About the Execution of Marcie for QuasiCertifProtocol-COL-02
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
5472.323 | 8767.00 | 8938.00 | 80.80 | TTTFTTTFFTTTTTFT | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fkordon/mcc2023-input.r289-tall-167873940900801.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2023-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
...............................................................
=====================================================================
Generated by BenchKit 2-5348
Executing tool marcie
Input is QuasiCertifProtocol-COL-02, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r289-tall-167873940900801
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 460K
-rw-r--r-- 1 mcc users 7.4K Feb 26 01:27 CTLCardinality.txt
-rw-r--r-- 1 mcc users 81K Feb 26 01:27 CTLCardinality.xml
-rw-r--r-- 1 mcc users 5.4K Feb 26 01:26 CTLFireability.txt
-rw-r--r-- 1 mcc users 46K Feb 26 01:26 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K Jan 29 11:40 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.8K Jan 29 11:40 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 3.9K Feb 25 16:36 LTLCardinality.txt
-rw-r--r-- 1 mcc users 26K Feb 25 16:36 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.5K Feb 25 16:37 LTLFireability.txt
-rw-r--r-- 1 mcc users 19K Feb 25 16:37 LTLFireability.xml
-rw-r--r-- 1 mcc users 12K Feb 26 01:29 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 115K Feb 26 01:29 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 6.5K Feb 26 01:28 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 46K Feb 26 01:28 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.8K Feb 25 16:37 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.8K Feb 25 16:37 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Mar 5 18:23 equiv_pt
-rw-r--r-- 1 mcc users 3 Mar 5 18:23 instance
-rw-r--r-- 1 mcc users 5 Mar 5 18:23 iscolored
-rw-r--r-- 1 mcc users 34K Mar 5 18:23 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-00
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-01
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-02
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-03
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-04
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-05
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-06
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-07
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-08
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-09
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-10
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-11
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-12
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-13
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-14
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-15
=== Now, execution of the tool begins
BK_START 1678821224252
bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marcie
BK_EXAMINATION=CTLCardinality
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=QuasiCertifProtocol-COL-02
Not applying reductions.
Model is COL
CTLCardinality COL
timeout --kill-after=10s --signal=SIGINT 1m for testing only
Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: /home/mcc/BenchKit/bin//../marcie/bin/marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --memory=6 --mcc-mode
parse successfull
net created successfully
Unfolding complete |P|=86|T|=56|A|=223
Time for unfolding: 0m 1.923sec
Net: QuasiCertifProtocol_COL_02
(NrP: 86 NrTr: 56 NrArc: 223)
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec
net check time: 0m 0.000sec
init dd package: 0m 2.923sec
RS generation: 0m 0.021sec
-> reachability set: #nodes 1808 (1.8e+03) #states 1,029 (3)
starting MCC model checker
--------------------------
checking: EG [~ [21<=sum(s3_tsid2, s3_tsid1, s3_tsid0)]]
normalized: EG [~ [21<=sum(s3_tsid2, s3_tsid1, s3_tsid0)]]
abstracting: (21<=sum(s3_tsid2, s3_tsid1, s3_tsid0))
states: 0
EG iterations: 0
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-04 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.022sec
checking: EG [~ [EG [EX [~ [[54<=sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0) | 95<=a5_dot]]]]]]
normalized: EG [~ [EG [EX [~ [[54<=sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0) | 95<=a5_dot]]]]]]
abstracting: (95<=a5_dot)
states: 0
abstracting: (54<=sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0))
states: 0
................................
EG iterations: 31
EG iterations: 0
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-06 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.092sec
checking: AF [EG [AF [EX [AF [sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0)<=78]]]]]
normalized: ~ [EG [~ [EG [~ [EG [~ [EX [~ [EG [~ [sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0)<=78]]]]]]]]]]]
abstracting: (sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0)<=78)
states: 1,029 (3)
.
EG iterations: 1
..
EG iterations: 1
...............................
EG iterations: 31
EG iterations: 0
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-03 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.030sec
checking: ~ [AF [EG [EF [E [43<=sum(n2_tsid2, n2_tsid1, n2_tsid0) U 73<=sum(n7_tsid2_tsid2, n7_tsid2_tsid1, n7_tsid2_tsid0, n7_tsid1_tsid2, n7_tsid1_tsid1, n7_tsid1_tsid0, n7_tsid0_tsid2, n7_tsid0_tsid1, n7_tsid0_tsid0)]]]]]
normalized: EG [~ [EG [E [true U E [43<=sum(n2_tsid2, n2_tsid1, n2_tsid0) U 73<=sum(n7_tsid2_tsid2, n7_tsid2_tsid1, n7_tsid2_tsid0, n7_tsid1_tsid2, n7_tsid1_tsid1, n7_tsid1_tsid0, n7_tsid0_tsid2, n7_tsid0_tsid1, n7_tsid0_tsid0)]]]]]
abstracting: (73<=sum(n7_tsid2_tsid2, n7_tsid2_tsid1, n7_tsid2_tsid0, n7_tsid1_tsid2, n7_tsid1_tsid1, n7_tsid1_tsid0, n7_tsid0_tsid2, n7_tsid0_tsid1, n7_tsid0_tsid0))
states: 0
abstracting: (43<=sum(n2_tsid2, n2_tsid1, n2_tsid0))
states: 0
.
EG iterations: 1
EG iterations: 0
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-02 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.045sec
checking: AX [EG [sum(s4_tsid2, s4_tsid1, s4_tsid0)<=sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0)]]
normalized: ~ [EX [~ [EG [sum(s4_tsid2, s4_tsid1, s4_tsid0)<=sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0)]]]]
abstracting: (sum(s4_tsid2, s4_tsid1, s4_tsid0)<=sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0))
states: 876
....
EG iterations: 4
.-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-10 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.044sec
checking: [AF [sum(n6_tsid2, n6_tsid1, n6_tsid0)<=90] & EG [E [E [[~ [sum(CstopOK_tsid2, CstopOK_tsid1, CstopOK_tsid0)<=sum(n5_tsid2, n5_tsid1, n5_tsid0)] & [a5_dot<=a3_dot | sum(n6_tsid2, n6_tsid1, n6_tsid0)<=84]] U AF [a1_dot<=83]] U ~ [93<=a1_dot]]]]
normalized: [EG [E [E [[[a5_dot<=a3_dot | sum(n6_tsid2, n6_tsid1, n6_tsid0)<=84] & ~ [sum(CstopOK_tsid2, CstopOK_tsid1, CstopOK_tsid0)<=sum(n5_tsid2, n5_tsid1, n5_tsid0)]] U ~ [EG [~ [a1_dot<=83]]]] U ~ [93<=a1_dot]]] & ~ [EG [~ [sum(n6_tsid2, n6_tsid1, n6_tsid0)<=90]]]]
abstracting: (sum(n6_tsid2, n6_tsid1, n6_tsid0)<=90)
states: 1,029 (3)
.
EG iterations: 1
abstracting: (93<=a1_dot)
states: 0
abstracting: (a1_dot<=83)
states: 1,029 (3)
.
EG iterations: 1
abstracting: (sum(CstopOK_tsid2, CstopOK_tsid1, CstopOK_tsid0)<=sum(n5_tsid2, n5_tsid1, n5_tsid0))
states: 981
abstracting: (sum(n6_tsid2, n6_tsid1, n6_tsid0)<=84)
states: 1,029 (3)
abstracting: (a5_dot<=a3_dot)
states: 710
EG iterations: 0
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-00 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.088sec
checking: EG [[sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0)<=sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0) | AX [[AG [~ [a4_dot<=80]] | [[5<=sum(n5_tsid2, n5_tsid1, n5_tsid0) | [sum(s3_tsid2, s3_tsid1, s3_tsid0)<=a4_dot | 40<=sum(n3_tsid2, n3_tsid1, n3_tsid0)]] & sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0)<=87]]]]]
normalized: EG [[~ [EX [~ [[[[[sum(s3_tsid2, s3_tsid1, s3_tsid0)<=a4_dot | 40<=sum(n3_tsid2, n3_tsid1, n3_tsid0)] | 5<=sum(n5_tsid2, n5_tsid1, n5_tsid0)] & sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0)<=87] | ~ [E [true U a4_dot<=80]]]]]] | sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0)<=sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0)]]
abstracting: (sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0)<=sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0))
states: 663
abstracting: (a4_dot<=80)
states: 1,029 (3)
abstracting: (sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0)<=87)
states: 1,029 (3)
abstracting: (5<=sum(n5_tsid2, n5_tsid1, n5_tsid0))
states: 0
abstracting: (40<=sum(n3_tsid2, n3_tsid1, n3_tsid0))
states: 0
abstracting: (sum(s3_tsid2, s3_tsid1, s3_tsid0)<=a4_dot)
states: 843
.
EG iterations: 0
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-05 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.117sec
checking: EG [A [A [AF [~ [sum(s5_tsid2, s5_tsid1, s5_tsid0)<=sum(Sstart_tsid2, Sstart_tsid1, Sstart_tsid0)]] U EF [[93<=Astart_dot | sum(s4_tsid2, s4_tsid1, s4_tsid0)<=38]]] U sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0)<=sum(n7_tsid2_tsid2, n7_tsid2_tsid1, n7_tsid2_tsid0, n7_tsid1_tsid2, n7_tsid1_tsid1, n7_tsid1_tsid0, n7_tsid0_tsid2, n7_tsid0_tsid1, n7_tsid0_tsid0)]]
normalized: EG [[~ [EG [~ [sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0)<=sum(n7_tsid2_tsid2, n7_tsid2_tsid1, n7_tsid2_tsid0, n7_tsid1_tsid2, n7_tsid1_tsid1, n7_tsid1_tsid0, n7_tsid0_tsid2, n7_tsid0_tsid1, n7_tsid0_tsid0)]]] & ~ [E [~ [sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0)<=sum(n7_tsid2_tsid2, n7_tsid2_tsid1, n7_tsid2_tsid0, n7_tsid1_tsid2, n7_tsid1_tsid1, n7_tsid1_tsid0, n7_tsid0_tsid2, n7_tsid0_tsid1, n7_tsid0_tsid0)] U [~ [[~ [EG [~ [E [true U [93<=Astart_dot | sum(s4_tsid2, s4_tsid1, s4_tsid0)<=38]]]]] & ~ [E [~ [E [true U [93<=Astart_dot | sum(s4_tsid2, s4_tsid1, s4_tsid0)<=38]]] U [EG [sum(s5_tsid2, s5_tsid1, s5_tsid0)<=sum(Sstart_tsid2, Sstart_tsid1, Sstart_tsid0)] & ~ [E [true U [93<=Astart_dot | sum(s4_tsid2, s4_tsid1, s4_tsid0)<=38]]]]]]]] & ~ [sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0)<=sum(n7_tsid2_tsid2, n7_tsid2_tsid1, n7_tsid2_tsid0, n7_tsid1_tsid2, n7_tsid1_tsid1, n7_tsid1_tsid0, n7_tsid0_tsid2, n7_tsid0_tsid1, n7_tsid0_tsid0)]]]]]]
abstracting: (sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0)<=sum(n7_tsid2_tsid2, n7_tsid2_tsid1, n7_tsid2_tsid0, n7_tsid1_tsid2, n7_tsid1_tsid1, n7_tsid1_tsid0, n7_tsid0_tsid2, n7_tsid0_tsid1, n7_tsid0_tsid0))
states: 663
abstracting: (sum(s4_tsid2, s4_tsid1, s4_tsid0)<=38)
states: 1,029 (3)
abstracting: (93<=Astart_dot)
states: 0
abstracting: (sum(s5_tsid2, s5_tsid1, s5_tsid0)<=sum(Sstart_tsid2, Sstart_tsid1, Sstart_tsid0))
states: 459
.......
EG iterations: 7
abstracting: (sum(s4_tsid2, s4_tsid1, s4_tsid0)<=38)
states: 1,029 (3)
abstracting: (93<=Astart_dot)
states: 0
abstracting: (sum(s4_tsid2, s4_tsid1, s4_tsid0)<=38)
states: 1,029 (3)
abstracting: (93<=Astart_dot)
states: 0
.
EG iterations: 1
abstracting: (sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0)<=sum(n7_tsid2_tsid2, n7_tsid2_tsid1, n7_tsid2_tsid0, n7_tsid1_tsid2, n7_tsid1_tsid1, n7_tsid1_tsid0, n7_tsid0_tsid2, n7_tsid0_tsid1, n7_tsid0_tsid0))
states: 663
abstracting: (sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0)<=sum(n7_tsid2_tsid2, n7_tsid2_tsid1, n7_tsid2_tsid0, n7_tsid1_tsid2, n7_tsid1_tsid1, n7_tsid1_tsid0, n7_tsid0_tsid2, n7_tsid0_tsid1, n7_tsid0_tsid0))
states: 663
.
EG iterations: 1
............
EG iterations: 12
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-13 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.106sec
checking: EG [AG [E [[~ [[sum(s3_tsid2, s3_tsid1, s3_tsid0)<=AstopAbort_dot | a3_dot<=29]] & [[CstopAbort_dot<=90 & 45<=sum(n7_tsid2_tsid2, n7_tsid2_tsid1, n7_tsid2_tsid0, n7_tsid1_tsid2, n7_tsid1_tsid1, n7_tsid1_tsid0, n7_tsid0_tsid2, n7_tsid0_tsid1, n7_tsid0_tsid0)] & AF [27<=sum(n5_tsid2, n5_tsid1, n5_tsid0)]]] U EG [EG [sum(n7_tsid2_tsid2, n7_tsid2_tsid1, n7_tsid2_tsid0, n7_tsid1_tsid2, n7_tsid1_tsid1, n7_tsid1_tsid0, n7_tsid0_tsid2, n7_tsid0_tsid1, n7_tsid0_tsid0)<=66]]]]]
normalized: EG [~ [E [true U ~ [E [[[[CstopAbort_dot<=90 & 45<=sum(n7_tsid2_tsid2, n7_tsid2_tsid1, n7_tsid2_tsid0, n7_tsid1_tsid2, n7_tsid1_tsid1, n7_tsid1_tsid0, n7_tsid0_tsid2, n7_tsid0_tsid1, n7_tsid0_tsid0)] & ~ [EG [~ [27<=sum(n5_tsid2, n5_tsid1, n5_tsid0)]]]] & ~ [[sum(s3_tsid2, s3_tsid1, s3_tsid0)<=AstopAbort_dot | a3_dot<=29]]] U EG [EG [sum(n7_tsid2_tsid2, n7_tsid2_tsid1, n7_tsid2_tsid0, n7_tsid1_tsid2, n7_tsid1_tsid1, n7_tsid1_tsid0, n7_tsid0_tsid2, n7_tsid0_tsid1, n7_tsid0_tsid0)<=66]]]]]]]
abstracting: (sum(n7_tsid2_tsid2, n7_tsid2_tsid1, n7_tsid2_tsid0, n7_tsid1_tsid2, n7_tsid1_tsid1, n7_tsid1_tsid0, n7_tsid0_tsid2, n7_tsid0_tsid1, n7_tsid0_tsid0)<=66)
states: 1,029 (3)
EG iterations: 0
EG iterations: 0
abstracting: (a3_dot<=29)
states: 1,029 (3)
abstracting: (sum(s3_tsid2, s3_tsid1, s3_tsid0)<=AstopAbort_dot)
states: 906
abstracting: (27<=sum(n5_tsid2, n5_tsid1, n5_tsid0))
states: 0
EG iterations: 0
abstracting: (45<=sum(n7_tsid2_tsid2, n7_tsid2_tsid1, n7_tsid2_tsid0, n7_tsid1_tsid2, n7_tsid1_tsid1, n7_tsid1_tsid0, n7_tsid0_tsid2, n7_tsid0_tsid1, n7_tsid0_tsid0))
states: 0
abstracting: (CstopAbort_dot<=90)
states: 1,029 (3)
EG iterations: 0
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-15 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.093sec
checking: A [~ [A [[[[sum(Sstart_tsid2, Sstart_tsid1, Sstart_tsid0)<=88 | 21<=sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0)] & [AX [sum(n6_tsid2, n6_tsid1, n6_tsid0)<=16] & AX [sum(n5_tsid2, n5_tsid1, n5_tsid0)<=74]]] | malicious_reservoir_dot<=sum(s6_tsid2, s6_tsid1, s6_tsid0)] U EF [sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0)<=a1_dot]]] U [EG [AF [AF [sum(s4_tsid2, s4_tsid1, s4_tsid0)<=25]]] & ~ [AF [~ [AG [sum(n5_tsid2, n5_tsid1, n5_tsid0)<=80]]]]]]
normalized: [~ [EG [~ [[EG [~ [EG [EG [~ [sum(s4_tsid2, s4_tsid1, s4_tsid0)<=25]]]]] & EG [~ [E [true U ~ [sum(n5_tsid2, n5_tsid1, n5_tsid0)<=80]]]]]]]] & ~ [E [~ [[EG [~ [EG [EG [~ [sum(s4_tsid2, s4_tsid1, s4_tsid0)<=25]]]]] & EG [~ [E [true U ~ [sum(n5_tsid2, n5_tsid1, n5_tsid0)<=80]]]]]] U [~ [[EG [~ [EG [EG [~ [sum(s4_tsid2, s4_tsid1, s4_tsid0)<=25]]]]] & EG [~ [E [true U ~ [sum(n5_tsid2, n5_tsid1, n5_tsid0)<=80]]]]]] & [~ [EG [~ [E [true U sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0)<=a1_dot]]]] & ~ [E [~ [E [true U sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0)<=a1_dot]] U [~ [[[[sum(Sstart_tsid2, Sstart_tsid1, Sstart_tsid0)<=88 | 21<=sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0)] & [~ [EX [~ [sum(n6_tsid2, n6_tsid1, n6_tsid0)<=16]]] & ~ [EX [~ [sum(n5_tsid2, n5_tsid1, n5_tsid0)<=74]]]]] | malicious_reservoir_dot<=sum(s6_tsid2, s6_tsid1, s6_tsid0)]] & ~ [E [true U sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0)<=a1_dot]]]]]]]]]]
abstracting: (sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0)<=a1_dot)
states: 534
abstracting: (malicious_reservoir_dot<=sum(s6_tsid2, s6_tsid1, s6_tsid0))
states: 867
abstracting: (sum(n5_tsid2, n5_tsid1, n5_tsid0)<=74)
states: 1,029 (3)
.abstracting: (sum(n6_tsid2, n6_tsid1, n6_tsid0)<=16)
states: 1,029 (3)
.abstracting: (21<=sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0))
states: 0
abstracting: (sum(Sstart_tsid2, Sstart_tsid1, Sstart_tsid0)<=88)
states: 1,029 (3)
abstracting: (sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0)<=a1_dot)
states: 534
abstracting: (sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0)<=a1_dot)
states: 534
.
EG iterations: 1
abstracting: (sum(n5_tsid2, n5_tsid1, n5_tsid0)<=80)
states: 1,029 (3)
EG iterations: 0
abstracting: (sum(s4_tsid2, s4_tsid1, s4_tsid0)<=25)
states: 1,029 (3)
.
EG iterations: 1
.
EG iterations: 1
EG iterations: 0
abstracting: (sum(n5_tsid2, n5_tsid1, n5_tsid0)<=80)
states: 1,029 (3)
EG iterations: 0
abstracting: (sum(s4_tsid2, s4_tsid1, s4_tsid0)<=25)
states: 1,029 (3)
.
EG iterations: 1
.
EG iterations: 1
EG iterations: 0
abstracting: (sum(n5_tsid2, n5_tsid1, n5_tsid0)<=80)
states: 1,029 (3)
EG iterations: 0
abstracting: (sum(s4_tsid2, s4_tsid1, s4_tsid0)<=25)
states: 1,029 (3)
.
EG iterations: 1
.
EG iterations: 1
EG iterations: 0
.
EG iterations: 1
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-01 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.188sec
checking: ~ [[[AF [~ [EF [6<=sum(s3_tsid2, s3_tsid1, s3_tsid0)]]] | [A [EF [sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0)<=sum(n7_tsid2_tsid2, n7_tsid2_tsid1, n7_tsid2_tsid0, n7_tsid1_tsid2, n7_tsid1_tsid1, n7_tsid1_tsid0, n7_tsid0_tsid2, n7_tsid0_tsid1, n7_tsid0_tsid0)] U AF [sum(n4_tsid2, n4_tsid1, n4_tsid0)<=sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0)]] | A [E [29<=sum(Sstart_tsid2, Sstart_tsid1, Sstart_tsid0) U 5<=sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0)] U 35<=SstopAbort_dot]]] | AG [EG [A [Astart_dot<=94 U a5_dot<=7]]]]]
normalized: ~ [[~ [E [true U ~ [EG [[~ [EG [~ [a5_dot<=7]]] & ~ [E [~ [a5_dot<=7] U [~ [Astart_dot<=94] & ~ [a5_dot<=7]]]]]]]]] | [[[~ [EG [~ [35<=SstopAbort_dot]]] & ~ [E [~ [35<=SstopAbort_dot] U [~ [35<=SstopAbort_dot] & ~ [E [29<=sum(Sstart_tsid2, Sstart_tsid1, Sstart_tsid0) U 5<=sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0)]]]]]] | [~ [EG [EG [~ [sum(n4_tsid2, n4_tsid1, n4_tsid0)<=sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0)]]]] & ~ [E [EG [~ [sum(n4_tsid2, n4_tsid1, n4_tsid0)<=sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0)]] U [~ [E [true U sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0)<=sum(n7_tsid2_tsid2, n7_tsid2_tsid1, n7_tsid2_tsid0, n7_tsid1_tsid2, n7_tsid1_tsid1, n7_tsid1_tsid0, n7_tsid0_tsid2, n7_tsid0_tsid1, n7_tsid0_tsid0)]] & EG [~ [sum(n4_tsid2, n4_tsid1, n4_tsid0)<=sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0)]]]]]]] | ~ [EG [E [true U 6<=sum(s3_tsid2, s3_tsid1, s3_tsid0)]]]]]]
abstracting: (6<=sum(s3_tsid2, s3_tsid1, s3_tsid0))
states: 0
.
EG iterations: 1
abstracting: (sum(n4_tsid2, n4_tsid1, n4_tsid0)<=sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0))
states: 1,029 (3)
.
EG iterations: 1
abstracting: (sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0)<=sum(n7_tsid2_tsid2, n7_tsid2_tsid1, n7_tsid2_tsid0, n7_tsid1_tsid2, n7_tsid1_tsid1, n7_tsid1_tsid0, n7_tsid0_tsid2, n7_tsid0_tsid1, n7_tsid0_tsid0))
states: 663
abstracting: (sum(n4_tsid2, n4_tsid1, n4_tsid0)<=sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0))
states: 1,029 (3)
.
EG iterations: 1
abstracting: (sum(n4_tsid2, n4_tsid1, n4_tsid0)<=sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0))
states: 1,029 (3)
.
EG iterations: 1
.
EG iterations: 1
abstracting: (5<=sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0))
states: 129
abstracting: (29<=sum(Sstart_tsid2, Sstart_tsid1, Sstart_tsid0))
states: 0
abstracting: (35<=SstopAbort_dot)
states: 0
abstracting: (35<=SstopAbort_dot)
states: 0
abstracting: (35<=SstopAbort_dot)
states: 0
EG iterations: 0
abstracting: (a5_dot<=7)
states: 1,029 (3)
abstracting: (Astart_dot<=94)
states: 1,029 (3)
abstracting: (a5_dot<=7)
states: 1,029 (3)
abstracting: (a5_dot<=7)
states: 1,029 (3)
.
EG iterations: 1
EG iterations: 0
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.100sec
checking: EX [[~ [99<=sum(s3_tsid2, s3_tsid1, s3_tsid0)] & [[sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0)<=29 | sum(CstopOK_tsid2, CstopOK_tsid1, CstopOK_tsid0)<=5] & [EX [[~ [sum(n6_tsid2, n6_tsid1, n6_tsid0)<=sum(c1_tsid2, c1_tsid1, c1_tsid0)] | AG [31<=a2_dot]]] | [[[A [sum(s3_tsid2, s3_tsid1, s3_tsid0)<=4 U 31<=Astart_dot] | AG [sum(n1_tsid2, n1_tsid1, n1_tsid0)<=sum(n8_tsid2_tsid2, n8_tsid2_tsid1, n8_tsid2_tsid0, n8_tsid1_tsid2, n8_tsid1_tsid1, n8_tsid1_tsid0, n8_tsid0_tsid2, n8_tsid0_tsid1, n8_tsid0_tsid0)]] & [[26<=sum(n1_tsid2, n1_tsid1, n1_tsid0) | a5_dot<=71] | EX [sum(n1_tsid2, n1_tsid1, n1_tsid0)<=sum(n1_tsid2, n1_tsid1, n1_tsid0)]]] | ~ [AF [8<=malicious_reservoir_dot]]]]]]]
normalized: EX [[[[[[[EX [sum(n1_tsid2, n1_tsid1, n1_tsid0)<=sum(n1_tsid2, n1_tsid1, n1_tsid0)] | [26<=sum(n1_tsid2, n1_tsid1, n1_tsid0) | a5_dot<=71]] & [[~ [EG [~ [31<=Astart_dot]]] & ~ [E [~ [31<=Astart_dot] U [~ [sum(s3_tsid2, s3_tsid1, s3_tsid0)<=4] & ~ [31<=Astart_dot]]]]] | ~ [E [true U ~ [sum(n1_tsid2, n1_tsid1, n1_tsid0)<=sum(n8_tsid2_tsid2, n8_tsid2_tsid1, n8_tsid2_tsid0, n8_tsid1_tsid2, n8_tsid1_tsid1, n8_tsid1_tsid0, n8_tsid0_tsid2, n8_tsid0_tsid1, n8_tsid0_tsid0)]]]]] | EG [~ [8<=malicious_reservoir_dot]]] | EX [[~ [E [true U ~ [31<=a2_dot]]] | ~ [sum(n6_tsid2, n6_tsid1, n6_tsid0)<=sum(c1_tsid2, c1_tsid1, c1_tsid0)]]]] & [sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0)<=29 | sum(CstopOK_tsid2, CstopOK_tsid1, CstopOK_tsid0)<=5]] & ~ [99<=sum(s3_tsid2, s3_tsid1, s3_tsid0)]]]
abstracting: (99<=sum(s3_tsid2, s3_tsid1, s3_tsid0))
states: 0
abstracting: (sum(CstopOK_tsid2, CstopOK_tsid1, CstopOK_tsid0)<=5)
states: 1,029 (3)
abstracting: (sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0)<=29)
states: 1,029 (3)
abstracting: (sum(n6_tsid2, n6_tsid1, n6_tsid0)<=sum(c1_tsid2, c1_tsid1, c1_tsid0))
states: 561
abstracting: (31<=a2_dot)
states: 0
.abstracting: (8<=malicious_reservoir_dot)
states: 0
EG iterations: 0
abstracting: (sum(n1_tsid2, n1_tsid1, n1_tsid0)<=sum(n8_tsid2_tsid2, n8_tsid2_tsid1, n8_tsid2_tsid0, n8_tsid1_tsid2, n8_tsid1_tsid1, n8_tsid1_tsid0, n8_tsid0_tsid2, n8_tsid0_tsid1, n8_tsid0_tsid0))
states: 973
abstracting: (31<=Astart_dot)
states: 0
abstracting: (sum(s3_tsid2, s3_tsid1, s3_tsid0)<=4)
states: 1,029 (3)
abstracting: (31<=Astart_dot)
states: 0
abstracting: (31<=Astart_dot)
states: 0
EG iterations: 0
abstracting: (a5_dot<=71)
states: 1,029 (3)
abstracting: (26<=sum(n1_tsid2, n1_tsid1, n1_tsid0))
states: 0
abstracting: (sum(n1_tsid2, n1_tsid1, n1_tsid0)<=sum(n1_tsid2, n1_tsid1, n1_tsid0))
states: 1,029 (3)
..-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-09 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.184sec
checking: EX [[AF [[E [23<=sum(n8_tsid2_tsid2, n8_tsid2_tsid1, n8_tsid2_tsid0, n8_tsid1_tsid2, n8_tsid1_tsid1, n8_tsid1_tsid0, n8_tsid0_tsid2, n8_tsid0_tsid1, n8_tsid0_tsid0) U [sum(n3_tsid2, n3_tsid1, n3_tsid0)<=sum(n4_tsid2, n4_tsid1, n4_tsid0) & 25<=a4_dot]] & ~ [[~ [92<=sum(n3_tsid2, n3_tsid1, n3_tsid0)] & ~ [12<=a2_dot]]]]] & [[sum(s3_tsid2, s3_tsid1, s3_tsid0)<=AstopAbort_dot | ~ [[EG [37<=a1_dot] | ~ [a3_dot<=2]]]] & [a3_dot<=96 | [EX [~ [malicious_reservoir_dot<=AstopOK_dot]] & A [sum(n1_tsid2, n1_tsid1, n1_tsid0)<=86 U [sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0)<=29 & 100<=sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0)]]]]]]]
normalized: EX [[[[a3_dot<=96 | [[~ [EG [~ [[sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0)<=29 & 100<=sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0)]]]] & ~ [E [~ [[sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0)<=29 & 100<=sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0)]] U [~ [[sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0)<=29 & 100<=sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0)]] & ~ [sum(n1_tsid2, n1_tsid1, n1_tsid0)<=86]]]]] & EX [~ [malicious_reservoir_dot<=AstopOK_dot]]]] & [sum(s3_tsid2, s3_tsid1, s3_tsid0)<=AstopAbort_dot | ~ [[~ [a3_dot<=2] | EG [37<=a1_dot]]]]] & ~ [EG [~ [[~ [[~ [12<=a2_dot] & ~ [92<=sum(n3_tsid2, n3_tsid1, n3_tsid0)]]] & E [23<=sum(n8_tsid2_tsid2, n8_tsid2_tsid1, n8_tsid2_tsid0, n8_tsid1_tsid2, n8_tsid1_tsid1, n8_tsid1_tsid0, n8_tsid0_tsid2, n8_tsid0_tsid1, n8_tsid0_tsid0) U [sum(n3_tsid2, n3_tsid1, n3_tsid0)<=sum(n4_tsid2, n4_tsid1, n4_tsid0) & 25<=a4_dot]]]]]]]]
abstracting: (25<=a4_dot)
states: 0
abstracting: (sum(n3_tsid2, n3_tsid1, n3_tsid0)<=sum(n4_tsid2, n4_tsid1, n4_tsid0))
states: 997
abstracting: (23<=sum(n8_tsid2_tsid2, n8_tsid2_tsid1, n8_tsid2_tsid0, n8_tsid1_tsid2, n8_tsid1_tsid1, n8_tsid1_tsid0, n8_tsid0_tsid2, n8_tsid0_tsid1, n8_tsid0_tsid0))
states: 0
abstracting: (92<=sum(n3_tsid2, n3_tsid1, n3_tsid0))
states: 0
abstracting: (12<=a2_dot)
states: 0
EG iterations: 0
abstracting: (37<=a1_dot)
states: 0
.
EG iterations: 1
abstracting: (a3_dot<=2)
states: 1,029 (3)
abstracting: (sum(s3_tsid2, s3_tsid1, s3_tsid0)<=AstopAbort_dot)
states: 906
abstracting: (malicious_reservoir_dot<=AstopOK_dot)
states: 858
.abstracting: (sum(n1_tsid2, n1_tsid1, n1_tsid0)<=86)
states: 1,029 (3)
abstracting: (100<=sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0))
states: 0
abstracting: (sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0)<=29)
states: 1,029 (3)
abstracting: (100<=sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0))
states: 0
abstracting: (sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0)<=29)
states: 1,029 (3)
abstracting: (100<=sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0))
states: 0
abstracting: (sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0)<=29)
states: 1,029 (3)
EG iterations: 0
abstracting: (a3_dot<=96)
states: 1,029 (3)
.-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-08 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.142sec
checking: [EG [AX [[~ [[EG [100<=sum(s5_tsid2, s5_tsid1, s5_tsid0)] & [sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0)<=sum(c1_tsid2, c1_tsid1, c1_tsid0) & sum(n2_tsid2, n2_tsid1, n2_tsid0)<=sum(CstopOK_tsid2, CstopOK_tsid1, CstopOK_tsid0)]]] | [EG [CstopAbort_dot<=96] | [E [sum(n6_tsid2, n6_tsid1, n6_tsid0)<=25 U 67<=a2_dot] | ~ [a2_dot<=26]]]]]] | [AG [[a5_dot<=0 | E [E [sum(Sstart_tsid2, Sstart_tsid1, Sstart_tsid0)<=a2_dot U AstopOK_dot<=sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0)] U AG [31<=sum(s3_tsid2, s3_tsid1, s3_tsid0)]]]] & AX [~ [[A [EF [52<=AstopOK_dot] U [sum(n2_tsid2, n2_tsid1, n2_tsid0)<=14 & AstopAbort_dot<=sum(n7_tsid2_tsid2, n7_tsid2_tsid1, n7_tsid2_tsid0, n7_tsid1_tsid2, n7_tsid1_tsid1, n7_tsid1_tsid0, n7_tsid0_tsid2, n7_tsid0_tsid1, n7_tsid0_tsid0)]] & E [~ [52<=malicious_reservoir_dot] U [88<=a3_dot | 32<=sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0)]]]]]]]
normalized: [[~ [E [true U ~ [[a5_dot<=0 | E [E [sum(Sstart_tsid2, Sstart_tsid1, Sstart_tsid0)<=a2_dot U AstopOK_dot<=sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0)] U ~ [E [true U ~ [31<=sum(s3_tsid2, s3_tsid1, s3_tsid0)]]]]]]]] & ~ [EX [[E [~ [52<=malicious_reservoir_dot] U [88<=a3_dot | 32<=sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0)]] & [~ [EG [~ [[sum(n2_tsid2, n2_tsid1, n2_tsid0)<=14 & AstopAbort_dot<=sum(n7_tsid2_tsid2, n7_tsid2_tsid1, n7_tsid2_tsid0, n7_tsid1_tsid2, n7_tsid1_tsid1, n7_tsid1_tsid0, n7_tsid0_tsid2, n7_tsid0_tsid1, n7_tsid0_tsid0)]]]] & ~ [E [~ [[sum(n2_tsid2, n2_tsid1, n2_tsid0)<=14 & AstopAbort_dot<=sum(n7_tsid2_tsid2, n7_tsid2_tsid1, n7_tsid2_tsid0, n7_tsid1_tsid2, n7_tsid1_tsid1, n7_tsid1_tsid0, n7_tsid0_tsid2, n7_tsid0_tsid1, n7_tsid0_tsid0)]] U [~ [E [true U 52<=AstopOK_dot]] & ~ [[sum(n2_tsid2, n2_tsid1, n2_tsid0)<=14 & AstopAbort_dot<=sum(n7_tsid2_tsid2, n7_tsid2_tsid1, n7_tsid2_tsid0, n7_tsid1_tsid2, n7_tsid1_tsid1, n7_tsid1_tsid0, n7_tsid0_tsid2, n7_tsid0_tsid1, n7_tsid0_tsid0)]]]]]]]]]] | EG [~ [EX [~ [[[[~ [a2_dot<=26] | E [sum(n6_tsid2, n6_tsid1, n6_tsid0)<=25 U 67<=a2_dot]] | EG [CstopAbort_dot<=96]] | ~ [[[sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0)<=sum(c1_tsid2, c1_tsid1, c1_tsid0) & sum(n2_tsid2, n2_tsid1, n2_tsid0)<=sum(CstopOK_tsid2, CstopOK_tsid1, CstopOK_tsid0)] & EG [100<=sum(s5_tsid2, s5_tsid1, s5_tsid0)]]]]]]]]]
abstracting: (100<=sum(s5_tsid2, s5_tsid1, s5_tsid0))
states: 0
.
EG iterations: 1
abstracting: (sum(n2_tsid2, n2_tsid1, n2_tsid0)<=sum(CstopOK_tsid2, CstopOK_tsid1, CstopOK_tsid0))
states: 973
abstracting: (sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0)<=sum(c1_tsid2, c1_tsid1, c1_tsid0))
states: 588
abstracting: (CstopAbort_dot<=96)
states: 1,029 (3)
EG iterations: 0
abstracting: (67<=a2_dot)
states: 0
abstracting: (sum(n6_tsid2, n6_tsid1, n6_tsid0)<=25)
states: 1,029 (3)
abstracting: (a2_dot<=26)
states: 1,029 (3)
.
EG iterations: 0
abstracting: (AstopAbort_dot<=sum(n7_tsid2_tsid2, n7_tsid2_tsid1, n7_tsid2_tsid0, n7_tsid1_tsid2, n7_tsid1_tsid1, n7_tsid1_tsid0, n7_tsid0_tsid2, n7_tsid0_tsid1, n7_tsid0_tsid0))
states: 747
abstracting: (sum(n2_tsid2, n2_tsid1, n2_tsid0)<=14)
states: 1,029 (3)
abstracting: (52<=AstopOK_dot)
states: 0
abstracting: (AstopAbort_dot<=sum(n7_tsid2_tsid2, n7_tsid2_tsid1, n7_tsid2_tsid0, n7_tsid1_tsid2, n7_tsid1_tsid1, n7_tsid1_tsid0, n7_tsid0_tsid2, n7_tsid0_tsid1, n7_tsid0_tsid0))
states: 747
abstracting: (sum(n2_tsid2, n2_tsid1, n2_tsid0)<=14)
states: 1,029 (3)
abstracting: (AstopAbort_dot<=sum(n7_tsid2_tsid2, n7_tsid2_tsid1, n7_tsid2_tsid0, n7_tsid1_tsid2, n7_tsid1_tsid1, n7_tsid1_tsid0, n7_tsid0_tsid2, n7_tsid0_tsid1, n7_tsid0_tsid0))
states: 747
abstracting: (sum(n2_tsid2, n2_tsid1, n2_tsid0)<=14)
states: 1,029 (3)
......
EG iterations: 6
abstracting: (32<=sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0))
states: 0
abstracting: (88<=a3_dot)
states: 0
abstracting: (52<=malicious_reservoir_dot)
states: 0
.abstracting: (31<=sum(s3_tsid2, s3_tsid1, s3_tsid0))
states: 0
abstracting: (AstopOK_dot<=sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0))
states: 908
abstracting: (sum(Sstart_tsid2, Sstart_tsid1, Sstart_tsid0)<=a2_dot)
states: 975
abstracting: (a5_dot<=0)
states: 710
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.293sec
checking: [E [EF [E [EF [sum(n4_tsid2, n4_tsid1, n4_tsid0)<=a3_dot] U ~ [EX [sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0)<=25]]]] U [[sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0)<=sum(n5_tsid2, n5_tsid1, n5_tsid0) | [AX [~ [AstopOK_dot<=81]] | EX [[92<=sum(n3_tsid2, n3_tsid1, n3_tsid0) & 9<=a3_dot]]]] & A [EX [[a2_dot<=CstopAbort_dot & sum(s4_tsid2, s4_tsid1, s4_tsid0)<=AstopOK_dot]] U sum(n6_tsid2, n6_tsid1, n6_tsid0)<=44]]] & EG [EG [[[[A [93<=sum(CstopOK_tsid2, CstopOK_tsid1, CstopOK_tsid0) U sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0)<=33] & [63<=sum(s2_tsid2, s2_tsid1, s2_tsid0) | malicious_reservoir_dot<=35]] & [~ [CstopAbort_dot<=sum(n7_tsid2_tsid2, n7_tsid2_tsid1, n7_tsid2_tsid0, n7_tsid1_tsid2, n7_tsid1_tsid1, n7_tsid1_tsid0, n7_tsid0_tsid2, n7_tsid0_tsid1, n7_tsid0_tsid0)] | sum(Sstart_tsid2, Sstart_tsid1, Sstart_tsid0)<=sum(Sstart_tsid2, Sstart_tsid1, Sstart_tsid0)]] | sum(s4_tsid2, s4_tsid1, s4_tsid0)<=60]]]]
normalized: [EG [EG [[sum(s4_tsid2, s4_tsid1, s4_tsid0)<=60 | [[[63<=sum(s2_tsid2, s2_tsid1, s2_tsid0) | malicious_reservoir_dot<=35] & [~ [EG [~ [sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0)<=33]]] & ~ [E [~ [sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0)<=33] U [~ [93<=sum(CstopOK_tsid2, CstopOK_tsid1, CstopOK_tsid0)] & ~ [sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0)<=33]]]]]] & [sum(Sstart_tsid2, Sstart_tsid1, Sstart_tsid0)<=sum(Sstart_tsid2, Sstart_tsid1, Sstart_tsid0) | ~ [CstopAbort_dot<=sum(n7_tsid2_tsid2, n7_tsid2_tsid1, n7_tsid2_tsid0, n7_tsid1_tsid2, n7_tsid1_tsid1, n7_tsid1_tsid0, n7_tsid0_tsid2, n7_tsid0_tsid1, n7_tsid0_tsid0)]]]]]] & E [E [true U E [E [true U sum(n4_tsid2, n4_tsid1, n4_tsid0)<=a3_dot] U ~ [EX [sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0)<=25]]]] U [[~ [EG [~ [sum(n6_tsid2, n6_tsid1, n6_tsid0)<=44]]] & ~ [E [~ [sum(n6_tsid2, n6_tsid1, n6_tsid0)<=44] U [~ [EX [[a2_dot<=CstopAbort_dot & sum(s4_tsid2, s4_tsid1, s4_tsid0)<=AstopOK_dot]]] & ~ [sum(n6_tsid2, n6_tsid1, n6_tsid0)<=44]]]]] & [sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0)<=sum(n5_tsid2, n5_tsid1, n5_tsid0) | [EX [[92<=sum(n3_tsid2, n3_tsid1, n3_tsid0) & 9<=a3_dot]] | ~ [EX [AstopOK_dot<=81]]]]]]]
abstracting: (AstopOK_dot<=81)
states: 1,029 (3)
.abstracting: (9<=a3_dot)
states: 0
abstracting: (92<=sum(n3_tsid2, n3_tsid1, n3_tsid0))
states: 0
.abstracting: (sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0)<=sum(n5_tsid2, n5_tsid1, n5_tsid0))
states: 663
abstracting: (sum(n6_tsid2, n6_tsid1, n6_tsid0)<=44)
states: 1,029 (3)
abstracting: (sum(s4_tsid2, s4_tsid1, s4_tsid0)<=AstopOK_dot)
states: 891
abstracting: (a2_dot<=CstopAbort_dot)
states: 1,025 (3)
.abstracting: (sum(n6_tsid2, n6_tsid1, n6_tsid0)<=44)
states: 1,029 (3)
abstracting: (sum(n6_tsid2, n6_tsid1, n6_tsid0)<=44)
states: 1,029 (3)
.
EG iterations: 1
abstracting: (sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0)<=25)
states: 1,029 (3)
.abstracting: (sum(n4_tsid2, n4_tsid1, n4_tsid0)<=a3_dot)
states: 985
abstracting: (CstopAbort_dot<=sum(n7_tsid2_tsid2, n7_tsid2_tsid1, n7_tsid2_tsid0, n7_tsid1_tsid2, n7_tsid1_tsid1, n7_tsid1_tsid0, n7_tsid0_tsid2, n7_tsid0_tsid1, n7_tsid0_tsid0))
states: 759
abstracting: (sum(Sstart_tsid2, Sstart_tsid1, Sstart_tsid0)<=sum(Sstart_tsid2, Sstart_tsid1, Sstart_tsid0))
states: 1,029 (3)
abstracting: (sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0)<=33)
states: 1,029 (3)
abstracting: (93<=sum(CstopOK_tsid2, CstopOK_tsid1, CstopOK_tsid0))
states: 0
abstracting: (sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0)<=33)
states: 1,029 (3)
abstracting: (sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0)<=33)
states: 1,029 (3)
.
EG iterations: 1
abstracting: (malicious_reservoir_dot<=35)
states: 1,029 (3)
abstracting: (63<=sum(s2_tsid2, s2_tsid1, s2_tsid0))
states: 0
abstracting: (sum(s4_tsid2, s4_tsid1, s4_tsid0)<=60)
states: 1,029 (3)
EG iterations: 0
EG iterations: 0
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-11 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.259sec
checking: [E [[[E [~ [11<=sum(n1_tsid2, n1_tsid1, n1_tsid0)] U EF [47<=sum(n6_tsid2, n6_tsid1, n6_tsid0)]] | [AX [[65<=CstopAbort_dot & 42<=a1_dot]] | EF [E [45<=SstopAbort_dot U 55<=AstopAbort_dot]]]] | [sum(s5_tsid2, s5_tsid1, s5_tsid0)<=sum(Sstart_tsid2, Sstart_tsid1, Sstart_tsid0) & E [SstopAbort_dot<=sum(n1_tsid2, n1_tsid1, n1_tsid0) U AF [a4_dot<=92]]]] U [E [A [~ [sum(n5_tsid2, n5_tsid1, n5_tsid0)<=22] U EF [sum(s6_tsid2, s6_tsid1, s6_tsid0)<=sum(n4_tsid2, n4_tsid1, n4_tsid0)]] U ~ [[~ [61<=sum(s4_tsid2, s4_tsid1, s4_tsid0)] | [sum(s3_tsid2, s3_tsid1, s3_tsid0)<=72 & 29<=sum(s5_tsid2, s5_tsid1, s5_tsid0)]]]] & E [[79<=sum(n3_tsid2, n3_tsid1, n3_tsid0) | [AF [sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0)<=Astart_dot] | [sum(n7_tsid2_tsid2, n7_tsid2_tsid1, n7_tsid2_tsid0, n7_tsid1_tsid2, n7_tsid1_tsid1, n7_tsid1_tsid0, n7_tsid0_tsid2, n7_tsid0_tsid1, n7_tsid0_tsid0)<=a1_dot | sum(n8_tsid2_tsid2, n8_tsid2_tsid1, n8_tsid2_tsid0, n8_tsid1_tsid2, n8_tsid1_tsid1, n8_tsid1_tsid0, n8_tsid0_tsid2, n8_tsid0_tsid1, n8_tsid0_tsid0)<=83]]] U ~ [[sum(s6_tsid2, s6_tsid1, s6_tsid0)<=62 | [3<=sum(s4_tsid2, s4_tsid1, s4_tsid0) | 59<=sum(s2_tsid2, s2_tsid1, s2_tsid0)]]]]]] | AF [[Astart_dot<=17 & EG [[A [sum(n2_tsid2, n2_tsid1, n2_tsid0)<=55 U 39<=SstopAbort_dot] & AX [17<=sum(s5_tsid2, s5_tsid1, s5_tsid0)]]]]]]
normalized: [~ [EG [~ [[Astart_dot<=17 & EG [[~ [EX [~ [17<=sum(s5_tsid2, s5_tsid1, s5_tsid0)]]] & [~ [EG [~ [39<=SstopAbort_dot]]] & ~ [E [~ [39<=SstopAbort_dot] U [~ [sum(n2_tsid2, n2_tsid1, n2_tsid0)<=55] & ~ [39<=SstopAbort_dot]]]]]]]]]]] | E [[[sum(s5_tsid2, s5_tsid1, s5_tsid0)<=sum(Sstart_tsid2, Sstart_tsid1, Sstart_tsid0) & E [SstopAbort_dot<=sum(n1_tsid2, n1_tsid1, n1_tsid0) U ~ [EG [~ [a4_dot<=92]]]]] | [[E [true U E [45<=SstopAbort_dot U 55<=AstopAbort_dot]] | ~ [EX [~ [[65<=CstopAbort_dot & 42<=a1_dot]]]]] | E [~ [11<=sum(n1_tsid2, n1_tsid1, n1_tsid0)] U E [true U 47<=sum(n6_tsid2, n6_tsid1, n6_tsid0)]]]] U [E [[79<=sum(n3_tsid2, n3_tsid1, n3_tsid0) | [[sum(n7_tsid2_tsid2, n7_tsid2_tsid1, n7_tsid2_tsid0, n7_tsid1_tsid2, n7_tsid1_tsid1, n7_tsid1_tsid0, n7_tsid0_tsid2, n7_tsid0_tsid1, n7_tsid0_tsid0)<=a1_dot | sum(n8_tsid2_tsid2, n8_tsid2_tsid1, n8_tsid2_tsid0, n8_tsid1_tsid2, n8_tsid1_tsid1, n8_tsid1_tsid0, n8_tsid0_tsid2, n8_tsid0_tsid1, n8_tsid0_tsid0)<=83] | ~ [EG [~ [sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0)<=Astart_dot]]]]] U ~ [[sum(s6_tsid2, s6_tsid1, s6_tsid0)<=62 | [3<=sum(s4_tsid2, s4_tsid1, s4_tsid0) | 59<=sum(s2_tsid2, s2_tsid1, s2_tsid0)]]]] & E [[~ [EG [~ [E [true U sum(s6_tsid2, s6_tsid1, s6_tsid0)<=sum(n4_tsid2, n4_tsid1, n4_tsid0)]]]] & ~ [E [~ [E [true U sum(s6_tsid2, s6_tsid1, s6_tsid0)<=sum(n4_tsid2, n4_tsid1, n4_tsid0)]] U [sum(n5_tsid2, n5_tsid1, n5_tsid0)<=22 & ~ [E [true U sum(s6_tsid2, s6_tsid1, s6_tsid0)<=sum(n4_tsid2, n4_tsid1, n4_tsid0)]]]]]] U ~ [[[sum(s3_tsid2, s3_tsid1, s3_tsid0)<=72 & 29<=sum(s5_tsid2, s5_tsid1, s5_tsid0)] | ~ [61<=sum(s4_tsid2, s4_tsid1, s4_tsid0)]]]]]]]
abstracting: (61<=sum(s4_tsid2, s4_tsid1, s4_tsid0))
states: 0
abstracting: (29<=sum(s5_tsid2, s5_tsid1, s5_tsid0))
states: 0
abstracting: (sum(s3_tsid2, s3_tsid1, s3_tsid0)<=72)
states: 1,029 (3)
abstracting: (sum(s6_tsid2, s6_tsid1, s6_tsid0)<=sum(n4_tsid2, n4_tsid1, n4_tsid0))
states: 711
abstracting: (sum(n5_tsid2, n5_tsid1, n5_tsid0)<=22)
states: 1,029 (3)
abstracting: (sum(s6_tsid2, s6_tsid1, s6_tsid0)<=sum(n4_tsid2, n4_tsid1, n4_tsid0))
states: 711
abstracting: (sum(s6_tsid2, s6_tsid1, s6_tsid0)<=sum(n4_tsid2, n4_tsid1, n4_tsid0))
states: 711
.
EG iterations: 1
abstracting: (59<=sum(s2_tsid2, s2_tsid1, s2_tsid0))
states: 0
abstracting: (3<=sum(s4_tsid2, s4_tsid1, s4_tsid0))
states: 3
abstracting: (sum(s6_tsid2, s6_tsid1, s6_tsid0)<=62)
states: 1,029 (3)
abstracting: (sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0)<=Astart_dot)
states: 666
.
EG iterations: 1
abstracting: (sum(n8_tsid2_tsid2, n8_tsid2_tsid1, n8_tsid2_tsid0, n8_tsid1_tsid2, n8_tsid1_tsid1, n8_tsid1_tsid0, n8_tsid0_tsid2, n8_tsid0_tsid1, n8_tsid0_tsid0)<=83)
states: 1,029 (3)
abstracting: (sum(n7_tsid2_tsid2, n7_tsid2_tsid1, n7_tsid2_tsid0, n7_tsid1_tsid2, n7_tsid1_tsid1, n7_tsid1_tsid0, n7_tsid0_tsid2, n7_tsid0_tsid1, n7_tsid0_tsid0)<=a1_dot)
states: 750
abstracting: (79<=sum(n3_tsid2, n3_tsid1, n3_tsid0))
states: 0
abstracting: (47<=sum(n6_tsid2, n6_tsid1, n6_tsid0))
states: 0
abstracting: (11<=sum(n1_tsid2, n1_tsid1, n1_tsid0))
states: 0
abstracting: (42<=a1_dot)
states: 0
abstracting: (65<=CstopAbort_dot)
states: 0
.abstracting: (55<=AstopAbort_dot)
states: 0
abstracting: (45<=SstopAbort_dot)
states: 0
abstracting: (a4_dot<=92)
states: 1,029 (3)
.
EG iterations: 1
abstracting: (SstopAbort_dot<=sum(n1_tsid2, n1_tsid1, n1_tsid0))
states: 558
abstracting: (sum(s5_tsid2, s5_tsid1, s5_tsid0)<=sum(Sstart_tsid2, Sstart_tsid1, Sstart_tsid0))
states: 459
abstracting: (39<=SstopAbort_dot)
states: 0
abstracting: (sum(n2_tsid2, n2_tsid1, n2_tsid0)<=55)
states: 1,029 (3)
abstracting: (39<=SstopAbort_dot)
states: 0
abstracting: (39<=SstopAbort_dot)
states: 0
EG iterations: 0
abstracting: (17<=sum(s5_tsid2, s5_tsid1, s5_tsid0))
states: 0
..
EG iterations: 1
abstracting: (Astart_dot<=17)
states: 1,029 (3)
EG iterations: 0
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-07 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.388sec
totally nodes used: 269296 (2.7e+05)
number of garbage collections: 0
fire ops cache: hits/miss/sum: 111370 706508 817878
used/not used/entry size/cache size: 951014 66157850 16 1024MB
basic ops cache: hits/miss/sum: 34781 218201 252982
used/not used/entry size/cache size: 322135 16455081 12 192MB
unary ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 8 128MB
abstract ops cache: hits/miss/sum: 0 23085 23085
used/not used/entry size/cache size: 1 16777215 12 192MB
state nr cache: hits/miss/sum: 1853 8856 10709
used/not used/entry size/cache size: 8841 8379767 32 256MB
max state cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 8388608 32 256MB
uniqueHash elements/entry size/size: 67108864 4 256MB
0 66859034
1 232335
2 15771
3 1583
4 131
5 10
6 0
7 0
8 0
9 0
>= 10 0
Total processing time: 0m 8.706sec
BK_STOP 1678821233019
--------------------
content from stderr:
check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.000sec
iterations count:899 (16), effective:56 (1)
initing FirstDep: 0m 0.000sec
iterations count:56 (1), effective:0 (0)
iterations count:56 (1), effective:0 (0)
iterations count:56 (1), effective:0 (0)
iterations count:56 (1), effective:0 (0)
iterations count:56 (1), effective:0 (0)
iterations count:56 (1), effective:0 (0)
iterations count:56 (1), effective:0 (0)
iterations count:170 (3), effective:20 (0)
iterations count:170 (3), effective:20 (0)
iterations count:170 (3), effective:20 (0)
iterations count:56 (1), effective:0 (0)
iterations count:56 (1), effective:0 (0)
iterations count:150 (2), effective:15 (0)
iterations count:56 (1), effective:0 (0)
iterations count:57 (1), effective:1 (0)
iterations count:56 (1), effective:0 (0)
iterations count:56 (1), effective:0 (0)
iterations count:128 (2), effective:15 (0)
iterations count:122 (2), effective:11 (0)
iterations count:98 (1), effective:4 (0)
iterations count:645 (11), effective:78 (1)
iterations count:236 (4), effective:8 (0)
iterations count:175 (3), effective:20 (0)
iterations count:64 (1), effective:3 (0)
iterations count:64 (1), effective:3 (0)
iterations count:64 (1), effective:3 (0)
iterations count:56 (1), effective:0 (0)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="QuasiCertifProtocol-COL-02"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marcie"
echo " Input is QuasiCertifProtocol-COL-02, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r289-tall-167873940900801"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/QuasiCertifProtocol-COL-02.tgz
mv QuasiCertifProtocol-COL-02 execution
cd execution
if [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "UpperBounds" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] || [ "CTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME CTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;