About the Execution of Marcie for HexagonalGrid-PT-126
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
5449.151 | 6945.00 | 7050.00 | 0.00 | TFFFTTTTFTFTTTFF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fkordon/mcc2023-input.r193-smll-167840340600377.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2023-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
................................................................................................
=====================================================================
Generated by BenchKit 2-5348
Executing tool marcie
Input is HexagonalGrid-PT-126, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r193-smll-167840340600377
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 568K
-rw-r--r-- 1 mcc users 8.3K Feb 26 17:11 CTLCardinality.txt
-rw-r--r-- 1 mcc users 85K Feb 26 17:11 CTLCardinality.xml
-rw-r--r-- 1 mcc users 6.4K Feb 26 17:06 CTLFireability.txt
-rw-r--r-- 1 mcc users 57K Feb 26 17:06 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K Jan 29 11:40 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.4K Jan 29 11:40 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 4.1K Feb 25 16:14 LTLCardinality.txt
-rw-r--r-- 1 mcc users 28K Feb 25 16:14 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.6K Feb 25 16:14 LTLFireability.txt
-rw-r--r-- 1 mcc users 20K Feb 25 16:14 LTLFireability.xml
-rw-r--r-- 1 mcc users 16K Feb 26 17:14 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 159K Feb 26 17:14 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 12K Feb 26 17:13 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 94K Feb 26 17:13 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.7K Feb 25 16:14 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.8K Feb 25 16:14 UpperBounds.xml
-rw-r--r-- 1 mcc users 6 Mar 5 18:22 equiv_col
-rw-r--r-- 1 mcc users 4 Mar 5 18:22 instance
-rw-r--r-- 1 mcc users 6 Mar 5 18:22 iscolored
-rwxr-xr-x 1 mcc users 18K Mar 5 18:22 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME HexagonalGrid-PT-126-CTLCardinality-00
FORMULA_NAME HexagonalGrid-PT-126-CTLCardinality-01
FORMULA_NAME HexagonalGrid-PT-126-CTLCardinality-02
FORMULA_NAME HexagonalGrid-PT-126-CTLCardinality-03
FORMULA_NAME HexagonalGrid-PT-126-CTLCardinality-04
FORMULA_NAME HexagonalGrid-PT-126-CTLCardinality-05
FORMULA_NAME HexagonalGrid-PT-126-CTLCardinality-06
FORMULA_NAME HexagonalGrid-PT-126-CTLCardinality-07
FORMULA_NAME HexagonalGrid-PT-126-CTLCardinality-08
FORMULA_NAME HexagonalGrid-PT-126-CTLCardinality-09
FORMULA_NAME HexagonalGrid-PT-126-CTLCardinality-10
FORMULA_NAME HexagonalGrid-PT-126-CTLCardinality-11
FORMULA_NAME HexagonalGrid-PT-126-CTLCardinality-12
FORMULA_NAME HexagonalGrid-PT-126-CTLCardinality-13
FORMULA_NAME HexagonalGrid-PT-126-CTLCardinality-14
FORMULA_NAME HexagonalGrid-PT-126-CTLCardinality-15
=== Now, execution of the tool begins
BK_START 1679876235486
bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marcie
BK_EXAMINATION=CTLCardinality
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=HexagonalGrid-PT-126
Not applying reductions.
Model is PT
CTLCardinality PT
timeout --kill-after=10s --signal=SIGINT 1m for testing only
Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: /home/mcc/BenchKit/bin//../marcie/bin/marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --memory=6 --mcc-mode
parse successfull
net created successfully
Net: HexagonalGrid_PT_126
(NrP: 31 NrTr: 42 NrArc: 168)
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec
net check time: 0m 0.000sec
init dd package: 0m 3.640sec
RS generation: 0m 0.091sec
-> reachability set: #nodes 1925 (1.9e+03) #states 2,664,192 (6)
starting MCC model checker
--------------------------
checking: AF [AX [EX [AG [pi5_1_1<=5]]]]
normalized: ~ [EG [EX [~ [EX [~ [E [true U ~ [pi5_1_1<=5]]]]]]]]
abstracting: (pi5_1_1<=5)
states: 2,664,192 (6)
...
EG iterations: 1
-> the formula is TRUE
FORMULA HexagonalGrid-PT-126-CTLCardinality-13 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.036sec
checking: ~ [AF [EX [[AF [3<=pil6_1_1] | AF [2<=pol1_1_1]]]]]
normalized: EG [~ [EX [[~ [EG [~ [2<=pol1_1_1]]] | ~ [EG [~ [3<=pil6_1_1]]]]]]]
abstracting: (3<=pil6_1_1)
states: 0
EG iterations: 0
abstracting: (2<=pol1_1_1)
states: 0
EG iterations: 0
.
EG iterations: 0
-> the formula is TRUE
FORMULA HexagonalGrid-PT-126-CTLCardinality-04 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.001sec
checking: EF [EX [EF [AG [po3_1_1<=po5_1_1]]]]
normalized: E [true U EX [E [true U ~ [E [true U ~ [po3_1_1<=po5_1_1]]]]]]
abstracting: (po3_1_1<=po5_1_1)
states: 2,031,744 (6)
.-> the formula is FALSE
FORMULA HexagonalGrid-PT-126-CTLCardinality-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.038sec
checking: ~ [AX [EF [~ [E [pb1_1_1<=3 U pol3_1_1<=pb2_1_1]]]]]
normalized: EX [~ [E [true U ~ [E [pb1_1_1<=3 U pol3_1_1<=pb2_1_1]]]]]
abstracting: (pol3_1_1<=pb2_1_1)
states: 2,006,272 (6)
abstracting: (pb1_1_1<=3)
states: 2,436,096 (6)
.-> the formula is FALSE
FORMULA HexagonalGrid-PT-126-CTLCardinality-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.247sec
checking: AG [EX [EF [AF [[pb3_1_1<=pi3_1_1 & po4_1_1<=pil5_1_1]]]]]
normalized: ~ [E [true U ~ [EX [E [true U ~ [EG [~ [[pb3_1_1<=pi3_1_1 & po4_1_1<=pil5_1_1]]]]]]]]]
abstracting: (po4_1_1<=pil5_1_1)
states: 2,293,504 (6)
abstracting: (pb3_1_1<=pi3_1_1)
states: 1,349,888 (6)
.
EG iterations: 1
.-> the formula is TRUE
FORMULA HexagonalGrid-PT-126-CTLCardinality-07 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.147sec
checking: EF [~ [EF [~ [[[5<=pi5_1_1 & 4<=pil5_1_1] & [pi2_1_1<=pil5_1_1 & pi1_1_1<=pil2_1_1]]]]]]
normalized: E [true U ~ [E [true U ~ [[[pi2_1_1<=pil5_1_1 & pi1_1_1<=pil2_1_1] & [5<=pi5_1_1 & 4<=pil5_1_1]]]]]]
abstracting: (4<=pil5_1_1)
states: 0
abstracting: (5<=pi5_1_1)
states: 0
abstracting: (pi1_1_1<=pil2_1_1)
states: 2,293,504 (6)
abstracting: (pi2_1_1<=pil5_1_1)
states: 2,293,504 (6)
-> the formula is FALSE
FORMULA HexagonalGrid-PT-126-CTLCardinality-08 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.004sec
checking: EG [[AG [E [[EF [1<=pol5_1_1] & pol6_1_1<=pol2_1_1] U pil3_1_1<=pil4_1_1]] | ~ [EG [E [pil3_1_1<=4 U pbl_1_1<=po4_1_1]]]]]
normalized: EG [[~ [EG [E [pil3_1_1<=4 U pbl_1_1<=po4_1_1]]] | ~ [E [true U ~ [E [[pol6_1_1<=pol2_1_1 & E [true U 1<=pol5_1_1]] U pil3_1_1<=pil4_1_1]]]]]]
abstracting: (pil3_1_1<=pil4_1_1)
states: 2,031,744 (6)
abstracting: (1<=pol5_1_1)
states: 1,661,056 (6)
abstracting: (pol6_1_1<=pol2_1_1)
states: 2,031,744 (6)
abstracting: (pbl_1_1<=po4_1_1)
states: 0
abstracting: (pil3_1_1<=4)
states: 2,664,192 (6)
.
EG iterations: 1
EG iterations: 0
-> the formula is TRUE
FORMULA HexagonalGrid-PT-126-CTLCardinality-06 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.059sec
checking: AG [[pil6_1_1<=pi3_1_1 | AG [E [[[3<=po2_1_1 | pbl_1_1<=pi6_1_1] | EF [pb5_1_1<=2]] U [4<=pol2_1_1 & ~ [pol3_1_1<=pil6_1_1]]]]]]
normalized: ~ [E [true U ~ [[pil6_1_1<=pi3_1_1 | ~ [E [true U ~ [E [[E [true U pb5_1_1<=2] | [3<=po2_1_1 | pbl_1_1<=pi6_1_1]] U [4<=pol2_1_1 & ~ [pol3_1_1<=pil6_1_1]]]]]]]]]]
abstracting: (pol3_1_1<=pil6_1_1)
states: 2,031,744 (6)
abstracting: (4<=pol2_1_1)
states: 0
abstracting: (pbl_1_1<=pi6_1_1)
states: 0
abstracting: (3<=po2_1_1)
states: 0
abstracting: (pb5_1_1<=2)
states: 2,196,736 (6)
abstracting: (pil6_1_1<=pi3_1_1)
states: 1,635,584 (6)
-> the formula is FALSE
FORMULA HexagonalGrid-PT-126-CTLCardinality-01 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.040sec
checking: [A [AX [[~ [[5<=pb4_1_1 & EG [pil3_1_1<=1]]] | AX [EF [pol2_1_1<=0]]]] U [pol5_1_1<=1 | AF [A [AF [4<=pi6_1_1] U [5<=pb6_1_1 & pb5_1_1<=pil1_1_1]]]]] & AG [~ [5<=pol1_1_1]]]
normalized: [~ [E [true U 5<=pol1_1_1]] & [~ [EG [~ [[pol5_1_1<=1 | ~ [EG [~ [[~ [EG [~ [[5<=pb6_1_1 & pb5_1_1<=pil1_1_1]]]] & ~ [E [~ [[5<=pb6_1_1 & pb5_1_1<=pil1_1_1]] U [EG [~ [4<=pi6_1_1]] & ~ [[5<=pb6_1_1 & pb5_1_1<=pil1_1_1]]]]]]]]]]]]] & ~ [E [~ [[pol5_1_1<=1 | ~ [EG [~ [[~ [EG [~ [[5<=pb6_1_1 & pb5_1_1<=pil1_1_1]]]] & ~ [E [~ [[5<=pb6_1_1 & pb5_1_1<=pil1_1_1]] U [EG [~ [4<=pi6_1_1]] & ~ [[5<=pb6_1_1 & pb5_1_1<=pil1_1_1]]]]]]]]]]] U [EX [~ [[~ [EX [~ [E [true U pol2_1_1<=0]]]] | ~ [[5<=pb4_1_1 & EG [pil3_1_1<=1]]]]]] & ~ [[pol5_1_1<=1 | ~ [EG [~ [[~ [EG [~ [[5<=pb6_1_1 & pb5_1_1<=pil1_1_1]]]] & ~ [E [~ [[5<=pb6_1_1 & pb5_1_1<=pil1_1_1]] U [EG [~ [4<=pi6_1_1]] & ~ [[5<=pb6_1_1 & pb5_1_1<=pil1_1_1]]]]]]]]]]]]]]]]
abstracting: (pb5_1_1<=pil1_1_1)
states: 1,512,448 (6)
abstracting: (5<=pb6_1_1)
states: 101,376 (5)
abstracting: (4<=pi6_1_1)
states: 0
EG iterations: 0
abstracting: (pb5_1_1<=pil1_1_1)
states: 1,512,448 (6)
abstracting: (5<=pb6_1_1)
states: 101,376 (5)
abstracting: (pb5_1_1<=pil1_1_1)
states: 1,512,448 (6)
abstracting: (5<=pb6_1_1)
states: 101,376 (5)
.
EG iterations: 1
.
EG iterations: 1
abstracting: (pol5_1_1<=1)
states: 2,664,192 (6)
abstracting: (pil3_1_1<=1)
states: 2,664,192 (6)
EG iterations: 0
abstracting: (5<=pb4_1_1)
states: 101,376 (5)
abstracting: (pol2_1_1<=0)
states: 1,003,136 (6)
..abstracting: (pb5_1_1<=pil1_1_1)
states: 1,512,448 (6)
abstracting: (5<=pb6_1_1)
states: 101,376 (5)
abstracting: (4<=pi6_1_1)
states: 0
EG iterations: 0
abstracting: (pb5_1_1<=pil1_1_1)
states: 1,512,448 (6)
abstracting: (5<=pb6_1_1)
states: 101,376 (5)
abstracting: (pb5_1_1<=pil1_1_1)
states: 1,512,448 (6)
abstracting: (5<=pb6_1_1)
states: 101,376 (5)
.
EG iterations: 1
.
EG iterations: 1
abstracting: (pol5_1_1<=1)
states: 2,664,192 (6)
abstracting: (pb5_1_1<=pil1_1_1)
states: 1,512,448 (6)
abstracting: (5<=pb6_1_1)
states: 101,376 (5)
abstracting: (4<=pi6_1_1)
states: 0
EG iterations: 0
abstracting: (pb5_1_1<=pil1_1_1)
states: 1,512,448 (6)
abstracting: (5<=pb6_1_1)
states: 101,376 (5)
abstracting: (pb5_1_1<=pil1_1_1)
states: 1,512,448 (6)
abstracting: (5<=pb6_1_1)
states: 101,376 (5)
.
EG iterations: 1
.
EG iterations: 1
abstracting: (pol5_1_1<=1)
states: 2,664,192 (6)
.
EG iterations: 1
abstracting: (5<=pol1_1_1)
states: 0
-> the formula is TRUE
FORMULA HexagonalGrid-PT-126-CTLCardinality-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.043sec
checking: E [pi5_1_1<=2 U A [EF [EG [pi1_1_1<=3]] U [A [[[pi3_1_1<=3 & pb4_1_1<=pol6_1_1] | 5<=pb1_1_1] U EG [3<=pi3_1_1]] & ~ [[5<=pil6_1_1 | EG [5<=po2_1_1]]]]]]
normalized: E [pi5_1_1<=2 U [~ [EG [~ [[~ [[5<=pil6_1_1 | EG [5<=po2_1_1]]] & [~ [EG [~ [EG [3<=pi3_1_1]]]] & ~ [E [~ [EG [3<=pi3_1_1]] U [~ [[5<=pb1_1_1 | [pi3_1_1<=3 & pb4_1_1<=pol6_1_1]]] & ~ [EG [3<=pi3_1_1]]]]]]]]]] & ~ [E [~ [[~ [[5<=pil6_1_1 | EG [5<=po2_1_1]]] & [~ [EG [~ [EG [3<=pi3_1_1]]]] & ~ [E [~ [EG [3<=pi3_1_1]] U [~ [[5<=pb1_1_1 | [pi3_1_1<=3 & pb4_1_1<=pol6_1_1]]] & ~ [EG [3<=pi3_1_1]]]]]]]] U [~ [E [true U EG [pi1_1_1<=3]]] & ~ [[~ [[5<=pil6_1_1 | EG [5<=po2_1_1]]] & [~ [EG [~ [EG [3<=pi3_1_1]]]] & ~ [E [~ [EG [3<=pi3_1_1]] U [~ [[5<=pb1_1_1 | [pi3_1_1<=3 & pb4_1_1<=pol6_1_1]]] & ~ [EG [3<=pi3_1_1]]]]]]]]]]]]]
abstracting: (3<=pi3_1_1)
states: 0
.
EG iterations: 1
abstracting: (pb4_1_1<=pol6_1_1)
states: 1,512,448 (6)
abstracting: (pi3_1_1<=3)
states: 2,664,192 (6)
abstracting: (5<=pb1_1_1)
states: 101,376 (5)
abstracting: (3<=pi3_1_1)
states: 0
.
EG iterations: 1
abstracting: (3<=pi3_1_1)
states: 0
.
EG iterations: 1
EG iterations: 0
abstracting: (5<=po2_1_1)
states: 0
.
EG iterations: 1
abstracting: (5<=pil6_1_1)
states: 0
abstracting: (pi1_1_1<=3)
states: 2,664,192 (6)
EG iterations: 0
abstracting: (3<=pi3_1_1)
states: 0
.
EG iterations: 1
abstracting: (pb4_1_1<=pol6_1_1)
states: 1,512,448 (6)
abstracting: (pi3_1_1<=3)
states: 2,664,192 (6)
abstracting: (5<=pb1_1_1)
states: 101,376 (5)
abstracting: (3<=pi3_1_1)
states: 0
.
EG iterations: 1
abstracting: (3<=pi3_1_1)
states: 0
.
EG iterations: 1
EG iterations: 0
abstracting: (5<=po2_1_1)
states: 0
.
EG iterations: 1
abstracting: (5<=pil6_1_1)
states: 0
abstracting: (3<=pi3_1_1)
states: 0
.
EG iterations: 1
abstracting: (pb4_1_1<=pol6_1_1)
states: 1,512,448 (6)
abstracting: (pi3_1_1<=3)
states: 2,664,192 (6)
abstracting: (5<=pb1_1_1)
states: 101,376 (5)
abstracting: (3<=pi3_1_1)
states: 0
.
EG iterations: 1
abstracting: (3<=pi3_1_1)
states: 0
.
EG iterations: 1
EG iterations: 0
abstracting: (5<=po2_1_1)
states: 0
.
EG iterations: 1
abstracting: (5<=pil6_1_1)
states: 0
EG iterations: 0
abstracting: (pi5_1_1<=2)
states: 2,664,192 (6)
-> the formula is FALSE
FORMULA HexagonalGrid-PT-126-CTLCardinality-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.030sec
checking: EF [[~ [[[[AG [1<=po4_1_1] & ~ [E [pol1_1_1<=3 U 4<=pb3_1_1]]] & [~ [pi5_1_1<=po3_1_1] & po2_1_1<=4]] | AG [A [6<=pi3_1_1 U pil6_1_1<=2]]]] & po4_1_1<=pol6_1_1]]
normalized: E [true U [po4_1_1<=pol6_1_1 & ~ [[~ [E [true U ~ [[~ [EG [~ [pil6_1_1<=2]]] & ~ [E [~ [pil6_1_1<=2] U [~ [6<=pi3_1_1] & ~ [pil6_1_1<=2]]]]]]]] | [[po2_1_1<=4 & ~ [pi5_1_1<=po3_1_1]] & [~ [E [pol1_1_1<=3 U 4<=pb3_1_1]] & ~ [E [true U ~ [1<=po4_1_1]]]]]]]]]
abstracting: (1<=po4_1_1)
states: 1,003,136 (6)
abstracting: (4<=pb3_1_1)
states: 228,096 (5)
abstracting: (pol1_1_1<=3)
states: 2,664,192 (6)
abstracting: (pi5_1_1<=po3_1_1)
states: 2,031,744 (6)
abstracting: (po2_1_1<=4)
states: 2,664,192 (6)
abstracting: (pil6_1_1<=2)
states: 2,664,192 (6)
abstracting: (6<=pi3_1_1)
states: 0
abstracting: (pil6_1_1<=2)
states: 2,664,192 (6)
abstracting: (pil6_1_1<=2)
states: 2,664,192 (6)
.
EG iterations: 1
abstracting: (po4_1_1<=pol6_1_1)
states: 2,293,504 (6)
-> the formula is FALSE
FORMULA HexagonalGrid-PT-126-CTLCardinality-02 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.085sec
checking: E [AG [~ [AG [~ [EX [pol5_1_1<=2]]]]] U AX [[[4<=pil3_1_1 & [~ [pol4_1_1<=6] & ~ [6<=pol6_1_1]]] & A [[[pi4_1_1<=4 & 1<=pi6_1_1] | ~ [pb2_1_1<=pol5_1_1]] U ~ [[pol4_1_1<=2 | po4_1_1<=5]]]]]]
normalized: E [~ [E [true U ~ [E [true U EX [pol5_1_1<=2]]]]] U ~ [EX [~ [[[~ [EG [[pol4_1_1<=2 | po4_1_1<=5]]] & ~ [E [[pol4_1_1<=2 | po4_1_1<=5] U [~ [[~ [pb2_1_1<=pol5_1_1] | [pi4_1_1<=4 & 1<=pi6_1_1]]] & [pol4_1_1<=2 | po4_1_1<=5]]]]] & [4<=pil3_1_1 & [~ [6<=pol6_1_1] & ~ [pol4_1_1<=6]]]]]]]]
abstracting: (pol4_1_1<=6)
states: 2,664,192 (6)
abstracting: (6<=pol6_1_1)
states: 0
abstracting: (4<=pil3_1_1)
states: 0
abstracting: (po4_1_1<=5)
states: 2,664,192 (6)
abstracting: (pol4_1_1<=2)
states: 2,664,192 (6)
abstracting: (1<=pi6_1_1)
states: 1,003,136 (6)
abstracting: (pi4_1_1<=4)
states: 2,664,192 (6)
abstracting: (pb2_1_1<=pol5_1_1)
states: 1,512,448 (6)
abstracting: (po4_1_1<=5)
states: 2,664,192 (6)
abstracting: (pol4_1_1<=2)
states: 2,664,192 (6)
abstracting: (po4_1_1<=5)
states: 2,664,192 (6)
abstracting: (pol4_1_1<=2)
states: 2,664,192 (6)
EG iterations: 0
.abstracting: (pol5_1_1<=2)
states: 2,664,192 (6)
.-> the formula is FALSE
FORMULA HexagonalGrid-PT-126-CTLCardinality-03 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.057sec
checking: AG [[E [AG [[AG [6<=pi2_1_1] & ~ [3<=pi3_1_1]]] U [EF [pb4_1_1<=2] & [[po2_1_1<=po4_1_1 & AG [pol2_1_1<=pi2_1_1]] | pil1_1_1<=pol5_1_1]]] | A [[[A [3<=pb1_1_1 U pol4_1_1<=pol1_1_1] | 6<=pi6_1_1] & AF [pb4_1_1<=4]] U [[[A [pi2_1_1<=1 U 6<=pil1_1_1] | ~ [po4_1_1<=po4_1_1]] | 3<=pil3_1_1] | po1_1_1<=4]]]]
normalized: ~ [E [true U ~ [[[~ [EG [~ [[po1_1_1<=4 | [3<=pil3_1_1 | [[~ [EG [~ [6<=pil1_1_1]]] & ~ [E [~ [6<=pil1_1_1] U [~ [6<=pil1_1_1] & ~ [pi2_1_1<=1]]]]] | ~ [po4_1_1<=po4_1_1]]]]]]] & ~ [E [~ [[po1_1_1<=4 | [3<=pil3_1_1 | [[~ [EG [~ [6<=pil1_1_1]]] & ~ [E [~ [6<=pil1_1_1] U [~ [6<=pil1_1_1] & ~ [pi2_1_1<=1]]]]] | ~ [po4_1_1<=po4_1_1]]]]] U [~ [[po1_1_1<=4 | [3<=pil3_1_1 | [[~ [EG [~ [6<=pil1_1_1]]] & ~ [E [~ [6<=pil1_1_1] U [~ [6<=pil1_1_1] & ~ [pi2_1_1<=1]]]]] | ~ [po4_1_1<=po4_1_1]]]]] & ~ [[[6<=pi6_1_1 | [~ [EG [~ [pol4_1_1<=pol1_1_1]]] & ~ [E [~ [pol4_1_1<=pol1_1_1] U [~ [3<=pb1_1_1] & ~ [pol4_1_1<=pol1_1_1]]]]]] & ~ [EG [~ [pb4_1_1<=4]]]]]]]]] | E [~ [E [true U ~ [[~ [3<=pi3_1_1] & ~ [E [true U ~ [6<=pi2_1_1]]]]]]] U [[pil1_1_1<=pol5_1_1 | [po2_1_1<=po4_1_1 & ~ [E [true U ~ [pol2_1_1<=pi2_1_1]]]]] & E [true U pb4_1_1<=2]]]]]]]
abstracting: (pb4_1_1<=2)
states: 2,196,736 (6)
abstracting: (pol2_1_1<=pi2_1_1)
states: 1,635,584 (6)
abstracting: (po2_1_1<=po4_1_1)
states: 2,031,744 (6)
abstracting: (pil1_1_1<=pol5_1_1)
states: 2,031,744 (6)
abstracting: (6<=pi2_1_1)
states: 0
abstracting: (3<=pi3_1_1)
states: 0
abstracting: (pb4_1_1<=4)
states: 2,562,816 (6)
.
EG iterations: 1
abstracting: (pol4_1_1<=pol1_1_1)
states: 2,031,744 (6)
abstracting: (3<=pb1_1_1)
states: 467,456 (5)
abstracting: (pol4_1_1<=pol1_1_1)
states: 2,031,744 (6)
abstracting: (pol4_1_1<=pol1_1_1)
states: 2,031,744 (6)
..
EG iterations: 2
abstracting: (6<=pi6_1_1)
states: 0
abstracting: (po4_1_1<=po4_1_1)
states: 2,664,192 (6)
abstracting: (pi2_1_1<=1)
states: 2,664,192 (6)
abstracting: (6<=pil1_1_1)
states: 0
abstracting: (6<=pil1_1_1)
states: 0
abstracting: (6<=pil1_1_1)
states: 0
EG iterations: 0
abstracting: (3<=pil3_1_1)
states: 0
abstracting: (po1_1_1<=4)
states: 2,664,192 (6)
abstracting: (po4_1_1<=po4_1_1)
states: 2,664,192 (6)
abstracting: (pi2_1_1<=1)
states: 2,664,192 (6)
abstracting: (6<=pil1_1_1)
states: 0
abstracting: (6<=pil1_1_1)
states: 0
abstracting: (6<=pil1_1_1)
states: 0
EG iterations: 0
abstracting: (3<=pil3_1_1)
states: 0
abstracting: (po1_1_1<=4)
states: 2,664,192 (6)
abstracting: (po4_1_1<=po4_1_1)
states: 2,664,192 (6)
abstracting: (pi2_1_1<=1)
states: 2,664,192 (6)
abstracting: (6<=pil1_1_1)
states: 0
abstracting: (6<=pil1_1_1)
states: 0
abstracting: (6<=pil1_1_1)
states: 0
EG iterations: 0
abstracting: (3<=pil3_1_1)
states: 0
abstracting: (po1_1_1<=4)
states: 2,664,192 (6)
.
EG iterations: 1
-> the formula is TRUE
FORMULA HexagonalGrid-PT-126-CTLCardinality-05 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.107sec
checking: [AF [[pi2_1_1<=pb4_1_1 & ~ [[[[EF [6<=po2_1_1] & 3<=po3_1_1] | AG [2<=pil1_1_1]] | [pil5_1_1<=pi4_1_1 & pi3_1_1<=po5_1_1]]]]] & AG [[[AG [~ [A [2<=pb2_1_1 U 2<=pi1_1_1]]] & [[EG [3<=pb6_1_1] | ~ [[pi5_1_1<=po4_1_1 & pol5_1_1<=4]]] & [AF [pol3_1_1<=pil3_1_1] | ~ [2<=pb2_1_1]]]] | EF [[[[pil4_1_1<=2 & pi4_1_1<=pil6_1_1] & [pb2_1_1<=pi4_1_1 | pil5_1_1<=3]] | pol4_1_1<=pi5_1_1]]]]]
normalized: [~ [E [true U ~ [[E [true U [pol4_1_1<=pi5_1_1 | [[pil4_1_1<=2 & pi4_1_1<=pil6_1_1] & [pb2_1_1<=pi4_1_1 | pil5_1_1<=3]]]] | [[[~ [2<=pb2_1_1] | ~ [EG [~ [pol3_1_1<=pil3_1_1]]]] & [~ [[pi5_1_1<=po4_1_1 & pol5_1_1<=4]] | EG [3<=pb6_1_1]]] & ~ [E [true U [~ [EG [~ [2<=pi1_1_1]]] & ~ [E [~ [2<=pi1_1_1] U [~ [2<=pb2_1_1] & ~ [2<=pi1_1_1]]]]]]]]]]]] & ~ [EG [~ [[pi2_1_1<=pb4_1_1 & ~ [[[pil5_1_1<=pi4_1_1 & pi3_1_1<=po5_1_1] | [~ [E [true U ~ [2<=pil1_1_1]]] | [3<=po3_1_1 & E [true U 6<=po2_1_1]]]]]]]]]]
abstracting: (6<=po2_1_1)
states: 0
abstracting: (3<=po3_1_1)
states: 0
abstracting: (2<=pil1_1_1)
states: 0
abstracting: (pi3_1_1<=po5_1_1)
states: 2,031,744 (6)
abstracting: (pil5_1_1<=pi4_1_1)
states: 1,635,584 (6)
abstracting: (pi2_1_1<=pb4_1_1)
states: 2,236,928 (6)
....
EG iterations: 4
abstracting: (2<=pi1_1_1)
states: 0
abstracting: (2<=pb2_1_1)
states: 887,040 (5)
abstracting: (2<=pi1_1_1)
states: 0
abstracting: (2<=pi1_1_1)
states: 0
EG iterations: 0
abstracting: (3<=pb6_1_1)
states: 467,456 (5)
.
EG iterations: 1
abstracting: (pol5_1_1<=4)
states: 2,664,192 (6)
abstracting: (pi5_1_1<=po4_1_1)
states: 2,031,744 (6)
abstracting: (pol3_1_1<=pil3_1_1)
states: 2,031,744 (6)
..
EG iterations: 2
abstracting: (2<=pb2_1_1)
states: 887,040 (5)
abstracting: (pil5_1_1<=3)
states: 2,664,192 (6)
abstracting: (pb2_1_1<=pi4_1_1)
states: 1,349,888 (6)
abstracting: (pi4_1_1<=pil6_1_1)
states: 2,293,504 (6)
abstracting: (pil4_1_1<=2)
states: 2,664,192 (6)
abstracting: (pol4_1_1<=pi5_1_1)
states: 1,635,584 (6)
-> the formula is TRUE
FORMULA HexagonalGrid-PT-126-CTLCardinality-11 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.076sec
checking: [[A [[[[EX [pol6_1_1<=0] | [~ [2<=po3_1_1] | EF [3<=pil4_1_1]]] & pol2_1_1<=3] | E [EF [po6_1_1<=3] U A [5<=po3_1_1 U pi6_1_1<=po3_1_1]]] U AG [[EG [pol6_1_1<=0] & AG [6<=pol2_1_1]]]] | AX [[[AX [pi5_1_1<=pil3_1_1] | [[~ [pol1_1_1<=pb3_1_1] & AF [po5_1_1<=2]] & po6_1_1<=2]] & A [AG [6<=po5_1_1] U ~ [AG [pb1_1_1<=pol1_1_1]]]]]] & [AG [[EX [AX [pb5_1_1<=pb1_1_1]] | pil4_1_1<=1]] & EF [EF [[AF [po4_1_1<=pi2_1_1] & [EX [pil2_1_1<=pol6_1_1] & E [4<=po3_1_1 U pi5_1_1<=pol4_1_1]]]]]]]
normalized: [[E [true U E [true U [[E [4<=po3_1_1 U pi5_1_1<=pol4_1_1] & EX [pil2_1_1<=pol6_1_1]] & ~ [EG [~ [po4_1_1<=pi2_1_1]]]]]] & ~ [E [true U ~ [[pil4_1_1<=1 | EX [~ [EX [~ [pb5_1_1<=pb1_1_1]]]]]]]]] & [~ [EX [~ [[[~ [EG [~ [E [true U ~ [pb1_1_1<=pol1_1_1]]]]] & ~ [E [~ [E [true U ~ [pb1_1_1<=pol1_1_1]]] U [E [true U ~ [6<=po5_1_1]] & ~ [E [true U ~ [pb1_1_1<=pol1_1_1]]]]]]] & [[po6_1_1<=2 & [~ [EG [~ [po5_1_1<=2]]] & ~ [pol1_1_1<=pb3_1_1]]] | ~ [EX [~ [pi5_1_1<=pil3_1_1]]]]]]]] | [~ [EG [E [true U ~ [[~ [E [true U ~ [6<=pol2_1_1]]] & EG [pol6_1_1<=0]]]]]] & ~ [E [E [true U ~ [[~ [E [true U ~ [6<=pol2_1_1]]] & EG [pol6_1_1<=0]]]] U [~ [[E [E [true U po6_1_1<=3] U [~ [EG [~ [pi6_1_1<=po3_1_1]]] & ~ [E [~ [pi6_1_1<=po3_1_1] U [~ [5<=po3_1_1] & ~ [pi6_1_1<=po3_1_1]]]]]] | [pol2_1_1<=3 & [[E [true U 3<=pil4_1_1] | ~ [2<=po3_1_1]] | EX [pol6_1_1<=0]]]]] & E [true U ~ [[~ [E [true U ~ [6<=pol2_1_1]]] & EG [pol6_1_1<=0]]]]]]]]]]
abstracting: (pol6_1_1<=0)
states: 1,003,136 (6)
..
EG iterations: 2
abstracting: (6<=pol2_1_1)
states: 0
abstracting: (pol6_1_1<=0)
states: 1,003,136 (6)
.abstracting: (2<=po3_1_1)
states: 0
abstracting: (3<=pil4_1_1)
states: 0
abstracting: (pol2_1_1<=3)
states: 2,664,192 (6)
abstracting: (pi6_1_1<=po3_1_1)
states: 2,031,744 (6)
abstracting: (5<=po3_1_1)
states: 0
abstracting: (pi6_1_1<=po3_1_1)
states: 2,031,744 (6)
abstracting: (pi6_1_1<=po3_1_1)
states: 2,031,744 (6)
...
EG iterations: 3
abstracting: (po6_1_1<=3)
states: 2,664,192 (6)
abstracting: (pol6_1_1<=0)
states: 1,003,136 (6)
..
EG iterations: 2
abstracting: (6<=pol2_1_1)
states: 0
abstracting: (pol6_1_1<=0)
states: 1,003,136 (6)
..
EG iterations: 2
abstracting: (6<=pol2_1_1)
states: 0
EG iterations: 0
abstracting: (pi5_1_1<=pil3_1_1)
states: 2,293,504 (6)
.abstracting: (pol1_1_1<=pb3_1_1)
states: 2,006,272 (6)
abstracting: (po5_1_1<=2)
states: 2,664,192 (6)
.
EG iterations: 1
abstracting: (po6_1_1<=2)
states: 2,664,192 (6)
abstracting: (pb1_1_1<=pol1_1_1)
states: 1,512,448 (6)
abstracting: (6<=po5_1_1)
states: 0
abstracting: (pb1_1_1<=pol1_1_1)
states: 1,512,448 (6)
abstracting: (pb1_1_1<=pol1_1_1)
states: 1,512,448 (6)
.
EG iterations: 1
.abstracting: (pb5_1_1<=pb1_1_1)
states: 1,661,056 (6)
..abstracting: (pil4_1_1<=1)
states: 2,664,192 (6)
abstracting: (po4_1_1<=pi2_1_1)
states: 2,031,744 (6)
...
EG iterations: 3
abstracting: (pil2_1_1<=pol6_1_1)
states: 2,031,744 (6)
.abstracting: (pi5_1_1<=pol4_1_1)
states: 2,293,504 (6)
abstracting: (4<=po3_1_1)
states: 0
-> the formula is TRUE
FORMULA HexagonalGrid-PT-126-CTLCardinality-09 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.304sec
checking: [[A [[[4<=po2_1_1 | ~ [3<=pi2_1_1]] & 6<=pb1_1_1] U AG [[EG [pb5_1_1<=pi3_1_1] | 5<=pol6_1_1]]] & ~ [E [~ [[[3<=pil5_1_1 & ~ [6<=po5_1_1]] | [[pol1_1_1<=po1_1_1 | 6<=pi2_1_1] & pbl_1_1<=0]]] U [[pil3_1_1<=pil2_1_1 | [[4<=pb5_1_1 | 4<=pbl_1_1] | ~ [pil5_1_1<=0]]] | [EG [pi5_1_1<=2] | [[5<=po2_1_1 | pil2_1_1<=6] | EG [5<=po4_1_1]]]]]]] | AG [~ [[[A [[pil6_1_1<=pb1_1_1 & pb3_1_1<=pi2_1_1] U [pil2_1_1<=pil2_1_1 | pi6_1_1<=pol4_1_1]] | A [pol3_1_1<=po6_1_1 U pil6_1_1<=1]] & 5<=po2_1_1]]]]
normalized: [~ [E [true U [5<=po2_1_1 & [[~ [EG [~ [pil6_1_1<=1]]] & ~ [E [~ [pil6_1_1<=1] U [~ [pol3_1_1<=po6_1_1] & ~ [pil6_1_1<=1]]]]] | [~ [EG [~ [[pil2_1_1<=pil2_1_1 | pi6_1_1<=pol4_1_1]]]] & ~ [E [~ [[pil2_1_1<=pil2_1_1 | pi6_1_1<=pol4_1_1]] U [~ [[pil6_1_1<=pb1_1_1 & pb3_1_1<=pi2_1_1]] & ~ [[pil2_1_1<=pil2_1_1 | pi6_1_1<=pol4_1_1]]]]]]]]]] | [~ [E [~ [[[pbl_1_1<=0 & [pol1_1_1<=po1_1_1 | 6<=pi2_1_1]] | [3<=pil5_1_1 & ~ [6<=po5_1_1]]]] U [[[EG [5<=po4_1_1] | [5<=po2_1_1 | pil2_1_1<=6]] | EG [pi5_1_1<=2]] | [pil3_1_1<=pil2_1_1 | [~ [pil5_1_1<=0] | [4<=pb5_1_1 | 4<=pbl_1_1]]]]]] & [~ [EG [E [true U ~ [[5<=pol6_1_1 | EG [pb5_1_1<=pi3_1_1]]]]]] & ~ [E [E [true U ~ [[5<=pol6_1_1 | EG [pb5_1_1<=pi3_1_1]]]] U [~ [[6<=pb1_1_1 & [4<=po2_1_1 | ~ [3<=pi2_1_1]]]] & E [true U ~ [[5<=pol6_1_1 | EG [pb5_1_1<=pi3_1_1]]]]]]]]]]
abstracting: (pb5_1_1<=pi3_1_1)
states: 1,349,888 (6)
.
EG iterations: 1
abstracting: (5<=pol6_1_1)
states: 0
abstracting: (3<=pi2_1_1)
states: 0
abstracting: (4<=po2_1_1)
states: 0
abstracting: (6<=pb1_1_1)
states: 40,193 (4)
abstracting: (pb5_1_1<=pi3_1_1)
states: 1,349,888 (6)
.
EG iterations: 1
abstracting: (5<=pol6_1_1)
states: 0
abstracting: (pb5_1_1<=pi3_1_1)
states: 1,349,888 (6)
.
EG iterations: 1
abstracting: (5<=pol6_1_1)
states: 0
EG iterations: 0
abstracting: (4<=pbl_1_1)
states: 2,664,192 (6)
abstracting: (4<=pb5_1_1)
states: 228,096 (5)
abstracting: (pil5_1_1<=0)
states: 1,003,136 (6)
abstracting: (pil3_1_1<=pil2_1_1)
states: 2,031,744 (6)
abstracting: (pi5_1_1<=2)
states: 2,664,192 (6)
EG iterations: 0
abstracting: (pil2_1_1<=6)
states: 2,664,192 (6)
abstracting: (5<=po2_1_1)
states: 0
abstracting: (5<=po4_1_1)
states: 0
.
EG iterations: 1
abstracting: (6<=po5_1_1)
states: 0
abstracting: (3<=pil5_1_1)
states: 0
abstracting: (6<=pi2_1_1)
states: 0
abstracting: (pol1_1_1<=po1_1_1)
states: 1,003,136 (6)
abstracting: (pbl_1_1<=0)
states: 0
abstracting: (pi6_1_1<=pol4_1_1)
states: 2,293,504 (6)
abstracting: (pil2_1_1<=pil2_1_1)
states: 2,664,192 (6)
abstracting: (pb3_1_1<=pi2_1_1)
states: 1,349,888 (6)
abstracting: (pil6_1_1<=pb1_1_1)
states: 2,006,272 (6)
abstracting: (pi6_1_1<=pol4_1_1)
states: 2,293,504 (6)
abstracting: (pil2_1_1<=pil2_1_1)
states: 2,664,192 (6)
abstracting: (pi6_1_1<=pol4_1_1)
states: 2,293,504 (6)
abstracting: (pil2_1_1<=pil2_1_1)
states: 2,664,192 (6)
.
EG iterations: 1
abstracting: (pil6_1_1<=1)
states: 2,664,192 (6)
abstracting: (pol3_1_1<=po6_1_1)
states: 1,635,584 (6)
abstracting: (pil6_1_1<=1)
states: 2,664,192 (6)
abstracting: (pil6_1_1<=1)
states: 2,664,192 (6)
.
EG iterations: 1
abstracting: (5<=po2_1_1)
states: 0
-> the formula is TRUE
FORMULA HexagonalGrid-PT-126-CTLCardinality-00 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.094sec
totally nodes used: 286893 (2.9e+05)
number of garbage collections: 0
fire ops cache: hits/miss/sum: 2553306 2321109 4874415
used/not used/entry size/cache size: 2480141 64628723 16 1024MB
basic ops cache: hits/miss/sum: 331943 354719 686662
used/not used/entry size/cache size: 598852 16178364 12 192MB
unary ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 8 128MB
abstract ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 12 192MB
state nr cache: hits/miss/sum: 33324 29818 63142
used/not used/entry size/cache size: 29771 8358837 32 256MB
max state cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 8388608 32 256MB
uniqueHash elements/entry size/size: 67108864 4 256MB
0 66831849
1 268996
2 6960
3 797
4 96
5 55
6 65
7 10
8 5
9 4
>= 10 27
Total processing time: 0m 6.874sec
BK_STOP 1679876242431
--------------------
content from stderr:
check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.000sec
iterations count:1242 (29), effective:124 (2)
initing FirstDep: 0m 0.000sec
iterations count:347 (8), effective:18 (0)
iterations count:300 (7), effective:16 (0)
iterations count:1423 (33), effective:85 (2)
iterations count:616 (14), effective:32 (0)
iterations count:42 (1), effective:0 (0)
iterations count:78 (1), effective:2 (0)
iterations count:47 (1), effective:1 (0)
iterations count:611 (14), effective:34 (0)
iterations count:677 (16), effective:27 (0)
iterations count:42 (1), effective:0 (0)
iterations count:100 (2), effective:2 (0)
iterations count:42 (1), effective:0 (0)
iterations count:318 (7), effective:17 (0)
iterations count:42 (1), effective:0 (0)
iterations count:42 (1), effective:0 (0)
iterations count:581 (13), effective:47 (1)
iterations count:42 (1), effective:0 (0)
iterations count:581 (13), effective:47 (1)
iterations count:581 (13), effective:47 (1)
iterations count:51 (1), effective:2 (0)
iterations count:1001 (23), effective:63 (1)
iterations count:442 (10), effective:31 (0)
iterations count:42 (1), effective:0 (0)
iterations count:328 (7), effective:27 (0)
iterations count:74 (1), effective:3 (0)
iterations count:42 (1), effective:0 (0)
iterations count:42 (1), effective:0 (0)
iterations count:42 (1), effective:0 (0)
iterations count:42 (1), effective:0 (0)
iterations count:42 (1), effective:0 (0)
iterations count:406 (9), effective:30 (0)
iterations count:47 (1), effective:1 (0)
iterations count:42 (1), effective:0 (0)
iterations count:42 (1), effective:0 (0)
iterations count:42 (1), effective:0 (0)
iterations count:42 (1), effective:0 (0)
iterations count:270 (6), effective:15 (0)
iterations count:42 (1), effective:0 (0)
iterations count:42 (1), effective:0 (0)
iterations count:42 (1), effective:0 (0)
iterations count:42 (1), effective:0 (0)
iterations count:597 (14), effective:31 (0)
iterations count:42 (1), effective:0 (0)
iterations count:597 (14), effective:31 (0)
iterations count:597 (14), effective:31 (0)
iterations count:42 (1), effective:0 (0)
iterations count:378 (9), effective:51 (1)
iterations count:42 (1), effective:0 (0)
iterations count:374 (8), effective:26 (0)
iterations count:374 (8), effective:26 (0)
iterations count:76 (1), effective:18 (0)
iterations count:374 (8), effective:26 (0)
iterations count:42 (1), effective:0 (0)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="HexagonalGrid-PT-126"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marcie"
echo " Input is HexagonalGrid-PT-126, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r193-smll-167840340600377"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/HexagonalGrid-PT-126.tgz
mv HexagonalGrid-PT-126 execution
cd execution
if [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "UpperBounds" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] || [ "CTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME CTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;