fond
Model Checking Contest 2023
13th edition, Paris, France, April 26, 2023 (at TOOLympics II)
Execution of r170-tall-167838857900881
Last Updated
May 14, 2023

About the Execution of Marcie+red for GPPP-PT-C1000N0000000010

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
12525.428 1606836.00 1634852.00 21767.60 TFTTTFFFFFFTTFFF normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Formatting '/data/fkordon/mcc2023-input.r170-tall-167838857900881.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2023-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
=====================================================================
Generated by BenchKit 2-5348
Executing tool marciexred
Input is GPPP-PT-C1000N0000000010, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r170-tall-167838857900881
=====================================================================

--------------------
preparation of the directory to be used:
/home/mcc/execution
total 568K
-rw-r--r-- 1 mcc users 7.6K Feb 26 10:46 CTLCardinality.txt
-rw-r--r-- 1 mcc users 83K Feb 26 10:46 CTLCardinality.xml
-rw-r--r-- 1 mcc users 5.6K Feb 26 10:44 CTLFireability.txt
-rw-r--r-- 1 mcc users 40K Feb 26 10:44 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K Jan 29 11:40 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.0K Jan 29 11:40 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 3.5K Feb 25 16:10 LTLCardinality.txt
-rw-r--r-- 1 mcc users 24K Feb 25 16:10 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.7K Feb 25 16:10 LTLFireability.txt
-rw-r--r-- 1 mcc users 15K Feb 25 16:10 LTLFireability.xml
-rw-r--r-- 1 mcc users 13K Feb 26 10:47 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 130K Feb 26 10:47 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 20K Feb 26 10:46 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 146K Feb 26 10:46 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.7K Feb 25 16:10 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.8K Feb 25 16:10 UpperBounds.xml
-rw-r--r-- 1 mcc users 6 Mar 5 18:22 equiv_col
-rw-r--r-- 1 mcc users 17 Mar 5 18:22 instance
-rw-r--r-- 1 mcc users 6 Mar 5 18:22 iscolored
-rw-r--r-- 1 mcc users 1 Mar 5 18:22 large_marking
-rw-r--r-- 1 mcc users 21K Mar 5 18:22 model.pnml

--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME GPPP-PT-C1000N0000000010-CTLCardinality-00
FORMULA_NAME GPPP-PT-C1000N0000000010-CTLCardinality-01
FORMULA_NAME GPPP-PT-C1000N0000000010-CTLCardinality-02
FORMULA_NAME GPPP-PT-C1000N0000000010-CTLCardinality-03
FORMULA_NAME GPPP-PT-C1000N0000000010-CTLCardinality-04
FORMULA_NAME GPPP-PT-C1000N0000000010-CTLCardinality-05
FORMULA_NAME GPPP-PT-C1000N0000000010-CTLCardinality-06
FORMULA_NAME GPPP-PT-C1000N0000000010-CTLCardinality-07
FORMULA_NAME GPPP-PT-C1000N0000000010-CTLCardinality-08
FORMULA_NAME GPPP-PT-C1000N0000000010-CTLCardinality-09
FORMULA_NAME GPPP-PT-C1000N0000000010-CTLCardinality-10
FORMULA_NAME GPPP-PT-C1000N0000000010-CTLCardinality-11
FORMULA_NAME GPPP-PT-C1000N0000000010-CTLCardinality-12
FORMULA_NAME GPPP-PT-C1000N0000000010-CTLCardinality-13
FORMULA_NAME GPPP-PT-C1000N0000000010-CTLCardinality-14
FORMULA_NAME GPPP-PT-C1000N0000000010-CTLCardinality-15

=== Now, execution of the tool begins

BK_START 1678646638666

bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marciexred
BK_EXAMINATION=CTLCardinality
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=GPPP-PT-C1000N0000000010
Applying reductions before tool marcie
Invoking reducer
Running Version 202303021504
[2023-03-12 18:44:00] [INFO ] Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, CTLCardinality, -timeout, 360, -rebuildPNML]
[2023-03-12 18:44:00] [INFO ] Parsing pnml file : /home/mcc/execution/model.pnml
[2023-03-12 18:44:00] [INFO ] Load time of PNML (sax parser for PT used): 24 ms
[2023-03-12 18:44:00] [INFO ] Transformed 33 places.
[2023-03-12 18:44:00] [INFO ] Transformed 22 transitions.
[2023-03-12 18:44:00] [INFO ] Parsed PT model containing 33 places and 22 transitions and 83 arcs in 90 ms.
Parsed 16 properties from file /home/mcc/execution/CTLCardinality.xml in 13 ms.
Support contains 33 out of 33 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 33/33 places, 22/22 transitions.
Applied a total of 0 rules in 8 ms. Remains 33 /33 variables (removed 0) and now considering 22/22 (removed 0) transitions.
// Phase 1: matrix 22 rows 33 cols
[2023-03-12 18:44:00] [INFO ] Invariants computation overflowed in 9 ms
[2023-03-12 18:44:00] [INFO ] Dead Transitions using invariants and state equation in 150 ms found 0 transitions.
// Phase 1: matrix 22 rows 33 cols
[2023-03-12 18:44:00] [INFO ] Invariants computation overflowed in 6 ms
[2023-03-12 18:44:00] [INFO ] Implicit Places using invariants in 32 ms returned []
// Phase 1: matrix 22 rows 33 cols
[2023-03-12 18:44:00] [INFO ] Invariants computation overflowed in 2 ms
[2023-03-12 18:44:00] [INFO ] Implicit Places using invariants and state equation in 49 ms returned []
Implicit Place search using SMT with State Equation took 85 ms to find 0 implicit places.
// Phase 1: matrix 22 rows 33 cols
[2023-03-12 18:44:00] [INFO ] Invariants computation overflowed in 2 ms
[2023-03-12 18:44:00] [INFO ] Dead Transitions using invariants and state equation in 32 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 299 ms. Remains : 33/33 places, 22/22 transitions.
Support contains 33 out of 33 places after structural reductions.
[2023-03-12 18:44:00] [INFO ] Flatten gal took : 16 ms
[2023-03-12 18:44:01] [INFO ] Flatten gal took : 6 ms
[2023-03-12 18:44:01] [INFO ] Input system was already deterministic with 22 transitions.
Support contains 32 out of 33 places (down from 33) after GAL structural reductions.
Incomplete random walk after 10003 steps, including 22 resets, run finished after 261 ms. (steps per millisecond=38 ) properties (out of 87) seen :36
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 11 ms. (steps per millisecond=91 ) properties (out of 51) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 8 ms. (steps per millisecond=125 ) properties (out of 51) seen :1
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 12 ms. (steps per millisecond=83 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 11 ms. (steps per millisecond=91 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 9 ms. (steps per millisecond=111 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 11 ms. (steps per millisecond=91 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 9 ms. (steps per millisecond=111 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 7 ms. (steps per millisecond=143 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 7 ms. (steps per millisecond=143 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 11 ms. (steps per millisecond=91 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 7 ms. (steps per millisecond=143 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1000 steps, including 2 resets, run finished after 11 ms. (steps per millisecond=90 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 7 ms. (steps per millisecond=143 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 11 ms. (steps per millisecond=91 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 11 ms. (steps per millisecond=91 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 7 ms. (steps per millisecond=143 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 7 ms. (steps per millisecond=143 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1000 steps, including 2 resets, run finished after 10 ms. (steps per millisecond=100 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1000 steps, including 2 resets, run finished after 9 ms. (steps per millisecond=111 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 7 ms. (steps per millisecond=143 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 7 ms. (steps per millisecond=143 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 7 ms. (steps per millisecond=143 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 9 ms. (steps per millisecond=111 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 7 ms. (steps per millisecond=143 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 8 ms. (steps per millisecond=125 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 8 ms. (steps per millisecond=125 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 8 ms. (steps per millisecond=125 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 14 ms. (steps per millisecond=71 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 8 ms. (steps per millisecond=125 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 17 ms. (steps per millisecond=58 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 8 ms. (steps per millisecond=125 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 12 ms. (steps per millisecond=83 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 8 ms. (steps per millisecond=125 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 13 ms. (steps per millisecond=77 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 11 ms. (steps per millisecond=91 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 6 ms. (steps per millisecond=166 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 9 ms. (steps per millisecond=111 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 6 ms. (steps per millisecond=166 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 5 ms. (steps per millisecond=200 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 10 ms. (steps per millisecond=100 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1000 steps, including 2 resets, run finished after 5 ms. (steps per millisecond=200 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 5 ms. (steps per millisecond=200 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 6 ms. (steps per millisecond=166 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 6 ms. (steps per millisecond=166 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 6 ms. (steps per millisecond=166 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 6 ms. (steps per millisecond=166 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 5 ms. (steps per millisecond=200 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 4 ms. (steps per millisecond=250 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1001 steps, including 2 resets, run finished after 6 ms. (steps per millisecond=166 ) properties (out of 50) seen :0
Incomplete Best-First random walk after 1000 steps, including 2 resets, run finished after 6 ms. (steps per millisecond=166 ) properties (out of 50) seen :0
Running SMT prover for 50 properties.
// Phase 1: matrix 22 rows 33 cols
[2023-03-12 18:44:01] [INFO ] Invariants computation overflowed in 2 ms
[2023-03-12 18:44:01] [INFO ] After 106ms SMT Verify possible using all constraints in real domain returned unsat :0 sat :0 real:50
[2023-03-12 18:44:02] [INFO ] After 346ms SMT Verify possible using all constraints in natural domain returned unsat :50 sat :0
Fused 50 Parikh solutions to 0 different solutions.
Parikh walk visited 0 properties in 0 ms.
Successfully simplified 50 atomic propositions for a total of 16 simplifications.
Initial state reduction rules removed 1 formulas.
FORMULA GPPP-PT-C1000N0000000010-CTLCardinality-03 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA GPPP-PT-C1000N0000000010-CTLCardinality-04 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA GPPP-PT-C1000N0000000010-CTLCardinality-05 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA GPPP-PT-C1000N0000000010-CTLCardinality-09 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
[2023-03-12 18:44:02] [INFO ] Initial state reduction rules for CTL removed 1 formulas.
[2023-03-12 18:44:02] [INFO ] Flatten gal took : 5 ms
[2023-03-12 18:44:02] [INFO ] Initial state reduction rules for CTL removed 2 formulas.
FORMULA GPPP-PT-C1000N0000000010-CTLCardinality-15 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA GPPP-PT-C1000N0000000010-CTLCardinality-14 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA GPPP-PT-C1000N0000000010-CTLCardinality-11 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
[2023-03-12 18:44:02] [INFO ] Flatten gal took : 3 ms
[2023-03-12 18:44:02] [INFO ] Input system was already deterministic with 22 transitions.
Support contains 23 out of 33 places (down from 26) after GAL structural reductions.
Computed a total of 0 stabilizing places and 0 stable transitions
Starting structural reductions in LTL mode, iteration 0 : 33/33 places, 22/22 transitions.
Applied a total of 0 rules in 1 ms. Remains 33 /33 variables (removed 0) and now considering 22/22 (removed 0) transitions.
// Phase 1: matrix 22 rows 33 cols
[2023-03-12 18:44:02] [INFO ] Invariants computation overflowed in 1 ms
[2023-03-12 18:44:02] [INFO ] Dead Transitions using invariants and state equation in 37 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 39 ms. Remains : 33/33 places, 22/22 transitions.
[2023-03-12 18:44:02] [INFO ] Flatten gal took : 2 ms
[2023-03-12 18:44:02] [INFO ] Flatten gal took : 3 ms
[2023-03-12 18:44:02] [INFO ] Input system was already deterministic with 22 transitions.
Starting structural reductions in LTL mode, iteration 0 : 33/33 places, 22/22 transitions.
Applied a total of 0 rules in 1 ms. Remains 33 /33 variables (removed 0) and now considering 22/22 (removed 0) transitions.
// Phase 1: matrix 22 rows 33 cols
[2023-03-12 18:44:02] [INFO ] Invariants computation overflowed in 1 ms
[2023-03-12 18:44:02] [INFO ] Dead Transitions using invariants and state equation in 23 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 25 ms. Remains : 33/33 places, 22/22 transitions.
[2023-03-12 18:44:02] [INFO ] Flatten gal took : 2 ms
[2023-03-12 18:44:02] [INFO ] Flatten gal took : 1 ms
[2023-03-12 18:44:02] [INFO ] Input system was already deterministic with 22 transitions.
Starting structural reductions in LTL mode, iteration 0 : 33/33 places, 22/22 transitions.
Applied a total of 0 rules in 1 ms. Remains 33 /33 variables (removed 0) and now considering 22/22 (removed 0) transitions.
// Phase 1: matrix 22 rows 33 cols
[2023-03-12 18:44:02] [INFO ] Invariants computation overflowed in 1 ms
[2023-03-12 18:44:02] [INFO ] Dead Transitions using invariants and state equation in 27 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 29 ms. Remains : 33/33 places, 22/22 transitions.
[2023-03-12 18:44:02] [INFO ] Flatten gal took : 3 ms
[2023-03-12 18:44:02] [INFO ] Flatten gal took : 2 ms
[2023-03-12 18:44:02] [INFO ] Input system was already deterministic with 22 transitions.
Starting structural reductions in LTL mode, iteration 0 : 33/33 places, 22/22 transitions.
Applied a total of 0 rules in 1 ms. Remains 33 /33 variables (removed 0) and now considering 22/22 (removed 0) transitions.
// Phase 1: matrix 22 rows 33 cols
[2023-03-12 18:44:02] [INFO ] Invariants computation overflowed in 1 ms
[2023-03-12 18:44:02] [INFO ] Dead Transitions using invariants and state equation in 25 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 28 ms. Remains : 33/33 places, 22/22 transitions.
[2023-03-12 18:44:02] [INFO ] Flatten gal took : 2 ms
[2023-03-12 18:44:02] [INFO ] Flatten gal took : 2 ms
[2023-03-12 18:44:02] [INFO ] Input system was already deterministic with 22 transitions.
Starting structural reductions in LTL mode, iteration 0 : 33/33 places, 22/22 transitions.
Applied a total of 0 rules in 0 ms. Remains 33 /33 variables (removed 0) and now considering 22/22 (removed 0) transitions.
// Phase 1: matrix 22 rows 33 cols
[2023-03-12 18:44:02] [INFO ] Invariants computation overflowed in 0 ms
[2023-03-12 18:44:02] [INFO ] Dead Transitions using invariants and state equation in 31 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 33 ms. Remains : 33/33 places, 22/22 transitions.
[2023-03-12 18:44:02] [INFO ] Flatten gal took : 2 ms
[2023-03-12 18:44:02] [INFO ] Flatten gal took : 2 ms
[2023-03-12 18:44:02] [INFO ] Input system was already deterministic with 22 transitions.
Starting structural reductions in LTL mode, iteration 0 : 33/33 places, 22/22 transitions.
Applied a total of 0 rules in 0 ms. Remains 33 /33 variables (removed 0) and now considering 22/22 (removed 0) transitions.
// Phase 1: matrix 22 rows 33 cols
[2023-03-12 18:44:02] [INFO ] Invariants computation overflowed in 0 ms
[2023-03-12 18:44:02] [INFO ] Dead Transitions using invariants and state equation in 27 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 29 ms. Remains : 33/33 places, 22/22 transitions.
[2023-03-12 18:44:02] [INFO ] Flatten gal took : 2 ms
[2023-03-12 18:44:02] [INFO ] Flatten gal took : 3 ms
[2023-03-12 18:44:02] [INFO ] Input system was already deterministic with 22 transitions.
Starting structural reductions in LTL mode, iteration 0 : 33/33 places, 22/22 transitions.
Applied a total of 0 rules in 0 ms. Remains 33 /33 variables (removed 0) and now considering 22/22 (removed 0) transitions.
// Phase 1: matrix 22 rows 33 cols
[2023-03-12 18:44:02] [INFO ] Invariants computation overflowed in 6 ms
[2023-03-12 18:44:02] [INFO ] Dead Transitions using invariants and state equation in 30 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 32 ms. Remains : 33/33 places, 22/22 transitions.
[2023-03-12 18:44:02] [INFO ] Flatten gal took : 2 ms
[2023-03-12 18:44:02] [INFO ] Flatten gal took : 2 ms
[2023-03-12 18:44:02] [INFO ] Input system was already deterministic with 22 transitions.
Starting structural reductions in LTL mode, iteration 0 : 33/33 places, 22/22 transitions.
Applied a total of 0 rules in 1 ms. Remains 33 /33 variables (removed 0) and now considering 22/22 (removed 0) transitions.
// Phase 1: matrix 22 rows 33 cols
[2023-03-12 18:44:02] [INFO ] Invariants computation overflowed in 1 ms
[2023-03-12 18:44:02] [INFO ] Dead Transitions using invariants and state equation in 26 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 28 ms. Remains : 33/33 places, 22/22 transitions.
[2023-03-12 18:44:02] [INFO ] Flatten gal took : 2 ms
[2023-03-12 18:44:02] [INFO ] Flatten gal took : 2 ms
[2023-03-12 18:44:02] [INFO ] Input system was already deterministic with 22 transitions.
Starting structural reductions in LTL mode, iteration 0 : 33/33 places, 22/22 transitions.
Applied a total of 0 rules in 1 ms. Remains 33 /33 variables (removed 0) and now considering 22/22 (removed 0) transitions.
// Phase 1: matrix 22 rows 33 cols
[2023-03-12 18:44:02] [INFO ] Invariants computation overflowed in 1 ms
[2023-03-12 18:44:02] [INFO ] Dead Transitions using invariants and state equation in 28 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 30 ms. Remains : 33/33 places, 22/22 transitions.
[2023-03-12 18:44:02] [INFO ] Flatten gal took : 2 ms
[2023-03-12 18:44:02] [INFO ] Flatten gal took : 2 ms
[2023-03-12 18:44:02] [INFO ] Input system was already deterministic with 22 transitions.
[2023-03-12 18:44:02] [INFO ] Flatten gal took : 2 ms
[2023-03-12 18:44:02] [INFO ] Flatten gal took : 1 ms
[2023-03-12 18:44:02] [INFO ] Export to MCC of 9 properties in file /home/mcc/execution/CTLCardinality.sr.xml took 1 ms.
[2023-03-12 18:44:02] [INFO ] Export to PNML in file /home/mcc/execution/model.sr.pnml of net with 33 places, 22 transitions and 83 arcs took 0 ms.
Total runtime 2188 ms.
There are residual formulas that ITS could not solve within timeout
timeout --kill-after=10s --signal=SIGINT 1m for testing only

Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets

authors: Alex Tovchigrechko (IDD package and CTL model checking)

Martin Schwarick (Symbolic numerical analysis and CSL model checking)

Christian Rohr (Simulative and approximative numerical model checking)

marcie@informatik.tu-cottbus.de

called as: /home/mcc/BenchKit/bin//../reducer/bin//../../marcie/bin/marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --memory=6 --mcc-mode

parse successfull
net created successfully

Net: Petri
(NrP: 33 NrTr: 22 NrArc: 83)

parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec

net check time: 0m 0.000sec

init dd package: 0m 2.801sec


RS generation: 0m 0.120sec


-> reachability set: #nodes 19855 (2.0e+04) #states 14,184,612,091 (10)



starting MCC model checker
--------------------------

checking: EX [0<=0]
normalized: EX [0<=0]

abstracting: (0<=0)
states: 14,184,612,091 (10)
.-> the formula is TRUE

FORMULA GPPP-PT-C1000N0000000010-CTLCardinality-02 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.149sec

checking: AF [AG [EX [0<=0]]]
normalized: ~ [EG [E [true U ~ [EX [0<=0]]]]]

abstracting: (0<=0)
states: 14,184,612,091 (10)
.
EG iterations: 0
-> the formula is FALSE

FORMULA GPPP-PT-C1000N0000000010-CTLCardinality-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.291sec

checking: EX [[EX [0<=0] & EF [AG [p24<=p10]]]]
normalized: EX [[E [true U ~ [E [true U ~ [p24<=p10]]]] & EX [0<=0]]]

abstracting: (0<=0)
states: 14,184,612,091 (10)
.abstracting: (p24<=p10)
states: 14,184,612,090 (10)
.-> the formula is TRUE

FORMULA GPPP-PT-C1000N0000000010-CTLCardinality-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.038sec

checking: E [AF [EX [0<=0]] U AX [[EG [p31<=6861] | EF [p13<=p23]]]]
normalized: E [~ [EG [~ [EX [0<=0]]]] U ~ [EX [~ [[E [true U p13<=p23] | EG [p31<=6861]]]]]]

abstracting: (p31<=6861)
states: 14,157,899,025 (10)
.
EG iterations: 1
abstracting: (p13<=p23)
states: 13,589,262,124 (10)
.abstracting: (0<=0)
states: 14,184,612,091 (10)
..
EG iterations: 1
-> the formula is TRUE

FORMULA GPPP-PT-C1000N0000000010-CTLCardinality-00 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.229sec

checking: AX [AG [[EF [~ [p15<=p1]] | [~ [p15<=p17] | ~ [p1<=516]]]]]
normalized: ~ [EX [E [true U ~ [[[~ [p1<=516] | ~ [p15<=p17]] | E [true U ~ [p15<=p1]]]]]]]

abstracting: (p15<=p1)
states: 7,363,161,968 (9)
abstracting: (p15<=p17)
states: 1,733,429,977 (9)
abstracting: (p1<=516)
states: 14,184,612,091 (10)
.-> the formula is FALSE

FORMULA GPPP-PT-C1000N0000000010-CTLCardinality-01 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.760sec

checking: [EG [p25<=p20] & AG [EX [[p25<=p8 & [~ [p27<=4759] | ~ [1156<=p1]]]]]]
normalized: [~ [E [true U ~ [EX [[p25<=p8 & [~ [1156<=p1] | ~ [p27<=4759]]]]]]] & EG [p25<=p20]]

abstracting: (p25<=p20)
states: 9,236,428,843 (9)
...................................................................................................................................................................................................................................................................................................................................................................................
EG iterations: 371
abstracting: (p27<=4759)
states: 14,184,612,091 (10)
abstracting: (1156<=p1)
states: 0
abstracting: (p25<=p8)
states: 13,493,427,540 (10)
.-> the formula is FALSE

FORMULA GPPP-PT-C1000N0000000010-CTLCardinality-06 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m11.151sec

checking: AG [[EG [AX [~ [p8<=p31]]] | AF [[EF [EX [0<=0]] & [E [p31<=p18 U p25<=p14] | EG [p7<=p10]]]]]]
normalized: ~ [E [true U ~ [[~ [EG [~ [[[EG [p7<=p10] | E [p31<=p18 U p25<=p14]] & E [true U EX [0<=0]]]]]] | EG [~ [EX [p8<=p31]]]]]]]

abstracting: (p8<=p31)
states: 4,579,157,786 (9)
............................................................................................................................................................................................................................................................................................................................................................
EG iterations: 347
abstracting: (0<=0)
states: 14,184,612,091 (10)
.abstracting: (p25<=p14)
states: 7,874,351,098 (9)
abstracting: (p31<=p18)
states: 246,436,995 (8)
MC time: 26m 9.844sec

checking: ~ [A [[~ [EX [AF [2402<=p0]]] & [5907<=p31 & ~ [2078<=p9]]] U [EF [3992<=p31] & AG [[~ [[p22<=p1 & p30<=1290]] | EF [p6<=p13]]]]]]
normalized: ~ [[~ [EG [~ [[~ [E [true U ~ [[E [true U p6<=p13] | ~ [[p22<=p1 & p30<=1290]]]]]] & E [true U 3992<=p31]]]]] & ~ [E [~ [[~ [E [true U ~ [[E [true U p6<=p13] | ~ [[p22<=p1 & p30<=1290]]]]]] & E [true U 3992<=p31]]] U [~ [[[5907<=p31 & ~ [2078<=p9]] & ~ [EX [~ [EG [~ [2402<=p0]]]]]]] & ~ [[~ [E [true U ~ [[E [true U p6<=p13] | ~ [[p22<=p1 & p30<=1290]]]]]] & E [true U 3992<=p31]]]]]]]]

abstracting: (3992<=p31)
states: 26,713,066 (7)
abstracting: (p30<=1290)
states: 596,317 (5)
abstracting: (p22<=p1)
states: 13,410,921,259 (10)
abstracting: (p6<=p13)
states: 1,310,921,449 (9)
abstracting: (2402<=p0)
states: 14,184,612,090 (10)
..
EG iterations: 2
.abstracting: (2078<=p9)
states: 0
abstracting: (5907<=p31)
states: 26,713,066 (7)
abstracting: (3992<=p31)
states: 26,713,066 (7)
abstracting: (p30<=1290)
states: 596,317 (5)
abstracting: (p22<=p1)
states: 13,410,921,259 (10)
abstracting: (p6<=p13)
states: 1,310,921,449 (9)
abstracting: (3992<=p31)
states: 26,713,066 (7)
abstracting: (p30<=1290)
states: 596,317 (5)
abstracting: (p22<=p1)
states: 13,410,921,259 (10)
abstracting: (p6<=p13)
states: 1,310,921,449 (9)
.
EG iterations: 1
-> the formula is FALSE

FORMULA GPPP-PT-C1000N0000000010-CTLCardinality-07 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.433sec

checking: [~ [E [AX [EX [0<=0]] U [AG [AX [1<=0]] | [p3<=p9 | p15<=p23]]]] | AG [A [A [[2975<=p31 & ~ [696<=p18]] U AX [p24<=p32]] U EF [~ [2964<=p19]]]]]
normalized: [~ [E [true U ~ [[~ [EG [~ [E [true U ~ [2964<=p19]]]]] & ~ [E [~ [E [true U ~ [2964<=p19]]] U [~ [[~ [EG [EX [~ [p24<=p32]]]] & ~ [E [EX [~ [p24<=p32]] U [~ [[2975<=p31 & ~ [696<=p18]]] & EX [~ [p24<=p32]]]]]]] & ~ [E [true U ~ [2964<=p19]]]]]]]]]] | ~ [E [~ [EX [~ [EX [0<=0]]]] U [[p3<=p9 | p15<=p23] | ~ [E [true U EX [~ [1<=0]]]]]]]]

abstracting: (1<=0)
states: 0
.abstracting: (p15<=p23)
states: 1,853,403,607 (9)
abstracting: (p3<=p9)
states: 11,066,176,783 (10)
abstracting: (0<=0)
states: 14,184,612,091 (10)
..abstracting: (2964<=p19)
states: 14,184,612,090 (10)
abstracting: (p24<=p32)
states: 14,184,612,090 (10)
.abstracting: (696<=p18)
states: 0
abstracting: (2975<=p31)
states: 26,713,066 (7)
abstracting: (p24<=p32)
states: 14,184,612,090 (10)
.abstracting: (p24<=p32)
states: 14,184,612,090 (10)
..
EG iterations: 1
abstracting: (2964<=p19)
states: 14,184,612,090 (10)
abstracting: (2964<=p19)
states: 14,184,612,090 (10)
.
EG iterations: 1
-> the formula is FALSE

FORMULA GPPP-PT-C1000N0000000010-CTLCardinality-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 3.207sec

checking: AG [[EG [AX [~ [p8<=p31]]] | AF [[EF [EX [0<=0]] & [E [p31<=p18 U p25<=p14] | EG [p7<=p10]]]]]]
normalized: ~ [E [true U ~ [[~ [EG [~ [[[EG [p7<=p10] | E [p31<=p18 U p25<=p14]] & E [true U EX [0<=0]]]]]] | EG [~ [EX [p8<=p31]]]]]]]

abstracting: (p8<=p31)
states: 4,579,157,786 (9)
............................................................................................................................................................................................................................................................................................................................................................
EG iterations: 347
abstracting: (0<=0)
states: 14,184,612,091 (10)
.abstracting: (p25<=p14)
states: 7,874,351,098 (9)
abstracting: (p31<=p18)
states: 246,436,995 (8)
abstracting: (p7<=p10)
states: 1,337,618,095 (9)
........................................................................................................
EG iterations: 104
........................................................................................................................................................................................................................................................
EG iterations: 248
-> the formula is FALSE

FORMULA GPPP-PT-C1000N0000000010-CTLCardinality-08 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 9.057sec

totally nodes used: 63224359 (6.3e+07)
number of garbage collections: 0
fire ops cache: hits/miss/sum: 47256738 27092126 74348864
used/not used/entry size/cache size: 29527131 37581733 16 1024MB
basic ops cache: hits/miss/sum: 13881761 56446062 70327823
used/not used/entry size/cache size: 16774379 2837 12 192MB
unary ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 8 128MB
abstract ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 12 192MB
state nr cache: hits/miss/sum: 385878 218074 603952
used/not used/entry size/cache size: 215410 8173198 32 256MB
max state cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 8388608 32 256MB
uniqueHash elements/entry size/size: 67108864 4 256MB
0 55306717
1 10353652
2 1221729
3 141142
4 35758
5 17521
6 4202
7 8540
8 2012
9 1229
>= 10 16362

Total processing time: 26m41.831sec


BK_STOP 1678648245502

--------------------
content from stderr:

+ ulimit -s 65536
+ [[ -z '' ]]
+ export LTSMIN_MEM_SIZE=8589934592
+ LTSMIN_MEM_SIZE=8589934592
+ export PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ export LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
+ LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
++ perl -pe 's/.*\.//g'
++ sed s/.jar//
++ ls /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/plugins/fr.lip6.move.gal.application.pnmcc_1.0.0.202303021504.jar
+ VERSION=202303021504
+ echo 'Running Version 202303021504'
+ /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/its-tools -pnfolder /home/mcc/execution -examination CTLCardinality -timeout 360 -rebuildPNML
check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok


initing FirstDep: 0m 0.000sec


iterations count:1727 (78), effective:414 (18)

initing FirstDep: 0m 0.000sec


iterations count:1738 (79), effective:435 (19)

iterations count:22 (1), effective:0 (0)

iterations count:26 (1), effective:1 (0)

iterations count:83 (3), effective:12 (0)

iterations count:22 (1), effective:0 (0)

iterations count:210 (9), effective:41 (1)

iterations count:1490 (67), effective:331 (15)

iterations count:703 (31), effective:158 (7)

iterations count:22 (1), effective:0 (0)

sat_reach.icc:155: Timeout: after 1195 sec


iterations count:22 (1), effective:0 (0)

iterations count:993 (45), effective:226 (10)

iterations count:22 (1), effective:0 (0)

iterations count:993 (45), effective:226 (10)

iterations count:22 (1), effective:0 (0)

iterations count:22 (1), effective:0 (0)

iterations count:993 (45), effective:226 (10)

iterations count:22 (1), effective:0 (0)

iterations count:106 (4), effective:35 (1)

iterations count:22 (1), effective:0 (0)

iterations count:22 (1), effective:0 (0)

iterations count:22 (1), effective:0 (0)

iterations count:26 (1), effective:1 (0)

iterations count:22 (1), effective:0 (0)

iterations count:22 (1), effective:0 (0)

iterations count:720 (32), effective:157 (7)

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="GPPP-PT-C1000N0000000010"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marciexred"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marciexred"
echo " Input is GPPP-PT-C1000N0000000010, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r170-tall-167838857900881"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"

tar xzf /home/mcc/BenchKit/INPUTS/GPPP-PT-C1000N0000000010.tgz
mv GPPP-PT-C1000N0000000010 execution
cd execution
if [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "UpperBounds" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] || [ "CTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh

echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' CTLCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME CTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;