About the Execution of Marcie+red for HypertorusGrid-PT-d2k3p2b04
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
12974.071 | 3600000.00 | 3646672.00 | 8085.80 | TFFFFTFFTTTTFFFT | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fkordon/mcc2023-input.r234-tall-167856419700046.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2023-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
=====================================================================
Generated by BenchKit 2-5348
Executing tool marciexred
Input is HypertorusGrid-PT-d2k3p2b04, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r234-tall-167856419700046
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 560K
-rw-r--r-- 1 mcc users 7.9K Feb 26 11:08 CTLCardinality.txt
-rw-r--r-- 1 mcc users 72K Feb 26 11:08 CTLCardinality.xml
-rw-r--r-- 1 mcc users 6.0K Feb 26 10:57 CTLFireability.txt
-rw-r--r-- 1 mcc users 41K Feb 26 10:57 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K Jan 29 11:40 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.3K Jan 29 11:40 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 4.3K Feb 25 16:17 LTLCardinality.txt
-rw-r--r-- 1 mcc users 26K Feb 25 16:17 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.9K Feb 25 16:17 LTLFireability.txt
-rw-r--r-- 1 mcc users 16K Feb 25 16:17 LTLFireability.xml
-rw-r--r-- 1 mcc users 11K Feb 26 11:18 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 89K Feb 26 11:18 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 19K Feb 26 11:13 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 132K Feb 26 11:13 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.9K Feb 25 16:17 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.9K Feb 25 16:17 UpperBounds.xml
-rw-r--r-- 1 mcc users 6 Mar 5 18:22 equiv_col
-rw-r--r-- 1 mcc users 10 Mar 5 18:22 instance
-rw-r--r-- 1 mcc users 6 Mar 5 18:22 iscolored
-rwxr-xr-x 1 mcc users 79K Mar 5 18:22 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME HypertorusGrid-PT-d2k3p2b04-ReachabilityCardinality-00
FORMULA_NAME HypertorusGrid-PT-d2k3p2b04-ReachabilityCardinality-01
FORMULA_NAME HypertorusGrid-PT-d2k3p2b04-ReachabilityCardinality-02
FORMULA_NAME HypertorusGrid-PT-d2k3p2b04-ReachabilityCardinality-03
FORMULA_NAME HypertorusGrid-PT-d2k3p2b04-ReachabilityCardinality-04
FORMULA_NAME HypertorusGrid-PT-d2k3p2b04-ReachabilityCardinality-05
FORMULA_NAME HypertorusGrid-PT-d2k3p2b04-ReachabilityCardinality-06
FORMULA_NAME HypertorusGrid-PT-d2k3p2b04-ReachabilityCardinality-07
FORMULA_NAME HypertorusGrid-PT-d2k3p2b04-ReachabilityCardinality-08
FORMULA_NAME HypertorusGrid-PT-d2k3p2b04-ReachabilityCardinality-09
FORMULA_NAME HypertorusGrid-PT-d2k3p2b04-ReachabilityCardinality-10
FORMULA_NAME HypertorusGrid-PT-d2k3p2b04-ReachabilityCardinality-11
FORMULA_NAME HypertorusGrid-PT-d2k3p2b04-ReachabilityCardinality-12
FORMULA_NAME HypertorusGrid-PT-d2k3p2b04-ReachabilityCardinality-13
FORMULA_NAME HypertorusGrid-PT-d2k3p2b04-ReachabilityCardinality-14
FORMULA_NAME HypertorusGrid-PT-d2k3p2b04-ReachabilityCardinality-15
=== Now, execution of the tool begins
BK_START 1679436737058
bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marciexred
BK_EXAMINATION=ReachabilityCardinality
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=HypertorusGrid-PT-d2k3p2b04
Applying reductions before tool marcie
Invoking reducer
Running Version 202303021504
[2023-03-21 22:12:18] [INFO ] Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, ReachabilityCardinality, -timeout, 360, -rebuildPNML]
[2023-03-21 22:12:18] [INFO ] Parsing pnml file : /home/mcc/execution/model.pnml
[2023-03-21 22:12:18] [INFO ] Load time of PNML (sax parser for PT used): 41 ms
[2023-03-21 22:12:18] [INFO ] Transformed 117 places.
[2023-03-21 22:12:18] [INFO ] Transformed 144 transitions.
[2023-03-21 22:12:18] [INFO ] Parsed PT model containing 117 places and 144 transitions and 576 arcs in 101 ms.
Parsed 16 properties from file /home/mcc/execution/ReachabilityCardinality.xml in 13 ms.
Working with output stream class java.io.PrintStream
Incomplete random walk after 10000 steps, including 2 resets, run finished after 408 ms. (steps per millisecond=24 ) properties (out of 16) seen :9
FORMULA HypertorusGrid-PT-d2k3p2b04-ReachabilityCardinality-15 TRUE TECHNIQUES TOPOLOGICAL RANDOM_WALK
FORMULA HypertorusGrid-PT-d2k3p2b04-ReachabilityCardinality-12 FALSE TECHNIQUES TOPOLOGICAL RANDOM_WALK
FORMULA HypertorusGrid-PT-d2k3p2b04-ReachabilityCardinality-11 TRUE TECHNIQUES TOPOLOGICAL RANDOM_WALK
FORMULA HypertorusGrid-PT-d2k3p2b04-ReachabilityCardinality-10 TRUE TECHNIQUES TOPOLOGICAL RANDOM_WALK
FORMULA HypertorusGrid-PT-d2k3p2b04-ReachabilityCardinality-08 TRUE TECHNIQUES TOPOLOGICAL RANDOM_WALK
FORMULA HypertorusGrid-PT-d2k3p2b04-ReachabilityCardinality-05 TRUE TECHNIQUES TOPOLOGICAL RANDOM_WALK
FORMULA HypertorusGrid-PT-d2k3p2b04-ReachabilityCardinality-04 FALSE TECHNIQUES TOPOLOGICAL RANDOM_WALK
FORMULA HypertorusGrid-PT-d2k3p2b04-ReachabilityCardinality-03 FALSE TECHNIQUES TOPOLOGICAL RANDOM_WALK
FORMULA HypertorusGrid-PT-d2k3p2b04-ReachabilityCardinality-02 FALSE TECHNIQUES TOPOLOGICAL RANDOM_WALK
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 47 ms. (steps per millisecond=212 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 30 ms. (steps per millisecond=333 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 18 ms. (steps per millisecond=555 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 25 ms. (steps per millisecond=400 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 24 ms. (steps per millisecond=416 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 75 ms. (steps per millisecond=133 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 18 ms. (steps per millisecond=555 ) properties (out of 7) seen :0
Running SMT prover for 7 properties.
// Phase 1: matrix 144 rows 117 cols
[2023-03-21 22:12:19] [INFO ] Computed 46 place invariants in 20 ms
[2023-03-21 22:12:19] [INFO ] After 194ms SMT Verify possible using all constraints in real domain returned unsat :0 sat :0 real:7
[2023-03-21 22:12:19] [INFO ] [Nat]Absence check using 45 positive place invariants in 9 ms returned sat
[2023-03-21 22:12:19] [INFO ] [Nat]Absence check using 45 positive and 1 generalized place invariants in 1 ms returned sat
[2023-03-21 22:12:19] [INFO ] After 83ms SMT Verify possible using all constraints in natural domain returned unsat :7 sat :0
FORMULA HypertorusGrid-PT-d2k3p2b04-ReachabilityCardinality-14 FALSE TECHNIQUES STRUCTURAL_REDUCTION TOPOLOGICAL SAT_SMT
FORMULA HypertorusGrid-PT-d2k3p2b04-ReachabilityCardinality-13 FALSE TECHNIQUES STRUCTURAL_REDUCTION TOPOLOGICAL SAT_SMT
FORMULA HypertorusGrid-PT-d2k3p2b04-ReachabilityCardinality-09 TRUE TECHNIQUES STRUCTURAL_REDUCTION TOPOLOGICAL SAT_SMT
FORMULA HypertorusGrid-PT-d2k3p2b04-ReachabilityCardinality-07 FALSE TECHNIQUES STRUCTURAL_REDUCTION TOPOLOGICAL SAT_SMT
FORMULA HypertorusGrid-PT-d2k3p2b04-ReachabilityCardinality-06 FALSE TECHNIQUES STRUCTURAL_REDUCTION TOPOLOGICAL SAT_SMT
FORMULA HypertorusGrid-PT-d2k3p2b04-ReachabilityCardinality-01 FALSE TECHNIQUES STRUCTURAL_REDUCTION TOPOLOGICAL SAT_SMT
FORMULA HypertorusGrid-PT-d2k3p2b04-ReachabilityCardinality-00 TRUE TECHNIQUES STRUCTURAL_REDUCTION TOPOLOGICAL SAT_SMT
Fused 7 Parikh solutions to 0 different solutions.
Parikh walk visited 0 properties in 0 ms.
All properties solved without resorting to model-checking.
Total runtime 1175 ms.
timeout --kill-after=10s --signal=SIGINT 1m for testing only
Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: /home/mcc/BenchKit/bin//../reducer/bin//../../marcie/bin/marcie --net-file=model.pnml --mcc-file=ReachabilityCardinality.xml --memory=6 --mcc-mode
parse successfull
net created successfully
Net: HypertorusGrid_PT_d2k3p2b04
(NrP: 117 NrTr: 144 NrArc: 576)
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.001sec
net check time: 0m 0.000sec
init dd package: 0m 2.764sec
before gc: list nodes free: 85694
after gc: idd nodes used:42398, unused:63957602; list nodes free:452671872
RS generation: 11m 2.637sec
-> reachability set: #nodes 27808 (2.8e+04) #states 547,584,122,014,766,883,484,149,027,370,223,872 (35)
starting MCC model checker
--------------------------
checking: EF [~ [pi_d2_n1_1_1<=3]]
normalized: E [true U ~ [pi_d2_n1_1_1<=3]]
abstracting: (pi_d2_n1_1_1<=3)
states: 547,584,122,014,766,883,484,149,027,370,223,872 (35)
-> the formula is FALSE
FORMULA HypertorusGrid-PT-d2k3p2b04-ReachabilityCardinality-06 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.121sec
checking: EF [4<=pol_d2_n1_2_3]
normalized: E [true U 4<=pol_d2_n1_2_3]
abstracting: (4<=pol_d2_n1_2_3)
states: 0
-> the formula is FALSE
FORMULA HypertorusGrid-PT-d2k3p2b04-ReachabilityCardinality-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.009sec
checking: AG [po_d1_n1_2_1<=pbl_3_2]
normalized: ~ [E [true U ~ [po_d1_n1_2_1<=pbl_3_2]]]
abstracting: (po_d1_n1_2_1<=pbl_3_2)
states: 537,527,339,253,669,248,945,162,971,875,193,472 (35)
MC time: 3m30.031sec
checking: EF [~ [pil_d2_n1_2_3<=pb_d2_n2_1_2]]
normalized: E [true U ~ [pil_d2_n1_2_3<=pb_d2_n2_1_2]]
abstracting: (pil_d2_n1_2_3<=pb_d2_n2_1_2)
states: 429,424,056,826,193,669,721,510,254,010,036,212 (35)
MC time: 3m15.011sec
checking: EF [pbl_1_2<=pi_d2_n1_3_2]
normalized: E [true U pbl_1_2<=pi_d2_n1_3_2]
abstracting: (pbl_1_2<=pi_d2_n1_3_2)
states: 38,828,702,068,039,064,118,236,118,528,800,000 (34)
MC time: 3m 1.023sec
checking: AG [[pol_d2_n1_1_2<=pb_d2_n1_3_3 & pil_d2_n1_3_2<=2]]
normalized: ~ [E [true U ~ [[pol_d2_n1_1_2<=pb_d2_n1_3_3 & pil_d2_n1_3_2<=2]]]]
abstracting: (pil_d2_n1_3_2<=2)
states: 547,584,122,014,766,883,484,149,027,370,223,872 (35)
abstracting: (pol_d2_n1_1_2<=pb_d2_n1_3_3)
states: 429,424,056,826,193,669,721,510,254,010,036,212 (35)
MC time: 2m48.005sec
checking: EF [[~ [3<=po_d1_n1_3_2] & [~ [pi_d1_n1_1_1<=3] | 3<=pil_d1_n1_3_2]]]
normalized: E [true U [[3<=pil_d1_n1_3_2 | ~ [pi_d1_n1_1_1<=3]] & ~ [3<=po_d1_n1_3_2]]]
abstracting: (3<=po_d1_n1_3_2)
states: 0
abstracting: (pi_d1_n1_1_1<=3)
states: 547,584,122,014,766,883,484,149,027,370,223,872 (35)
abstracting: (3<=pil_d1_n1_3_2)
states: 0
-> the formula is FALSE
FORMULA HypertorusGrid-PT-d2k3p2b04-ReachabilityCardinality-07 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.189sec
checking: EF [[[[~ [2<=po_d2_n1_2_3] | 2<=pol_d1_n1_3_1] & 1<=pi_d2_n1_1_2] | [pb_d2_n1_1_2<=1 & pb_d2_n2_1_1<=1]]]
normalized: E [true U [[pb_d2_n1_1_2<=1 & pb_d2_n2_1_1<=1] | [1<=pi_d2_n1_1_2 & [2<=pol_d1_n1_3_1 | ~ [2<=po_d2_n1_2_3]]]]]
abstracting: (2<=po_d2_n1_2_3)
states: 0
abstracting: (2<=pol_d1_n1_3_1)
states: 0
abstracting: (1<=pi_d2_n1_1_2)
states: 219,740,419,793,645,652,130,248,154,752,533,306 (35)
abstracting: (pb_d2_n2_1_1<=1)
states: 329,159,188,270,901,727,870,707,077,649,109,696 (35)
abstracting: (pb_d2_n1_1_2<=1)
states: 329,159,188,270,901,727,870,707,077,649,109,696 (35)
before gc: list nodes free: 1195560
after gc: idd nodes used:724979, unused:63275021; list nodes free:472910942
MC time: 2m48.002sec
checking: EF [~ [[[[3<=pil_d1_n1_2_1 & ~ [[2<=po_d2_n1_3_1 & pol_d2_n1_1_1<=pb_d2_n1_3_2]]] | [po_d2_n1_3_1<=3 | ~ [[4<=pi_d1_n1_1_1 | 2<=pol_d1_n1_1_2]]]] | pi_d2_n1_3_3<=0]]]
normalized: E [true U ~ [[pi_d2_n1_3_3<=0 | [[po_d2_n1_3_1<=3 | ~ [[4<=pi_d1_n1_1_1 | 2<=pol_d1_n1_1_2]]] | [3<=pil_d1_n1_2_1 & ~ [[2<=po_d2_n1_3_1 & pol_d2_n1_1_1<=pb_d2_n1_3_2]]]]]]]
abstracting: (pol_d2_n1_1_1<=pb_d2_n1_3_2)
states: 429,424,056,826,193,669,721,510,254,010,036,212 (35)
abstracting: (2<=po_d2_n1_3_1)
states: 0
abstracting: (3<=pil_d1_n1_2_1)
states: 0
abstracting: (2<=pol_d1_n1_1_2)
states: 0
abstracting: (4<=pi_d1_n1_1_1)
states: 0
abstracting: (po_d2_n1_3_1<=3)
states: 547,584,122,014,766,883,484,149,027,370,223,872 (35)
abstracting: (pi_d2_n1_3_3<=0)
states: 327,843,702,221,121,231,353,900,872,617,690,566 (35)
-> the formula is FALSE
FORMULA HypertorusGrid-PT-d2k3p2b04-ReachabilityCardinality-01 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.315sec
checking: AG [~ [[[[[2<=pb_d1_n2_1_1 | [pol_d2_n1_1_2<=pb_d2_n2_3_1 & pbl_3_1<=pil_d2_n1_3_2]] & [4<=pb_d1_n1_2_3 | pol_d1_n1_2_3<=pi_d1_n1_1_1]] | [po_d1_n1_3_1<=pb_d2_n1_2_2 & pb_d2_n2_3_3<=3]] & 2<=po_d2_n1_2_2]]]
normalized: ~ [E [true U [2<=po_d2_n1_2_2 & [[po_d1_n1_3_1<=pb_d2_n1_2_2 & pb_d2_n2_3_3<=3] | [[4<=pb_d1_n1_2_3 | pol_d1_n1_2_3<=pi_d1_n1_1_1] & [2<=pb_d1_n2_1_1 | [pol_d2_n1_1_2<=pb_d2_n2_3_1 & pbl_3_1<=pil_d2_n1_3_2]]]]]]]
abstracting: (pbl_3_1<=pil_d2_n1_3_2)
states: 46,135,145,847,101,442,841,347,464,118,306,560 (34)
abstracting: (pol_d2_n1_1_2<=pb_d2_n2_3_1)
states: 429,424,056,826,193,669,721,510,254,010,036,212 (35)
abstracting: (2<=pb_d1_n2_1_1)
states: 218,424,933,743,865,155,613,441,949,721,114,176 (35)
abstracting: (pol_d1_n1_2_3<=pi_d1_n1_1_1)
states: 351,620,606,256,164,238,954,776,550,146,471,882 (35)
abstracting: (4<=pb_d1_n1_2_3)
states: 79,430,266,161,587,518,192,757,994,076,086,400 (34)
abstracting: (pb_d2_n2_3_3<=3)
states: 468,153,855,853,179,365,291,391,033,294,137,472 (35)
abstracting: (po_d1_n1_3_1<=pb_d2_n1_2_2)
states: 467,392,545,164,982,832,217,705,869,293,226,972 (35)
abstracting: (2<=po_d2_n1_2_2)
states: 0
-> the formula is TRUE
FORMULA HypertorusGrid-PT-d2k3p2b04-ReachabilityCardinality-09 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.636sec
checking: EF [~ [[[[pil_d2_n1_3_1<=pbl_2_3 | ~ [[[[pbl_3_3<=3 | pb_d1_n2_1_2<=2] & 4<=pb_d1_n1_1_3] & [pb_d2_n2_2_1<=pil_d1_n1_1_1 | [4<=po_d1_n1_2_1 | 1<=pi_d2_n1_2_2]]]]] | [3<=pb_d2_n2_3_1 | [~ [3<=pil_d2_n1_2_2] & [[pil_d1_n1_2_1<=pb_d1_n1_3_2 & ~ [[pi_d1_n1_1_3<=pil_d2_n1_1_3 & 3<=pbl_1_1]]] | ~ [[pi_d2_n1_2_1<=pb_d2_n2_1_1 | pol_d1_n1_2_3<=3]]]]]] & pi_d1_n1_1_2<=4]]]
normalized: E [true U ~ [[pi_d1_n1_1_2<=4 & [[3<=pb_d2_n2_3_1 | [[~ [[pi_d2_n1_2_1<=pb_d2_n2_1_1 | pol_d1_n1_2_3<=3]] | [pil_d1_n1_2_1<=pb_d1_n1_3_2 & ~ [[pi_d1_n1_1_3<=pil_d2_n1_1_3 & 3<=pbl_1_1]]]] & ~ [3<=pil_d2_n1_2_2]]] | [pil_d2_n1_3_1<=pbl_2_3 | ~ [[[pb_d2_n2_2_1<=pil_d1_n1_1_1 | [4<=po_d1_n1_2_1 | 1<=pi_d2_n1_2_2]] & [4<=pb_d1_n1_1_3 & [pbl_3_3<=3 | pb_d1_n2_1_2<=2]]]]]]]]]
abstracting: (pb_d1_n2_1_2<=2)
states: 414,056,897,615,382,018,906,435,531,019,430,672 (35)
abstracting: (pbl_3_3<=3)
states: 147,094,849,872,161,916,588,620,213,558,151,040 (35)
abstracting: (4<=pb_d1_n1_1_3)
states: 79,430,266,161,587,518,192,757,994,076,086,400 (34)
abstracting: (1<=pi_d2_n1_2_2)
states: 219,740,419,793,645,652,130,248,154,752,533,306 (35)
abstracting: (4<=po_d1_n1_2_1)
states: 0
abstracting: (pb_d2_n2_2_1<=pil_d1_n1_1_1)
states: 276,531,862,335,921,789,387,727,878,415,175,380 (35)
abstracting: (pil_d2_n1_3_1<=pbl_2_3)
states: 531,599,722,399,799,422,606,787,881,240,351,872 (35)
abstracting: (3<=pil_d2_n1_2_2)
states: 0
abstracting: (3<=pbl_1_1)
states: 448,344,155,377,082,808,958,243,070,487,439,232 (35)
abstracting: (pi_d1_n1_1_3<=pil_d2_n1_1_3)
states: 459,723,888,683,639,818,178,429,268,011,629,142 (35)
abstracting: (pil_d1_n1_2_1<=pb_d1_n1_3_2)
states: 429,424,056,826,193,669,721,510,254,010,036,212 (35)
abstracting: (pol_d1_n1_2_3<=3)
states: 547,584,122,014,766,883,484,149,027,370,223,872 (35)
abstracting: (pi_d2_n1_2_1<=pb_d2_n2_1_1)
states: 467,392,545,164,982,832,217,705,869,293,226,972 (35)
abstracting: (3<=pb_d2_n2_3_1)
states: 133,527,224,399,384,864,577,713,496,350,793,200 (35)
abstracting: (pi_d1_n1_1_2<=4)
states: 547,584,122,014,766,883,484,149,027,370,223,872 (35)
MC time: 3m 3.206sec
checking: AG [[pil_d2_n1_3_1<=pb_d1_n2_2_2 | [[pi_d2_n1_1_1<=0 | [pol_d1_n1_2_3<=pb_d2_n1_2_3 | ~ [[[~ [[pb_d2_n1_2_1<=po_d2_n1_1_3 & pil_d1_n1_3_3<=pi_d2_n1_3_3]] | ~ [[pil_d2_n1_2_2<=pbl_1_1 & pol_d2_n1_1_3<=3]]] | [[[2<=pb_d1_n2_3_2 | 3<=pb_d1_n1_2_1] | [1<=po_d2_n1_2_3 | pil_d2_n1_2_2<=1]] & [[4<=pb_d2_n1_1_2 & pil_d1_n1_1_3<=2] & ~ [pb_d1_n1_2_3<=1]]]]]]] | [~ [pb_d1_n2_2_1<=pb_d1_n2_2_1] | pb_d1_n2_3_1<=2]]]]
normalized: ~ [E [true U ~ [[pil_d2_n1_3_1<=pb_d1_n2_2_2 | [[pb_d1_n2_3_1<=2 | ~ [pb_d1_n2_2_1<=pb_d1_n2_2_1]] | [pi_d2_n1_1_1<=0 | [pol_d1_n1_2_3<=pb_d2_n1_2_3 | ~ [[[[~ [pb_d1_n1_2_3<=1] & [4<=pb_d2_n1_1_2 & pil_d1_n1_1_3<=2]] & [[1<=po_d2_n1_2_3 | pil_d2_n1_2_2<=1] | [2<=pb_d1_n2_3_2 | 3<=pb_d1_n1_2_1]]] | [~ [[pil_d2_n1_2_2<=pbl_1_1 & pol_d2_n1_1_3<=3]] | ~ [[pb_d2_n1_2_1<=po_d2_n1_1_3 & pil_d1_n1_3_3<=pi_d2_n1_3_3]]]]]]]]]]]]
abstracting: (pil_d1_n1_3_3<=pi_d2_n1_3_3)
states: 351,620,606,256,164,238,954,776,550,146,471,882 (35)
abstracting: (pb_d2_n1_2_1<=po_d2_n1_1_3)
states: 250,978,967,973,337,203,512,061,130,671,118,876 (35)
abstracting: (pol_d2_n1_1_3<=3)
states: 547,584,122,014,766,883,484,149,027,370,223,872 (35)
abstracting: (pil_d2_n1_2_2<=pbl_1_1)
states: 531,599,722,399,799,422,606,787,881,240,351,872 (35)
abstracting: (3<=pb_d1_n1_2_1)
states: 133,527,224,399,384,864,577,713,496,350,793,200 (35)
abstracting: (2<=pb_d1_n2_3_2)
states: 218,424,933,743,865,155,613,441,949,721,114,176 (35)
abstracting: (pil_d2_n1_2_2<=1)
states: 547,584,122,014,766,883,484,149,027,370,223,872 (35)
abstracting: (1<=po_d2_n1_2_3)
states: 219,740,419,793,645,652,130,248,154,752,533,306 (35)
abstracting: (pil_d1_n1_1_3<=2)
states: 547,584,122,014,766,883,484,149,027,370,223,872 (35)
abstracting: (4<=pb_d2_n1_1_2)
states: 79,430,266,161,587,518,192,757,994,076,086,400 (34)
abstracting: (pb_d1_n1_2_3<=1)
states: 329,159,188,270,901,727,870,707,077,649,109,696 (35)
abstracting: (pol_d1_n1_2_3<=pb_d2_n1_2_3)
states: 429,424,056,826,193,669,721,510,254,010,036,212 (35)
abstracting: (pi_d2_n1_1_1<=0)
states: 327,843,702,221,121,231,353,900,872,617,690,566 (35)
abstracting: (pb_d1_n2_2_1<=pb_d1_n2_2_1)
states: 547,584,122,014,766,883,484,149,027,370,223,872 (35)
abstracting: (pb_d1_n2_3_1<=2)
states: 414,056,897,615,382,018,906,435,531,019,430,672 (35)
abstracting: (pil_d2_n1_3_1<=pb_d1_n2_2_2)
states: 429,424,056,826,193,669,721,510,254,010,036,212 (35)
MC time: 2m47.011sec
checking: AG [~ [[[[[[[[po_d1_n1_1_3<=3 & pb_d1_n2_1_1<=pb_d2_n2_2_1] & [2<=pb_d2_n1_3_1 & pb_d1_n1_2_3<=po_d2_n1_3_3]] & pil_d1_n1_1_2<=2] | [[[pb_d1_n2_3_3<=pb_d2_n1_3_2 | 3<=pb_d2_n2_3_1] & [pi_d2_n1_1_2<=pbl_2_3 & pb_d1_n1_1_1<=4]] | [[pb_d1_n2_1_1<=2 & pol_d1_n1_1_2<=po_d1_n1_1_2] | [pil_d2_n1_1_2<=3 & pil_d1_n1_2_3<=pb_d2_n2_3_3]]]] | pb_d1_n1_1_1<=pb_d2_n1_3_1] & [~ [[[pb_d2_n2_2_3<=0 & [1<=pil_d2_n1_1_3 | 2<=pb_d1_n2_1_2]] | ~ [po_d1_n1_1_2<=0]]] & ~ [[[~ [3<=po_d2_n1_3_3] & ~ [pil_d2_n1_1_1<=1]] | pol_d1_n1_3_1<=pb_d2_n1_1_1]]]] & pb_d2_n1_1_2<=pol_d2_n1_2_3]]]
normalized: ~ [E [true U [pb_d2_n1_1_2<=pol_d2_n1_2_3 & [[~ [[pol_d1_n1_3_1<=pb_d2_n1_1_1 | [~ [pil_d2_n1_1_1<=1] & ~ [3<=po_d2_n1_3_3]]]] & ~ [[~ [po_d1_n1_1_2<=0] | [pb_d2_n2_2_3<=0 & [1<=pil_d2_n1_1_3 | 2<=pb_d1_n2_1_2]]]]] & [pb_d1_n1_1_1<=pb_d2_n1_3_1 | [[[[pil_d2_n1_1_2<=3 & pil_d1_n1_2_3<=pb_d2_n2_3_3] | [pb_d1_n2_1_1<=2 & pol_d1_n1_1_2<=po_d1_n1_1_2]] | [[pi_d2_n1_1_2<=pbl_2_3 & pb_d1_n1_1_1<=4] & [pb_d1_n2_3_3<=pb_d2_n1_3_2 | 3<=pb_d2_n2_3_1]]] | [pil_d1_n1_1_2<=2 & [[2<=pb_d2_n1_3_1 & pb_d1_n1_2_3<=po_d2_n1_3_3] & [po_d1_n1_1_3<=3 & pb_d1_n2_1_1<=pb_d2_n2_2_1]]]]]]]]]
abstracting: (pb_d1_n2_1_1<=pb_d2_n2_2_1)
states: 335,504,972,667,630,710,448,683,351,688,929,880 (35)
abstracting: (po_d1_n1_1_3<=3)
states: 547,584,122,014,766,883,484,149,027,370,223,872 (35)
abstracting: (pb_d1_n1_2_3<=po_d2_n1_3_3)
states: 250,978,967,973,337,203,512,061,130,671,118,876 (35)
abstracting: (2<=pb_d2_n1_3_1)
states: 218,424,933,743,865,155,613,441,949,721,114,176 (35)
abstracting: (pil_d1_n1_1_2<=2)
states: 547,584,122,014,766,883,484,149,027,370,223,872 (35)
abstracting: (3<=pb_d2_n2_3_1)
states: 133,527,224,399,384,864,577,713,496,350,793,200 (35)
abstracting: (pb_d1_n2_3_3<=pb_d2_n1_3_2)
states: 335,504,972,667,630,710,448,683,351,688,929,880 (35)
abstracting: (pb_d1_n1_1_1<=4)
states: 501,883,083,725,050,869,259,545,203,374,755,952 (35)
abstracting: (pi_d2_n1_1_2<=pbl_2_3)
states: 537,527,339,253,669,248,945,162,971,875,193,472 (35)
abstracting: (pol_d1_n1_1_2<=po_d1_n1_1_2)
states: 219,740,419,793,645,652,130,248,154,752,533,306 (35)
abstracting: (pb_d1_n2_1_1<=2)
states: 414,056,897,615,382,018,906,435,531,019,430,672 (35)
abstracting: (pil_d1_n1_2_3<=pb_d2_n2_3_3)
states: 429,424,056,826,193,669,721,510,254,010,036,212 (35)
abstracting: (pil_d2_n1_1_2<=3)
states: 547,584,122,014,766,883,484,149,027,370,223,872 (35)
abstracting: (pb_d1_n1_1_1<=pb_d2_n1_3_1)
states: 335,504,972,667,630,710,448,683,351,688,929,880 (35)
abstracting: (2<=pb_d1_n2_1_2)
states: 218,424,933,743,865,155,613,441,949,721,114,176 (35)
abstracting: (1<=pil_d2_n1_1_3)
states: 327,843,702,221,121,231,353,900,872,617,690,566 (35)
abstracting: (pb_d2_n2_2_3<=0)
states: 198,351,642,038,357,265,029,081,931,437,184,560 (35)
abstracting: (po_d1_n1_1_2<=0)
states: 327,843,702,221,121,231,353,900,872,617,690,566 (35)
abstracting: (3<=po_d2_n1_3_3)
states: 0
abstracting: (pil_d2_n1_1_1<=1)
states: 547,584,122,014,766,883,484,149,027,370,223,872 (35)
abstracting: (pol_d1_n1_3_1<=pb_d2_n1_1_1)
states: 429,424,056,826,193,669,721,510,254,010,036,212 (35)
abstracting: (pb_d2_n1_1_2<=pol_d2_n1_2_3)
states: 276,531,862,335,921,789,387,727,878,415,175,380 (35)
MC time: 2m32.205sec
checking: AG [~ [[[[[[[[[4<=pol_d2_n1_1_3 & pil_d2_n1_3_3<=1] & ~ [po_d2_n1_3_1<=2]] & 3<=pol_d1_n1_1_3] | 3<=pb_d2_n1_1_1] & [~ [pil_d2_n1_1_3<=pi_d1_n1_1_3] & [3<=pb_d1_n1_2_3 & ~ [3<=pil_d2_n1_2_2]]]] | 4<=pbl_2_3] | [~ [[~ [2<=po_d1_n1_3_3] | ~ [[pol_d2_n1_1_3<=3 | 4<=pil_d2_n1_3_2]]]] | ~ [po_d2_n1_3_2<=4]]] & [[[pb_d2_n1_2_3<=2 | [po_d2_n1_3_2<=po_d1_n1_3_2 | [pil_d2_n1_1_1<=0 | [~ [pb_d2_n1_3_1<=3] & pil_d1_n1_3_3<=4]]]] & 3<=pil_d1_n1_1_2] | [[[[~ [[pil_d1_n1_3_2<=4 | pi_d2_n1_3_1<=4]] | [[pi_d1_n1_3_3<=3 & 2<=pi_d1_n1_1_2] & po_d1_n1_1_2<=4]] | [[~ [3<=pil_d2_n1_3_1] | [po_d2_n1_3_2<=0 | pb_d1_n2_2_3<=2]] & [4<=pb_d2_n1_2_3 | [pol_d1_n1_3_1<=3 | pb_d2_n2_3_2<=4]]]] & 3<=pil_d1_n1_3_1] | 3<=pil_d2_n1_2_1]]]]]
normalized: ~ [E [true U [[[3<=pil_d2_n1_2_1 | [3<=pil_d1_n1_3_1 & [[[4<=pb_d2_n1_2_3 | [pol_d1_n1_3_1<=3 | pb_d2_n2_3_2<=4]] & [[po_d2_n1_3_2<=0 | pb_d1_n2_2_3<=2] | ~ [3<=pil_d2_n1_3_1]]] | [[po_d1_n1_1_2<=4 & [pi_d1_n1_3_3<=3 & 2<=pi_d1_n1_1_2]] | ~ [[pil_d1_n1_3_2<=4 | pi_d2_n1_3_1<=4]]]]]] | [3<=pil_d1_n1_1_2 & [pb_d2_n1_2_3<=2 | [po_d2_n1_3_2<=po_d1_n1_3_2 | [pil_d2_n1_1_1<=0 | [pil_d1_n1_3_3<=4 & ~ [pb_d2_n1_3_1<=3]]]]]]] & [[~ [po_d2_n1_3_2<=4] | ~ [[~ [[pol_d2_n1_1_3<=3 | 4<=pil_d2_n1_3_2]] | ~ [2<=po_d1_n1_3_3]]]] | [4<=pbl_2_3 | [[[3<=pb_d1_n1_2_3 & ~ [3<=pil_d2_n1_2_2]] & ~ [pil_d2_n1_1_3<=pi_d1_n1_1_3]] & [3<=pb_d2_n1_1_1 | [3<=pol_d1_n1_1_3 & [~ [po_d2_n1_3_1<=2] & [4<=pol_d2_n1_1_3 & pil_d2_n1_3_3<=1]]]]]]]]]]
abstracting: (pil_d2_n1_3_3<=1)
states: 547,584,122,014,766,883,484,149,027,370,223,872 (35)
abstracting: (4<=pol_d2_n1_1_3)
states: 0
abstracting: (po_d2_n1_3_1<=2)
states: 547,584,122,014,766,883,484,149,027,370,223,872 (35)
abstracting: (3<=pol_d1_n1_1_3)
states: 0
abstracting: (3<=pb_d2_n1_1_1)
states: 133,527,224,399,384,864,577,713,496,350,793,200 (35)
abstracting: (pil_d2_n1_1_3<=pi_d1_n1_1_3)
states: 351,620,606,256,164,238,954,776,550,146,471,882 (35)
abstracting: (3<=pil_d2_n1_2_2)
states: 0
abstracting: (3<=pb_d1_n1_2_3)
states: 133,527,224,399,384,864,577,713,496,350,793,200 (35)
abstracting: (4<=pbl_2_3)
states: 400,489,272,142,604,966,895,528,813,812,072,832 (35)
abstracting: (2<=po_d1_n1_3_3)
states: 0
abstracting: (4<=pil_d2_n1_3_2)
states: 0
abstracting: (pol_d2_n1_1_3<=3)
states: 547,584,122,014,766,883,484,149,027,370,223,872 (35)
abstracting: (po_d2_n1_3_2<=4)
states: 547,584,122,014,766,883,484,149,027,370,223,872 (35)
abstracting: (pb_d2_n1_3_1<=3)
states: 468,153,855,853,179,365,291,391,033,294,137,472 (35)
abstracting: (pil_d1_n1_3_3<=4)
states: 547,584,122,014,766,883,484,149,027,370,223,872 (35)
abstracting: (pil_d2_n1_1_1<=0)
states: 219,740,419,793,645,652,130,248,154,752,533,306 (35)
abstracting: (po_d2_n1_3_2<=po_d1_n1_3_2)
states: 415,703,935,552,248,296,659,620,631,976,285,296 (35)
abstracting: (pb_d2_n1_2_3<=2)
states: 414,056,897,615,382,018,906,435,531,019,430,672 (35)
abstracting: (3<=pil_d1_n1_1_2)
states: 0
abstracting: (pi_d2_n1_3_1<=4)
states: 547,584,122,014,766,883,484,149,027,370,223,872 (35)
abstracting: (pil_d1_n1_3_2<=4)
states: 547,584,122,014,766,883,484,149,027,370,223,872 (35)
abstracting: (2<=pi_d1_n1_1_2)
states: 0
abstracting: (pi_d1_n1_3_3<=3)
states: 547,584,122,014,766,883,484,149,027,370,223,872 (35)
abstracting: (po_d1_n1_1_2<=4)
states: 547,584,122,014,766,883,484,149,027,370,223,872 (35)
abstracting: (3<=pil_d2_n1_3_1)
states: 0
abstracting: (pb_d1_n2_2_3<=2)
states: 414,056,897,615,382,018,906,435,531,019,430,672 (35)
abstracting: (po_d2_n1_3_2<=0)
states: 327,843,702,221,121,231,353,900,872,617,690,566 (35)
abstracting: (pb_d2_n2_3_2<=4)
states: 501,883,083,725,050,869,259,545,203,374,755,952 (35)
abstracting: (pol_d1_n1_3_1<=3)
states: 547,584,122,014,766,883,484,149,027,370,223,872 (35)
abstracting: (4<=pb_d2_n1_2_3)
states: 79,430,266,161,587,518,192,757,994,076,086,400 (34)
abstracting: (3<=pil_d1_n1_3_1)
states: 0
abstracting: (3<=pil_d2_n1_2_1)
states: 0
-> the formula is TRUE
FORMULA HypertorusGrid-PT-d2k3p2b04-ReachabilityCardinality-00 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.744sec
checking: EF [[[[[pil_d1_n1_2_2<=po_d1_n1_2_3 | [[pbl_2_2<=pi_d2_n1_1_2 & [pi_d2_n1_2_3<=1 | ~ [1<=pil_d1_n1_3_1]]] & ~ [[[pil_d1_n1_1_3<=pil_d1_n1_2_3 & 1<=pil_d1_n1_3_2] | ~ [3<=pol_d1_n1_2_3]]]]] & [[[~ [pb_d2_n2_2_3<=pol_d2_n1_2_1] & [~ [pil_d1_n1_2_2<=0] & pil_d2_n1_1_1<=pol_d1_n1_1_2]] & [~ [[[4<=pi_d1_n1_2_2 | pol_d1_n1_3_1<=po_d1_n1_3_2] | [pb_d1_n1_1_1<=pb_d2_n1_1_3 & 3<=pol_d1_n1_3_2]]] | ~ [3<=pb_d1_n2_1_1]]] | [pi_d1_n1_3_1<=4 | ~ [pi_d1_n1_1_2<=2]]]] | [[[~ [3<=po_d1_n1_2_1] | ~ [4<=pil_d1_n1_3_3]] | pbl_2_2<=pil_d2_n1_2_1] | 2<=pil_d2_n1_2_3]] & [pol_d1_n1_1_1<=pol_d2_n1_2_1 & ~ [[[~ [[[pil_d2_n1_3_3<=3 & 3<=pi_d1_n1_2_1] & ~ [pb_d1_n2_3_1<=0]]] | [[pil_d1_n1_2_3<=pil_d1_n1_2_1 | ~ [pol_d1_n1_3_2<=pil_d2_n1_2_2]] | [pb_d1_n1_3_2<=2 | ~ [pb_d2_n2_3_3<=pi_d1_n1_2_3]]]] | 2<=pb_d2_n2_2_1]]]]]
normalized: E [true U [[pol_d1_n1_1_1<=pol_d2_n1_2_1 & ~ [[2<=pb_d2_n2_2_1 | [[[pb_d1_n1_3_2<=2 | ~ [pb_d2_n2_3_3<=pi_d1_n1_2_3]] | [pil_d1_n1_2_3<=pil_d1_n1_2_1 | ~ [pol_d1_n1_3_2<=pil_d2_n1_2_2]]] | ~ [[~ [pb_d1_n2_3_1<=0] & [pil_d2_n1_3_3<=3 & 3<=pi_d1_n1_2_1]]]]]]] & [[2<=pil_d2_n1_2_3 | [pbl_2_2<=pil_d2_n1_2_1 | [~ [4<=pil_d1_n1_3_3] | ~ [3<=po_d1_n1_2_1]]]] | [[[pi_d1_n1_3_1<=4 | ~ [pi_d1_n1_1_2<=2]] | [[~ [3<=pb_d1_n2_1_1] | ~ [[[pb_d1_n1_1_1<=pb_d2_n1_1_3 & 3<=pol_d1_n1_3_2] | [4<=pi_d1_n1_2_2 | pol_d1_n1_3_1<=po_d1_n1_3_2]]]] & [[pil_d2_n1_1_1<=pol_d1_n1_1_2 & ~ [pil_d1_n1_2_2<=0]] & ~ [pb_d2_n2_2_3<=pol_d2_n1_2_1]]]] & [pil_d1_n1_2_2<=po_d1_n1_2_3 | [~ [[~ [3<=pol_d1_n1_2_3] | [pil_d1_n1_1_3<=pil_d1_n1_2_3 & 1<=pil_d1_n1_3_2]]] & [pbl_2_2<=pi_d2_n1_1_2 & [pi_d2_n1_2_3<=1 | ~ [1<=pil_d1_n1_3_1]]]]]]]]]
abstracting: (1<=pil_d1_n1_3_1)
states: 327,843,702,221,121,231,353,900,872,617,690,566 (35)
abstracting: (pi_d2_n1_2_3<=1)
states: 547,584,122,014,766,883,484,149,027,370,223,872 (35)
abstracting: (pbl_2_2<=pi_d2_n1_1_2)
states: 38,828,702,068,039,064,118,236,118,528,800,000 (34)
abstracting: (1<=pil_d1_n1_3_2)
states: 327,843,702,221,121,231,353,900,872,617,690,566 (35)
abstracting: (pil_d1_n1_1_3<=pil_d1_n1_2_3)
states: 415,703,935,552,248,296,659,620,631,976,285,296 (35)
abstracting: (3<=pol_d1_n1_2_3)
states: 0
abstracting: (pil_d1_n1_2_2<=po_d1_n1_2_3)
states: 351,620,606,256,164,238,954,776,550,146,471,882 (35)
abstracting: (pb_d2_n2_2_3<=pol_d2_n1_2_1)
states: 276,531,862,335,921,789,387,727,878,415,175,380 (35)
abstracting: (pil_d1_n1_2_2<=0)
states: 219,740,419,793,645,652,130,248,154,752,533,306 (35)
abstracting: (pil_d2_n1_1_1<=pol_d1_n1_1_2)
states: 415,703,935,552,248,296,659,620,631,976,285,296 (35)
abstracting: (pol_d1_n1_3_1<=po_d1_n1_3_2)
states: 351,620,606,256,164,238,954,776,550,146,471,882 (35)
abstracting: (4<=pi_d1_n1_2_2)
states: 0
abstracting: (3<=pol_d1_n1_3_2)
states: 0
abstracting: (pb_d1_n1_1_1<=pb_d2_n1_1_3)
states: 335,504,972,667,630,710,448,683,351,688,929,880 (35)
abstracting: (3<=pb_d1_n2_1_1)
states: 133,527,224,399,384,864,577,713,496,350,793,200 (35)
abstracting: (pi_d1_n1_1_2<=2)
states: 547,584,122,014,766,883,484,149,027,370,223,872 (35)
abstracting: (pi_d1_n1_3_1<=4)
states: 547,584,122,014,766,883,484,149,027,370,223,872 (35)
abstracting: (3<=po_d1_n1_2_1)
states: 0
abstracting: (4<=pil_d1_n1_3_3)
states: 0
abstracting: (pbl_2_2<=pil_d2_n1_2_1)
states: 46,135,145,847,101,442,841,347,464,118,306,560 (34)
abstracting: (2<=pil_d2_n1_2_3)
states: 0
abstracting: (3<=pi_d1_n1_2_1)
states: 0
abstracting: (pil_d2_n1_3_3<=3)
states: 547,584,122,014,766,883,484,149,027,370,223,872 (35)
abstracting: (pb_d1_n2_3_1<=0)
states: 198,351,642,038,357,265,029,081,931,437,184,560 (35)
abstracting: (pol_d1_n1_3_2<=pil_d2_n1_2_2)
states: 415,703,935,552,248,296,659,620,631,976,285,296 (35)
abstracting: (pil_d1_n1_2_3<=pil_d1_n1_2_1)
states: 415,703,935,552,248,296,659,620,631,976,285,296 (35)
abstracting: (pb_d2_n2_3_3<=pi_d1_n1_2_3)
states: 250,978,967,973,337,203,512,061,130,671,118,876 (35)
abstracting: (pb_d1_n1_3_2<=2)
states: 414,056,897,615,382,018,906,435,531,019,430,672 (35)
abstracting: (2<=pb_d2_n2_2_1)
states: 218,424,933,743,865,155,613,441,949,721,114,176 (35)
abstracting: (pol_d1_n1_1_1<=pol_d2_n1_2_1)
states: 415,703,935,552,248,296,659,620,631,976,285,296 (35)
-> the formula is FALSE
FORMULA HypertorusGrid-PT-d2k3p2b04-ReachabilityCardinality-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 2.352sec
checking: EF [[~ [[pb_d1_n2_1_3<=3 | pbl_1_3<=pb_d2_n2_2_1]] & [po_d2_n1_3_2<=pb_d1_n1_2_2 | [[~ [[[pol_d2_n1_3_1<=2 | [[2<=pil_d2_n1_3_2 | pb_d2_n1_3_1<=pb_d1_n2_2_3] | [pil_d1_n1_1_1<=po_d2_n1_1_1 & pol_d1_n1_2_3<=4]]] | 4<=po_d1_n1_2_2]] | [[[[~ [pb_d2_n1_2_1<=po_d1_n1_3_2] & [pil_d2_n1_1_1<=3 & pil_d2_n1_1_3<=1]] & [~ [pol_d2_n1_1_1<=3] & [1<=pol_d1_n1_3_2 | pb_d1_n2_2_2<=3]]] | pb_d1_n2_2_3<=pi_d2_n1_2_3] & [[po_d2_n1_1_1<=3 | [[1<=pb_d2_n2_2_1 & pb_d1_n1_3_3<=4] & [1<=pb_d1_n2_2_1 & pol_d2_n1_1_2<=pol_d2_n1_1_1]]] | [~ [pol_d1_n1_1_2<=po_d2_n1_1_1] | [[pi_d2_n1_1_2<=po_d1_n1_1_1 | pb_d2_n2_1_2<=pi_d1_n1_1_1] | ~ [4<=pb_d2_n2_3_3]]]]]] & [[[[[pol_d2_n1_3_2<=pol_d1_n1_2_3 & 2<=pb_d2_n2_3_2] & [pb_d2_n1_3_1<=3 | ~ [1<=pb_d2_n2_2_1]]] & 1<=pi_d2_n1_1_3] & ~ [pb_d1_n1_1_1<=3]] & 1<=pi_d1_n1_3_2]]]]]
normalized: E [true U [[po_d2_n1_3_2<=pb_d1_n1_2_2 | [[1<=pi_d1_n1_3_2 & [~ [pb_d1_n1_1_1<=3] & [1<=pi_d2_n1_1_3 & [[pb_d2_n1_3_1<=3 | ~ [1<=pb_d2_n2_2_1]] & [pol_d2_n1_3_2<=pol_d1_n1_2_3 & 2<=pb_d2_n2_3_2]]]]] & [[[[[~ [4<=pb_d2_n2_3_3] | [pi_d2_n1_1_2<=po_d1_n1_1_1 | pb_d2_n2_1_2<=pi_d1_n1_1_1]] | ~ [pol_d1_n1_1_2<=po_d2_n1_1_1]] | [po_d2_n1_1_1<=3 | [[1<=pb_d1_n2_2_1 & pol_d2_n1_1_2<=pol_d2_n1_1_1] & [1<=pb_d2_n2_2_1 & pb_d1_n1_3_3<=4]]]] & [pb_d1_n2_2_3<=pi_d2_n1_2_3 | [[[1<=pol_d1_n1_3_2 | pb_d1_n2_2_2<=3] & ~ [pol_d2_n1_1_1<=3]] & [[pil_d2_n1_1_1<=3 & pil_d2_n1_1_3<=1] & ~ [pb_d2_n1_2_1<=po_d1_n1_3_2]]]]] | ~ [[4<=po_d1_n1_2_2 | [pol_d2_n1_3_1<=2 | [[pil_d1_n1_1_1<=po_d2_n1_1_1 & pol_d1_n1_2_3<=4] | [2<=pil_d2_n1_3_2 | pb_d2_n1_3_1<=pb_d1_n2_2_3]]]]]]]] & ~ [[pb_d1_n2_1_3<=3 | pbl_1_3<=pb_d2_n2_2_1]]]]
abstracting: (pbl_1_3<=pb_d2_n2_2_1)
states: 90,499,026,748,336,235,471,243,276,993,938,560 (34)
abstracting: (pb_d1_n2_1_3<=3)
states: 468,153,855,853,179,365,291,391,033,294,137,472 (35)
abstracting: (pb_d2_n1_3_1<=pb_d1_n2_2_3)
states: 335,504,972,667,630,710,448,683,351,688,929,880 (35)
abstracting: (2<=pil_d2_n1_3_2)
states: 0
abstracting: (pol_d1_n1_2_3<=4)
states: 547,584,122,014,766,883,484,149,027,370,223,872 (35)
abstracting: (pil_d1_n1_1_1<=po_d2_n1_1_1)
states: 351,620,606,256,164,238,954,776,550,146,471,882 (35)
abstracting: (pol_d2_n1_3_1<=2)
states: 547,584,122,014,766,883,484,149,027,370,223,872 (35)
abstracting: (4<=po_d1_n1_2_2)
states: 0
abstracting: (pb_d2_n1_2_1<=po_d1_n1_3_2)
states: 250,978,967,973,337,203,512,061,130,671,118,876 (35)
abstracting: (pil_d2_n1_1_3<=1)
states: 547,584,122,014,766,883,484,149,027,370,223,872 (35)
abstracting: (pil_d2_n1_1_1<=3)
states: 547,584,122,014,766,883,484,149,027,370,223,872 (35)
abstracting: (pol_d2_n1_1_1<=3)
states: 547,584,122,014,766,883,484,149,027,370,223,872 (35)
abstracting: (pb_d1_n2_2_2<=3)
states: 468,153,855,853,179,365,291,391,033,294,137,472 (35)
abstracting: (1<=pol_d1_n1_3_2)
states: 327,843,702,221,121,231,353,900,872,617,690,566 (35)
abstracting: (pb_d1_n2_2_3<=pi_d2_n1_2_3)
states: 250,978,967,973,337,203,512,061,130,671,118,876 (35)
abstracting: (pb_d1_n1_3_3<=4)
states: 501,883,083,725,050,869,259,545,203,374,755,952 (35)
abstracting: (1<=pb_d2_n2_2_1)
states: 349,232,479,976,409,618,455,067,095,933,039,312 (35)
abstracting: (pol_d2_n1_1_2<=pol_d2_n1_1_1)
states: 415,703,935,552,248,296,659,620,631,976,285,296 (35)
abstracting: (1<=pb_d1_n2_2_1)
states: 349,232,479,976,409,618,455,067,095,933,039,312 (35)
abstracting: (po_d2_n1_1_1<=3)
states: 547,584,122,014,766,883,484,149,027,370,223,872 (35)
abstracting: (pol_d1_n1_1_2<=po_d2_n1_1_1)
states: 351,620,606,256,164,238,954,776,550,146,471,882 (35)
abstracting: (pb_d2_n2_1_2<=pi_d1_n1_1_1)
states: 250,978,967,973,337,203,512,061,130,671,118,876 (35)
abstracting: (pi_d2_n1_1_2<=po_d1_n1_1_1)
states: 415,703,935,552,248,296,659,620,631,976,285,296 (35)
abstracting: (4<=pb_d2_n2_3_3)
states: 79,430,266,161,587,518,192,757,994,076,086,400 (34)
abstracting: (2<=pb_d2_n2_3_2)
states: 218,424,933,743,865,155,613,441,949,721,114,176 (35)
abstracting: (pol_d2_n1_3_2<=pol_d1_n1_2_3)
states: 415,703,935,552,248,296,659,620,631,976,285,296 (35)
abstracting: (1<=pb_d2_n2_2_1)
states: 349,232,479,976,409,618,455,067,095,933,039,312 (35)
abstracting: (pb_d2_n1_3_1<=3)
states: 468,153,855,853,179,365,291,391,033,294,137,472 (35)
abstracting: (1<=pi_d2_n1_1_3)
states: 219,740,419,793,645,652,130,248,154,752,533,306 (35)
abstracting: (pb_d1_n1_1_1<=3)
states: 468,153,855,853,179,365,291,391,033,294,137,472 (35)
abstracting: (1<=pi_d1_n1_3_2)
states: 219,740,419,793,645,652,130,248,154,752,533,306 (35)
abstracting: (po_d2_n1_3_2<=pb_d1_n1_2_2)
states: 467,392,545,164,982,832,217,705,869,293,226,972 (35)
before gc: list nodes free: 24310597
after gc: idd nodes used:2684836, unused:61315164; list nodes free:458865210
TIME LIMIT: Killed by timeout after 3600 seconds
MemTotal: 16393232 kB
MemFree: 3185204 kB
After kill :
MemTotal: 16393232 kB
MemFree: 16105352 kB
BK_TIME_CONFINEMENT_REACHED
--------------------
content from stderr:
+ ulimit -s 65536
+ [[ -z '' ]]
+ export LTSMIN_MEM_SIZE=8589934592
+ LTSMIN_MEM_SIZE=8589934592
+ export PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ export LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
+ LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
++ perl -pe 's/.*\.//g'
++ sed s/.jar//
++ ls /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/plugins/fr.lip6.move.gal.application.pnmcc_1.0.0.202303021504.jar
+ VERSION=202303021504
+ echo 'Running Version 202303021504'
+ /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/its-tools -pnfolder /home/mcc/execution -examination ReachabilityCardinality -timeout 360 -rebuildPNML
check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.000sec
57670 21119 64358 22045 38521 38631 27295
iterations count:794875 (5519), effective:64725 (449)
initing FirstDep: 0m 0.000sec
sat_reach.icc:155: Timeout: after 209 sec
sat_reach.icc:155: Timeout: after 194 sec
sat_reach.icc:155: Timeout: after 180 sec
sat_reach.icc:155: Timeout: after 167 sec
sat_reach.icc:155: Timeout: after 167 sec
sat_reach.icc:155: Timeout: after 182 sec
sat_reach.icc:155: Timeout: after 166 sec
sat_reach.icc:155: Timeout: after 151 sec
sat_reach.icc:155: Timeout: after 167 sec
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="HypertorusGrid-PT-d2k3p2b04"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="marciexred"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marciexred"
echo " Input is HypertorusGrid-PT-d2k3p2b04, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r234-tall-167856419700046"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/HypertorusGrid-PT-d2k3p2b04.tgz
mv HypertorusGrid-PT-d2k3p2b04 execution
cd execution
if [ "ReachabilityCardinality" = "ReachabilityDeadlock" ] || [ "ReachabilityCardinality" = "UpperBounds" ] || [ "ReachabilityCardinality" = "QuasiLiveness" ] || [ "ReachabilityCardinality" = "StableMarking" ] || [ "ReachabilityCardinality" = "Liveness" ] || [ "ReachabilityCardinality" = "OneSafe" ] || [ "ReachabilityCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "ReachabilityCardinality" = "ReachabilityDeadlock" ] || [ "ReachabilityCardinality" = "QuasiLiveness" ] || [ "ReachabilityCardinality" = "StableMarking" ] || [ "ReachabilityCardinality" = "Liveness" ] || [ "ReachabilityCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME ReachabilityCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;