fond
Model Checking Contest 2023
13th edition, Paris, France, April 26, 2023 (at TOOLympics II)
Execution of r234-tall-167856420200398
Last Updated
May 14, 2023

About the Execution of Marcie+red for LamportFastMutEx-PT-2

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
5450.884 10320.00 13141.00 281.80 TTTFTFFFTFFFFTTF normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Formatting '/data/fkordon/mcc2023-input.r234-tall-167856420200398.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2023-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
.......................................................
=====================================================================
Generated by BenchKit 2-5348
Executing tool marciexred
Input is LamportFastMutEx-PT-2, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r234-tall-167856420200398
=====================================================================

--------------------
preparation of the directory to be used:
/home/mcc/execution
total 708K
-rw-r--r-- 1 mcc users 13K Feb 25 13:42 CTLCardinality.txt
-rw-r--r-- 1 mcc users 103K Feb 25 13:42 CTLCardinality.xml
-rw-r--r-- 1 mcc users 12K Feb 25 13:42 CTLFireability.txt
-rw-r--r-- 1 mcc users 75K Feb 25 13:42 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K Jan 29 11:40 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.6K Jan 29 11:40 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 5.7K Feb 25 16:20 LTLCardinality.txt
-rw-r--r-- 1 mcc users 31K Feb 25 16:20 LTLCardinality.xml
-rw-r--r-- 1 mcc users 4.9K Feb 25 16:20 LTLFireability.txt
-rw-r--r-- 1 mcc users 26K Feb 25 16:20 LTLFireability.xml
-rw-r--r-- 1 mcc users 20K Feb 25 13:43 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 154K Feb 25 13:43 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 21K Feb 25 13:42 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 133K Feb 25 13:42 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 2.2K Feb 25 16:20 UpperBounds.txt
-rw-r--r-- 1 mcc users 4.8K Feb 25 16:20 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Mar 5 18:22 equiv_col
-rw-r--r-- 1 mcc users 2 Mar 5 18:22 instance
-rw-r--r-- 1 mcc users 6 Mar 5 18:22 iscolored
-rw-r--r-- 1 mcc users 48K Mar 5 18:22 model.pnml

--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME LamportFastMutEx-PT-2-ReachabilityCardinality-00
FORMULA_NAME LamportFastMutEx-PT-2-ReachabilityCardinality-01
FORMULA_NAME LamportFastMutEx-PT-2-ReachabilityCardinality-02
FORMULA_NAME LamportFastMutEx-PT-2-ReachabilityCardinality-03
FORMULA_NAME LamportFastMutEx-PT-2-ReachabilityCardinality-04
FORMULA_NAME LamportFastMutEx-PT-2-ReachabilityCardinality-05
FORMULA_NAME LamportFastMutEx-PT-2-ReachabilityCardinality-06
FORMULA_NAME LamportFastMutEx-PT-2-ReachabilityCardinality-07
FORMULA_NAME LamportFastMutEx-PT-2-ReachabilityCardinality-08
FORMULA_NAME LamportFastMutEx-PT-2-ReachabilityCardinality-09
FORMULA_NAME LamportFastMutEx-PT-2-ReachabilityCardinality-10
FORMULA_NAME LamportFastMutEx-PT-2-ReachabilityCardinality-11
FORMULA_NAME LamportFastMutEx-PT-2-ReachabilityCardinality-12
FORMULA_NAME LamportFastMutEx-PT-2-ReachabilityCardinality-13
FORMULA_NAME LamportFastMutEx-PT-2-ReachabilityCardinality-14
FORMULA_NAME LamportFastMutEx-PT-2-ReachabilityCardinality-15

=== Now, execution of the tool begins

BK_START 1679493437923

bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marciexred
BK_EXAMINATION=ReachabilityCardinality
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=LamportFastMutEx-PT-2
Applying reductions before tool marcie
Invoking reducer
Running Version 202303021504
[2023-03-22 13:57:19] [INFO ] Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, ReachabilityCardinality, -timeout, 360, -rebuildPNML]
[2023-03-22 13:57:19] [INFO ] Parsing pnml file : /home/mcc/execution/model.pnml
[2023-03-22 13:57:19] [INFO ] Load time of PNML (sax parser for PT used): 37 ms
[2023-03-22 13:57:19] [INFO ] Transformed 69 places.
[2023-03-22 13:57:19] [INFO ] Transformed 96 transitions.
[2023-03-22 13:57:19] [INFO ] Found NUPN structural information;
[2023-03-22 13:57:19] [INFO ] Completing missing partition info from NUPN : creating a component with [P_start_1_0, P_start_1_1, P_start_1_2, P_b_0_false, P_b_0_true, P_b_1_false, P_b_1_true, P_b_2_false, P_b_2_true, P_setx_3_0, P_setx_3_1, P_setx_3_2, P_setbi_5_0, P_setbi_5_1, P_setbi_5_2, P_ify0_4_0, P_ify0_4_1, P_ify0_4_2, P_sety_9_0, P_sety_9_1, P_sety_9_2, P_ifxi_10_0, P_ifxi_10_1, P_ifxi_10_2, P_setbi_11_0, P_setbi_11_1, P_setbi_11_2, P_fordo_12_0, P_fordo_12_1, P_fordo_12_2, P_wait_0_0, P_wait_0_1, P_wait_0_2, P_wait_1_0, P_wait_1_1, P_wait_1_2, P_wait_2_0, P_wait_2_1, P_wait_2_2, P_await_13_0, P_await_13_1, P_await_13_2, P_done_0_0, P_done_0_1, P_done_0_2, P_done_1_0, P_done_1_1, P_done_1_2, P_done_2_0, P_done_2_1, P_done_2_2, P_ifyi_15_0, P_ifyi_15_1, P_ifyi_15_2, P_awaity_0, P_awaity_1, P_awaity_2, P_CS_21_0, P_CS_21_1, P_CS_21_2, P_setbi_24_0, P_setbi_24_1, P_setbi_24_2]
[2023-03-22 13:57:19] [INFO ] Parsed PT model containing 69 places and 96 transitions and 402 arcs in 98 ms.
Parsed 16 properties from file /home/mcc/execution/ReachabilityCardinality.xml in 17 ms.
Working with output stream class java.io.PrintStream
Initial state reduction rules removed 8 formulas.
Deduced a syphon composed of 25 places in 1 ms
Reduce places removed 25 places and 34 transitions.
FORMULA LamportFastMutEx-PT-2-ReachabilityCardinality-01 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA LamportFastMutEx-PT-2-ReachabilityCardinality-02 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA LamportFastMutEx-PT-2-ReachabilityCardinality-04 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA LamportFastMutEx-PT-2-ReachabilityCardinality-06 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA LamportFastMutEx-PT-2-ReachabilityCardinality-08 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA LamportFastMutEx-PT-2-ReachabilityCardinality-09 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA LamportFastMutEx-PT-2-ReachabilityCardinality-10 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA LamportFastMutEx-PT-2-ReachabilityCardinality-11 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA LamportFastMutEx-PT-2-ReachabilityCardinality-12 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA LamportFastMutEx-PT-2-ReachabilityCardinality-13 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA LamportFastMutEx-PT-2-ReachabilityCardinality-14 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA LamportFastMutEx-PT-2-ReachabilityCardinality-15 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
Incomplete random walk after 10000 steps, including 2 resets, run finished after 219 ms. (steps per millisecond=45 ) properties (out of 4) seen :2
FORMULA LamportFastMutEx-PT-2-ReachabilityCardinality-07 FALSE TECHNIQUES TOPOLOGICAL RANDOM_WALK
FORMULA LamportFastMutEx-PT-2-ReachabilityCardinality-00 TRUE TECHNIQUES TOPOLOGICAL RANDOM_WALK
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 94 ms. (steps per millisecond=106 ) properties (out of 2) seen :0
Incomplete Best-First random walk after 10000 steps, including 2 resets, run finished after 60 ms. (steps per millisecond=166 ) properties (out of 2) seen :0
Running SMT prover for 2 properties.
[2023-03-22 13:57:19] [INFO ] Flow matrix only has 56 transitions (discarded 6 similar events)
// Phase 1: matrix 56 rows 44 cols
[2023-03-22 13:57:19] [INFO ] Computed 10 place invariants in 4 ms
[2023-03-22 13:57:20] [INFO ] After 147ms SMT Verify possible using all constraints in real domain returned unsat :1 sat :0 real:1
[2023-03-22 13:57:20] [INFO ] [Nat]Absence check using 10 positive place invariants in 3 ms returned sat
[2023-03-22 13:57:20] [INFO ] After 52ms SMT Verify possible using all constraints in natural domain returned unsat :2 sat :0
FORMULA LamportFastMutEx-PT-2-ReachabilityCardinality-05 FALSE TECHNIQUES STRUCTURAL_REDUCTION TOPOLOGICAL SAT_SMT
FORMULA LamportFastMutEx-PT-2-ReachabilityCardinality-03 FALSE TECHNIQUES STRUCTURAL_REDUCTION TOPOLOGICAL SAT_SMT
Fused 2 Parikh solutions to 0 different solutions.
Parikh walk visited 0 properties in 0 ms.
All properties solved without resorting to model-checking.
Total runtime 890 ms.
timeout --kill-after=10s --signal=SIGINT 1m for testing only

Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets

authors: Alex Tovchigrechko (IDD package and CTL model checking)

Martin Schwarick (Symbolic numerical analysis and CSL model checking)

Christian Rohr (Simulative and approximative numerical model checking)

marcie@informatik.tu-cottbus.de

called as: /home/mcc/BenchKit/bin//../reducer/bin//../../marcie/bin/marcie --net-file=model.pnml --mcc-file=ReachabilityCardinality.xml --memory=6 --mcc-mode

parse successfull
net created successfully

Net: LamportFastMutEx_PT_2
(NrP: 69 NrTr: 96 NrArc: 402)

parse formulas
formulas created successfully
place and transition orderings generation:0m 0.001sec

net check time: 0m 0.000sec

init dd package: 0m 2.804sec


RS generation: 0m 0.017sec


-> reachability set: #nodes 687 (6.9e+02) #states 380



starting MCC model checker
--------------------------

checking: AG [1<=P_wait_0_2]
normalized: ~ [E [true U ~ [1<=P_wait_0_2]]]

abstracting: (1<=P_wait_0_2)
states: 0
-> the formula is FALSE

FORMULA LamportFastMutEx-PT-2-ReachabilityCardinality-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.019sec

checking: EF [1<=P_done_0_0]
normalized: E [true U 1<=P_done_0_0]

abstracting: (1<=P_done_0_0)
states: 0
-> the formula is FALSE

FORMULA LamportFastMutEx-PT-2-ReachabilityCardinality-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.000sec

checking: EF [~ [P_setbi_24_1<=1]]
normalized: E [true U ~ [P_setbi_24_1<=1]]

abstracting: (P_setbi_24_1<=1)
states: 380
-> the formula is FALSE

FORMULA LamportFastMutEx-PT-2-ReachabilityCardinality-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.000sec

checking: EF [sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=97]
normalized: E [true U sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=97]

abstracting: (sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=97)
states: 380
-> the formula is TRUE

FORMULA LamportFastMutEx-PT-2-ReachabilityCardinality-04 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.022sec

checking: EF [49<=sum(y_2, y_1, y_0)]
normalized: E [true U 49<=sum(y_2, y_1, y_0)]

abstracting: (49<=sum(y_2, y_1, y_0))
states: 0
-> the formula is FALSE

FORMULA LamportFastMutEx-PT-2-ReachabilityCardinality-06 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.021sec

checking: EF [sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)]
normalized: E [true U sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)]

abstracting: (sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0))
states: 318
-> the formula is TRUE

FORMULA LamportFastMutEx-PT-2-ReachabilityCardinality-01 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.028sec

checking: AG [[sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=1 | 4<=sum(P_awaity_2, P_awaity_1, P_awaity_0)]]
normalized: ~ [E [true U ~ [[sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=1 | 4<=sum(P_awaity_2, P_awaity_1, P_awaity_0)]]]]

abstracting: (4<=sum(P_awaity_2, P_awaity_1, P_awaity_0))
states: 0
abstracting: (sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=1)
states: 378
-> the formula is FALSE

FORMULA LamportFastMutEx-PT-2-ReachabilityCardinality-07 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.063sec

checking: EF [~ [[1<=P_b_0_true & [[[[1<=P_CS_21_1 & 1<=P_done_1_2] & ~ [P_start_1_2<=0]] | [x_0<=1 & [P_sety_9_2<=P_fordo_12_0 | P_CS_21_0<=P_wait_0_2]]] & P_sety_9_2<=x_1]]]]
normalized: E [true U ~ [[[[[[P_sety_9_2<=P_fordo_12_0 | P_CS_21_0<=P_wait_0_2] & x_0<=1] | [~ [P_start_1_2<=0] & [1<=P_CS_21_1 & 1<=P_done_1_2]]] & P_sety_9_2<=x_1] & 1<=P_b_0_true]]]

abstracting: (1<=P_b_0_true)
states: 0
abstracting: (P_sety_9_2<=x_1)
states: 359
abstracting: (1<=P_done_1_2)
states: 24
abstracting: (1<=P_CS_21_1)
states: 29
abstracting: (P_start_1_2<=0)
states: 344
abstracting: (x_0<=1)
states: 380
abstracting: (P_CS_21_0<=P_wait_0_2)
states: 380
abstracting: (P_sety_9_2<=P_fordo_12_0)
states: 352
-> the formula is TRUE

FORMULA LamportFastMutEx-PT-2-ReachabilityCardinality-14 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.002sec

checking: EF [[[~ [P_wait_2_1<=1] & [[[[[[P_b_2_false<=P_wait_1_1 | P_b_0_true<=0] | [[P_b_2_true<=P_b_0_false | P_awaity_0<=P_setx_3_1] | ~ [1<=P_await_13_0]]] & 1<=P_wait_2_0] & [P_wait_1_0<=P_done_1_1 & P_wait_0_0<=P_setbi_11_1]] & [~ [1<=x_0] & ~ [P_b_0_false<=0]]] & P_CS_21_2<=1]] & ~ [P_ifxi_10_0<=0]]]
normalized: E [true U [~ [P_ifxi_10_0<=0] & [[[[~ [P_b_0_false<=0] & ~ [1<=x_0]] & [[P_wait_1_0<=P_done_1_1 & P_wait_0_0<=P_setbi_11_1] & [[[~ [1<=P_await_13_0] | [P_b_2_true<=P_b_0_false | P_awaity_0<=P_setx_3_1]] | [P_b_2_false<=P_wait_1_1 | P_b_0_true<=0]] & 1<=P_wait_2_0]]] & P_CS_21_2<=1] & ~ [P_wait_2_1<=1]]]]

abstracting: (P_wait_2_1<=1)
states: 380
abstracting: (P_CS_21_2<=1)
states: 380
abstracting: (1<=P_wait_2_0)
states: 0
abstracting: (P_b_0_true<=0)
states: 380
abstracting: (P_b_2_false<=P_wait_1_1)
states: 231
abstracting: (P_awaity_0<=P_setx_3_1)
states: 380
abstracting: (P_b_2_true<=P_b_0_false)
states: 155
abstracting: (1<=P_await_13_0)
states: 0
abstracting: (P_wait_0_0<=P_setbi_11_1)
states: 380
abstracting: (P_wait_1_0<=P_done_1_1)
states: 380
abstracting: (1<=x_0)
states: 4
abstracting: (P_b_0_false<=0)
states: 380
abstracting: (P_ifxi_10_0<=0)
states: 380
-> the formula is FALSE

FORMULA LamportFastMutEx-PT-2-ReachabilityCardinality-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.003sec

checking: EF [[[x_2<=P_wait_0_2 | [[~ [[[[~ [1<=P_ifxi_10_2] & [P_done_2_2<=1 & P_ifyi_15_1<=P_ify0_4_0]] | P_await_13_0<=P_wait_1_0] | [P_awaity_0<=P_awaity_0 | [~ [P_await_13_0<=P_sety_9_2] | 1<=P_ify0_4_2]]]] | [[~ [[[1<=P_done_0_2 | 1<=P_wait_0_2] | [P_setbi_24_2<=0 | 1<=P_sety_9_0]]] | ~ [P_start_1_2<=0]] | ~ [[1<=P_sety_9_2 | [~ [P_ifyi_15_0<=1] & [P_wait_0_2<=0 | 1<=P_b_2_false]]]]]] | P_done_0_0<=y_0]] | P_setx_3_2<=0]]
normalized: E [true U [[[[[~ [[[[P_wait_0_2<=0 | 1<=P_b_2_false] & ~ [P_ifyi_15_0<=1]] | 1<=P_sety_9_2]] | [~ [P_start_1_2<=0] | ~ [[[P_setbi_24_2<=0 | 1<=P_sety_9_0] | [1<=P_done_0_2 | 1<=P_wait_0_2]]]]] | ~ [[[[~ [P_await_13_0<=P_sety_9_2] | 1<=P_ify0_4_2] | P_awaity_0<=P_awaity_0] | [[[P_done_2_2<=1 & P_ifyi_15_1<=P_ify0_4_0] & ~ [1<=P_ifxi_10_2]] | P_await_13_0<=P_wait_1_0]]]] | P_done_0_0<=y_0] | x_2<=P_wait_0_2] | P_setx_3_2<=0]]

abstracting: (P_setx_3_2<=0)
states: 344
abstracting: (x_2<=P_wait_0_2)
states: 192
abstracting: (P_done_0_0<=y_0)
states: 380
abstracting: (P_await_13_0<=P_wait_1_0)
states: 380
abstracting: (1<=P_ifxi_10_2)
states: 37
abstracting: (P_ifyi_15_1<=P_ify0_4_0)
states: 368
abstracting: (P_done_2_2<=1)
states: 380
abstracting: (P_awaity_0<=P_awaity_0)
states: 380
abstracting: (1<=P_ify0_4_2)
states: 33
abstracting: (P_await_13_0<=P_sety_9_2)
states: 380
abstracting: (1<=P_wait_0_2)
states: 0
abstracting: (1<=P_done_0_2)
states: 0
abstracting: (1<=P_sety_9_0)
states: 0
abstracting: (P_setbi_24_2<=0)
states: 341
abstracting: (P_start_1_2<=0)
states: 344
abstracting: (1<=P_sety_9_2)
states: 28
abstracting: (P_ifyi_15_0<=1)
states: 380
abstracting: (1<=P_b_2_false)
states: 155
abstracting: (P_wait_0_2<=0)
states: 380
-> the formula is TRUE

FORMULA LamportFastMutEx-PT-2-ReachabilityCardinality-08 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.003sec

checking: EF [~ [[[sum(P_await_13_2, P_await_13_1, P_await_13_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0) | sum(P_awaity_2, P_awaity_1, P_awaity_0)<=27] & [[~ [[sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=7 | ~ [sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=sum(y_2, y_1, y_0)]]] & 20<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)] & 47<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)]]]]
normalized: E [true U ~ [[[[~ [[~ [sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=sum(y_2, y_1, y_0)] | sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=7]] & 20<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)] & 47<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)] & [sum(P_await_13_2, P_await_13_1, P_await_13_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0) | sum(P_awaity_2, P_awaity_1, P_awaity_0)<=27]]]]

abstracting: (sum(P_awaity_2, P_awaity_1, P_awaity_0)<=27)
states: 380
abstracting: (sum(P_await_13_2, P_await_13_1, P_await_13_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0))
states: 356
abstracting: (47<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0))
states: 0
abstracting: (20<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0))
states: 0
abstracting: (sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=7)
states: 380
abstracting: (sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=sum(y_2, y_1, y_0))
states: 380
-> the formula is TRUE

FORMULA LamportFastMutEx-PT-2-ReachabilityCardinality-02 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.132sec

checking: AG [[[[~ [[~ [[[[1<=P_wait_2_1 | 1<=P_setbi_11_0] & [1<=P_awaity_1 & P_done_0_1<=P_setbi_5_0]] | P_ifyi_15_1<=0]] & 1<=P_done_2_1]] | 1<=P_setbi_11_2] & [~ [[~ [[~ [1<=P_ify0_4_2] | 1<=P_sety_9_0]] | P_done_0_1<=P_done_2_0]] | [1<=P_wait_2_2 & ~ [[P_setbi_5_1<=P_ifyi_15_1 & P_start_1_1<=P_done_0_1]]]]] & [[~ [[P_sety_9_1<=0 | [~ [P_wait_0_2<=1] & [P_setbi_5_0<=P_ifxi_10_1 & [1<=P_ifxi_10_1 & P_await_13_2<=1]]]]] | 1<=P_setbi_11_0] & [1<=P_setbi_5_0 & [~ [[~ [P_CS_21_2<=P_setbi_24_1] | ~ [P_done_1_0<=P_b_0_false]]] & [P_wait_0_0<=P_wait_0_2 & [~ [P_setbi_24_2<=P_setbi_11_1] & [~ [[1<=P_wait_1_2 | P_awaity_2<=1]] | [[1<=P_done_1_0 & P_wait_1_2<=P_start_1_0] | ~ [1<=P_ify0_4_1]]]]]]]]]]
normalized: ~ [E [true U ~ [[[[[[[[[~ [1<=P_ify0_4_1] | [1<=P_done_1_0 & P_wait_1_2<=P_start_1_0]] | ~ [[1<=P_wait_1_2 | P_awaity_2<=1]]] & ~ [P_setbi_24_2<=P_setbi_11_1]] & P_wait_0_0<=P_wait_0_2] & ~ [[~ [P_done_1_0<=P_b_0_false] | ~ [P_CS_21_2<=P_setbi_24_1]]]] & 1<=P_setbi_5_0] & [~ [[[[[1<=P_ifxi_10_1 & P_await_13_2<=1] & P_setbi_5_0<=P_ifxi_10_1] & ~ [P_wait_0_2<=1]] | P_sety_9_1<=0]] | 1<=P_setbi_11_0]] & [[[~ [[P_setbi_5_1<=P_ifyi_15_1 & P_start_1_1<=P_done_0_1]] & 1<=P_wait_2_2] | ~ [[~ [[~ [1<=P_ify0_4_2] | 1<=P_sety_9_0]] | P_done_0_1<=P_done_2_0]]] & [~ [[~ [[[[1<=P_awaity_1 & P_done_0_1<=P_setbi_5_0] & [1<=P_wait_2_1 | 1<=P_setbi_11_0]] | P_ifyi_15_1<=0]] & 1<=P_done_2_1]] | 1<=P_setbi_11_2]]]]]]

abstracting: (1<=P_setbi_11_2)
states: 16
abstracting: (1<=P_done_2_1)
states: 24
abstracting: (P_ifyi_15_1<=0)
states: 368
abstracting: (1<=P_setbi_11_0)
states: 0
abstracting: (1<=P_wait_2_1)
states: 32
abstracting: (P_done_0_1<=P_setbi_5_0)
states: 380
abstracting: (1<=P_awaity_1)
states: 21
abstracting: (P_done_0_1<=P_done_2_0)
states: 380
abstracting: (1<=P_sety_9_0)
states: 0
abstracting: (1<=P_ify0_4_2)
states: 33
abstracting: (1<=P_wait_2_2)
states: 28
abstracting: (P_start_1_1<=P_done_0_1)
states: 344
abstracting: (P_setbi_5_1<=P_ifyi_15_1)
states: 359
abstracting: (1<=P_setbi_11_0)
states: 0
abstracting: (P_sety_9_1<=0)
states: 352
abstracting: (P_wait_0_2<=1)
states: 380
abstracting: (P_setbi_5_0<=P_ifxi_10_1)
states: 380
abstracting: (P_await_13_2<=1)
states: 380
abstracting: (1<=P_ifxi_10_1)
states: 37
abstracting: (1<=P_setbi_5_0)
states: 0
abstracting: (P_CS_21_2<=P_setbi_24_1)
states: 353
abstracting: (P_done_1_0<=P_b_0_false)
states: 380
abstracting: (P_wait_0_0<=P_wait_0_2)
states: 380
abstracting: (P_setbi_24_2<=P_setbi_11_1)
states: 343
abstracting: (P_awaity_2<=1)
states: 380
abstracting: (1<=P_wait_1_2)
states: 32
abstracting: (P_wait_1_2<=P_start_1_0)
states: 348
abstracting: (1<=P_done_1_0)
states: 0
abstracting: (1<=P_ify0_4_1)
states: 33
-> the formula is FALSE

FORMULA LamportFastMutEx-PT-2-ReachabilityCardinality-09 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.006sec

checking: EF [[[~ [[~ [[[~ [[1<=P_setbi_5_0 | 1<=P_wait_2_2]] & ~ [1<=P_setbi_5_2]] & P_wait_2_1<=P_setbi_11_1]] & P_wait_0_0<=0]] & [~ [P_done_1_1<=P_fordo_12_2] | [P_sety_9_2<=P_wait_1_0 & [x_0<=1 & [P_ifyi_15_1<=0 | ~ [P_await_13_2<=x_1]]]]]] | [~ [[~ [[P_setx_3_2<=P_start_1_2 & [P_wait_1_1<=P_awaity_1 | P_b_0_true<=P_ifxi_10_2]]] | [~ [[[P_fordo_12_2<=y_1 | P_CS_21_1<=1] & ~ [P_ifxi_10_1<=P_setbi_11_1]]] | [[~ [[1<=P_await_13_2 | P_awaity_1<=P_start_1_1]] & [~ [P_ifxi_10_2<=P_setbi_24_2] & [1<=P_wait_0_0 | 1<=P_done_2_0]]] & P_ifxi_10_2<=1]]]] | [[~ [[[[~ [P_setx_3_1<=1] | P_wait_0_2<=0] | [y_0<=P_wait_1_1 & 1<=P_ifxi_10_1]] | [1<=P_CS_21_2 & [1<=P_setx_3_2 & P_CS_21_0<=0]]]] & ~ [[~ [1<=P_setbi_11_1] | [[[x_1<=0 | P_b_1_true<=0] & ~ [1<=P_ify0_4_2]] | P_done_0_0<=1]]]] | ~ [[P_done_0_1<=0 & [~ [[[P_setbi_11_2<=1 & y_2<=P_ifyi_15_0] & 1<=P_wait_2_1]] & [[~ [P_setbi_5_1<=0] & ~ [P_setbi_5_0<=P_sety_9_2]] | [P_start_1_1<=P_await_13_0 & P_setbi_11_1<=P_fordo_12_2]]]]]]]]]
normalized: E [true U [[[~ [[[[[P_start_1_1<=P_await_13_0 & P_setbi_11_1<=P_fordo_12_2] | [~ [P_setbi_5_0<=P_sety_9_2] & ~ [P_setbi_5_1<=0]]] & ~ [[[P_setbi_11_2<=1 & y_2<=P_ifyi_15_0] & 1<=P_wait_2_1]]] & P_done_0_1<=0]] | [~ [[[[~ [1<=P_ify0_4_2] & [x_1<=0 | P_b_1_true<=0]] | P_done_0_0<=1] | ~ [1<=P_setbi_11_1]]] & ~ [[[[1<=P_setx_3_2 & P_CS_21_0<=0] & 1<=P_CS_21_2] | [[y_0<=P_wait_1_1 & 1<=P_ifxi_10_1] | [~ [P_setx_3_1<=1] | P_wait_0_2<=0]]]]]] | ~ [[[[[[[1<=P_wait_0_0 | 1<=P_done_2_0] & ~ [P_ifxi_10_2<=P_setbi_24_2]] & ~ [[1<=P_await_13_2 | P_awaity_1<=P_start_1_1]]] & P_ifxi_10_2<=1] | ~ [[~ [P_ifxi_10_1<=P_setbi_11_1] & [P_fordo_12_2<=y_1 | P_CS_21_1<=1]]]] | ~ [[[P_wait_1_1<=P_awaity_1 | P_b_0_true<=P_ifxi_10_2] & P_setx_3_2<=P_start_1_2]]]]] | [[[[[~ [P_await_13_2<=x_1] | P_ifyi_15_1<=0] & x_0<=1] & P_sety_9_2<=P_wait_1_0] | ~ [P_done_1_1<=P_fordo_12_2]] & ~ [[~ [[[~ [1<=P_setbi_5_2] & ~ [[1<=P_setbi_5_0 | 1<=P_wait_2_2]]] & P_wait_2_1<=P_setbi_11_1]] & P_wait_0_0<=0]]]]]

abstracting: (P_wait_0_0<=0)
states: 380
abstracting: (P_wait_2_1<=P_setbi_11_1)
states: 348
abstracting: (1<=P_wait_2_2)
states: 28
abstracting: (1<=P_setbi_5_0)
states: 0
abstracting: (1<=P_setbi_5_2)
states: 21
abstracting: (P_done_1_1<=P_fordo_12_2)
states: 352
abstracting: (P_sety_9_2<=P_wait_1_0)
states: 352
abstracting: (x_0<=1)
states: 380
abstracting: (P_ifyi_15_1<=0)
states: 368
abstracting: (P_await_13_2<=x_1)
states: 380
abstracting: (P_setx_3_2<=P_start_1_2)
states: 344
abstracting: (P_b_0_true<=P_ifxi_10_2)
states: 380
abstracting: (P_wait_1_1<=P_awaity_1)
states: 352
abstracting: (P_CS_21_1<=1)
states: 380
abstracting: (P_fordo_12_2<=y_1)
states: 366
abstracting: (P_ifxi_10_1<=P_setbi_11_1)
states: 343
abstracting: (P_ifxi_10_2<=1)
states: 380
abstracting: (P_awaity_1<=P_start_1_1)
states: 359
abstracting: (1<=P_await_13_2)
states: 56
abstracting: (P_ifxi_10_2<=P_setbi_24_2)
states: 343
abstracting: (1<=P_done_2_0)
states: 0
abstracting: (1<=P_wait_0_0)
states: 0
abstracting: (P_wait_0_2<=0)
states: 380
abstracting: (P_setx_3_1<=1)
states: 380
abstracting: (1<=P_ifxi_10_1)
states: 37
abstracting: (y_0<=P_wait_1_1)
states: 210
abstracting: (1<=P_CS_21_2)
states: 29
abstracting: (P_CS_21_0<=0)
states: 380
abstracting: (1<=P_setx_3_2)
states: 36
abstracting: (1<=P_setbi_11_1)
states: 16
abstracting: (P_done_0_0<=1)
states: 380
abstracting: (P_b_1_true<=0)
states: 155
abstracting: (x_1<=0)
states: 192
abstracting: (1<=P_ify0_4_2)
states: 33
abstracting: (P_done_0_1<=0)
states: 380
abstracting: (1<=P_wait_2_1)
states: 32
abstracting: (y_2<=P_ifyi_15_0)
states: 280
abstracting: (P_setbi_11_2<=1)
states: 380
abstracting: (P_setbi_5_1<=0)
states: 359
abstracting: (P_setbi_5_0<=P_sety_9_2)
states: 380
abstracting: (P_setbi_11_1<=P_fordo_12_2)
states: 364
abstracting: (P_start_1_1<=P_await_13_0)
states: 344
-> the formula is TRUE

FORMULA LamportFastMutEx-PT-2-ReachabilityCardinality-13 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.013sec

checking: EF [~ [[sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=65 | ~ [[[[15<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0) & [[[sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=46 | sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=79] & [sum(y_2, y_1, y_0)<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0) & 70<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)]] & ~ [14<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)]]] & ~ [[[16<=sum(P_awaity_2, P_awaity_1, P_awaity_0) | [sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=76 & sum(x_2, x_1, x_0)<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)]] & [~ [88<=sum(P_start_1_2, P_start_1_1, P_start_1_0)] & ~ [45<=sum(P_start_1_2, P_start_1_1, P_start_1_0)]]]]] & [[[~ [[sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0) & 66<=sum(P_await_13_2, P_await_13_1, P_await_13_0)]] | [sum(P_start_1_2, P_start_1_1, P_start_1_0)<=45 & 20<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)]] | sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)] | [[~ [70<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)] & sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=sum(P_start_1_2, P_start_1_1, P_start_1_0)] & 29<=sum(P_start_1_2, P_start_1_1, P_start_1_0)]]]]]]]
normalized: E [true U ~ [[~ [[[[[~ [70<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)] & sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=sum(P_start_1_2, P_start_1_1, P_start_1_0)] & 29<=sum(P_start_1_2, P_start_1_1, P_start_1_0)] | [[[sum(P_start_1_2, P_start_1_1, P_start_1_0)<=45 & 20<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)] | ~ [[sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0) & 66<=sum(P_await_13_2, P_await_13_1, P_await_13_0)]]] | sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)]] & [~ [[[~ [45<=sum(P_start_1_2, P_start_1_1, P_start_1_0)] & ~ [88<=sum(P_start_1_2, P_start_1_1, P_start_1_0)]] & [[sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=76 & sum(x_2, x_1, x_0)<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)] | 16<=sum(P_awaity_2, P_awaity_1, P_awaity_0)]]] & [[~ [14<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)] & [[sum(y_2, y_1, y_0)<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0) & 70<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)] & [sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=46 | sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=79]]] & 15<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)]]]] | sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=65]]]

abstracting: (sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=65)
states: 380
abstracting: (15<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0))
states: 0
abstracting: (sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=79)
states: 380
abstracting: (sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=46)
states: 380
abstracting: (70<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0))
states: 0
abstracting: (sum(y_2, y_1, y_0)<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0))
states: 32
abstracting: (14<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0))
states: 0
abstracting: (16<=sum(P_awaity_2, P_awaity_1, P_awaity_0))
states: 0
abstracting: (sum(x_2, x_1, x_0)<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0))
states: 58
abstracting: (sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=76)
states: 380
abstracting: (88<=sum(P_start_1_2, P_start_1_1, P_start_1_0))
states: 0
abstracting: (45<=sum(P_start_1_2, P_start_1_1, P_start_1_0))
states: 0
abstracting: (sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0))
states: 380
abstracting: (66<=sum(P_await_13_2, P_await_13_1, P_await_13_0))
states: 0
abstracting: (sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0))
states: 358
abstracting: (20<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0))
states: 0
abstracting: (sum(P_start_1_2, P_start_1_1, P_start_1_0)<=45)
states: 380
abstracting: (29<=sum(P_start_1_2, P_start_1_1, P_start_1_0))
states: 0
abstracting: (sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=sum(P_start_1_2, P_start_1_1, P_start_1_0))
states: 3
abstracting: (70<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0))
states: 0
-> the formula is FALSE

FORMULA LamportFastMutEx-PT-2-ReachabilityCardinality-05 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.419sec

checking: EF [[sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=70 & [~ [[[[[~ [sum(P_start_1_2, P_start_1_1, P_start_1_0)<=68] & sum(P_start_1_2, P_start_1_1, P_start_1_0)<=78] | [[sum(y_2, y_1, y_0)<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0) | 14<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)] | ~ [[70<=sum(y_2, y_1, y_0) & 15<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)]]]] & [76<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0) & [[~ [sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(y_2, y_1, y_0)] | [51<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0) & sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=0]] & [sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0) & [7<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0) | 83<=sum(y_2, y_1, y_0)]]]]] | [~ [sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=sum(P_start_1_2, P_start_1_1, P_start_1_0)] | sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=sum(P_awaity_2, P_awaity_1, P_awaity_0)]]] & [~ [sum(P_start_1_2, P_start_1_1, P_start_1_0)<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)] & [~ [34<=sum(P_await_13_2, P_await_13_1, P_await_13_0)] & ~ [[63<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0) & [[sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(P_await_13_2, P_await_13_1, P_await_13_0) | 48<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)] | [sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=28 | sum(P_awaity_2, P_awaity_1, P_awaity_0)<=36]]]]]]]]]
normalized: E [true U [[[[~ [[[[sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(P_await_13_2, P_await_13_1, P_await_13_0) | 48<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)] | [sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=28 | sum(P_awaity_2, P_awaity_1, P_awaity_0)<=36]] & 63<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)]] & ~ [34<=sum(P_await_13_2, P_await_13_1, P_await_13_0)]] & ~ [sum(P_start_1_2, P_start_1_1, P_start_1_0)<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)]] & ~ [[[~ [sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=sum(P_start_1_2, P_start_1_1, P_start_1_0)] | sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=sum(P_awaity_2, P_awaity_1, P_awaity_0)] | [[[[[7<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0) | 83<=sum(y_2, y_1, y_0)] & sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)] & [[51<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0) & sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=0] | ~ [sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(y_2, y_1, y_0)]]] & 76<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)] & [[~ [[70<=sum(y_2, y_1, y_0) & 15<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)]] | [sum(y_2, y_1, y_0)<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0) | 14<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)]] | [sum(P_start_1_2, P_start_1_1, P_start_1_0)<=78 & ~ [sum(P_start_1_2, P_start_1_1, P_start_1_0)<=68]]]]]]] & sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=70]]

abstracting: (sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=70)
states: 380
abstracting: (sum(P_start_1_2, P_start_1_1, P_start_1_0)<=68)
states: 380
abstracting: (sum(P_start_1_2, P_start_1_1, P_start_1_0)<=78)
states: 380
abstracting: (14<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0))
states: 0
abstracting: (sum(y_2, y_1, y_0)<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0))
states: 64
abstracting: (15<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0))
states: 0
abstracting: (70<=sum(y_2, y_1, y_0))
states: 0
abstracting: (76<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0))
states: 0
abstracting: (sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(y_2, y_1, y_0))
states: 380
abstracting: (sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=0)
states: 348
abstracting: (51<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0))
states: 0
abstracting: (sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0))
states: 380
abstracting: (83<=sum(y_2, y_1, y_0))
states: 0
abstracting: (7<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0))
states: 0
abstracting: (sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=sum(P_awaity_2, P_awaity_1, P_awaity_0))
states: 328
abstracting: (sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=sum(P_start_1_2, P_start_1_1, P_start_1_0))
states: 316
abstracting: (sum(P_start_1_2, P_start_1_1, P_start_1_0)<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0))
states: 315
abstracting: (34<=sum(P_await_13_2, P_await_13_1, P_await_13_0))
states: 0
abstracting: (63<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0))
states: 0
abstracting: (sum(P_awaity_2, P_awaity_1, P_awaity_0)<=36)
states: 380
abstracting: (sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=28)
states: 380
abstracting: (48<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0))
states: 0
abstracting: (sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(P_await_13_2, P_await_13_1, P_await_13_0))
states: 332
-> the formula is TRUE

FORMULA LamportFastMutEx-PT-2-ReachabilityCardinality-00 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.483sec

checking: EF [[[[~ [[[[~ [89<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)] | sum(y_2, y_1, y_0)<=sum(x_2, x_1, x_0)] & [[sum(y_2, y_1, y_0)<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false) & 91<=sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)] | [sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=sum(P_await_13_2, P_await_13_1, P_await_13_0) & sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=9]]] & [29<=sum(P_awaity_2, P_awaity_1, P_awaity_0) | sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)]]] | [~ [[sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(P_start_1_2, P_start_1_1, P_start_1_0) | ~ [[~ [sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)] & ~ [50<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)]]]]] | [[47<=sum(P_start_1_2, P_start_1_1, P_start_1_0) & [[6<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0) | sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=48] & [[sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=36 & sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=63] | sum(P_start_1_2, P_start_1_1, P_start_1_0)<=sum(P_start_1_2, P_start_1_1, P_start_1_0)]]] | ~ [[~ [sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)] | sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=51]]]]] & [[[[sum(y_2, y_1, y_0)<=sum(P_start_1_2, P_start_1_1, P_start_1_0) & ~ [[sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0) & [sum(x_2, x_1, x_0)<=24 & sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_await_13_2, P_await_13_1, P_await_13_0)]]]] & [~ [56<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)] & ~ [[sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false) & [sum(P_await_13_2, P_await_13_1, P_await_13_0)<=32 | sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_await_13_2, P_await_13_1, P_await_13_0)]]]]] & sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)] & [[[~ [42<=sum(P_start_1_2, P_start_1_1, P_start_1_0)] & ~ [[[36<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0) | sum(P_awaity_2, P_awaity_1, P_awaity_0)<=28] | [sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0) | sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)]]]] & ~ [[~ [sum(x_2, x_1, x_0)<=38] & [sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=sum(P_await_13_2, P_await_13_1, P_await_13_0) & [sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=95 | 51<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)]]]]] | [~ [[[95<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0) & [sum(P_await_13_2, P_await_13_1, P_await_13_0)<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0) & sum(y_2, y_1, y_0)<=34]] & [~ [sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=12] & [sum(x_2, x_1, x_0)<=93 & 74<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)]]]] | [[sum(P_start_1_2, P_start_1_1, P_start_1_0)<=79 & [sum(P_start_1_2, P_start_1_1, P_start_1_0)<=98 & ~ [97<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)]]] | ~ [sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(P_start_1_2, P_start_1_1, P_start_1_0)]]]]]] & [~ [[~ [[[[[96<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0) | 64<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)] | ~ [sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)]] | ~ [[sum(P_await_13_2, P_await_13_1, P_await_13_0)<=sum(y_2, y_1, y_0) & 91<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)]]] & [~ [sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=67] | [[sum(P_awaity_2, P_awaity_1, P_awaity_0)<=sum(x_2, x_1, x_0) & sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=65] & 58<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)]]]] & ~ [[sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=98 & [~ [sum(P_awaity_2, P_awaity_1, P_awaity_0)<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)] | sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=53]]]]] | [[sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0) | ~ [sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)]] | [[[sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=7 & ~ [[sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0) | 21<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)]]] | [[~ [sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=sum(y_2, y_1, y_0)] | sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=34] & 55<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)]] & sum(P_start_1_2, P_start_1_1, P_start_1_0)<=89]]]]]
normalized: E [true U [[[[[[[~ [sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=sum(y_2, y_1, y_0)] | sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=34] & 55<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)] | [~ [[sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0) | 21<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)]] & sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=7]] & sum(P_start_1_2, P_start_1_1, P_start_1_0)<=89] | [~ [sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)] | sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)]] | ~ [[~ [[[~ [sum(P_awaity_2, P_awaity_1, P_awaity_0)<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)] | sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=53] & sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=98]] & ~ [[[[[sum(P_awaity_2, P_awaity_1, P_awaity_0)<=sum(x_2, x_1, x_0) & sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=65] & 58<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)] | ~ [sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=67]] & [~ [[sum(P_await_13_2, P_await_13_1, P_await_13_0)<=sum(y_2, y_1, y_0) & 91<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)]] | [~ [sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)] | [96<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0) | 64<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)]]]]]]]] & [[[[[~ [sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(P_start_1_2, P_start_1_1, P_start_1_0)] | [[~ [97<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)] & sum(P_start_1_2, P_start_1_1, P_start_1_0)<=98] & sum(P_start_1_2, P_start_1_1, P_start_1_0)<=79]] | ~ [[[[sum(x_2, x_1, x_0)<=93 & 74<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)] & ~ [sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=12]] & [[sum(P_await_13_2, P_await_13_1, P_await_13_0)<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0) & sum(y_2, y_1, y_0)<=34] & 95<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)]]]] | [~ [[[[sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=95 | 51<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)] & sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=sum(P_await_13_2, P_await_13_1, P_await_13_0)] & ~ [sum(x_2, x_1, x_0)<=38]]] & [~ [[[sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0) | sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)] | [36<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0) | sum(P_awaity_2, P_awaity_1, P_awaity_0)<=28]]] & ~ [42<=sum(P_start_1_2, P_start_1_1, P_start_1_0)]]]] & [[[~ [[[sum(P_await_13_2, P_await_13_1, P_await_13_0)<=32 | sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_await_13_2, P_await_13_1, P_await_13_0)] & sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)]] & ~ [56<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)]] & [sum(y_2, y_1, y_0)<=sum(P_start_1_2, P_start_1_1, P_start_1_0) & ~ [[[sum(x_2, x_1, x_0)<=24 & sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_await_13_2, P_await_13_1, P_await_13_0)] & sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)]]]] & sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)]] & [[[~ [[~ [sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)] | sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=51]] | [47<=sum(P_start_1_2, P_start_1_1, P_start_1_0) & [[[sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=36 & sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=63] | sum(P_start_1_2, P_start_1_1, P_start_1_0)<=sum(P_start_1_2, P_start_1_1, P_start_1_0)] & [6<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0) | sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=48]]]] | ~ [[~ [[~ [50<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)] & ~ [sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)]]] | sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(P_start_1_2, P_start_1_1, P_start_1_0)]]] | ~ [[[29<=sum(P_awaity_2, P_awaity_1, P_awaity_0) | sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)] & [[[sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=sum(P_await_13_2, P_await_13_1, P_await_13_0) & sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=9] | [sum(y_2, y_1, y_0)<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false) & 91<=sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)]] & [~ [89<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)] | sum(y_2, y_1, y_0)<=sum(x_2, x_1, x_0)]]]]]]]]

abstracting: (sum(y_2, y_1, y_0)<=sum(x_2, x_1, x_0))
states: 380
abstracting: (89<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0))
states: 0
abstracting: (91<=sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0))
states: 0
abstracting: (sum(y_2, y_1, y_0)<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false))
states: 380
abstracting: (sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=9)
states: 380
abstracting: (sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=sum(P_await_13_2, P_await_13_1, P_await_13_0))
states: 348
abstracting: (sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0))
states: 316
abstracting: (29<=sum(P_awaity_2, P_awaity_1, P_awaity_0))
states: 0
abstracting: (sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(P_start_1_2, P_start_1_1, P_start_1_0))
states: 342
abstracting: (sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0))
states: 352
abstracting: (50<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0))
states: 0
abstracting: (sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=48)
states: 380
abstracting: (6<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0))
states: 0
abstracting: (sum(P_start_1_2, P_start_1_1, P_start_1_0)<=sum(P_start_1_2, P_start_1_1, P_start_1_0))
states: 380
abstracting: (sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=63)
states: 380
abstracting: (sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=36)
states: 380
abstracting: (47<=sum(P_start_1_2, P_start_1_1, P_start_1_0))
states: 0
abstracting: (sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=51)
states: 380
abstracting: (sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0))
states: 348
abstracting: (sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false))
states: 380
abstracting: (sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0))
states: 328
abstracting: (sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_await_13_2, P_await_13_1, P_await_13_0))
states: 356
abstracting: (sum(x_2, x_1, x_0)<=24)
states: 380
abstracting: (sum(y_2, y_1, y_0)<=sum(P_start_1_2, P_start_1_1, P_start_1_0))
states: 69
abstracting: (56<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0))
states: 0
abstracting: (sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false))
states: 380
abstracting: (sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_await_13_2, P_await_13_1, P_await_13_0))
states: 356
abstracting: (sum(P_await_13_2, P_await_13_1, P_await_13_0)<=32)
states: 380
abstracting: (42<=sum(P_start_1_2, P_start_1_1, P_start_1_0))
states: 0
abstracting: (sum(P_awaity_2, P_awaity_1, P_awaity_0)<=28)
states: 380
abstracting: (36<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0))
states: 0
abstracting: (sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0))
states: 350
abstracting: (sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0))
states: 380
abstracting: (sum(x_2, x_1, x_0)<=38)
states: 380
abstracting: (sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=sum(P_await_13_2, P_await_13_1, P_await_13_0))
states: 334
abstracting: (51<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false))
states: 0
abstracting: (sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=95)
states: 380
abstracting: (95<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0))
states: 0
abstracting: (sum(y_2, y_1, y_0)<=34)
states: 380
abstracting: (sum(P_await_13_2, P_await_13_1, P_await_13_0)<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0))
states: 268
abstracting: (sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=12)
states: 380
abstracting: (74<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0))
states: 0
abstracting: (sum(x_2, x_1, x_0)<=93)
states: 380
abstracting: (sum(P_start_1_2, P_start_1_1, P_start_1_0)<=79)
states: 380
abstracting: (sum(P_start_1_2, P_start_1_1, P_start_1_0)<=98)
states: 380
abstracting: (97<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0))
states: 0
abstracting: (sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(P_start_1_2, P_start_1_1, P_start_1_0))
states: 320
abstracting: (64<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0))
states: 0
abstracting: (96<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0))
states: 0
abstracting: (sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0))
states: 336
abstracting: (91<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0))
states: 0
abstracting: (sum(P_await_13_2, P_await_13_1, P_await_13_0)<=sum(y_2, y_1, y_0))
states: 380
abstracting: (sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=67)
states: 380
abstracting: (58<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0))
states: 0
abstracting: (sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=65)
states: 380
abstracting: (sum(P_awaity_2, P_awaity_1, P_awaity_0)<=sum(x_2, x_1, x_0))
states: 380
abstracting: (sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=98)
states: 380
abstracting: (sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=53)
states: 380
abstracting: (sum(P_awaity_2, P_awaity_1, P_awaity_0)<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0))
states: 340
abstracting: (sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0))
states: 312
abstracting: (sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0))
states: 315
abstracting: (sum(P_start_1_2, P_start_1_1, P_start_1_0)<=89)
states: 380
abstracting: (sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=7)
states: 380
abstracting: (21<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0))
states: 0
abstracting: (sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0))
states: 308
abstracting: (55<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0))
states: 0
abstracting: (sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=34)
states: 380
abstracting: (sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=sum(y_2, y_1, y_0))
states: 380
-> the formula is FALSE

FORMULA LamportFastMutEx-PT-2-ReachabilityCardinality-03 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 1.413sec

totally nodes used: 53192 (5.3e+04)
number of garbage collections: 0
fire ops cache: hits/miss/sum: 62416 246643 309059
used/not used/entry size/cache size: 283529 66825335 16 1024MB
basic ops cache: hits/miss/sum: 33792 139206 172998
used/not used/entry size/cache size: 198544 16578672 12 192MB
unary ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 8 128MB
abstract ops cache: hits/miss/sum: 0 10197 10197
used/not used/entry size/cache size: 1 16777215 12 192MB
state nr cache: hits/miss/sum: 1890 6595 8485
used/not used/entry size/cache size: 6595 8382013 32 256MB
max state cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 8388608 32 256MB
uniqueHash elements/entry size/size: 67108864 4 256MB
0 67057305
1 49982
2 1521
3 56
4 0
5 0
6 0
7 0
8 0
9 0
>= 10 0

Total processing time: 0m 7.073sec


BK_STOP 1679493448243

--------------------
content from stderr:

+ ulimit -s 65536
+ [[ -z '' ]]
+ export LTSMIN_MEM_SIZE=8589934592
+ LTSMIN_MEM_SIZE=8589934592
+ export PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ export LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
+ LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
++ sed s/.jar//
++ perl -pe 's/.*\.//g'
++ ls /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/plugins/fr.lip6.move.gal.application.pnmcc_1.0.0.202303021504.jar
+ VERSION=202303021504
+ echo 'Running Version 202303021504'
+ /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/its-tools -pnfolder /home/mcc/execution -examination ReachabilityCardinality -timeout 360 -rebuildPNML
check for maximal unmarked siphon
found
The net has a maximal unmarked siphon:
P_wait_1_0
P_fordo_12_0
P_awaity_0
P_setbi_24_0
P_wait_0_2
P_CS_21_0
P_await_13_0
P_done_1_0
P_done_2_0
P_done_0_0
P_wait_2_0
P_done_0_1
P_done_0_2
P_ifyi_15_0
P_ify0_4_0
P_setx_3_0
P_ifxi_10_0
P_b_0_false
P_b_0_true
P_sety_9_0
P_wait_0_1
P_wait_0_0
P_setbi_5_0
P_setbi_11_0
P_start_1_0

The net has transition(s) that can never fire:
T_yeq0_4_1
T_await_13_7
T_sety_9_2
T_sety_9_3
T_sety_9_1
T_setbi_5_1
T_forod_13_1
T_yne0_4_3
T_xnei_10_3
T_xnei_10_2
T_setbi_5_2
T_awaity_1
T_ynei_15_2
T_ynei_15_3
T_yeqi_15_1
T_xeqi_10_1
T_sety0_23_1
T_sety0_23_2
T_sety0_23_3
T_yne0_4_2
T_setbi_11_1
T_setbi_11_2
T_fordo_12_1
T_await_13_1
T_await_13_2
T_await_13_3
T_await_13_4
T_setbi_2_1
T_setx_3_1
T_setbi_24_1
T_setbi_24_2
T_setbi_2_2
T_setx_3_2
T_setx_3_3

check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok


initing FirstDep: 0m 0.000sec


iterations count:1779 (18), effective:98 (1)

initing FirstDep: 0m 0.000sec


iterations count:96 (1), effective:0 (0)

iterations count:96 (1), effective:0 (0)

iterations count:311 (3), effective:16 (0)

iterations count:1793 (18), effective:83 (0)

iterations count:96 (1), effective:0 (0)

iterations count:96 (1), effective:0 (0)

iterations count:96 (1), effective:0 (0)

iterations count:96 (1), effective:0 (0)

iterations count:442 (4), effective:26 (0)

iterations count:2266 (23), effective:119 (1)

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="LamportFastMutEx-PT-2"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="marciexred"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marciexred"
echo " Input is LamportFastMutEx-PT-2, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r234-tall-167856420200398"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"

tar xzf /home/mcc/BenchKit/INPUTS/LamportFastMutEx-PT-2.tgz
mv LamportFastMutEx-PT-2 execution
cd execution
if [ "ReachabilityCardinality" = "ReachabilityDeadlock" ] || [ "ReachabilityCardinality" = "UpperBounds" ] || [ "ReachabilityCardinality" = "QuasiLiveness" ] || [ "ReachabilityCardinality" = "StableMarking" ] || [ "ReachabilityCardinality" = "Liveness" ] || [ "ReachabilityCardinality" = "OneSafe" ] || [ "ReachabilityCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh

echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' ReachabilityCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ "ReachabilityCardinality" = "ReachabilityDeadlock" ] || [ "ReachabilityCardinality" = "QuasiLiveness" ] || [ "ReachabilityCardinality" = "StableMarking" ] || [ "ReachabilityCardinality" = "Liveness" ] || [ "ReachabilityCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME ReachabilityCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;