fond
Model Checking Contest 2023
13th edition, Paris, France, April 26, 2023 (at TOOLympics II)
Execution of r289-tall-167873941000857
Last Updated
May 14, 2023

About the Execution of Marcie for QuasiCertifProtocol-PT-02

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
5449.428 5855.00 6010.00 30.00 TTTFTTTFTFTFTFTT normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Formatting '/data/fkordon/mcc2023-input.r289-tall-167873941000857.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2023-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
.............
=====================================================================
Generated by BenchKit 2-5348
Executing tool marcie
Input is QuasiCertifProtocol-PT-02, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r289-tall-167873941000857
=====================================================================

--------------------
preparation of the directory to be used:
/home/mcc/execution
total 544K
-rw-r--r-- 1 mcc users 7.0K Feb 26 01:27 CTLCardinality.txt
-rw-r--r-- 1 mcc users 64K Feb 26 01:27 CTLCardinality.xml
-rw-r--r-- 1 mcc users 6.0K Feb 26 01:26 CTLFireability.txt
-rw-r--r-- 1 mcc users 46K Feb 26 01:26 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K Jan 29 11:40 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.8K Jan 29 11:40 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 4.6K Feb 25 16:36 LTLCardinality.txt
-rw-r--r-- 1 mcc users 29K Feb 25 16:36 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.9K Feb 25 16:37 LTLFireability.txt
-rw-r--r-- 1 mcc users 19K Feb 25 16:37 LTLFireability.xml
-rw-r--r-- 1 mcc users 17K Feb 26 01:29 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 149K Feb 26 01:29 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 9.8K Feb 26 01:28 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 72K Feb 26 01:28 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.9K Feb 25 16:37 UpperBounds.txt
-rw-r--r-- 1 mcc users 4.1K Feb 25 16:37 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Mar 5 18:23 equiv_col
-rw-r--r-- 1 mcc users 3 Mar 5 18:23 instance
-rw-r--r-- 1 mcc users 6 Mar 5 18:23 iscolored
-rw-r--r-- 1 mcc users 55K Mar 5 18:23 model.pnml

--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME QuasiCertifProtocol-PT-02-CTLCardinality-00
FORMULA_NAME QuasiCertifProtocol-PT-02-CTLCardinality-01
FORMULA_NAME QuasiCertifProtocol-PT-02-CTLCardinality-02
FORMULA_NAME QuasiCertifProtocol-PT-02-CTLCardinality-03
FORMULA_NAME QuasiCertifProtocol-PT-02-CTLCardinality-04
FORMULA_NAME QuasiCertifProtocol-PT-02-CTLCardinality-05
FORMULA_NAME QuasiCertifProtocol-PT-02-CTLCardinality-06
FORMULA_NAME QuasiCertifProtocol-PT-02-CTLCardinality-07
FORMULA_NAME QuasiCertifProtocol-PT-02-CTLCardinality-08
FORMULA_NAME QuasiCertifProtocol-PT-02-CTLCardinality-09
FORMULA_NAME QuasiCertifProtocol-PT-02-CTLCardinality-10
FORMULA_NAME QuasiCertifProtocol-PT-02-CTLCardinality-11
FORMULA_NAME QuasiCertifProtocol-PT-02-CTLCardinality-12
FORMULA_NAME QuasiCertifProtocol-PT-02-CTLCardinality-13
FORMULA_NAME QuasiCertifProtocol-PT-02-CTLCardinality-14
FORMULA_NAME QuasiCertifProtocol-PT-02-CTLCardinality-15

=== Now, execution of the tool begins

BK_START 1678824789019

bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marcie
BK_EXAMINATION=CTLCardinality
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=QuasiCertifProtocol-PT-02
Not applying reductions.
Model is PT
CTLCardinality PT
timeout --kill-after=10s --signal=SIGINT 1m for testing only

Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets

authors: Alex Tovchigrechko (IDD package and CTL model checking)

Martin Schwarick (Symbolic numerical analysis and CSL model checking)

Christian Rohr (Simulative and approximative numerical model checking)

marcie@informatik.tu-cottbus.de

called as: /home/mcc/BenchKit/bin//../marcie/bin/marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --memory=6 --mcc-mode

parse successfull
net created successfully

Net: QuasiCertifProtocol_PT_02
(NrP: 86 NrTr: 56 NrArc: 223)

parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec

net check time: 0m 0.000sec

init dd package: 0m 2.866sec


RS generation: 0m 0.019sec


-> reachability set: #nodes 1808 (1.8e+03) #states 1,029 (3)



starting MCC model checker
--------------------------

checking: EX [EG [s3_1<=0]]
normalized: EX [EG [s3_1<=0]]

abstracting: (s3_1<=0)
states: 945
....
EG iterations: 4
.-> the formula is TRUE

FORMULA QuasiCertifProtocol-PT-02-CTLCardinality-10 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.027sec

checking: ~ [AX [~ [EX [EG [~ [1<=n7_1_2]]]]]]
normalized: EX [EX [EG [~ [1<=n7_1_2]]]]

abstracting: (1<=n7_1_2)
states: 136
......
EG iterations: 6
..-> the formula is TRUE

FORMULA QuasiCertifProtocol-PT-02-CTLCardinality-15 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.018sec

checking: AX [AF [AG [CstopOK_1<=CstopOK_2]]]
normalized: ~ [EX [EG [E [true U ~ [CstopOK_1<=CstopOK_2]]]]]

abstracting: (CstopOK_1<=CstopOK_2)
states: 1,014 (3)
............
EG iterations: 12
.-> the formula is FALSE

FORMULA QuasiCertifProtocol-PT-02-CTLCardinality-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.020sec

checking: EG [n8_1_2<=s5_2]
normalized: EG [n8_1_2<=s5_2]

abstracting: (n8_1_2<=s5_2)
states: 900
............
EG iterations: 12
-> the formula is TRUE

FORMULA QuasiCertifProtocol-PT-02-CTLCardinality-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.021sec

checking: EG [~ [21<=sum(s3_2, s3_0, s3_1)]]
normalized: EG [~ [21<=sum(s3_2, s3_0, s3_1)]]

abstracting: (21<=sum(s3_2, s3_0, s3_1))
states: 0

EG iterations: 0
-> the formula is TRUE

FORMULA QuasiCertifProtocol-PT-02-CTLCardinality-04 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.022sec

checking: A [c1_2<=n5_1 U EG [~ [n1_2<=0]]]
normalized: [~ [EG [~ [EG [~ [n1_2<=0]]]]] & ~ [E [~ [EG [~ [n1_2<=0]]] U [~ [c1_2<=n5_1] & ~ [EG [~ [n1_2<=0]]]]]]]

abstracting: (n1_2<=0)
states: 997
....
EG iterations: 4
abstracting: (c1_2<=n5_1)
states: 567
abstracting: (n1_2<=0)
states: 997
....
EG iterations: 4
abstracting: (n1_2<=0)
states: 997
....
EG iterations: 4
..
EG iterations: 2
-> the formula is FALSE

FORMULA QuasiCertifProtocol-PT-02-CTLCardinality-09 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.024sec

checking: EG [~ [EG [EX [~ [[54<=sum(SstopOK_2, SstopOK_0, SstopOK_1) | 95<=a5]]]]]]
normalized: EG [~ [EG [EX [~ [[54<=sum(SstopOK_2, SstopOK_0, SstopOK_1) | 95<=a5]]]]]]

abstracting: (95<=a5)
states: 0
abstracting: (54<=sum(SstopOK_2, SstopOK_0, SstopOK_1))
states: 0
................................
EG iterations: 31

EG iterations: 0
-> the formula is TRUE

FORMULA QuasiCertifProtocol-PT-02-CTLCardinality-06 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.067sec

checking: EG [[EG [[1<=CstopOK_1 | AG [EF [n8_2_1<=1]]]] | [s5_0<=1 & EG [~ [EF [SstopOK_1<=n9_2_1]]]]]]
normalized: EG [[EG [[~ [E [true U ~ [E [true U n8_2_1<=1]]]] | 1<=CstopOK_1]] | [s5_0<=1 & EG [~ [E [true U SstopOK_1<=n9_2_1]]]]]]

abstracting: (SstopOK_1<=n9_2_1)
states: 903
.
EG iterations: 1
abstracting: (s5_0<=1)
states: 1,029 (3)
abstracting: (1<=CstopOK_1)
states: 24
abstracting: (n8_2_1<=1)
states: 1,029 (3)

EG iterations: 0

EG iterations: 0
-> the formula is TRUE

FORMULA QuasiCertifProtocol-PT-02-CTLCardinality-08 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.012sec

checking: AF [EG [AF [EX [AF [sum(n9_2_2, n9_1_2, n9_1_1, n9_0_1, n9_0_2, n9_2_1, n9_0_0, n9_2_0, n9_1_0)<=78]]]]]
normalized: ~ [EG [~ [EG [~ [EG [~ [EX [~ [EG [~ [sum(n9_2_2, n9_1_2, n9_1_1, n9_0_1, n9_0_2, n9_2_1, n9_0_0, n9_2_0, n9_1_0)<=78]]]]]]]]]]]

abstracting: (sum(n9_2_2, n9_1_2, n9_1_1, n9_0_1, n9_0_2, n9_2_1, n9_0_0, n9_2_0, n9_1_0)<=78)
states: 1,029 (3)
.
EG iterations: 1
..
EG iterations: 1
...............................
EG iterations: 31

EG iterations: 0
-> the formula is FALSE

FORMULA QuasiCertifProtocol-PT-02-CTLCardinality-03 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.031sec

checking: ~ [AF [EG [EF [E [43<=sum(n2_2, n2_1, n2_0) U 73<=sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)]]]]]
normalized: EG [~ [EG [E [true U E [43<=sum(n2_2, n2_1, n2_0) U 73<=sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)]]]]]

abstracting: (73<=sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0))
states: 0
abstracting: (43<=sum(n2_2, n2_1, n2_0))
states: 0
.
EG iterations: 1

EG iterations: 0
-> the formula is TRUE

FORMULA QuasiCertifProtocol-PT-02-CTLCardinality-02 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.045sec

checking: [EX [[n8_0_1<=s3_2 & EG [~ [AX [1<=n8_2_0]]]]] | ~ [[~ [AX [EG [E [s5_2<=n6_1 U 1<=Cstart_0]]]] & EF [[s6_2<=0 & [[[n7_1_0<=n2_0 & 1<=s5_1] & ~ [n8_1_2<=s2_1]] | EX [n9_0_2<=c1_0]]]]]]]
normalized: [~ [[EX [~ [EG [E [s5_2<=n6_1 U 1<=Cstart_0]]]] & E [true U [s6_2<=0 & [EX [n9_0_2<=c1_0] | [~ [n8_1_2<=s2_1] & [n7_1_0<=n2_0 & 1<=s5_1]]]]]]] | EX [[n8_0_1<=s3_2 & EG [EX [~ [1<=n8_2_0]]]]]]

abstracting: (1<=n8_2_0)
states: 222
................................
EG iterations: 31
abstracting: (n8_0_1<=s3_2)
states: 807
.abstracting: (1<=s5_1)
states: 291
abstracting: (n7_1_0<=n2_0)
states: 893
abstracting: (n8_1_2<=s2_1)
states: 807
abstracting: (n9_0_2<=c1_0)
states: 984
.abstracting: (s6_2<=0)
states: 885
abstracting: (1<=Cstart_0)
states: 444
abstracting: (s5_2<=n6_1)
states: 924
.........
EG iterations: 9
.-> the formula is TRUE

FORMULA QuasiCertifProtocol-PT-02-CTLCardinality-14 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.061sec

checking: [AF [sum(n6_1, n6_2, n6_0)<=90] & EG [E [E [[~ [sum(CstopOK_2, CstopOK_1, CstopOK_0)<=sum(n5_2, n5_1, n5_0)] & [a5<=a3 | sum(n6_1, n6_2, n6_0)<=84]] U AF [a1<=83]] U ~ [93<=a1]]]]
normalized: [EG [E [E [[[a5<=a3 | sum(n6_1, n6_2, n6_0)<=84] & ~ [sum(CstopOK_2, CstopOK_1, CstopOK_0)<=sum(n5_2, n5_1, n5_0)]] U ~ [EG [~ [a1<=83]]]] U ~ [93<=a1]]] & ~ [EG [~ [sum(n6_1, n6_2, n6_0)<=90]]]]

abstracting: (sum(n6_1, n6_2, n6_0)<=90)
states: 1,029 (3)
.
EG iterations: 1
abstracting: (93<=a1)
states: 0
abstracting: (a1<=83)
states: 1,029 (3)
.
EG iterations: 1
abstracting: (sum(CstopOK_2, CstopOK_1, CstopOK_0)<=sum(n5_2, n5_1, n5_0))
states: 981
abstracting: (sum(n6_1, n6_2, n6_0)<=84)
states: 1,029 (3)
abstracting: (a5<=a3)
states: 710

EG iterations: 0
-> the formula is TRUE

FORMULA QuasiCertifProtocol-PT-02-CTLCardinality-00 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.071sec

checking: EG [[sum(SstopOK_2, SstopOK_0, SstopOK_1)<=sum(Cstart_2, Cstart_0, Cstart_1) | AX [[AG [~ [a4<=80]] | [[5<=sum(n5_2, n5_1, n5_0) | [sum(s3_2, s3_0, s3_1)<=a4 | 40<=sum(n3_2, n3_1, n3_0)]] & sum(SstopOK_2, SstopOK_0, SstopOK_1)<=87]]]]]
normalized: EG [[sum(SstopOK_2, SstopOK_0, SstopOK_1)<=sum(Cstart_2, Cstart_0, Cstart_1) | ~ [EX [~ [[[sum(SstopOK_2, SstopOK_0, SstopOK_1)<=87 & [5<=sum(n5_2, n5_1, n5_0) | [sum(s3_2, s3_0, s3_1)<=a4 | 40<=sum(n3_2, n3_1, n3_0)]]] | ~ [E [true U a4<=80]]]]]]]]

abstracting: (a4<=80)
states: 1,029 (3)
abstracting: (40<=sum(n3_2, n3_1, n3_0))
states: 0
abstracting: (sum(s3_2, s3_0, s3_1)<=a4)
states: 843
abstracting: (5<=sum(n5_2, n5_1, n5_0))
states: 0
abstracting: (sum(SstopOK_2, SstopOK_0, SstopOK_1)<=87)
states: 1,029 (3)
.abstracting: (sum(SstopOK_2, SstopOK_0, SstopOK_1)<=sum(Cstart_2, Cstart_0, Cstart_1))
states: 663

EG iterations: 0
-> the formula is TRUE

FORMULA QuasiCertifProtocol-PT-02-CTLCardinality-05 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.116sec

checking: [A [[AF [c1_2<=s5_2] | ~ [AF [n9_2_0<=1]]] U EG [A [EG [s5_2<=1] U AG [1<=n7_1_2]]]] | [~ [EG [s5_0<=a2]] | [AX [~ [[[[Sstart_1<=Sstart_2 | a4<=1] & [1<=Astart & n4_1<=1]] | [[s4_1<=n7_2_0 & n3_2<=1] | ~ [n8_0_1<=1]]]]] | EX [~ [[n8_2_1<=Cstart_1 | [[n1_0<=1 | s6_0<=n8_2_2] & ~ [s2_1<=1]]]]]]]]
normalized: [[[EX [~ [[n8_2_1<=Cstart_1 | [~ [s2_1<=1] & [n1_0<=1 | s6_0<=n8_2_2]]]]] | ~ [EX [[[~ [n8_0_1<=1] | [s4_1<=n7_2_0 & n3_2<=1]] | [[1<=Astart & n4_1<=1] & [Sstart_1<=Sstart_2 | a4<=1]]]]]] | ~ [EG [s5_0<=a2]]] | [~ [EG [~ [EG [[~ [EG [E [true U ~ [1<=n7_1_2]]]] & ~ [E [E [true U ~ [1<=n7_1_2]] U [~ [EG [s5_2<=1]] & E [true U ~ [1<=n7_1_2]]]]]]]]]] & ~ [E [~ [EG [[~ [EG [E [true U ~ [1<=n7_1_2]]]] & ~ [E [E [true U ~ [1<=n7_1_2]] U [~ [EG [s5_2<=1]] & E [true U ~ [1<=n7_1_2]]]]]]]] U [~ [[EG [~ [n9_2_0<=1]] | ~ [EG [~ [c1_2<=s5_2]]]]] & ~ [EG [[~ [EG [E [true U ~ [1<=n7_1_2]]]] & ~ [E [E [true U ~ [1<=n7_1_2]] U [~ [EG [s5_2<=1]] & E [true U ~ [1<=n7_1_2]]]]]]]]]]]]]

abstracting: (1<=n7_1_2)
states: 136
abstracting: (s5_2<=1)
states: 1,029 (3)

EG iterations: 0
abstracting: (1<=n7_1_2)
states: 136
abstracting: (1<=n7_1_2)
states: 136
......
EG iterations: 6
.
EG iterations: 1
abstracting: (c1_2<=s5_2)
states: 717
.........
EG iterations: 9
abstracting: (n9_2_0<=1)
states: 1,029 (3)
.
EG iterations: 1
abstracting: (1<=n7_1_2)
states: 136
abstracting: (s5_2<=1)
states: 1,029 (3)

EG iterations: 0
abstracting: (1<=n7_1_2)
states: 136
abstracting: (1<=n7_1_2)
states: 136
......
EG iterations: 6
.
EG iterations: 1
abstracting: (1<=n7_1_2)
states: 136
abstracting: (s5_2<=1)
states: 1,029 (3)

EG iterations: 0
abstracting: (1<=n7_1_2)
states: 136
abstracting: (1<=n7_1_2)
states: 136
......
EG iterations: 6
.
EG iterations: 1
.
EG iterations: 1
abstracting: (s5_0<=a2)
states: 738
......
EG iterations: 6
abstracting: (a4<=1)
states: 1,029 (3)
abstracting: (Sstart_1<=Sstart_2)
states: 1,012 (3)
abstracting: (n4_1<=1)
states: 1,029 (3)
abstracting: (1<=Astart)
states: 4
abstracting: (n3_2<=1)
states: 1,029 (3)
abstracting: (s4_1<=n7_2_0)
states: 987
abstracting: (n8_0_1<=1)
states: 1,029 (3)
.abstracting: (s6_0<=n8_2_2)
states: 936
abstracting: (n1_0<=1)
states: 1,029 (3)
abstracting: (s2_1<=1)
states: 1,029 (3)
abstracting: (n8_2_1<=Cstart_1)
states: 807
.-> the formula is FALSE

FORMULA QuasiCertifProtocol-PT-02-CTLCardinality-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.052sec

checking: A [~ [A [[[[sum(Sstart_2, Sstart_0, Sstart_1)<=88 | 21<=sum(n9_2_2, n9_1_2, n9_1_1, n9_0_1, n9_0_2, n9_2_1, n9_0_0, n9_2_0, n9_1_0)] & [AX [sum(n6_1, n6_2, n6_0)<=16] & AX [sum(n5_2, n5_1, n5_0)<=74]]] | malicious_reservoir<=sum(s6_2, s6_1, s6_0)] U EF [sum(Cstart_2, Cstart_0, Cstart_1)<=a1]]] U [EG [AF [AF [sum(s4_1, s4_2, s4_0)<=25]]] & ~ [AF [~ [AG [sum(n5_2, n5_1, n5_0)<=80]]]]]]
normalized: [~ [EG [~ [[EG [~ [E [true U ~ [sum(n5_2, n5_1, n5_0)<=80]]]] & EG [~ [EG [EG [~ [sum(s4_1, s4_2, s4_0)<=25]]]]]]]]] & ~ [E [~ [[EG [~ [E [true U ~ [sum(n5_2, n5_1, n5_0)<=80]]]] & EG [~ [EG [EG [~ [sum(s4_1, s4_2, s4_0)<=25]]]]]]] U [[~ [EG [~ [E [true U sum(Cstart_2, Cstart_0, Cstart_1)<=a1]]]] & ~ [E [~ [E [true U sum(Cstart_2, Cstart_0, Cstart_1)<=a1]] U [~ [[malicious_reservoir<=sum(s6_2, s6_1, s6_0) | [[~ [EX [~ [sum(n5_2, n5_1, n5_0)<=74]]] & ~ [EX [~ [sum(n6_1, n6_2, n6_0)<=16]]]] & [sum(Sstart_2, Sstart_0, Sstart_1)<=88 | 21<=sum(n9_2_2, n9_1_2, n9_1_1, n9_0_1, n9_0_2, n9_2_1, n9_0_0, n9_2_0, n9_1_0)]]]] & ~ [E [true U sum(Cstart_2, Cstart_0, Cstart_1)<=a1]]]]]] & ~ [[EG [~ [E [true U ~ [sum(n5_2, n5_1, n5_0)<=80]]]] & EG [~ [EG [EG [~ [sum(s4_1, s4_2, s4_0)<=25]]]]]]]]]]]

abstracting: (sum(s4_1, s4_2, s4_0)<=25)
states: 1,029 (3)
.
EG iterations: 1
.
EG iterations: 1

EG iterations: 0
abstracting: (sum(n5_2, n5_1, n5_0)<=80)
states: 1,029 (3)

EG iterations: 0
abstracting: (sum(Cstart_2, Cstart_0, Cstart_1)<=a1)
states: 534
abstracting: (21<=sum(n9_2_2, n9_1_2, n9_1_1, n9_0_1, n9_0_2, n9_2_1, n9_0_0, n9_2_0, n9_1_0))
states: 0
abstracting: (sum(Sstart_2, Sstart_0, Sstart_1)<=88)
states: 1,029 (3)
abstracting: (sum(n6_1, n6_2, n6_0)<=16)
states: 1,029 (3)
.abstracting: (sum(n5_2, n5_1, n5_0)<=74)
states: 1,029 (3)
.abstracting: (malicious_reservoir<=sum(s6_2, s6_1, s6_0))
states: 867
abstracting: (sum(Cstart_2, Cstart_0, Cstart_1)<=a1)
states: 534
abstracting: (sum(Cstart_2, Cstart_0, Cstart_1)<=a1)
states: 534
.
EG iterations: 1
abstracting: (sum(s4_1, s4_2, s4_0)<=25)
states: 1,029 (3)
.
EG iterations: 1
.
EG iterations: 1

EG iterations: 0
abstracting: (sum(n5_2, n5_1, n5_0)<=80)
states: 1,029 (3)

EG iterations: 0
abstracting: (sum(s4_1, s4_2, s4_0)<=25)
states: 1,029 (3)
.
EG iterations: 1
.
EG iterations: 1

EG iterations: 0
abstracting: (sum(n5_2, n5_1, n5_0)<=80)
states: 1,029 (3)

EG iterations: 0
.
EG iterations: 1
-> the formula is TRUE

FORMULA QuasiCertifProtocol-PT-02-CTLCardinality-01 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.188sec

checking: [E [[[E [~ [11<=sum(n1_1, n1_0, n1_2)] U EF [47<=sum(n6_1, n6_2, n6_0)]] | [AX [[65<=CstopAbort & 42<=a1]] | EF [E [45<=SstopAbort U 55<=AstopAbort]]]] | [sum(s5_2, s5_1, s5_0)<=sum(Sstart_2, Sstart_0, Sstart_1) & E [SstopAbort<=sum(n1_1, n1_0, n1_2) U AF [a4<=92]]]] U [E [A [~ [sum(n5_2, n5_1, n5_0)<=22] U EF [sum(s6_2, s6_1, s6_0)<=sum(n4_0, n4_2, n4_1)]] U ~ [[~ [61<=sum(s4_1, s4_2, s4_0)] | [sum(s3_2, s3_0, s3_1)<=72 & 29<=sum(s5_2, s5_1, s5_0)]]]] & E [[[AF [sum(n9_2_2, n9_1_2, n9_1_1, n9_0_1, n9_0_2, n9_2_1, n9_0_0, n9_2_0, n9_1_0)<=Astart] | [sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)<=a1 | sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0)<=83]] | 79<=sum(n3_2, n3_1, n3_0)] U ~ [[sum(s6_2, s6_1, s6_0)<=62 | [3<=sum(s4_1, s4_2, s4_0) | 59<=sum(s2_1, s2_2, s2_0)]]]]]] | AF [[Astart<=17 & EG [[A [sum(n2_2, n2_1, n2_0)<=55 U 39<=SstopAbort] & AX [17<=sum(s5_2, s5_1, s5_0)]]]]]]
normalized: [~ [EG [~ [[Astart<=17 & EG [[~ [EX [~ [17<=sum(s5_2, s5_1, s5_0)]]] & [~ [EG [~ [39<=SstopAbort]]] & ~ [E [~ [39<=SstopAbort] U [~ [sum(n2_2, n2_1, n2_0)<=55] & ~ [39<=SstopAbort]]]]]]]]]]] | E [[[sum(s5_2, s5_1, s5_0)<=sum(Sstart_2, Sstart_0, Sstart_1) & E [SstopAbort<=sum(n1_1, n1_0, n1_2) U ~ [EG [~ [a4<=92]]]]] | [[E [true U E [45<=SstopAbort U 55<=AstopAbort]] | ~ [EX [~ [[65<=CstopAbort & 42<=a1]]]]] | E [~ [11<=sum(n1_1, n1_0, n1_2)] U E [true U 47<=sum(n6_1, n6_2, n6_0)]]]] U [E [[79<=sum(n3_2, n3_1, n3_0) | [[sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)<=a1 | sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0)<=83] | ~ [EG [~ [sum(n9_2_2, n9_1_2, n9_1_1, n9_0_1, n9_0_2, n9_2_1, n9_0_0, n9_2_0, n9_1_0)<=Astart]]]]] U ~ [[sum(s6_2, s6_1, s6_0)<=62 | [3<=sum(s4_1, s4_2, s4_0) | 59<=sum(s2_1, s2_2, s2_0)]]]] & E [[~ [EG [~ [E [true U sum(s6_2, s6_1, s6_0)<=sum(n4_0, n4_2, n4_1)]]]] & ~ [E [~ [E [true U sum(s6_2, s6_1, s6_0)<=sum(n4_0, n4_2, n4_1)]] U [sum(n5_2, n5_1, n5_0)<=22 & ~ [E [true U sum(s6_2, s6_1, s6_0)<=sum(n4_0, n4_2, n4_1)]]]]]] U ~ [[[sum(s3_2, s3_0, s3_1)<=72 & 29<=sum(s5_2, s5_1, s5_0)] | ~ [61<=sum(s4_1, s4_2, s4_0)]]]]]]]

abstracting: (61<=sum(s4_1, s4_2, s4_0))
states: 0
abstracting: (29<=sum(s5_2, s5_1, s5_0))
states: 0
abstracting: (sum(s3_2, s3_0, s3_1)<=72)
states: 1,029 (3)
abstracting: (sum(s6_2, s6_1, s6_0)<=sum(n4_0, n4_2, n4_1))
states: 711
abstracting: (sum(n5_2, n5_1, n5_0)<=22)
states: 1,029 (3)
abstracting: (sum(s6_2, s6_1, s6_0)<=sum(n4_0, n4_2, n4_1))
states: 711
abstracting: (sum(s6_2, s6_1, s6_0)<=sum(n4_0, n4_2, n4_1))
states: 711
.
EG iterations: 1
abstracting: (59<=sum(s2_1, s2_2, s2_0))
states: 0
abstracting: (3<=sum(s4_1, s4_2, s4_0))
states: 3
abstracting: (sum(s6_2, s6_1, s6_0)<=62)
states: 1,029 (3)
abstracting: (sum(n9_2_2, n9_1_2, n9_1_1, n9_0_1, n9_0_2, n9_2_1, n9_0_0, n9_2_0, n9_1_0)<=Astart)
states: 666
.
EG iterations: 1
abstracting: (sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0)<=83)
states: 1,029 (3)
abstracting: (sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)<=a1)
states: 750
abstracting: (79<=sum(n3_2, n3_1, n3_0))
states: 0
abstracting: (47<=sum(n6_1, n6_2, n6_0))
states: 0
abstracting: (11<=sum(n1_1, n1_0, n1_2))
states: 0
abstracting: (42<=a1)
states: 0
abstracting: (65<=CstopAbort)
states: 0
.abstracting: (55<=AstopAbort)
states: 0
abstracting: (45<=SstopAbort)
states: 0
abstracting: (a4<=92)
states: 1,029 (3)
.
EG iterations: 1
abstracting: (SstopAbort<=sum(n1_1, n1_0, n1_2))
states: 558
abstracting: (sum(s5_2, s5_1, s5_0)<=sum(Sstart_2, Sstart_0, Sstart_1))
states: 459
abstracting: (39<=SstopAbort)
states: 0
abstracting: (sum(n2_2, n2_1, n2_0)<=55)
states: 1,029 (3)
abstracting: (39<=SstopAbort)
states: 0
abstracting: (39<=SstopAbort)
states: 0

EG iterations: 0
abstracting: (17<=sum(s5_2, s5_1, s5_0))
states: 0
..
EG iterations: 1
abstracting: (Astart<=17)
states: 1,029 (3)

EG iterations: 0
-> the formula is FALSE

FORMULA QuasiCertifProtocol-PT-02-CTLCardinality-07 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.426sec

totally nodes used: 316303 (3.2e+05)
number of garbage collections: 0
fire ops cache: hits/miss/sum: 124079 689611 813690
used/not used/entry size/cache size: 982952 66125912 16 1024MB
basic ops cache: hits/miss/sum: 27647 173184 200831
used/not used/entry size/cache size: 261969 16515247 12 192MB
unary ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 8 128MB
abstract ops cache: hits/miss/sum: 0 4577 4577
used/not used/entry size/cache size: 1 16777215 12 192MB
state nr cache: hits/miss/sum: 1501 7347 8848
used/not used/entry size/cache size: 7345 8381263 32 256MB
max state cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 8388608 32 256MB
uniqueHash elements/entry size/size: 67108864 4 256MB
0 66813977
1 275356
2 17796
3 1600
4 120
5 15
6 0
7 0
8 0
9 0
>= 10 0

Total processing time: 0m 5.794sec


BK_STOP 1678824794874

--------------------
content from stderr:

check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok


initing FirstDep: 0m 0.000sec


iterations count:899 (16), effective:56 (1)

initing FirstDep: 0m 0.000sec


iterations count:211 (3), effective:27 (0)

iterations count:155 (2), effective:16 (0)

iterations count:72 (1), effective:2 (0)

iterations count:56 (1), effective:0 (0)

iterations count:76 (1), effective:4 (0)

iterations count:56 (1), effective:0 (0)

iterations count:56 (1), effective:0 (0)

iterations count:56 (1), effective:0 (0)

iterations count:56 (1), effective:0 (0)

iterations count:84 (1), effective:5 (0)

iterations count:84 (1), effective:5 (0)

iterations count:84 (1), effective:5 (0)

iterations count:84 (1), effective:5 (0)

iterations count:84 (1), effective:5 (0)

iterations count:84 (1), effective:5 (0)

iterations count:209 (3), effective:26 (0)

iterations count:84 (1), effective:5 (0)

iterations count:84 (1), effective:5 (0)

iterations count:84 (1), effective:5 (0)

iterations count:170 (3), effective:20 (0)

iterations count:170 (3), effective:20 (0)

iterations count:170 (3), effective:20 (0)

iterations count:64 (1), effective:3 (0)

iterations count:64 (1), effective:3 (0)

iterations count:64 (1), effective:3 (0)

iterations count:56 (1), effective:0 (0)

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="QuasiCertifProtocol-PT-02"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marcie"
echo " Input is QuasiCertifProtocol-PT-02, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r289-tall-167873941000857"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"

tar xzf /home/mcc/BenchKit/INPUTS/QuasiCertifProtocol-PT-02.tgz
mv QuasiCertifProtocol-PT-02 execution
cd execution
if [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "UpperBounds" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] || [ "CTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh

echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' CTLCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME CTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;