About the Execution of Marcie for LamportFastMutEx-PT-3
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
5876.527 | 18856.00 | 19000.00 | 50.00 | TTFFFFFTFFTTTTTF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fkordon/mcc2023-input.r225-tall-167856407500401.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2023-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
................................
=====================================================================
Generated by BenchKit 2-5348
Executing tool marcie
Input is LamportFastMutEx-PT-3, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r225-tall-167856407500401
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 928K
-rw-r--r-- 1 mcc users 13K Feb 25 13:48 CTLCardinality.txt
-rw-r--r-- 1 mcc users 95K Feb 25 13:48 CTLCardinality.xml
-rw-r--r-- 1 mcc users 13K Feb 25 13:46 CTLFireability.txt
-rw-r--r-- 1 mcc users 78K Feb 25 13:46 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K Jan 29 11:40 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.6K Jan 29 11:40 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 8.3K Feb 25 16:20 LTLCardinality.txt
-rw-r--r-- 1 mcc users 41K Feb 25 16:20 LTLCardinality.xml
-rw-r--r-- 1 mcc users 5.8K Feb 25 16:20 LTLFireability.txt
-rw-r--r-- 1 mcc users 29K Feb 25 16:20 LTLFireability.xml
-rw-r--r-- 1 mcc users 25K Feb 25 13:51 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 197K Feb 25 13:51 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 39K Feb 25 13:50 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 233K Feb 25 13:50 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 2.3K Feb 25 16:20 UpperBounds.txt
-rw-r--r-- 1 mcc users 5.1K Feb 25 16:20 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Mar 5 18:22 equiv_col
-rw-r--r-- 1 mcc users 2 Mar 5 18:22 instance
-rw-r--r-- 1 mcc users 6 Mar 5 18:22 iscolored
-rw-r--r-- 1 mcc users 77K Mar 5 18:22 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME LamportFastMutEx-PT-3-CTLCardinality-00
FORMULA_NAME LamportFastMutEx-PT-3-CTLCardinality-01
FORMULA_NAME LamportFastMutEx-PT-3-CTLCardinality-02
FORMULA_NAME LamportFastMutEx-PT-3-CTLCardinality-03
FORMULA_NAME LamportFastMutEx-PT-3-CTLCardinality-04
FORMULA_NAME LamportFastMutEx-PT-3-CTLCardinality-05
FORMULA_NAME LamportFastMutEx-PT-3-CTLCardinality-06
FORMULA_NAME LamportFastMutEx-PT-3-CTLCardinality-07
FORMULA_NAME LamportFastMutEx-PT-3-CTLCardinality-08
FORMULA_NAME LamportFastMutEx-PT-3-CTLCardinality-09
FORMULA_NAME LamportFastMutEx-PT-3-CTLCardinality-10
FORMULA_NAME LamportFastMutEx-PT-3-CTLCardinality-11
FORMULA_NAME LamportFastMutEx-PT-3-CTLCardinality-12
FORMULA_NAME LamportFastMutEx-PT-3-CTLCardinality-13
FORMULA_NAME LamportFastMutEx-PT-3-CTLCardinality-14
FORMULA_NAME LamportFastMutEx-PT-3-CTLCardinality-15
=== Now, execution of the tool begins
BK_START 1678622466644
bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marcie
BK_EXAMINATION=CTLCardinality
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=LamportFastMutEx-PT-3
Not applying reductions.
Model is PT
CTLCardinality PT
timeout --kill-after=10s --signal=SIGINT 1m for testing only
Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: /home/mcc/BenchKit/bin//../marcie/bin/marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --memory=6 --mcc-mode
parse successfull
net created successfully
Net: LamportFastMutEx_PT_3
(NrP: 100 NrTr: 156 NrArc: 664)
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.001sec
net check time: 0m 0.000sec
init dd package: 0m 2.855sec
RS generation: 0m 0.600sec
-> reachability set: #nodes 6363 (6.4e+03) #states 19,742 (4)
starting MCC model checker
--------------------------
checking: A [EX [AG [AX [EF [P_ifxi_10_3<=1]]]] U EX [AG [AF [EF [1<=P_await_13_3]]]]]
normalized: [~ [EG [~ [EX [~ [E [true U EG [~ [E [true U 1<=P_await_13_3]]]]]]]]] & ~ [E [~ [EX [~ [E [true U EG [~ [E [true U 1<=P_await_13_3]]]]]]] U [~ [EX [~ [E [true U EX [~ [E [true U P_ifxi_10_3<=1]]]]]]] & ~ [EX [~ [E [true U EG [~ [E [true U 1<=P_await_13_3]]]]]]]]]]]
abstracting: (1<=P_await_13_3)
states: 5,880 (3)
.
EG iterations: 1
.abstracting: (P_ifxi_10_3<=1)
states: 19,742 (4)
..abstracting: (1<=P_await_13_3)
states: 5,880 (3)
.
EG iterations: 1
.abstracting: (1<=P_await_13_3)
states: 5,880 (3)
.
EG iterations: 1
..
EG iterations: 1
-> the formula is TRUE
FORMULA LamportFastMutEx-PT-3-CTLCardinality-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 1.234sec
checking: [EF [AG [~ [EG [1<=P_fordo_12_1]]]] & [EF [EF [EG [~ [x_0<=0]]]] | EX [P_ifxi_10_2<=P_wait_3_1]]]
normalized: [[EX [P_ifxi_10_2<=P_wait_3_1] | E [true U E [true U EG [~ [x_0<=0]]]]] & E [true U ~ [E [true U EG [1<=P_fordo_12_1]]]]]
abstracting: (1<=P_fordo_12_1)
states: 854
...............
EG iterations: 15
abstracting: (x_0<=0)
states: 19,734 (4)
.....
EG iterations: 5
abstracting: (P_ifxi_10_2<=P_wait_3_1)
states: 18,542 (4)
.-> the formula is FALSE
FORMULA LamportFastMutEx-PT-3-CTLCardinality-09 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 1.329sec
checking: AG [EG [[EF [~ [P_setx_3_1<=0]] | [AF [AG [1<=P_setbi_11_1]] | ~ [[EF [1<=P_setbi_24_0] | ~ [P_setbi_5_1<=1]]]]]]]
normalized: ~ [E [true U ~ [EG [[[~ [EG [E [true U ~ [1<=P_setbi_11_1]]]] | ~ [[~ [P_setbi_5_1<=1] | E [true U 1<=P_setbi_24_0]]]] | E [true U ~ [P_setx_3_1<=0]]]]]]]
abstracting: (P_setx_3_1<=0)
states: 18,338 (4)
abstracting: (1<=P_setbi_24_0)
states: 0
abstracting: (P_setbi_5_1<=1)
states: 19,742 (4)
abstracting: (1<=P_setbi_11_1)
states: 774
EG iterations: 0
EG iterations: 0
-> the formula is TRUE
FORMULA LamportFastMutEx-PT-3-CTLCardinality-14 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.688sec
checking: AG [~ [[AX [1<=P_wait_2_2] & [EX [[A [1<=P_done_3_3 U 1<=P_await_13_3] | EF [P_setbi_24_2<=1]]] & 1<=P_wait_1_1]]]]
normalized: ~ [E [true U [[1<=P_wait_1_1 & EX [[E [true U P_setbi_24_2<=1] | [~ [EG [~ [1<=P_await_13_3]]] & ~ [E [~ [1<=P_await_13_3] U [~ [1<=P_done_3_3] & ~ [1<=P_await_13_3]]]]]]]] & ~ [EX [~ [1<=P_wait_2_2]]]]]]
abstracting: (1<=P_wait_2_2)
states: 2,940 (3)
.abstracting: (1<=P_await_13_3)
states: 5,880 (3)
abstracting: (1<=P_done_3_3)
states: 2,940 (3)
abstracting: (1<=P_await_13_3)
states: 5,880 (3)
abstracting: (1<=P_await_13_3)
states: 5,880 (3)
..................
EG iterations: 18
abstracting: (P_setbi_24_2<=1)
states: 19,742 (4)
.abstracting: (1<=P_wait_1_1)
states: 2,940 (3)
-> the formula is TRUE
FORMULA LamportFastMutEx-PT-3-CTLCardinality-10 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.446sec
checking: AG [EF [A [P_b_2_true<=0 U AF [[P_fordo_12_1<=P_wait_0_2 & P_done_1_1<=P_wait_1_2]]]]]
normalized: ~ [E [true U ~ [E [true U [~ [EG [EG [~ [[P_fordo_12_1<=P_wait_0_2 & P_done_1_1<=P_wait_1_2]]]]] & ~ [E [EG [~ [[P_fordo_12_1<=P_wait_0_2 & P_done_1_1<=P_wait_1_2]]] U [~ [P_b_2_true<=0] & EG [~ [[P_fordo_12_1<=P_wait_0_2 & P_done_1_1<=P_wait_1_2]]]]]]]]]]]
abstracting: (P_done_1_1<=P_wait_1_2)
states: 18,379 (4)
abstracting: (P_fordo_12_1<=P_wait_0_2)
states: 18,888 (4)
...............
EG iterations: 15
abstracting: (P_b_2_true<=0)
states: 10,628 (4)
abstracting: (P_done_1_1<=P_wait_1_2)
states: 18,379 (4)
abstracting: (P_fordo_12_1<=P_wait_0_2)
states: 18,888 (4)
...............
EG iterations: 15
abstracting: (P_done_1_1<=P_wait_1_2)
states: 18,379 (4)
abstracting: (P_fordo_12_1<=P_wait_0_2)
states: 18,888 (4)
...............
EG iterations: 15
.
EG iterations: 1
-> the formula is TRUE
FORMULA LamportFastMutEx-PT-3-CTLCardinality-13 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.379sec
checking: EF [AF [[A [P_await_13_3<=P_done_2_3 U [P_await_13_3<=P_b_3_true | AG [P_wait_2_0<=1]]] & ~ [EF [AX [P_b_2_false<=P_ify0_4_0]]]]]]
normalized: E [true U ~ [EG [~ [[~ [E [true U ~ [EX [~ [P_b_2_false<=P_ify0_4_0]]]]] & [~ [EG [~ [[P_await_13_3<=P_b_3_true | ~ [E [true U ~ [P_wait_2_0<=1]]]]]]] & ~ [E [~ [[P_await_13_3<=P_b_3_true | ~ [E [true U ~ [P_wait_2_0<=1]]]]] U [~ [P_await_13_3<=P_done_2_3] & ~ [[P_await_13_3<=P_b_3_true | ~ [E [true U ~ [P_wait_2_0<=1]]]]]]]]]]]]]]
abstracting: (P_wait_2_0<=1)
states: 19,742 (4)
abstracting: (P_await_13_3<=P_b_3_true)
states: 13,862 (4)
abstracting: (P_await_13_3<=P_done_2_3)
states: 14,534 (4)
abstracting: (P_wait_2_0<=1)
states: 19,742 (4)
abstracting: (P_await_13_3<=P_b_3_true)
states: 13,862 (4)
abstracting: (P_wait_2_0<=1)
states: 19,742 (4)
abstracting: (P_await_13_3<=P_b_3_true)
states: 13,862 (4)
.
EG iterations: 1
abstracting: (P_b_2_false<=P_ify0_4_0)
states: 9,114 (3)
.
EG iterations: 0
-> the formula is FALSE
FORMULA LamportFastMutEx-PT-3-CTLCardinality-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.460sec
checking: EF [~ [EG [~ [[12<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0) | ~ [sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=90]]]]]]
normalized: E [true U ~ [EG [~ [[12<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0) | ~ [sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=90]]]]]]
abstracting: (sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=90)
states: 19,742 (4)
abstracting: (12<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0))
states: 0
EG iterations: 0
-> the formula is FALSE
FORMULA LamportFastMutEx-PT-3-CTLCardinality-06 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.048sec
checking: EF [[P_ifxi_10_1<=0 & [EF [P_awaity_0<=x_2] & ~ [A [[P_fordo_12_1<=1 | P_ifyi_15_3<=P_await_13_3] U AG [P_wait_3_0<=P_b_0_false]]]]]]
normalized: E [true U [P_ifxi_10_1<=0 & [~ [[~ [EG [E [true U ~ [P_wait_3_0<=P_b_0_false]]]] & ~ [E [E [true U ~ [P_wait_3_0<=P_b_0_false]] U [~ [[P_fordo_12_1<=1 | P_ifyi_15_3<=P_await_13_3]] & E [true U ~ [P_wait_3_0<=P_b_0_false]]]]]]] & E [true U P_awaity_0<=x_2]]]]
abstracting: (P_awaity_0<=x_2)
states: 19,742 (4)
abstracting: (P_wait_3_0<=P_b_0_false)
states: 19,742 (4)
abstracting: (P_ifyi_15_3<=P_await_13_3)
states: 19,102 (4)
abstracting: (P_fordo_12_1<=1)
states: 19,742 (4)
abstracting: (P_wait_3_0<=P_b_0_false)
states: 19,742 (4)
abstracting: (P_wait_3_0<=P_b_0_false)
states: 19,742 (4)
.
EG iterations: 1
abstracting: (P_ifxi_10_1<=0)
states: 18,312 (4)
-> the formula is FALSE
FORMULA LamportFastMutEx-PT-3-CTLCardinality-08 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.018sec
checking: EF [A [E [AX [[1<=P_fordo_12_2 | P_b_0_false<=1]] U [[1<=P_fordo_12_0 & [1<=P_b_0_false & 1<=P_b_2_true]] | [~ [P_ifyi_15_2<=1] | [P_wait_0_3<=P_ifyi_15_1 & 1<=P_setbi_5_3]]]] U ~ [AF [EX [P_done_1_2<=P_setbi_5_1]]]]]
normalized: E [true U [~ [EG [~ [EG [~ [EX [P_done_1_2<=P_setbi_5_1]]]]]] & ~ [E [~ [EG [~ [EX [P_done_1_2<=P_setbi_5_1]]]] U [~ [E [~ [EX [~ [[1<=P_fordo_12_2 | P_b_0_false<=1]]]] U [[[P_wait_0_3<=P_ifyi_15_1 & 1<=P_setbi_5_3] | ~ [P_ifyi_15_2<=1]] | [1<=P_fordo_12_0 & [1<=P_b_0_false & 1<=P_b_2_true]]]]] & ~ [EG [~ [EX [P_done_1_2<=P_setbi_5_1]]]]]]]]]
abstracting: (P_done_1_2<=P_setbi_5_1)
states: 17,016 (4)
................
EG iterations: 15
abstracting: (1<=P_b_2_true)
states: 9,114 (3)
abstracting: (1<=P_b_0_false)
states: 0
abstracting: (1<=P_fordo_12_0)
states: 0
abstracting: (P_ifyi_15_2<=1)
states: 19,742 (4)
abstracting: (1<=P_setbi_5_3)
states: 1,114 (3)
abstracting: (P_wait_0_3<=P_ifyi_15_1)
states: 19,742 (4)
abstracting: (P_b_0_false<=1)
states: 19,742 (4)
abstracting: (1<=P_fordo_12_2)
states: 854
.abstracting: (P_done_1_2<=P_setbi_5_1)
states: 17,016 (4)
................
EG iterations: 15
abstracting: (P_done_1_2<=P_setbi_5_1)
states: 17,016 (4)
................
EG iterations: 15
.
EG iterations: 1
-> the formula is TRUE
FORMULA LamportFastMutEx-PT-3-CTLCardinality-11 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 1.433sec
checking: ~ [AG [EX [[[41<=sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0) | E [sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=10 U sum(x_3, x_2, x_1, x_0)<=sum(P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)]] | AG [sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)<=82]]]]]
normalized: E [true U ~ [EX [[~ [E [true U ~ [sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)<=82]]] | [41<=sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0) | E [sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=10 U sum(x_3, x_2, x_1, x_0)<=sum(P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)]]]]]]
abstracting: (sum(x_3, x_2, x_1, x_0)<=sum(P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0))
states: 3,333 (3)
abstracting: (sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=10)
states: 19,742 (4)
abstracting: (41<=sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0))
states: 0
abstracting: (sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)<=82)
states: 19,742 (4)
.-> the formula is FALSE
FORMULA LamportFastMutEx-PT-3-CTLCardinality-02 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.887sec
checking: E [EX [~ [AX [~ [EX [71<=sum(P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)]]]]] U EF [EX [[[[sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)<=95 & sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)] & [sum(y_3, y_2, y_1, y_0)<=sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0) & 42<=sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)]] & AF [sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0)<=33]]]]]
normalized: E [EX [EX [EX [71<=sum(P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)]]] U E [true U EX [[[[sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)<=95 & sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)] & [sum(y_3, y_2, y_1, y_0)<=sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0) & 42<=sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)]] & ~ [EG [~ [sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0)<=33]]]]]]]
abstracting: (sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0)<=33)
states: 19,742 (4)
.
EG iterations: 1
abstracting: (42<=sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0))
states: 0
abstracting: (sum(y_3, y_2, y_1, y_0)<=sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0))
states: 2,910 (3)
abstracting: (sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0))
states: 8,627 (3)
abstracting: (sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)<=95)
states: 19,742 (4)
.abstracting: (71<=sum(P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0))
states: 0
...-> the formula is FALSE
FORMULA LamportFastMutEx-PT-3-CTLCardinality-04 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.236sec
checking: ~ [E [[AX [AG [sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)]] | ~ [E [EG [sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)<=74] U EX [sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0)]]]] U [sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0)<=sum(P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0) & [A [[sum(x_3, x_2, x_1, x_0)<=sum(y_3, y_2, y_1, y_0) | 71<=sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)] U sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0)<=sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)] & 4<=sum(P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)]]]]
normalized: ~ [E [[~ [E [EG [sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)<=74] U EX [sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0)]]] | ~ [EX [E [true U ~ [sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)]]]]] U [sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0)<=sum(P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0) & [4<=sum(P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0) & [~ [EG [~ [sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0)<=sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)]]] & ~ [E [~ [sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0)<=sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)] U [~ [[sum(x_3, x_2, x_1, x_0)<=sum(y_3, y_2, y_1, y_0) | 71<=sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)]] & ~ [sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0)<=sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)]]]]]]]]]
abstracting: (sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0)<=sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0))
states: 17,117 (4)
abstracting: (71<=sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0))
states: 0
abstracting: (sum(x_3, x_2, x_1, x_0)<=sum(y_3, y_2, y_1, y_0))
states: 19,742 (4)
abstracting: (sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0)<=sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0))
states: 17,117 (4)
abstracting: (sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0)<=sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0))
states: 17,117 (4)
..............
EG iterations: 14
abstracting: (4<=sum(P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0))
states: 0
abstracting: (sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0)<=sum(P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0))
states: 17,129 (4)
abstracting: (sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0))
states: 18,131 (4)
.abstracting: (sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0))
states: 17,783 (4)
.abstracting: (sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)<=74)
states: 19,742 (4)
EG iterations: 0
-> the formula is TRUE
FORMULA LamportFastMutEx-PT-3-CTLCardinality-01 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 1.802sec
checking: [AX [[60<=sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0) | E [[A [6<=sum(y_3, y_2, y_1, y_0) U sum(P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)] & sum(x_3, x_2, x_1, x_0)<=96] U A [AF [sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)<=30] U [31<=sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0) & sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)]]]]] | EG [sum(y_3, y_2, y_1, y_0)<=sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0)]]
normalized: [EG [sum(y_3, y_2, y_1, y_0)<=sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0)] | ~ [EX [~ [[60<=sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0) | E [[sum(x_3, x_2, x_1, x_0)<=96 & [~ [EG [~ [sum(P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)]]] & ~ [E [~ [sum(P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)] U [~ [6<=sum(y_3, y_2, y_1, y_0)] & ~ [sum(P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)]]]]]] U [~ [EG [~ [[31<=sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0) & sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)]]]] & ~ [E [~ [[31<=sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0) & sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)]] U [EG [~ [sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)<=30]] & ~ [[31<=sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0) & sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)]]]]]]]]]]]]
abstracting: (sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0))
states: 18,203 (4)
abstracting: (31<=sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0))
states: 0
abstracting: (sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)<=30)
states: 19,742 (4)
.
EG iterations: 1
abstracting: (sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0))
states: 18,203 (4)
abstracting: (31<=sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0))
states: 0
abstracting: (sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0))
states: 18,203 (4)
abstracting: (31<=sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0))
states: 0
EG iterations: 0
abstracting: (sum(P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0))
states: 17,381 (4)
abstracting: (6<=sum(y_3, y_2, y_1, y_0))
states: 0
abstracting: (sum(P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0))
states: 17,381 (4)
abstracting: (sum(P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0))
states: 17,381 (4)
..............
EG iterations: 14
abstracting: (sum(x_3, x_2, x_1, x_0)<=96)
states: 19,742 (4)
abstracting: (60<=sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0))
states: 0
.abstracting: (sum(y_3, y_2, y_1, y_0)<=sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0))
states: 2,910 (3)
..............
EG iterations: 14
-> the formula is FALSE
FORMULA LamportFastMutEx-PT-3-CTLCardinality-03 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 1.039sec
checking: ~ [A [AF [[sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)<=24 | ~ [[sum(P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)<=sum(P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0) | sum(P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=8]]]] U [[[AF [E [sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false) U sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)<=34]] | ~ [EG [sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)<=94]]] & A [~ [89<=sum(y_3, y_2, y_1, y_0)] U EF [81<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)]]] & [~ [AF [[sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)<=15 & sum(P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)]]] & AF [~ [E [16<=sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0) U 22<=sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0)]]]]]]]
normalized: ~ [[~ [EG [~ [[[[~ [EG [sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)<=94]] | ~ [EG [~ [E [sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false) U sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)<=34]]]]] & [~ [EG [~ [E [true U 81<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)]]]] & ~ [E [~ [E [true U 81<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)]] U [89<=sum(y_3, y_2, y_1, y_0) & ~ [E [true U 81<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)]]]]]]] & [~ [EG [E [16<=sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0) U 22<=sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0)]]] & EG [~ [[sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)<=15 & sum(P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)]]]]]]]] & ~ [E [~ [[[[~ [EG [sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)<=94]] | ~ [EG [~ [E [sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false) U sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)<=34]]]]] & [~ [EG [~ [E [true U 81<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)]]]] & ~ [E [~ [E [true U 81<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)]] U [89<=sum(y_3, y_2, y_1, y_0) & ~ [E [true U 81<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)]]]]]]] & [~ [EG [E [16<=sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0) U 22<=sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0)]]] & EG [~ [[sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)<=15 & sum(P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)]]]]]] U [EG [~ [[sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)<=24 | ~ [[sum(P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)<=sum(P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0) | sum(P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=8]]]]] & ~ [[[[~ [EG [sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)<=94]] | ~ [EG [~ [E [sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false) U sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)<=34]]]]] & [~ [EG [~ [E [true U 81<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)]]]] & ~ [E [~ [E [true U 81<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)]] U [89<=sum(y_3, y_2, y_1, y_0) & ~ [E [true U 81<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)]]]]]]] & [~ [EG [E [16<=sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0) U 22<=sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0)]]] & EG [~ [[sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)<=15 & sum(P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)]]]]]]]]]]]
abstracting: (sum(P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0))
states: 16,163 (4)
abstracting: (sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)<=15)
states: 19,742 (4)
............
EG iterations: 12
abstracting: (22<=sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0))
states: 0
abstracting: (16<=sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0))
states: 0
.
EG iterations: 1
abstracting: (81<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false))
states: 0
abstracting: (89<=sum(y_3, y_2, y_1, y_0))
states: 0
abstracting: (81<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false))
states: 0
abstracting: (81<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false))
states: 0
EG iterations: 0
abstracting: (sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)<=34)
states: 19,742 (4)
abstracting: (sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false))
states: 19,742 (4)
.
EG iterations: 1
abstracting: (sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)<=94)
states: 19,742 (4)
EG iterations: 0
abstracting: (sum(P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=8)
states: 19,742 (4)
abstracting: (sum(P_awaity_3, P_awaity_2, P_awaity_1, P_awaity_0)<=sum(P_fordo_12_3, P_fordo_12_2, P_fordo_12_1, P_fordo_12_0))
states: 16,721 (4)
abstracting: (sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)<=24)
states: 19,742 (4)
.
EG iterations: 1
abstracting: (sum(P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0))
states: 16,163 (4)
abstracting: (sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)<=15)
states: 19,742 (4)
............
EG iterations: 12
abstracting: (22<=sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0))
states: 0
abstracting: (16<=sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0))
states: 0
.
EG iterations: 1
abstracting: (81<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false))
states: 0
abstracting: (89<=sum(y_3, y_2, y_1, y_0))
states: 0
abstracting: (81<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false))
states: 0
abstracting: (81<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false))
states: 0
EG iterations: 0
abstracting: (sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)<=34)
states: 19,742 (4)
abstracting: (sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false))
states: 19,742 (4)
.
EG iterations: 1
abstracting: (sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)<=94)
states: 19,742 (4)
EG iterations: 0
abstracting: (sum(P_ifxi_10_3, P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0))
states: 16,163 (4)
abstracting: (sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)<=15)
states: 19,742 (4)
............
EG iterations: 12
abstracting: (22<=sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0))
states: 0
abstracting: (16<=sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0))
states: 0
.
EG iterations: 1
abstracting: (81<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false))
states: 0
abstracting: (89<=sum(y_3, y_2, y_1, y_0))
states: 0
abstracting: (81<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false))
states: 0
abstracting: (81<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false))
states: 0
EG iterations: 0
abstracting: (sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)<=34)
states: 19,742 (4)
abstracting: (sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false))
states: 19,742 (4)
.
EG iterations: 1
abstracting: (sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)<=94)
states: 19,742 (4)
EG iterations: 0
EG iterations: 0
-> the formula is TRUE
FORMULA LamportFastMutEx-PT-3-CTLCardinality-07 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.919sec
checking: EF [A [A [[36<=sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0) & ~ [AX [sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)]]] U ~ [[EX [sum(y_3, y_2, y_1, y_0)<=37] | 97<=sum(P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)]]] U [[AX [AF [33<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)]] | [E [sum(x_3, x_2, x_1, x_0)<=sum(x_3, x_2, x_1, x_0) U 50<=sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0)] | A [sum(y_3, y_2, y_1, y_0)<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0) U sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)]]] & ~ [AF [[sum(P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)<=6 | sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=56]]]]]]
normalized: E [true U [~ [EG [~ [[EG [~ [[sum(P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)<=6 | sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=56]]] & [[[~ [EG [~ [sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)]]] & ~ [E [~ [sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)] U [~ [sum(y_3, y_2, y_1, y_0)<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)] & ~ [sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)]]]]] | E [sum(x_3, x_2, x_1, x_0)<=sum(x_3, x_2, x_1, x_0) U 50<=sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0)]] | ~ [EX [EG [~ [33<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)]]]]]]]]] & ~ [E [~ [[EG [~ [[sum(P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)<=6 | sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=56]]] & [[[~ [EG [~ [sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)]]] & ~ [E [~ [sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)] U [~ [sum(y_3, y_2, y_1, y_0)<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)] & ~ [sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)]]]]] | E [sum(x_3, x_2, x_1, x_0)<=sum(x_3, x_2, x_1, x_0) U 50<=sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0)]] | ~ [EX [EG [~ [33<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)]]]]]]] U [~ [[~ [EG [[97<=sum(P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0) | EX [sum(y_3, y_2, y_1, y_0)<=37]]]] & ~ [E [[97<=sum(P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0) | EX [sum(y_3, y_2, y_1, y_0)<=37]] U [~ [[36<=sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0) & EX [~ [sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)]]]] & [97<=sum(P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0) | EX [sum(y_3, y_2, y_1, y_0)<=37]]]]]]] & ~ [[EG [~ [[sum(P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)<=6 | sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=56]]] & [[[~ [EG [~ [sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)]]] & ~ [E [~ [sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)] U [~ [sum(y_3, y_2, y_1, y_0)<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)] & ~ [sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)]]]]] | E [sum(x_3, x_2, x_1, x_0)<=sum(x_3, x_2, x_1, x_0) U 50<=sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0)]] | ~ [EX [EG [~ [33<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)]]]]]]]]]]]]
abstracting: (33<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0))
states: 0
EG iterations: 0
.abstracting: (50<=sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0))
states: 0
abstracting: (sum(x_3, x_2, x_1, x_0)<=sum(x_3, x_2, x_1, x_0))
states: 19,742 (4)
abstracting: (sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0))
states: 17,591 (4)
abstracting: (sum(y_3, y_2, y_1, y_0)<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0))
states: 4,620 (3)
abstracting: (sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0))
states: 17,591 (4)
abstracting: (sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0))
states: 17,591 (4)
.............
EG iterations: 13
abstracting: (sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=56)
states: 19,742 (4)
abstracting: (sum(P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)<=6)
states: 19,742 (4)
.
EG iterations: 1
abstracting: (sum(y_3, y_2, y_1, y_0)<=37)
states: 19,742 (4)
.abstracting: (97<=sum(P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0))
states: 0
abstracting: (sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0))
states: 8,507 (3)
.abstracting: (36<=sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0))
states: 0
abstracting: (sum(y_3, y_2, y_1, y_0)<=37)
states: 19,742 (4)
.abstracting: (97<=sum(P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0))
states: 0
abstracting: (sum(y_3, y_2, y_1, y_0)<=37)
states: 19,742 (4)
.abstracting: (97<=sum(P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0))
states: 0
EG iterations: 0
abstracting: (33<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0))
states: 0
EG iterations: 0
.abstracting: (50<=sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0))
states: 0
abstracting: (sum(x_3, x_2, x_1, x_0)<=sum(x_3, x_2, x_1, x_0))
states: 19,742 (4)
abstracting: (sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0))
states: 17,591 (4)
abstracting: (sum(y_3, y_2, y_1, y_0)<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0))
states: 4,620 (3)
abstracting: (sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0))
states: 17,591 (4)
abstracting: (sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0))
states: 17,591 (4)
.............
EG iterations: 13
abstracting: (sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=56)
states: 19,742 (4)
abstracting: (sum(P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)<=6)
states: 19,742 (4)
.
EG iterations: 1
abstracting: (33<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0))
states: 0
EG iterations: 0
.abstracting: (50<=sum(P_CS_21_3, P_CS_21_2, P_CS_21_1, P_CS_21_0))
states: 0
abstracting: (sum(x_3, x_2, x_1, x_0)<=sum(x_3, x_2, x_1, x_0))
states: 19,742 (4)
abstracting: (sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0))
states: 17,591 (4)
abstracting: (sum(y_3, y_2, y_1, y_0)<=sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0))
states: 4,620 (3)
abstracting: (sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0))
states: 17,591 (4)
abstracting: (sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_ifyi_15_3, P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0))
states: 17,591 (4)
.............
EG iterations: 13
abstracting: (sum(P_setbi_24_3, P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=56)
states: 19,742 (4)
abstracting: (sum(P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)<=6)
states: 19,742 (4)
.
EG iterations: 1
EG iterations: 0
-> the formula is FALSE
FORMULA LamportFastMutEx-PT-3-CTLCardinality-05 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.825sec
checking: A [~ [EF [~ [[AG [60<=sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)] & [A [14<=sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0) U sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=5] | ~ [sum(P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)]]]]]] U [AG [[EF [EX [sum(P_wait_3_3, P_wait_3_2, P_wait_3_1, P_wait_3_0, P_wait_2_3, P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_3, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_3, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=99]] | [[AF [sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)] & 21<=sum(P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0)] | ~ [[45<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false) & sum(x_3, x_2, x_1, x_0)<=11]]]]] | E [[[EX [sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)<=sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)] | [sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)<=sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0) & ~ [sum(P_wait_3_3, P_wait_3_2, P_wait_3_1, P_wait_3_0, P_wait_2_3, P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_3, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_3, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=87]]] | [AF [30<=sum(y_3, y_2, y_1, y_0)] & AF [sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)<=sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)]]] U 27<=sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)]]]
normalized: [~ [EG [~ [[E [[[~ [EG [~ [sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)<=sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)]]] & ~ [EG [~ [30<=sum(y_3, y_2, y_1, y_0)]]]] | [[sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)<=sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0) & ~ [sum(P_wait_3_3, P_wait_3_2, P_wait_3_1, P_wait_3_0, P_wait_2_3, P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_3, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_3, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=87]] | EX [sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)<=sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)]]] U 27<=sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)] | ~ [E [true U ~ [[[~ [[45<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false) & sum(x_3, x_2, x_1, x_0)<=11]] | [21<=sum(P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0) & ~ [EG [~ [sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)]]]]] | E [true U EX [sum(P_wait_3_3, P_wait_3_2, P_wait_3_1, P_wait_3_0, P_wait_2_3, P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_3, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_3, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=99]]]]]]]]]] & ~ [E [~ [[E [[[~ [EG [~ [sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)<=sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)]]] & ~ [EG [~ [30<=sum(y_3, y_2, y_1, y_0)]]]] | [[sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)<=sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0) & ~ [sum(P_wait_3_3, P_wait_3_2, P_wait_3_1, P_wait_3_0, P_wait_2_3, P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_3, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_3, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=87]] | EX [sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)<=sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)]]] U 27<=sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)] | ~ [E [true U ~ [[[~ [[45<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false) & sum(x_3, x_2, x_1, x_0)<=11]] | [21<=sum(P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0) & ~ [EG [~ [sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)]]]]] | E [true U EX [sum(P_wait_3_3, P_wait_3_2, P_wait_3_1, P_wait_3_0, P_wait_2_3, P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_3, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_3, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=99]]]]]]]] U [E [true U ~ [[[[~ [EG [~ [sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=5]]] & ~ [E [~ [sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=5] U [~ [14<=sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)] & ~ [sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=5]]]]] | ~ [sum(P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)]] & ~ [E [true U ~ [60<=sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)]]]]]] & ~ [[E [[[~ [EG [~ [sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)<=sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)]]] & ~ [EG [~ [30<=sum(y_3, y_2, y_1, y_0)]]]] | [[sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)<=sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0) & ~ [sum(P_wait_3_3, P_wait_3_2, P_wait_3_1, P_wait_3_0, P_wait_2_3, P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_3, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_3, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=87]] | EX [sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)<=sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0)]]] U 27<=sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)] | ~ [E [true U ~ [[[~ [[45<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false) & sum(x_3, x_2, x_1, x_0)<=11]] | [21<=sum(P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0) & ~ [EG [~ [sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0)]]]]] | E [true U EX [sum(P_wait_3_3, P_wait_3_2, P_wait_3_1, P_wait_3_0, P_wait_2_3, P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_3, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_3, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=99]]]]]]]]]]]]
abstracting: (sum(P_wait_3_3, P_wait_3_2, P_wait_3_1, P_wait_3_0, P_wait_2_3, P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_3, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_3, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=99)
states: 19,742 (4)
.abstracting: (sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0))
states: 17,831 (4)
...............
EG iterations: 15
abstracting: (21<=sum(P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0))
states: 0
abstracting: (sum(x_3, x_2, x_1, x_0)<=11)
states: 19,742 (4)
abstracting: (45<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false))
states: 0
abstracting: (27<=sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0))
states: 0
abstracting: (sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)<=sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0))
states: 17,783 (4)
.abstracting: (sum(P_wait_3_3, P_wait_3_2, P_wait_3_1, P_wait_3_0, P_wait_2_3, P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_3, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_3, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=87)
states: 19,742 (4)
abstracting: (sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)<=sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0))
states: 17,783 (4)
abstracting: (30<=sum(y_3, y_2, y_1, y_0))
states: 0
EG iterations: 0
abstracting: (sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)<=sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0))
states: 16,114 (4)
............
EG iterations: 12
abstracting: (60<=sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0))
states: 0
abstracting: (sum(P_ify0_4_3, P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(P_setbi_5_3, P_setbi_5_2, P_setbi_5_1, P_setbi_5_0))
states: 16,181 (4)
abstracting: (sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=5)
states: 19,742 (4)
abstracting: (14<=sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0))
states: 0
abstracting: (sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=5)
states: 19,742 (4)
abstracting: (sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=5)
states: 19,742 (4)
.
EG iterations: 1
abstracting: (sum(P_wait_3_3, P_wait_3_2, P_wait_3_1, P_wait_3_0, P_wait_2_3, P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_3, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_3, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=99)
states: 19,742 (4)
.abstracting: (sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0))
states: 17,831 (4)
...............
EG iterations: 15
abstracting: (21<=sum(P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0))
states: 0
abstracting: (sum(x_3, x_2, x_1, x_0)<=11)
states: 19,742 (4)
abstracting: (45<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false))
states: 0
abstracting: (27<=sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0))
states: 0
abstracting: (sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)<=sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0))
states: 17,783 (4)
.abstracting: (sum(P_wait_3_3, P_wait_3_2, P_wait_3_1, P_wait_3_0, P_wait_2_3, P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_3, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_3, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=87)
states: 19,742 (4)
abstracting: (sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)<=sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0))
states: 17,783 (4)
abstracting: (30<=sum(y_3, y_2, y_1, y_0))
states: 0
EG iterations: 0
abstracting: (sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)<=sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0))
states: 16,114 (4)
............
EG iterations: 12
abstracting: (sum(P_wait_3_3, P_wait_3_2, P_wait_3_1, P_wait_3_0, P_wait_2_3, P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_3, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_3, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=99)
states: 19,742 (4)
.abstracting: (sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0))
states: 17,831 (4)
...............
EG iterations: 15
abstracting: (21<=sum(P_start_1_3, P_start_1_2, P_start_1_1, P_start_1_0))
states: 0
abstracting: (sum(x_3, x_2, x_1, x_0)<=11)
states: 19,742 (4)
abstracting: (45<=sum(P_b_3_true, P_b_3_false, P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false))
states: 0
abstracting: (27<=sum(P_sety_9_3, P_sety_9_2, P_sety_9_1, P_sety_9_0))
states: 0
abstracting: (sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)<=sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0))
states: 17,783 (4)
.abstracting: (sum(P_wait_3_3, P_wait_3_2, P_wait_3_1, P_wait_3_0, P_wait_2_3, P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_3, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_3, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=87)
states: 19,742 (4)
abstracting: (sum(P_await_13_3, P_await_13_2, P_await_13_1, P_await_13_0)<=sum(P_done_3_3, P_done_3_2, P_done_3_1, P_done_3_0, P_done_2_3, P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_3, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_3, P_done_0_2, P_done_0_1, P_done_0_0))
states: 17,783 (4)
abstracting: (30<=sum(y_3, y_2, y_1, y_0))
states: 0
EG iterations: 0
abstracting: (sum(P_setx_3_3, P_setx_3_2, P_setx_3_1, P_setx_3_0)<=sum(P_setbi_11_3, P_setbi_11_2, P_setbi_11_1, P_setbi_11_0))
states: 16,114 (4)
............
EG iterations: 12
.
EG iterations: 1
-> the formula is TRUE
FORMULA LamportFastMutEx-PT-3-CTLCardinality-00 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 1.197sec
totally nodes used: 6313664 (6.3e+06)
number of garbage collections: 0
fire ops cache: hits/miss/sum: 7012006 29486109 36498115
used/not used/entry size/cache size: 27799927 39308937 16 1024MB
basic ops cache: hits/miss/sum: 1684375 5319066 7003441
used/not used/entry size/cache size: 7635732 9141484 12 192MB
unary ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 8 128MB
abstract ops cache: hits/miss/sum: 0 129361 129361
used/not used/entry size/cache size: 1 16777215 12 192MB
state nr cache: hits/miss/sum: 11172 45413 56585
used/not used/entry size/cache size: 45261 8343347 32 256MB
max state cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 8388608 32 256MB
uniqueHash elements/entry size/size: 67108864 4 256MB
0 61654022
1 4726754
2 613606
3 99842
4 13163
5 1352
6 115
7 10
8 0
9 0
>= 10 0
Total processing time: 0m18.805sec
BK_STOP 1678622485500
--------------------
content from stderr:
check for maximal unmarked siphon
found
The net has a maximal unmarked siphon:
P_fordo_12_0
P_start_1_0
P_wait_0_0
P_ifyi_15_0
P_CS_21_0
P_setbi_24_0
P_awaity_0
P_await_13_0
P_done_2_0
P_done_0_0
P_done_0_1
P_wait_2_0
P_wait_3_0
P_done_0_2
P_done_0_3
P_done_1_0
P_done_3_0
P_setbi_11_0
P_ifxi_10_0
P_setbi_5_0
P_ify0_4_0
P_setx_3_0
P_sety_9_0
P_b_0_true
P_b_0_false
P_wait_0_1
P_wait_0_2
P_wait_0_3
P_wait_1_0
The net has transition(s) that can never fire:
T_awaity_1
T_sety_9_3
T_sety_9_4
T_yeq0_4_1
T_sety_9_1
T_sety_9_2
T_setbi_2_2
T_setbi_5_1
T_setbi_5_2
T_setbi_24_2
T_setx_3_2
T_fordo_12_1
T_await_13_1
T_await_13_2
T_await_13_3
T_await_13_4
T_await_13_5
T_await_13_9
T_await_13_13
T_forod_13_1
T_ynei_15_2
T_ynei_15_3
T_ynei_15_4
T_yeqi_15_1
T_xeqi_10_1
T_sety0_23_4
T_setbi_24_1
T_yne0_4_2
T_yne0_4_3
T_yne0_4_4
T_sety0_23_1
T_sety0_23_2
T_sety0_23_3
T_xnei_10_2
T_xnei_10_3
T_xnei_10_4
T_setbi_11_1
T_setbi_11_2
T_setbi_2_1
T_setx_3_1
T_setx_3_3
T_setx_3_4
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.000sec
iterations count:17740 (113), effective:635 (4)
initing FirstDep: 0m 0.000sec
iterations count:6597 (42), effective:208 (1)
iterations count:156 (1), effective:0 (0)
iterations count:6597 (42), effective:208 (1)
iterations count:6597 (42), effective:208 (1)
iterations count:10185 (65), effective:321 (2)
iterations count:6166 (39), effective:192 (1)
iterations count:178 (1), effective:1 (0)
iterations count:156 (1), effective:0 (0)
iterations count:156 (1), effective:0 (0)
iterations count:1473 (9), effective:39 (0)
iterations count:1511 (9), effective:39 (0)
iterations count:4701 (30), effective:142 (0)
iterations count:156 (1), effective:0 (0)
iterations count:6271 (40), effective:209 (1)
iterations count:11329 (72), effective:351 (2)
iterations count:4778 (30), effective:171 (1)
iterations count:12272 (78), effective:372 (2)
iterations count:1126 (7), effective:28 (0)
iterations count:156 (1), effective:0 (0)
iterations count:156 (1), effective:0 (0)
iterations count:156 (1), effective:0 (0)
iterations count:156 (1), effective:0 (0)
iterations count:691 (4), effective:6 (0)
iterations count:156 (1), effective:0 (0)
iterations count:691 (4), effective:6 (0)
iterations count:156 (1), effective:0 (0)
iterations count:691 (4), effective:6 (0)
iterations count:156 (1), effective:0 (0)
iterations count:156 (1), effective:0 (0)
iterations count:156 (1), effective:0 (0)
iterations count:156 (1), effective:0 (0)
iterations count:156 (1), effective:0 (0)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="LamportFastMutEx-PT-3"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marcie"
echo " Input is LamportFastMutEx-PT-3, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r225-tall-167856407500401"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/LamportFastMutEx-PT-3.tgz
mv LamportFastMutEx-PT-3 execution
cd execution
if [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "UpperBounds" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] || [ "CTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME CTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;