fond
Model Checking Contest 2023
13th edition, Paris, France, April 26, 2023 (at TOOLympics II)
Execution of r225-tall-167856407000033
Last Updated
May 14, 2023

About the Execution of Marcie for HypertorusGrid-PT-d2k2p1b00

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
7715.756 160006.00 160080.00 0.00 FTTTFTTTFTTFTFFF normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Formatting '/data/fkordon/mcc2023-input.r225-tall-167856407000033.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2023-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
.................................................................................................
=====================================================================
Generated by BenchKit 2-5348
Executing tool marcie
Input is HypertorusGrid-PT-d2k2p1b00, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r225-tall-167856407000033
=====================================================================

--------------------
preparation of the directory to be used:
/home/mcc/execution
total 548K
-rw-r--r-- 1 mcc users 10K Feb 26 10:46 CTLCardinality.txt
-rw-r--r-- 1 mcc users 94K Feb 26 10:46 CTLCardinality.xml
-rw-r--r-- 1 mcc users 6.8K Feb 26 10:45 CTLFireability.txt
-rw-r--r-- 1 mcc users 53K Feb 26 10:45 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K Jan 29 11:40 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.3K Jan 29 11:40 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 4.7K Feb 25 16:16 LTLCardinality.txt
-rw-r--r-- 1 mcc users 28K Feb 25 16:16 LTLCardinality.xml
-rw-r--r-- 1 mcc users 3.0K Feb 25 16:17 LTLFireability.txt
-rw-r--r-- 1 mcc users 17K Feb 25 16:17 LTLFireability.xml
-rw-r--r-- 1 mcc users 16K Feb 26 10:47 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 144K Feb 26 10:47 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 11K Feb 26 10:47 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 70K Feb 26 10:47 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.9K Feb 25 16:17 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.9K Feb 25 16:17 UpperBounds.xml
-rw-r--r-- 1 mcc users 6 Mar 5 18:22 equiv_col
-rw-r--r-- 1 mcc users 10 Mar 5 18:22 instance
-rw-r--r-- 1 mcc users 6 Mar 5 18:22 iscolored
-rwxr-xr-x 1 mcc users 35K Mar 5 18:22 model.pnml

--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME HypertorusGrid-PT-d2k2p1b00-CTLCardinality-00
FORMULA_NAME HypertorusGrid-PT-d2k2p1b00-CTLCardinality-01
FORMULA_NAME HypertorusGrid-PT-d2k2p1b00-CTLCardinality-02
FORMULA_NAME HypertorusGrid-PT-d2k2p1b00-CTLCardinality-03
FORMULA_NAME HypertorusGrid-PT-d2k2p1b00-CTLCardinality-04
FORMULA_NAME HypertorusGrid-PT-d2k2p1b00-CTLCardinality-05
FORMULA_NAME HypertorusGrid-PT-d2k2p1b00-CTLCardinality-06
FORMULA_NAME HypertorusGrid-PT-d2k2p1b00-CTLCardinality-07
FORMULA_NAME HypertorusGrid-PT-d2k2p1b00-CTLCardinality-08
FORMULA_NAME HypertorusGrid-PT-d2k2p1b00-CTLCardinality-09
FORMULA_NAME HypertorusGrid-PT-d2k2p1b00-CTLCardinality-10
FORMULA_NAME HypertorusGrid-PT-d2k2p1b00-CTLCardinality-11
FORMULA_NAME HypertorusGrid-PT-d2k2p1b00-CTLCardinality-12
FORMULA_NAME HypertorusGrid-PT-d2k2p1b00-CTLCardinality-13
FORMULA_NAME HypertorusGrid-PT-d2k2p1b00-CTLCardinality-14
FORMULA_NAME HypertorusGrid-PT-d2k2p1b00-CTLCardinality-15

=== Now, execution of the tool begins

BK_START 1678602362263

bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marcie
BK_EXAMINATION=CTLCardinality
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=HypertorusGrid-PT-d2k2p1b00
Not applying reductions.
Model is PT
CTLCardinality PT
timeout --kill-after=10s --signal=SIGINT 1m for testing only

Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets

authors: Alex Tovchigrechko (IDD package and CTL model checking)

Martin Schwarick (Symbolic numerical analysis and CSL model checking)

Christian Rohr (Simulative and approximative numerical model checking)

marcie@informatik.tu-cottbus.de

called as: /home/mcc/BenchKit/bin//../marcie/bin/marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --memory=6 --mcc-mode

parse successfull
net created successfully

Net: HypertorusGrid_PT_d2k2p1b00
(NrP: 52 NrTr: 64 NrArc: 256)

parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec

net check time: 0m 0.000sec

init dd package: 0m 2.978sec


RS generation: 0m 0.508sec


-> reachability set: #nodes 1489 (1.5e+03) #states 51,737,129,142 (10)



starting MCC model checker
--------------------------

checking: EX [pil_d2_n1_2_2<=0]
normalized: EX [pil_d2_n1_2_2<=0]

abstracting: (pil_d2_n1_2_2<=0)
states: 18,758,263,731 (10)
.-> the formula is TRUE

FORMULA HypertorusGrid-PT-d2k2p1b00-CTLCardinality-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.054sec

checking: EF [~ [AF [pb_d1_n2_1_2<=pb_d1_n2_2_1]]]
normalized: E [true U EG [~ [pb_d1_n2_1_2<=pb_d1_n2_2_1]]]

abstracting: (pb_d1_n2_1_2<=pb_d1_n2_2_1)
states: 36,456,320,605 (10)
................
EG iterations: 16
-> the formula is TRUE

FORMULA HypertorusGrid-PT-d2k2p1b00-CTLCardinality-10 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 2.140sec

checking: AF [EF [AX [AX [E [pi_d1_n1_2_2<=pi_d2_n1_2_1 U 1<=pi_d1_n1_1_2]]]]]
normalized: ~ [EG [~ [E [true U ~ [EX [EX [~ [E [pi_d1_n1_2_2<=pi_d2_n1_2_1 U 1<=pi_d1_n1_1_2]]]]]]]]]

abstracting: (1<=pi_d1_n1_1_2)
states: 18,758,263,731 (10)
abstracting: (pi_d1_n1_2_2<=pi_d2_n1_2_1)
states: 39,505,177,062 (10)
...
EG iterations: 1
-> the formula is TRUE

FORMULA HypertorusGrid-PT-d2k2p1b00-CTLCardinality-03 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m42.812sec

checking: EG [EX [~ [E [AX [po_d1_n1_1_2<=pb_d2_n2_1_2] U 1<=pi_d2_n1_2_2]]]]
normalized: EG [EX [~ [E [~ [EX [~ [po_d1_n1_1_2<=pb_d2_n2_1_2]]] U 1<=pi_d2_n1_2_2]]]]

abstracting: (1<=pi_d2_n1_2_2)
states: 18,758,263,731 (10)
abstracting: (po_d1_n1_1_2<=pb_d2_n2_1_2)
states: 40,797,750,799 (10)
.........
EG iterations: 7
-> the formula is TRUE

FORMULA HypertorusGrid-PT-d2k2p1b00-CTLCardinality-06 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 2.804sec

checking: ~ [[EF [AG [~ [po_d2_n1_2_2<=1]]] & EG [[1<=pb_d1_n2_2_1 & [EX [EF [pol_d1_n1_1_2<=1]] & [~ [pil_d2_n1_1_2<=pbl_2_1] & pb_d1_n1_2_2<=1]]]]]]
normalized: ~ [[EG [[1<=pb_d1_n2_2_1 & [[pb_d1_n1_2_2<=1 & ~ [pil_d2_n1_1_2<=pbl_2_1]] & EX [E [true U pol_d1_n1_1_2<=1]]]]] & E [true U ~ [E [true U po_d2_n1_2_2<=1]]]]]

abstracting: (po_d2_n1_2_2<=1)
states: 51,737,129,142 (10)
abstracting: (pol_d1_n1_1_2<=1)
states: 51,737,129,142 (10)
.abstracting: (pil_d2_n1_1_2<=pbl_2_1)
states: 42,650,384,902 (10)
abstracting: (pb_d1_n1_2_2<=1)
states: 43,641,548,356 (10)
abstracting: (1<=pb_d1_n2_2_1)
states: 22,219,994,884 (10)
.............
EG iterations: 13
-> the formula is TRUE

FORMULA HypertorusGrid-PT-d2k2p1b00-CTLCardinality-01 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.515sec

checking: AG [AF [[AX [[pb_d1_n1_2_2<=pi_d2_n1_2_2 | AG [po_d2_n1_1_2<=1]]] & A [AF [pol_d2_n1_2_2<=1] U AG [pi_d2_n1_2_1<=pi_d2_n1_1_2]]]]]
normalized: ~ [E [true U EG [~ [[[~ [EG [E [true U ~ [pi_d2_n1_2_1<=pi_d2_n1_1_2]]]] & ~ [E [E [true U ~ [pi_d2_n1_2_1<=pi_d2_n1_1_2]] U [E [true U ~ [pi_d2_n1_2_1<=pi_d2_n1_1_2]] & EG [~ [pol_d2_n1_2_2<=1]]]]]] & ~ [EX [~ [[pb_d1_n1_2_2<=pi_d2_n1_2_2 | ~ [E [true U ~ [po_d2_n1_1_2<=1]]]]]]]]]]]]

abstracting: (po_d2_n1_1_2<=1)
states: 51,737,129,142 (10)
abstracting: (pb_d1_n1_2_2<=pi_d2_n1_2_2)
states: 34,569,521,828 (10)
.abstracting: (pol_d2_n1_2_2<=1)
states: 51,737,129,142 (10)
.
EG iterations: 1
abstracting: (pi_d2_n1_2_1<=pi_d2_n1_1_2)
states: 39,505,177,062 (10)
abstracting: (pi_d2_n1_2_1<=pi_d2_n1_1_2)
states: 39,505,177,062 (10)
abstracting: (pi_d2_n1_2_1<=pi_d2_n1_1_2)
states: 39,505,177,062 (10)
.....
EG iterations: 5
.
EG iterations: 1
-> the formula is FALSE

FORMULA HypertorusGrid-PT-d2k2p1b00-CTLCardinality-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.810sec

checking: EF [EF [[[pi_d1_n1_1_2<=pi_d2_n1_2_1 & AF [AX [1<=pol_d1_n1_2_1]]] & A [~ [1<=pbl_1_2] U ~ [[pil_d2_n1_2_2<=pb_d1_n1_1_1 & pol_d1_n1_1_1<=pil_d2_n1_1_2]]]]]]
normalized: E [true U E [true U [[pi_d1_n1_1_2<=pi_d2_n1_2_1 & ~ [EG [EX [~ [1<=pol_d1_n1_2_1]]]]] & [~ [EG [[pil_d2_n1_2_2<=pb_d1_n1_1_1 & pol_d1_n1_1_1<=pil_d2_n1_1_2]]] & ~ [E [[pil_d2_n1_2_2<=pb_d1_n1_1_1 & pol_d1_n1_1_1<=pil_d2_n1_1_2] U [1<=pbl_1_2 & [pil_d2_n1_2_2<=pb_d1_n1_1_1 & pol_d1_n1_1_1<=pil_d2_n1_1_2]]]]]]]]

abstracting: (pol_d1_n1_1_1<=pil_d2_n1_1_2)
states: 39,505,177,062 (10)
abstracting: (pil_d2_n1_2_2<=pb_d1_n1_1_1)
states: 33,159,373,227 (10)
abstracting: (1<=pbl_1_2)
states: 38,293,230,667 (10)
abstracting: (pol_d1_n1_1_1<=pil_d2_n1_1_2)
states: 39,505,177,062 (10)
abstracting: (pil_d2_n1_2_2<=pb_d1_n1_1_1)
states: 33,159,373,227 (10)
abstracting: (pol_d1_n1_1_1<=pil_d2_n1_1_2)
states: 39,505,177,062 (10)
abstracting: (pil_d2_n1_2_2<=pb_d1_n1_1_1)
states: 33,159,373,227 (10)
..............
EG iterations: 14
abstracting: (1<=pol_d1_n1_2_1)
states: 32,978,865,411 (10)
.......
EG iterations: 6
abstracting: (pi_d1_n1_1_2<=pi_d2_n1_2_1)
states: 39,505,177,062 (10)
-> the formula is TRUE

FORMULA HypertorusGrid-PT-d2k2p1b00-CTLCardinality-07 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 7.067sec

checking: AF [[EF [[[E [1<=pi_d1_n1_2_1 U pol_d1_n1_2_1<=pi_d2_n1_1_1] | AG [po_d2_n1_2_1<=pb_d2_n1_2_1]] | AX [~ [pbl_1_2<=0]]]] & ~ [EX [[AF [pi_d2_n1_1_2<=pb_d1_n2_2_2] & EG [pol_d1_n1_1_2<=0]]]]]]
normalized: ~ [EG [~ [[E [true U [[E [1<=pi_d1_n1_2_1 U pol_d1_n1_2_1<=pi_d2_n1_1_1] | ~ [E [true U ~ [po_d2_n1_2_1<=pb_d2_n1_2_1]]]] | ~ [EX [pbl_1_2<=0]]]] & ~ [EX [[EG [pol_d1_n1_1_2<=0] & ~ [EG [~ [pi_d2_n1_1_2<=pb_d1_n2_2_2]]]]]]]]]]

abstracting: (pi_d2_n1_1_2<=pb_d1_n2_2_2)
states: 40,797,750,799 (10)
................
EG iterations: 16
abstracting: (pol_d1_n1_1_2<=0)
states: 18,758,263,731 (10)
.............
EG iterations: 13
.abstracting: (pbl_1_2<=0)
states: 13,443,898,475 (10)
.abstracting: (po_d2_n1_2_1<=pb_d2_n1_2_1)
states: 40,797,750,799 (10)
abstracting: (pol_d1_n1_2_1<=pi_d2_n1_1_1)
states: 30,990,215,811 (10)
abstracting: (1<=pi_d1_n1_2_1)
states: 18,758,263,731 (10)
.........
EG iterations: 9
-> the formula is FALSE

FORMULA HypertorusGrid-PT-d2k2p1b00-CTLCardinality-00 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 3.894sec

checking: EF [AG [[EX [E [pil_d1_n1_2_1<=pil_d2_n1_1_1 U pi_d1_n1_1_1<=1]] | A [~ [E [pol_d1_n1_2_1<=pb_d2_n1_2_2 U po_d2_n1_1_2<=1]] U [1<=pb_d2_n1_1_1 & A [pb_d2_n2_1_2<=pil_d1_n1_1_2 U pil_d1_n1_2_2<=0]]]]]]
normalized: E [true U ~ [E [true U ~ [[EX [E [pil_d1_n1_2_1<=pil_d2_n1_1_1 U pi_d1_n1_1_1<=1]] | [~ [EG [~ [[1<=pb_d2_n1_1_1 & [~ [EG [~ [pil_d1_n1_2_2<=0]]] & ~ [E [~ [pil_d1_n1_2_2<=0] U [~ [pb_d2_n2_1_2<=pil_d1_n1_1_2] & ~ [pil_d1_n1_2_2<=0]]]]]]]]] & ~ [E [~ [[1<=pb_d2_n1_1_1 & [~ [EG [~ [pil_d1_n1_2_2<=0]]] & ~ [E [~ [pil_d1_n1_2_2<=0] U [~ [pb_d2_n2_1_2<=pil_d1_n1_1_2] & ~ [pil_d1_n1_2_2<=0]]]]]]] U [E [pol_d1_n1_2_1<=pb_d2_n1_2_2 U po_d2_n1_1_2<=1] & ~ [[1<=pb_d2_n1_1_1 & [~ [EG [~ [pil_d1_n1_2_2<=0]]] & ~ [E [~ [pil_d1_n1_2_2<=0] U [~ [pb_d2_n2_1_2<=pil_d1_n1_1_2] & ~ [pil_d1_n1_2_2<=0]]]]]]]]]]]]]]]]

abstracting: (pil_d1_n1_2_2<=0)
states: 18,758,263,731 (10)
abstracting: (pb_d2_n2_1_2<=pil_d1_n1_1_2)
states: 38,589,160,786 (10)
abstracting: (pil_d1_n1_2_2<=0)
states: 18,758,263,731 (10)
abstracting: (pil_d1_n1_2_2<=0)
states: 18,758,263,731 (10)
.............
EG iterations: 13
abstracting: (1<=pb_d2_n1_1_1)
states: 22,219,994,884 (10)
abstracting: (po_d2_n1_1_2<=1)
states: 51,737,129,142 (10)
abstracting: (pol_d1_n1_2_1<=pb_d2_n1_2_2)
states: 33,159,373,227 (10)
abstracting: (pil_d1_n1_2_2<=0)
states: 18,758,263,731 (10)
abstracting: (pb_d2_n2_1_2<=pil_d1_n1_1_2)
states: 38,589,160,786 (10)
abstracting: (pil_d1_n1_2_2<=0)
states: 18,758,263,731 (10)
abstracting: (pil_d1_n1_2_2<=0)
states: 18,758,263,731 (10)
.............
EG iterations: 13
abstracting: (1<=pb_d2_n1_1_1)
states: 22,219,994,884 (10)
abstracting: (pil_d1_n1_2_2<=0)
states: 18,758,263,731 (10)
abstracting: (pb_d2_n2_1_2<=pil_d1_n1_1_2)
states: 38,589,160,786 (10)
abstracting: (pil_d1_n1_2_2<=0)
states: 18,758,263,731 (10)
abstracting: (pil_d1_n1_2_2<=0)
states: 18,758,263,731 (10)
.............
EG iterations: 13
abstracting: (1<=pb_d2_n1_1_1)
states: 22,219,994,884 (10)
......
EG iterations: 6
abstracting: (pi_d1_n1_1_1<=1)
states: 51,737,129,142 (10)
abstracting: (pil_d1_n1_2_1<=pil_d2_n1_1_1)
states: 39,505,177,062 (10)
.-> the formula is TRUE

FORMULA HypertorusGrid-PT-d2k2p1b00-CTLCardinality-09 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m14.233sec

checking: AG [[E [E [E [1<=pb_d1_n2_1_2 U po_d2_n1_1_2<=0] U ~ [[pi_d2_n1_1_2<=pil_d1_n1_2_1 | pb_d1_n2_1_2<=0]]] U AF [~ [1<=pb_d1_n1_2_1]]] & AF [~ [[~ [[pb_d1_n2_1_1<=pi_d2_n1_1_1 & 1<=pil_d1_n1_2_2]] & A [pil_d2_n1_1_2<=1 U pil_d2_n1_1_1<=po_d1_n1_2_1]]]]]]
normalized: ~ [E [true U ~ [[~ [EG [[[~ [EG [~ [pil_d2_n1_1_1<=po_d1_n1_2_1]]] & ~ [E [~ [pil_d2_n1_1_1<=po_d1_n1_2_1] U [~ [pil_d2_n1_1_2<=1] & ~ [pil_d2_n1_1_1<=po_d1_n1_2_1]]]]] & ~ [[pb_d1_n2_1_1<=pi_d2_n1_1_1 & 1<=pil_d1_n1_2_2]]]]] & E [E [E [1<=pb_d1_n2_1_2 U po_d2_n1_1_2<=0] U ~ [[pi_d2_n1_1_2<=pil_d1_n1_2_1 | pb_d1_n2_1_2<=0]]] U ~ [EG [1<=pb_d1_n1_2_1]]]]]]]

abstracting: (1<=pb_d1_n1_2_1)
states: 22,219,994,884 (10)
......
EG iterations: 6
abstracting: (pb_d1_n2_1_2<=0)
states: 29,517,134,258 (10)
abstracting: (pi_d2_n1_1_2<=pil_d1_n1_2_1)
states: 45,210,817,491 (10)
abstracting: (po_d2_n1_1_2<=0)
states: 32,978,865,411 (10)
abstracting: (1<=pb_d1_n2_1_2)
states: 22,219,994,884 (10)
abstracting: (1<=pil_d1_n1_2_2)
states: 32,978,865,411 (10)
abstracting: (pb_d1_n2_1_1<=pi_d2_n1_1_1)
states: 34,569,521,828 (10)
abstracting: (pil_d2_n1_1_1<=po_d1_n1_2_1)
states: 30,990,215,811 (10)
abstracting: (pil_d2_n1_1_2<=1)
states: 51,737,129,142 (10)
abstracting: (pil_d2_n1_1_1<=po_d1_n1_2_1)
states: 30,990,215,811 (10)
abstracting: (pil_d2_n1_1_1<=po_d1_n1_2_1)
states: 30,990,215,811 (10)
................
EG iterations: 16
.............
EG iterations: 13
-> the formula is FALSE

FORMULA HypertorusGrid-PT-d2k2p1b00-CTLCardinality-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m16.702sec

checking: ~ [[AG [~ [[[AG [1<=pi_d1_n1_2_1] & EG [pb_d1_n1_2_1<=pil_d2_n1_2_1]] | po_d1_n1_1_1<=0]]] | EX [[[[EF [pol_d1_n1_2_2<=pi_d1_n1_2_1] & AG [pbl_1_1<=pol_d1_n1_2_1]] & AX [EF [pil_d1_n1_2_1<=pi_d2_n1_2_1]]] | [A [EX [1<=pb_d1_n1_1_1] U [1<=pb_d2_n1_1_2 & pb_d2_n2_1_1<=0]] | 1<=pi_d2_n1_1_2]]]]]
normalized: ~ [[~ [E [true U [po_d1_n1_1_1<=0 | [EG [pb_d1_n1_2_1<=pil_d2_n1_2_1] & ~ [E [true U ~ [1<=pi_d1_n1_2_1]]]]]]] | EX [[[1<=pi_d2_n1_1_2 | [~ [EG [~ [[1<=pb_d2_n1_1_2 & pb_d2_n2_1_1<=0]]]] & ~ [E [~ [[1<=pb_d2_n1_1_2 & pb_d2_n2_1_1<=0]] U [~ [EX [1<=pb_d1_n1_1_1]] & ~ [[1<=pb_d2_n1_1_2 & pb_d2_n2_1_1<=0]]]]]]] | [[~ [E [true U ~ [pbl_1_1<=pol_d1_n1_2_1]]] & E [true U pol_d1_n1_2_2<=pi_d1_n1_2_1]] & ~ [EX [~ [E [true U pil_d1_n1_2_1<=pi_d2_n1_2_1]]]]]]]]]

abstracting: (pil_d1_n1_2_1<=pi_d2_n1_2_1)
states: 30,990,215,811 (10)
.abstracting: (pol_d1_n1_2_2<=pi_d1_n1_2_1)
states: 30,990,215,811 (10)
abstracting: (pbl_1_1<=pol_d1_n1_2_1)
states: 23,106,129,515 (10)
abstracting: (pb_d2_n2_1_1<=0)
states: 29,517,134,258 (10)
abstracting: (1<=pb_d2_n1_1_2)
states: 22,219,994,884 (10)
abstracting: (1<=pb_d1_n1_1_1)
states: 22,219,994,884 (10)
.abstracting: (pb_d2_n2_1_1<=0)
states: 29,517,134,258 (10)
abstracting: (1<=pb_d2_n1_1_2)
states: 22,219,994,884 (10)
abstracting: (pb_d2_n2_1_1<=0)
states: 29,517,134,258 (10)
abstracting: (1<=pb_d2_n1_1_2)
states: 22,219,994,884 (10)
......
EG iterations: 6
abstracting: (1<=pi_d2_n1_1_2)
states: 18,758,263,731 (10)
.abstracting: (1<=pi_d1_n1_2_1)
states: 18,758,263,731 (10)
abstracting: (pb_d1_n1_2_1<=pil_d2_n1_2_1)
states: 38,589,160,786 (10)
..........
EG iterations: 10
abstracting: (po_d1_n1_1_1<=0)
states: 32,978,865,411 (10)
-> the formula is FALSE

FORMULA HypertorusGrid-PT-d2k2p1b00-CTLCardinality-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 6.228sec

checking: ~ [AG [EX [[[[[pb_d2_n1_2_2<=pb_d2_n1_1_1 & pol_d1_n1_1_2<=0] | [1<=pb_d1_n1_2_1 | pil_d1_n1_2_1<=pol_d1_n1_2_2]] & E [pil_d1_n1_2_1<=pb_d2_n1_1_2 U pi_d1_n1_1_1<=1]] | [[[1<=pol_d2_n1_2_2 & pb_d1_n2_2_2<=pil_d2_n1_2_2] & AG [po_d1_n1_1_1<=1]] & [[pil_d1_n1_1_1<=0 & pil_d2_n1_2_1<=0] & AG [pi_d2_n1_2_1<=0]]]]]]]
normalized: E [true U ~ [EX [[[[~ [E [true U ~ [pi_d2_n1_2_1<=0]]] & [pil_d1_n1_1_1<=0 & pil_d2_n1_2_1<=0]] & [~ [E [true U ~ [po_d1_n1_1_1<=1]]] & [1<=pol_d2_n1_2_2 & pb_d1_n2_2_2<=pil_d2_n1_2_2]]] | [E [pil_d1_n1_2_1<=pb_d2_n1_1_2 U pi_d1_n1_1_1<=1] & [[1<=pb_d1_n1_2_1 | pil_d1_n1_2_1<=pol_d1_n1_2_2] | [pb_d2_n1_2_2<=pb_d2_n1_1_1 & pol_d1_n1_1_2<=0]]]]]]]

abstracting: (pol_d1_n1_1_2<=0)
states: 18,758,263,731 (10)
abstracting: (pb_d2_n1_2_2<=pb_d2_n1_1_1)
states: 36,456,320,605 (10)
abstracting: (pil_d1_n1_2_1<=pol_d1_n1_2_2)
states: 39,505,177,062 (10)
abstracting: (1<=pb_d1_n1_2_1)
states: 22,219,994,884 (10)
abstracting: (pi_d1_n1_1_1<=1)
states: 51,737,129,142 (10)
abstracting: (pil_d1_n1_2_1<=pb_d2_n1_1_2)
states: 33,159,373,227 (10)
abstracting: (pb_d1_n2_2_2<=pil_d2_n1_2_2)
states: 38,589,160,786 (10)
abstracting: (1<=pol_d2_n1_2_2)
states: 32,978,865,411 (10)
abstracting: (po_d1_n1_1_1<=1)
states: 51,737,129,142 (10)
abstracting: (pil_d2_n1_2_1<=0)
states: 18,758,263,731 (10)
abstracting: (pil_d1_n1_1_1<=0)
states: 18,758,263,731 (10)
abstracting: (pi_d2_n1_2_1<=0)
states: 32,978,865,411 (10)
.-> the formula is TRUE

FORMULA HypertorusGrid-PT-d2k2p1b00-CTLCardinality-02 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m26.183sec

checking: [EX [[pb_d1_n1_1_2<=po_d2_n1_1_2 & [[[EF [pil_d1_n1_1_1<=pi_d2_n1_2_1] | ~ [[pb_d2_n1_2_1<=1 & po_d1_n1_1_1<=pb_d2_n2_2_1]]] | ~ [EX [pi_d2_n1_2_1<=1]]] & E [~ [[pb_d1_n2_1_2<=pil_d1_n1_2_2 | 1<=pb_d2_n1_2_2]] U EF [1<=pb_d2_n1_1_2]]]]] & EX [EX [[EX [EF [pb_d1_n1_2_1<=pb_d1_n1_2_1]] & [AG [pb_d1_n2_2_1<=0] & [pb_d1_n2_1_2<=pol_d2_n1_1_1 & [po_d2_n1_2_1<=1 & pi_d1_n1_1_2<=0]]]]]]]
normalized: [EX [[pb_d1_n1_1_2<=po_d2_n1_1_2 & [[~ [EX [pi_d2_n1_2_1<=1]] | [~ [[pb_d2_n1_2_1<=1 & po_d1_n1_1_1<=pb_d2_n2_2_1]] | E [true U pil_d1_n1_1_1<=pi_d2_n1_2_1]]] & E [~ [[pb_d1_n2_1_2<=pil_d1_n1_2_2 | 1<=pb_d2_n1_2_2]] U E [true U 1<=pb_d2_n1_1_2]]]]] & EX [EX [[[[pb_d1_n2_1_2<=pol_d2_n1_1_1 & [po_d2_n1_2_1<=1 & pi_d1_n1_1_2<=0]] & ~ [E [true U ~ [pb_d1_n2_2_1<=0]]]] & EX [E [true U pb_d1_n1_2_1<=pb_d1_n1_2_1]]]]]]

abstracting: (pb_d1_n1_2_1<=pb_d1_n1_2_1)
states: 51,737,129,142 (10)
.abstracting: (pb_d1_n2_2_1<=0)
states: 29,517,134,258 (10)
abstracting: (pi_d1_n1_1_2<=0)
states: 32,978,865,411 (10)
abstracting: (po_d2_n1_2_1<=1)
states: 51,737,129,142 (10)
abstracting: (pb_d1_n2_1_2<=pol_d2_n1_1_1)
states: 38,589,160,786 (10)
..abstracting: (1<=pb_d2_n1_1_2)
states: 22,219,994,884 (10)
abstracting: (1<=pb_d2_n1_2_2)
states: 22,219,994,884 (10)
abstracting: (pb_d1_n2_1_2<=pil_d1_n1_2_2)
states: 38,589,160,786 (10)
abstracting: (pil_d1_n1_1_1<=pi_d2_n1_2_1)
states: 30,990,215,811 (10)
abstracting: (po_d1_n1_1_1<=pb_d2_n2_2_1)
states: 40,797,750,799 (10)
abstracting: (pb_d2_n1_2_1<=1)
states: 43,641,548,356 (10)
abstracting: (pi_d2_n1_2_1<=1)
states: 51,737,129,142 (10)
.abstracting: (pb_d1_n1_1_2<=po_d2_n1_1_2)
states: 34,569,521,828 (10)
.-> the formula is FALSE

FORMULA HypertorusGrid-PT-d2k2p1b00-CTLCardinality-08 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 3.064sec

checking: EX [[AG [~ [AF [pb_d1_n1_2_2<=pol_d2_n1_2_1]]] | [[[A [1<=pb_d1_n2_1_1 U EF [pol_d1_n1_2_2<=pil_d2_n1_1_2]] & EX [A [1<=pil_d1_n1_1_2 U 1<=pol_d2_n1_1_2]]] & [~ [[EF [pbl_1_2<=po_d1_n1_1_2] | 1<=pol_d2_n1_1_1]] | pb_d1_n2_2_1<=1]] & [1<=pil_d1_n1_2_1 & [[1<=po_d2_n1_2_1 & EF [1<=pil_d1_n1_2_1]] & ~ [[[1<=pil_d1_n1_1_1 | 1<=pb_d1_n1_1_2] & [pi_d1_n1_2_1<=1 & pol_d2_n1_1_2<=pb_d1_n1_1_2]]]]]]]]
normalized: EX [[[[1<=pil_d1_n1_2_1 & [~ [[[pi_d1_n1_2_1<=1 & pol_d2_n1_1_2<=pb_d1_n1_1_2] & [1<=pil_d1_n1_1_1 | 1<=pb_d1_n1_1_2]]] & [1<=po_d2_n1_2_1 & E [true U 1<=pil_d1_n1_2_1]]]] & [[pb_d1_n2_2_1<=1 | ~ [[1<=pol_d2_n1_1_1 | E [true U pbl_1_2<=po_d1_n1_1_2]]]] & [EX [[~ [EG [~ [1<=pol_d2_n1_1_2]]] & ~ [E [~ [1<=pol_d2_n1_1_2] U [~ [1<=pil_d1_n1_1_2] & ~ [1<=pol_d2_n1_1_2]]]]]] & [~ [EG [~ [E [true U pol_d1_n1_2_2<=pil_d2_n1_1_2]]]] & ~ [E [~ [E [true U pol_d1_n1_2_2<=pil_d2_n1_1_2]] U [~ [1<=pb_d1_n2_1_1] & ~ [E [true U pol_d1_n1_2_2<=pil_d2_n1_1_2]]]]]]]]] | ~ [E [true U ~ [EG [~ [pb_d1_n1_2_2<=pol_d2_n1_2_1]]]]]]]

abstracting: (pb_d1_n1_2_2<=pol_d2_n1_2_1)
states: 38,589,160,786 (10)
.......
EG iterations: 7
abstracting: (pol_d1_n1_2_2<=pil_d2_n1_1_2)
states: 39,505,177,062 (10)
abstracting: (1<=pb_d1_n2_1_1)
states: 22,219,994,884 (10)
abstracting: (pol_d1_n1_2_2<=pil_d2_n1_1_2)
states: 39,505,177,062 (10)
abstracting: (pol_d1_n1_2_2<=pil_d2_n1_1_2)
states: 39,505,177,062 (10)
.
EG iterations: 1
abstracting: (1<=pol_d2_n1_1_2)
states: 32,978,865,411 (10)
abstracting: (1<=pil_d1_n1_1_2)
states: 32,978,865,411 (10)
abstracting: (1<=pol_d2_n1_1_2)
states: 32,978,865,411 (10)
abstracting: (1<=pol_d2_n1_1_2)
states: 32,978,865,411 (10)
.............
EG iterations: 13
.abstracting: (pbl_1_2<=po_d1_n1_1_2)
states: 18,636,323,755 (10)
abstracting: (1<=pol_d2_n1_1_1)
states: 32,978,865,411 (10)
abstracting: (pb_d1_n2_2_1<=1)
states: 43,641,548,356 (10)
abstracting: (1<=pil_d1_n1_2_1)
states: 32,978,865,411 (10)
abstracting: (1<=po_d2_n1_2_1)
states: 18,758,263,731 (10)
abstracting: (1<=pb_d1_n1_1_2)
states: 22,219,994,884 (10)
abstracting: (1<=pil_d1_n1_1_1)
states: 32,978,865,411 (10)
abstracting: (pol_d2_n1_1_2<=pb_d1_n1_1_2)
states: 33,159,373,227 (10)
abstracting: (pi_d1_n1_2_1<=1)
states: 51,737,129,142 (10)
abstracting: (1<=pil_d1_n1_2_1)
states: 32,978,865,411 (10)
.-> the formula is FALSE

FORMULA HypertorusGrid-PT-d2k2p1b00-CTLCardinality-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 7.824sec

checking: EX [[AG [[[[[pb_d2_n1_2_1<=0 & pb_d2_n1_2_2<=pil_d1_n1_2_2] & AX [1<=pi_d2_n1_1_1]] & [AF [pi_d1_n1_2_1<=pb_d2_n2_2_1] & po_d1_n1_1_2<=0]] | E [[1<=pbl_1_1 | 1<=pb_d2_n2_1_1] U ~ [pbl_1_1<=0]]]] & [[[[E [po_d1_n1_2_2<=pbl_2_2 U 1<=pi_d1_n1_2_1] | [pil_d2_n1_1_1<=pb_d1_n1_2_2 & ~ [1<=pol_d1_n1_1_1]]] | E [[pbl_2_1<=pol_d2_n1_2_1 & pb_d2_n1_1_2<=1] U AF [pil_d1_n1_1_2<=1]]] & [AF [[pb_d1_n1_1_1<=pb_d1_n2_2_2 | 1<=pb_d2_n2_1_1]] | [[[pb_d1_n2_2_1<=1 & pbl_2_2<=1] & A [po_d2_n1_2_1<=pb_d2_n1_2_2 U pb_d1_n1_1_2<=0]] & [EG [1<=pbl_2_2] | AX [1<=pol_d2_n1_2_2]]]]] & ~ [[1<=pil_d2_n1_2_1 & 1<=pol_d1_n1_2_2]]]]]
normalized: EX [[[~ [[1<=pil_d2_n1_2_1 & 1<=pol_d1_n1_2_2]] & [[~ [EG [~ [[pb_d1_n1_1_1<=pb_d1_n2_2_2 | 1<=pb_d2_n2_1_1]]]] | [[[~ [E [~ [pb_d1_n1_1_2<=0] U [~ [po_d2_n1_2_1<=pb_d2_n1_2_2] & ~ [pb_d1_n1_1_2<=0]]]] & ~ [EG [~ [pb_d1_n1_1_2<=0]]]] & [pb_d1_n2_2_1<=1 & pbl_2_2<=1]] & [EG [1<=pbl_2_2] | ~ [EX [~ [1<=pol_d2_n1_2_2]]]]]] & [E [[pbl_2_1<=pol_d2_n1_2_1 & pb_d2_n1_1_2<=1] U ~ [EG [~ [pil_d1_n1_1_2<=1]]]] | [[pil_d2_n1_1_1<=pb_d1_n1_2_2 & ~ [1<=pol_d1_n1_1_1]] | E [po_d1_n1_2_2<=pbl_2_2 U 1<=pi_d1_n1_2_1]]]]] & ~ [E [true U ~ [[E [[1<=pbl_1_1 | 1<=pb_d2_n2_1_1] U ~ [pbl_1_1<=0]] | [[po_d1_n1_1_2<=0 & ~ [EG [~ [pi_d1_n1_2_1<=pb_d2_n2_2_1]]]] & [~ [EX [~ [1<=pi_d2_n1_1_1]]] & [pb_d2_n1_2_1<=0 & pb_d2_n1_2_2<=pil_d1_n1_2_2]]]]]]]]]

abstracting: (pb_d2_n1_2_2<=pil_d1_n1_2_2)
states: 38,589,160,786 (10)
abstracting: (pb_d2_n1_2_1<=0)
states: 29,517,134,258 (10)
abstracting: (1<=pi_d2_n1_1_1)
states: 18,758,263,731 (10)
.abstracting: (pi_d1_n1_2_1<=pb_d2_n2_2_1)
states: 40,797,750,799 (10)
..............
EG iterations: 14
abstracting: (po_d1_n1_1_2<=0)
states: 32,978,865,411 (10)
abstracting: (pbl_1_1<=0)
states: 13,443,898,475 (10)
abstracting: (1<=pb_d2_n2_1_1)
states: 22,219,994,884 (10)
abstracting: (1<=pbl_1_1)
states: 38,293,230,667 (10)
abstracting: (1<=pi_d1_n1_2_1)
states: 18,758,263,731 (10)
abstracting: (po_d1_n1_2_2<=pbl_2_2)
states: 47,379,974,907 (10)
abstracting: (1<=pol_d1_n1_1_1)
states: 32,978,865,411 (10)
abstracting: (pil_d2_n1_1_1<=pb_d1_n1_2_2)
states: 33,159,373,227 (10)
abstracting: (pil_d1_n1_1_2<=1)
states: 51,737,129,142 (10)
.
EG iterations: 1
abstracting: (pb_d2_n1_1_2<=1)
states: 43,641,548,356 (10)
abstracting: (pbl_2_1<=pol_d2_n1_2_1)
states: 23,106,129,515 (10)
abstracting: (1<=pol_d2_n1_2_2)
states: 32,978,865,411 (10)
.abstracting: (1<=pbl_2_2)
states: 38,293,230,667 (10)
......
EG iterations: 6
abstracting: (pbl_2_2<=1)
states: 28,298,554,795 (10)
abstracting: (pb_d1_n2_2_1<=1)
states: 43,641,548,356 (10)
abstracting: (pb_d1_n1_1_2<=0)
states: 29,517,134,258 (10)
......
EG iterations: 6
abstracting: (pb_d1_n1_1_2<=0)
states: 29,517,134,258 (10)
abstracting: (po_d2_n1_2_1<=pb_d2_n1_2_2)
states: 40,797,750,799 (10)
abstracting: (pb_d1_n1_1_2<=0)
states: 29,517,134,258 (10)
abstracting: (1<=pb_d2_n2_1_1)
states: 22,219,994,884 (10)
abstracting: (pb_d1_n1_1_1<=pb_d1_n2_2_2)
states: 36,456,320,605 (10)
................
EG iterations: 16
abstracting: (1<=pol_d1_n1_2_2)
states: 32,978,865,411 (10)
abstracting: (1<=pil_d2_n1_2_1)
states: 32,978,865,411 (10)
.-> the formula is FALSE

FORMULA HypertorusGrid-PT-d2k2p1b00-CTLCardinality-04 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m10.474sec

checking: [EG [[A [[[[pol_d1_n1_1_2<=pb_d2_n2_2_2 & pi_d2_n1_1_1<=1] & [1<=pb_d2_n1_2_1 | 1<=po_d2_n1_2_1]] | [~ [po_d2_n1_2_1<=0] | [pi_d1_n1_1_1<=pol_d2_n1_1_1 | 1<=pi_d2_n1_2_2]]] U [A [pb_d1_n1_1_2<=po_d2_n1_2_2 U pi_d1_n1_2_2<=1] | ~ [AG [pol_d1_n1_1_2<=pb_d1_n2_1_1]]]] & E [1<=pb_d2_n1_1_1 U ~ [AF [1<=pb_d1_n1_2_2]]]]] & [E [[AX [[A [pi_d1_n1_1_1<=1 U pbl_2_1<=pol_d2_n1_2_2] | [pol_d1_n1_2_1<=1 | po_d2_n1_1_1<=pi_d2_n1_1_1]]] | [~ [A [po_d2_n1_1_2<=1 U 1<=pb_d2_n1_1_2]] | pb_d1_n1_1_1<=pb_d1_n1_1_2]] U A [AF [1<=po_d1_n1_1_1] U ~ [[~ [1<=pb_d2_n1_2_2] & A [pb_d1_n1_2_2<=po_d2_n1_1_1 U 1<=pb_d2_n2_2_2]]]]] | A [A [~ [EG [1<=pol_d1_n1_1_1]] U [pi_d1_n1_1_1<=po_d2_n1_1_2 & pol_d2_n1_1_2<=pil_d1_n1_1_1]] U [po_d2_n1_1_1<=pil_d1_n1_1_2 | EF [[[po_d1_n1_1_2<=1 | 1<=pil_d2_n1_2_2] | [pol_d2_n1_2_1<=pbl_2_2 & 1<=pbl_2_2]]]]]]]
normalized: [[[~ [EG [~ [[po_d2_n1_1_1<=pil_d1_n1_1_2 | E [true U [[pol_d2_n1_2_1<=pbl_2_2 & 1<=pbl_2_2] | [po_d1_n1_1_2<=1 | 1<=pil_d2_n1_2_2]]]]]]] & ~ [E [~ [[po_d2_n1_1_1<=pil_d1_n1_1_2 | E [true U [[pol_d2_n1_2_1<=pbl_2_2 & 1<=pbl_2_2] | [po_d1_n1_1_2<=1 | 1<=pil_d2_n1_2_2]]]]] U [~ [[~ [EG [~ [[pi_d1_n1_1_1<=po_d2_n1_1_2 & pol_d2_n1_1_2<=pil_d1_n1_1_1]]]] & ~ [E [~ [[pi_d1_n1_1_1<=po_d2_n1_1_2 & pol_d2_n1_1_2<=pil_d1_n1_1_1]] U [~ [[pi_d1_n1_1_1<=po_d2_n1_1_2 & pol_d2_n1_1_2<=pil_d1_n1_1_1]] & EG [1<=pol_d1_n1_1_1]]]]]] & ~ [[po_d2_n1_1_1<=pil_d1_n1_1_2 | E [true U [[pol_d2_n1_2_1<=pbl_2_2 & 1<=pbl_2_2] | [po_d1_n1_1_2<=1 | 1<=pil_d2_n1_2_2]]]]]]]]] | E [[[pb_d1_n1_1_1<=pb_d1_n1_1_2 | ~ [[~ [EG [~ [1<=pb_d2_n1_1_2]]] & ~ [E [~ [1<=pb_d2_n1_1_2] U [~ [po_d2_n1_1_2<=1] & ~ [1<=pb_d2_n1_1_2]]]]]]] | ~ [EX [~ [[[pol_d1_n1_2_1<=1 | po_d2_n1_1_1<=pi_d2_n1_1_1] | [~ [EG [~ [pbl_2_1<=pol_d2_n1_2_2]]] & ~ [E [~ [pbl_2_1<=pol_d2_n1_2_2] U [~ [pi_d1_n1_1_1<=1] & ~ [pbl_2_1<=pol_d2_n1_2_2]]]]]]]]]] U [~ [EG [[[~ [EG [~ [1<=pb_d2_n2_2_2]]] & ~ [E [~ [1<=pb_d2_n2_2_2] U [~ [pb_d1_n1_2_2<=po_d2_n1_1_1] & ~ [1<=pb_d2_n2_2_2]]]]] & ~ [1<=pb_d2_n1_2_2]]]] & ~ [E [[[~ [EG [~ [1<=pb_d2_n2_2_2]]] & ~ [E [~ [1<=pb_d2_n2_2_2] U [~ [pb_d1_n1_2_2<=po_d2_n1_1_1] & ~ [1<=pb_d2_n2_2_2]]]]] & ~ [1<=pb_d2_n1_2_2]] U [EG [~ [1<=po_d1_n1_1_1]] & [[~ [EG [~ [1<=pb_d2_n2_2_2]]] & ~ [E [~ [1<=pb_d2_n2_2_2] U [~ [pb_d1_n1_2_2<=po_d2_n1_1_1] & ~ [1<=pb_d2_n2_2_2]]]]] & ~ [1<=pb_d2_n1_2_2]]]]]]]] & EG [[E [1<=pb_d2_n1_1_1 U EG [~ [1<=pb_d1_n1_2_2]]] & [~ [EG [~ [[E [true U ~ [pol_d1_n1_1_2<=pb_d1_n2_1_1]] | [~ [EG [~ [pi_d1_n1_2_2<=1]]] & ~ [E [~ [pi_d1_n1_2_2<=1] U [~ [pb_d1_n1_1_2<=po_d2_n1_2_2] & ~ [pi_d1_n1_2_2<=1]]]]]]]]] & ~ [E [~ [[E [true U ~ [pol_d1_n1_1_2<=pb_d1_n2_1_1]] | [~ [EG [~ [pi_d1_n1_2_2<=1]]] & ~ [E [~ [pi_d1_n1_2_2<=1] U [~ [pb_d1_n1_1_2<=po_d2_n1_2_2] & ~ [pi_d1_n1_2_2<=1]]]]]]] U [~ [[[[pi_d1_n1_1_1<=pol_d2_n1_1_1 | 1<=pi_d2_n1_2_2] | ~ [po_d2_n1_2_1<=0]] | [[1<=pb_d2_n1_2_1 | 1<=po_d2_n1_2_1] & [pol_d1_n1_1_2<=pb_d2_n2_2_2 & pi_d2_n1_1_1<=1]]]] & ~ [[E [true U ~ [pol_d1_n1_1_2<=pb_d1_n2_1_1]] | [~ [EG [~ [pi_d1_n1_2_2<=1]]] & ~ [E [~ [pi_d1_n1_2_2<=1] U [~ [pb_d1_n1_1_2<=po_d2_n1_2_2] & ~ [pi_d1_n1_2_2<=1]]]]]]]]]]]]]]

abstracting: (pi_d1_n1_2_2<=1)
states: 51,737,129,142 (10)
abstracting: (pb_d1_n1_1_2<=po_d2_n1_2_2)
states: 34,569,521,828 (10)
abstracting: (pi_d1_n1_2_2<=1)
states: 51,737,129,142 (10)
abstracting: (pi_d1_n1_2_2<=1)
states: 51,737,129,142 (10)
.
EG iterations: 1
abstracting: (pol_d1_n1_1_2<=pb_d1_n2_1_1)
states: 33,159,373,227 (10)
abstracting: (pi_d2_n1_1_1<=1)
states: 51,737,129,142 (10)
abstracting: (pol_d1_n1_1_2<=pb_d2_n2_2_2)
states: 33,159,373,227 (10)
abstracting: (1<=po_d2_n1_2_1)
states: 18,758,263,731 (10)
abstracting: (1<=pb_d2_n1_2_1)
states: 22,219,994,884 (10)
abstracting: (po_d2_n1_2_1<=0)
states: 32,978,865,411 (10)
abstracting: (1<=pi_d2_n1_2_2)
states: 18,758,263,731 (10)
abstracting: (pi_d1_n1_1_1<=pol_d2_n1_1_1)
states: 45,210,817,491 (10)
abstracting: (pi_d1_n1_2_2<=1)
states: 51,737,129,142 (10)
abstracting: (pb_d1_n1_1_2<=po_d2_n1_2_2)
states: 34,569,521,828 (10)
abstracting: (pi_d1_n1_2_2<=1)
states: 51,737,129,142 (10)
abstracting: (pi_d1_n1_2_2<=1)
states: 51,737,129,142 (10)
.
EG iterations: 1
abstracting: (pol_d1_n1_1_2<=pb_d1_n2_1_1)
states: 33,159,373,227 (10)
abstracting: (pi_d1_n1_2_2<=1)
states: 51,737,129,142 (10)
abstracting: (pb_d1_n1_1_2<=po_d2_n1_2_2)
states: 34,569,521,828 (10)
abstracting: (pi_d1_n1_2_2<=1)
states: 51,737,129,142 (10)
abstracting: (pi_d1_n1_2_2<=1)
states: 51,737,129,142 (10)
.
EG iterations: 1
abstracting: (pol_d1_n1_1_2<=pb_d1_n2_1_1)
states: 33,159,373,227 (10)
.
EG iterations: 1
abstracting: (1<=pb_d1_n1_2_2)
states: 22,219,994,884 (10)
.
EG iterations: 1
abstracting: (1<=pb_d2_n1_1_1)
states: 22,219,994,884 (10)
.
EG iterations: 1
abstracting: (1<=pb_d2_n1_2_2)
states: 22,219,994,884 (10)
abstracting: (1<=pb_d2_n2_2_2)
states: 22,219,994,884 (10)
abstracting: (pb_d1_n1_2_2<=po_d2_n1_1_1)
states: 34,569,521,828 (10)
abstracting: (1<=pb_d2_n2_2_2)
states: 22,219,994,884 (10)
abstracting: (1<=pb_d2_n2_2_2)
states: 22,219,994,884 (10)
.
EG iterations: 1
abstracting: (1<=po_d1_n1_1_1)
states: 18,758,263,731 (10)
.............
EG iterations: 13
abstracting: (1<=pb_d2_n1_2_2)
states: 22,219,994,884 (10)
abstracting: (1<=pb_d2_n2_2_2)
states: 22,219,994,884 (10)
abstracting: (pb_d1_n1_2_2<=po_d2_n1_1_1)
states: 34,569,521,828 (10)
abstracting: (1<=pb_d2_n2_2_2)
states: 22,219,994,884 (10)
abstracting: (1<=pb_d2_n2_2_2)
states: 22,219,994,884 (10)
.
EG iterations: 1
abstracting: (1<=pb_d2_n1_2_2)
states: 22,219,994,884 (10)
abstracting: (1<=pb_d2_n2_2_2)
states: 22,219,994,884 (10)
abstracting: (pb_d1_n1_2_2<=po_d2_n1_1_1)
states: 34,569,521,828 (10)
abstracting: (1<=pb_d2_n2_2_2)
states: 22,219,994,884 (10)
abstracting: (1<=pb_d2_n2_2_2)
states: 22,219,994,884 (10)
.
EG iterations: 1
...............
EG iterations: 15
abstracting: (pbl_2_1<=pol_d2_n1_2_2)
states: 23,106,129,515 (10)
abstracting: (pi_d1_n1_1_1<=1)
states: 51,737,129,142 (10)
abstracting: (pbl_2_1<=pol_d2_n1_2_2)
states: 23,106,129,515 (10)
abstracting: (pbl_2_1<=pol_d2_n1_2_2)
states: 23,106,129,515 (10)
........
EG iterations: 8
abstracting: (po_d2_n1_1_1<=pi_d2_n1_1_1)
states: 39,505,177,062 (10)
abstracting: (pol_d1_n1_2_1<=1)
states: 51,737,129,142 (10)
.abstracting: (1<=pb_d2_n1_1_2)
states: 22,219,994,884 (10)
abstracting: (po_d2_n1_1_2<=1)
states: 51,737,129,142 (10)
abstracting: (1<=pb_d2_n1_1_2)
states: 22,219,994,884 (10)
abstracting: (1<=pb_d2_n1_1_2)
states: 22,219,994,884 (10)
.
EG iterations: 1
abstracting: (pb_d1_n1_1_1<=pb_d1_n1_1_2)
states: 36,456,320,605 (10)
abstracting: (1<=pil_d2_n1_2_2)
states: 32,978,865,411 (10)
abstracting: (po_d1_n1_1_2<=1)
states: 51,737,129,142 (10)
abstracting: (1<=pbl_2_2)
states: 38,293,230,667 (10)
abstracting: (pol_d2_n1_2_1<=pbl_2_2)
states: 42,650,384,902 (10)
abstracting: (po_d2_n1_1_1<=pil_d1_n1_1_2)
states: 45,210,817,491 (10)
abstracting: (1<=pol_d1_n1_1_1)
states: 32,978,865,411 (10)
.............
EG iterations: 13
abstracting: (pol_d2_n1_1_2<=pil_d1_n1_1_1)
states: 39,505,177,062 (10)
abstracting: (pi_d1_n1_1_1<=po_d2_n1_1_2)
states: 39,505,177,062 (10)
abstracting: (pol_d2_n1_1_2<=pil_d1_n1_1_1)
states: 39,505,177,062 (10)
abstracting: (pi_d1_n1_1_1<=po_d2_n1_1_2)
states: 39,505,177,062 (10)
abstracting: (pol_d2_n1_1_2<=pil_d1_n1_1_1)
states: 39,505,177,062 (10)
abstracting: (pi_d1_n1_1_1<=po_d2_n1_1_2)
states: 39,505,177,062 (10)
...............
EG iterations: 15
abstracting: (1<=pil_d2_n1_2_2)
states: 32,978,865,411 (10)
abstracting: (po_d1_n1_1_2<=1)
states: 51,737,129,142 (10)
abstracting: (1<=pbl_2_2)
states: 38,293,230,667 (10)
abstracting: (pol_d2_n1_2_1<=pbl_2_2)
states: 42,650,384,902 (10)
abstracting: (po_d2_n1_1_1<=pil_d1_n1_1_2)
states: 45,210,817,491 (10)
abstracting: (1<=pil_d2_n1_2_2)
states: 32,978,865,411 (10)
abstracting: (po_d1_n1_1_2<=1)
states: 51,737,129,142 (10)
abstracting: (1<=pbl_2_2)
states: 38,293,230,667 (10)
abstracting: (pol_d2_n1_2_1<=pbl_2_2)
states: 42,650,384,902 (10)
abstracting: (po_d2_n1_1_1<=pil_d1_n1_1_2)
states: 45,210,817,491 (10)
.
EG iterations: 1
-> the formula is TRUE

FORMULA HypertorusGrid-PT-d2k2p1b00-CTLCardinality-05 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 7.830sec

totally nodes used: 27541125 (2.8e+07)
number of garbage collections: 0
fire ops cache: hits/miss/sum: 281535640 291580054 573115694
used/not used/entry size/cache size: 66418221 690643 16 1024MB
basic ops cache: hits/miss/sum: 25694976 26802740 52497716
used/not used/entry size/cache size: 14511840 2265376 12 192MB
unary ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 8 128MB
abstract ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 12 192MB
state nr cache: hits/miss/sum: 62613 70505 133118
used/not used/entry size/cache size: 70222 8318386 32 256MB
max state cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 8388608 32 256MB
uniqueHash elements/entry size/size: 67108864 4 256MB
0 45764608
1 16931051
2 3595349
3 610395
4 108456
5 30362
6 15134
7 9786
8 7555
9 5648
>= 10 30520

Total processing time: 2m39.946sec


BK_STOP 1678602522269

--------------------
content from stderr:

check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok


initing FirstDep: 0m 0.000sec


iterations count:15972 (249), effective:1963 (30)

initing FirstDep: 0m 0.000sec


iterations count:2703 (42), effective:191 (2)

iterations count:3701 (57), effective:225 (3)

iterations count:35270 (551), effective:2585 (40)

iterations count:1519 (23), effective:95 (1)

iterations count:64 (1), effective:0 (0)

iterations count:64 (1), effective:0 (0)

iterations count:3703 (57), effective:229 (3)

iterations count:3703 (57), effective:229 (3)

iterations count:3703 (57), effective:229 (3)

iterations count:64 (1), effective:0 (0)

iterations count:1290 (20), effective:79 (1)

iterations count:12208 (190), effective:895 (13)

iterations count:64 (1), effective:0 (0)

iterations count:5118 (79), effective:302 (4)

iterations count:1700 (26), effective:95 (1)

iterations count:2381 (37), effective:160 (2)

iterations count:5196 (81), effective:337 (5)

iterations count:64 (1), effective:0 (0)

iterations count:5196 (81), effective:337 (5)

iterations count:64 (1), effective:0 (0)

iterations count:5196 (81), effective:337 (5)

iterations count:64 (1), effective:0 (0)

iterations count:38652 (603), effective:2676 (41)

iterations count:24069 (376), effective:1637 (25)

iterations count:757 (11), effective:41 (0)

iterations count:5342 (83), effective:350 (5)

iterations count:2272 (35), effective:219 (3)

iterations count:7803 (121), effective:575 (8)

iterations count:1656 (25), effective:100 (1)

iterations count:1645 (25), effective:93 (1)

iterations count:2580 (40), effective:166 (2)

iterations count:9440 (147), effective:703 (10)

iterations count:985 (15), effective:52 (0)

iterations count:7146 (111), effective:499 (7)

iterations count:64 (1), effective:0 (0)

iterations count:2876 (44), effective:176 (2)

iterations count:38295 (598), effective:2753 (43)

iterations count:64 (1), effective:0 (0)

iterations count:1811 (28), effective:122 (1)

iterations count:1736 (27), effective:106 (1)

iterations count:64 (1), effective:0 (0)

iterations count:2609 (40), effective:158 (2)

iterations count:15390 (240), effective:1177 (18)

iterations count:1419 (22), effective:87 (1)

iterations count:1419 (22), effective:87 (1)

iterations count:128 (2), effective:8 (0)

iterations count:1419 (22), effective:87 (1)

iterations count:2517 (39), effective:159 (2)

iterations count:1751 (27), effective:133 (2)

iterations count:985 (15), effective:52 (0)

iterations count:632 (9), effective:32 (0)

iterations count:10018 (156), effective:726 (11)

iterations count:1393 (21), effective:83 (1)

iterations count:64 (1), effective:0 (0)

iterations count:3469 (54), effective:220 (3)

iterations count:2299 (35), effective:142 (2)

iterations count:2299 (35), effective:142 (2)

iterations count:2299 (35), effective:142 (2)

iterations count:2523 (39), effective:141 (2)

iterations count:3879 (60), effective:242 (3)

iterations count:3879 (60), effective:242 (3)

iterations count:1071 (16), effective:64 (1)

iterations count:3879 (60), effective:242 (3)

iterations count:21876 (341), effective:1521 (23)

iterations count:64 (1), effective:0 (0)

iterations count:789 (12), effective:39 (0)

iterations count:64 (1), effective:0 (0)

iterations count:64 (1), effective:0 (0)

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="HypertorusGrid-PT-d2k2p1b00"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marcie"
echo " Input is HypertorusGrid-PT-d2k2p1b00, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r225-tall-167856407000033"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"

tar xzf /home/mcc/BenchKit/INPUTS/HypertorusGrid-PT-d2k2p1b00.tgz
mv HypertorusGrid-PT-d2k2p1b00 execution
cd execution
if [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "UpperBounds" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] || [ "CTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh

echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' CTLCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME CTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;