About the Execution of Marcie for Philosophers-COL-000010
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
5473.848 | 42027.00 | 42070.00 | 0.00 | TTTTFFFTFFTFTFFT | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fkordon/mcc2023-input.r289-tall-167873939900089.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2023-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
................
=====================================================================
Generated by BenchKit 2-5348
Executing tool marcie
Input is Philosophers-COL-000010, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r289-tall-167873939900089
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 468K
-rw-r--r-- 1 mcc users 6.3K Feb 25 13:10 CTLCardinality.txt
-rw-r--r-- 1 mcc users 63K Feb 25 13:10 CTLCardinality.xml
-rw-r--r-- 1 mcc users 5.6K Feb 25 13:08 CTLFireability.txt
-rw-r--r-- 1 mcc users 51K Feb 25 13:08 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K Jan 29 11:40 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.8K Jan 29 11:40 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 3.7K Feb 25 16:32 LTLCardinality.txt
-rw-r--r-- 1 mcc users 24K Feb 25 16:32 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.3K Feb 25 16:32 LTLFireability.txt
-rw-r--r-- 1 mcc users 17K Feb 25 16:32 LTLFireability.xml
-rw-r--r-- 1 mcc users 13K Feb 25 13:12 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 131K Feb 25 13:12 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 8.8K Feb 25 13:11 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 76K Feb 25 13:11 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.7K Feb 25 16:32 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.8K Feb 25 16:32 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Mar 5 18:23 equiv_pt
-rw-r--r-- 1 mcc users 7 Mar 5 18:23 instance
-rw-r--r-- 1 mcc users 5 Mar 5 18:23 iscolored
-rw-r--r-- 1 mcc users 9.9K Mar 5 18:23 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-00
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-01
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-02
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-03
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-04
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-05
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-06
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-07
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-08
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-09
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-10
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-11
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-12
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-13
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-14
FORMULA_NAME Philosophers-COL-000010-CTLCardinality-15
=== Now, execution of the tool begins
BK_START 1678751371663
bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marcie
BK_EXAMINATION=CTLCardinality
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=Philosophers-COL-000010
Not applying reductions.
Model is COL
CTLCardinality COL
timeout --kill-after=10s --signal=SIGINT 1m for testing only
Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: /home/mcc/BenchKit/bin//../marcie/bin/marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --memory=6 --mcc-mode
parse successfull
net created successfully
Unfolding complete |P|=50|T|=50|A|=160
Time for unfolding: 0m 0.373sec
Net: Philosophers_COL_000010
(NrP: 50 NrTr: 50 NrArc: 160)
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec
net check time: 0m 0.000sec
init dd package: 0m 2.934sec
RS generation: 0m 0.002sec
-> reachability set: #nodes 240 (2.4e+02) #states 59,049 (4)
starting MCC model checker
--------------------------
checking: AX [EX [EF [EF [AG [sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)]]]]]
normalized: ~ [EX [~ [EX [E [true U E [true U ~ [E [true U ~ [sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)]]]]]]]]]
abstracting: (sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1))
states: 22,606 (4)
..-> the formula is TRUE
FORMULA Philosophers-COL-000010-CTLCardinality-15 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 2.724sec
checking: ~ [AX [[EG [E [sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)<=72 U sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)]] & EF [AF [81<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)]]]]]
normalized: EX [~ [[E [true U ~ [EG [~ [81<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)]]]] & EG [E [sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)<=72 U sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)]]]]]
abstracting: (sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1))
states: 53,082 (4)
abstracting: (sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)<=72)
states: 59,049 (4)
EG iterations: 0
abstracting: (81<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1))
states: 0
EG iterations: 0
.-> the formula is TRUE
FORMULA Philosophers-COL-000010-CTLCardinality-02 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 2.737sec
checking: AG [AG [E [[~ [sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=64] | EF [sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)<=22]] U EX [~ [sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)]]]]]
normalized: ~ [E [true U E [true U ~ [E [[E [true U sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)<=22] | ~ [sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=64]] U EX [~ [sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)]]]]]]]
abstracting: (sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1))
states: 34,001 (4)
.abstracting: (sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=64)
states: 59,049 (4)
abstracting: (sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)<=22)
states: 59,049 (4)
-> the formula is FALSE
FORMULA Philosophers-COL-000010-CTLCardinality-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 2.711sec
checking: AG [EX [EG [E [EX [sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)] U [sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1) | sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=78]]]]]
normalized: ~ [E [true U ~ [EX [EG [E [EX [sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)] U [sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1) | sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=78]]]]]]]
abstracting: (sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=78)
states: 59,049 (4)
abstracting: (sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1))
states: 52,083 (4)
abstracting: (sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1))
states: 59,049 (4)
.
EG iterations: 0
.-> the formula is FALSE
FORMULA Philosophers-COL-000010-CTLCardinality-05 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 5.058sec
checking: ~ [E [sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)<=62 U ~ [[[EG [sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=27] | AF [EG [78<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)]]] & EF [~ [sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)]]]]]]
normalized: ~ [E [sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)<=62 U ~ [[E [true U ~ [sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)]] & [EG [sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=27] | ~ [EG [~ [EG [78<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)]]]]]]]]]
abstracting: (78<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1))
states: 0
.
EG iterations: 1
EG iterations: 0
abstracting: (sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=27)
states: 59,049 (4)
EG iterations: 0
abstracting: (sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1))
states: 53,082 (4)
abstracting: (sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)<=62)
states: 59,049 (4)
-> the formula is FALSE
FORMULA Philosophers-COL-000010-CTLCardinality-09 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.118sec
checking: ~ [EF [[sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1) | ~ [A [~ [[sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1) & sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)<=4]] U sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=23]]]]]
normalized: ~ [E [true U [sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1) | ~ [[~ [EG [~ [sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=23]]] & ~ [E [~ [sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=23] U [~ [sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=23] & [sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1) & sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)<=4]]]]]]]]]
abstracting: (sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)<=4)
states: 31,287 (4)
abstracting: (sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1))
states: 34,001 (4)
abstracting: (sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=23)
states: 59,049 (4)
abstracting: (sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=23)
states: 59,049 (4)
abstracting: (sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=23)
states: 59,049 (4)
.
EG iterations: 1
abstracting: (sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1))
states: 12,599 (4)
-> the formula is FALSE
FORMULA Philosophers-COL-000010-CTLCardinality-06 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 5.102sec
checking: EG [E [sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=35 U [75<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1) | [[AX [sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)] & 4<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)] & 44<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)]]]]
normalized: EG [E [sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=35 U [75<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1) | [44<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1) & [4<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1) & ~ [EX [~ [sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)]]]]]]]]
abstracting: (sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1))
states: 59,049 (4)
.abstracting: (4<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1))
states: 46,212 (4)
abstracting: (44<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1))
states: 0
abstracting: (75<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1))
states: 0
abstracting: (sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=35)
states: 59,049 (4)
.
EG iterations: 1
-> the formula is FALSE
FORMULA Philosophers-COL-000010-CTLCardinality-08 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.098sec
checking: ~ [AX [[AX [~ [AF [sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=44]]] | AX [[EX [sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)] & [AG [sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)] | ~ [sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)]]]]]]]
normalized: EX [~ [[~ [EX [~ [[EX [sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)] & [~ [E [true U ~ [sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)]]] | ~ [sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)]]]]]] | ~ [EX [~ [EG [~ [sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=44]]]]]]]]
abstracting: (sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=44)
states: 59,049 (4)
.
EG iterations: 1
.abstracting: (sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1))
states: 46,892 (4)
abstracting: (sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1))
states: 59,049 (4)
abstracting: (sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1))
states: 52,083 (4)
...-> the formula is FALSE
FORMULA Philosophers-COL-000010-CTLCardinality-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 2.552sec
checking: AG [[sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=65 & [[~ [EX [18<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)]] & [8<=sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1) | sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=95]] & AF [[A [sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=0 U sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=3] | A [sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=70 U sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)<=65]]]]]]
normalized: ~ [E [true U ~ [[sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=65 & [~ [EG [~ [[[~ [EG [~ [sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)<=65]]] & ~ [E [~ [sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)<=65] U [~ [sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=70] & ~ [sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)<=65]]]]] | [~ [EG [~ [sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=3]]] & ~ [E [~ [sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=3] U [~ [sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=3] & ~ [sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=0]]]]]]]]] & [[8<=sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1) | sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=95] & ~ [EX [18<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)]]]]]]]]
abstracting: (18<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1))
states: 0
.abstracting: (sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=95)
states: 59,049 (4)
abstracting: (8<=sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1))
states: 201
abstracting: (sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=0)
states: 15,127 (4)
abstracting: (sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=3)
states: 33,024 (4)
abstracting: (sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=3)
states: 33,024 (4)
abstracting: (sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=3)
states: 33,024 (4)
..
EG iterations: 2
abstracting: (sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)<=65)
states: 59,049 (4)
abstracting: (sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=70)
states: 59,049 (4)
abstracting: (sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)<=65)
states: 59,049 (4)
abstracting: (sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)<=65)
states: 59,049 (4)
.
EG iterations: 1
.
EG iterations: 1
abstracting: (sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=65)
states: 59,049 (4)
-> the formula is TRUE
FORMULA Philosophers-COL-000010-CTLCardinality-00 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.230sec
checking: E [EX [~ [[22<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1) & sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)]]] U AG [[E [[~ [84<=sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)] | [sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)<=70 & sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=43]] U AX [sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=19]] & EF [1<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)]]]]
normalized: E [EX [~ [[22<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1) & sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)]]] U ~ [E [true U ~ [[E [true U 1<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)] & E [[[sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)<=70 & sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=43] | ~ [84<=sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)]] U ~ [EX [~ [sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=19]]]]]]]]]
abstracting: (sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=19)
states: 59,049 (4)
.abstracting: (84<=sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1))
states: 0
abstracting: (sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=43)
states: 59,049 (4)
abstracting: (sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)<=70)
states: 59,049 (4)
abstracting: (1<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1))
states: 52,323 (4)
abstracting: (sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1))
states: 46,892 (4)
abstracting: (22<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1))
states: 0
.-> the formula is TRUE
FORMULA Philosophers-COL-000010-CTLCardinality-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.157sec
checking: [EG [80<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)] | EX [~ [E [[EF [sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=1] | E [16<=sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1) U sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)]] U [sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=55 & A [sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1) U 23<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)]]]]]]
normalized: [EX [~ [E [[E [16<=sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1) U sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)] | E [true U sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=1]] U [sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=55 & [~ [EG [~ [23<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)]]] & ~ [E [~ [23<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)] U [~ [sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)] & ~ [23<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)]]]]]]]]] | EG [80<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)]]
abstracting: (80<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1))
states: 0
.
EG iterations: 1
abstracting: (23<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1))
states: 0
abstracting: (sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1))
states: 34,001 (4)
abstracting: (23<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1))
states: 0
abstracting: (23<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1))
states: 0
EG iterations: 0
abstracting: (sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=55)
states: 59,049 (4)
abstracting: (sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=1)
states: 6,144 (3)
abstracting: (sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1))
states: 52,083 (4)
abstracting: (16<=sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1))
states: 0
.-> the formula is TRUE
FORMULA Philosophers-COL-000010-CTLCardinality-01 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 2.908sec
checking: ~ [EF [[[~ [[sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)<=81 | 44<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)]] & AF [[[59<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1) & 43<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)] | [90<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1) | sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)]]]] & sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)]]]
normalized: ~ [E [true U [sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1) & [~ [[sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)<=81 | 44<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)]] & ~ [EG [~ [[[59<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1) & 43<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)] | [90<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1) | sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)]]]]]]]]]
abstracting: (sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1))
states: 59,049 (4)
abstracting: (90<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1))
states: 0
abstracting: (43<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1))
states: 0
abstracting: (59<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1))
states: 0
.
EG iterations: 1
abstracting: (44<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1))
states: 0
abstracting: (sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)<=81)
states: 59,049 (4)
abstracting: (sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1))
states: 59,049 (4)
-> the formula is TRUE
FORMULA Philosophers-COL-000010-CTLCardinality-03 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 3.300sec
checking: EF [~ [[~ [AG [sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)]] | EG [[[[sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1) | sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=98] & sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)] & ~ [[sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1) | sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=6]]]]]]]
normalized: E [true U ~ [[EG [[[sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1) & [sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1) | sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=98]] & ~ [[sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1) | sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=6]]]] | E [true U ~ [sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)]]]]]
abstracting: (sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1))
states: 12,599 (4)
abstracting: (sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=6)
states: 58,673 (4)
abstracting: (sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1))
states: 59,049 (4)
abstracting: (sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=98)
states: 59,049 (4)
abstracting: (sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1))
states: 22,606 (4)
abstracting: (sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1))
states: 52,083 (4)
.
EG iterations: 1
-> the formula is TRUE
FORMULA Philosophers-COL-000010-CTLCardinality-07 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 5.368sec
checking: E [~ [AG [[EG [sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)<=sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)] | AG [[sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1) & sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)]]]]] U AX [[E [[AG [98<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)] & [sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1) & sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)<=53]] U sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)] & EF [42<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)]]]]
normalized: E [E [true U ~ [[~ [E [true U ~ [[sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1) & sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)]]]] | EG [sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)<=sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)]]]] U ~ [EX [~ [[E [[~ [E [true U ~ [98<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)]]] & [sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1) & sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)<=53]] U sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)] & E [true U 42<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)]]]]]]
abstracting: (42<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1))
states: 0
abstracting: (sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1))
states: 52,083 (4)
abstracting: (sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)<=53)
states: 59,049 (4)
abstracting: (sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1))
states: 12,599 (4)
abstracting: (98<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1))
states: 0
.abstracting: (sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)<=sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1))
states: 45,448 (4)
.
EG iterations: 1
abstracting: (sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1))
states: 59,049 (4)
abstracting: (sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1))
states: 52,083 (4)
-> the formula is TRUE
FORMULA Philosophers-COL-000010-CTLCardinality-10 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 2.834sec
checking: E [[83<=sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1) | EG [[~ [AF [sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)<=51]] | [sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1) | [~ [29<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)] | [sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1) & sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)<=53]]]]]] U [AF [EX [[~ [sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)] & EX [sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=77]]]] & EX [[[sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=99 & ~ [A [sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1) U sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=98]]] & EF [EX [sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=21]]]]]]
normalized: E [[83<=sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1) | EG [[[sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1) | [[sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1) & sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)<=53] | ~ [29<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)]]] | EG [~ [sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)<=51]]]]] U [EX [[E [true U EX [sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=21]] & [sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=99 & ~ [[~ [E [~ [sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=98] U [~ [sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)] & ~ [sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=98]]]] & ~ [EG [~ [sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=98]]]]]]]] & ~ [EG [~ [EX [[EX [sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=77] & ~ [sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)]]]]]]]]
abstracting: (sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1))
states: 22,606 (4)
abstracting: (sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=77)
states: 59,049 (4)
.....
EG iterations: 3
abstracting: (sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=98)
states: 59,049 (4)
.
EG iterations: 1
abstracting: (sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=98)
states: 59,049 (4)
abstracting: (sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1))
states: 46,892 (4)
abstracting: (sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=98)
states: 59,049 (4)
abstracting: (sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=99)
states: 59,049 (4)
abstracting: (sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=21)
states: 59,049 (4)
..abstracting: (sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)<=51)
states: 59,049 (4)
.
EG iterations: 1
abstracting: (29<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1))
states: 0
abstracting: (sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)<=53)
states: 59,049 (4)
abstracting: (sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1))
states: 34,001 (4)
abstracting: (sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1))
states: 22,606 (4)
EG iterations: 0
abstracting: (83<=sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1))
states: 0
-> the formula is FALSE
FORMULA Philosophers-COL-000010-CTLCardinality-04 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.225sec
checking: [E [E [E [[AG [sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)] & A [sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=92 U sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)]] U sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)] U AG [[sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1) | EG [45<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)]]]] U E [~ [AG [sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=63]] U AG [A [sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)<=89 U 89<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)]]]] & ~ [[AX [[~ [[AX [sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)<=16] | 48<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)]] & sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)]] | AF [AX [AG [36<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)]]]]]]
normalized: [~ [[~ [EG [EX [E [true U ~ [36<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)]]]]] | ~ [EX [~ [[sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1) & ~ [[48<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1) | ~ [EX [~ [sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)<=16]]]]]]]]]]] & E [E [E [[[~ [EG [~ [sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)]]] & ~ [E [~ [sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)] U [~ [sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=92] & ~ [sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1)]]]]] & ~ [E [true U ~ [sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)]]]] U sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)] U ~ [E [true U ~ [[sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1) | EG [45<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)]]]]]] U E [E [true U ~ [sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=63]] U ~ [E [true U ~ [[~ [EG [~ [89<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)]]] & ~ [E [~ [89<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)] U [~ [89<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1)] & ~ [sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)<=89]]]]]]]]]]]
abstracting: (sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)<=89)
states: 59,049 (4)
abstracting: (89<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1))
states: 0
abstracting: (89<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1))
states: 0
abstracting: (89<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1))
states: 0
EG iterations: 0
abstracting: (sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=63)
states: 59,049 (4)
abstracting: (45<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1))
states: 0
.
EG iterations: 1
abstracting: (sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=sum(Catch1_Id9, Catch1_Id8, Catch1_Id7, Catch1_Id6, Catch1_Id5, Catch1_Id4, Catch1_Id3, Catch1_Id2, Catch1_Id10, Catch1_Id1))
states: 46,892 (4)
abstracting: (sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1))
states: 12,599 (4)
abstracting: (sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1))
states: 59,049 (4)
abstracting: (sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1))
states: 53,082 (4)
abstracting: (sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1)<=92)
states: 59,049 (4)
abstracting: (sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1))
states: 53,082 (4)
abstracting: (sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=sum(Fork_Id9, Fork_Id8, Fork_Id7, Fork_Id6, Fork_Id5, Fork_Id4, Fork_Id3, Fork_Id2, Fork_Id10, Fork_Id1))
states: 53,082 (4)
....
EG iterations: 4
abstracting: (sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1)<=16)
states: 59,049 (4)
.abstracting: (48<=sum(Think_Id9, Think_Id8, Think_Id7, Think_Id6, Think_Id5, Think_Id4, Think_Id3, Think_Id2, Think_Id10, Think_Id1))
states: 0
abstracting: (sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1)<=sum(Eat_Id9, Eat_Id8, Eat_Id7, Eat_Id6, Eat_Id5, Eat_Id4, Eat_Id3, Eat_Id2, Eat_Id10, Eat_Id1))
states: 59,049 (4)
.abstracting: (36<=sum(Catch2_Id9, Catch2_Id8, Catch2_Id7, Catch2_Id6, Catch2_Id5, Catch2_Id4, Catch2_Id3, Catch2_Id2, Catch2_Id10, Catch2_Id1))
states: 0
..
EG iterations: 1
-> the formula is FALSE
FORMULA Philosophers-COL-000010-CTLCardinality-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.832sec
totally nodes used: 407827 (4.1e+05)
number of garbage collections: 0
fire ops cache: hits/miss/sum: 419198 1606868 2026066
used/not used/entry size/cache size: 1960754 65148110 16 1024MB
basic ops cache: hits/miss/sum: 109187 371038 480225
used/not used/entry size/cache size: 660655 16116561 12 192MB
unary ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 8 128MB
abstract ops cache: hits/miss/sum: 0 14739384 14739384
used/not used/entry size/cache size: 1 16777215 12 192MB
state nr cache: hits/miss/sum: 2778 10895 13673
used/not used/entry size/cache size: 10890 8377718 32 256MB
max state cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 8388608 32 256MB
uniqueHash elements/entry size/size: 67108864 4 256MB
0 66743229
1 328771
2 32086
3 4284
4 458
5 36
6 0
7 0
8 0
9 0
>= 10 0
Total processing time: 0m41.978sec
BK_STOP 1678751413690
--------------------
content from stderr:
check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.002sec
iterations count:263 (5), effective:30 (0)
initing FirstDep: 0m 0.000sec
iterations count:394 (7), effective:53 (1)
iterations count:754 (15), effective:126 (2)
iterations count:50 (1), effective:0 (0)
iterations count:234 (4), effective:28 (0)
iterations count:50 (1), effective:0 (0)
iterations count:969 (19), effective:162 (3)
iterations count:754 (15), effective:126 (2)
iterations count:50 (1), effective:0 (0)
iterations count:50 (1), effective:0 (0)
iterations count:754 (15), effective:126 (2)
iterations count:883 (17), effective:155 (3)
iterations count:754 (15), effective:126 (2)
iterations count:661 (13), effective:108 (2)
iterations count:201 (4), effective:25 (0)
iterations count:50 (1), effective:0 (0)
iterations count:227 (4), effective:21 (0)
iterations count:731 (14), effective:118 (2)
iterations count:473 (9), effective:62 (1)
iterations count:328 (6), effective:42 (0)
iterations count:460 (9), effective:82 (1)
iterations count:50 (1), effective:0 (0)
iterations count:783 (15), effective:132 (2)
iterations count:754 (15), effective:126 (2)
iterations count:50 (1), effective:0 (0)
iterations count:50 (1), effective:0 (0)
iterations count:314 (6), effective:39 (0)
iterations count:711 (14), effective:118 (2)
iterations count:754 (15), effective:126 (2)
iterations count:50 (1), effective:0 (0)
iterations count:50 (1), effective:0 (0)
iterations count:878 (17), effective:138 (2)
iterations count:433 (8), effective:73 (1)
iterations count:979 (19), effective:164 (3)
iterations count:50 (1), effective:0 (0)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="Philosophers-COL-000010"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marcie"
echo " Input is Philosophers-COL-000010, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r289-tall-167873939900089"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/Philosophers-COL-000010.tgz
mv Philosophers-COL-000010 execution
cd execution
if [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "UpperBounds" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] || [ "CTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME CTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;