About the Execution of Marcie for JoinFreeModules-PT-0004
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
5482.084 | 5417.00 | 5080.00 | 0.00 | TTTTTTFFTTFFFFTT | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fkordon/mcc2023-input.r225-tall-167856407200145.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2023-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
................................................................................................................
=====================================================================
Generated by BenchKit 2-5348
Executing tool marcie
Input is JoinFreeModules-PT-0004, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r225-tall-167856407200145
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 452K
-rw-r--r-- 1 mcc users 8.6K Feb 25 11:54 CTLCardinality.txt
-rw-r--r-- 1 mcc users 102K Feb 25 11:54 CTLCardinality.xml
-rw-r--r-- 1 mcc users 5.4K Feb 25 11:54 CTLFireability.txt
-rw-r--r-- 1 mcc users 48K Feb 25 11:54 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K Jan 29 11:40 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.1K Jan 29 11:40 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 3.6K Feb 25 16:18 LTLCardinality.txt
-rw-r--r-- 1 mcc users 24K Feb 25 16:18 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.3K Feb 25 16:18 LTLFireability.txt
-rw-r--r-- 1 mcc users 19K Feb 25 16:18 LTLFireability.xml
-rw-r--r-- 1 mcc users 11K Feb 25 11:54 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 111K Feb 25 11:54 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 5.7K Feb 25 11:54 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 43K Feb 25 11:54 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.7K Feb 25 16:18 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.7K Feb 25 16:18 UpperBounds.xml
-rw-r--r-- 1 mcc users 6 Mar 5 18:22 equiv_col
-rw-r--r-- 1 mcc users 5 Mar 5 18:22 instance
-rw-r--r-- 1 mcc users 6 Mar 5 18:22 iscolored
-rw-r--r-- 1 mcc users 13K Mar 5 18:22 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME JoinFreeModules-PT-0004-CTLCardinality-00
FORMULA_NAME JoinFreeModules-PT-0004-CTLCardinality-01
FORMULA_NAME JoinFreeModules-PT-0004-CTLCardinality-02
FORMULA_NAME JoinFreeModules-PT-0004-CTLCardinality-03
FORMULA_NAME JoinFreeModules-PT-0004-CTLCardinality-04
FORMULA_NAME JoinFreeModules-PT-0004-CTLCardinality-05
FORMULA_NAME JoinFreeModules-PT-0004-CTLCardinality-06
FORMULA_NAME JoinFreeModules-PT-0004-CTLCardinality-07
FORMULA_NAME JoinFreeModules-PT-0004-CTLCardinality-08
FORMULA_NAME JoinFreeModules-PT-0004-CTLCardinality-09
FORMULA_NAME JoinFreeModules-PT-0004-CTLCardinality-10
FORMULA_NAME JoinFreeModules-PT-0004-CTLCardinality-11
FORMULA_NAME JoinFreeModules-PT-0004-CTLCardinality-12
FORMULA_NAME JoinFreeModules-PT-0004-CTLCardinality-13
FORMULA_NAME JoinFreeModules-PT-0004-CTLCardinality-14
FORMULA_NAME JoinFreeModules-PT-0004-CTLCardinality-15
=== Now, execution of the tool begins
BK_START 1678608215122
bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marcie
BK_EXAMINATION=CTLCardinality
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=JoinFreeModules-PT-0004
Not applying reductions.
Model is PT
CTLCardinality PT
timeout --kill-after=10s --signal=SIGINT 1m for testing only
Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: /home/mcc/BenchKit/bin//../marcie/bin/marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --memory=6 --mcc-mode
parse successfull
net created successfully
Net: JoinFreeModules_PT_0004
(NrP: 21 NrTr: 33 NrArc: 94)
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec
net check time: 0m 0.000sec
init dd package: 0m 2.925sec
RS generation: 0m 0.001sec
-> reachability set: #nodes 217 (2.2e+02) #states 14,776,336 (7)
starting MCC model checker
--------------------------
checking: AX [[p10<=1 & EG [1<=p17]]]
normalized: ~ [EX [~ [[EG [1<=p17] & p10<=1]]]]
abstracting: (p10<=1)
states: 11,916,400 (7)
abstracting: (1<=p17)
states: 9,533,120 (6)
.
EG iterations: 1
.-> the formula is TRUE
FORMULA JoinFreeModules-PT-0004-CTLCardinality-02 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.006sec
checking: AG [EX [[E [p20<=2 U ~ [1<=p16]] | ~ [[[EG [p19<=2] & ~ [p17<=0]] & AX [p14<=p15]]]]]]
normalized: ~ [E [true U ~ [EX [[~ [[~ [EX [~ [p14<=p15]]] & [~ [p17<=0] & EG [p19<=2]]]] | E [p20<=2 U ~ [1<=p16]]]]]]]
abstracting: (1<=p16)
states: 10,724,760 (7)
abstracting: (p20<=2)
states: 12,631,384 (7)
abstracting: (p19<=2)
states: 9,294,792 (6)
..........
EG iterations: 10
abstracting: (p17<=0)
states: 5,243,216 (6)
abstracting: (p14<=p15)
states: 9,294,792 (6)
..-> the formula is FALSE
FORMULA JoinFreeModules-PT-0004-CTLCardinality-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.014sec
checking: ~ [[EF [E [p4<=p5 U 1<=p4]] | AG [[p13<=2 & p11<=p3]]]]
normalized: ~ [[E [true U E [p4<=p5 U 1<=p4]] | ~ [E [true U ~ [[p13<=2 & p11<=p3]]]]]]
abstracting: (p11<=p3)
states: 6,619,368 (6)
abstracting: (p13<=2)
states: 12,869,712 (7)
abstracting: (1<=p4)
states: 8,818,136 (6)
abstracting: (p4<=p5)
states: 9,294,792 (6)
-> the formula is FALSE
FORMULA JoinFreeModules-PT-0004-CTLCardinality-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.007sec
checking: E [[[4<=p8 | 2<=p19] | [p11<=p17 | 3<=p7]] U 4<=p8]
normalized: E [[[p11<=p17 | 3<=p7] | [4<=p8 | 2<=p19]] U 4<=p8]
abstracting: (4<=p8)
states: 714,984 (5)
abstracting: (2<=p19)
states: 6,434,856 (6)
abstracting: (4<=p8)
states: 714,984 (5)
abstracting: (3<=p7)
states: 2,383,280 (6)
abstracting: (p11<=p17)
states: 6,942,264 (6)
-> the formula is TRUE
FORMULA JoinFreeModules-PT-0004-CTLCardinality-14 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.025sec
checking: ~ [AF [E [A [AG [1<=p17] U [[p9<=1 | p17<=3] & p14<=p9]] U ~ [[4<=p3 | 1<=p12]]]]]
normalized: EG [~ [E [[~ [EG [~ [[[p9<=1 | p17<=3] & p14<=p9]]]] & ~ [E [~ [[[p9<=1 | p17<=3] & p14<=p9]] U [E [true U ~ [1<=p17]] & ~ [[[p9<=1 | p17<=3] & p14<=p9]]]]]] U ~ [[4<=p3 | 1<=p12]]]]]
abstracting: (1<=p12)
states: 9,533,120 (6)
abstracting: (4<=p3)
states: 714,984 (5)
abstracting: (p14<=p9)
states: 9,267,884 (6)
abstracting: (p17<=3)
states: 13,823,024 (7)
abstracting: (p9<=1)
states: 8,341,480 (6)
abstracting: (1<=p17)
states: 9,533,120 (6)
abstracting: (p14<=p9)
states: 9,267,884 (6)
abstracting: (p17<=3)
states: 13,823,024 (7)
abstracting: (p9<=1)
states: 8,341,480 (6)
abstracting: (p14<=p9)
states: 9,267,884 (6)
abstracting: (p17<=3)
states: 13,823,024 (7)
abstracting: (p9<=1)
states: 8,341,480 (6)
..............
EG iterations: 14
..................
EG iterations: 18
-> the formula is FALSE
FORMULA JoinFreeModules-PT-0004-CTLCardinality-07 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.050sec
checking: EX [[~ [[E [AF [p14<=p7] U p18<=p20] | ~ [[~ [p17<=3] & ~ [p15<=1]]]]] & AX [~ [p7<=p12]]]]
normalized: EX [[~ [EX [p7<=p12]] & ~ [[~ [[~ [p15<=1] & ~ [p17<=3]]] | E [~ [EG [~ [p14<=p7]]] U p18<=p20]]]]]
abstracting: (p18<=p20)
states: 8,103,152 (6)
abstracting: (p14<=p7)
states: 8,452,956 (6)
.......
EG iterations: 7
abstracting: (p17<=3)
states: 13,823,024 (7)
abstracting: (p15<=1)
states: 11,916,400 (7)
abstracting: (p7<=p12)
states: 9,333,232 (6)
..-> the formula is FALSE
FORMULA JoinFreeModules-PT-0004-CTLCardinality-06 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.014sec
checking: AX [EF [[E [AF [p<=3] U [AX [2<=p5] | [4<=p11 & p14<=0]]] & ~ [E [[p11<=p7 | 2<=p6] U EF [p10<=p1]]]]]]
normalized: ~ [EX [~ [E [true U [~ [E [[p11<=p7 | 2<=p6] U E [true U p10<=p1]]] & E [~ [EG [~ [p<=3]]] U [[4<=p11 & p14<=0] | ~ [EX [~ [2<=p5]]]]]]]]]]
abstracting: (2<=p5)
states: 2,859,936 (6)
.abstracting: (p14<=0)
states: 5,958,200 (6)
abstracting: (4<=p11)
states: 2,859,936 (6)
abstracting: (p<=3)
states: 14,776,336 (7)
.
EG iterations: 1
abstracting: (p10<=p1)
states: 11,601,192 (7)
abstracting: (2<=p6)
states: 8,818,136 (6)
abstracting: (p11<=p7)
states: 6,942,264 (6)
.-> the formula is TRUE
FORMULA JoinFreeModules-PT-0004-CTLCardinality-01 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.055sec
checking: A [[EF [AX [[A [1<=p2 U 3<=p9] | [p7<=0 & p15<=1]]]] & EX [A [~ [1<=p19] U [1<=p5 | [p3<=4 | p7<=0]]]]] U EX [3<=p18]]
normalized: [~ [EG [~ [EX [3<=p18]]]] & ~ [E [~ [EX [3<=p18]] U [~ [[EX [[~ [EG [~ [[[p3<=4 | p7<=0] | 1<=p5]]]] & ~ [E [~ [[[p3<=4 | p7<=0] | 1<=p5]] U [~ [[[p3<=4 | p7<=0] | 1<=p5]] & 1<=p19]]]]] & E [true U ~ [EX [~ [[[p7<=0 & p15<=1] | [~ [EG [~ [3<=p9]]] & ~ [E [~ [3<=p9] U [~ [1<=p2] & ~ [3<=p9]]]]]]]]]]]] & ~ [EX [3<=p18]]]]]]
abstracting: (3<=p18)
states: 1,906,624 (6)
.abstracting: (3<=p9)
states: 5,481,544 (6)
abstracting: (1<=p2)
states: 9,533,120 (6)
abstracting: (3<=p9)
states: 5,481,544 (6)
abstracting: (3<=p9)
states: 5,481,544 (6)
..........
EG iterations: 10
abstracting: (p15<=1)
states: 11,916,400 (7)
abstracting: (p7<=0)
states: 5,243,216 (6)
.abstracting: (1<=p19)
states: 8,818,136 (6)
abstracting: (1<=p5)
states: 6,434,856 (6)
abstracting: (p7<=0)
states: 5,243,216 (6)
abstracting: (p3<=4)
states: 14,776,336 (7)
abstracting: (1<=p5)
states: 6,434,856 (6)
abstracting: (p7<=0)
states: 5,243,216 (6)
abstracting: (p3<=4)
states: 14,776,336 (7)
abstracting: (1<=p5)
states: 6,434,856 (6)
abstracting: (p7<=0)
states: 5,243,216 (6)
abstracting: (p3<=4)
states: 14,776,336 (7)
.
EG iterations: 1
.abstracting: (3<=p18)
states: 1,906,624 (6)
.abstracting: (3<=p18)
states: 1,906,624 (6)
......
EG iterations: 5
-> the formula is TRUE
FORMULA JoinFreeModules-PT-0004-CTLCardinality-04 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.036sec
checking: [EG [p3<=2] | AF [AF [[[[~ [1<=p16] | ~ [3<=p13]] & [[p4<=0 | p13<=2] | [p11<=4 | 2<=p19]]] | [p<=p2 | p18<=p14]]]]]
normalized: [~ [EG [EG [~ [[[p<=p2 | p18<=p14] | [[[p11<=4 | 2<=p19] | [p4<=0 | p13<=2]] & [~ [3<=p13] | ~ [1<=p16]]]]]]]] | EG [p3<=2]]
abstracting: (p3<=2)
states: 12,869,712 (7)
.
EG iterations: 1
abstracting: (1<=p16)
states: 10,724,760 (7)
abstracting: (3<=p13)
states: 1,906,624 (6)
abstracting: (p13<=2)
states: 12,869,712 (7)
abstracting: (p4<=0)
states: 5,958,200 (6)
abstracting: (2<=p19)
states: 6,434,856 (6)
abstracting: (p11<=4)
states: 13,346,368 (7)
abstracting: (p18<=p14)
states: 10,205,820 (7)
abstracting: (p<=p2)
states: 9,533,120 (6)
..........
EG iterations: 10
.
EG iterations: 1
-> the formula is TRUE
FORMULA JoinFreeModules-PT-0004-CTLCardinality-05 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.008sec
checking: A [~ [p5<=p3] U [EX [[~ [1<=p7] | AG [A [p17<=3 U p11<=0]]]] | [EG [~ [AG [p10<=p15]]] & E [[~ [p6<=3] | AF [1<=p4]] U [~ [p9<=2] | ~ [4<=p8]]]]]]
normalized: [~ [EG [~ [[[E [[~ [EG [~ [1<=p4]]] | ~ [p6<=3]] U [~ [4<=p8] | ~ [p9<=2]]] & EG [E [true U ~ [p10<=p15]]]] | EX [[~ [E [true U ~ [[~ [EG [~ [p11<=0]]] & ~ [E [~ [p11<=0] U [~ [p17<=3] & ~ [p11<=0]]]]]]]] | ~ [1<=p7]]]]]]] & ~ [E [~ [[[E [[~ [EG [~ [1<=p4]]] | ~ [p6<=3]] U [~ [4<=p8] | ~ [p9<=2]]] & EG [E [true U ~ [p10<=p15]]]] | EX [[~ [E [true U ~ [[~ [EG [~ [p11<=0]]] & ~ [E [~ [p11<=0] U [~ [p17<=3] & ~ [p11<=0]]]]]]]] | ~ [1<=p7]]]]] U [~ [[[E [[~ [EG [~ [1<=p4]]] | ~ [p6<=3]] U [~ [4<=p8] | ~ [p9<=2]]] & EG [E [true U ~ [p10<=p15]]]] | EX [[~ [E [true U ~ [[~ [EG [~ [p11<=0]]] & ~ [E [~ [p11<=0] U [~ [p17<=3] & ~ [p11<=0]]]]]]]] | ~ [1<=p7]]]]] & p5<=p3]]]]
abstracting: (p5<=p3)
states: 10,248,104 (7)
abstracting: (1<=p7)
states: 9,533,120 (6)
abstracting: (p11<=0)
states: 4,051,576 (6)
abstracting: (p17<=3)
states: 13,823,024 (7)
abstracting: (p11<=0)
states: 4,051,576 (6)
abstracting: (p11<=0)
states: 4,051,576 (6)
.....
EG iterations: 5
.abstracting: (p10<=p15)
states: 10,271,168 (7)
.
EG iterations: 1
abstracting: (p9<=2)
states: 9,294,792 (6)
abstracting: (4<=p8)
states: 714,984 (5)
abstracting: (p6<=3)
states: 11,916,400 (7)
abstracting: (1<=p4)
states: 8,818,136 (6)
.
EG iterations: 1
abstracting: (1<=p7)
states: 9,533,120 (6)
abstracting: (p11<=0)
states: 4,051,576 (6)
abstracting: (p17<=3)
states: 13,823,024 (7)
abstracting: (p11<=0)
states: 4,051,576 (6)
abstracting: (p11<=0)
states: 4,051,576 (6)
.....
EG iterations: 5
.abstracting: (p10<=p15)
states: 10,271,168 (7)
.
EG iterations: 1
abstracting: (p9<=2)
states: 9,294,792 (6)
abstracting: (4<=p8)
states: 714,984 (5)
abstracting: (p6<=3)
states: 11,916,400 (7)
abstracting: (1<=p4)
states: 8,818,136 (6)
.
EG iterations: 1
abstracting: (1<=p7)
states: 9,533,120 (6)
abstracting: (p11<=0)
states: 4,051,576 (6)
abstracting: (p17<=3)
states: 13,823,024 (7)
abstracting: (p11<=0)
states: 4,051,576 (6)
abstracting: (p11<=0)
states: 4,051,576 (6)
.....
EG iterations: 5
.abstracting: (p10<=p15)
states: 10,271,168 (7)
.
EG iterations: 1
abstracting: (p9<=2)
states: 9,294,792 (6)
abstracting: (4<=p8)
states: 714,984 (5)
abstracting: (p6<=3)
states: 11,916,400 (7)
abstracting: (1<=p4)
states: 8,818,136 (6)
.
EG iterations: 1
.
EG iterations: 1
-> the formula is FALSE
FORMULA JoinFreeModules-PT-0004-CTLCardinality-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.039sec
checking: E [~ [p7<=p11] U AX [A [[p3<=p17 & [~ [3<=p14] & [p13<=1 | p6<=p1]]] U E [EX [p2<=1] U A [3<=p18 U 2<=p16]]]]]
normalized: E [~ [p7<=p11] U ~ [EX [~ [[~ [EG [~ [E [EX [p2<=1] U [~ [EG [~ [2<=p16]]] & ~ [E [~ [2<=p16] U [~ [3<=p18] & ~ [2<=p16]]]]]]]]] & ~ [E [~ [E [EX [p2<=1] U [~ [EG [~ [2<=p16]]] & ~ [E [~ [2<=p16] U [~ [3<=p18] & ~ [2<=p16]]]]]]] U [~ [[p3<=p17 & [[p13<=1 | p6<=p1] & ~ [3<=p14]]]] & ~ [E [EX [p2<=1] U [~ [EG [~ [2<=p16]]] & ~ [E [~ [2<=p16] U [~ [3<=p18] & ~ [2<=p16]]]]]]]]]]]]]]]
abstracting: (2<=p16)
states: 8,818,136 (6)
abstracting: (3<=p18)
states: 1,906,624 (6)
abstracting: (2<=p16)
states: 8,818,136 (6)
abstracting: (2<=p16)
states: 8,818,136 (6)
...........
EG iterations: 11
abstracting: (p2<=1)
states: 9,771,448 (6)
.abstracting: (3<=p14)
states: 5,481,544 (6)
abstracting: (p6<=p1)
states: 8,783,540 (6)
abstracting: (p13<=1)
states: 10,248,104 (7)
abstracting: (p3<=p17)
states: 9,852,172 (6)
abstracting: (2<=p16)
states: 8,818,136 (6)
abstracting: (3<=p18)
states: 1,906,624 (6)
abstracting: (2<=p16)
states: 8,818,136 (6)
abstracting: (2<=p16)
states: 8,818,136 (6)
...........
EG iterations: 11
abstracting: (p2<=1)
states: 9,771,448 (6)
.abstracting: (2<=p16)
states: 8,818,136 (6)
abstracting: (3<=p18)
states: 1,906,624 (6)
abstracting: (2<=p16)
states: 8,818,136 (6)
abstracting: (2<=p16)
states: 8,818,136 (6)
...........
EG iterations: 11
abstracting: (p2<=1)
states: 9,771,448 (6)
............
EG iterations: 11
.abstracting: (p7<=p11)
states: 10,786,264 (7)
-> the formula is TRUE
FORMULA JoinFreeModules-PT-0004-CTLCardinality-15 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.061sec
checking: E [A [~ [[AX [p14<=0] | ~ [[p8<=3 & p14<=p18]]]] U ~ [E [EX [p19<=2] U [p14<=p15 | 1<=p]]]] U E [p6<=2 U [AF [A [p12<=4 U p4<=p12]] | AG [EF [p1<=p16]]]]]
normalized: E [[~ [EG [E [EX [p19<=2] U [p14<=p15 | 1<=p]]]] & ~ [E [E [EX [p19<=2] U [p14<=p15 | 1<=p]] U [[~ [[p8<=3 & p14<=p18]] | ~ [EX [~ [p14<=0]]]] & E [EX [p19<=2] U [p14<=p15 | 1<=p]]]]]] U E [p6<=2 U [~ [E [true U ~ [E [true U p1<=p16]]]] | ~ [EG [~ [[~ [EG [~ [p4<=p12]]] & ~ [E [~ [p4<=p12] U [~ [p12<=4] & ~ [p4<=p12]]]]]]]]]]]
abstracting: (p4<=p12)
states: 8,452,956 (6)
abstracting: (p12<=4)
states: 14,538,008 (7)
abstracting: (p4<=p12)
states: 8,452,956 (6)
abstracting: (p4<=p12)
states: 8,452,956 (6)
.......
EG iterations: 7
.
EG iterations: 1
abstracting: (p1<=p16)
states: 8,783,540 (6)
abstracting: (p6<=2)
states: 9,294,792 (6)
abstracting: (1<=p)
states: 14,776,336 (7)
abstracting: (p14<=p15)
states: 9,294,792 (6)
abstracting: (p19<=2)
states: 9,294,792 (6)
.abstracting: (p14<=0)
states: 5,958,200 (6)
.abstracting: (p14<=p18)
states: 8,172,344 (6)
abstracting: (p8<=3)
states: 14,061,352 (7)
abstracting: (1<=p)
states: 14,776,336 (7)
abstracting: (p14<=p15)
states: 9,294,792 (6)
abstracting: (p19<=2)
states: 9,294,792 (6)
.abstracting: (1<=p)
states: 14,776,336 (7)
abstracting: (p14<=p15)
states: 9,294,792 (6)
abstracting: (p19<=2)
states: 9,294,792 (6)
.
EG iterations: 0
-> the formula is TRUE
FORMULA JoinFreeModules-PT-0004-CTLCardinality-00 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.083sec
checking: EF [[[[[E [[p8<=p17 | 4<=p3] U [p7<=p18 & 3<=p9]] & [AF [p17<=p15] | AX [p<=1]]] & ~ [1<=p9]] | ~ [[~ [AX [4<=p19]] & ~ [[2<=p15 & ~ [p10<=p20]]]]]] | p7<=0]]
normalized: E [true U [p7<=0 | [~ [[~ [[2<=p15 & ~ [p10<=p20]]] & EX [~ [4<=p19]]]] | [~ [1<=p9] & [[~ [EX [~ [p<=1]]] | ~ [EG [~ [p17<=p15]]]] & E [[p8<=p17 | 4<=p3] U [p7<=p18 & 3<=p9]]]]]]]
abstracting: (3<=p9)
states: 5,481,544 (6)
abstracting: (p7<=p18)
states: 8,968,052 (6)
abstracting: (4<=p3)
states: 714,984 (5)
abstracting: (p8<=p17)
states: 9,852,172 (6)
abstracting: (p17<=p15)
states: 8,060,868 (6)
.....
EG iterations: 5
abstracting: (p<=1)
states: 14,776,336 (7)
.abstracting: (1<=p9)
states: 8,818,136 (6)
abstracting: (4<=p19)
states: 2,144,952 (6)
.abstracting: (p10<=p20)
states: 10,271,168 (7)
abstracting: (2<=p15)
states: 2,859,936 (6)
abstracting: (p7<=0)
states: 5,243,216 (6)
-> the formula is TRUE
FORMULA JoinFreeModules-PT-0004-CTLCardinality-03 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.096sec
checking: [EG [[~ [[[A [p12<=p10 U 1<=p17] & AX [p13<=4]] & 1<=p13]] | [[p8<=3 | EX [[4<=p5 & p17<=p2]]] & p17<=p]]] | A [~ [A [[[~ [p20<=p16] | ~ [p<=2]] & ~ [A [p5<=1 U p14<=3]]] U ~ [AF [p8<=p8]]]] U E [~ [p20<=p15] U p<=2]]]
normalized: [[~ [EG [~ [E [~ [p20<=p15] U p<=2]]]] & ~ [E [~ [E [~ [p20<=p15] U p<=2]] U [[~ [EG [~ [EG [~ [p8<=p8]]]]] & ~ [E [~ [EG [~ [p8<=p8]]] U [~ [[~ [[~ [EG [~ [p14<=3]]] & ~ [E [~ [p14<=3] U [~ [p5<=1] & ~ [p14<=3]]]]]] & [~ [p<=2] | ~ [p20<=p16]]]] & ~ [EG [~ [p8<=p8]]]]]]] & ~ [E [~ [p20<=p15] U p<=2]]]]]] | EG [[[p17<=p & [p8<=3 | EX [[4<=p5 & p17<=p2]]]] | ~ [[1<=p13 & [~ [EX [~ [p13<=4]]] & [~ [EG [~ [1<=p17]]] & ~ [E [~ [1<=p17] U [~ [p12<=p10] & ~ [1<=p17]]]]]]]]]]]
abstracting: (1<=p17)
states: 9,533,120 (6)
abstracting: (p12<=p10)
states: 8,060,868 (6)
abstracting: (1<=p17)
states: 9,533,120 (6)
abstracting: (1<=p17)
states: 9,533,120 (6)
......
EG iterations: 6
abstracting: (p13<=4)
states: 14,776,336 (7)
.abstracting: (1<=p13)
states: 8,818,136 (6)
abstracting: (p17<=p2)
states: 9,333,232 (6)
abstracting: (4<=p5)
states: 2,144,952 (6)
.abstracting: (p8<=3)
states: 14,061,352 (7)
abstracting: (p17<=p)
states: 9,771,448 (6)
.
EG iterations: 1
abstracting: (p<=2)
states: 14,776,336 (7)
abstracting: (p20<=p15)
states: 10,271,168 (7)
abstracting: (p8<=p8)
states: 14,776,336 (7)
.
EG iterations: 1
abstracting: (p20<=p16)
states: 11,678,072 (7)
abstracting: (p<=2)
states: 14,776,336 (7)
abstracting: (p14<=3)
states: 12,631,384 (7)
abstracting: (p5<=1)
states: 11,916,400 (7)
abstracting: (p14<=3)
states: 12,631,384 (7)
abstracting: (p14<=3)
states: 12,631,384 (7)
.........
EG iterations: 9
abstracting: (p8<=p8)
states: 14,776,336 (7)
.
EG iterations: 1
abstracting: (p8<=p8)
states: 14,776,336 (7)
.
EG iterations: 1
EG iterations: 0
abstracting: (p<=2)
states: 14,776,336 (7)
abstracting: (p20<=p15)
states: 10,271,168 (7)
abstracting: (p<=2)
states: 14,776,336 (7)
abstracting: (p20<=p15)
states: 10,271,168 (7)
.
EG iterations: 1
-> the formula is TRUE
FORMULA JoinFreeModules-PT-0004-CTLCardinality-08 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.033sec
checking: [[AX [~ [[[[~ [p14<=3] | [p<=4 & p2<=p1]] & [[p8<=p17 & p18<=p18] | [4<=p2 & p1<=p19]]] & ~ [[[p4<=p7 | p3<=0] & 3<=p1]]]]] | AG [p14<=p4]] & [AX [[A [~ [E [p2<=2 U p2<=2]] U [[4<=p20 & p16<=p7] | [2<=p13 | p15<=p9]]] | ~ [EF [~ [p<=p19]]]]] & [AX [E [EF [2<=p10] U [[p12<=p8 & 1<=p8] | AG [2<=p8]]]] & [AG [~ [AX [2<=p]]] & EF [[[AX [2<=p16] | A [p15<=2 U 2<=p3]] | p8<=p7]]]]]]
normalized: [[[[E [true U [p8<=p7 | [[~ [EG [~ [2<=p3]]] & ~ [E [~ [2<=p3] U [~ [p15<=2] & ~ [2<=p3]]]]] | ~ [EX [~ [2<=p16]]]]]] & ~ [E [true U ~ [EX [~ [2<=p]]]]]] & ~ [EX [~ [E [E [true U 2<=p10] U [~ [E [true U ~ [2<=p8]]] | [p12<=p8 & 1<=p8]]]]]]] & ~ [EX [~ [[~ [E [true U ~ [p<=p19]]] | [~ [EG [~ [[[2<=p13 | p15<=p9] | [4<=p20 & p16<=p7]]]]] & ~ [E [~ [[[2<=p13 | p15<=p9] | [4<=p20 & p16<=p7]]] U [E [p2<=2 U p2<=2] & ~ [[[2<=p13 | p15<=p9] | [4<=p20 & p16<=p7]]]]]]]]]]]] & [~ [E [true U ~ [p14<=p4]]] | ~ [EX [[~ [[3<=p1 & [p4<=p7 | p3<=0]]] & [[[4<=p2 & p1<=p19] | [p8<=p17 & p18<=p18]] & [[p<=4 & p2<=p1] | ~ [p14<=3]]]]]]]]
abstracting: (p14<=3)
states: 12,631,384 (7)
abstracting: (p2<=p1)
states: 10,724,760 (7)
abstracting: (p<=4)
states: 14,776,336 (7)
abstracting: (p18<=p18)
states: 14,776,336 (7)
abstracting: (p8<=p17)
states: 9,852,172 (6)
abstracting: (p1<=p19)
states: 7,884,044 (6)
abstracting: (4<=p2)
states: 953,312 (5)
abstracting: (p3<=0)
states: 5,958,200 (6)
abstracting: (p4<=p7)
states: 8,452,956 (6)
abstracting: (3<=p1)
states: 5,481,544 (6)
.abstracting: (p14<=p4)
states: 9,267,884 (6)
abstracting: (p16<=p7)
states: 6,942,264 (6)
abstracting: (4<=p20)
states: 2,144,952 (6)
abstracting: (p15<=p9)
states: 10,932,336 (7)
abstracting: (2<=p13)
states: 4,528,232 (6)
abstracting: (p2<=2)
states: 12,393,056 (7)
abstracting: (p2<=2)
states: 12,393,056 (7)
abstracting: (p16<=p7)
states: 6,942,264 (6)
abstracting: (4<=p20)
states: 2,144,952 (6)
abstracting: (p15<=p9)
states: 10,932,336 (7)
abstracting: (2<=p13)
states: 4,528,232 (6)
abstracting: (p16<=p7)
states: 6,942,264 (6)
abstracting: (4<=p20)
states: 2,144,952 (6)
abstracting: (p15<=p9)
states: 10,932,336 (7)
abstracting: (2<=p13)
states: 4,528,232 (6)
..........
EG iterations: 10
abstracting: (p<=p19)
states: 8,818,136 (6)
.abstracting: (1<=p8)
states: 8,818,136 (6)
abstracting: (p12<=p8)
states: 8,968,052 (6)
abstracting: (2<=p8)
states: 4,528,232 (6)
abstracting: (2<=p10)
states: 2,859,936 (6)
.abstracting: (2<=p)
states: 0
.abstracting: (2<=p16)
states: 8,818,136 (6)
.abstracting: (2<=p3)
states: 4,528,232 (6)
abstracting: (p15<=2)
states: 12,631,384 (7)
abstracting: (2<=p3)
states: 4,528,232 (6)
abstracting: (2<=p3)
states: 4,528,232 (6)
........
EG iterations: 8
abstracting: (p8<=p7)
states: 9,294,792 (6)
-> the formula is FALSE
FORMULA JoinFreeModules-PT-0004-CTLCardinality-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.086sec
checking: E [[[[[E [[p6<=p5 & 3<=p9] U [p16<=0 | p<=3]] | AF [[p20<=p11 & 4<=p7]]] | p19<=p9] & EF [[[AG [p5<=p14] | EX [p16<=3]] | p6<=1]]] | [~ [[AG [A [p3<=p7 U 3<=p14]] | 2<=p13]] & [~ [AG [A [p19<=p14 U p14<=3]]] & AF [[[p18<=4 | p17<=p12] | 4<=p19]]]]] U [[[[E [[p9<=2 & p11<=1] U [1<=p19 & p15<=1]] & ~ [EF [p1<=0]]] | p<=4] & AF [p7<=0]] | E [[[~ [EG [p6<=p3]] & 2<=p7] | [[AG [p4<=0] & [p2<=3 & 4<=p3]] & [p5<=0 & [2<=p11 & p7<=1]]]] U [~ [[2<=p4 & 3<=p15]] & [[p<=p13 & p16<=2] & ~ [AG [p3<=p7]]]]]]]
normalized: E [[[[~ [EG [~ [[4<=p19 | [p18<=4 | p17<=p12]]]]] & E [true U ~ [[~ [EG [~ [p14<=3]]] & ~ [E [~ [p14<=3] U [~ [p19<=p14] & ~ [p14<=3]]]]]]]] & ~ [[2<=p13 | ~ [E [true U ~ [[~ [EG [~ [3<=p14]]] & ~ [E [~ [3<=p14] U [~ [p3<=p7] & ~ [3<=p14]]]]]]]]]]] | [E [true U [p6<=1 | [EX [p16<=3] | ~ [E [true U ~ [p5<=p14]]]]]] & [p19<=p9 | [~ [EG [~ [[p20<=p11 & 4<=p7]]]] | E [[p6<=p5 & 3<=p9] U [p16<=0 | p<=3]]]]]] U [E [[[[p5<=0 & [2<=p11 & p7<=1]] & [[p2<=3 & 4<=p3] & ~ [E [true U ~ [p4<=0]]]]] | [2<=p7 & ~ [EG [p6<=p3]]]] U [[E [true U ~ [p3<=p7]] & [p<=p13 & p16<=2]] & ~ [[2<=p4 & 3<=p15]]]] | [~ [EG [~ [p7<=0]]] & [p<=4 | [~ [E [true U p1<=0]] & E [[p9<=2 & p11<=1] U [1<=p19 & p15<=1]]]]]]]
abstracting: (p15<=1)
states: 11,916,400 (7)
abstracting: (1<=p19)
states: 8,818,136 (6)
abstracting: (p11<=1)
states: 5,958,200 (6)
abstracting: (p9<=2)
states: 9,294,792 (6)
abstracting: (p1<=0)
states: 4,051,576 (6)
abstracting: (p<=4)
states: 14,776,336 (7)
abstracting: (p7<=0)
states: 5,243,216 (6)
.
EG iterations: 1
abstracting: (3<=p15)
states: 2,144,952 (6)
abstracting: (2<=p4)
states: 6,434,856 (6)
abstracting: (p16<=2)
states: 9,294,792 (6)
abstracting: (p<=p13)
states: 8,818,136 (6)
abstracting: (p3<=p7)
states: 9,852,172 (6)
abstracting: (p6<=p3)
states: 6,619,368 (6)
..........
EG iterations: 10
abstracting: (2<=p7)
states: 5,004,888 (6)
abstracting: (p4<=0)
states: 5,958,200 (6)
abstracting: (4<=p3)
states: 714,984 (5)
abstracting: (p2<=3)
states: 13,823,024 (7)
abstracting: (p7<=1)
states: 9,771,448 (6)
abstracting: (2<=p11)
states: 8,818,136 (6)
abstracting: (p5<=0)
states: 8,341,480 (6)
abstracting: (p<=3)
states: 14,776,336 (7)
abstracting: (p16<=0)
states: 4,051,576 (6)
abstracting: (3<=p9)
states: 5,481,544 (6)
abstracting: (p6<=p5)
states: 6,231,124 (6)
abstracting: (4<=p7)
states: 953,312 (5)
abstracting: (p20<=p11)
states: 11,601,192 (7)
.
EG iterations: 1
abstracting: (p19<=p9)
states: 9,267,884 (6)
abstracting: (p5<=p14)
states: 10,932,336 (7)
abstracting: (p16<=3)
states: 11,916,400 (7)
.abstracting: (p6<=1)
states: 5,958,200 (6)
abstracting: (3<=p14)
states: 5,481,544 (6)
abstracting: (p3<=p7)
states: 9,852,172 (6)
abstracting: (3<=p14)
states: 5,481,544 (6)
abstracting: (3<=p14)
states: 5,481,544 (6)
..........
EG iterations: 10
abstracting: (2<=p13)
states: 4,528,232 (6)
abstracting: (p14<=3)
states: 12,631,384 (7)
abstracting: (p19<=p14)
states: 9,267,884 (6)
abstracting: (p14<=3)
states: 12,631,384 (7)
abstracting: (p14<=3)
states: 12,631,384 (7)
.........
EG iterations: 9
abstracting: (p17<=p12)
states: 9,333,232 (6)
abstracting: (p18<=4)
states: 14,776,336 (7)
abstracting: (4<=p19)
states: 2,144,952 (6)
.
EG iterations: 1
-> the formula is TRUE
FORMULA JoinFreeModules-PT-0004-CTLCardinality-09 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.099sec
totally nodes used: 652806 (6.5e+05)
number of garbage collections: 0
fire ops cache: hits/miss/sum: 1092831 930300 2023131
used/not used/entry size/cache size: 1412732 65696132 16 1024MB
basic ops cache: hits/miss/sum: 673656 504313 1177969
used/not used/entry size/cache size: 1001568 15775648 12 192MB
unary ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 8 128MB
abstract ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 12 192MB
state nr cache: hits/miss/sum: 22025 15373 37398
used/not used/entry size/cache size: 15358 8373250 32 256MB
max state cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 8388608 32 256MB
uniqueHash elements/entry size/size: 67108864 4 256MB
0 66512913
1 565355
2 22597
3 3615
4 1515
5 719
6 688
7 305
8 171
9 230
>= 10 756
Total processing time: 0m 5.369sec
BK_STOP 1678608220539
--------------------
content from stderr:
check for maximal unmarked siphon
ok
check for constant places
p
found 1 constant places
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.000sec
iterations count:337 (10), effective:68 (2)
initing FirstDep: 0m 0.000sec
iterations count:136 (4), effective:12 (0)
iterations count:484 (14), effective:95 (2)
iterations count:55 (1), effective:9 (0)
iterations count:53 (1), effective:5 (0)
iterations count:33 (1), effective:0 (0)
iterations count:215 (6), effective:50 (1)
iterations count:110 (3), effective:10 (0)
iterations count:33 (1), effective:0 (0)
iterations count:280 (8), effective:32 (0)
iterations count:73 (2), effective:4 (0)
iterations count:102 (3), effective:21 (0)
iterations count:124 (3), effective:29 (0)
iterations count:33 (1), effective:0 (0)
iterations count:197 (5), effective:50 (1)
iterations count:65 (1), effective:10 (0)
iterations count:513 (15), effective:105 (3)
iterations count:433 (13), effective:82 (2)
iterations count:184 (5), effective:18 (0)
iterations count:60 (1), effective:7 (0)
iterations count:191 (5), effective:51 (1)
iterations count:34 (1), effective:1 (0)
iterations count:184 (5), effective:18 (0)
iterations count:60 (1), effective:7 (0)
iterations count:191 (5), effective:51 (1)
iterations count:34 (1), effective:1 (0)
iterations count:57 (1), effective:6 (0)
iterations count:184 (5), effective:18 (0)
iterations count:60 (1), effective:7 (0)
iterations count:191 (5), effective:51 (1)
iterations count:34 (1), effective:1 (0)
iterations count:53 (1), effective:2 (0)
iterations count:114 (3), effective:8 (0)
iterations count:53 (1), effective:2 (0)
iterations count:114 (3), effective:8 (0)
iterations count:155 (4), effective:36 (1)
iterations count:53 (1), effective:2 (0)
iterations count:114 (3), effective:8 (0)
iterations count:152 (4), effective:35 (1)
iterations count:106 (3), effective:22 (0)
iterations count:169 (5), effective:32 (0)
iterations count:332 (10), effective:48 (1)
iterations count:364 (11), effective:49 (1)
iterations count:33 (1), effective:0 (0)
iterations count:33 (1), effective:0 (0)
iterations count:201 (6), effective:46 (1)
iterations count:33 (1), effective:0 (0)
iterations count:33 (1), effective:0 (0)
iterations count:127 (3), effective:23 (0)
iterations count:275 (8), effective:71 (2)
iterations count:141 (4), effective:30 (0)
iterations count:33 (1), effective:0 (0)
iterations count:73 (2), effective:15 (0)
iterations count:36 (1), effective:1 (0)
iterations count:33 (1), effective:0 (0)
iterations count:33 (1), effective:0 (0)
iterations count:91 (2), effective:14 (0)
iterations count:33 (1), effective:0 (0)
iterations count:37 (1), effective:2 (0)
iterations count:94 (2), effective:9 (0)
iterations count:36 (1), effective:3 (0)
iterations count:73 (2), effective:15 (0)
iterations count:128 (3), effective:32 (0)
iterations count:453 (13), effective:84 (2)
iterations count:72 (2), effective:14 (0)
iterations count:68 (2), effective:12 (0)
iterations count:102 (3), effective:7 (0)
iterations count:71 (2), effective:15 (0)
iterations count:154 (4), effective:40 (1)
iterations count:53 (1), effective:5 (0)
iterations count:152 (4), effective:21 (0)
iterations count:33 (1), effective:0 (0)
iterations count:189 (5), effective:52 (1)
iterations count:49 (1), effective:1 (0)
iterations count:154 (4), effective:40 (1)
iterations count:51 (1), effective:5 (0)
iterations count:262 (7), effective:24 (0)
iterations count:75 (2), effective:14 (0)
iterations count:189 (5), effective:36 (1)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="JoinFreeModules-PT-0004"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marcie"
echo " Input is JoinFreeModules-PT-0004, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r225-tall-167856407200145"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/JoinFreeModules-PT-0004.tgz
mv JoinFreeModules-PT-0004 execution
cd execution
if [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "UpperBounds" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] || [ "CTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME CTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;