About the Execution of Marcie for NeoElection-PT-2
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
5451.563 | 9069.00 | 9029.00 | 40.10 | FFTFTTTTFTFFTTFF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fkordon/mcc2023-input.r257-smll-167863532400169.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2023-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
..................
=====================================================================
Generated by BenchKit 2-5348
Executing tool marcie
Input is NeoElection-PT-2, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r257-smll-167863532400169
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 1.8M
-rw-r--r-- 1 mcc users 75K Feb 26 15:47 CTLCardinality.txt
-rw-r--r-- 1 mcc users 283K Feb 26 15:47 CTLCardinality.xml
-rw-r--r-- 1 mcc users 38K Feb 26 15:46 CTLFireability.txt
-rw-r--r-- 1 mcc users 158K Feb 26 15:46 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K Jan 29 11:40 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.6K Jan 29 11:40 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 11K Feb 25 16:27 LTLCardinality.txt
-rw-r--r-- 1 mcc users 43K Feb 25 16:27 LTLCardinality.xml
-rw-r--r-- 1 mcc users 12K Feb 25 16:27 LTLFireability.txt
-rw-r--r-- 1 mcc users 40K Feb 25 16:27 LTLFireability.xml
-rw-r--r-- 1 mcc users 96K Feb 26 15:49 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 343K Feb 26 15:49 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 55K Feb 26 15:48 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 223K Feb 26 15:48 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 11K Feb 25 16:27 UpperBounds.txt
-rw-r--r-- 1 mcc users 20K Feb 25 16:27 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Mar 5 18:23 equiv_col
-rw-r--r-- 1 mcc users 2 Mar 5 18:23 instance
-rw-r--r-- 1 mcc users 6 Mar 5 18:23 iscolored
-rw-r--r-- 1 mcc users 332K Mar 5 18:23 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME NeoElection-PT-2-CTLCardinality-00
FORMULA_NAME NeoElection-PT-2-CTLCardinality-01
FORMULA_NAME NeoElection-PT-2-CTLCardinality-02
FORMULA_NAME NeoElection-PT-2-CTLCardinality-03
FORMULA_NAME NeoElection-PT-2-CTLCardinality-04
FORMULA_NAME NeoElection-PT-2-CTLCardinality-05
FORMULA_NAME NeoElection-PT-2-CTLCardinality-06
FORMULA_NAME NeoElection-PT-2-CTLCardinality-07
FORMULA_NAME NeoElection-PT-2-CTLCardinality-08
FORMULA_NAME NeoElection-PT-2-CTLCardinality-09
FORMULA_NAME NeoElection-PT-2-CTLCardinality-10
FORMULA_NAME NeoElection-PT-2-CTLCardinality-11
FORMULA_NAME NeoElection-PT-2-CTLCardinality-12
FORMULA_NAME NeoElection-PT-2-CTLCardinality-13
FORMULA_NAME NeoElection-PT-2-CTLCardinality-14
FORMULA_NAME NeoElection-PT-2-CTLCardinality-15
=== Now, execution of the tool begins
BK_START 1678721286248
bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marcie
BK_EXAMINATION=CTLCardinality
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=NeoElection-PT-2
Not applying reductions.
Model is PT
CTLCardinality PT
timeout --kill-after=10s --signal=SIGINT 1m for testing only
Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: /home/mcc/BenchKit/bin//../marcie/bin/marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --memory=6 --mcc-mode
parse successfull
net created successfully
Net: NeoElection_PT_2
(NrP: 438 NrTr: 357 NrArc: 1998)
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.019sec
net check time: 0m 0.000sec
init dd package: 0m 3.477sec
RS generation: 0m 0.052sec
-> reachability set: #nodes 696 (7.0e+02) #states 241
starting MCC model checker
--------------------------
checking: AF [~ [AX [EG [AF [P_sendAnnPs__broadcasting_0_2<=1]]]]]
normalized: ~ [EG [~ [EX [~ [EG [~ [EG [~ [P_sendAnnPs__broadcasting_0_2<=1]]]]]]]]]
abstracting: (P_sendAnnPs__broadcasting_0_2<=1)
states: 241
.
EG iterations: 1
EG iterations: 0
.
EG iterations: 0
-> the formula is FALSE
FORMULA NeoElection-PT-2-CTLCardinality-08 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.090sec
checking: EG [AX [AF [~ [[P_network_1_2_AskP_1<=1 & [1<=P_network_2_2_RP_1 & 1<=P_electionFailed_2]]]]]]
normalized: EG [~ [EX [EG [[[1<=P_network_2_2_RP_1 & 1<=P_electionFailed_2] & P_network_1_2_AskP_1<=1]]]]]
abstracting: (P_network_1_2_AskP_1<=1)
states: 241
abstracting: (1<=P_electionFailed_2)
states: 0
abstracting: (1<=P_network_2_2_RP_1)
states: 0
.
EG iterations: 1
.
EG iterations: 0
-> the formula is TRUE
FORMULA NeoElection-PT-2-CTLCardinality-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.004sec
checking: EG [~ [AG [[EF [[1<=P_poll__networl_1_2_RI_2 | 1<=P_network_2_2_AnsP_1]] | AG [AG [1<=P_masterList_1_1_1]]]]]]
normalized: EG [E [true U ~ [[~ [E [true U E [true U ~ [1<=P_masterList_1_1_1]]]] | E [true U [1<=P_poll__networl_1_2_RI_2 | 1<=P_network_2_2_AnsP_1]]]]]]
abstracting: (1<=P_network_2_2_AnsP_1)
states: 0
abstracting: (1<=P_poll__networl_1_2_RI_2)
states: 0
abstracting: (1<=P_masterList_1_1_1)
states: 0
EG iterations: 0
-> the formula is TRUE
FORMULA NeoElection-PT-2-CTLCardinality-13 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.028sec
checking: A [sum(P_polling_2, P_polling_1, P_polling_0)<=14 U AG [39<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)]]
normalized: [~ [EG [E [true U ~ [39<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)]]]] & ~ [E [E [true U ~ [39<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)]] U [~ [sum(P_polling_2, P_polling_1, P_polling_0)<=14] & E [true U ~ [39<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)]]]]]]
abstracting: (39<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0))
states: 0
abstracting: (sum(P_polling_2, P_polling_1, P_polling_0)<=14)
states: 241
abstracting: (39<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0))
states: 0
abstracting: (39<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0))
states: 0
EG iterations: 0
-> the formula is FALSE
FORMULA NeoElection-PT-2-CTLCardinality-00 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.080sec
checking: [AX [~ [EG [AX [[P_poll__networl_0_1_RI_2<=0 | P_network_0_1_AnsP_0<=P_network_0_2_AskP_2]]]]] | ~ [[~ [EG [1<=P_electedSecondary_1]] & EG [P_network_0_0_AI_1<=P_network_1_2_AI_2]]]]
normalized: [~ [EX [EG [~ [EX [~ [[P_poll__networl_0_1_RI_2<=0 | P_network_0_1_AnsP_0<=P_network_0_2_AskP_2]]]]]]] | ~ [[EG [P_network_0_0_AI_1<=P_network_1_2_AI_2] & ~ [EG [1<=P_electedSecondary_1]]]]]
abstracting: (1<=P_electedSecondary_1)
states: 0
.
EG iterations: 1
abstracting: (P_network_0_0_AI_1<=P_network_1_2_AI_2)
states: 241
EG iterations: 0
abstracting: (P_network_0_1_AnsP_0<=P_network_0_2_AskP_2)
states: 241
abstracting: (P_poll__networl_0_1_RI_2<=0)
states: 241
.
EG iterations: 0
.-> the formula is FALSE
FORMULA NeoElection-PT-2-CTLCardinality-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.006sec
checking: ~ [[[EG [AG [A [P_network_0_2_AskP_1<=P_network_1_1_AskP_0 U P_poll__networl_2_0_AskP_2<=1]]] | EG [P_network_1_1_RI_2<=1]] & EF [[E [[P_poll__networl_2_2_AI_1<=1 & 1<=P_dead_2] U [1<=P_network_1_2_AI_2 & 1<=P_poll__networl_1_2_AskP_0]] | P_poll__waitingMessage_1<=P_poll__networl_0_1_AnsP_0]]]]
normalized: ~ [[E [true U [E [[P_poll__networl_2_2_AI_1<=1 & 1<=P_dead_2] U [1<=P_network_1_2_AI_2 & 1<=P_poll__networl_1_2_AskP_0]] | P_poll__waitingMessage_1<=P_poll__networl_0_1_AnsP_0]] & [EG [P_network_1_1_RI_2<=1] | EG [~ [E [true U ~ [[~ [EG [~ [P_poll__networl_2_0_AskP_2<=1]]] & ~ [E [~ [P_poll__networl_2_0_AskP_2<=1] U [~ [P_network_0_2_AskP_1<=P_network_1_1_AskP_0] & ~ [P_poll__networl_2_0_AskP_2<=1]]]]]]]]]]]]
abstracting: (P_poll__networl_2_0_AskP_2<=1)
states: 241
abstracting: (P_network_0_2_AskP_1<=P_network_1_1_AskP_0)
states: 241
abstracting: (P_poll__networl_2_0_AskP_2<=1)
states: 241
abstracting: (P_poll__networl_2_0_AskP_2<=1)
states: 241
.
EG iterations: 1
EG iterations: 0
abstracting: (P_network_1_1_RI_2<=1)
states: 241
EG iterations: 0
abstracting: (P_poll__waitingMessage_1<=P_poll__networl_0_1_AnsP_0)
states: 241
abstracting: (1<=P_poll__networl_1_2_AskP_0)
states: 0
abstracting: (1<=P_network_1_2_AI_2)
states: 0
abstracting: (1<=P_dead_2)
states: 0
abstracting: (P_poll__networl_2_2_AI_1<=1)
states: 241
-> the formula is FALSE
FORMULA NeoElection-PT-2-CTLCardinality-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.010sec
checking: A [[AX [~ [[[P_crashed_0<=0 & P_sendAnnPs__broadcasting_0_2<=P_poll__networl_1_1_AnsP_2] | ~ [1<=P_masterState_1_T_0]]]] | [AF [[~ [P_poll__networl_0_0_AnnP_2<=P_masterState_0_T_0] | E [1<=P_network_0_0_AskP_0 U P_poll__networl_1_0_RP_1<=1]]] & P_masterState_0_T_2<=0]] U 1<=P_stage_2_SEC]
normalized: [~ [EG [~ [1<=P_stage_2_SEC]]] & ~ [E [~ [1<=P_stage_2_SEC] U [~ [[[~ [EG [~ [[E [1<=P_network_0_0_AskP_0 U P_poll__networl_1_0_RP_1<=1] | ~ [P_poll__networl_0_0_AnnP_2<=P_masterState_0_T_0]]]]] & P_masterState_0_T_2<=0] | ~ [EX [[~ [1<=P_masterState_1_T_0] | [P_crashed_0<=0 & P_sendAnnPs__broadcasting_0_2<=P_poll__networl_1_1_AnsP_2]]]]]] & ~ [1<=P_stage_2_SEC]]]]]
abstracting: (1<=P_stage_2_SEC)
states: 0
abstracting: (P_sendAnnPs__broadcasting_0_2<=P_poll__networl_1_1_AnsP_2)
states: 241
abstracting: (P_crashed_0<=0)
states: 241
abstracting: (1<=P_masterState_1_T_0)
states: 196
.abstracting: (P_masterState_0_T_2<=0)
states: 241
abstracting: (P_poll__networl_0_0_AnnP_2<=P_masterState_0_T_0)
states: 241
abstracting: (P_poll__networl_1_0_RP_1<=1)
states: 241
abstracting: (1<=P_network_0_0_AskP_0)
states: 0
.
EG iterations: 1
abstracting: (1<=P_stage_2_SEC)
states: 0
abstracting: (1<=P_stage_2_SEC)
states: 0
EG iterations: 0
-> the formula is FALSE
FORMULA NeoElection-PT-2-CTLCardinality-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.010sec
checking: ~ [A [[E [E [~ [1<=P_network_2_1_AnnP_2] U [1<=P_network_2_1_AI_2 & P_network_2_0_AnsP_0<=P_masterList_1_2_0]] U P_poll__networl_2_2_AskP_1<=P_poll__networl_0_0_AnnP_2] | ~ [[[~ [P_network_1_0_AI_1<=P_network_1_0_AI_1] & E [P_network_0_0_AskP_1<=1 U 1<=P_poll__networl_0_0_RP_0]] | AG [~ [P_network_1_1_RP_2<=P_network_1_0_RP_1]]]]] U EX [AF [1<=P_poll__networl_2_0_AskP_1]]]]
normalized: ~ [[~ [EG [~ [EX [~ [EG [~ [1<=P_poll__networl_2_0_AskP_1]]]]]]] & ~ [E [~ [EX [~ [EG [~ [1<=P_poll__networl_2_0_AskP_1]]]]] U [~ [[~ [[[E [P_network_0_0_AskP_1<=1 U 1<=P_poll__networl_0_0_RP_0] & ~ [P_network_1_0_AI_1<=P_network_1_0_AI_1]] | ~ [E [true U P_network_1_1_RP_2<=P_network_1_0_RP_1]]]] | E [E [~ [1<=P_network_2_1_AnnP_2] U [1<=P_network_2_1_AI_2 & P_network_2_0_AnsP_0<=P_masterList_1_2_0]] U P_poll__networl_2_2_AskP_1<=P_poll__networl_0_0_AnnP_2]]] & ~ [EX [~ [EG [~ [1<=P_poll__networl_2_0_AskP_1]]]]]]]]]]
abstracting: (1<=P_poll__networl_2_0_AskP_1)
states: 0
EG iterations: 0
.abstracting: (P_poll__networl_2_2_AskP_1<=P_poll__networl_0_0_AnnP_2)
states: 241
abstracting: (P_network_2_0_AnsP_0<=P_masterList_1_2_0)
states: 241
abstracting: (1<=P_network_2_1_AI_2)
states: 0
abstracting: (1<=P_network_2_1_AnnP_2)
states: 0
abstracting: (P_network_1_1_RP_2<=P_network_1_0_RP_1)
states: 241
abstracting: (P_network_1_0_AI_1<=P_network_1_0_AI_1)
states: 241
abstracting: (1<=P_poll__networl_0_0_RP_0)
states: 0
abstracting: (P_network_0_0_AskP_1<=1)
states: 241
abstracting: (1<=P_poll__networl_2_0_AskP_1)
states: 0
EG iterations: 0
.abstracting: (1<=P_poll__networl_2_0_AskP_1)
states: 0
EG iterations: 0
.
EG iterations: 0
-> the formula is TRUE
FORMULA NeoElection-PT-2-CTLCardinality-09 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.012sec
checking: [EX [~ [EG [[P_network_2_0_AskP_1<=1 | [P_poll__networl_2_1_RI_2<=P_sendAnnPs__broadcasting_1_1 & [P_network_0_0_AnnP_1<=1 | P_dead_1<=P_poll__networl_1_2_AnsP_1]]]]]] & [~ [EX [EG [[AX [P_network_0_0_AnsP_1<=P_network_0_1_RI_0] | EG [1<=P_network_1_2_AI_2]]]]] | E [~ [A [AG [P_network_2_0_RI_0<=0] U ~ [P_poll__networl_2_1_AnsP_2<=1]]] U [EF [[[1<=P_poll__networl_1_1_RI_0 & P_network_1_0_AI_2<=P_network_1_1_AskP_2] | E [1<=P_masterState_2_T_2 U 1<=P_masterState_1_F_1]]] & ~ [A [AG [1<=P_poll__waitingMessage_2] U 1<=P_network_1_2_RP_1]]]]]]
normalized: [[~ [EX [EG [[EG [1<=P_network_1_2_AI_2] | ~ [EX [~ [P_network_0_0_AnsP_1<=P_network_0_1_RI_0]]]]]]] | E [~ [[~ [EG [P_poll__networl_2_1_AnsP_2<=1]] & ~ [E [P_poll__networl_2_1_AnsP_2<=1 U [E [true U ~ [P_network_2_0_RI_0<=0]] & P_poll__networl_2_1_AnsP_2<=1]]]]] U [~ [[~ [EG [~ [1<=P_network_1_2_RP_1]]] & ~ [E [~ [1<=P_network_1_2_RP_1] U [~ [1<=P_network_1_2_RP_1] & E [true U ~ [1<=P_poll__waitingMessage_2]]]]]]] & E [true U [E [1<=P_masterState_2_T_2 U 1<=P_masterState_1_F_1] | [1<=P_poll__networl_1_1_RI_0 & P_network_1_0_AI_2<=P_network_1_1_AskP_2]]]]]] & EX [~ [EG [[[[P_network_0_0_AnnP_1<=1 | P_dead_1<=P_poll__networl_1_2_AnsP_1] & P_poll__networl_2_1_RI_2<=P_sendAnnPs__broadcasting_1_1] | P_network_2_0_AskP_1<=1]]]]]
abstracting: (P_network_2_0_AskP_1<=1)
states: 241
abstracting: (P_poll__networl_2_1_RI_2<=P_sendAnnPs__broadcasting_1_1)
states: 241
abstracting: (P_dead_1<=P_poll__networl_1_2_AnsP_1)
states: 241
abstracting: (P_network_0_0_AnnP_1<=1)
states: 241
EG iterations: 0
.abstracting: (P_network_1_0_AI_2<=P_network_1_1_AskP_2)
states: 241
abstracting: (1<=P_poll__networl_1_1_RI_0)
states: 0
abstracting: (1<=P_masterState_1_F_1)
states: 0
abstracting: (1<=P_masterState_2_T_2)
states: 0
abstracting: (1<=P_poll__waitingMessage_2)
states: 0
abstracting: (1<=P_network_1_2_RP_1)
states: 0
abstracting: (1<=P_network_1_2_RP_1)
states: 0
abstracting: (1<=P_network_1_2_RP_1)
states: 0
EG iterations: 0
abstracting: (P_poll__networl_2_1_AnsP_2<=1)
states: 241
abstracting: (P_network_2_0_RI_0<=0)
states: 241
abstracting: (P_poll__networl_2_1_AnsP_2<=1)
states: 241
abstracting: (P_poll__networl_2_1_AnsP_2<=1)
states: 241
EG iterations: 0
abstracting: (P_network_0_0_AnsP_1<=P_network_0_1_RI_0)
states: 241
.abstracting: (1<=P_network_1_2_AI_2)
states: 0
.
EG iterations: 1
EG iterations: 0
.-> the formula is FALSE
FORMULA NeoElection-PT-2-CTLCardinality-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.017sec
checking: ~ [EG [[[EF [~ [sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)<=sum(P_electionInit_2, P_electionInit_1, P_electionInit_0)]] | AX [[sum(P_polling_2, P_polling_1, P_polling_0)<=13 | sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)]]] | sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=51]]]
normalized: ~ [EG [[[E [true U ~ [sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)<=sum(P_electionInit_2, P_electionInit_1, P_electionInit_0)]] | ~ [EX [~ [[sum(P_polling_2, P_polling_1, P_polling_0)<=13 | sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)]]]]] | sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=51]]]
abstracting: (sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=51)
states: 241
abstracting: (sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1))
states: 4
abstracting: (sum(P_polling_2, P_polling_1, P_polling_0)<=13)
states: 241
.abstracting: (sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)<=sum(P_electionInit_2, P_electionInit_1, P_electionInit_0))
states: 223
EG iterations: 0
-> the formula is FALSE
FORMULA NeoElection-PT-2-CTLCardinality-01 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.160sec
checking: EG [[[sum(P_electionInit_2, P_electionInit_1, P_electionInit_0)<=sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0) & [sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_polling_2, P_polling_1, P_polling_0) | ~ [AG [AF [sum(P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)<=sum(P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)]]]]] | A [AX [~ [[sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=sum(P_electionInit_2, P_electionInit_1, P_electionInit_0) & sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=sum(P_polling_2, P_polling_1, P_polling_0)]]] U ~ [EX [~ [sum(P_electionInit_2, P_electionInit_1, P_electionInit_0)<=42]]]]]]
normalized: EG [[[sum(P_electionInit_2, P_electionInit_1, P_electionInit_0)<=sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0) & [sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_polling_2, P_polling_1, P_polling_0) | E [true U EG [~ [sum(P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)<=sum(P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)]]]]] | [~ [E [EX [~ [sum(P_electionInit_2, P_electionInit_1, P_electionInit_0)<=42]] U [EX [~ [sum(P_electionInit_2, P_electionInit_1, P_electionInit_0)<=42]] & EX [[sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=sum(P_electionInit_2, P_electionInit_1, P_electionInit_0) & sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=sum(P_polling_2, P_polling_1, P_polling_0)]]]]] & ~ [EG [EX [~ [sum(P_electionInit_2, P_electionInit_1, P_electionInit_0)<=42]]]]]]]
abstracting: (sum(P_electionInit_2, P_electionInit_1, P_electionInit_0)<=42)
states: 241
..
EG iterations: 1
abstracting: (sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=sum(P_polling_2, P_polling_1, P_polling_0))
states: 25
abstracting: (sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=sum(P_electionInit_2, P_electionInit_1, P_electionInit_0))
states: 1
.abstracting: (sum(P_electionInit_2, P_electionInit_1, P_electionInit_0)<=42)
states: 241
.abstracting: (sum(P_electionInit_2, P_electionInit_1, P_electionInit_0)<=42)
states: 241
.abstracting: (sum(P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)<=sum(P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE))
states: 241
.
EG iterations: 1
abstracting: (sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_polling_2, P_polling_1, P_polling_0))
states: 25
abstracting: (sum(P_electionInit_2, P_electionInit_1, P_electionInit_0)<=sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0))
states: 234
EG iterations: 0
-> the formula is TRUE
FORMULA NeoElection-PT-2-CTLCardinality-04 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.196sec
checking: AF [AG [~ [[[21<=sum(P_electionFailed_2, P_electionFailed_1, P_electionFailed_0) | AF [sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)<=93]] | [AG [8<=sum(P_polling_2, P_polling_1, P_polling_0)] | [~ [29<=sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)] & E [sum(P_polling_2, P_polling_1, P_polling_0)<=16 U 10<=sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0)]]]]]]]
normalized: ~ [EG [E [true U [[~ [E [true U ~ [8<=sum(P_polling_2, P_polling_1, P_polling_0)]]] | [~ [29<=sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)] & E [sum(P_polling_2, P_polling_1, P_polling_0)<=16 U 10<=sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0)]]] | [21<=sum(P_electionFailed_2, P_electionFailed_1, P_electionFailed_0) | ~ [EG [~ [sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)<=93]]]]]]]]
abstracting: (sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)<=93)
states: 241
.
EG iterations: 1
abstracting: (21<=sum(P_electionFailed_2, P_electionFailed_1, P_electionFailed_0))
states: 0
abstracting: (10<=sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0))
states: 0
abstracting: (sum(P_polling_2, P_polling_1, P_polling_0)<=16)
states: 241
abstracting: (29<=sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0))
states: 0
abstracting: (8<=sum(P_polling_2, P_polling_1, P_polling_0))
states: 0
EG iterations: 0
-> the formula is FALSE
FORMULA NeoElection-PT-2-CTLCardinality-03 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.229sec
checking: ~ [[EF [~ [[[sum(P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)<=60 | ~ [AX [72<=sum(P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0)]]] & sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)<=64]]] | EX [A [AX [AG [sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)<=52]] U [32<=sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1) | A [sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0) U sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)]]]]]]
normalized: ~ [[E [true U ~ [[[sum(P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)<=60 | EX [~ [72<=sum(P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0)]]] & sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)<=64]]] | EX [[~ [E [~ [[32<=sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1) | [~ [E [~ [sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)] U [~ [sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)] & ~ [sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)]]]] & ~ [EG [~ [sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)]]]]]] U [~ [[32<=sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1) | [~ [E [~ [sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)] U [~ [sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)] & ~ [sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)]]]] & ~ [EG [~ [sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)]]]]]] & EX [E [true U ~ [sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)<=52]]]]]] & ~ [EG [~ [[32<=sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1) | [~ [E [~ [sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)] U [~ [sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)] & ~ [sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)]]]] & ~ [EG [~ [sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)]]]]]]]]]]]]
abstracting: (sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0))
states: 0
EG iterations: 0
abstracting: (sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0))
states: 0
abstracting: (sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0))
states: 0
abstracting: (sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0))
states: 0
abstracting: (32<=sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1))
states: 0
EG iterations: 0
abstracting: (sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)<=52)
states: 241
.abstracting: (sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0))
states: 0
EG iterations: 0
abstracting: (sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0))
states: 0
abstracting: (sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0))
states: 0
abstracting: (sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0))
states: 0
abstracting: (32<=sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1))
states: 0
abstracting: (sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0))
states: 0
EG iterations: 0
abstracting: (sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0))
states: 0
abstracting: (sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0))
states: 0
abstracting: (sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0))
states: 0
abstracting: (32<=sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1))
states: 0
.abstracting: (sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)<=64)
states: 241
abstracting: (72<=sum(P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0))
states: 0
.abstracting: (sum(P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)<=60)
states: 241
-> the formula is TRUE
FORMULA NeoElection-PT-2-CTLCardinality-06 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.281sec
checking: ~ [[AF [[[EX [~ [sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1)<=sum(P_crashed_2, P_crashed_1, P_crashed_0)]] & E [[61<=sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0) | sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)<=89] U AX [6<=sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)]]] | EF [~ [[sum(P_polling_2, P_polling_1, P_polling_0)<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0) | sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)<=sum(P_crashed_2, P_crashed_1, P_crashed_0)]]]]] & [EG [E [[AX [sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)<=16] & [sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG) | sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)]] U ~ [[sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)<=sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0) & sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)<=sum(P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)]]]] | EX [~ [33<=sum(P_polling_2, P_polling_1, P_polling_0)]]]]]
normalized: ~ [[[EX [~ [33<=sum(P_polling_2, P_polling_1, P_polling_0)]] | EG [E [[~ [EX [~ [sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)<=16]]] & [sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG) | sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)]] U ~ [[sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)<=sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0) & sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)<=sum(P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)]]]]] & ~ [EG [~ [[[E [[61<=sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0) | sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)<=89] U ~ [EX [~ [6<=sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)]]]] & EX [~ [sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1)<=sum(P_crashed_2, P_crashed_1, P_crashed_0)]]] | E [true U ~ [[sum(P_polling_2, P_polling_1, P_polling_0)<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0) | sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)<=sum(P_crashed_2, P_crashed_1, P_crashed_0)]]]]]]]]]
abstracting: (sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)<=sum(P_crashed_2, P_crashed_1, P_crashed_0))
states: 241
abstracting: (sum(P_polling_2, P_polling_1, P_polling_0)<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0))
states: 112
abstracting: (sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1)<=sum(P_crashed_2, P_crashed_1, P_crashed_0))
states: 241
.abstracting: (6<=sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0))
states: 0
.abstracting: (sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)<=89)
states: 241
abstracting: (61<=sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0))
states: 0
EG iterations: 0
abstracting: (sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)<=sum(P_electionFailed_2, P_electionFailed_1, P_electionFailed_0))
states: 241
abstracting: (sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)<=sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0))
states: 241
abstracting: (sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0))
states: 0
abstracting: (sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG))
states: 241
abstracting: (sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)<=16)
states: 241
..
EG iterations: 1
abstracting: (33<=sum(P_polling_2, P_polling_1, P_polling_0))
states: 0
.-> the formula is TRUE
FORMULA NeoElection-PT-2-CTLCardinality-05 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.409sec
checking: EX [[[[[[~ [EF [sum(P_dead_2, P_dead_1, P_dead_0)<=13]] | EG [sum(P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)<=56]] | ~ [EX [sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)<=sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)]]] & [sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0) | ~ [EX [56<=sum(P_crashed_2, P_crashed_1, P_crashed_0)]]]] | ~ [[[[94<=sum(P_crashed_2, P_crashed_1, P_crashed_0) | ~ [100<=sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)]] & [sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)<=29 & EG [sum(P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)<=93]]] & [sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0)<=sum(P_crashed_2, P_crashed_1, P_crashed_0) | [AF [sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)<=52] | EX [26<=sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)]]]]]] | ~ [A [[[31<=sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0) & sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)<=sum(P_dead_2, P_dead_1, P_dead_0)] | [sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)<=sum(P_polling_2, P_polling_1, P_polling_0) & sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=96]] U [72<=sum(P_polling_2, P_polling_1, P_polling_0) & [21<=sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0) | sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0)<=34]]]]]]
normalized: EX [[[~ [[[[EX [26<=sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)] | ~ [EG [~ [sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)<=52]]]] | sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0)<=sum(P_crashed_2, P_crashed_1, P_crashed_0)] & [[~ [100<=sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)] | 94<=sum(P_crashed_2, P_crashed_1, P_crashed_0)] & [EG [sum(P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)<=93] & sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)<=29]]]] | [[~ [EX [56<=sum(P_crashed_2, P_crashed_1, P_crashed_0)]] | sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0)] & [~ [EX [sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)<=sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)]] | [~ [E [true U sum(P_dead_2, P_dead_1, P_dead_0)<=13]] | EG [sum(P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)<=56]]]]] | ~ [[~ [E [~ [[[21<=sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0) | sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0)<=34] & 72<=sum(P_polling_2, P_polling_1, P_polling_0)]] U [~ [[[21<=sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0) | sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0)<=34] & 72<=sum(P_polling_2, P_polling_1, P_polling_0)]] & ~ [[[sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)<=sum(P_polling_2, P_polling_1, P_polling_0) & sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=96] | [31<=sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0) & sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)<=sum(P_dead_2, P_dead_1, P_dead_0)]]]]]] & ~ [EG [~ [[[21<=sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0) | sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0)<=34] & 72<=sum(P_polling_2, P_polling_1, P_polling_0)]]]]]]]]
abstracting: (72<=sum(P_polling_2, P_polling_1, P_polling_0))
states: 0
abstracting: (sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0)<=34)
states: 241
abstracting: (21<=sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0))
states: 0
EG iterations: 0
abstracting: (sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)<=sum(P_dead_2, P_dead_1, P_dead_0))
states: 241
abstracting: (31<=sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0))
states: 0
abstracting: (sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=96)
states: 241
abstracting: (sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)<=sum(P_polling_2, P_polling_1, P_polling_0))
states: 241
abstracting: (72<=sum(P_polling_2, P_polling_1, P_polling_0))
states: 0
abstracting: (sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0)<=34)
states: 241
abstracting: (21<=sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0))
states: 0
abstracting: (72<=sum(P_polling_2, P_polling_1, P_polling_0))
states: 0
abstracting: (sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0)<=34)
states: 241
abstracting: (21<=sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0))
states: 0
abstracting: (sum(P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)<=56)
states: 241
EG iterations: 0
abstracting: (sum(P_dead_2, P_dead_1, P_dead_0)<=13)
states: 241
abstracting: (sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)<=sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0))
states: 241
.abstracting: (sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0))
states: 144
abstracting: (56<=sum(P_crashed_2, P_crashed_1, P_crashed_0))
states: 0
.abstracting: (sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)<=29)
states: 241
abstracting: (sum(P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)<=93)
states: 241
EG iterations: 0
abstracting: (94<=sum(P_crashed_2, P_crashed_1, P_crashed_0))
states: 0
abstracting: (100<=sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0))
states: 0
abstracting: (sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0)<=sum(P_crashed_2, P_crashed_1, P_crashed_0))
states: 112
abstracting: (sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)<=52)
states: 241
.
EG iterations: 1
abstracting: (26<=sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0))
states: 0
..-> the formula is TRUE
FORMULA NeoElection-PT-2-CTLCardinality-07 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 1.020sec
checking: [EG [[[[[sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)<=99 & 26<=sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1)] | [EF [sum(P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0)<=51] | 73<=sum(P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0)]] | sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)<=2] | EX [[A [sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=73 U sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=84] | AF [sum(P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0)<=sum(P_dead_2, P_dead_1, P_dead_0)]]]]] | [~ [E [[~ [[sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)<=sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0) | [59<=sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG) & sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)<=26]]] | [~ [A [sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)<=79 U sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)<=sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1)]] | ~ [EX [sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)<=80]]]] U [[~ [AF [sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=92]] | [AG [sum(P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)<=60] | ~ [sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)<=sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)]]] & ~ [[[52<=sum(P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE) & sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)<=sum(P_electionInit_2, P_electionInit_1, P_electionInit_0)] & EF [sum(P_electionInit_2, P_electionInit_1, P_electionInit_0)<=sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)]]]]]] & E [94<=sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0) U [AX [AG [sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=98]] | AF [[EF [31<=sum(P_polling_2, P_polling_1, P_polling_0)] & ~ [85<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)]]]]]]]
normalized: [EG [[EX [[[~ [EG [~ [sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=84]]] & ~ [E [~ [sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=84] U [~ [sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=73] & ~ [sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=84]]]]] | ~ [EG [~ [sum(P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0)<=sum(P_dead_2, P_dead_1, P_dead_0)]]]]] | [sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)<=2 | [[73<=sum(P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0) | E [true U sum(P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0)<=51]] | [sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)<=99 & 26<=sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1)]]]]] | [~ [E [[~ [[sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)<=sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0) | [59<=sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG) & sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)<=26]]] | [~ [EX [sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)<=80]] | ~ [[~ [E [~ [sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)<=sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1)] U [~ [sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)<=79] & ~ [sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)<=sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1)]]]] & ~ [EG [~ [sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)<=sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1)]]]]]]] U [[[~ [sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)<=sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)] | ~ [E [true U ~ [sum(P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)<=60]]]] | EG [~ [sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=92]]] & ~ [[E [true U sum(P_electionInit_2, P_electionInit_1, P_electionInit_0)<=sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)] & [52<=sum(P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE) & sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)<=sum(P_electionInit_2, P_electionInit_1, P_electionInit_0)]]]]]] & E [94<=sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0) U [~ [EG [~ [[~ [85<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)] & E [true U 31<=sum(P_polling_2, P_polling_1, P_polling_0)]]]]] | ~ [EX [E [true U ~ [sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=98]]]]]]]]
abstracting: (sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=98)
states: 241
.abstracting: (31<=sum(P_polling_2, P_polling_1, P_polling_0))
states: 0
abstracting: (85<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0))
states: 0
EG iterations: 0
abstracting: (94<=sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0))
states: 0
abstracting: (sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)<=sum(P_electionInit_2, P_electionInit_1, P_electionInit_0))
states: 1
abstracting: (52<=sum(P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE))
states: 0
abstracting: (sum(P_electionInit_2, P_electionInit_1, P_electionInit_0)<=sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0))
states: 241
abstracting: (sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=92)
states: 241
.
EG iterations: 1
abstracting: (sum(P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)<=60)
states: 241
abstracting: (sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)<=sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0))
states: 241
abstracting: (sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)<=sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1))
states: 241
.
EG iterations: 1
abstracting: (sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)<=sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1))
states: 241
abstracting: (sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)<=79)
states: 241
abstracting: (sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)<=sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1))
states: 241
abstracting: (sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)<=80)
states: 241
.abstracting: (sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)<=26)
states: 241
abstracting: (59<=sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG))
states: 0
abstracting: (sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)<=sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0))
states: 241
abstracting: (26<=sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1))
states: 0
abstracting: (sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)<=99)
states: 241
abstracting: (sum(P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0)<=51)
states: 241
abstracting: (73<=sum(P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0))
states: 0
abstracting: (sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)<=2)
states: 241
abstracting: (sum(P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0)<=sum(P_dead_2, P_dead_1, P_dead_0))
states: 13
.............................
EG iterations: 29
abstracting: (sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=84)
states: 241
abstracting: (sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=73)
states: 241
abstracting: (sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=84)
states: 241
abstracting: (sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=84)
states: 241
.
EG iterations: 1
.
EG iterations: 0
-> the formula is TRUE
FORMULA NeoElection-PT-2-CTLCardinality-02 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 1.178sec
totally nodes used: 198335 (2.0e+05)
number of garbage collections: 0
fire ops cache: hits/miss/sum: 214490 1033152 1247642
used/not used/entry size/cache size: 1080198 66028666 16 1024MB
basic ops cache: hits/miss/sum: 10849 160298 171147
used/not used/entry size/cache size: 362610 16414606 12 192MB
unary ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 8 128MB
abstract ops cache: hits/miss/sum: 0 267398 267398
used/not used/entry size/cache size: 1 16777215 12 192MB
state nr cache: hits/miss/sum: 303 1326 1629
used/not used/entry size/cache size: 1326 8387282 32 256MB
max state cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 8388608 32 256MB
uniqueHash elements/entry size/size: 67108864 4 256MB
0 66914320
1 190844
2 3612
3 85
4 3
5 0
6 0
7 0
8 0
9 0
>= 10 0
Total processing time: 0m 9.001sec
BK_STOP 1678721295317
--------------------
content from stderr:
check for maximal unmarked siphon
found
The net has a maximal unmarked siphon:
P_stage_2_PRIM
P_stage_2_SEC
P_startNeg__broadcasting_0_1
P_poll__networl_2_2_AI_2
P_network_0_2_RP_1
P_poll__networl_2_2_RI_2
P_masterList_2_2_0
P_network_0_2_RP_2
P_stage_1_SEC
P_poll__networl_2_1_RP_2
P_poll__networl_2_1_RP_1
P_poll__networl_2_2_RI_1
P_poll__networl_2_2_RI_0
P_poll__networl_2_2_AnsP_2
P_poll__networl_2_2_AnsP_1
P_poll__networl_2_2_AI_1
P_poll__networl_2_2_AnsP_0
P_stage_0_SEC
P_stage_1_PRIM
P_poll__networl_2_2_AskP_2
P_poll__networl_2_2_AskP_1
P_poll__networl_2_2_AskP_0
P_poll__networl_2_1_RP_0
P_poll__networl_2_1_AnnP_2
P_poll__networl_2_1_AnnP_1
P_poll__networl_2_1_AnnP_0
P_poll__networl_2_1_AI_2
P_sendAnnPs__broadcasting_0_2
P_poll__networl_2_1_AI_1
P_poll__networl_2_1_AI_0
P_poll__networl_2_1_RI_2
P_poll__networl_2_1_RI_1
P_poll__networl_2_1_RI_0
P_poll__networl_2_1_AnsP_2
P_poll__networl_2_1_AnsP_1
P_poll__networl_2_1_AnsP_0
P_poll__networl_2_1_AskP_2
P_poll__networl_1_1_RP_0
P_poll__networl_2_1_AskP_1
P_poll__networl_2_1_AskP_0
P_poll__networl_2_0_RP_2
P_poll__networl_2_0_RP_1
P_stage_0_NEG
P_stage_0_PRIM
P_poll__networl_2_0_RP_0
P_poll__networl_2_0_AnnP_2
P_poll__networl_2_0_AnnP_1
P_poll__networl_2_0_AnnP_0
P_sendAnnPs__broadcasting_2_2
P_poll__networl_1_2_AnsP_0
P_poll__networl_2_0_AI_2
P_sendAnnPs__broadcasting_0_1
P_poll__networl_2_0_AI_1
P_poll__networl_1_2_AskP_2
P_poll__networl_2_0_AI_0
P_poll__networl_2_0_RI_2
P_polling_0
P_poll__networl_1_2_AskP_1
P_poll__networl_2_0_RI_1
P_poll__networl_2_0_RI_0
P_poll__networl_2_0_AnsP_2
P_poll__networl_2_0_AnsP_1
P_poll__waitingMessage_2
P_poll__networl_2_0_AnsP_0
P_poll__networl_2_0_AskP_2
P_poll__networl_2_0_AskP_1
P_poll__waitingMessage_1
P_poll__networl_1_2_AskP_0
P_poll__networl_2_0_AskP_0
P_poll__networl_1_2_RP_2
P_poll__networl_1_2_RP_1
P_poll__networl_1_2_RP_0
P_poll__waitingMessage_0
P_poll__networl_1_2_AnnP_2
P_poll__networl_1_2_AnnP_1
P_poll__networl_1_2_AnnP_0
P_poll__networl_1_2_AI_2
P_poll__pollEnd_0
P_poll__networl_1_1_RP_2
P_poll__networl_1_2_AI_1
P_poll__networl_1_2_AI_0
P_poll__networl_2_2_AnnP_1
P_poll__networl_2_2_RP_0
P_poll__networl_2_2_RP_1
P_sendAnnPs__broadcasting_1_2
P_sendAnnPs__broadcasting_2_1
P_poll__networl_1_1_RP_1
P_crashed_0
P_masterList_2_2_1
P_negotiation_1_1_NONE
P_negotiation_1_1_CO
P_masterState_0_F_1
P_masterState_0_F_0
P_negotiation_1_0_DONE
P_masterState_0_T_0
P_network_0_0_RI_0
P_network_0_2_AskP_0
P_masterState_0_F_2
P_masterList_2_2_2
P_negotiation_2_2_NONE
P_negotiation_2_2_CO
P_network_0_1_RI_2
P_network_0_0_AI_0
P_masterState_0_T_2
P_negotiation_2_0_CO
P_negotiation_2_0_NONE
P_network_0_1_AI_2
P_network_0_1_AskP_1
P_network_0_1_AskP_0
P_masterState_1_T_1
P_negotiation_1_0_NONE
P_negotiation_0_2_DONE
P_negotiation_0_2_CO
P_negotiation_0_1_CO
P_negotiation_0_1_NONE
P_negotiation_0_0_DONE
P_negotiation_1_0_CO
P_network_0_0_AnsP_0
P_masterState_2_T_2
P_masterState_2_T_1
P_masterState_2_F_2
P_masterState_2_F_1
P_masterState_2_F_0
P_negotiation_0_0_CO
P_masterState_1_T_2
P_network_0_0_RI_2
P_negotiation_0_0_NONE
P_masterState_1_F_2
P_masterState_0_T_1
P_network_0_1_RP_0
P_network_0_2_AskP_2
P_network_0_0_AskP_2
P_network_0_1_RI_1
P_network_0_1_RP_2
P_network_0_0_AI_1
P_network_0_1_AnnP_0
P_network_0_1_AnsP_0
P_network_0_0_RP_1
P_network_0_0_AnsP_1
P_network_0_1_AnsP_2
P_network_0_0_AnsP_2
P_negotiation_2_0_DONE
P_network_0_0_RI_1
P_network_0_0_RP_0
P_network_0_0_AnnP_1
P_network_0_1_RP_1
P_masterState_1_F_1
P_network_0_1_AI_0
P_network_0_0_AskP_1
P_negotiation_0_2_NONE
P_negotiation_0_1_DONE
P_network_0_1_AnnP_2
P_network_0_1_AnnP_1
P_network_0_1_AskP_2
P_network_0_1_RI_0
P_network_0_1_AI_1
P_network_0_0_AI_2
P_network_0_0_RP_2
P_network_0_0_AskP_0
P_network_0_0_AnnP_0
P_network_0_2_AskP_1
P_network_0_0_AnnP_2
P_network_0_1_AnsP_1
P_network_0_2_RI_0
P_poll__networl_1_2_AnsP_1
P_network_2_1_RI_1
P_poll__networl_1_1_AnnP_1
P_network_2_1_AI_2
P_network_2_2_AnsP_1
P_network_1_2_AI_2
P_poll__networl_0_0_AnsP_1
P_network_2_0_AnnP_2
P_network_2_2_AskP_2
P_network_2_2_RP_0
P_network_2_0_AnnP_0
P_network_2_2_AI_1
P_network_2_1_RI_2
P_network_2_1_AnnP_2
P_network_2_2_RI_1
P_network_1_1_AskP_1
P_poll__networl_0_1_AnnP_1
P_network_2_1_RP_1
P_poll__networl_0_1_AnnP_2
P_poll__networl_0_1_AskP_0
P_network_2_2_AI_2
P_network_2_0_RI_0
P_network_1_1_AnsP_2
P_network_2_1_AI_1
P_network_2_0_AskP_2
P_network_0_2_RI_1
P_poll__networl_0_0_RI_2
P_poll__networl_0_0_AnnP_2
P_network_1_2_RP_0
P_poll__networl_0_1_AskP_2
P_network_2_1_AnsP_2
P_poll__networl_0_1_AnsP_0
P_poll__networl_0_1_AnsP_1
P_network_2_0_AI_2
P_poll__networl_0_1_RI_2
P_network_2_2_AnsP_0
P_poll__networl_0_0_AnnP_1
P_network_1_1_AnsP_1
P_network_2_0_AI_0
P_network_1_1_AskP_2
P_poll__networl_0_1_AnsP_2
P_poll__networl_0_1_AI_1
P_poll__networl_0_0_RP_1
P_network_2_1_AnnP_1
P_network_2_2_AnnP_0
P_poll__networl_0_0_AnsP_2
P_network_1_1_RI_2
P_poll__networl_0_1_AnnP_0
P_poll__networl_0_0_RI_1
P_poll__networl_0_1_RP_0
P_network_1_1_RP_2
P_network_0_2_AnsP_1
P_network_2_0_AskP_1
P_network_2_0_AskP_0
P_network_1_1_RI_0
P_network_1_2_RP_2
P_network_2_0_RI_2
P_poll__networl_0_0_AnsP_0
P_network_1_1_RI_1
P_network_1_2_AnnP_1
P_network_1_2_RI_2
P_network_1_2_RI_1
P_network_2_2_RI_0
P_network_2_0_AnsP_0
P_network_1_2_AnsP_1
P_network_1_1_RP_1
P_network_1_1_AnnP_2
P_network_1_1_AnnP_1
P_network_1_1_AnnP_0
P_network_1_0_AnsP_0
P_network_1_2_AnsP_2
P_network_2_1_AnnP_0
P_poll__networl_0_0_RI_0
P_poll__networl_0_0_AskP_1
P_network_1_1_AnsP_0
P_network_1_2_AI_1
P_network_1_1_AskP_0
P_network_2_2_AnnP_1
P_network_1_0_RP_2
P_poll__networl_0_1_AskP_1
P_poll__networl_0_0_AskP_0
P_network_2_1_AnsP_1
P_network_1_0_RP_1
P_network_2_0_RP_1
P_poll__networl_0_0_AnnP_0
P_network_1_1_AI_1
P_network_2_1_AskP_2
P_poll__networl_0_1_AI_0
P_network_1_0_RP_0
P_network_1_0_AnnP_2
P_network_1_0_AnnP_1
P_poll__networl_0_0_AI_1
P_network_1_0_AnnP_0
P_network_1_0_AI_2
P_network_1_1_AI_2
P_poll__networl_0_0_RP_0
P_network_1_0_AI_1
P_network_1_1_RP_0
P_network_1_2_AskP_2
P_poll__networl_0_0_AI_2
P_network_1_0_AI_0
P_network_1_0_RI_2
P_network_2_2_RP_2
P_network_1_2_AnnP_2
P_network_2_2_RI_2
P_network_1_0_AnsP_2
P_network_2_0_AI_1
P_poll__networl_0_0_AI_0
P_network_1_0_AnsP_1
P_network_1_0_RI_0
P_network_2_0_RP_2
P_network_1_2_AskP_1
P_network_1_0_AskP_2
P_poll__networl_0_1_RI_1
P_network_2_2_AskP_1
P_network_1_0_AskP_1
P_poll__networl_0_0_RP_2
P_network_2_2_AnsP_2
P_network_1_0_AskP_0
P_poll__networl_0_1_RP_2
P_poll__networl_0_2_AskP_0
P_poll__networl_0_2_AskP_1
P_poll__networl_0_2_AskP_2
P_poll__networl_0_2_AnsP_1
P_poll__networl_0_2_AnsP_2
P_poll__networl_0_2_RI_1
P_poll__networl_0_1_RP_1
P_poll__networl_0_0_AskP_2
P_poll__networl_0_2_RI_2
P_network_2_2_AI_0
P_network_1_1_AI_0
P_poll__networl_0_2_AI_2
P_poll__networl_0_2_AnnP_0
P_poll__networl_0_2_AnnP_2
P_poll__networl_0_2_RP_0
P_poll__networl_0_2_AI_1
P_poll__networl_0_2_AnnP_1
P_poll__networl_0_2_RP_2
P_poll__networl_1_0_AskP_0
P_poll__networl_1_0_AskP_1
P_poll__networl_1_0_AskP_2
P_poll__networl_1_0_AnsP_0
P_poll__networl_1_0_AnsP_1
P_poll__networl_1_0_RI_0
P_network_2_1_RP_2
P_poll__networl_1_0_RI_1
P_poll__networl_0_2_RI_0
P_poll__networl_0_1_AI_2
P_poll__networl_1_0_AI_1
P_poll__networl_1_0_AI_2
P_network_2_0_AnsP_2
P_network_2_0_AnnP_1
P_poll__networl_1_0_AnnP_0
P_poll__networl_1_0_AI_0
P_poll__networl_1_0_AnnP_1
P_network_2_0_RI_1
P_poll__networl_1_0_AnnP_2
P_poll__handlingMessage_0
P_poll__networl_1_0_RP_0
P_poll__networl_1_0_RP_2
P_poll__networl_1_1_AskP_0
P_network_1_0_RI_1
P_poll__networl_1_1_AskP_1
P_network_2_1_AskP_1
P_poll__networl_1_1_AskP_2
P_poll__networl_1_1_AnsP_0
P_poll__networl_1_1_AnsP_1
P_network_2_2_AnnP_2
P_poll__networl_1_1_AnsP_2
P_network_2_0_AnsP_1
P_poll__networl_1_1_RI_0
P_network_2_2_AskP_0
P_poll__networl_1_1_RI_1
P_poll__networl_0_2_AnsP_0
P_poll__networl_1_0_AnsP_2
P_poll__networl_1_1_RI_2
P_network_2_1_RP_0
P_network_0_2_RI_2
P_network_0_2_AnsP_2
P_network_1_2_RP_1
P_poll__networl_0_2_RP_1
P_poll__networl_1_1_AI_0
P_network_1_2_AnnP_0
P_poll__networl_0_1_RI_0
P_poll__networl_1_1_AI_1
P_poll__networl_0_2_AI_0
P_poll__networl_1_1_AI_2
P_poll__networl_1_0_RP_1
P_poll__networl_1_1_AnnP_0
P_poll__networl_1_0_RI_2
P_network_2_2_RP_1
P_network_2_0_RP_0
P_network_0_2_AI_0
P_network_0_2_AnsP_0
P_poll__networl_1_2_RI_2
P_network_0_2_AnnP_0
P_poll__networl_1_1_AnnP_2
P_startNeg__broadcasting_0_2
P_poll__networl_2_2_AI_0
P_network_0_2_AI_1
P_poll__networl_2_2_RP_2
P_network_0_2_AI_2
P_electedSecondary_0
P_masterList_0_2_1
P_electionFailed_2
P_dead_0
P_masterList_2_1_2
P_masterList_1_2_1
P_masterList_2_1_0
P_dead_2
P_electionFailed_0
P_masterList_1_2_2
P_masterList_1_2_0
P_masterList_1_1_1
P_poll__networl_1_2_RI_0
P_masterList_1_1_0
P_masterList_0_2_2
P_poll__networl_1_2_AnsP_2
P_masterList_0_2_0
P_masterList_0_1_2
P_network_0_2_RP_0
P_masterList_0_1_1
P_poll__networl_2_2_AnnP_0
P_masterList_0_1_0
P_sendAnnPs__broadcasting_1_1
P_electionInit_0
P_electedPrimary_2
P_electionFailed_1
P_poll__networl_1_2_RI_1
P_electedSecondary_1
P_electedPrimary_1
P_network_0_2_AnnP_2
P_electedPrimary_0
P_network_0_2_AnnP_1
P_dead_1
P_crashed_2
P_electedSecondary_2
P_crashed_1
P_poll__networl_2_2_AnnP_2
The net has transition(s) that can never fire:
T_poll__handleAnsP4_34
T_poll__handleAnsP4_35
T_poll__handleAnsP4_36
T_poll__handleAskP_42
T_poll__handleAskP_43
T_poll__handleAskP_44
T_poll__handleAskP_45
T_poll__handleAskP_24
T_poll__handleAskP_25
T_poll__handleAnsP4_47
T_poll__handleAnsP4_48
T_poll__handleAnsP4_51
T_poll__handleAnsP4_52
T_poll__handleAnsP4_21
T_poll__handleAnsP4_22
T_poll__handleAnsP4_23
T_poll__handleAnsP3_71
T_poll__handleAnsP3_81
T_poll__handleAnsP3_84
T_poll__handleAnsP4_42
T_poll__handleAnsP4_45
T_poll__handleAnsP4_46
T_poll__handleRI_7
T_poll__handleRI_9
T_poll__handleRP_1
T_poll__handleRP_2
T_poll__handleRP_3
T_poll__handleRP_4
T_poll__handleRP_5
T_poll__handleRP_6
T_poll__handleAnsP4_29
T_poll__handleAnsP4_30
T_poll__handleAnsP4_33
T_poll__handleRP_7
T_poll__handleRP_8
T_poll__handleRP_9
T_poll__iAmPrimary_1
T_poll__iAmPrimary_2
T_poll__iAmPrimary_3
T_poll__iAmSecondary_1
T_poll__iAmSecondary_2
T_startNeg__send_3
T_startNeg__send_7
T_startNeg__send_8
T_poll__handleAskP_23
T_poll__handleAnsP4_10
T_poll__handleAnsP4_11
T_poll__handleAnsP4_12
T_poll__handleAI2_44
T_poll__handleAI2_25
T_poll__handleAI1_24
T_poll__handleAnnP1_50
T_poll__handleAnsP2_4
T_poll__handleAnnP1_47
T_poll__handleAnnP1_49
T_poll__handleAI2_70
T_poll__handleAnsP2_11
T_poll__handleAnsP2_12
T_poll__handleAnnP1_31
T_poll__handleAnsP2_16
T_poll__handleAI1_25
T_poll__handleAI2_36
T_poll__handleAnsP3_120
T_poll__handleAnsP3_117
T_poll__handleAnnP1_36
T_poll__handleAI2_43
T_poll__handleAI2_72
T_poll__handleAnnP1_33
T_poll__handleAnnP1_34
T_poll__handleAnnP1_52
T_poll__handleAnnP1_53
T_poll__handleAnsP2_27
T_poll__handleAnsP2_28
T_poll__handleAI2_85
T_poll__handleAnnP1_12
T_poll__handleAI2_18
T_poll__handleAskP_17
T_poll__handleAskP_18
T_poll__handleAskP_19
T_poll__handleAskP_20
T_poll__handleAnsP4_39
T_poll__handleAnsP4_40
T_poll__handleAnsP4_41
T_poll__handleAskP_46
T_poll__handleAskP_48
T_poll__handleAskP_49
T_poll__handleAskP_50
T_poll__handleAskP_51
T_poll__handleAnsP2_45
T_poll__handleAnsP2_46
T_poll__handleAskP_10
T_poll__handleAskP_11
T_poll__handleAskP_12
T_poll__handleAskP_31
T_poll__handleAskP_32
T_poll__handleAskP_33
T_poll__handleAskP_34
T_poll__handleAskP_35
T_sendAnnPs__send_1
T_sendAnnPs__send_2
T_sendAnnPs__send_3
T_sendAnnPs__send_7
T_sendAnnPs__send_8
T_sendAnnPs__send_9
T_sendAnnPs__send_13
T_sendAnnPs__send_14
T_sendAnnPs__send_15
T_sendAnnPs__start_1
T_sendAnnPs__start_2
T_poll__handleAI2_67
T_poll__handleAnsP2_47
T_poll__handleAnsP2_48
T_startNeg__send_13
T_startNeg__send_15
T_startNeg__start_1
T_startSec_1
T_startSec_2
T_startSec_3
T_poll__handleAnsP3_14
T_poll__handleAnsP3_17
T_poll__handleAnnP1_27
T_poll__handleAnnP1_28
T_poll__handleAnsP3_138
T_poll__handleAnsP3_140
T_poll__handleAnsP3_143
T_poll__handleAI2_51
T_poll__handleAskP_13
T_poll__handleAskP_14
T_poll__handleAskP_15
T_poll__handleAskP_16
T_poll__handleAnsP3_122
T_poll__handleAnsP3_125
T_poll__handleAnsP3_135
T_poll__handleAnsP2_35
T_poll__handleAnsP2_36
T_poll__handleAskP_26
T_poll__handleAskP_27
T_poll__handleAnsP2_5
T_poll__handleAnnP1_25
T_poll__handleAI1_20
T_poll__handleAskP_36
T_poll__handleAskP_37
T_poll__handleAskP_38
T_poll__handleAskP_39
T_poll__handleAnnP1_14
T_poll__handleAskP_52
T_poll__handleAskP_53
T_poll__handleAskP_54
T_poll__handleRI_1
T_poll__handleRI_2
T_poll__handleRI_3
T_poll__handleRI_4
T_poll__handleRI_5
T_poll__handleAnnP1_6
T_poll__iAmSecondary_8
T_poll__iAmSecondary_9
T_poll__start_1
T_sendAnnPs__end_1
T_sendAnnPs__end_3
T_sendAnnPs__end_2
T_poll__handleAnnP1_5
T_poll__handleAnnP2_6
T_poll__handleAnsP3_153
T_poll__handleAnsP3_156
T_poll__handleAnsP3_158
T_poll__handleAI2_87
T_poll__handleAnsP2_22
T_poll__handleAnsP2_23
T_poll__handleAnsP2_18
T_poll__handleAnsP2_21
T_poll__handleAI2_86
T_poll__handleAnsP3_48
T_poll__handleAnsP3_50
T_poll__handleAnsP3_53
T_poll__handleAI2_48
T_poll__handleAnnP2_4
T_poll__handleAnnP2_5
T_poll__handleAnsP1_4
T_poll__handleAnsP1_5
T_poll__handleAnsP3_86
T_poll__handleAnsP3_89
T_poll__handleAnsP3_99
T_poll__handleAnsP3_9
T_poll__handleAnsP3_12
T_poll__handleAnsP4_15
T_poll__handleAnsP4_16
T_poll__handleAnsP4_17
T_poll__handleAI2_68
T_poll__handleAskP_22
T_poll__handleAnnP1_41
T_poll__handleAnsP2_9
T_poll__handleAnsP2_10
T_poll__handleAnsP4_53
T_poll__handleAnsP4_54
T_poll__handleAskP_1
T_poll__handleAI1_26
T_poll__handleAnsP3_27
T_poll__handleAnsP3_30
T_poll__handleAnsP3_32
T_poll__handleAnnP2_7
T_poll__handleAnnP2_8
T_poll__handleAI2_30
T_poll__handleAI2_53
T_poll__handleAI2_104
T_poll__handleAnnP1_38
T_poll__handleAnnP1_40
T_poll__handleAnnP1_2
T_poll__handleAI1_15
T_poll__handleAnnP2_9
T_poll__handleAnsP1_1
T_poll__handleAI2_49
T_poll__handleAI2_47
T_poll__handleAnsP1_7
T_poll__handleAI2_90
T_poll__handleAI2_46
T_poll__handleAI2_13
T_poll__handleAnsP1_9
T_poll__handleAnsP2_3
T_poll__handleAI2_69
T_poll__handleAI2_29
T_poll__handleAI1_19
T_poll__handleAnnP2_2
T_poll__handleAnnP2_3
T_poll__handleAI2_31
T_poll__handleAnnP1_21
T_poll__handleAnnP1_22
T_poll__handleAI2_105
T_poll__handleAI1_14
T_poll__handleAnsP2_17
T_poll__handleAnnP2_1
T_poll__handleAskP_2
T_poll__handleAskP_3
T_poll__handleAskP_4
T_poll__handleAskP_5
T_poll__handleAI2_35
T_poll__handleAnsP2_41
T_poll__handleAnsP2_42
T_poll__handleAnnP1_3
T_poll__handleAnsP2_39
T_poll__handleAnsP2_40
T_poll__handleAnsP3_161
T_poll__handleAnsP4_3
T_poll__handleAnsP4_4
T_poll__handleAnnP1_43
T_poll__handleAnnP1_44
T_poll__handleAI2_54
T_poll__handleAI1_21
T_poll__handleAnnP1_19
T_poll__handleAI1_12
T_poll__handleAI2_32
T_poll__handleAI1_11
T_poll__handleAnsP1_2
T_poll__handleAnsP1_3
T_poll__handleAI2_88
T_poll__handleAI1_22
T_poll__handleAI2_107
T_poll__handleAI2_14
T_poll__handleAI2_28
T_poll__handleAnnP1_46
T_poll__handleAI2_50
T_poll__handleAI1_10
T_poll__handleAI2_52
T_poll__handleAI1_3
T_poll__handleAnnP1_18
T_poll__handleAI2_11
T_poll__handleAI2_12
T_poll__handleAnsP4_18
T_poll__handleAI2_15
T_poll__handleAI2_89
T_poll__handleAI1_13
T_poll__handleAnnP1_17
T_poll__handleAnnP1_15
T_poll__handleAnsP4_24
T_poll__handleAnsP4_27
T_poll__handleAnsP4_28
T_poll__handleAI2_108
T_poll__handleAI2_9
T_poll__handleAnnP1_30
T_poll__handleAI2_45
T_poll__handleAI2_33
T_poll__handleAnnP1_8
T_poll__handleAnnP1_9
T_sendAnnPs__start_3
T_startNeg__end_1
T_startNeg__send_1
T_startNeg__send_2
T_poll__handleAnsP3_107
T_poll__handleAI1_2
T_poll__handleAI1_1
T_poll__handleAI2_16
T_poll__handleAI2_17
T_poll__handleAI2_10
T_poll__handleAI2_26
T_poll__handleAI2_27
T_poll__handleAI2_8
T_poll__handleAnnP1_11
T_poll__handleAnsP2_29
T_poll__handleAnsP2_30
T_poll__handleAnsP2_24
T_poll__handleAnnP1_24
T_poll__handleAI1_27
T_poll__handleAI2_34
T_poll__handleAskP_40
T_poll__handleAskP_41
T_poll__handleAnsP2_51
T_poll__handleAnsP2_52
T_poll__handleAnsP3_63
T_poll__handleAnsP3_66
T_poll__handleAnsP3_68
T_poll__end_1
T_poll__handleAnnP1_37
T_poll__handleAI2_7
T_poll__handleAnsP2_53
T_poll__handleAnsP2_54
T_poll__handleAnsP2_15
T_poll__handleAI2_71
T_poll__iAmSecondary_3
T_poll__iAmSecondary_4
T_poll__iAmSecondary_5
T_poll__iAmSecondary_6
T_poll__iAmSecondary_7
T_poll__handleAskP_6
T_poll__handleAskP_7
T_poll__handleAskP_8
T_poll__handleAskP_9
T_poll__handleAskP_28
T_poll__handleAskP_29
T_poll__handleAnsP2_33
T_poll__handleAnsP2_34
T_poll__handleAnsP2_6
T_poll__handleAnsP3_35
T_poll__handleAnsP3_45
T_poll__handleAnsP4_5
T_poll__handleAnsP4_6
T_poll__handleAnsP4_9
T_poll__handleAnsP3_102
T_poll__handleAnsP3_104
check for constant places
P_crashed_0
P_crashed_1
P_crashed_2
P_dead_0
P_dead_1
P_dead_2
P_electionFailed_0
P_electionFailed_1
P_electionFailed_2
P_masterList_0_1_0
P_masterList_0_1_1
P_masterList_0_1_2
P_masterList_0_2_0
P_masterList_0_2_1
P_masterList_0_2_2
P_masterList_1_1_0
P_masterList_1_1_1
P_masterList_1_1_2
P_masterList_1_2_0
P_masterList_1_2_1
P_masterList_1_2_2
P_masterList_2_1_0
P_masterList_2_1_1
P_masterList_2_1_2
P_masterList_2_2_0
P_masterList_2_2_1
P_masterList_2_2_2
P_network_0_0_AskP_1
P_network_0_0_AskP_2
P_network_0_0_RI_1
P_network_0_0_RI_2
P_network_0_0_AI_1
P_network_0_0_AI_2
P_network_0_0_AnnP_1
P_network_0_0_AnnP_2
P_network_0_0_RP_1
P_network_0_0_RP_2
P_network_0_1_AskP_1
P_network_0_1_AskP_2
P_network_0_1_RI_1
P_network_0_1_RI_2
P_network_0_1_AI_1
P_network_0_1_AI_2
P_network_0_1_AnnP_1
P_network_0_1_AnnP_2
P_network_0_1_RP_1
P_network_0_1_RP_2
P_network_0_2_AskP_1
P_network_0_2_AskP_2
P_network_0_2_RI_1
P_network_0_2_RI_2
P_network_0_2_AI_1
P_network_0_2_AI_2
P_network_0_2_AnnP_1
P_network_0_2_AnnP_2
P_network_0_2_RP_1
P_network_0_2_RP_2
P_network_1_0_AskP_1
P_network_1_0_AskP_2
P_network_1_0_RI_1
P_network_1_0_RI_2
P_network_1_0_AI_1
P_network_1_0_AI_2
P_network_1_0_AnnP_1
P_network_1_0_AnnP_2
P_network_1_0_RP_1
P_network_1_0_RP_2
P_network_1_1_AskP_1
P_network_1_1_AskP_2
P_network_1_1_RI_1
P_network_1_1_RI_2
P_network_1_1_AI_1
P_network_1_1_AI_2
P_network_1_1_AnnP_1
P_network_1_1_AnnP_2
P_network_1_1_RP_1
P_network_1_1_RP_2
P_network_1_2_AskP_1
P_network_1_2_AskP_2
P_network_1_2_RI_1
P_network_1_2_RI_2
P_network_1_2_AI_1
P_network_1_2_AI_2
P_network_1_2_AnnP_1
P_network_1_2_AnnP_2
P_network_1_2_RP_1
P_network_1_2_RP_2
P_network_2_0_AskP_1
P_network_2_0_AskP_2
P_network_2_0_RI_1
P_network_2_0_RI_2
P_network_2_0_AI_1
P_network_2_0_AI_2
P_network_2_0_AnnP_1
P_network_2_0_AnnP_2
P_network_2_0_RP_1
P_network_2_0_RP_2
P_network_2_1_AskP_1
P_network_2_1_AskP_2
P_network_2_1_RI_1
P_network_2_1_RI_2
P_network_2_1_AI_1
P_network_2_1_AI_2
P_network_2_1_AnnP_1
P_network_2_1_AnnP_2
P_network_2_1_RP_1
P_network_2_1_RP_2
P_network_2_2_AskP_1
P_network_2_2_AskP_2
P_network_2_2_RI_1
P_network_2_2_RI_2
P_network_2_2_AI_1
P_network_2_2_AI_2
P_network_2_2_AnnP_1
P_network_2_2_AnnP_2
P_network_2_2_RP_1
P_network_2_2_RP_2
P_poll__networl_0_0_AskP_0
P_poll__networl_0_0_AskP_1
P_poll__networl_0_0_AskP_2
P_poll__networl_0_0_AnsP_0
P_poll__networl_0_0_RI_0
P_poll__networl_0_0_RI_1
P_poll__networl_0_0_RI_2
P_poll__networl_0_0_AI_0
P_poll__networl_0_0_AI_1
P_poll__networl_0_0_AI_2
P_poll__networl_0_0_AnnP_0
P_poll__networl_0_0_AnnP_1
P_poll__networl_0_0_AnnP_2
P_poll__networl_0_0_RP_0
P_poll__networl_0_0_RP_1
P_poll__networl_0_0_RP_2
P_poll__networl_0_1_AskP_0
P_poll__networl_0_1_AskP_1
P_poll__networl_0_1_AskP_2
P_poll__networl_0_1_AnsP_0
P_poll__networl_0_1_RI_0
P_poll__networl_0_1_RI_1
P_poll__networl_0_1_RI_2
P_poll__networl_0_1_AI_0
P_poll__networl_0_1_AI_1
P_poll__networl_0_1_AI_2
P_poll__networl_0_1_AnnP_0
P_poll__networl_0_1_AnnP_1
P_poll__networl_0_1_AnnP_2
P_poll__networl_0_1_RP_0
P_poll__networl_0_1_RP_1
P_poll__networl_0_1_RP_2
P_poll__networl_0_2_AskP_0
P_poll__networl_0_2_AskP_1
P_poll__networl_0_2_AskP_2
P_poll__networl_0_2_AnsP_0
P_poll__networl_0_2_RI_0
P_poll__networl_0_2_RI_1
P_poll__networl_0_2_RI_2
P_poll__networl_0_2_AI_0
P_poll__networl_0_2_AI_1
P_poll__networl_0_2_AI_2
P_poll__networl_0_2_AnnP_0
P_poll__networl_0_2_AnnP_1
P_poll__networl_0_2_AnnP_2
P_poll__networl_0_2_RP_0
P_poll__networl_0_2_RP_1
P_poll__networl_0_2_RP_2
P_poll__networl_1_0_AskP_0
P_poll__networl_1_0_AskP_1
P_poll__networl_1_0_AskP_2
P_poll__networl_1_0_AnsP_0
P_poll__networl_1_0_RI_0
P_poll__networl_1_0_RI_1
P_poll__networl_1_0_RI_2
P_poll__networl_1_0_AI_0
P_poll__networl_1_0_AI_1
P_poll__networl_1_0_AI_2
P_poll__networl_1_0_AnnP_0
P_poll__networl_1_0_AnnP_1
P_poll__networl_1_0_AnnP_2
P_poll__networl_1_0_RP_0
P_poll__networl_1_0_RP_1
P_poll__networl_1_0_RP_2
P_poll__networl_1_1_AskP_0
P_poll__networl_1_1_AskP_1
P_poll__networl_1_1_AskP_2
P_poll__networl_1_1_AnsP_0
P_poll__networl_1_1_RI_0
P_poll__networl_1_1_RI_1
P_poll__networl_1_1_RI_2
P_poll__networl_1_1_AI_0
P_poll__networl_1_1_AI_1
P_poll__networl_1_1_AI_2
P_poll__networl_1_1_AnnP_0
P_poll__networl_1_1_AnnP_1
P_poll__networl_1_1_AnnP_2
P_poll__networl_1_1_RP_0
P_poll__networl_1_1_RP_1
P_poll__networl_1_1_RP_2
P_poll__networl_1_2_AskP_0
P_poll__networl_1_2_AskP_1
P_poll__networl_1_2_AskP_2
P_poll__networl_1_2_AnsP_0
P_poll__networl_1_2_RI_0
P_poll__networl_1_2_RI_1
P_poll__networl_1_2_RI_2
P_poll__networl_1_2_AI_0
P_poll__networl_1_2_AI_1
P_poll__networl_1_2_AI_2
P_poll__networl_1_2_AnnP_0
P_poll__networl_1_2_AnnP_1
P_poll__networl_1_2_AnnP_2
P_poll__networl_1_2_RP_0
P_poll__networl_1_2_RP_1
P_poll__networl_1_2_RP_2
P_poll__networl_2_0_AskP_0
P_poll__networl_2_0_AskP_1
P_poll__networl_2_0_AskP_2
P_poll__networl_2_0_AnsP_0
P_poll__networl_2_0_RI_0
P_poll__networl_2_0_RI_1
P_poll__networl_2_0_RI_2
P_poll__networl_2_0_AI_0
P_poll__networl_2_0_AI_1
P_poll__networl_2_0_AI_2
P_poll__networl_2_0_AnnP_0
P_poll__networl_2_0_AnnP_1
P_poll__networl_2_0_AnnP_2
P_poll__networl_2_0_RP_0
P_poll__networl_2_0_RP_1
P_poll__networl_2_0_RP_2
P_poll__networl_2_1_AskP_0
P_poll__networl_2_1_AskP_1
P_poll__networl_2_1_AskP_2
P_poll__networl_2_1_AnsP_0
P_poll__networl_2_1_RI_0
P_poll__networl_2_1_RI_1
P_poll__networl_2_1_RI_2
P_poll__networl_2_1_AI_0
P_poll__networl_2_1_AI_1
P_poll__networl_2_1_AI_2
P_poll__networl_2_1_AnnP_0
P_poll__networl_2_1_AnnP_1
P_poll__networl_2_1_AnnP_2
P_poll__networl_2_1_RP_0
P_poll__networl_2_1_RP_1
P_poll__networl_2_1_RP_2
P_poll__networl_2_2_AskP_0
P_poll__networl_2_2_AskP_1
P_poll__networl_2_2_AskP_2
P_poll__networl_2_2_AnsP_0
P_poll__networl_2_2_RI_0
P_poll__networl_2_2_RI_1
P_poll__networl_2_2_RI_2
P_poll__networl_2_2_AI_0
P_poll__networl_2_2_AI_1
P_poll__networl_2_2_AI_2
P_poll__networl_2_2_AnnP_0
P_poll__networl_2_2_AnnP_1
P_poll__networl_2_2_AnnP_2
P_poll__networl_2_2_RP_0
P_poll__networl_2_2_RP_1
P_poll__networl_2_2_RP_2
found 261 constant places
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.001sec
iterations count:671 (1), effective:49 (0)
initing FirstDep: 0m 0.001sec
iterations count:357 (1), effective:0 (0)
iterations count:357 (1), effective:0 (0)
iterations count:357 (1), effective:0 (0)
iterations count:357 (1), effective:0 (0)
iterations count:357 (1), effective:0 (0)
iterations count:357 (1), effective:0 (0)
iterations count:357 (1), effective:0 (0)
iterations count:357 (1), effective:0 (0)
iterations count:357 (1), effective:0 (0)
iterations count:357 (1), effective:0 (0)
iterations count:357 (1), effective:0 (0)
iterations count:357 (1), effective:0 (0)
iterations count:359 (1), effective:2 (0)
iterations count:357 (1), effective:0 (0)
iterations count:357 (1), effective:0 (0)
iterations count:357 (1), effective:0 (0)
iterations count:357 (1), effective:0 (0)
iterations count:357 (1), effective:0 (0)
iterations count:654 (1), effective:46 (0)
iterations count:357 (1), effective:0 (0)
iterations count:357 (1), effective:0 (0)
iterations count:357 (1), effective:0 (0)
iterations count:357 (1), effective:0 (0)
iterations count:357 (1), effective:0 (0)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NeoElection-PT-2"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marcie"
echo " Input is NeoElection-PT-2, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r257-smll-167863532400169"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/NeoElection-PT-2.tgz
mv NeoElection-PT-2 execution
cd execution
if [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "UpperBounds" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] || [ "CTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME CTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;