About the Execution of Marcie for NeighborGrid-PT-d3n3m1t11
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
6665.044 | 76079.00 | 76070.00 | 0.00 | FFFTTFFFTTFFTTTF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fkordon/mcc2023-input.r257-smll-167863532300089.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2023-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
..............................
=====================================================================
Generated by BenchKit 2-5348
Executing tool marcie
Input is NeighborGrid-PT-d3n3m1t11, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r257-smll-167863532300089
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 576K
-rw-r--r-- 1 mcc users 8.4K Feb 26 09:43 CTLCardinality.txt
-rw-r--r-- 1 mcc users 87K Feb 26 09:43 CTLCardinality.xml
-rw-r--r-- 1 mcc users 6.2K Feb 26 09:41 CTLFireability.txt
-rw-r--r-- 1 mcc users 45K Feb 26 09:41 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K Jan 29 11:40 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.4K Jan 29 11:40 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 4.1K Feb 25 16:27 LTLCardinality.txt
-rw-r--r-- 1 mcc users 27K Feb 25 16:27 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.9K Feb 25 16:27 LTLFireability.txt
-rw-r--r-- 1 mcc users 18K Feb 25 16:27 LTLFireability.xml
-rw-r--r-- 1 mcc users 14K Feb 26 09:44 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 134K Feb 26 09:44 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 16K Feb 26 09:43 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 108K Feb 26 09:43 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.8K Feb 25 16:27 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.8K Feb 25 16:27 UpperBounds.xml
-rw-r--r-- 1 mcc users 6 Mar 5 18:23 equiv_col
-rw-r--r-- 1 mcc users 10 Mar 5 18:23 instance
-rw-r--r-- 1 mcc users 6 Mar 5 18:23 iscolored
-rwxr-xr-x 1 mcc users 46K Mar 5 18:23 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME NeighborGrid-PT-d3n3m1t11-CTLCardinality-00
FORMULA_NAME NeighborGrid-PT-d3n3m1t11-CTLCardinality-01
FORMULA_NAME NeighborGrid-PT-d3n3m1t11-CTLCardinality-02
FORMULA_NAME NeighborGrid-PT-d3n3m1t11-CTLCardinality-03
FORMULA_NAME NeighborGrid-PT-d3n3m1t11-CTLCardinality-04
FORMULA_NAME NeighborGrid-PT-d3n3m1t11-CTLCardinality-05
FORMULA_NAME NeighborGrid-PT-d3n3m1t11-CTLCardinality-06
FORMULA_NAME NeighborGrid-PT-d3n3m1t11-CTLCardinality-07
FORMULA_NAME NeighborGrid-PT-d3n3m1t11-CTLCardinality-08
FORMULA_NAME NeighborGrid-PT-d3n3m1t11-CTLCardinality-09
FORMULA_NAME NeighborGrid-PT-d3n3m1t11-CTLCardinality-10
FORMULA_NAME NeighborGrid-PT-d3n3m1t11-CTLCardinality-11
FORMULA_NAME NeighborGrid-PT-d3n3m1t11-CTLCardinality-12
FORMULA_NAME NeighborGrid-PT-d3n3m1t11-CTLCardinality-13
FORMULA_NAME NeighborGrid-PT-d3n3m1t11-CTLCardinality-14
FORMULA_NAME NeighborGrid-PT-d3n3m1t11-CTLCardinality-15
=== Now, execution of the tool begins
BK_START 1678681874339
bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marcie
BK_EXAMINATION=CTLCardinality
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=NeighborGrid-PT-d3n3m1t11
Not applying reductions.
Model is PT
CTLCardinality PT
timeout --kill-after=10s --signal=SIGINT 1m for testing only
Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: /home/mcc/BenchKit/bin//../marcie/bin/marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --memory=6 --mcc-mode
parse successfull
net created successfully
Net: NeighborGrid_PT_d3n3m1t11
(NrP: 27 NrTr: 162 NrArc: 324)
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec
net check time: 0m 0.000sec
init dd package: 0m 3.470sec
RS generation: 0m 0.633sec
-> reachability set: #nodes 729 (7.3e+02) #states 973,469,712,824,056 (14)
starting MCC model checker
--------------------------
checking: AX [AF [[1<=p_2_1_2 | EX [AF [1<=p_0_0_0]]]]]
normalized: ~ [EX [EG [~ [[EX [~ [EG [~ [1<=p_0_0_0]]]] | 1<=p_2_1_2]]]]]
abstracting: (1<=p_2_1_2)
states: 495,918,532,948,104 (14)
abstracting: (1<=p_0_0_0)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
..
EG iterations: 1
.-> the formula is TRUE
FORMULA NeighborGrid-PT-d3n3m1t11-CTLCardinality-09 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.452sec
checking: ~ [E [p_0_1_2<=p_0_2_1 U AX [p_0_1_0<=p_2_0_0]]]
normalized: ~ [E [p_0_1_2<=p_0_2_1 U ~ [EX [~ [p_0_1_0<=p_2_0_0]]]]]
abstracting: (p_0_1_0<=p_2_0_0)
states: 643,572,802,900,536 (14)
.abstracting: (p_0_1_2<=p_0_2_1)
states: 643,572,802,900,536 (14)
-> the formula is FALSE
FORMULA NeighborGrid-PT-d3n3m1t11-CTLCardinality-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 2.757sec
checking: ~ [AF [AG [[p_2_0_1<=p_2_0_0 & ~ [p_1_1_0<=p_1_1_2]]]]]
normalized: EG [E [true U ~ [[p_2_0_1<=p_2_0_0 & ~ [p_1_1_0<=p_1_1_2]]]]]
abstracting: (p_1_1_0<=p_1_1_2)
states: 643,572,802,900,536 (14)
abstracting: (p_2_0_1<=p_2_0_0)
states: 643,572,802,900,536 (14)
EG iterations: 0
-> the formula is TRUE
FORMULA NeighborGrid-PT-d3n3m1t11-CTLCardinality-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.448sec
checking: EF [[AX [AG [EX [p_2_2_1<=0]]] & [[1<=p_2_0_2 & EG [[~ [1<=p_0_0_1] | A [1<=p_2_2_0 U 1<=p_2_1_2]]]] | 1<=p_1_1_0]]]
normalized: E [true U [[1<=p_1_1_0 | [1<=p_2_0_2 & EG [[[~ [EG [~ [1<=p_2_1_2]]] & ~ [E [~ [1<=p_2_1_2] U [~ [1<=p_2_2_0] & ~ [1<=p_2_1_2]]]]] | ~ [1<=p_0_0_1]]]]] & ~ [EX [E [true U ~ [EX [p_2_2_1<=0]]]]]]]
abstracting: (p_2_2_1<=0)
states: 477,551,179,875,952 (14)
..abstracting: (1<=p_0_0_1)
states: 495,918,532,948,104 (14)
abstracting: (1<=p_2_1_2)
states: 495,918,532,948,104 (14)
abstracting: (1<=p_2_2_0)
states: 495,918,532,948,104 (14)
abstracting: (1<=p_2_1_2)
states: 495,918,532,948,104 (14)
abstracting: (1<=p_2_1_2)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
.
EG iterations: 1
abstracting: (1<=p_2_0_2)
states: 495,918,532,948,104 (14)
abstracting: (1<=p_1_1_0)
states: 495,918,532,948,104 (14)
-> the formula is FALSE
FORMULA NeighborGrid-PT-d3n3m1t11-CTLCardinality-01 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.648sec
checking: AX [AF [~ [[1<=p_0_2_0 & [[[1<=p_1_0_0 | p_1_2_0<=0] | AF [p_0_2_0<=p_1_1_1]] & ~ [p_1_0_1<=p_1_1_1]]]]]]
normalized: ~ [EX [EG [[1<=p_0_2_0 & [~ [p_1_0_1<=p_1_1_1] & [~ [EG [~ [p_0_2_0<=p_1_1_1]]] | [1<=p_1_0_0 | p_1_2_0<=0]]]]]]]
abstracting: (p_1_2_0<=0)
states: 477,551,179,875,952 (14)
abstracting: (1<=p_1_0_0)
states: 495,918,532,948,104 (14)
abstracting: (p_0_2_0<=p_1_1_1)
states: 643,572,802,900,536 (14)
.
EG iterations: 1
abstracting: (p_1_0_1<=p_1_1_1)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_0_2_0)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
.-> the formula is FALSE
FORMULA NeighborGrid-PT-d3n3m1t11-CTLCardinality-05 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.560sec
checking: EG [[[p_1_0_2<=p_1_1_2 & [[~ [AX [p_0_2_2<=0]] | 1<=p_0_2_1] & A [[EG [1<=p_0_2_1] & EX [p_1_2_2<=1]] U AX [1<=p_0_2_0]]]] & p_1_0_2<=1]]
normalized: EG [[p_1_0_2<=1 & [p_1_0_2<=p_1_1_2 & [[1<=p_0_2_1 | EX [~ [p_0_2_2<=0]]] & [~ [EG [EX [~ [1<=p_0_2_0]]]] & ~ [E [EX [~ [1<=p_0_2_0]] U [~ [[EX [p_1_2_2<=1] & EG [1<=p_0_2_1]]] & EX [~ [1<=p_0_2_0]]]]]]]]]]
abstracting: (1<=p_0_2_0)
states: 495,918,532,948,104 (14)
.abstracting: (1<=p_0_2_1)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
abstracting: (p_1_2_2<=1)
states: 725,510,446,350,004 (14)
.abstracting: (1<=p_0_2_0)
states: 495,918,532,948,104 (14)
.abstracting: (1<=p_0_2_0)
states: 495,918,532,948,104 (14)
..
EG iterations: 1
abstracting: (p_0_2_2<=0)
states: 477,551,179,875,952 (14)
.abstracting: (1<=p_0_2_1)
states: 495,918,532,948,104 (14)
abstracting: (p_1_0_2<=p_1_1_2)
states: 643,572,802,900,536 (14)
abstracting: (p_1_0_2<=1)
states: 725,510,446,350,004 (14)
.
EG iterations: 1
-> the formula is FALSE
FORMULA NeighborGrid-PT-d3n3m1t11-CTLCardinality-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.886sec
checking: AF [AX [[[[[p_1_1_1<=p_1_2_0 | ~ [1<=p_1_1_2]] & E [p_1_0_1<=1 U p_2_1_1<=p_2_0_1]] & p_1_1_2<=0] | A [~ [EG [p_1_0_2<=0]] U 1<=p_2_1_1]]]]
normalized: ~ [EG [EX [~ [[[~ [EG [~ [1<=p_2_1_1]]] & ~ [E [~ [1<=p_2_1_1] U [EG [p_1_0_2<=0] & ~ [1<=p_2_1_1]]]]] | [p_1_1_2<=0 & [E [p_1_0_1<=1 U p_2_1_1<=p_2_0_1] & [p_1_1_1<=p_1_2_0 | ~ [1<=p_1_1_2]]]]]]]]]
abstracting: (1<=p_1_1_2)
states: 495,918,532,948,104 (14)
abstracting: (p_1_1_1<=p_1_2_0)
states: 643,572,802,900,536 (14)
abstracting: (p_2_1_1<=p_2_0_1)
states: 643,572,802,900,536 (14)
abstracting: (p_1_0_1<=1)
states: 725,510,446,350,004 (14)
abstracting: (p_1_1_2<=0)
states: 477,551,179,875,952 (14)
abstracting: (1<=p_2_1_1)
states: 495,918,532,948,104 (14)
abstracting: (p_1_0_2<=0)
states: 477,551,179,875,952 (14)
.
EG iterations: 1
abstracting: (1<=p_2_1_1)
states: 495,918,532,948,104 (14)
abstracting: (1<=p_2_1_1)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
..
EG iterations: 1
-> the formula is FALSE
FORMULA NeighborGrid-PT-d3n3m1t11-CTLCardinality-00 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 3.557sec
checking: ~ [[AG [~ [[1<=p_1_0_0 | p_0_0_1<=1]]] | EX [[EX [[EG [p_0_0_0<=1] & [p_2_1_1<=1 | 1<=p_1_0_1]]] & A [[1<=p_0_2_1 | AX [p_2_0_0<=p_1_1_0]] U ~ [[p_1_1_1<=p_0_0_2 & p_2_0_0<=1]]]]]]]
normalized: ~ [[EX [[[~ [EG [[p_1_1_1<=p_0_0_2 & p_2_0_0<=1]]] & ~ [E [[p_1_1_1<=p_0_0_2 & p_2_0_0<=1] U [~ [[1<=p_0_2_1 | ~ [EX [~ [p_2_0_0<=p_1_1_0]]]]] & [p_1_1_1<=p_0_0_2 & p_2_0_0<=1]]]]] & EX [[[p_2_1_1<=1 | 1<=p_1_0_1] & EG [p_0_0_0<=1]]]]] | ~ [E [true U [1<=p_1_0_0 | p_0_0_1<=1]]]]]
abstracting: (p_0_0_1<=1)
states: 725,510,446,350,004 (14)
abstracting: (1<=p_1_0_0)
states: 495,918,532,948,104 (14)
abstracting: (p_0_0_0<=1)
states: 725,510,446,350,004 (14)
.
EG iterations: 1
abstracting: (1<=p_1_0_1)
states: 495,918,532,948,104 (14)
abstracting: (p_2_1_1<=1)
states: 725,510,446,350,004 (14)
.abstracting: (p_2_0_0<=1)
states: 725,510,446,350,004 (14)
abstracting: (p_1_1_1<=p_0_0_2)
states: 643,572,802,900,536 (14)
abstracting: (p_2_0_0<=p_1_1_0)
states: 643,572,802,900,536 (14)
.abstracting: (1<=p_0_2_1)
states: 495,918,532,948,104 (14)
abstracting: (p_2_0_0<=1)
states: 725,510,446,350,004 (14)
abstracting: (p_1_1_1<=p_0_0_2)
states: 643,572,802,900,536 (14)
abstracting: (p_2_0_0<=1)
states: 725,510,446,350,004 (14)
abstracting: (p_1_1_1<=p_0_0_2)
states: 643,572,802,900,536 (14)
.
EG iterations: 1
.-> the formula is FALSE
FORMULA NeighborGrid-PT-d3n3m1t11-CTLCardinality-02 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 4.012sec
checking: E [E [EX [p_1_2_0<=1] U E [[~ [[1<=p_1_2_1 | p_0_2_0<=p_0_0_0]] & [E [1<=p_1_1_1 U p_0_0_2<=1] | ~ [p_1_2_2<=p_2_2_1]]] U EF [[1<=p_2_0_1 | p_0_2_2<=0]]]] U ~ [EF [AG [p_2_2_2<=p_0_0_2]]]]
normalized: E [E [EX [p_1_2_0<=1] U E [[[~ [p_1_2_2<=p_2_2_1] | E [1<=p_1_1_1 U p_0_0_2<=1]] & ~ [[1<=p_1_2_1 | p_0_2_0<=p_0_0_0]]] U E [true U [1<=p_2_0_1 | p_0_2_2<=0]]]] U ~ [E [true U ~ [E [true U ~ [p_2_2_2<=p_0_0_2]]]]]]
abstracting: (p_2_2_2<=p_0_0_2)
states: 643,572,802,900,536 (14)
abstracting: (p_0_2_2<=0)
states: 477,551,179,875,952 (14)
abstracting: (1<=p_2_0_1)
states: 495,918,532,948,104 (14)
abstracting: (p_0_2_0<=p_0_0_0)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_1_2_1)
states: 495,918,532,948,104 (14)
abstracting: (p_0_0_2<=1)
states: 725,510,446,350,004 (14)
abstracting: (1<=p_1_1_1)
states: 495,918,532,948,104 (14)
abstracting: (p_1_2_2<=p_2_2_1)
states: 643,572,802,900,536 (14)
abstracting: (p_1_2_0<=1)
states: 725,510,446,350,004 (14)
.-> the formula is TRUE
FORMULA NeighborGrid-PT-d3n3m1t11-CTLCardinality-03 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.600sec
checking: A [EF [[[[EF [1<=p_0_2_2] | E [1<=p_0_1_0 U p_0_0_1<=0]] | EG [[p_1_1_1<=p_1_2_1 | 1<=p_1_1_2]]] & EX [p_0_2_1<=p_1_1_0]]] U EG [EF [~ [[p_1_1_0<=p_0_0_2 & [p_0_2_1<=1 | p_2_2_2<=1]]]]]]
normalized: [~ [EG [~ [EG [E [true U ~ [[p_1_1_0<=p_0_0_2 & [p_0_2_1<=1 | p_2_2_2<=1]]]]]]]] & ~ [E [~ [EG [E [true U ~ [[p_1_1_0<=p_0_0_2 & [p_0_2_1<=1 | p_2_2_2<=1]]]]]] U [~ [E [true U [EX [p_0_2_1<=p_1_1_0] & [EG [[p_1_1_1<=p_1_2_1 | 1<=p_1_1_2]] | [E [1<=p_0_1_0 U p_0_0_1<=0] | E [true U 1<=p_0_2_2]]]]]] & ~ [EG [E [true U ~ [[p_1_1_0<=p_0_0_2 & [p_0_2_1<=1 | p_2_2_2<=1]]]]]]]]]]
abstracting: (p_2_2_2<=1)
states: 725,510,446,350,004 (14)
abstracting: (p_0_2_1<=1)
states: 725,510,446,350,004 (14)
abstracting: (p_1_1_0<=p_0_0_2)
states: 643,572,802,900,536 (14)
EG iterations: 0
abstracting: (1<=p_0_2_2)
states: 495,918,532,948,104 (14)
abstracting: (p_0_0_1<=0)
states: 477,551,179,875,952 (14)
abstracting: (1<=p_0_1_0)
states: 495,918,532,948,104 (14)
abstracting: (1<=p_1_1_2)
states: 495,918,532,948,104 (14)
abstracting: (p_1_1_1<=p_1_2_1)
states: 643,572,802,900,536 (14)
.
EG iterations: 1
abstracting: (p_0_2_1<=p_1_1_0)
states: 643,572,802,900,536 (14)
.abstracting: (p_2_2_2<=1)
states: 725,510,446,350,004 (14)
abstracting: (p_0_2_1<=1)
states: 725,510,446,350,004 (14)
abstracting: (p_1_1_0<=p_0_0_2)
states: 643,572,802,900,536 (14)
EG iterations: 0
abstracting: (p_2_2_2<=1)
states: 725,510,446,350,004 (14)
abstracting: (p_0_2_1<=1)
states: 725,510,446,350,004 (14)
abstracting: (p_1_1_0<=p_0_0_2)
states: 643,572,802,900,536 (14)
EG iterations: 0
.
EG iterations: 1
-> the formula is TRUE
FORMULA NeighborGrid-PT-d3n3m1t11-CTLCardinality-14 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 1.190sec
checking: AX [[[EX [[[[p_1_1_1<=p_1_0_2 | p_2_2_0<=0] & [1<=p_2_2_1 | p_0_2_0<=p_0_0_0]] | ~ [A [1<=p_2_1_0 U p_0_1_0<=p_0_1_2]]]] | EF [EG [AX [p_2_0_1<=p_2_1_1]]]] | [A [A [AF [p_1_0_1<=p_2_2_2] U 1<=p_1_2_0] U ~ [p_2_2_2<=1]] | 1<=p_0_1_1]]]
normalized: ~ [EX [~ [[[1<=p_0_1_1 | [~ [EG [p_2_2_2<=1]] & ~ [E [p_2_2_2<=1 U [p_2_2_2<=1 & ~ [[~ [EG [~ [1<=p_1_2_0]]] & ~ [E [~ [1<=p_1_2_0] U [EG [~ [p_1_0_1<=p_2_2_2]] & ~ [1<=p_1_2_0]]]]]]]]]]] | [E [true U EG [~ [EX [~ [p_2_0_1<=p_2_1_1]]]]] | EX [[~ [[~ [EG [~ [p_0_1_0<=p_0_1_2]]] & ~ [E [~ [p_0_1_0<=p_0_1_2] U [~ [1<=p_2_1_0] & ~ [p_0_1_0<=p_0_1_2]]]]]] | [[1<=p_2_2_1 | p_0_2_0<=p_0_0_0] & [p_1_1_1<=p_1_0_2 | p_2_2_0<=0]]]]]]]]]
abstracting: (p_2_2_0<=0)
states: 477,551,179,875,952 (14)
abstracting: (p_1_1_1<=p_1_0_2)
states: 643,572,802,900,536 (14)
abstracting: (p_0_2_0<=p_0_0_0)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_2_2_1)
states: 495,918,532,948,104 (14)
abstracting: (p_0_1_0<=p_0_1_2)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_2_1_0)
states: 495,918,532,948,104 (14)
abstracting: (p_0_1_0<=p_0_1_2)
states: 643,572,802,900,536 (14)
abstracting: (p_0_1_0<=p_0_1_2)
states: 643,572,802,900,536 (14)
.
EG iterations: 1
.abstracting: (p_2_0_1<=p_2_1_1)
states: 643,572,802,900,536 (14)
..
EG iterations: 1
abstracting: (1<=p_1_2_0)
states: 495,918,532,948,104 (14)
abstracting: (p_1_0_1<=p_2_2_2)
states: 643,572,802,900,536 (14)
.
EG iterations: 1
abstracting: (1<=p_1_2_0)
states: 495,918,532,948,104 (14)
abstracting: (1<=p_1_2_0)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
abstracting: (p_2_2_2<=1)
states: 725,510,446,350,004 (14)
abstracting: (p_2_2_2<=1)
states: 725,510,446,350,004 (14)
abstracting: (p_2_2_2<=1)
states: 725,510,446,350,004 (14)
.
EG iterations: 1
abstracting: (1<=p_0_1_1)
states: 495,918,532,948,104 (14)
.-> the formula is TRUE
FORMULA NeighborGrid-PT-d3n3m1t11-CTLCardinality-04 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 9.492sec
checking: [AG [EF [~ [[[1<=p_1_0_0 & [p_2_1_2<=p_0_1_2 | p_1_0_2<=0]] & p_1_2_1<=p_2_0_0]]]] & [[~ [E [A [1<=p_1_1_0 U p_0_0_0<=p_2_1_1] U AF [p_0_1_1<=0]]] & [EX [~ [[AF [p_1_0_0<=p_0_1_2] | EG [1<=p_0_1_1]]]] & EG [p_0_2_1<=p_1_0_1]]] | ~ [EG [~ [1<=p_1_2_0]]]]]
normalized: [[~ [EG [~ [1<=p_1_2_0]]] | [[EG [p_0_2_1<=p_1_0_1] & EX [~ [[EG [1<=p_0_1_1] | ~ [EG [~ [p_1_0_0<=p_0_1_2]]]]]]] & ~ [E [[~ [EG [~ [p_0_0_0<=p_2_1_1]]] & ~ [E [~ [p_0_0_0<=p_2_1_1] U [~ [1<=p_1_1_0] & ~ [p_0_0_0<=p_2_1_1]]]]] U ~ [EG [~ [p_0_1_1<=0]]]]]]] & ~ [E [true U ~ [E [true U ~ [[p_1_2_1<=p_2_0_0 & [1<=p_1_0_0 & [p_2_1_2<=p_0_1_2 | p_1_0_2<=0]]]]]]]]]
abstracting: (p_1_0_2<=0)
states: 477,551,179,875,952 (14)
abstracting: (p_2_1_2<=p_0_1_2)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_1_0_0)
states: 495,918,532,948,104 (14)
abstracting: (p_1_2_1<=p_2_0_0)
states: 643,572,802,900,536 (14)
abstracting: (p_0_1_1<=0)
states: 477,551,179,875,952 (14)
.
EG iterations: 1
abstracting: (p_0_0_0<=p_2_1_1)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_1_1_0)
states: 495,918,532,948,104 (14)
abstracting: (p_0_0_0<=p_2_1_1)
states: 643,572,802,900,536 (14)
abstracting: (p_0_0_0<=p_2_1_1)
states: 643,572,802,900,536 (14)
.
EG iterations: 1
abstracting: (p_1_0_0<=p_0_1_2)
states: 643,572,802,900,536 (14)
.
EG iterations: 1
abstracting: (1<=p_0_1_1)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
.abstracting: (p_0_2_1<=p_1_0_1)
states: 643,572,802,900,536 (14)
.
EG iterations: 1
abstracting: (1<=p_1_2_0)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
-> the formula is TRUE
FORMULA NeighborGrid-PT-d3n3m1t11-CTLCardinality-08 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 4.737sec
checking: A [~ [[p_2_0_0<=1 & E [EX [EF [p_2_1_2<=1]] U EF [A [p_0_0_0<=0 U p_0_1_2<=0]]]]] U [EF [~ [EF [[p_1_0_2<=1 | 1<=p_0_1_0]]]] | A [[AF [[1<=p_2_1_2 & p_2_1_1<=1]] & AX [A [p_0_1_1<=1 U p_0_1_1<=p_2_1_2]]] U A [EF [p_1_1_1<=p_2_2_1] U [EG [1<=p_0_2_0] | [1<=p_2_1_2 & p_1_2_0<=p_2_0_2]]]]]]
normalized: [~ [EG [~ [[[~ [EG [~ [[~ [EG [~ [[[1<=p_2_1_2 & p_1_2_0<=p_2_0_2] | EG [1<=p_0_2_0]]]]] & ~ [E [~ [[[1<=p_2_1_2 & p_1_2_0<=p_2_0_2] | EG [1<=p_0_2_0]]] U [~ [E [true U p_1_1_1<=p_2_2_1]] & ~ [[[1<=p_2_1_2 & p_1_2_0<=p_2_0_2] | EG [1<=p_0_2_0]]]]]]]]]] & ~ [E [~ [[~ [EG [~ [[[1<=p_2_1_2 & p_1_2_0<=p_2_0_2] | EG [1<=p_0_2_0]]]]] & ~ [E [~ [[[1<=p_2_1_2 & p_1_2_0<=p_2_0_2] | EG [1<=p_0_2_0]]] U [~ [E [true U p_1_1_1<=p_2_2_1]] & ~ [[[1<=p_2_1_2 & p_1_2_0<=p_2_0_2] | EG [1<=p_0_2_0]]]]]]]] U [~ [[~ [EX [~ [[~ [EG [~ [p_0_1_1<=p_2_1_2]]] & ~ [E [~ [p_0_1_1<=p_2_1_2] U [~ [p_0_1_1<=1] & ~ [p_0_1_1<=p_2_1_2]]]]]]]] & ~ [EG [~ [[1<=p_2_1_2 & p_2_1_1<=1]]]]]] & ~ [[~ [EG [~ [[[1<=p_2_1_2 & p_1_2_0<=p_2_0_2] | EG [1<=p_0_2_0]]]]] & ~ [E [~ [[[1<=p_2_1_2 & p_1_2_0<=p_2_0_2] | EG [1<=p_0_2_0]]] U [~ [E [true U p_1_1_1<=p_2_2_1]] & ~ [[[1<=p_2_1_2 & p_1_2_0<=p_2_0_2] | EG [1<=p_0_2_0]]]]]]]]]]]] | E [true U ~ [E [true U [p_1_0_2<=1 | 1<=p_0_1_0]]]]]]]] & ~ [E [~ [[[~ [EG [~ [[~ [EG [~ [[[1<=p_2_1_2 & p_1_2_0<=p_2_0_2] | EG [1<=p_0_2_0]]]]] & ~ [E [~ [[[1<=p_2_1_2 & p_1_2_0<=p_2_0_2] | EG [1<=p_0_2_0]]] U [~ [E [true U p_1_1_1<=p_2_2_1]] & ~ [[[1<=p_2_1_2 & p_1_2_0<=p_2_0_2] | EG [1<=p_0_2_0]]]]]]]]]] & ~ [E [~ [[~ [EG [~ [[[1<=p_2_1_2 & p_1_2_0<=p_2_0_2] | EG [1<=p_0_2_0]]]]] & ~ [E [~ [[[1<=p_2_1_2 & p_1_2_0<=p_2_0_2] | EG [1<=p_0_2_0]]] U [~ [E [true U p_1_1_1<=p_2_2_1]] & ~ [[[1<=p_2_1_2 & p_1_2_0<=p_2_0_2] | EG [1<=p_0_2_0]]]]]]]] U [~ [[~ [EX [~ [[~ [EG [~ [p_0_1_1<=p_2_1_2]]] & ~ [E [~ [p_0_1_1<=p_2_1_2] U [~ [p_0_1_1<=1] & ~ [p_0_1_1<=p_2_1_2]]]]]]]] & ~ [EG [~ [[1<=p_2_1_2 & p_2_1_1<=1]]]]]] & ~ [[~ [EG [~ [[[1<=p_2_1_2 & p_1_2_0<=p_2_0_2] | EG [1<=p_0_2_0]]]]] & ~ [E [~ [[[1<=p_2_1_2 & p_1_2_0<=p_2_0_2] | EG [1<=p_0_2_0]]] U [~ [E [true U p_1_1_1<=p_2_2_1]] & ~ [[[1<=p_2_1_2 & p_1_2_0<=p_2_0_2] | EG [1<=p_0_2_0]]]]]]]]]]]] | E [true U ~ [E [true U [p_1_0_2<=1 | 1<=p_0_1_0]]]]]] U [[p_2_0_0<=1 & E [EX [E [true U p_2_1_2<=1]] U E [true U [~ [EG [~ [p_0_1_2<=0]]] & ~ [E [~ [p_0_1_2<=0] U [~ [p_0_0_0<=0] & ~ [p_0_1_2<=0]]]]]]]] & ~ [[[~ [EG [~ [[~ [EG [~ [[[1<=p_2_1_2 & p_1_2_0<=p_2_0_2] | EG [1<=p_0_2_0]]]]] & ~ [E [~ [[[1<=p_2_1_2 & p_1_2_0<=p_2_0_2] | EG [1<=p_0_2_0]]] U [~ [E [true U p_1_1_1<=p_2_2_1]] & ~ [[[1<=p_2_1_2 & p_1_2_0<=p_2_0_2] | EG [1<=p_0_2_0]]]]]]]]]] & ~ [E [~ [[~ [EG [~ [[[1<=p_2_1_2 & p_1_2_0<=p_2_0_2] | EG [1<=p_0_2_0]]]]] & ~ [E [~ [[[1<=p_2_1_2 & p_1_2_0<=p_2_0_2] | EG [1<=p_0_2_0]]] U [~ [E [true U p_1_1_1<=p_2_2_1]] & ~ [[[1<=p_2_1_2 & p_1_2_0<=p_2_0_2] | EG [1<=p_0_2_0]]]]]]]] U [~ [[~ [EX [~ [[~ [EG [~ [p_0_1_1<=p_2_1_2]]] & ~ [E [~ [p_0_1_1<=p_2_1_2] U [~ [p_0_1_1<=1] & ~ [p_0_1_1<=p_2_1_2]]]]]]]] & ~ [EG [~ [[1<=p_2_1_2 & p_2_1_1<=1]]]]]] & ~ [[~ [EG [~ [[[1<=p_2_1_2 & p_1_2_0<=p_2_0_2] | EG [1<=p_0_2_0]]]]] & ~ [E [~ [[[1<=p_2_1_2 & p_1_2_0<=p_2_0_2] | EG [1<=p_0_2_0]]] U [~ [E [true U p_1_1_1<=p_2_2_1]] & ~ [[[1<=p_2_1_2 & p_1_2_0<=p_2_0_2] | EG [1<=p_0_2_0]]]]]]]]]]]] | E [true U ~ [E [true U [p_1_0_2<=1 | 1<=p_0_1_0]]]]]]]]]]
abstracting: (1<=p_0_1_0)
states: 495,918,532,948,104 (14)
abstracting: (p_1_0_2<=1)
states: 725,510,446,350,004 (14)
abstracting: (1<=p_0_2_0)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
abstracting: (p_1_2_0<=p_2_0_2)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_2_1_2)
states: 495,918,532,948,104 (14)
abstracting: (p_1_1_1<=p_2_2_1)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_0_2_0)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
abstracting: (p_1_2_0<=p_2_0_2)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_2_1_2)
states: 495,918,532,948,104 (14)
abstracting: (1<=p_0_2_0)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
abstracting: (p_1_2_0<=p_2_0_2)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_2_1_2)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
abstracting: (p_2_1_1<=1)
states: 725,510,446,350,004 (14)
abstracting: (1<=p_2_1_2)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
abstracting: (p_0_1_1<=p_2_1_2)
states: 643,572,802,900,536 (14)
abstracting: (p_0_1_1<=1)
states: 725,510,446,350,004 (14)
abstracting: (p_0_1_1<=p_2_1_2)
states: 643,572,802,900,536 (14)
abstracting: (p_0_1_1<=p_2_1_2)
states: 643,572,802,900,536 (14)
.
EG iterations: 1
.abstracting: (1<=p_0_2_0)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
abstracting: (p_1_2_0<=p_2_0_2)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_2_1_2)
states: 495,918,532,948,104 (14)
abstracting: (p_1_1_1<=p_2_2_1)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_0_2_0)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
abstracting: (p_1_2_0<=p_2_0_2)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_2_1_2)
states: 495,918,532,948,104 (14)
abstracting: (1<=p_0_2_0)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
abstracting: (p_1_2_0<=p_2_0_2)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_2_1_2)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
abstracting: (1<=p_0_2_0)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
abstracting: (p_1_2_0<=p_2_0_2)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_2_1_2)
states: 495,918,532,948,104 (14)
abstracting: (p_1_1_1<=p_2_2_1)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_0_2_0)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
abstracting: (p_1_2_0<=p_2_0_2)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_2_1_2)
states: 495,918,532,948,104 (14)
abstracting: (1<=p_0_2_0)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
abstracting: (p_1_2_0<=p_2_0_2)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_2_1_2)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
.
EG iterations: 1
abstracting: (p_0_1_2<=0)
states: 477,551,179,875,952 (14)
abstracting: (p_0_0_0<=0)
states: 477,551,179,875,952 (14)
abstracting: (p_0_1_2<=0)
states: 477,551,179,875,952 (14)
abstracting: (p_0_1_2<=0)
states: 477,551,179,875,952 (14)
.
EG iterations: 1
abstracting: (p_2_1_2<=1)
states: 725,510,446,350,004 (14)
.abstracting: (p_2_0_0<=1)
states: 725,510,446,350,004 (14)
abstracting: (1<=p_0_1_0)
states: 495,918,532,948,104 (14)
abstracting: (p_1_0_2<=1)
states: 725,510,446,350,004 (14)
abstracting: (1<=p_0_2_0)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
abstracting: (p_1_2_0<=p_2_0_2)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_2_1_2)
states: 495,918,532,948,104 (14)
abstracting: (p_1_1_1<=p_2_2_1)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_0_2_0)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
abstracting: (p_1_2_0<=p_2_0_2)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_2_1_2)
states: 495,918,532,948,104 (14)
abstracting: (1<=p_0_2_0)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
abstracting: (p_1_2_0<=p_2_0_2)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_2_1_2)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
abstracting: (p_2_1_1<=1)
states: 725,510,446,350,004 (14)
abstracting: (1<=p_2_1_2)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
abstracting: (p_0_1_1<=p_2_1_2)
states: 643,572,802,900,536 (14)
abstracting: (p_0_1_1<=1)
states: 725,510,446,350,004 (14)
abstracting: (p_0_1_1<=p_2_1_2)
states: 643,572,802,900,536 (14)
abstracting: (p_0_1_1<=p_2_1_2)
states: 643,572,802,900,536 (14)
.
EG iterations: 1
.abstracting: (1<=p_0_2_0)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
abstracting: (p_1_2_0<=p_2_0_2)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_2_1_2)
states: 495,918,532,948,104 (14)
abstracting: (p_1_1_1<=p_2_2_1)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_0_2_0)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
abstracting: (p_1_2_0<=p_2_0_2)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_2_1_2)
states: 495,918,532,948,104 (14)
abstracting: (1<=p_0_2_0)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
abstracting: (p_1_2_0<=p_2_0_2)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_2_1_2)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
abstracting: (1<=p_0_2_0)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
abstracting: (p_1_2_0<=p_2_0_2)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_2_1_2)
states: 495,918,532,948,104 (14)
abstracting: (p_1_1_1<=p_2_2_1)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_0_2_0)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
abstracting: (p_1_2_0<=p_2_0_2)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_2_1_2)
states: 495,918,532,948,104 (14)
abstracting: (1<=p_0_2_0)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
abstracting: (p_1_2_0<=p_2_0_2)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_2_1_2)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
.
EG iterations: 1
abstracting: (1<=p_0_1_0)
states: 495,918,532,948,104 (14)
abstracting: (p_1_0_2<=1)
states: 725,510,446,350,004 (14)
abstracting: (1<=p_0_2_0)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
abstracting: (p_1_2_0<=p_2_0_2)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_2_1_2)
states: 495,918,532,948,104 (14)
abstracting: (p_1_1_1<=p_2_2_1)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_0_2_0)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
abstracting: (p_1_2_0<=p_2_0_2)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_2_1_2)
states: 495,918,532,948,104 (14)
abstracting: (1<=p_0_2_0)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
abstracting: (p_1_2_0<=p_2_0_2)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_2_1_2)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
abstracting: (p_2_1_1<=1)
states: 725,510,446,350,004 (14)
abstracting: (1<=p_2_1_2)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
abstracting: (p_0_1_1<=p_2_1_2)
states: 643,572,802,900,536 (14)
abstracting: (p_0_1_1<=1)
states: 725,510,446,350,004 (14)
abstracting: (p_0_1_1<=p_2_1_2)
states: 643,572,802,900,536 (14)
abstracting: (p_0_1_1<=p_2_1_2)
states: 643,572,802,900,536 (14)
.
EG iterations: 1
.abstracting: (1<=p_0_2_0)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
abstracting: (p_1_2_0<=p_2_0_2)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_2_1_2)
states: 495,918,532,948,104 (14)
abstracting: (p_1_1_1<=p_2_2_1)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_0_2_0)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
abstracting: (p_1_2_0<=p_2_0_2)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_2_1_2)
states: 495,918,532,948,104 (14)
abstracting: (1<=p_0_2_0)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
abstracting: (p_1_2_0<=p_2_0_2)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_2_1_2)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
abstracting: (1<=p_0_2_0)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
abstracting: (p_1_2_0<=p_2_0_2)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_2_1_2)
states: 495,918,532,948,104 (14)
abstracting: (p_1_1_1<=p_2_2_1)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_0_2_0)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
abstracting: (p_1_2_0<=p_2_0_2)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_2_1_2)
states: 495,918,532,948,104 (14)
abstracting: (1<=p_0_2_0)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
abstracting: (p_1_2_0<=p_2_0_2)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_2_1_2)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
.
EG iterations: 1
.
EG iterations: 1
-> the formula is TRUE
FORMULA NeighborGrid-PT-d3n3m1t11-CTLCardinality-13 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m12.253sec
checking: [AX [[[[[p_0_2_1<=1 & ~ [AG [1<=p_2_1_0]]] | A [~ [1<=p_1_0_2] U [1<=p_1_0_1 & p_1_0_2<=1]]] | [EF [1<=p_2_2_2] & p_1_0_0<=p_2_1_2]] & [EX [A [1<=p_1_0_2 U p_2_2_1<=p_2_1_0]] | EF [EG [p_0_2_2<=0]]]]] & ~ [EF [[~ [p_0_2_1<=p_0_1_0] & EX [[[p_1_2_0<=p_2_2_1 & 1<=p_1_2_2] | AX [1<=p_1_0_1]]]]]]]
normalized: [~ [E [true U [EX [[~ [EX [~ [1<=p_1_0_1]]] | [p_1_2_0<=p_2_2_1 & 1<=p_1_2_2]]] & ~ [p_0_2_1<=p_0_1_0]]]] & ~ [EX [~ [[[E [true U EG [p_0_2_2<=0]] | EX [[~ [EG [~ [p_2_2_1<=p_2_1_0]]] & ~ [E [~ [p_2_2_1<=p_2_1_0] U [~ [1<=p_1_0_2] & ~ [p_2_2_1<=p_2_1_0]]]]]]] & [[p_1_0_0<=p_2_1_2 & E [true U 1<=p_2_2_2]] | [[~ [EG [~ [[1<=p_1_0_1 & p_1_0_2<=1]]]] & ~ [E [~ [[1<=p_1_0_1 & p_1_0_2<=1]] U [1<=p_1_0_2 & ~ [[1<=p_1_0_1 & p_1_0_2<=1]]]]]] | [p_0_2_1<=1 & E [true U ~ [1<=p_2_1_0]]]]]]]]]]
abstracting: (1<=p_2_1_0)
states: 495,918,532,948,104 (14)
abstracting: (p_0_2_1<=1)
states: 725,510,446,350,004 (14)
abstracting: (p_1_0_2<=1)
states: 725,510,446,350,004 (14)
abstracting: (1<=p_1_0_1)
states: 495,918,532,948,104 (14)
abstracting: (1<=p_1_0_2)
states: 495,918,532,948,104 (14)
abstracting: (p_1_0_2<=1)
states: 725,510,446,350,004 (14)
abstracting: (1<=p_1_0_1)
states: 495,918,532,948,104 (14)
abstracting: (p_1_0_2<=1)
states: 725,510,446,350,004 (14)
abstracting: (1<=p_1_0_1)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
abstracting: (1<=p_2_2_2)
states: 495,918,532,948,104 (14)
abstracting: (p_1_0_0<=p_2_1_2)
states: 643,572,802,900,536 (14)
abstracting: (p_2_2_1<=p_2_1_0)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_1_0_2)
states: 495,918,532,948,104 (14)
abstracting: (p_2_2_1<=p_2_1_0)
states: 643,572,802,900,536 (14)
abstracting: (p_2_2_1<=p_2_1_0)
states: 643,572,802,900,536 (14)
.
EG iterations: 1
.abstracting: (p_0_2_2<=0)
states: 477,551,179,875,952 (14)
.
EG iterations: 1
.abstracting: (p_0_2_1<=p_0_1_0)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_1_2_2)
states: 495,918,532,948,104 (14)
abstracting: (p_1_2_0<=p_2_2_1)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_1_0_1)
states: 495,918,532,948,104 (14)
..-> the formula is FALSE
FORMULA NeighborGrid-PT-d3n3m1t11-CTLCardinality-07 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 9.290sec
checking: AG [[~ [[[1<=p_2_2_2 | ~ [[[1<=p_1_2_0 & 1<=p_1_1_2] | E [p_2_2_2<=0 U p_2_2_2<=p_0_0_2]]]] | ~ [[EF [p_0_1_0<=1] & ~ [[p_0_0_2<=p_1_0_0 | p_1_0_0<=0]]]]]] | [p_0_2_1<=1 | [~ [[[EG [1<=p_2_1_0] & [p_2_0_1<=p_0_1_0 & 1<=p_0_1_2]] & ~ [E [1<=p_2_1_2 U p_0_1_1<=p_0_1_2]]]] & AF [p_2_0_2<=p_1_1_0]]]]]
normalized: ~ [E [true U ~ [[~ [[~ [[E [true U p_0_1_0<=1] & ~ [[p_0_0_2<=p_1_0_0 | p_1_0_0<=0]]]] | [1<=p_2_2_2 | ~ [[E [p_2_2_2<=0 U p_2_2_2<=p_0_0_2] | [1<=p_1_2_0 & 1<=p_1_1_2]]]]]] | [p_0_2_1<=1 | [~ [EG [~ [p_2_0_2<=p_1_1_0]]] & ~ [[~ [E [1<=p_2_1_2 U p_0_1_1<=p_0_1_2]] & [[p_2_0_1<=p_0_1_0 & 1<=p_0_1_2] & EG [1<=p_2_1_0]]]]]]]]]]
abstracting: (1<=p_2_1_0)
states: 495,918,532,948,104 (14)
.
EG iterations: 1
abstracting: (1<=p_0_1_2)
states: 495,918,532,948,104 (14)
abstracting: (p_2_0_1<=p_0_1_0)
states: 643,572,802,900,536 (14)
abstracting: (p_0_1_1<=p_0_1_2)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_2_1_2)
states: 495,918,532,948,104 (14)
abstracting: (p_2_0_2<=p_1_1_0)
states: 643,572,802,900,536 (14)
.
EG iterations: 1
abstracting: (p_0_2_1<=1)
states: 725,510,446,350,004 (14)
abstracting: (1<=p_1_1_2)
states: 495,918,532,948,104 (14)
abstracting: (1<=p_1_2_0)
states: 495,918,532,948,104 (14)
abstracting: (p_2_2_2<=p_0_0_2)
states: 643,572,802,900,536 (14)
abstracting: (p_2_2_2<=0)
states: 477,551,179,875,952 (14)
abstracting: (1<=p_2_2_2)
states: 495,918,532,948,104 (14)
abstracting: (p_1_0_0<=0)
states: 477,551,179,875,952 (14)
abstracting: (p_0_0_2<=p_1_0_0)
states: 643,572,802,900,536 (14)
abstracting: (p_0_1_0<=1)
states: 725,510,446,350,004 (14)
-> the formula is FALSE
FORMULA NeighborGrid-PT-d3n3m1t11-CTLCardinality-06 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m13.755sec
checking: [[EX [[EX [E [p_1_2_1<=1 U 1<=p_1_1_2]] & [[p_2_1_2<=p_1_2_2 | ~ [1<=p_2_0_0]] & EF [[1<=p_0_0_0 | p_2_2_2<=p_2_2_1]]]]] & EX [[AX [EG [p_1_0_1<=p_1_0_0]] & [A [A [1<=p_2_0_0 U p_2_1_0<=p_2_0_2] U [p_2_2_1<=p_2_2_2 & p_1_1_2<=0]] & [AF [p_2_0_2<=p_0_0_1] | ~ [1<=p_2_0_2]]]]]] & AG [AG [~ [1<=p_1_1_2]]]]
normalized: [~ [E [true U E [true U 1<=p_1_1_2]]] & [EX [[[[~ [1<=p_2_0_2] | ~ [EG [~ [p_2_0_2<=p_0_0_1]]]] & [~ [EG [~ [[p_2_2_1<=p_2_2_2 & p_1_1_2<=0]]]] & ~ [E [~ [[p_2_2_1<=p_2_2_2 & p_1_1_2<=0]] U [~ [[~ [EG [~ [p_2_1_0<=p_2_0_2]]] & ~ [E [~ [p_2_1_0<=p_2_0_2] U [~ [1<=p_2_0_0] & ~ [p_2_1_0<=p_2_0_2]]]]]] & ~ [[p_2_2_1<=p_2_2_2 & p_1_1_2<=0]]]]]]] & ~ [EX [~ [EG [p_1_0_1<=p_1_0_0]]]]]] & EX [[[E [true U [1<=p_0_0_0 | p_2_2_2<=p_2_2_1]] & [p_2_1_2<=p_1_2_2 | ~ [1<=p_2_0_0]]] & EX [E [p_1_2_1<=1 U 1<=p_1_1_2]]]]]]
abstracting: (1<=p_1_1_2)
states: 495,918,532,948,104 (14)
abstracting: (p_1_2_1<=1)
states: 725,510,446,350,004 (14)
.abstracting: (1<=p_2_0_0)
states: 495,918,532,948,104 (14)
abstracting: (p_2_1_2<=p_1_2_2)
states: 643,572,802,900,536 (14)
abstracting: (p_2_2_2<=p_2_2_1)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_0_0_0)
states: 495,918,532,948,104 (14)
.abstracting: (p_1_0_1<=p_1_0_0)
states: 643,572,802,900,536 (14)
.
EG iterations: 1
.abstracting: (p_1_1_2<=0)
states: 477,551,179,875,952 (14)
abstracting: (p_2_2_1<=p_2_2_2)
states: 643,572,802,900,536 (14)
abstracting: (p_2_1_0<=p_2_0_2)
states: 643,572,802,900,536 (14)
abstracting: (1<=p_2_0_0)
states: 495,918,532,948,104 (14)
abstracting: (p_2_1_0<=p_2_0_2)
states: 643,572,802,900,536 (14)
abstracting: (p_2_1_0<=p_2_0_2)
states: 643,572,802,900,536 (14)
.
EG iterations: 1
abstracting: (p_1_1_2<=0)
states: 477,551,179,875,952 (14)
abstracting: (p_2_2_1<=p_2_2_2)
states: 643,572,802,900,536 (14)
abstracting: (p_1_1_2<=0)
states: 477,551,179,875,952 (14)
abstracting: (p_2_2_1<=p_2_2_2)
states: 643,572,802,900,536 (14)
.
EG iterations: 1
abstracting: (p_2_0_2<=p_0_0_1)
states: 643,572,802,900,536 (14)
.
EG iterations: 1
abstracting: (1<=p_2_0_2)
states: 495,918,532,948,104 (14)
.abstracting: (1<=p_1_1_2)
states: 495,918,532,948,104 (14)
-> the formula is FALSE
FORMULA NeighborGrid-PT-d3n3m1t11-CTLCardinality-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 4.563sec
totally nodes used: 4458801 (4.5e+06)
number of garbage collections: 0
fire ops cache: hits/miss/sum: 654061403 63888536 717949939
used/not used/entry size/cache size: 42717601 24391263 16 1024MB
basic ops cache: hits/miss/sum: 42679450 4073013 46752463
used/not used/entry size/cache size: 5297091 11480125 12 192MB
unary ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 8 128MB
abstract ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 12 192MB
state nr cache: hits/miss/sum: 850392 70875 921267
used/not used/entry size/cache size: 70585 8318023 32 256MB
max state cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 8388608 32 256MB
uniqueHash elements/entry size/size: 67108864 4 256MB
0 62977684
1 3944088
2 164774
3 8728
4 2550
5 1694
6 1541
7 1309
8 1131
9 1059
>= 10 4306
Total processing time: 1m15.997sec
BK_STOP 1678681950418
--------------------
content from stderr:
check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.000sec
iterations count:40446 (249), effective:702 (4)
initing FirstDep: 0m 0.000sec
iterations count:3331 (20), effective:169 (1)
iterations count:1323 (8), effective:27 (0)
iterations count:3104 (19), effective:52 (0)
iterations count:3267 (20), effective:27 (0)
iterations count:783 (4), effective:27 (0)
iterations count:13295 (82), effective:287 (1)
iterations count:1269 (7), effective:27 (0)
iterations count:188 (1), effective:26 (0)
iterations count:2806 (17), effective:72 (0)
iterations count:1711 (10), effective:52 (0)
iterations count:891 (5), effective:27 (0)
iterations count:237 (1), effective:25 (0)
iterations count:162 (1), effective:0 (0)
iterations count:162 (1), effective:0 (0)
iterations count:162 (1), effective:0 (0)
iterations count:2148 (13), effective:74 (0)
iterations count:1632 (10), effective:26 (0)
iterations count:188 (1), effective:26 (0)
iterations count:760 (4), effective:26 (0)
iterations count:2148 (13), effective:74 (0)
iterations count:2148 (13), effective:74 (0)
iterations count:2840 (17), effective:26 (0)
iterations count:11740 (72), effective:186 (1)
iterations count:20056 (123), effective:350 (2)
iterations count:1485 (9), effective:27 (0)
iterations count:1425 (8), effective:51 (0)
iterations count:1280 (7), effective:26 (0)
iterations count:405 (2), effective:27 (0)
iterations count:380 (2), effective:11 (0)
iterations count:1377 (8), effective:27 (0)
iterations count:1521 (9), effective:25 (0)
iterations count:1377 (8), effective:27 (0)
iterations count:12914 (79), effective:298 (1)
iterations count:1377 (8), effective:27 (0)
iterations count:1630 (10), effective:26 (0)
iterations count:459 (2), effective:27 (0)
iterations count:3048 (18), effective:26 (0)
iterations count:162 (1), effective:0 (0)
iterations count:380 (2), effective:11 (0)
iterations count:1377 (8), effective:27 (0)
iterations count:1521 (9), effective:25 (0)
iterations count:1377 (8), effective:27 (0)
iterations count:12914 (79), effective:298 (1)
iterations count:1377 (8), effective:27 (0)
iterations count:2528 (15), effective:26 (0)
iterations count:380 (2), effective:11 (0)
iterations count:1377 (8), effective:27 (0)
iterations count:1521 (9), effective:25 (0)
iterations count:1377 (8), effective:27 (0)
iterations count:12914 (79), effective:298 (1)
iterations count:1377 (8), effective:27 (0)
iterations count:2943 (18), effective:27 (0)
iterations count:1593 (9), effective:25 (0)
iterations count:1633 (10), effective:26 (0)
iterations count:1228 (7), effective:26 (0)
iterations count:891 (5), effective:27 (0)
iterations count:3461 (21), effective:94 (0)
iterations count:396 (2), effective:26 (0)
iterations count:162 (1), effective:0 (0)
iterations count:344 (2), effective:26 (0)
iterations count:14436 (89), effective:400 (2)
iterations count:1633 (10), effective:26 (0)
iterations count:1630 (10), effective:26 (0)
iterations count:2528 (15), effective:26 (0)
iterations count:4107 (25), effective:51 (0)
iterations count:1633 (10), effective:26 (0)
iterations count:162 (1), effective:0 (0)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NeighborGrid-PT-d3n3m1t11"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marcie"
echo " Input is NeighborGrid-PT-d3n3m1t11, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r257-smll-167863532300089"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/NeighborGrid-PT-d3n3m1t11.tgz
mv NeighborGrid-PT-d3n3m1t11 execution
cd execution
if [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "UpperBounds" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] || [ "CTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME CTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;