. Remains 500 /500 variables (removed 0) and now considering 500/500 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 5 ms. Remains : 500/500 places, 500/500 transitions.
[2023-03-22 10:06:52] [INFO ] Flatten gal took : 15 ms
[2023-03-22 10:06:52] [INFO ] Flatten gal took : 15 ms
[2023-03-22 10:06:52] [INFO ] Input system was already deterministic with 500 transitions.
Starting structural reductions in SI_CTL mode, iteration 0 : 500/500 places, 500/500 transitions.
Performed 100 Post agglomeration using F-continuation condition.Transition count delta: 100
Deduced a syphon composed of 100 places in 1 ms
Reduce places removed 100 places and 0 transitions.
Iterating global reduction 0 with 200 rules applied. Total rules applied 200 place count 400 transition count 400
Applied a total of 200 rules in 22 ms. Remains 400 /500 variables (removed 100) and now considering 400/500 (removed 100) transitions.
Finished structural reductions in SI_CTL mode , in 1 iterations and 22 ms. Remains : 400/500 places, 400/500 transitions.
[2023-03-22 10:06:52] [INFO ] Flatten gal took : 10 ms
[2023-03-22 10:06:52] [INFO ] Flatten gal took : 11 ms
[2023-03-22 10:06:52] [INFO ] Input system was already deterministic with 400 transitions.
Starting structural reductions in SI_CTL mode, iteration 0 : 500/500 places, 500/500 transitions.
Applied a total of 0 rules in 14 ms. Remains 500 /500 variables (removed 0) and now considering 500/500 (removed 0) transitions.
Finished structural reductions in SI_CTL mode , in 1 iterations and 15 ms. Remains : 500/500 places, 500/500 transitions.
[2023-03-22 10:06:52] [INFO ] Flatten gal took : 12 ms
[2023-03-22 10:06:52] [INFO ] Flatten gal took : 13 ms
[2023-03-22 10:06:52] [INFO ] Input system was already deterministic with 500 transitions.
Starting structural reductions in LTL mode, iteration 0 : 500/500 places, 500/500 transitions.
Applied a total of 0 rules in 2 ms. Remains 500 /500 variables (removed 0) and now considering 500/500 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 3 ms. Remains : 500/500 places, 500/500 transitions.
[2023-03-22 10:06:52] [INFO ] Flatten gal took : 13 ms
[2023-03-22 10:06:52] [INFO ] Flatten gal took : 14 ms
[2023-03-22 10:06:52] [INFO ] Input system was already deterministic with 500 transitions.
Starting structural reductions in LTL mode, iteration 0 : 500/500 places, 500/500 transitions.
Applied a total of 0 rules in 17 ms. Remains 500 /500 variables (removed 0) and now considering 500/500 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 17 ms. Remains : 500/500 places, 500/500 transitions.
[2023-03-22 10:06:52] [INFO ] Flatten gal took : 13 ms
[2023-03-22 10:06:52] [INFO ] Flatten gal took : 14 ms
[2023-03-22 10:06:52] [INFO ] Input system was already deterministic with 500 transitions.
Starting structural reductions in LTL mode, iteration 0 : 500/500 places, 500/500 transitions.
Applied a total of 0 rules in 12 ms. Remains 500 /500 variables (removed 0) and now considering 500/500 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 12 ms. Remains : 500/500 places, 500/500 transitions.
[2023-03-22 10:06:52] [INFO ] Flatten gal took : 13 ms
[2023-03-22 10:06:52] [INFO ] Flatten gal took : 14 ms
[2023-03-22 10:06:52] [INFO ] Input system was already deterministic with 500 transitions.
Starting structural reductions in LTL mode, iteration 0 : 500/500 places, 500/500 transitions.
Applied a total of 0 rules in 11 ms. Remains 500 /500 variables (removed 0) and now considering 500/500 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 11 ms. Remains : 500/500 places, 500/500 transitions.
[2023-03-22 10:06:52] [INFO ] Flatten gal took : 12 ms
[2023-03-22 10:06:52] [INFO ] Flatten gal took : 13 ms
[2023-03-22 10:06:52] [INFO ] Input system was already deterministic with 500 transitions.
Starting structural reductions in SI_CTL mode, iteration 0 : 500/500 places, 500/500 transitions.
Performed 94 Post agglomeration using F-continuation condition.Transition count delta: 94
Deduced a syphon composed of 94 places in 1 ms
Reduce places removed 94 places and 0 transitions.
Iterating global reduction 0 with 188 rules applied. Total rules applied 188 place count 406 transition count 406
Applied a total of 188 rules in 36 ms. Remains 406 /500 variables (removed 94) and now considering 406/500 (removed 94) transitions.
Finished structural reductions in SI_CTL mode , in 1 iterations and 36 ms. Remains : 406/500 places, 406/500 transitions.
[2023-03-22 10:06:52] [INFO ] Flatten gal took : 10 ms
[2023-03-22 10:06:52] [INFO ] Flatten gal took : 11 ms
[2023-03-22 10:06:52] [INFO ] Input system was already deterministic with 406 transitions.
Starting structural reductions in SI_CTL mode, iteration 0 : 500/500 places, 500/500 transitions.
Performed 99 Post agglomeration using F-continuation condition.Transition count delta: 99
Deduced a syphon composed of 99 places in 0 ms
Reduce places removed 99 places and 0 transitions.
Iterating global reduction 0 with 198 rules applied. Total rules applied 198 place count 401 transition count 401
Applied a total of 198 rules in 23 ms. Remains 401 /500 variables (removed 99) and now considering 401/500 (removed 99) transitions.
Finished structural reductions in SI_CTL mode , in 1 iterations and 23 ms. Remains : 401/500 places, 401/500 transitions.
[2023-03-22 10:06:52] [INFO ] Flatten gal took : 10 ms
[2023-03-22 10:06:52] [INFO ] Flatten gal took : 10 ms
[2023-03-22 10:06:52] [INFO ] Input system was already deterministic with 401 transitions.
Finished random walk after 118 steps, including 0 resets, run visited all 1 properties in 3 ms. (steps per millisecond=39 )
FORMULA Philosophers-PT-000100-CTLCardinality-13 TRUE TECHNIQUES TOPOLOGICAL RANDOM_WALK
Starting structural reductions in SI_CTL mode, iteration 0 : 500/500 places, 500/500 transitions.
Performed 93 Post agglomeration using F-continuation condition.Transition count delta: 93
Deduced a syphon composed of 93 places in 0 ms
Reduce places removed 93 places and 0 transitions.
Iterating global reduction 0 with 186 rules applied. Total rules applied 186 place count 407 transition count 407
Applied a total of 186 rules in 22 ms. Remains 407 /500 variables (removed 93) and now considering 407/500 (removed 93) transitions.
Finished structural reductions in SI_CTL mode , in 1 iterations and 22 ms. Remains : 407/500 places, 407/500 transitions.
[2023-03-22 10:06:52] [INFO ] Flatten gal took : 9 ms
[2023-03-22 10:06:52] [INFO ] Flatten gal took : 10 ms
[2023-03-22 10:06:52] [INFO ] Input system was already deterministic with 407 transitions.
Starting structural reductions in SI_CTL mode, iteration 0 : 500/500 places, 500/500 transitions.
Performed 100 Post agglomeration using F-continuation condition.Transition count delta: 100
Deduced a syphon composed of 100 places in 0 ms
Reduce places removed 100 places and 0 transitions.
Iterating global reduction 0 with 200 rules applied. Total rules applied 200 place count 400 transition count 400
Applied a total of 200 rules in 16 ms. Remains 400 /500 variables (removed 100) and now considering 400/500 (removed 100) transitions.
Finished structural reductions in SI_CTL mode , in 1 iterations and 16 ms. Remains : 400/500 places, 400/500 transitions.
[2023-03-22 10:06:52] [INFO ] Flatten gal took : 9 ms
[2023-03-22 10:06:52] [INFO ] Flatten gal took : 10 ms
[2023-03-22 10:06:53] [INFO ] Input system was already deterministic with 400 transitions.
[2023-03-22 10:06:53] [INFO ] Flatten gal took : 13 ms
[2023-03-22 10:06:53] [INFO ] Flatten gal took : 13 ms
[2023-03-22 10:06:53] [INFO ] Export to MCC of 12 properties in file /home/mcc/execution/CTLCardinality.sr.xml took 4 ms.
[2023-03-22 10:06:53] [INFO ] Export to PNML in file /home/mcc/execution/model.sr.pnml of net with 500 places, 500 transitions and 1600 arcs took 3 ms.
Total runtime 6766 ms.
There are residual formulas that ITS could not solve within timeout
timeout --kill-after=10s --signal=SIGINT 1m for testing only
Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: /home/mcc/BenchKit/bin//../reducer/bin//../../marcie/bin/marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --memory=6 --mcc-mode
parse successfull
net created successfully
Net: Petri
(NrP: 500 NrTr: 500 NrArc: 1600)
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.018sec
net check time: 0m 0.000sec
init dd package: 0m 2.710sec
RS generation: 0m 0.180sec
-> reachability set: #nodes 2580 (2.6e+03) #states 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
starting MCC model checker
--------------------------
checking: EG [[[p239<=0 & 0<=p239] | [p293<=1 & 1<=p293]]]
normalized: EG [[[p293<=1 & 1<=p293] | [p239<=0 & 0<=p239]]]
abstracting: (0<=p239)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
abstracting: (p239<=0)
states: 400,849,182,791,564,368,583,914,212,039,927,656,546,083,628,223 (47)
abstracting: (1<=p293)
states: 114,528,337,940,446,962,452,546,917,725,693,616,156,023,893,778 (47)
abstracting: (p293<=1)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
.
EG iterations: 1
-> the formula is TRUE
FORMULA Philosophers-PT-000100-CTLCardinality-15 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.411sec
checking: EG [[[p9<=0 & 0<=p9] | [[p124<=1 & 1<=p124] & [[p176<=1 & 1<=p176] | [AG [[p318<=0 & 0<=p318]] & [[p4<=1 & 1<=p4] & [p460<=1 & 1<=p460]]]]]]]
normalized: EG [[[[[[[p460<=1 & 1<=p460] & [p4<=1 & 1<=p4]] & ~ [E [true U ~ [[p318<=0 & 0<=p318]]]]] | [p176<=1 & 1<=p176]] & [p124<=1 & 1<=p124]] | [p9<=0 & 0<=p9]]]
abstracting: (0<=p9)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
abstracting: (p9<=0)
states: 286,320,844,851,117,406,131,367,294,314,234,040,390,059,734,445 (47)
abstracting: (1<=p124)
states: 171,792,506,910,670,443,678,820,376,588,540,424,234,035,840,667 (47)
abstracting: (p124<=1)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
abstracting: (1<=p176)
states: 171,792,506,910,670,443,678,820,376,588,540,424,234,035,840,667 (47)
abstracting: (p176<=1)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
abstracting: (0<=p318)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
abstracting: (p318<=0)
states: 400,849,182,791,564,368,583,914,212,039,927,656,546,083,628,223 (47)
abstracting: (1<=p4)
states: 229,056,675,880,893,924,905,093,835,451,387,232,312,047,787,556 (47)
abstracting: (p4<=1)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
abstracting: (1<=p460)
states: 57,264,168,970,223,481,226,273,458,862,846,808,078,011,946,889 (46)
abstracting: (p460<=1)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
...
EG iterations: 3
-> the formula is TRUE
FORMULA Philosophers-PT-000100-CTLCardinality-14 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 1.536sec
checking: EF [[[p192<=1 & 1<=p192] & A [~ [[p338<=1 & 1<=p338]] U ~ [[[[p215<=1 & 1<=p215] & [[p399<=0 & 0<=p399] | [p484<=1 & 1<=p484]]] | AX [[[p355<=0 & 0<=p355] | [p118<=1 & 1<=p118]]]]]]]]
normalized: E [true U [[~ [EG [[[[[p484<=1 & 1<=p484] | [p399<=0 & 0<=p399]] & [p215<=1 & 1<=p215]] | ~ [EX [~ [[[p118<=1 & 1<=p118] | [p355<=0 & 0<=p355]]]]]]]] & ~ [E [[[[[p484<=1 & 1<=p484] | [p399<=0 & 0<=p399]] & [p215<=1 & 1<=p215]] | ~ [EX [~ [[[p118<=1 & 1<=p118] | [p355<=0 & 0<=p355]]]]]] U [[[[[p484<=1 & 1<=p484] | [p399<=0 & 0<=p399]] & [p215<=1 & 1<=p215]] | ~ [EX [~ [[[p118<=1 & 1<=p118] | [p355<=0 & 0<=p355]]]]]] & [p338<=1 & 1<=p338]]]]] & [p192<=1 & 1<=p192]]]
abstracting: (1<=p192)
states: 114,528,337,940,446,962,452,546,917,725,693,616,156,023,893,778 (47)
abstracting: (p192<=1)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
abstracting: (1<=p338)
states: 114,528,337,940,446,962,452,546,917,725,693,616,156,023,893,778 (47)
abstracting: (p338<=1)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
abstracting: (0<=p355)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
abstracting: (p355<=0)
states: 400,849,182,791,564,368,583,914,212,039,927,656,546,083,628,223 (47)
abstracting: (1<=p118)
states: 171,792,506,910,670,443,678,820,376,588,540,424,234,035,840,667 (47)
abstracting: (p118<=1)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
.abstracting: (1<=p215)
states: 114,528,337,940,446,962,452,546,917,725,693,616,156,023,893,778 (47)
abstracting: (p215<=1)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
abstracting: (0<=p399)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
abstracting: (p399<=0)
states: 400,849,182,791,564,368,583,914,212,039,927,656,546,083,628,223 (47)
abstracting: (1<=p484)
states: 57,264,168,970,223,481,226,273,458,862,846,808,078,011,946,889 (46)
abstracting: (p484<=1)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
abstracting: (0<=p355)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
abstracting: (p355<=0)
states: 400,849,182,791,564,368,583,914,212,039,927,656,546,083,628,223 (47)
abstracting: (1<=p118)
states: 171,792,506,910,670,443,678,820,376,588,540,424,234,035,840,667 (47)
abstracting: (p118<=1)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
.abstracting: (1<=p215)
states: 114,528,337,940,446,962,452,546,917,725,693,616,156,023,893,778 (47)
abstracting: (p215<=1)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
abstracting: (0<=p399)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
abstracting: (p399<=0)
states: 400,849,182,791,564,368,583,914,212,039,927,656,546,083,628,223 (47)
abstracting: (1<=p484)
states: 57,264,168,970,223,481,226,273,458,862,846,808,078,011,946,889 (46)
abstracting: (p484<=1)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
abstracting: (0<=p355)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
abstracting: (p355<=0)
states: 400,849,182,791,564,368,583,914,212,039,927,656,546,083,628,223 (47)
abstracting: (1<=p118)
states: 171,792,506,910,670,443,678,820,376,588,540,424,234,035,840,667 (47)
abstracting: (p118<=1)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
.abstracting: (1<=p215)
states: 114,528,337,940,446,962,452,546,917,725,693,616,156,023,893,778 (47)
abstracting: (p215<=1)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
abstracting: (0<=p399)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
abstracting: (p399<=0)
states: 400,849,182,791,564,368,583,914,212,039,927,656,546,083,628,223 (47)
abstracting: (1<=p484)
states: 57,264,168,970,223,481,226,273,458,862,846,808,078,011,946,889 (46)
abstracting: (p484<=1)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
...
EG iterations: 3
-> the formula is TRUE
FORMULA Philosophers-PT-000100-CTLCardinality-08 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m12.415sec
checking: E [[AF [~ [[[p313<=0 & 0<=p313] | [p209<=1 & 1<=p209]]]] & [~ [[~ [[p371<=0 & 0<=p371]] & [p490<=0 & 0<=p490]]] & [[p489<=0 & 0<=p489] | [p202<=1 & 1<=p202]]]] U AG [[p166<=0 & 0<=p166]]]
normalized: E [[~ [EG [[[p209<=1 & 1<=p209] | [p313<=0 & 0<=p313]]]] & [~ [[[p490<=0 & 0<=p490] & ~ [[p371<=0 & 0<=p371]]]] & [[p202<=1 & 1<=p202] | [p489<=0 & 0<=p489]]]] U ~ [E [true U ~ [[p166<=0 & 0<=p166]]]]]
abstracting: (0<=p166)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
abstracting: (p166<=0)
states: 343,585,013,821,340,887,357,640,753,177,080,848,468,071,681,334 (47)
abstracting: (0<=p489)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
abstracting: (p489<=0)
states: 458,113,351,761,787,849,810,187,670,902,774,464,624,095,575,112 (47)
abstracting: (1<=p202)
states: 171,792,506,910,670,443,678,820,376,588,540,424,234,035,840,667 (47)
abstracting: (p202<=1)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
abstracting: (0<=p371)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
abstracting: (p371<=0)
states: 400,849,182,791,564,368,583,914,212,039,927,656,546,083,628,223 (47)
abstracting: (0<=p490)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
abstracting: (p490<=0)
states: 458,113,351,761,787,849,810,187,670,902,774,464,624,095,575,112 (47)
abstracting: (0<=p313)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
abstracting: (p313<=0)
states: 400,849,182,791,564,368,583,914,212,039,927,656,546,083,628,223 (47)
abstracting: (1<=p209)
states: 114,528,337,940,446,962,452,546,917,725,693,616,156,023,893,778 (47)
abstracting: (p209<=1)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
.
EG iterations: 1
-> the formula is FALSE
FORMULA Philosophers-PT-000100-CTLCardinality-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 2.582sec
checking: AF [[EF [EG [[[p280<=0 & 0<=p280] & [p137<=1 & 1<=p137]]]] & [EX [[[p427<=1 & 1<=p427] & [p467<=0 & 0<=p467]]] | [[p164<=1 & 1<=p164] | [[p450<=0 & 0<=p450] & [[p495<=0 & 0<=p495] | [p360<=1 & 1<=p360]]]]]]]
normalized: ~ [EG [~ [[E [true U EG [[[p137<=1 & 1<=p137] & [p280<=0 & 0<=p280]]]] & [[[[p450<=0 & 0<=p450] & [[p360<=1 & 1<=p360] | [p495<=0 & 0<=p495]]] | [p164<=1 & 1<=p164]] | EX [[[p467<=0 & 0<=p467] & [p427<=1 & 1<=p427]]]]]]]]
abstracting: (1<=p427)
states: 57,264,168,970,223,481,226,273,458,862,846,808,078,011,946,889 (46)
abstracting: (p427<=1)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
abstracting: (0<=p467)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
abstracting: (p467<=0)
states: 458,113,351,761,787,849,810,187,670,902,774,464,624,095,575,112 (47)
.abstracting: (1<=p164)
states: 171,792,506,910,670,443,678,820,376,588,540,424,234,035,840,667 (47)
abstracting: (p164<=1)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
abstracting: (0<=p495)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
abstracting: (p495<=0)
states: 458,113,351,761,787,849,810,187,670,902,774,464,624,095,575,112 (47)
abstracting: (1<=p360)
states: 114,528,337,940,446,962,452,546,917,725,693,616,156,023,893,778 (47)
abstracting: (p360<=1)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
abstracting: (0<=p450)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
abstracting: (p450<=0)
states: 458,113,351,761,787,849,810,187,670,902,774,464,624,095,575,112 (47)
abstracting: (0<=p280)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
abstracting: (p280<=0)
states: 400,849,182,791,564,368,583,914,212,039,927,656,546,083,628,223 (47)
abstracting: (1<=p137)
states: 171,792,506,910,670,443,678,820,376,588,540,424,234,035,840,667 (47)
abstracting: (p137<=1)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
...
EG iterations: 3
.....
EG iterations: 5
-> the formula is TRUE
FORMULA Philosophers-PT-000100-CTLCardinality-11 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 3.287sec
checking: E [[[[EG [[EF [[p75<=1 & 1<=p75]] & EF [[p121<=1 & 1<=p121]]]] & AG [[[1<=p483 & p483<=1] & [[p186<=0 & 0<=p186] | [p84<=1 & 1<=p84]]]]] | [p352<=1 & 1<=p352]] | [p424<=0 & 0<=p424]] U E [AX [[p108<=1 & 1<=p108]] U E [EX [[[p344<=1 & 1<=p344] & [p253<=1 & 1<=p253]]] U ~ [AF [[p42<=0 & 0<=p42]]]]]]
normalized: E [[[p424<=0 & 0<=p424] | [[p352<=1 & 1<=p352] | [~ [E [true U ~ [[[[p84<=1 & 1<=p84] | [p186<=0 & 0<=p186]] & [1<=p483 & p483<=1]]]]] & EG [[E [true U [p121<=1 & 1<=p121]] & E [true U [p75<=1 & 1<=p75]]]]]]] U E [~ [EX [~ [[p108<=1 & 1<=p108]]]] U E [EX [[[p253<=1 & 1<=p253] & [p344<=1 & 1<=p344]]] U EG [~ [[p42<=0 & 0<=p42]]]]]]
abstracting: (0<=p42)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
abstracting: (p42<=0)
states: 286,320,844,851,117,406,131,367,294,314,234,040,390,059,734,445 (47)
.
EG iterations: 1
abstracting: (1<=p344)
states: 114,528,337,940,446,962,452,546,917,725,693,616,156,023,893,778 (47)
abstracting: (p344<=1)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
abstracting: (1<=p253)
states: 114,528,337,940,446,962,452,546,917,725,693,616,156,023,893,778 (47)
abstracting: (p253<=1)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
.abstracting: (1<=p108)
states: 171,792,506,910,670,443,678,820,376,588,540,424,234,035,840,667 (47)
abstracting: (p108<=1)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
.abstracting: (1<=p75)
states: 229,056,675,880,893,924,905,093,835,451,387,232,312,047,787,556 (47)
abstracting: (p75<=1)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
abstracting: (1<=p121)
states: 171,792,506,910,670,443,678,820,376,588,540,424,234,035,840,667 (47)
abstracting: (p121<=1)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
.
EG iterations: 1
abstracting: (p483<=1)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
abstracting: (1<=p483)
states: 57,264,168,970,223,481,226,273,458,862,846,808,078,011,946,889 (46)
abstracting: (0<=p186)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
abstracting: (p186<=0)
states: 343,585,013,821,340,887,357,640,753,177,080,848,468,071,681,334 (47)
abstracting: (1<=p84)
states: 229,056,675,880,893,924,905,093,835,451,387,232,312,047,787,556 (47)
abstracting: (p84<=1)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
abstracting: (1<=p352)
states: 114,528,337,940,446,962,452,546,917,725,693,616,156,023,893,778 (47)
abstracting: (p352<=1)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
abstracting: (0<=p424)
states: 515,377,520,732,011,331,036,461,129,765,621,272,702,107,522,001 (47)
abstracting: (p424<=0)
states: 458,113,351,761,787,849,810,187,670,902,774,464,624,095,575,112 (47)
-> the formula is TRUE
FORMULA Philosophers-PT-000100-CTLCardinality-09 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 4.388sec
checking: AF [~ [A [~ [sum(p412, p411, p410, p409, p408, p407, p406, p405, p404, p403, p402, p401, p400, p399, p398, p397, p392, p391, p389, p380, p379, p378, p377, p376, p375, p374, p373, p372, p371, p370, p369, p368, p367, p366, p365, p364, p363, p362, p361, p360, p359, p358, p357, p356, p355, p354, p353, p352, p351, p350, p349, p348, p347, p346, p345, p344, p343, p342, p341, p340, p339, p338, p337, p336, p335, p334, p333, p332, p331, p330, p329, p328, p327, p326, p325, p324, p323, p322, p321, p320, p319, p318, p317, p316, p300, p299, p298, p297, p296, p295, p294, p293, p292, p291, p290, p289, p288, p287, p286, p285)<=89] U 63<=sum(p100, p99, p98, p97, p96, p95, p93, p92, p91, p90, p89, p88, p87, p86, p85, p84, p83, p82, p81, p80, p79, p78, p77, p76, p75, p74, p73, p72, p71, p70, p69, p68, p67, p66, p65, p64, p63, p62, p61, p60, p59, p58, p57, p56, p55, p54, p53, p52, p51, p50, p49, p48, p47, p46, p45, p44, p43, p42, p41, p40, p39, p38, p37, p36, p35, p34, p33, p32, p31, p30, p29, p28, p27, p26, p25, p24, p23, p22, p21, p20, p19, p18, p17, p16, p15, p14, p13, p12, p11, p10, p9, p8, p7, p6, p5, p4, p3, p2, p1, p0)]]]
normalized: ~ [EG [[~ [E [~ [63<=sum(p100, p99, p98, p97, p96, p95, p93, p92, p91, p90, p89, p88, p87, p86, p85, p84, p83, p82, p81, p80, p79, p78, p77, p76, p75, p74, p73, p72, p71, p70, p69, p68, p67, p66, p65, p64, p63, p62, p61, p60, p59, p58, p57, p56, p55, p54, p53, p52, p51, p50, p49, p48, p47, p46, p45, p44, p43, p42, p41, p40, p39, p38, p37, p36, p35, p34, p33, p32, p31, p30, p29, p28, p27, p26, p25, p24, p23, p22, p21, p20, p19, p18, p17, p16, p15, p14, p13, p12, p11, p10, p9, p8, p7, p6, p5, p4, p3, p2, p1, p0)] U [sum(p412, p411, p410, p409, p408, p407, p406, p405, p404, p403, p402, p401, p400, p399, p398, p397, p392, p391, p389, p380, p379, p378, p377, p376, p375, p374, p373, p372, p371, p370, p369, p368, p367, p366, p365, p364, p363, p362, p361, p360, p359, p358, p357, p356, p355, p354, p353, p352, p351, p350, p349, p348, p347, p346, p345, p344, p343, p342, p341, p340, p339, p338, p337, p336, p335, p334, p333, p332, p331, p330, p329, p328, p327, p326, p325, p324, p323, p322, p321, p320, p319, p318, p317, p316, p300, p299, p298, p297, p296, p295, p294, p293, p292, p291, p290, p289, p288, p287, p286, p285)<=89 & ~ [63<=sum(p100, p99, p98, p97, p96, p95, p93, p92, p91, p90, p89, p88, p87, p86, p85, p84, p83, p82, p81, p80, p79, p78, p77, p76, p75, p74, p73, p72, p71, p70, p69, p68, p67, p66, p65, p64, p63, p62, p61, p60, p59, p58, p57, p56, p55, p54, p53, p52, p51, p50, p49, p48, p47, p46, p45, p44, p43, p42, p41, p40, p39, p38, p37, p36, p35, p34, p33, p32, p31, p30, p29, p28, p27, p26, p25, p24, p23, p22, p21, p20, p19, p18, p17, p16, p15, p14, p13, p12, p11, p10, p9, p8, p7, p6, p5, p4, p3, p2, p1, p0)]]]] & ~ [EG [~ [63<=sum(p100, p99, p98, p97, p96, p95, p93, p92, p91, p90, p89, p88, p87, p86, p85, p84, p83, p82, p81, p80, p79, p78, p77, p76, p75, p74, p73, p72, p71, p70, p69, p68, p67, p66, p65, p64, p63, p62, p61, p60, p59, p58, p57, p56, p55, p54, p53, p52, p51, p50, p49, p48, p47, p46, p45, p44, p43, p42, p41, p40, p39, p38, p37, p36, p35, p34, p33, p32, p31, p30, p29, p28, p27, p26, p25, p24, p23, p22, p21, p20, p19, p18, p17, p16, p15, p14, p13, p12, p11, p10, p9, p8, p7, p6, p5, p4, p3, p2, p1, p0)]]]]]]
abstracting: (63<=sum(p100, p99, p98, p97, p96, p95, p93, p92, p91, p90, p89, p88, p87, p86, p85, p84, p83, p82, p81, p80, p79, p78, p77, p76, p75, p74, p73, p72, p71, p70, p69, p68, p67, p66, p65, p64, p63, p62, p61, p60, p59, p58, p57, p56, p55, p54, p53, p52, p51, p50, p49, p48, p47, p46, p45, p44, p43, p42, p41, p40, p39, p38, p37, p36, p35, p34, p33, p32, p31, p30, p29, p28, p27, p26, p25, p24, p23, p22, p21, p20, p19, p18, p17, p16, p15, p14, p13, p12, p11, p10, p9, p8, p7, p6, p5, p4, p3, p2, p1, p0))
MC time: 9m56.022sec
checking: EF [[AG [EF [sum(p412, p411, p410, p409, p408, p407, p406, p405, p404, p403, p402, p401, p400, p399, p398, p397, p392, p391, p389, p380, p379, p378, p377, p376, p375, p374, p373, p372, p371, p370, p369, p368, p367, p366, p365, p364, p363, p362, p361, p360, p359, p358, p357, p356, p355, p354, p353, p352, p351, p350, p349, p348, p347, p346, p345, p344, p343, p342, p341, p340, p339, p338, p337, p336, p335, p334, p333, p332, p331, p330, p329, p328, p327, p326, p325, p324, p323, p322, p321, p320, p319, p318, p317, p316, p300, p299, p298, p297, p296, p295, p294, p293, p292, p291, p290, p289, p288, p287, p286, p285)<=18]] | AG [AF [96<=sum(p315, p314, p313, p312, p311, p310, p309, p308, p307, p306, p305, p304, p303, p302, p301, p284, p283, p282, p281, p280, p279, p278, p277, p276, p275, p274, p273, p272, p271, p270, p269, p268, p267, p266, p265, p264, p263, p262, p261, p260, p259, p258, p257, p256, p255, p254, p253, p252, p251, p250, p249, p248, p247, p246, p245, p244, p243, p242, p241, p240, p239, p238, p237, p236, p235, p234, p233, p232, p231, p230, p229, p228, p227, p226, p225, p224, p223, p222, p221, p220, p219, p218, p217, p216, p215, p214, p213, p212, p211, p210, p209, p208, p207, p206, p205, p195, p192, p191, p190, p189)]]]]
normalized: E [true U [~ [E [true U ~ [E [true U sum(p412, p411, p410, p409, p408, p407, p406, p405, p404, p403, p402, p401, p400, p399, p398, p397, p392, p391, p389, p380, p379, p378, p377, p376, p375, p374, p373, p372, p371, p370, p369, p368, p367, p366, p365, p364, p363, p362, p361, p360, p359, p358, p357, p356, p355, p354, p353, p352, p351, p350, p349, p348, p347, p346, p345, p344, p343, p342, p341, p340, p339, p338, p337, p336, p335, p334, p333, p332, p331, p330, p329, p328, p327, p326, p325, p324, p323, p322, p321, p320, p319, p318, p317, p316, p300, p299, p298, p297, p296, p295, p294, p293, p292, p291, p290, p289, p288, p287, p286, p285)<=18]]]] | ~ [E [true U EG [~ [96<=sum(p315, p314, p313, p312, p311, p310, p309, p308, p307, p306, p305, p304, p303, p302, p301, p284, p283, p282, p281, p280, p279, p278, p277, p276, p275, p274, p273, p272, p271, p270, p269, p268, p267, p266, p265, p264, p263, p262, p261, p260, p259, p258, p257, p256, p255, p254, p253, p252, p251, p250, p249, p248, p247, p246, p245, p244, p243, p242, p241, p240, p239, p238, p237, p236, p235, p234, p233, p232, p231, p230, p229, p228, p227, p226, p225, p224, p223, p222, p221, p220, p219, p218, p217, p216, p215, p214, p213, p212, p211, p210, p209, p208, p207, p206, p205, p195, p192, p191, p190, p189)]]]]]]
abstracting: (96<=sum(p315, p314, p313, p312, p311, p310, p309, p308, p307, p306, p305, p304, p303, p302, p301, p284, p283, p282, p281, p280, p279, p278, p277, p276, p275, p274, p273, p272, p271, p270, p269, p268, p267, p266, p265, p264, p263, p262, p261, p260, p259, p258, p257, p256, p255, p254, p253, p252, p251, p250, p249, p248, p247, p246, p245, p244, p243, p242, p241, p240, p239, p238, p237, p236, p235, p234, p233, p232, p231, p230, p229, p228, p227, p226, p225, p224, p223, p222, p221, p220, p219, p218, p217, p216, p215, p214, p213, p212, p211, p210, p209, p208, p207, p206, p205, p195, p192, p191, p190, p189))
MC time: 8m17.000sec
checking: E [42<=sum(p204, p203, p202, p201, p200, p199, p198, p197, p196, p194, p193, p188, p187, p186, p185, p184, p183, p182, p181, p180, p179, p178, p177, p176, p175, p174, p173, p172, p171, p170, p169, p168, p167, p166, p165, p164, p163, p162, p161, p160, p159, p158, p157, p156, p155, p154, p153, p152, p151, p150, p149, p148, p147, p146, p145, p144, p143, p142, p141, p140, p139, p138, p137, p136, p135, p134, p133, p132, p131, p130, p129, p128, p127, p126, p125, p124, p123, p122, p121, p120, p119, p118, p117, p116, p115, p114, p113, p112, p111, p110, p109, p108, p107, p106, p105, p104, p103, p102, p101, p94) U 85<=sum(p315, p314, p313, p312, p311, p310, p309, p308, p307, p306, p305, p304, p303, p302, p301, p284, p283, p282, p281, p280, p279, p278, p277, p276, p275, p274, p273, p272, p271, p270, p269, p268, p267, p266, p265, p264, p263, p262, p261, p260, p259, p258, p257, p256, p255, p254, p253, p252, p251, p250, p249, p248, p247, p246, p245, p244, p243, p242, p241, p240, p239, p238, p237, p236, p235, p234, p233, p232, p231, p230, p229, p228, p227, p226, p225, p224, p223, p222, p221, p220, p219, p218, p217, p216, p215, p214, p213, p212, p211, p210, p209, p208, p207, p206, p205, p195, p192, p191, p190, p189)]
normalized: E [42<=sum(p204, p203, p202, p201, p200, p199, p198, p197, p196, p194, p193, p188, p187, p186, p185, p184, p183, p182, p181, p180, p179, p178, p177, p176, p175, p174, p173, p172, p171, p170, p169, p168, p167, p166, p165, p164, p163, p162, p161, p160, p159, p158, p157, p156, p155, p154, p153, p152, p151, p150, p149, p148, p147, p146, p145, p144, p143, p142, p141, p140, p139, p138, p137, p136, p135, p134, p133, p132, p131, p130, p129, p128, p127, p126, p125, p124, p123, p122, p121, p120, p119, p118, p117, p116, p115, p114, p113, p112, p111, p110, p109, p108, p107, p106, p105, p104, p103, p102, p101, p94) U 85<=sum(p315, p314, p313, p312, p311, p310, p309, p308, p307, p306, p305, p304, p303, p302, p301, p284, p283, p282, p281, p280, p279, p278, p277, p276, p275, p274, p273, p272, p271, p270, p269, p268, p267, p266, p265, p264, p263, p262, p261, p260, p259, p258, p257, p256, p255, p254, p253, p252, p251, p250, p249, p248, p247, p246, p245, p244, p243, p242, p241, p240, p239, p238, p237, p236, p235, p234, p233, p232, p231, p230, p229, p228, p227, p226, p225, p224, p223, p222, p221, p220, p219, p218, p217, p216, p215, p214, p213, p212, p211, p210, p209, p208, p207, p206, p205, p195, p192, p191, p190, p189)]
abstracting: (85<=sum(p315, p314, p313, p312, p311, p310, p309, p308, p307, p306, p305, p304, p303, p302, p301, p284, p283, p282, p281, p280, p279, p278, p277, p276, p275, p274, p273, p272, p271, p270, p269, p268, p267, p266, p265, p264, p263, p262, p261, p260, p259, p258, p257, p256, p255, p254, p253, p252, p251, p250, p249, p248, p247, p246, p245, p244, p243, p242, p241, p240, p239, p238, p237, p236, p235, p234, p233, p232, p231, p230, p229, p228, p227, p226, p225, p224, p223, p222, p221, p220, p219, p218, p217, p216, p215, p214, p213, p212, p211, p210, p209, p208, p207, p206, p205, p195, p192, p191, p190, p189))
MC time: 6m54.000sec
checking: EF [EG [EX [[~ [63<=sum(p100, p99, p98, p97, p96, p95, p93, p92, p91, p90, p89, p88, p87, p86, p85, p84, p83, p82, p81, p80, p79, p78, p77, p76, p75, p74, p73, p72, p71, p70, p69, p68, p67, p66, p65, p64, p63, p62, p61, p60, p59, p58, p57, p56, p55, p54, p53, p52, p51, p50, p49, p48, p47, p46, p45, p44, p43, p42, p41, p40, p39, p38, p37, p36, p35, p34, p33, p32, p31, p30, p29, p28, p27, p26, p25, p24, p23, p22, p21, p20, p19, p18, p17, p16, p15, p14, p13, p12, p11, p10, p9, p8, p7, p6, p5, p4, p3, p2, p1, p0)] & ~ [E [sum(p100, p99, p98, p97, p96, p95, p93, p92, p91, p90, p89, p88, p87, p86, p85, p84, p83, p82, p81, p80, p79, p78, p77, p76, p75, p74, p73, p72, p71, p70, p69, p68, p67, p66, p65, p64, p63, p62, p61, p60, p59, p58, p57, p56, p55, p54, p53, p52, p51, p50, p49, p48, p47, p46, p45, p44, p43, p42, p41, p40, p39, p38, p37, p36, p35, p34, p33, p32, p31, p30, p29, p28, p27, p26, p25, p24, p23, p22, p21, p20, p19, p18, p17, p16, p15, p14, p13, p12, p11, p10, p9, p8, p7, p6, p5, p4, p3, p2, p1, p0)<=25 U 97<=sum(p315, p314, p313, p312, p311, p310, p309, p308, p307, p306, p305, p304, p303, p302, p301, p284, p283, p282, p281, p280, p279, p278, p277, p276, p275, p274, p273, p272, p271, p270, p269, p268, p267, p266, p265, p264, p263, p262, p261, p260, p259, p258, p257, p256, p255, p254, p253, p252, p251, p250, p249, p248, p247, p246, p245, p244, p243, p242, p241, p240, p239, p238, p237, p236, p235, p234, p233, p232, p231, p230, p229, p228, p227, p226, p225, p224, p223, p222, p221, p220, p219, p218, p217, p216, p215, p214, p213, p212, p211, p210, p209, p208, p207, p206, p205, p195, p192, p191, p190, p189)]]]]]]
normalized: E [true U EG [EX [[~ [E [sum(p100, p99, p98, p97, p96, p95, p93, p92, p91, p90, p89, p88, p87, p86, p85, p84, p83, p82, p81, p80, p79, p78, p77, p76, p75, p74, p73, p72, p71, p70, p69, p68, p67, p66, p65, p64, p63, p62, p61, p60, p59, p58, p57, p56, p55, p54, p53, p52, p51, p50, p49, p48, p47, p46, p45, p44, p43, p42, p41, p40, p39, p38, p37, p36, p35, p34, p33, p32, p31, p30, p29, p28, p27, p26, p25, p24, p23, p22, p21, p20, p19, p18, p17, p16, p15, p14, p13, p12, p11, p10, p9, p8, p7, p6, p5, p4, p3, p2, p1, p0)<=25 U 97<=sum(p315, p314, p313, p312, p311, p310, p309, p308, p307, p306, p305, p304, p303, p302, p301, p284, p283, p282, p281, p280, p279, p278, p277, p276, p275, p274, p273, p272, p271, p270, p269, p268, p267, p266, p265, p264, p263, p262, p261, p260, p259, p258, p257, p256, p255, p254, p253, p252, p251, p250, p249, p248, p247, p246, p245, p244, p243, p242, p241, p240, p239, p238, p237, p236, p235, p234, p233, p232, p231, p230, p229, p228, p227, p226, p225, p224, p223, p222, p221, p220, p219, p218, p217, p216, p215, p214, p213, p212, p211, p210, p209, p208, p207, p206, p205, p195, p192, p191, p190, p189)]] & ~ [63<=sum(p100, p99, p98, p97, p96, p95, p93, p92, p91, p90, p89, p88, p87, p86, p85, p84, p83, p82, p81, p80, p79, p78, p77, p76, p75, p74, p73, p72, p71, p70, p69, p68, p67, p66, p65, p64, p63, p62, p61, p60, p59, p58, p57, p56, p55, p54, p53, p52, p51, p50, p49, p48, p47, p46, p45, p44, p43, p42, p41, p40, p39, p38, p37, p36, p35, p34, p33, p32, p31, p30, p29, p28, p27, p26, p25, p24, p23, p22, p21, p20, p19, p18, p17, p16, p15, p14, p13, p12, p11, p10, p9, p8, p7, p6, p5, p4, p3, p2, p1, p0)]]]]]
abstracting: (63<=sum(p100, p99, p98, p97, p96, p95, p93, p92, p91, p90, p89, p88, p87, p86, p85, p84, p83, p82, p81, p80, p79, p78, p77, p76, p75, p74, p73, p72, p71, p70, p69, p68, p67, p66, p65, p64, p63, p62, p61, p60, p59, p58, p57, p56, p55, p54, p53, p52, p51, p50, p49, p48, p47, p46, p45, p44, p43, p42, p41, p40, p39, p38, p37, p36, p35, p34, p33, p32, p31, p30, p29, p28, p27, p26, p25, p24, p23, p22, p21, p20, p19, p18, p17, p16, p15, p14, p13, p12, p11, p10, p9, p8, p7, p6, p5, p4, p3, p2, p1, p0))
MC time: 5m45.000sec
checking: EF [EX [[~ [sum(p499, p498, p497, p496, p495, p494, p493, p492, p491, p490, p489, p488, p487, p486, p485, p484, p483, p482, p481, p480, p479, p478, p477, p476, p475, p474, p473, p472, p471, p470, p469, p468, p467, p466, p465, p464, p463, p462, p461, p460, p459, p458, p457, p456, p455, p454, p453, p452, p451, p450, p449, p448, p447, p446, p445, p444, p443, p442, p441, p440, p439, p438, p437, p436, p435, p434, p433, p432, p431, p430, p429, p428, p427, p426, p425, p424, p423, p422, p421, p420, p419, p418, p417, p416, p415, p414, p413, p396, p395, p394, p393, p390, p388, p387, p386, p385, p384, p383, p382, p381)<=27] & [EG [~ [sum(p100, p99, p98, p97, p96, p95, p93, p92, p91, p90, p89, p88, p87, p86, p85, p84, p83, p82, p81, p80, p79, p78, p77, p76, p75, p74, p73, p72, p71, p70, p69, p68, p67, p66, p65, p64, p63, p62, p61, p60, p59, p58, p57, p56, p55, p54, p53, p52, p51, p50, p49, p48, p47, p46, p45, p44, p43, p42, p41, p40, p39, p38, p37, p36, p35, p34, p33, p32, p31, p30, p29, p28, p27, p26, p25, p24, p23, p22, p21, p20, p19, p18, p17, p16, p15, p14, p13, p12, p11, p10, p9, p8, p7, p6, p5, p4, p3, p2, p1, p0)<=8]] | [~ [sum(p100, p99, p98, p97, p96, p95, p93, p92, p91, p90, p89, p88, p87, p86, p85, p84, p83, p82, p81, p80, p79, p78, p77, p76, p75, p74, p73, p72, p71, p70, p69, p68, p67, p66, p65, p64, p63, p62, p61, p60, p59, p58, p57, p56, p55, p54, p53, p52, p51, p50, p49, p48, p47, p46, p45, p44, p43, p42, p41, p40, p39, p38, p37, p36, p35, p34, p33, p32, p31, p30, p29, p28, p27, p26, p25, p24, p23, p22, p21, p20, p19, p18, p17, p16, p15, p14, p13, p12, p11, p10, p9, p8, p7, p6, p5, p4, p3, p2, p1, p0)<=53] & ~ [64<=sum(p315, p314, p313, p312, p311, p310, p309, p308, p307, p306, p305, p304, p303, p302, p301, p284, p283, p282, p281, p280, p279, p278, p277, p276, p275, p274, p273, p272, p271, p270, p269, p268, p267, p266, p265, p264, p263, p262, p261, p260, p259, p258, p257, p256, p255, p254, p253, p252, p251, p250, p249, p248, p247, p246, p245, p244, p243, p242, p241, p240, p239, p238, p237, p236, p235, p234, p233, p232, p231, p230, p229, p228, p227, p226, p225, p224, p223, p222, p221, p220, p219, p218, p217, p216, p215, p214, p213, p212, p211, p210, p209, p208, p207, p206, p205, p195, p192, p191, p190, p189)]]]]]]
normalized: E [true U EX [[~ [sum(p499, p498, p497, p496, p495, p494, p493, p492, p491, p490, p489, p488, p487, p486, p485, p484, p483, p482, p481, p480, p479, p478, p477, p476, p475, p474, p473, p472, p471, p470, p469, p468, p467, p466, p465, p464, p463, p462, p461, p460, p459, p458, p457, p456, p455, p454, p453, p452, p451, p450, p449, p448, p447, p446, p445, p444, p443, p442, p441, p440, p439, p438, p437, p436, p435, p434, p433, p432, p431, p430, p429, p428, p427, p426, p425, p424, p423, p422, p421, p420, p419, p418, p417, p416, p415, p414, p413, p396, p395, p394, p393, p390, p388, p387, p386, p385, p384, p383, p382, p381)<=27] & [[~ [sum(p100, p99, p98, p97, p96, p95, p93, p92, p91, p90, p89, p88, p87, p86, p85, p84, p83, p82, p81, p80, p79, p78, p77, p76, p75, p74, p73, p72, p71, p70, p69, p68, p67, p66, p65, p64, p63, p62, p61, p60, p59, p58, p57, p56, p55, p54, p53, p52, p51, p50, p49, p48, p47, p46, p45, p44, p43, p42, p41, p40, p39, p38, p37, p36, p35, p34, p33, p32, p31, p30, p29, p28, p27, p26, p25, p24, p23, p22, p21, p20, p19, p18, p17, p16, p15, p14, p13, p12, p11, p10, p9, p8, p7, p6, p5, p4, p3, p2, p1, p0)<=53] & ~ [64<=sum(p315, p314, p313, p312, p311, p310, p309, p308, p307, p306, p305, p304, p303, p302, p301, p284, p283, p282, p281, p280, p279, p278, p277, p276, p275, p274, p273, p272, p271, p270, p269, p268, p267, p266, p265, p264, p263, p262, p261, p260, p259, p258, p257, p256, p255, p254, p253, p252, p251, p250, p249, p248, p247, p246, p245, p244, p243, p242, p241, p240, p239, p238, p237, p236, p235, p234, p233, p232, p231, p230, p229, p228, p227, p226, p225, p224, p223, p222, p221, p220, p219, p218, p217, p216, p215, p214, p213, p212, p211, p210, p209, p208, p207, p206, p205, p195, p192, p191, p190, p189)]] | EG [~ [sum(p100, p99, p98, p97, p96, p95, p93, p92, p91, p90, p89, p88, p87, p86, p85, p84, p83, p82, p81, p80, p79, p78, p77, p76, p75, p74, p73, p72, p71, p70, p69, p68, p67, p66, p65, p64, p63, p62, p61, p60, p59, p58, p57, p56, p55, p54, p53, p52, p51, p50, p49, p48, p47, p46, p45, p44, p43, p42, p41, p40, p39, p38, p37, p36, p35, p34, p33, p32, p31, p30, p29, p28, p27, p26, p25, p24, p23, p22, p21, p20, p19, p18, p17, p16, p15, p14, p13, p12, p11, p10, p9, p8, p7, p6, p5, p4, p3, p2, p1, p0)<=8]]]]]]
abstracting: (sum(p100, p99, p98, p97, p96, p95, p93, p92, p91, p90, p89, p88, p87, p86, p85, p84, p83, p82, p81, p80, p79, p78, p77, p76, p75, p74, p73, p72, p71, p70, p69, p68, p67, p66, p65, p64, p63, p62, p61, p60, p59, p58, p57, p56, p55, p54, p53, p52, p51, p50, p49, p48, p47, p46, p45, p44, p43, p42, p41, p40, p39, p38, p37, p36, p35, p34, p33, p32, p31, p30, p29, p28, p27, p26, p25, p24, p23, p22, p21, p20, p19, p18, p17, p16, p15, p14, p13, p12, p11, p10, p9, p8, p7, p6, p5, p4, p3, p2, p1, p0)<=8)
MC time: 4m47.000sec
checking: A [[AX [~ [[sum(p204, p203, p202, p201, p200, p199, p198, p197, p196, p194, p193, p188, p187, p186, p185, p184, p183, p182, p181, p180, p179, p178, p177, p176, p175, p174, p173, p172, p171, p170, p169, p168, p167, p166, p165, p164, p163, p162, p161, p160, p159, p158, p157, p156, p155, p154, p153, p152, p151, p150, p149, p148, p147, p146, p145, p144, p143, p142, p141, p140, p139, p138, p137, p136, p135, p134, p133, p132, p131, p130, p129, p128, p127, p126, p125, p124, p123, p122, p121, p120, p119, p118, p117, p116, p115, p114, p113, p112, p111, p110, p109, p108, p107, p106, p105, p104, p103, p102, p101, p94)<=88 & sum(p499, p498, p497, p496, p495, p494, p493, p492, p491, p490, p489, p488, p487, p486, p485, p484, p483, p482, p481, p480, p479, p478, p477, p476, p475, p474, p473, p472, p471, p470, p469, p468, p467, p466, p465, p464, p463, p462, p461, p460, p459, p458, p457, p456, p455, p454, p453, p452, p451, p450, p449, p448, p447, p446, p445, p444, p443, p442, p441, p440, p439, p438, p437, p436, p435, p434, p433, p432, p431, p430, p429, p428, p427, p426, p425, p424, p423, p422, p421, p420, p419, p418, p417, p416, p415, p414, p413, p396, p395, p394, p393, p390, p388, p387, p386, p385, p384, p383, p382, p381)<=50]]] | [EX [sum(p204, p203, p202, p201, p200, p199, p198, p197, p196, p194, p193, p188, p187, p186, p185, p184, p183, p182, p181, p180, p179, p178, p177, p176, p175, p174, p173, p172, p171, p170, p169, p168, p167, p166, p165, p164, p163, p162, p161, p160, p159, p158, p157, p156, p155, p154, p153, p152, p151, p150, p149, p148, p147, p146, p145, p144, p143, p142, p141, p140, p139, p138, p137, p136, p135, p134, p133, p132, p131, p130, p129, p128, p127, p126, p125, p124, p123, p122, p121, p120, p119, p118, p117, p116, p115, p114, p113, p112, p111, p110, p109, p108, p107, p106, p105, p104, p103, p102, p101, p94)<=19] | sum(p412, p411, p410, p409, p408, p407, p406, p405, p404, p403, p402, p401, p400, p399, p398, p397, p392, p391, p389, p380, p379, p378, p377, p376, p375, p374, p373, p372, p371, p370, p369, p368, p367, p366, p365, p364, p363, p362, p361, p360, p359, p358, p357, p356, p355, p354, p353, p352, p351, p350, p349, p348, p347, p346, p345, p344, p343, p342, p341, p340, p339, p338, p337, p336, p335, p334, p333, p332, p331, p330, p329, p328, p327, p326, p325, p324, p323, p322, p321, p320, p319, p318, p317, p316, p300, p299, p298, p297, p296, p295, p294, p293, p292, p291, p290, p289, p288, p287, p286, p285)<=67]] U ~ [AF [[~ [sum(p315, p314, p313, p312, p311, p310, p309, p308, p307, p306, p305, p304, p303, p302, p301, p284, p283, p282, p281, p280, p279, p278, p277, p276, p275, p274, p273, p272, p271, p270, p269, p268, p267, p266, p265, p264, p263, p262, p261, p260, p259, p258, p257, p256, p255, p254, p253, p252, p251, p250, p249, p248, p247, p246, p245, p244, p243, p242, p241, p240, p239, p238, p237, p236, p235, p234, p233, p232, p231, p230, p229, p228, p227, p226, p225, p224, p223, p222, p221, p220, p219, p218, p217, p216, p215, p214, p213, p212, p211, p210, p209, p208, p207, p206, p205, p195, p192, p191, p190, p189)<=66] | [~ [62<=sum(p204, p203, p202, p201, p200, p199, p198, p197, p196, p194, p193, p188, p187, p186, p185, p184, p183, p182, p181, p180, p179, p178, p177, p176, p175, p174, p173, p172, p171, p170, p169, p168, p167, p166, p165, p164, p163, p162, p161, p160, p159, p158, p157, p156, p155, p154, p153, p152, p151, p150, p149, p148, p147, p146, p145, p144, p143, p142, p141, p140, p139, p138, p137, p136, p135, p134, p133, p132, p131, p130, p129, p128, p127, p126, p125, p124, p123, p122, p121, p120, p119, p118, p117, p116, p115, p114, p113, p112, p111, p110, p109, p108, p107, p106, p105, p104, p103, p102, p101, p94)] & [sum(p499, p498, p497, p496, p495, p494, p493, p492, p491, p490, p489, p488, p487, p486, p485, p484, p483, p482, p481, p480, p479, p478, p477, p476, p475, p474, p473, p472, p471, p470, p469, p468, p467, p466, p465, p464, p463, p462, p461, p460, p459, p458, p457, p456, p455, p454, p453, p452, p451, p450, p449, p448, p447, p446, p445, p444, p443, p442, p441, p440, p439, p438, p437, p436, p435, p434, p433, p432, p431, p430, p429, p428, p427, p426, p425, p424, p423, p422, p421, p420, p419, p418, p417, p416, p415, p414, p413, p396, p395, p394, p393, p390, p388, p387, p386, p385, p384, p383, p382, p381)<=73 | 1<=sum(p100, p99, p98, p97, p96, p95, p93, p92, p91, p90, p89, p88, p87, p86, p85, p84, p83, p82, p81, p80, p79, p78, p77, p76, p75, p74, p73, p72, p71, p70, p69, p68, p67, p66, p65, p64, p63, p62, p61, p60, p59, p58, p57, p56, p55, p54, p53, p52, p51, p50, p49, p48, p47, p46, p45, p44, p43, p42, p41, p40, p39, p38, p37, p36, p35, p34, p33, p32, p31, p30, p29, p28, p27, p26, p25, p24, p23, p22, p21, p20, p19, p18, p17, p16, p15, p14, p13, p12, p11, p10, p9, p8, p7, p6, p5, p4, p3, p2, p1, p0)]]]]]]
normalized: [~ [E [~ [EG [~ [[[[sum(p499, p498, p497, p496, p495, p494, p493, p492, p491, p490, p489, p488, p487, p486, p485, p484, p483, p482, p481, p480, p479, p478, p477, p476, p475, p474, p473, p472, p471, p470, p469, p468, p467, p466, p465, p464, p463, p462, p461, p460, p459, p458, p457, p456, p455, p454, p453, p452, p451, p450, p449, p448, p447, p446, p445, p444, p443, p442, p441, p440, p439, p438, p437, p436, p435, p434, p433, p432, p431, p430, p429, p428, p427, p426, p425, p424, p423, p422, p421, p420, p419, p418, p417, p416, p415, p414, p413, p396, p395, p394, p393, p390, p388, p387, p386, p385, p384, p383, p382, p381)<=73 | 1<=sum(p100, p99, p98, p97, p96, p95, p93, p92, p91, p90, p89, p88, p87, p86, p85, p84, p83, p82, p81, p80, p79, p78, p77, p76, p75, p74, p73, p72, p71, p70, p69, p68, p67, p66, p65, p64, p63, p62, p61, p60, p59, p58, p57, p56, p55, p54, p53, p52, p51, p50, p49, p48, p47, p46, p45, p44, p43, p42, p41, p40, p39, p38, p37, p36, p35, p34, p33, p32, p31, p30, p29, p28, p27, p26, p25, p24, p23, p22, p21, p20, p19, p18, p17, p16, p15, p14, p13, p12, p11, p10, p9, p8, p7, p6, p5, p4, p3, p2, p1, p0)] & ~ [62<=sum(p204, p203, p202, p201, p200, p199, p198, p197, p196, p194, p193, p188, p187, p186, p185, p184, p183, p182, p181, p180, p179, p178, p177, p176, p175, p174, p173, p172, p171, p170, p169, p168, p167, p166, p165, p164, p163, p162, p161, p160, p159, p158, p157, p156, p155, p154, p153, p152, p151, p150, p149, p148, p147, p146, p145, p144, p143, p142, p141, p140, p139, p138, p137, p136, p135, p134, p133, p132, p131, p130, p129, p128, p127, p126, p125, p124, p123, p122, p121, p120, p119, p118, p117, p116, p115, p114, p113, p112, p111, p110, p109, p108, p107, p106, p105, p104, p103, p102, p101, p94)]] | ~ [sum(p315, p314, p313, p312, p311, p310, p309, p308, p307, p306, p305, p304, p303, p302, p301, p284, p283, p282, p281, p280, p279, p278, p277, p276, p275, p274, p273, p272, p271, p270, p269, p268, p267, p266, p265, p264, p263, p262, p261, p260, p259, p258, p257, p256, p255, p254, p253, p252, p251, p250, p249, p248, p247, p246, p245, p244, p243, p242, p241, p240, p239, p238, p237, p236, p235, p234, p233, p232, p231, p230, p229, p228, p227, p226, p225, p224, p223, p222, p221, p220, p219, p218, p217, p216, p215, p214, p213, p212, p211, p210, p209, p208, p207, p206, p205, p195, p192, p191, p190, p189)<=66]]]]] U [~ [[[sum(p412, p411, p410, p409, p408, p407, p406, p405, p404, p403, p402, p401, p400, p399, p398, p397, p392, p391, p389, p380, p379, p378, p377, p376, p375, p374, p373, p372, p371, p370, p369, p368, p367, p366, p365, p364, p363, p362, p361, p360, p359, p358, p357, p356, p355, p354, p353, p352, p351, p350, p349, p348, p347, p346, p345, p344, p343, p342, p341, p340, p339, p338, p337, p336, p335, p334, p333, p332, p331, p330, p329, p328, p327, p326, p325, p324, p323, p322, p321, p320, p319, p318, p317, p316, p300, p299, p298, p297, p296, p295, p294, p293, p292, p291, p290, p289, p288, p287, p286, p285)<=67 | EX [sum(p204, p203, p202, p201, p200, p199, p198, p197, p196, p194, p193, p188, p187, p186, p185, p184, p183, p182, p181, p180, p179, p178, p177, p176, p175, p174, p173, p172, p171, p170, p169, p168, p167, p166, p165, p164, p163, p162, p161, p160, p159, p158, p157, p156, p155, p154, p153, p152, p151, p150, p149, p148, p147, p146, p145, p144, p143, p142, p141, p140, p139, p138, p137, p136, p135, p134, p133, p132, p131, p130, p129, p128, p127, p126, p125, p124, p123, p122, p121, p120, p119, p118, p117, p116, p115, p114, p113, p112, p111, p110, p109, p108, p107, p106, p105, p104, p103, p102, p101, p94)<=19]] | ~ [EX [[sum(p204, p203, p202, p201, p200, p199, p198, p197, p196, p194, p193, p188, p187, p186, p185, p184, p183, p182, p181, p180, p179, p178, p177, p176, p175, p174, p173, p172, p171, p170, p169, p168, p167, p166, p165, p164, p163, p162, p161, p160, p159, p158, p157, p156, p155, p154, p153, p152, p151, p150, p149, p148, p147, p146, p145, p144, p143, p142, p141, p140, p139, p138, p137, p136, p135, p134, p133, p132, p131, p130, p129, p128, p127, p126, p125, p124, p123, p122, p121, p120, p119, p118, p117, p116, p115, p114, p113, p112, p111, p110, p109, p108, p107, p106, p105, p104, p103, p102, p101, p94)<=88 & sum(p499, p498, p497, p496, p495, p494, p493, p492, p491, p490, p489, p488, p487, p486, p485, p484, p483, p482, p481, p480, p479, p478, p477, p476, p475, p474, p473, p472, p471, p470, p469, p468, p467, p466, p465, p464, p463, p462, p461, p460, p459, p458, p457, p456, p455, p454, p453, p452, p451, p450, p449, p448, p447, p446, p445, p444, p443, p442, p441, p440, p439, p438, p437, p436, p435, p434, p433, p432, p431, p430, p429, p428, p427, p426, p425, p424, p423, p422, p421, p420, p419, p418, p417, p416, p415, p414, p413, p396, p395, p394, p393, p390, p388, p387, p386, p385, p384, p383, p382, p381)<=50]]]]] & ~ [EG [~ [[[[sum(p499, p498, p497, p496, p495, p494, p493, p492, p491, p490, p489, p488, p487, p486, p485, p484, p483, p482, p481, p480, p479, p478, p477, p476, p475, p474, p473, p472, p471, p470, p469, p468, p467, p466, p465, p464, p463, p462, p461, p460, p459, p458, p457, p456, p455, p454, p453, p452, p451, p450, p449, p448, p447, p446, p445, p444, p443, p442, p441, p440, p439, p438, p437, p436, p435, p434, p433, p432, p431, p430, p429, p428, p427, p426, p425, p424, p423, p422, p421, p420, p419, p418, p417, p416, p415, p414, p413, p396, p395, p394, p393, p390, p388, p387, p386, p385, p384, p383, p382, p381)<=73 | 1<=sum(p100, p99, p98, p97, p96, p95, p93, p92, p91, p90, p89, p88, p87, p86, p85, p84, p83, p82, p81, p80, p79, p78, p77, p76, p75, p74, p73, p72, p71, p70, p69, p68, p67, p66, p65, p64, p63, p62, p61, p60, p59, p58, p57, p56, p55, p54, p53, p52, p51, p50, p49, p48, p47, p46, p45, p44, p43, p42, p41, p40, p39, p38, p37, p36, p35, p34, p33, p32, p31, p30, p29, p28, p27, p26, p25, p24, p23, p22, p21, p20, p19, p18, p17, p16, p15, p14, p13, p12, p11, p10, p9, p8, p7, p6, p5, p4, p3, p2, p1, p0)] & ~ [62<=sum(p204, p203, p202, p201, p200, p199, p198, p197, p196, p194, p193, p188, p187, p186, p185, p184, p183, p182, p181, p180, p179, p178, p177, p176, p175, p174, p173, p172, p171, p170, p169, p168, p167, p166, p165, p164, p163, p162, p161, p160, p159, p158, p157, p156, p155, p154, p153, p152, p151, p150, p149, p148, p147, p146, p145, p144, p143, p142, p141, p140, p139, p138, p137, p136, p135, p134, p133, p132, p131, p130, p129, p128, p127, p126, p125, p124, p123, p122, p121, p120, p119, p118, p117, p116, p115, p114, p113, p112, p111, p110, p109, p108, p107, p106, p105, p104, p103, p102, p101, p94)]] | ~ [sum(p315, p314, p313, p312, p311, p310, p309, p308, p307, p306, p305, p304, p303, p302, p301, p284, p283, p282, p281, p280, p279, p278, p277, p276, p275, p274, p273, p272, p271, p270, p269, p268, p267, p266, p265, p264, p263, p262, p261, p260, p259, p258, p257, p256, p255, p254, p253, p252, p251, p250, p249, p248, p247, p246, p245, p244, p243, p242, p241, p240, p239, p238, p237, p236, p235, p234, p233, p232, p231, p230, p229, p228, p227, p226, p225, p224, p223, p222, p221, p220, p219, p218, p217, p216, p215, p214, p213, p212, p211, p210, p209, p208, p207, p206, p205, p195, p192, p191, p190, p189)<=66]]]]]]]] & ~ [EG [~ [EG [~ [[[[sum(p499, p498, p497, p496, p495, p494, p493, p492, p491, p490, p489, p488, p487, p486, p485, p484, p483, p482, p481, p480, p479, p478, p477, p476, p475, p474, p473, p472, p471, p470, p469, p468, p467, p466, p465, p464, p463, p462, p461, p460, p459, p458, p457, p456, p455, p454, p453, p452, p451, p450, p449, p448, p447, p446, p445, p444, p443, p442, p441, p440, p439, p438, p437, p436, p435, p434, p433, p432, p431, p430, p429, p428, p427, p426, p425, p424, p423, p422, p421, p420, p419, p418, p417, p416, p415, p414, p413, p396, p395, p394, p393, p390, p388, p387, p386, p385, p384, p383, p382, p381)<=73 | 1<=sum(p100, p99, p98, p97, p96, p95, p93, p92, p91, p90, p89, p88, p87, p86, p85, p84, p83, p82, p81, p80, p79, p78, p77, p76, p75, p74, p73, p72, p71, p70, p69, p68, p67, p66, p65, p64, p63, p62, p61, p60, p59, p58, p57, p56, p55, p54, p53, p52, p51, p50, p49, p48, p47, p46, p45, p44, p43, p42, p41, p40, p39, p38, p37, p36, p35, p34, p33, p32, p31, p30, p29, p28, p27, p26, p25, p24, p23, p22, p21, p20, p19, p18, p17, p16, p15, p14, p13, p12, p11, p10, p9, p8, p7, p6, p5, p4, p3, p2, p1, p0)] & ~ [62<=sum(p204, p203, p202, p201, p200, p199, p198, p197, p196, p194, p193, p188, p187, p186, p185, p184, p183, p182, p181, p180, p179, p178, p177, p176, p175, p174, p173, p172, p171, p170, p169, p168, p167, p166, p165, p164, p163, p162, p161, p160, p159, p158, p157, p156, p155, p154, p153, p152, p151, p150, p149, p148, p147, p146, p145, p144, p143, p142, p141, p140, p139, p138, p137, p136, p135, p134, p133, p132, p131, p130, p129, p128, p127, p126, p125, p124, p123, p122, p121, p120, p119, p118, p117, p116, p115, p114, p113, p112, p111, p110, p109, p108, p107, p106, p105, p104, p103, p102, p101, p94)]] | ~ [sum(p315, p314, p313, p312, p311, p310, p309, p308, p307, p306, p305, p304, p303, p302, p301, p284, p283, p282, p281, p280, p279, p278, p277, p276, p275, p274, p273, p272, p271, p270, p269, p268, p267, p266, p265, p264, p263, p262, p261, p260, p259, p258, p257, p256, p255, p254, p253, p252, p251, p250, p249, p248, p247, p246, p245, p244, p243, p242, p241, p240, p239, p238, p237, p236, p235, p234, p233, p232, p231, p230, p229, p228, p227, p226, p225, p224, p223, p222, p221, p220, p219, p218, p217, p216, p215, p214, p213, p212, p211, p210, p209, p208, p207, p206, p205, p195, p192, p191, p190, p189)<=66]]]]]]]]
abstracting: (sum(p315, p314, p313, p312, p311, p310, p309, p308, p307, p306, p305, p304, p303, p302, p301, p284, p283, p282, p281, p280, p279, p278, p277, p276, p275, p274, p273, p272, p271, p270, p269, p268, p267, p266, p265, p264, p263, p262, p261, p260, p259, p258, p257, p256, p255, p254, p253, p252, p251, p250, p249, p248, p247, p246, p245, p244, p243, p242, p241, p240, p239, p238, p237, p236, p235, p234, p233, p232, p231, p230, p229, p228, p227, p226, p225, p224, p223, p222, p221, p220, p219, p218, p217, p216, p215, p214, p213, p212, p211, p210, p209, p208, p207, p206, p205, p195, p192, p191, p190, p189)<=66)
TIME LIMIT: Killed by timeout after 3600 seconds
MemTotal: 16393216 kB
MemFree: 9639792 kB
After kill :
MemTotal: 16393216 kB
MemFree: 16097192 kB
BK_TIME_CONFINEMENT_REACHED
--------------------
content from stderr:
+ ulimit -s 65536
+ [[ -z '' ]]
+ export LTSMIN_MEM_SIZE=8589934592
+ LTSMIN_MEM_SIZE=8589934592
+ export PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ export LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
+ LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
++ sed s/.jar//
++ perl -pe 's/.*\.//g'
++ ls /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/plugins/fr.lip6.move.gal.application.pnmcc_1.0.0.202303021504.jar
+ VERSION=202303021504
+ echo 'Running Version 202303021504'
+ /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/its-tools -pnfolder /home/mcc/execution -examination CTLCardinality -timeout 360 -rebuildPNML
check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.002sec
iterations count:2293 (4), effective:300 (0)
initing FirstDep: 0m 0.002sec
iterations count:2402 (4), effective:201 (0)
iterations count:4176 (8), effective:421 (0)
iterations count:30235 (60), effective:5189 (10)
iterations count:4037 (8), effective:395 (0)
iterations count:16305 (32), effective:2769 (5)
iterations count:4367 (8), effective:461 (0)
iterations count:907 (1), effective:79 (0)
iterations count:500 (1), effective:0 (0)
iterations count:4031 (8), effective:394 (0)
iterations count:4037 (8), effective:395 (0)
iterations count:506 (1), effective:1 (0)
iterations count:4317 (8), effective:445 (0)
idd.h:1025: Timeout: after 595 sec
idd.h:1025: Timeout: after 496 sec
idd.h:1025: Timeout: after 413 sec
idd.h:1025: Timeout: after 344 sec
idd.h:1025: Timeout: after 286 sec
idd.h:1025: Timeout: after 239 sec
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="Philosophers-PT-000100"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marciexred"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marciexred"
echo " Input is Philosophers-PT-000100, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r298-tall-167873951400217"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/Philosophers-PT-000100.tgz
mv Philosophers-PT-000100 execution
cd execution
if [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "UpperBounds" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] || [ "CTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME CTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;