fond
Model Checking Contest 2023
13th edition, Paris, France, April 26, 2023 (at TOOLympics II)
Execution of r225-tall-167856407500393
Last Updated
May 14, 2023

About the Execution of Marcie for LamportFastMutEx-PT-2

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
5449.411 6764.00 6929.00 70.50 TFTFTFFFTFTFTTTF normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Formatting '/data/fkordon/mcc2023-input.r225-tall-167856407500393.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2023-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
................
=====================================================================
Generated by BenchKit 2-5348
Executing tool marcie
Input is LamportFastMutEx-PT-2, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r225-tall-167856407500393
=====================================================================

--------------------
preparation of the directory to be used:
/home/mcc/execution
total 708K
-rw-r--r-- 1 mcc users 13K Feb 25 13:42 CTLCardinality.txt
-rw-r--r-- 1 mcc users 103K Feb 25 13:42 CTLCardinality.xml
-rw-r--r-- 1 mcc users 12K Feb 25 13:42 CTLFireability.txt
-rw-r--r-- 1 mcc users 75K Feb 25 13:42 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K Jan 29 11:40 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.6K Jan 29 11:40 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 5.7K Feb 25 16:20 LTLCardinality.txt
-rw-r--r-- 1 mcc users 31K Feb 25 16:20 LTLCardinality.xml
-rw-r--r-- 1 mcc users 4.9K Feb 25 16:20 LTLFireability.txt
-rw-r--r-- 1 mcc users 26K Feb 25 16:20 LTLFireability.xml
-rw-r--r-- 1 mcc users 20K Feb 25 13:43 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 154K Feb 25 13:43 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 21K Feb 25 13:42 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 133K Feb 25 13:42 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 2.2K Feb 25 16:20 UpperBounds.txt
-rw-r--r-- 1 mcc users 4.8K Feb 25 16:20 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Mar 5 18:22 equiv_col
-rw-r--r-- 1 mcc users 2 Mar 5 18:22 instance
-rw-r--r-- 1 mcc users 6 Mar 5 18:22 iscolored
-rw-r--r-- 1 mcc users 48K Mar 5 18:22 model.pnml

--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME LamportFastMutEx-PT-2-CTLCardinality-00
FORMULA_NAME LamportFastMutEx-PT-2-CTLCardinality-01
FORMULA_NAME LamportFastMutEx-PT-2-CTLCardinality-02
FORMULA_NAME LamportFastMutEx-PT-2-CTLCardinality-03
FORMULA_NAME LamportFastMutEx-PT-2-CTLCardinality-04
FORMULA_NAME LamportFastMutEx-PT-2-CTLCardinality-05
FORMULA_NAME LamportFastMutEx-PT-2-CTLCardinality-06
FORMULA_NAME LamportFastMutEx-PT-2-CTLCardinality-07
FORMULA_NAME LamportFastMutEx-PT-2-CTLCardinality-08
FORMULA_NAME LamportFastMutEx-PT-2-CTLCardinality-09
FORMULA_NAME LamportFastMutEx-PT-2-CTLCardinality-10
FORMULA_NAME LamportFastMutEx-PT-2-CTLCardinality-11
FORMULA_NAME LamportFastMutEx-PT-2-CTLCardinality-12
FORMULA_NAME LamportFastMutEx-PT-2-CTLCardinality-13
FORMULA_NAME LamportFastMutEx-PT-2-CTLCardinality-14
FORMULA_NAME LamportFastMutEx-PT-2-CTLCardinality-15

=== Now, execution of the tool begins

BK_START 1678622423588

bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marcie
BK_EXAMINATION=CTLCardinality
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=LamportFastMutEx-PT-2
Not applying reductions.
Model is PT
CTLCardinality PT
timeout --kill-after=10s --signal=SIGINT 1m for testing only

Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets

authors: Alex Tovchigrechko (IDD package and CTL model checking)

Martin Schwarick (Symbolic numerical analysis and CSL model checking)

Christian Rohr (Simulative and approximative numerical model checking)

marcie@informatik.tu-cottbus.de

called as: /home/mcc/BenchKit/bin//../marcie/bin/marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --memory=6 --mcc-mode

parse successfull
net created successfully

Net: LamportFastMutEx_PT_2
(NrP: 69 NrTr: 96 NrArc: 402)

parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec

net check time: 0m 0.000sec

init dd package: 0m 2.899sec


RS generation: 0m 0.018sec


-> reachability set: #nodes 687 (6.9e+02) #states 380



starting MCC model checker
--------------------------

checking: EF [P_wait_2_0<=0]
normalized: E [true U P_wait_2_0<=0]

abstracting: (P_wait_2_0<=0)
states: 380
-> the formula is TRUE

FORMULA LamportFastMutEx-PT-2-CTLCardinality-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.012sec

checking: ~ [AG [~ [sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=67]]]
normalized: E [true U sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=67]

abstracting: (sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=67)
states: 380
-> the formula is TRUE

FORMULA LamportFastMutEx-PT-2-CTLCardinality-00 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.022sec

checking: EX [~ [AX [EF [~ [22<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)]]]]]
normalized: EX [EX [~ [E [true U ~ [22<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)]]]]]

abstracting: (22<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0))
states: 0
..-> the formula is FALSE

FORMULA LamportFastMutEx-PT-2-CTLCardinality-05 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.022sec

checking: EF [A [P_awaity_1<=1 U EF [[~ [1<=P_start_1_1] & A [1<=P_await_13_2 U 1<=P_setbi_5_1]]]]]
normalized: E [true U [~ [EG [~ [E [true U [[~ [EG [~ [1<=P_setbi_5_1]]] & ~ [E [~ [1<=P_setbi_5_1] U [~ [1<=P_await_13_2] & ~ [1<=P_setbi_5_1]]]]] & ~ [1<=P_start_1_1]]]]]] & ~ [E [~ [E [true U [[~ [EG [~ [1<=P_setbi_5_1]]] & ~ [E [~ [1<=P_setbi_5_1] U [~ [1<=P_await_13_2] & ~ [1<=P_setbi_5_1]]]]] & ~ [1<=P_start_1_1]]]] U [~ [P_awaity_1<=1] & ~ [E [true U [[~ [EG [~ [1<=P_setbi_5_1]]] & ~ [E [~ [1<=P_setbi_5_1] U [~ [1<=P_await_13_2] & ~ [1<=P_setbi_5_1]]]]] & ~ [1<=P_start_1_1]]]]]]]]]

abstracting: (1<=P_start_1_1)
states: 36
abstracting: (1<=P_setbi_5_1)
states: 21
abstracting: (1<=P_await_13_2)
states: 56
abstracting: (1<=P_setbi_5_1)
states: 21
abstracting: (1<=P_setbi_5_1)
states: 21
.......
EG iterations: 7
abstracting: (P_awaity_1<=1)
states: 380
abstracting: (1<=P_start_1_1)
states: 36
abstracting: (1<=P_setbi_5_1)
states: 21
abstracting: (1<=P_await_13_2)
states: 56
abstracting: (1<=P_setbi_5_1)
states: 21
abstracting: (1<=P_setbi_5_1)
states: 21
.......
EG iterations: 7
abstracting: (1<=P_start_1_1)
states: 36
abstracting: (1<=P_setbi_5_1)
states: 21
abstracting: (1<=P_await_13_2)
states: 56
abstracting: (1<=P_setbi_5_1)
states: 21
abstracting: (1<=P_setbi_5_1)
states: 21
.......
EG iterations: 7
.
EG iterations: 1
-> the formula is TRUE

FORMULA LamportFastMutEx-PT-2-CTLCardinality-13 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.061sec

checking: AG [E [EX [1<=P_fordo_12_1] U E [EX [P_CS_21_0<=P_wait_2_0] U A [~ [1<=P_b_2_false] U EG [P_setbi_5_2<=1]]]]]
normalized: ~ [E [true U ~ [E [EX [1<=P_fordo_12_1] U E [EX [P_CS_21_0<=P_wait_2_0] U [~ [EG [~ [EG [P_setbi_5_2<=1]]]] & ~ [E [~ [EG [P_setbi_5_2<=1]] U [~ [EG [P_setbi_5_2<=1]] & 1<=P_b_2_false]]]]]]]]]

abstracting: (1<=P_b_2_false)
states: 155
abstracting: (P_setbi_5_2<=1)
states: 380

EG iterations: 0
abstracting: (P_setbi_5_2<=1)
states: 380

EG iterations: 0
abstracting: (P_setbi_5_2<=1)
states: 380

EG iterations: 0
.
EG iterations: 1
abstracting: (P_CS_21_0<=P_wait_2_0)
states: 380
.abstracting: (1<=P_fordo_12_1)
states: 16
.-> the formula is TRUE

FORMULA LamportFastMutEx-PT-2-CTLCardinality-08 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.003sec

checking: E [EX [AF [P_wait_0_1<=P_awaity_1]] U EX [AG [AG [[P_wait_2_1<=P_wait_0_2 & 1<=P_ifyi_15_1]]]]]
normalized: E [EX [~ [EG [~ [P_wait_0_1<=P_awaity_1]]]] U EX [~ [E [true U E [true U ~ [[P_wait_2_1<=P_wait_0_2 & 1<=P_ifyi_15_1]]]]]]]

abstracting: (1<=P_ifyi_15_1)
states: 12
abstracting: (P_wait_2_1<=P_wait_0_2)
states: 348
.abstracting: (P_wait_0_1<=P_awaity_1)
states: 380
.
EG iterations: 1
.-> the formula is FALSE

FORMULA LamportFastMutEx-PT-2-CTLCardinality-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.003sec

checking: E [1<=P_CS_21_0 U ~ [[AG [[EG [P_fordo_12_1<=P_wait_2_0] | EG [P_b_0_true<=0]]] & [EF [~ [[P_start_1_0<=0 & P_done_0_0<=0]]] | EF [AX [1<=P_setx_3_0]]]]]]
normalized: E [1<=P_CS_21_0 U ~ [[[E [true U ~ [EX [~ [1<=P_setx_3_0]]]] | E [true U ~ [[P_start_1_0<=0 & P_done_0_0<=0]]]] & ~ [E [true U ~ [[EG [P_b_0_true<=0] | EG [P_fordo_12_1<=P_wait_2_0]]]]]]]]

abstracting: (P_fordo_12_1<=P_wait_2_0)
states: 364
........
EG iterations: 8
abstracting: (P_b_0_true<=0)
states: 380

EG iterations: 0
abstracting: (P_done_0_0<=0)
states: 380
abstracting: (P_start_1_0<=0)
states: 380
abstracting: (1<=P_setx_3_0)
states: 0
.abstracting: (1<=P_CS_21_0)
states: 0
-> the formula is TRUE

FORMULA LamportFastMutEx-PT-2-CTLCardinality-10 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.014sec

checking: EX [EX [[[AG [P_fordo_12_2<=P_sety_9_1] | AX [[1<=P_sety_9_0 & P_done_2_1<=P_awaity_2]]] & P_awaity_0<=P_setbi_11_0]]]
normalized: EX [EX [[[~ [EX [~ [[1<=P_sety_9_0 & P_done_2_1<=P_awaity_2]]]] | ~ [E [true U ~ [P_fordo_12_2<=P_sety_9_1]]]] & P_awaity_0<=P_setbi_11_0]]]

abstracting: (P_awaity_0<=P_setbi_11_0)
states: 380
abstracting: (P_fordo_12_2<=P_sety_9_1)
states: 366
abstracting: (P_done_2_1<=P_awaity_2)
states: 356
abstracting: (1<=P_sety_9_0)
states: 0
...-> the formula is FALSE

FORMULA LamportFastMutEx-PT-2-CTLCardinality-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.019sec

checking: AX [[[[AX [[EX [P_setbi_11_0<=P_setbi_5_2] | A [P_ifyi_15_1<=P_CS_21_0 U P_ifyi_15_0<=x_2]]] | AF [P_setx_3_2<=P_ifxi_10_2]] | E [[EF [1<=P_b_2_true] | AF [P_ify0_4_2<=1]] U [P_ify0_4_1<=P_ify0_4_0 & ~ [EX [x_0<=P_setbi_24_1]]]]] & ~ [A [AX [P_fordo_12_1<=0] U ~ [P_start_1_1<=0]]]]]
normalized: ~ [EX [~ [[~ [[~ [EG [P_start_1_1<=0]] & ~ [E [P_start_1_1<=0 U [EX [~ [P_fordo_12_1<=0]] & P_start_1_1<=0]]]]] & [E [[~ [EG [~ [P_ify0_4_2<=1]]] | E [true U 1<=P_b_2_true]] U [~ [EX [x_0<=P_setbi_24_1]] & P_ify0_4_1<=P_ify0_4_0]] | [~ [EG [~ [P_setx_3_2<=P_ifxi_10_2]]] | ~ [EX [~ [[[~ [EG [~ [P_ifyi_15_0<=x_2]]] & ~ [E [~ [P_ifyi_15_0<=x_2] U [~ [P_ifyi_15_1<=P_CS_21_0] & ~ [P_ifyi_15_0<=x_2]]]]] | EX [P_setbi_11_0<=P_setbi_5_2]]]]]]]]]]]

abstracting: (P_setbi_11_0<=P_setbi_5_2)
states: 380
.abstracting: (P_ifyi_15_0<=x_2)
states: 380
abstracting: (P_ifyi_15_1<=P_CS_21_0)
states: 368
abstracting: (P_ifyi_15_0<=x_2)
states: 380
abstracting: (P_ifyi_15_0<=x_2)
states: 380
.
EG iterations: 1
.abstracting: (P_setx_3_2<=P_ifxi_10_2)
states: 344
........
EG iterations: 8
abstracting: (P_ify0_4_1<=P_ify0_4_0)
states: 347
abstracting: (x_0<=P_setbi_24_1)
states: 376
.abstracting: (1<=P_b_2_true)
states: 225
abstracting: (P_ify0_4_2<=1)
states: 380
.
EG iterations: 1
abstracting: (P_start_1_1<=0)
states: 344
abstracting: (P_fordo_12_1<=0)
states: 364
.abstracting: (P_start_1_1<=0)
states: 344
abstracting: (P_start_1_1<=0)
states: 344
...........
EG iterations: 11
.-> the formula is FALSE

FORMULA LamportFastMutEx-PT-2-CTLCardinality-09 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.046sec

checking: EG [A [EX [[~ [sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)] | sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)]] U 65<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)]]
normalized: EG [[~ [EG [~ [65<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)]]] & ~ [E [~ [65<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)] U [~ [EX [[~ [sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)] | sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)]]] & ~ [65<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)]]]]]]

abstracting: (65<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0))
states: 0
abstracting: (sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0))
states: 352
abstracting: (sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0))
states: 306
.abstracting: (65<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0))
states: 0
abstracting: (65<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0))
states: 0

EG iterations: 0
.
EG iterations: 1
-> the formula is FALSE

FORMULA LamportFastMutEx-PT-2-CTLCardinality-03 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.081sec

checking: EF [[EG [[AG [E [30<=sum(y_2, y_1, y_0) U sum(P_awaity_2, P_awaity_1, P_awaity_0)<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)]] & sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=6]] | AF [A [EF [10<=sum(P_start_1_2, P_start_1_1, P_start_1_0)] U ~ [sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=58]]]]]
normalized: E [true U [~ [EG [~ [[~ [EG [sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=58]] & ~ [E [sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=58 U [~ [E [true U 10<=sum(P_start_1_2, P_start_1_1, P_start_1_0)]] & sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=58]]]]]]] | EG [[~ [E [true U ~ [E [30<=sum(y_2, y_1, y_0) U sum(P_awaity_2, P_awaity_1, P_awaity_0)<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)]]]] & sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=6]]]]

abstracting: (sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=6)
states: 380
abstracting: (sum(P_awaity_2, P_awaity_1, P_awaity_0)<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0))
states: 340
abstracting: (30<=sum(y_2, y_1, y_0))
states: 0
.
EG iterations: 1
abstracting: (sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=58)
states: 380
abstracting: (10<=sum(P_start_1_2, P_start_1_1, P_start_1_0))
states: 0
abstracting: (sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=58)
states: 380
abstracting: (sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=58)
states: 380

EG iterations: 0

EG iterations: 0
-> the formula is FALSE

FORMULA LamportFastMutEx-PT-2-CTLCardinality-01 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.131sec

checking: A [[[[[P_done_0_2<=0 | ~ [[P_done_0_1<=1 & ~ [1<=P_setbi_5_1]]]] | A [[EG [P_b_0_false<=P_wait_2_1] | EG [1<=P_done_0_1]] U [E [P_setbi_24_2<=0 U P_ifxi_10_2<=1] | EG [P_done_2_2<=P_setbi_5_1]]]] & [AF [[[1<=P_setbi_24_2 & P_await_13_2<=1] & [P_ifxi_10_1<=P_b_2_true & 1<=P_sety_9_2]]] & [EF [~ [1<=P_start_1_2]] | [~ [AX [P_ify0_4_0<=P_await_13_0]] & P_ifxi_10_0<=P_wait_1_2]]]] | P_ifxi_10_0<=0] U [A [EF [~ [[P_b_2_true<=1 & 1<=P_start_1_2]]] U EF [1<=P_awaity_2]] | [E [P_setx_3_1<=1 U P_setbi_24_0<=0] & A [1<=P_done_0_1 U [1<=P_awaity_1 | EG [P_start_1_1<=0]]]]]]
normalized: [~ [EG [~ [[[[~ [EG [~ [[EG [P_start_1_1<=0] | 1<=P_awaity_1]]]] & ~ [E [~ [[EG [P_start_1_1<=0] | 1<=P_awaity_1]] U [~ [1<=P_done_0_1] & ~ [[EG [P_start_1_1<=0] | 1<=P_awaity_1]]]]]] & E [P_setx_3_1<=1 U P_setbi_24_0<=0]] | [~ [EG [~ [E [true U 1<=P_awaity_2]]]] & ~ [E [~ [E [true U 1<=P_awaity_2]] U [~ [E [true U ~ [[P_b_2_true<=1 & 1<=P_start_1_2]]]] & ~ [E [true U 1<=P_awaity_2]]]]]]]]]] & ~ [E [~ [[[[~ [EG [~ [[EG [P_start_1_1<=0] | 1<=P_awaity_1]]]] & ~ [E [~ [[EG [P_start_1_1<=0] | 1<=P_awaity_1]] U [~ [1<=P_done_0_1] & ~ [[EG [P_start_1_1<=0] | 1<=P_awaity_1]]]]]] & E [P_setx_3_1<=1 U P_setbi_24_0<=0]] | [~ [EG [~ [E [true U 1<=P_awaity_2]]]] & ~ [E [~ [E [true U 1<=P_awaity_2]] U [~ [E [true U ~ [[P_b_2_true<=1 & 1<=P_start_1_2]]]] & ~ [E [true U 1<=P_awaity_2]]]]]]]] U [~ [[[[[[EX [~ [P_ify0_4_0<=P_await_13_0]] & P_ifxi_10_0<=P_wait_1_2] | E [true U ~ [1<=P_start_1_2]]] & ~ [EG [~ [[[P_ifxi_10_1<=P_b_2_true & 1<=P_sety_9_2] & [1<=P_setbi_24_2 & P_await_13_2<=1]]]]]] & [[~ [EG [~ [[EG [P_done_2_2<=P_setbi_5_1] | E [P_setbi_24_2<=0 U P_ifxi_10_2<=1]]]]] & ~ [E [~ [[EG [P_done_2_2<=P_setbi_5_1] | E [P_setbi_24_2<=0 U P_ifxi_10_2<=1]]] U [~ [[EG [1<=P_done_0_1] | EG [P_b_0_false<=P_wait_2_1]]] & ~ [[EG [P_done_2_2<=P_setbi_5_1] | E [P_setbi_24_2<=0 U P_ifxi_10_2<=1]]]]]]] | [~ [[~ [1<=P_setbi_5_1] & P_done_0_1<=1]] | P_done_0_2<=0]]] | P_ifxi_10_0<=0]] & ~ [[[[~ [EG [~ [[EG [P_start_1_1<=0] | 1<=P_awaity_1]]]] & ~ [E [~ [[EG [P_start_1_1<=0] | 1<=P_awaity_1]] U [~ [1<=P_done_0_1] & ~ [[EG [P_start_1_1<=0] | 1<=P_awaity_1]]]]]] & E [P_setx_3_1<=1 U P_setbi_24_0<=0]] | [~ [EG [~ [E [true U 1<=P_awaity_2]]]] & ~ [E [~ [E [true U 1<=P_awaity_2]] U [~ [E [true U ~ [[P_b_2_true<=1 & 1<=P_start_1_2]]]] & ~ [E [true U 1<=P_awaity_2]]]]]]]]]]]]

abstracting: (1<=P_awaity_2)
states: 21
abstracting: (1<=P_start_1_2)
states: 36
abstracting: (P_b_2_true<=1)
states: 380
abstracting: (1<=P_awaity_2)
states: 21
abstracting: (1<=P_awaity_2)
states: 21
.
EG iterations: 1
abstracting: (P_setbi_24_0<=0)
states: 380
abstracting: (P_setx_3_1<=1)
states: 380
abstracting: (1<=P_awaity_1)
states: 21
abstracting: (P_start_1_1<=0)
states: 344
...........
EG iterations: 11
abstracting: (1<=P_done_0_1)
states: 0
abstracting: (1<=P_awaity_1)
states: 21
abstracting: (P_start_1_1<=0)
states: 344
...........
EG iterations: 11
abstracting: (1<=P_awaity_1)
states: 21
abstracting: (P_start_1_1<=0)
states: 344
...........
EG iterations: 11
.
EG iterations: 1
abstracting: (P_ifxi_10_0<=0)
states: 380
abstracting: (P_done_0_2<=0)
states: 380
abstracting: (P_done_0_1<=1)
states: 380
abstracting: (1<=P_setbi_5_1)
states: 21
abstracting: (P_ifxi_10_2<=1)
states: 380
abstracting: (P_setbi_24_2<=0)
states: 341
abstracting: (P_done_2_2<=P_setbi_5_1)
states: 354
.........
EG iterations: 9
abstracting: (P_b_0_false<=P_wait_2_1)
states: 380

EG iterations: 0
abstracting: (1<=P_done_0_1)
states: 0
.
EG iterations: 1
abstracting: (P_ifxi_10_2<=1)
states: 380
abstracting: (P_setbi_24_2<=0)
states: 341
abstracting: (P_done_2_2<=P_setbi_5_1)
states: 354
.........
EG iterations: 9
abstracting: (P_ifxi_10_2<=1)
states: 380
abstracting: (P_setbi_24_2<=0)
states: 341
abstracting: (P_done_2_2<=P_setbi_5_1)
states: 354
.........
EG iterations: 9
.
EG iterations: 1
abstracting: (P_await_13_2<=1)
states: 380
abstracting: (1<=P_setbi_24_2)
states: 39
abstracting: (1<=P_sety_9_2)
states: 28
abstracting: (P_ifxi_10_1<=P_b_2_true)
states: 365

EG iterations: 0
abstracting: (1<=P_start_1_2)
states: 36
abstracting: (P_ifxi_10_0<=P_wait_1_2)
states: 380
abstracting: (P_ify0_4_0<=P_await_13_0)
states: 380
.abstracting: (1<=P_awaity_2)
states: 21
abstracting: (1<=P_start_1_2)
states: 36
abstracting: (P_b_2_true<=1)
states: 380
abstracting: (1<=P_awaity_2)
states: 21
abstracting: (1<=P_awaity_2)
states: 21
.
EG iterations: 1
abstracting: (P_setbi_24_0<=0)
states: 380
abstracting: (P_setx_3_1<=1)
states: 380
abstracting: (1<=P_awaity_1)
states: 21
abstracting: (P_start_1_1<=0)
states: 344
...........
EG iterations: 11
abstracting: (1<=P_done_0_1)
states: 0
abstracting: (1<=P_awaity_1)
states: 21
abstracting: (P_start_1_1<=0)
states: 344
...........
EG iterations: 11
abstracting: (1<=P_awaity_1)
states: 21
abstracting: (P_start_1_1<=0)
states: 344
...........
EG iterations: 11
.
EG iterations: 1
abstracting: (1<=P_awaity_2)
states: 21
abstracting: (1<=P_start_1_2)
states: 36
abstracting: (P_b_2_true<=1)
states: 380
abstracting: (1<=P_awaity_2)
states: 21
abstracting: (1<=P_awaity_2)
states: 21
.
EG iterations: 1
abstracting: (P_setbi_24_0<=0)
states: 380
abstracting: (P_setx_3_1<=1)
states: 380
abstracting: (1<=P_awaity_1)
states: 21
abstracting: (P_start_1_1<=0)
states: 344
...........
EG iterations: 11
abstracting: (1<=P_done_0_1)
states: 0
abstracting: (1<=P_awaity_1)
states: 21
abstracting: (P_start_1_1<=0)
states: 344
...........
EG iterations: 11
abstracting: (1<=P_awaity_1)
states: 21
abstracting: (P_start_1_1<=0)
states: 344
...........
EG iterations: 11
.
EG iterations: 1
.
EG iterations: 1
-> the formula is TRUE

FORMULA LamportFastMutEx-PT-2-CTLCardinality-14 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.089sec

checking: AG [[[E [A [[sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)<=100 & sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)] U [40<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0) & sum(x_2, x_1, x_0)<=69]] U [~ [[sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=69 & sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)]] | [AX [21<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)] & [sum(y_2, y_1, y_0)<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0) | 13<=sum(P_await_13_2, P_await_13_1, P_await_13_0)]]]] & EG [sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)]] & 23<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)]]
normalized: ~ [E [true U ~ [[[EG [sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)] & E [[~ [EG [~ [[40<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0) & sum(x_2, x_1, x_0)<=69]]]] & ~ [E [~ [[40<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0) & sum(x_2, x_1, x_0)<=69]] U [~ [[sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)<=100 & sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)]] & ~ [[40<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0) & sum(x_2, x_1, x_0)<=69]]]]]] U [[[sum(y_2, y_1, y_0)<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0) | 13<=sum(P_await_13_2, P_await_13_1, P_await_13_0)] & ~ [EX [~ [21<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)]]]] | ~ [[sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=69 & sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)]]]]] & 23<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)]]]]

abstracting: (23<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0))
states: 0
abstracting: (sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false))
states: 380
abstracting: (sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=69)
states: 380
abstracting: (21<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0))
states: 0
.abstracting: (13<=sum(P_await_13_2, P_await_13_1, P_await_13_0))
states: 0
abstracting: (sum(y_2, y_1, y_0)<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0))
states: 58
abstracting: (sum(x_2, x_1, x_0)<=69)
states: 380
abstracting: (40<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0))
states: 0
abstracting: (sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0))
states: 0
abstracting: (sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)<=100)
states: 380
abstracting: (sum(x_2, x_1, x_0)<=69)
states: 380
abstracting: (40<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0))
states: 0
abstracting: (sum(x_2, x_1, x_0)<=69)
states: 380
abstracting: (40<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0))
states: 0

EG iterations: 0
abstracting: (sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0))
states: 318
..................
EG iterations: 18
-> the formula is FALSE

FORMULA LamportFastMutEx-PT-2-CTLCardinality-06 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.308sec

checking: [~ [AF [33<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)]] | [[[AF [~ [AG [19<=sum(P_awaity_2, P_awaity_1, P_awaity_0)]]] | A [[74<=sum(x_2, x_1, x_0) & ~ [39<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)]] U EG [E [73<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0) U sum(P_awaity_2, P_awaity_1, P_awaity_0)<=sum(x_2, x_1, x_0)]]]] | AG [E [[sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false) | ~ [sum(P_awaity_2, P_awaity_1, P_awaity_0)<=sum(P_start_1_2, P_start_1_1, P_start_1_0)]] U sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=91]]] & [[EF [AF [AF [97<=sum(P_start_1_2, P_start_1_1, P_start_1_0)]]] | EG [~ [sum(x_2, x_1, x_0)<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)]]] & ~ [[EF [60<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)] | EG [[[sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=14 | 89<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)] & [sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0) | 43<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)]]]]]]]]
normalized: [[[~ [[EG [[[sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=14 | 89<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)] & [sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0) | 43<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)]]] | E [true U 60<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)]]] & [EG [~ [sum(x_2, x_1, x_0)<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)]] | E [true U ~ [EG [EG [~ [97<=sum(P_start_1_2, P_start_1_1, P_start_1_0)]]]]]]] & [~ [E [true U ~ [E [[sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false) | ~ [sum(P_awaity_2, P_awaity_1, P_awaity_0)<=sum(P_start_1_2, P_start_1_1, P_start_1_0)]] U sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=91]]]] | [[~ [EG [~ [EG [E [73<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0) U sum(P_awaity_2, P_awaity_1, P_awaity_0)<=sum(x_2, x_1, x_0)]]]]] & ~ [E [~ [EG [E [73<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0) U sum(P_awaity_2, P_awaity_1, P_awaity_0)<=sum(x_2, x_1, x_0)]]] U [~ [[74<=sum(x_2, x_1, x_0) & ~ [39<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)]]] & ~ [EG [E [73<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0) U sum(P_awaity_2, P_awaity_1, P_awaity_0)<=sum(x_2, x_1, x_0)]]]]]]] | ~ [EG [~ [E [true U ~ [19<=sum(P_awaity_2, P_awaity_1, P_awaity_0)]]]]]]]] | EG [~ [33<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)]]]

abstracting: (33<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0))
states: 0

EG iterations: 0
abstracting: (19<=sum(P_awaity_2, P_awaity_1, P_awaity_0))
states: 0
.
EG iterations: 1
abstracting: (sum(P_awaity_2, P_awaity_1, P_awaity_0)<=sum(x_2, x_1, x_0))
states: 380
abstracting: (73<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0))
states: 0

EG iterations: 0
abstracting: (39<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0))
states: 0
abstracting: (74<=sum(x_2, x_1, x_0))
states: 0
abstracting: (sum(P_awaity_2, P_awaity_1, P_awaity_0)<=sum(x_2, x_1, x_0))
states: 380
abstracting: (73<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0))
states: 0

EG iterations: 0
abstracting: (sum(P_awaity_2, P_awaity_1, P_awaity_0)<=sum(x_2, x_1, x_0))
states: 380
abstracting: (73<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0))
states: 0

EG iterations: 0
.
EG iterations: 1
abstracting: (sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=91)
states: 380
abstracting: (sum(P_awaity_2, P_awaity_1, P_awaity_0)<=sum(P_start_1_2, P_start_1_1, P_start_1_0))
states: 342
abstracting: (sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false))
states: 380
abstracting: (97<=sum(P_start_1_2, P_start_1_1, P_start_1_0))
states: 0

EG iterations: 0

EG iterations: 0
abstracting: (sum(x_2, x_1, x_0)<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0))
states: 69
..................
EG iterations: 18
abstracting: (60<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0))
states: 0
abstracting: (43<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0))
states: 0
abstracting: (sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0))
states: 380
abstracting: (89<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0))
states: 0
abstracting: (sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=14)
states: 380

EG iterations: 0
-> the formula is TRUE

FORMULA LamportFastMutEx-PT-2-CTLCardinality-04 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.379sec

checking: [[A [EX [[sum(P_start_1_2, P_start_1_1, P_start_1_0)<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0) & [~ [sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=30] & [sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0) & sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=77]]]] U [AX [AG [33<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)]] | [~ [sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=28] | [~ [AX [54<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)]] & sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=96]]]] & EF [[[sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0) & AG [~ [sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=11]]] | ~ [AF [sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)]]]]] & EF [~ [[A [[EG [52<=sum(x_2, x_1, x_0)] & ~ [sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=1]] U ~ [73<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)]] & ~ [[sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0) & sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=7]]]]]]
normalized: [E [true U ~ [[~ [[sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0) & sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=7]] & [~ [EG [73<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)]] & ~ [E [73<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0) U [73<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0) & ~ [[~ [sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=1] & EG [52<=sum(x_2, x_1, x_0)]]]]]]]]]] & [E [true U [EG [~ [sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)]] | [sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0) & ~ [E [true U sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=11]]]]] & [~ [EG [~ [[[[sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=96 & EX [~ [54<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)]]] | ~ [sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=28]] | ~ [EX [E [true U ~ [33<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)]]]]]]]] & ~ [E [~ [[[[sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=96 & EX [~ [54<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)]]] | ~ [sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=28]] | ~ [EX [E [true U ~ [33<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)]]]]]] U [~ [EX [[sum(P_start_1_2, P_start_1_1, P_start_1_0)<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0) & [[sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0) & sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=77] & ~ [sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=30]]]]] & ~ [[[[sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=96 & EX [~ [54<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)]]] | ~ [sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=28]] | ~ [EX [E [true U ~ [33<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)]]]]]]]]]]]]

abstracting: (33<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0))
states: 0
.abstracting: (sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=28)
states: 380
abstracting: (54<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false))
states: 0
.abstracting: (sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=96)
states: 380
abstracting: (sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=30)
states: 380
abstracting: (sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=77)
states: 380
abstracting: (sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0))
states: 308
abstracting: (sum(P_start_1_2, P_start_1_1, P_start_1_0)<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0))
states: 315
.abstracting: (33<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0))
states: 0
.abstracting: (sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=28)
states: 380
abstracting: (54<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false))
states: 0
.abstracting: (sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=96)
states: 380
abstracting: (33<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0))
states: 0
.abstracting: (sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=28)
states: 380
abstracting: (54<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false))
states: 0
.abstracting: (sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=96)
states: 380
.
EG iterations: 1
abstracting: (sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=11)
states: 380
abstracting: (sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0))
states: 315
abstracting: (sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0))
states: 298
........
EG iterations: 8
abstracting: (52<=sum(x_2, x_1, x_0))
states: 0
.
EG iterations: 1
abstracting: (sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=1)
states: 376
abstracting: (73<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0))
states: 0
abstracting: (73<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0))
states: 0
abstracting: (73<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0))
states: 0
.
EG iterations: 1
abstracting: (sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=7)
states: 380
abstracting: (sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0))
states: 314
-> the formula is TRUE

FORMULA LamportFastMutEx-PT-2-CTLCardinality-02 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.415sec

checking: [[[AX [[E [[69<=sum(P_start_1_2, P_start_1_1, P_start_1_0) & sum(x_2, x_1, x_0)<=10] U [sum(P_await_13_2, P_await_13_1, P_await_13_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0) & sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=33]] | EX [[sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0) | sum(P_awaity_2, P_awaity_1, P_awaity_0)<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)]]]] & E [[EG [[sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0) | sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)<=66]] & ~ [[[65<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0) & 4<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)] | [74<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0) | sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=1]]]] U 49<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)]] | ~ [[EG [[76<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0) | ~ [A [sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(y_2, y_1, y_0) U sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=29]]]] & A [~ [85<=sum(x_2, x_1, x_0)] U EF [43<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)]]]]] & A [~ [[EX [EF [sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)]] & EF [[AX [72<=sum(y_2, y_1, y_0)] & EG [64<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)]]]]] U AX [~ [[sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=31 & sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=53]]]]]
normalized: [[~ [EG [EX [[sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=31 & sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=53]]]] & ~ [E [EX [[sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=31 & sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=53]] U [[E [true U [EG [64<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)] & ~ [EX [~ [72<=sum(y_2, y_1, y_0)]]]]] & EX [E [true U sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)]]] & EX [[sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=31 & sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=53]]]]]] & [~ [[[~ [EG [~ [E [true U 43<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)]]]] & ~ [E [~ [E [true U 43<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)]] U [85<=sum(x_2, x_1, x_0) & ~ [E [true U 43<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)]]]]]] & EG [[76<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0) | ~ [[~ [EG [~ [sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=29]]] & ~ [E [~ [sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=29] U [~ [sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(y_2, y_1, y_0)] & ~ [sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=29]]]]]]]]]] | [E [[~ [[[74<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0) | sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=1] | [65<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0) & 4<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)]]] & EG [[sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0) | sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)<=66]]] U 49<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)] & ~ [EX [~ [[EX [[sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0) | sum(P_awaity_2, P_awaity_1, P_awaity_0)<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)]] | E [[69<=sum(P_start_1_2, P_start_1_1, P_start_1_0) & sum(x_2, x_1, x_0)<=10] U [sum(P_await_13_2, P_await_13_1, P_await_13_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0) & sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=33]]]]]]]]]

abstracting: (sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=33)
states: 380
abstracting: (sum(P_await_13_2, P_await_13_1, P_await_13_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0))
states: 356
abstracting: (sum(x_2, x_1, x_0)<=10)
states: 380
abstracting: (69<=sum(P_start_1_2, P_start_1_1, P_start_1_0))
states: 0
abstracting: (sum(P_awaity_2, P_awaity_1, P_awaity_0)<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0))
states: 338
abstracting: (sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0))
states: 334
..abstracting: (49<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0))
states: 0
abstracting: (sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)<=66)
states: 380
abstracting: (sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0))
states: 352

EG iterations: 0
abstracting: (4<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false))
states: 0
abstracting: (65<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0))
states: 0
abstracting: (sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=1)
states: 380
abstracting: (74<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0))
states: 0
abstracting: (sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=29)
states: 380
abstracting: (sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(y_2, y_1, y_0))
states: 378
abstracting: (sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=29)
states: 380
abstracting: (sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=29)
states: 380
.
EG iterations: 1
abstracting: (76<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0))
states: 0
.
EG iterations: 1
abstracting: (43<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0))
states: 0
abstracting: (85<=sum(x_2, x_1, x_0))
states: 0
abstracting: (43<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0))
states: 0
abstracting: (43<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0))
states: 0

EG iterations: 0
abstracting: (sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=53)
states: 380
abstracting: (sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=31)
states: 380
.abstracting: (sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0))
states: 360
.abstracting: (72<=sum(y_2, y_1, y_0))
states: 0
.abstracting: (64<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0))
states: 0
.
EG iterations: 1
abstracting: (sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=53)
states: 380
abstracting: (sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=31)
states: 380
.abstracting: (sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=53)
states: 380
abstracting: (sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=31)
states: 380
.
EG iterations: 0
-> the formula is FALSE

FORMULA LamportFastMutEx-PT-2-CTLCardinality-07 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.495sec

totally nodes used: 169569 (1.7e+05)
number of garbage collections: 0
fire ops cache: hits/miss/sum: 274142 961323 1235465
used/not used/entry size/cache size: 1120587 65988277 16 1024MB
basic ops cache: hits/miss/sum: 67409 154398 221807
used/not used/entry size/cache size: 261130 16516086 12 192MB
unary ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 8 128MB
abstract ops cache: hits/miss/sum: 0 4166 4166
used/not used/entry size/cache size: 1 16777215 12 192MB
state nr cache: hits/miss/sum: 1146 4007 5153
used/not used/entry size/cache size: 4007 8384601 32 256MB
max state cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 8388608 32 256MB
uniqueHash elements/entry size/size: 67108864 4 256MB
0 66949897
1 149186
2 9011
3 719
4 51
5 0
6 0
7 0
8 0
9 0
>= 10 0

Total processing time: 0m 6.715sec


BK_STOP 1678622430352

--------------------
content from stderr:

check for maximal unmarked siphon
found
The net has a maximal unmarked siphon:
P_wait_0_1
P_wait_0_2
P_awaity_0
P_setbi_24_0
P_CS_21_0
P_await_13_0
P_done_0_2
P_done_1_0
P_wait_1_0
P_wait_2_0
P_done_0_0
P_done_0_1
P_done_2_0
P_ifyi_15_0
P_fordo_12_0
P_ify0_4_0
P_setx_3_0
P_ifxi_10_0
P_b_0_false
P_b_0_true
P_sety_9_0
P_wait_0_0
P_setbi_5_0
P_setbi_11_0
P_start_1_0

The net has transition(s) that can never fire:
T_setx_3_3
T_yeq0_4_1
T_sety_9_3
T_sety_9_2
T_setbi_5_1
T_setbi_5_2
T_forod_13_1
T_yne0_4_3
T_await_13_7
T_xnei_10_2
T_xnei_10_3
T_awaity_1
T_ynei_15_2
T_ynei_15_3
T_yeqi_15_1
T_sety_9_1
T_xeqi_10_1
T_sety0_23_1
T_sety0_23_2
T_sety0_23_3
T_yne0_4_2
T_setbi_11_1
T_setbi_11_2
T_fordo_12_1
T_await_13_1
T_await_13_2
T_await_13_3
T_await_13_4
T_setbi_2_1
T_setx_3_1
T_setbi_24_1
T_setbi_24_2
T_setbi_2_2
T_setx_3_2

check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok


initing FirstDep: 0m 0.000sec


iterations count:1779 (18), effective:98 (1)

initing FirstDep: 0m 0.000sec


iterations count:96 (1), effective:0 (0)

iterations count:96 (1), effective:0 (0)

iterations count:96 (1), effective:0 (0)

iterations count:261 (2), effective:11 (0)

iterations count:1560 (16), effective:78 (0)

iterations count:261 (2), effective:11 (0)

iterations count:1560 (16), effective:78 (0)

iterations count:261 (2), effective:11 (0)

iterations count:1560 (16), effective:78 (0)

iterations count:96 (1), effective:0 (0)

iterations count:96 (1), effective:0 (0)

iterations count:96 (1), effective:0 (0)

iterations count:145 (1), effective:4 (0)

iterations count:96 (1), effective:0 (0)

iterations count:96 (1), effective:0 (0)

iterations count:1684 (17), effective:85 (0)

iterations count:825 (8), effective:37 (0)

iterations count:96 (1), effective:0 (0)

iterations count:646 (6), effective:26 (0)

iterations count:1752 (18), effective:85 (0)

iterations count:96 (1), effective:0 (0)

iterations count:1287 (13), effective:65 (0)

iterations count:96 (1), effective:0 (0)

iterations count:1599 (16), effective:78 (0)

iterations count:129 (1), effective:1 (0)

iterations count:1599 (16), effective:78 (0)

iterations count:1599 (16), effective:78 (0)

iterations count:96 (1), effective:0 (0)

iterations count:96 (1), effective:0 (0)

iterations count:96 (1), effective:0 (0)

iterations count:96 (1), effective:0 (0)

iterations count:96 (1), effective:0 (0)

iterations count:129 (1), effective:1 (0)

iterations count:1599 (16), effective:78 (0)

iterations count:129 (1), effective:1 (0)

iterations count:1599 (16), effective:78 (0)

iterations count:1599 (16), effective:78 (0)

iterations count:96 (1), effective:0 (0)

iterations count:96 (1), effective:0 (0)

iterations count:1599 (16), effective:78 (0)

iterations count:129 (1), effective:1 (0)

iterations count:1599 (16), effective:78 (0)

iterations count:1599 (16), effective:78 (0)

iterations count:96 (1), effective:0 (0)

iterations count:96 (1), effective:0 (0)

iterations count:96 (1), effective:0 (0)

iterations count:96 (1), effective:0 (0)

iterations count:96 (1), effective:0 (0)

iterations count:96 (1), effective:0 (0)

iterations count:96 (1), effective:0 (0)

iterations count:96 (1), effective:0 (0)

iterations count:96 (1), effective:0 (0)

iterations count:96 (1), effective:0 (0)

iterations count:96 (1), effective:0 (0)

iterations count:96 (1), effective:0 (0)

iterations count:96 (1), effective:0 (0)

iterations count:2245 (23), effective:106 (1)

iterations count:187 (1), effective:4 (0)

iterations count:96 (1), effective:0 (0)

iterations count:208 (2), effective:8 (0)

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="LamportFastMutEx-PT-2"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marcie"
echo " Input is LamportFastMutEx-PT-2, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r225-tall-167856407500393"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"

tar xzf /home/mcc/BenchKit/INPUTS/LamportFastMutEx-PT-2.tgz
mv LamportFastMutEx-PT-2 execution
cd execution
if [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "UpperBounds" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] || [ "CTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh

echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' CTLCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME CTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;