fond
Model Checking Contest 2023
13th edition, Paris, France, April 26, 2023 (at TOOLympics II)
Execution of r170-tall-167838856900190
Last Updated
May 14, 2023

About the Execution of Marcie+red for FMS-PT-00002

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
5452.203 8849.00 11854.00 667.20 TTFFTTTTTFFFTTTF normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Formatting '/data/fkordon/mcc2023-input.r170-tall-167838856900190.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2023-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
.............................................................
=====================================================================
Generated by BenchKit 2-5348
Executing tool marciexred
Input is FMS-PT-00002, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r170-tall-167838856900190
=====================================================================

--------------------
preparation of the directory to be used:
/home/mcc/execution
total 560K
-rw-r--r-- 1 mcc users 8.5K Feb 25 20:15 CTLCardinality.txt
-rw-r--r-- 1 mcc users 103K Feb 25 20:15 CTLCardinality.xml
-rw-r--r-- 1 mcc users 4.6K Feb 25 20:14 CTLFireability.txt
-rw-r--r-- 1 mcc users 39K Feb 25 20:14 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K Jan 29 11:40 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.3K Jan 29 11:40 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 3.6K Feb 25 16:04 LTLCardinality.txt
-rw-r--r-- 1 mcc users 26K Feb 25 16:04 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.2K Feb 25 16:04 LTLFireability.txt
-rw-r--r-- 1 mcc users 18K Feb 25 16:04 LTLFireability.xml
-rw-r--r-- 1 mcc users 12K Feb 25 20:16 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 132K Feb 25 20:16 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 14K Feb 25 20:16 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 127K Feb 25 20:16 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.5K Feb 25 16:04 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.6K Feb 25 16:04 UpperBounds.xml
-rw-r--r-- 1 mcc users 6 Mar 5 18:22 equiv_col
-rw-r--r-- 1 mcc users 6 Mar 5 18:22 instance
-rw-r--r-- 1 mcc users 6 Mar 5 18:22 iscolored
-rw-r--r-- 1 mcc users 16K Mar 5 18:22 model.pnml

--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME FMS-PT-00002-ReachabilityCardinality-00
FORMULA_NAME FMS-PT-00002-ReachabilityCardinality-01
FORMULA_NAME FMS-PT-00002-ReachabilityCardinality-02
FORMULA_NAME FMS-PT-00002-ReachabilityCardinality-03
FORMULA_NAME FMS-PT-00002-ReachabilityCardinality-04
FORMULA_NAME FMS-PT-00002-ReachabilityCardinality-05
FORMULA_NAME FMS-PT-00002-ReachabilityCardinality-06
FORMULA_NAME FMS-PT-00002-ReachabilityCardinality-07
FORMULA_NAME FMS-PT-00002-ReachabilityCardinality-08
FORMULA_NAME FMS-PT-00002-ReachabilityCardinality-09
FORMULA_NAME FMS-PT-00002-ReachabilityCardinality-10
FORMULA_NAME FMS-PT-00002-ReachabilityCardinality-11
FORMULA_NAME FMS-PT-00002-ReachabilityCardinality-12
FORMULA_NAME FMS-PT-00002-ReachabilityCardinality-13
FORMULA_NAME FMS-PT-00002-ReachabilityCardinality-14
FORMULA_NAME FMS-PT-00002-ReachabilityCardinality-15

=== Now, execution of the tool begins

BK_START 1678493856867

bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marciexred
BK_EXAMINATION=ReachabilityCardinality
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=FMS-PT-00002
Applying reductions before tool marcie
Invoking reducer
Running Version 202303021504
[2023-03-11 00:17:38] [INFO ] Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, ReachabilityCardinality, -timeout, 360, -rebuildPNML]
[2023-03-11 00:17:38] [INFO ] Parsing pnml file : /home/mcc/execution/model.pnml
[2023-03-11 00:17:38] [INFO ] Load time of PNML (sax parser for PT used): 21 ms
[2023-03-11 00:17:38] [INFO ] Transformed 22 places.
[2023-03-11 00:17:38] [INFO ] Transformed 20 transitions.
[2023-03-11 00:17:38] [INFO ] Parsed PT model containing 22 places and 20 transitions and 50 arcs in 77 ms.
Parsed 16 properties from file /home/mcc/execution/ReachabilityCardinality.xml in 16 ms.
Working with output stream class java.io.PrintStream
Initial state reduction rules removed 3 formulas.
FORMULA FMS-PT-00002-ReachabilityCardinality-00 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA FMS-PT-00002-ReachabilityCardinality-04 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA FMS-PT-00002-ReachabilityCardinality-12 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA FMS-PT-00002-ReachabilityCardinality-14 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA FMS-PT-00002-ReachabilityCardinality-15 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
Incomplete random walk after 10000 steps, including 2 resets, run finished after 383 ms. (steps per millisecond=26 ) properties (out of 11) seen :4
FORMULA FMS-PT-00002-ReachabilityCardinality-13 TRUE TECHNIQUES TOPOLOGICAL RANDOM_WALK
FORMULA FMS-PT-00002-ReachabilityCardinality-11 FALSE TECHNIQUES TOPOLOGICAL RANDOM_WALK
FORMULA FMS-PT-00002-ReachabilityCardinality-07 TRUE TECHNIQUES TOPOLOGICAL RANDOM_WALK
FORMULA FMS-PT-00002-ReachabilityCardinality-03 FALSE TECHNIQUES TOPOLOGICAL RANDOM_WALK
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 125 ms. (steps per millisecond=80 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 64 ms. (steps per millisecond=156 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 53 ms. (steps per millisecond=188 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 45 ms. (steps per millisecond=222 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 44 ms. (steps per millisecond=227 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 44 ms. (steps per millisecond=227 ) properties (out of 7) seen :0
Incomplete Best-First random walk after 10001 steps, including 2 resets, run finished after 51 ms. (steps per millisecond=196 ) properties (out of 7) seen :0
Running SMT prover for 7 properties.
// Phase 1: matrix 20 rows 22 cols
[2023-03-11 00:17:39] [INFO ] Computed 6 place invariants in 6 ms
[2023-03-11 00:17:39] [INFO ] After 151ms SMT Verify possible using all constraints in real domain returned unsat :1 sat :0 real:6
[2023-03-11 00:17:39] [INFO ] [Nat]Absence check using 6 positive place invariants in 3 ms returned sat
[2023-03-11 00:17:39] [INFO ] After 75ms SMT Verify possible using all constraints in natural domain returned unsat :7 sat :0
FORMULA FMS-PT-00002-ReachabilityCardinality-10 FALSE TECHNIQUES STRUCTURAL_REDUCTION TOPOLOGICAL SAT_SMT
FORMULA FMS-PT-00002-ReachabilityCardinality-09 FALSE TECHNIQUES STRUCTURAL_REDUCTION TOPOLOGICAL SAT_SMT
FORMULA FMS-PT-00002-ReachabilityCardinality-08 TRUE TECHNIQUES STRUCTURAL_REDUCTION TOPOLOGICAL SAT_SMT
FORMULA FMS-PT-00002-ReachabilityCardinality-06 TRUE TECHNIQUES STRUCTURAL_REDUCTION TOPOLOGICAL SAT_SMT
FORMULA FMS-PT-00002-ReachabilityCardinality-05 TRUE TECHNIQUES STRUCTURAL_REDUCTION TOPOLOGICAL SAT_SMT
FORMULA FMS-PT-00002-ReachabilityCardinality-02 FALSE TECHNIQUES STRUCTURAL_REDUCTION TOPOLOGICAL SAT_SMT
FORMULA FMS-PT-00002-ReachabilityCardinality-01 TRUE TECHNIQUES STRUCTURAL_REDUCTION TOPOLOGICAL SAT_SMT
Fused 7 Parikh solutions to 0 different solutions.
Parikh walk visited 0 properties in 1 ms.
All properties solved without resorting to model-checking.
Total runtime 1229 ms.
timeout --kill-after=10s --signal=SIGINT 1m for testing only

Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets

authors: Alex Tovchigrechko (IDD package and CTL model checking)

Martin Schwarick (Symbolic numerical analysis and CSL model checking)

Christian Rohr (Simulative and approximative numerical model checking)

marcie@informatik.tu-cottbus.de

called as: /home/mcc/BenchKit/bin//../reducer/bin//../../marcie/bin/marcie --net-file=model.pnml --mcc-file=ReachabilityCardinality.xml --memory=6 --mcc-mode

parse successfull
net created successfully

Net: FMS_PT_00002
(NrP: 22 NrTr: 20 NrArc: 50)

parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec

net check time: 0m 0.000sec

init dd package: 0m 2.772sec


RS generation: 0m 0.001sec


-> reachability set: #nodes 201 (2.0e+02) #states 3,444 (3)



starting MCC model checker
--------------------------

checking: EF [2<=P2M2]
normalized: E [true U 2<=P2M2]

abstracting: (2<=P2M2)
states: 0
-> the formula is FALSE

FORMULA FMS-PT-00002-ReachabilityCardinality-02 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.000sec

checking: AG [P12wM3<=3]
normalized: ~ [E [true U ~ [P12wM3<=3]]]

abstracting: (P12wM3<=3)
states: 3,444 (3)
-> the formula is TRUE

FORMULA FMS-PT-00002-ReachabilityCardinality-05 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.000sec

checking: EF [P2d<=3]
normalized: E [true U P2d<=3]

abstracting: (P2d<=3)
states: 3,444 (3)
-> the formula is TRUE

FORMULA FMS-PT-00002-ReachabilityCardinality-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.000sec

checking: AG [[1<=P3M2 | P12M3<=P12M3]]
normalized: ~ [E [true U ~ [[1<=P3M2 | P12M3<=P12M3]]]]

abstracting: (P12M3<=P12M3)
states: 3,444 (3)
abstracting: (1<=P3M2)
states: 1,722 (3)
-> the formula is TRUE

FORMULA FMS-PT-00002-ReachabilityCardinality-00 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.000sec

checking: EF [~ [[[P1<=M3 | [P1s<=P3M2 & 2<=P1d]] | ~ [2<=P1]]]]
normalized: E [true U ~ [[~ [2<=P1] | [[P1s<=P3M2 & 2<=P1d] | P1<=M3]]]]

abstracting: (P1<=M3)
states: 3,444 (3)
abstracting: (2<=P1d)
states: 120
abstracting: (P1s<=P3M2)
states: 2,972 (3)
abstracting: (2<=P1)
states: 120
-> the formula is FALSE

FORMULA FMS-PT-00002-ReachabilityCardinality-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.000sec

checking: EF [[P3s<=0 & [~ [[2<=P12s & ~ [[[2<=P2wP1 & [[P2wM2<=M2 | P2s<=0] & [1<=P12wM3 & M3<=M3]]] & P2<=1]]]] | ~ [P2d<=P2M2]]]]
normalized: E [true U [[~ [P2d<=P2M2] | ~ [[~ [[[[[1<=P12wM3 & M3<=M3] & [P2wM2<=M2 | P2s<=0]] & 2<=P2wP1] & P2<=1]] & 2<=P12s]]] & P3s<=0]]

abstracting: (P3s<=0)
states: 1,722 (3)
abstracting: (2<=P12s)
states: 6
abstracting: (P2<=1)
states: 3,318 (3)
abstracting: (2<=P2wP1)
states: 126
abstracting: (P2s<=0)
states: 2,544 (3)
abstracting: (P2wM2<=M2)
states: 3,192 (3)
abstracting: (M3<=M3)
states: 3,444 (3)
abstracting: (1<=P12wM3)
states: 240
abstracting: (P2d<=P2M2)
states: 2,670 (3)
-> the formula is TRUE

FORMULA FMS-PT-00002-ReachabilityCardinality-14 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.001sec

checking: AG [[~ [[~ [P2<=3] & ~ [[[1<=P1wM1 & [~ [2<=M3] | ~ [P2wP1<=P12wM3]]] | [P1<=2 | [2<=P1d | [[P2wM2<=P2d | 1<=P1wM1] & [M2<=1 & 3<=P2wM2]]]]]]]] & P2wM2<=P2d]]
normalized: ~ [E [true U ~ [[~ [[~ [[[[[[M2<=1 & 3<=P2wM2] & [P2wM2<=P2d | 1<=P1wM1]] | 2<=P1d] | P1<=2] | [[~ [P2wP1<=P12wM3] | ~ [2<=M3]] & 1<=P1wM1]]] & ~ [P2<=3]]] & P2wM2<=P2d]]]]

abstracting: (P2wM2<=P2d)
states: 2,670 (3)
abstracting: (P2<=3)
states: 3,444 (3)
abstracting: (1<=P1wM1)
states: 864
abstracting: (2<=M3)
states: 3,204 (3)
abstracting: (P2wP1<=P12wM3)
states: 2,580 (3)
abstracting: (P1<=2)
states: 3,444 (3)
abstracting: (2<=P1d)
states: 120
abstracting: (1<=P1wM1)
states: 864
abstracting: (P2wM2<=P2d)
states: 2,670 (3)
abstracting: (3<=P2wM2)
states: 0
abstracting: (M2<=1)
states: 3,444 (3)
-> the formula is FALSE

FORMULA FMS-PT-00002-ReachabilityCardinality-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.001sec

checking: AG [[~ [[~ [P2M2<=2] & [[[[P12<=P12M3 & [M3<=1 | P1wM1<=1]] & ~ [P1wP2<=0]] & P2M2<=0] | [P1<=P12s | [P1d<=P1wM1 | ~ [P2wM2<=P1wP2]]]]]] | ~ [M1<=P2wP1]]]
normalized: ~ [E [true U ~ [[~ [M1<=P2wP1] | ~ [[[[[~ [P2wM2<=P1wP2] | P1d<=P1wM1] | P1<=P12s] | [[~ [P1wP2<=0] & [[M3<=1 | P1wM1<=1] & P12<=P12M3]] & P2M2<=0]] & ~ [P2M2<=2]]]]]]]

abstracting: (P2M2<=2)
states: 3,444 (3)
abstracting: (P2M2<=0)
states: 2,670 (3)
abstracting: (P12<=P12M3)
states: 3,210 (3)
abstracting: (P1wM1<=1)
states: 3,324 (3)
abstracting: (M3<=1)
states: 240
abstracting: (P1wP2<=0)
states: 2,580 (3)
abstracting: (P1<=P12s)
states: 2,616 (3)
abstracting: (P1d<=P1wM1)
states: 2,700 (3)
abstracting: (P2wM2<=P1wP2)
states: 2,754 (3)
abstracting: (M1<=P2wP1)
states: 66
-> the formula is TRUE

FORMULA FMS-PT-00002-ReachabilityCardinality-06 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.001sec

checking: AG [[[P2s<=1 | ~ [[3<=P1M1 | [[~ [[P1wP2<=3 | M2<=P1wM1]] & [[[M2<=P12s & P1M1<=P3M2] & [P2M2<=P1wP2 | P2d<=P2s]] | [P2s<=M1 | [2<=P1s & P1<=0]]]] & ~ [1<=P2]]]]] | ~ [P3<=2]]]
normalized: ~ [E [true U ~ [[~ [P3<=2] | [~ [[[~ [1<=P2] & [[[[2<=P1s & P1<=0] | P2s<=M1] | [[P2M2<=P1wP2 | P2d<=P2s] & [M2<=P12s & P1M1<=P3M2]]] & ~ [[P1wP2<=3 | M2<=P1wM1]]]] | 3<=P1M1]] | P2s<=1]]]]]

abstracting: (P2s<=1)
states: 3,318 (3)
abstracting: (3<=P1M1)
states: 0
abstracting: (M2<=P1wM1)
states: 1,434 (3)
abstracting: (P1wP2<=3)
states: 3,444 (3)
abstracting: (P1M1<=P3M2)
states: 2,972 (3)
abstracting: (M2<=P12s)
states: 978
abstracting: (P2d<=P2s)
states: 2,670 (3)
abstracting: (P2M2<=P1wP2)
states: 2,874 (3)
abstracting: (P2s<=M1)
states: 3,438 (3)
abstracting: (P1<=0)
states: 2,580 (3)
abstracting: (2<=P1s)
states: 120
abstracting: (1<=P2)
states: 900
abstracting: (P3<=2)
states: 3,444 (3)
-> the formula is TRUE

FORMULA FMS-PT-00002-ReachabilityCardinality-08 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.001sec

checking: AG [[~ [[2<=P12wM3 | [[[[~ [[P2M2<=P12s | 1<=P2wP1]] & ~ [2<=P1s]] | ~ [[P12<=2 | [2<=P2wP1 & P3s<=1]]]] & 3<=P12s] & ~ [2<=P2wM2]]]] | ~ [[3<=P2wP1 | [~ [1<=P3] & [P2s<=P3M2 | [[[[P1s<=P2s | P3s<=2] | P1wP2<=P2s] & P2s<=2] | M1<=1]]]]]]]
normalized: ~ [E [true U ~ [[~ [[[[[[[[P1s<=P2s | P3s<=2] | P1wP2<=P2s] & P2s<=2] | M1<=1] | P2s<=P3M2] & ~ [1<=P3]] | 3<=P2wP1]] | ~ [[[~ [2<=P2wM2] & [[~ [[[2<=P2wP1 & P3s<=1] | P12<=2]] | [~ [2<=P1s] & ~ [[P2M2<=P12s | 1<=P2wP1]]]] & 3<=P12s]] | 2<=P12wM3]]]]]]

abstracting: (2<=P12wM3)
states: 6
abstracting: (3<=P12s)
states: 0
abstracting: (1<=P2wP1)
states: 900
abstracting: (P2M2<=P12s)
states: 2,706 (3)
abstracting: (2<=P1s)
states: 120
abstracting: (P12<=2)
states: 3,444 (3)
abstracting: (P3s<=1)
states: 2,870 (3)
abstracting: (2<=P2wP1)
states: 126
abstracting: (2<=P2wM2)
states: 126
abstracting: (3<=P2wP1)
states: 0
abstracting: (1<=P3)
states: 1,722 (3)
abstracting: (P2s<=P3M2)
states: 2,952 (3)
abstracting: (M1<=1)
states: 120
abstracting: (P2s<=2)
states: 3,444 (3)
abstracting: (P1wP2<=P2s)
states: 2,790 (3)
abstracting: (P3s<=2)
states: 3,444 (3)
abstracting: (P1s<=P2s)
states: 2,790 (3)
-> the formula is FALSE

FORMULA FMS-PT-00002-ReachabilityCardinality-03 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.002sec

checking: AG [[[2<=P2s | [P3<=2 | [~ [[P1s<=3 & [[[M3<=0 & P2M2<=P1] & ~ [P12s<=3]] & [3<=P2 | [P3s<=P1M1 & P3M2<=2]]]]] & [~ [[P2d<=P2M2 & [M1<=P1wP2 & 2<=P2M2]]] | [[[~ [2<=P1d] | [1<=P2s & 3<=P1wP2]] | [P3<=2 & 3<=P2wM2]] & [[[3<=P2d & P2s<=0] & [P1M1<=0 & M2<=3]] | [~ [P1wM1<=P1d] & P2wP1<=3]]]]]]] | P12M3<=2]]
normalized: ~ [E [true U ~ [[[2<=P2s | [P3<=2 | [[[[[~ [P1wM1<=P1d] & P2wP1<=3] | [[P1M1<=0 & M2<=3] & [3<=P2d & P2s<=0]]] & [[P3<=2 & 3<=P2wM2] | [[1<=P2s & 3<=P1wP2] | ~ [2<=P1d]]]] | ~ [[[M1<=P1wP2 & 2<=P2M2] & P2d<=P2M2]]] & ~ [[P1s<=3 & [[[P3s<=P1M1 & P3M2<=2] | 3<=P2] & [~ [P12s<=3] & [M3<=0 & P2M2<=P1]]]]]]]] | P12M3<=2]]]]

abstracting: (P12M3<=2)
states: 3,444 (3)
abstracting: (P2M2<=P1)
states: 2,874 (3)
abstracting: (M3<=0)
states: 6
abstracting: (P12s<=3)
states: 3,444 (3)
abstracting: (3<=P2)
states: 0
abstracting: (P3M2<=2)
states: 3,444 (3)
abstracting: (P3s<=P1M1)
states: 2,030 (3)
abstracting: (P1s<=3)
states: 3,444 (3)
abstracting: (P2d<=P2M2)
states: 2,670 (3)
abstracting: (2<=P2M2)
states: 0
abstracting: (M1<=P1wP2)
states: 0
abstracting: (2<=P1d)
states: 120
abstracting: (3<=P1wP2)
states: 0
abstracting: (1<=P2s)
states: 900
abstracting: (3<=P2wM2)
states: 0
abstracting: (P3<=2)
states: 3,444 (3)
abstracting: (P2s<=0)
states: 2,544 (3)
abstracting: (3<=P2d)
states: 0
abstracting: (M2<=3)
states: 3,444 (3)
abstracting: (P1M1<=0)
states: 2,580 (3)
abstracting: (P2wP1<=3)
states: 3,444 (3)
abstracting: (P1wM1<=P1d)
states: 2,700 (3)
abstracting: (P3<=2)
states: 3,444 (3)
abstracting: (2<=P2s)
states: 126
-> the formula is TRUE

FORMULA FMS-PT-00002-ReachabilityCardinality-01 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.001sec

checking: EF [[[~ [[1<=P1M1 & ~ [P1wM1<=P2wP1]]] & [P2d<=0 & [[[3<=P2d & [[[P1M1<=1 & P1M1<=P12] | P1d<=0] & [~ [P12s<=P1wM1] & [P1M1<=2 & 3<=P2s]]]] & P12s<=1] & [[[[~ [P2s<=P12s] | ~ [P2d<=P12s]] & [[3<=M1 | 2<=M2] | [P3M2<=P2M2 | P1wP2<=M2]]] | P2s<=P2M2] & [[1<=P2wM2 & P12s<=P2d] & [~ [3<=P1wM1] & P3s<=P1]]]]]] & M3<=P12s]]
normalized: E [true U [[[[[[[~ [3<=P1wM1] & P3s<=P1] & [1<=P2wM2 & P12s<=P2d]] & [[[[P3M2<=P2M2 | P1wP2<=M2] | [3<=M1 | 2<=M2]] & [~ [P2d<=P12s] | ~ [P2s<=P12s]]] | P2s<=P2M2]] & [[[[[P1M1<=2 & 3<=P2s] & ~ [P12s<=P1wM1]] & [[P1M1<=1 & P1M1<=P12] | P1d<=0]] & 3<=P2d] & P12s<=1]] & P2d<=0] & ~ [[~ [P1wM1<=P2wP1] & 1<=P1M1]]] & M3<=P12s]]

abstracting: (M3<=P12s)
states: 18
abstracting: (1<=P1M1)
states: 864
abstracting: (P1wM1<=P2wP1)
states: 2,790 (3)
abstracting: (P2d<=0)
states: 2,544 (3)
abstracting: (P12s<=1)
states: 3,438 (3)
abstracting: (3<=P2d)
states: 0
abstracting: (P1d<=0)
states: 2,580 (3)
abstracting: (P1M1<=P12)
states: 2,616 (3)
abstracting: (P1M1<=1)
states: 3,324 (3)
abstracting: (P12s<=P1wM1)
states: 3,240 (3)
abstracting: (3<=P2s)
states: 0
abstracting: (P1M1<=2)
states: 3,444 (3)
abstracting: (P2s<=P2M2)
states: 2,670 (3)
abstracting: (P2s<=P12s)
states: 2,580 (3)
abstracting: (P2d<=P12s)
states: 2,580 (3)
abstracting: (2<=M2)
states: 0
abstracting: (3<=M1)
states: 2,580 (3)
abstracting: (P1wP2<=M2)
states: 3,150 (3)
abstracting: (P3M2<=P2M2)
states: 1,980 (3)
abstracting: (P12s<=P2d)
states: 3,240 (3)
abstracting: (1<=P2wM2)
states: 900
abstracting: (P3s<=P1)
states: 2,030 (3)
abstracting: (3<=P1wM1)
states: 0
-> the formula is FALSE

FORMULA FMS-PT-00002-ReachabilityCardinality-09 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.002sec

checking: EF [[~ [P12wM3<=1] & [[P2s<=P2wP1 | [[[P2wM2<=P2s | [~ [[M3<=M3 | P1d<=P2]] | M2<=P1s]] | [[2<=P2M2 | ~ [[P2<=0 & 3<=P2s]]] & P12M3<=0]] & ~ [3<=P1wP2]]] & [P12M3<=P2wP1 | [P12s<=M2 & [~ [[[~ [P12<=2] | ~ [P2M2<=P3s]] | [1<=P2 | P2wM2<=P1M1]]] | [[[~ [P3s<=3] | ~ [M3<=P1wP2]] | ~ [[P12<=P3 | P12M3<=1]]] & [2<=P1wM1 & ~ [P12wM3<=P1M1]]]]]]]]]
normalized: E [true U [[[[[[[~ [P12wM3<=P1M1] & 2<=P1wM1] & [~ [[P12<=P3 | P12M3<=1]] | [~ [M3<=P1wP2] | ~ [P3s<=3]]]] | ~ [[[1<=P2 | P2wM2<=P1M1] | [~ [P2M2<=P3s] | ~ [P12<=2]]]]] & P12s<=M2] | P12M3<=P2wP1] & [[~ [3<=P1wP2] & [[[~ [[P2<=0 & 3<=P2s]] | 2<=P2M2] & P12M3<=0] | [[~ [[M3<=M3 | P1d<=P2]] | M2<=P1s] | P2wM2<=P2s]]] | P2s<=P2wP1]] & ~ [P12wM3<=1]]]

abstracting: (P12wM3<=1)
states: 3,438 (3)
abstracting: (P2s<=P2wP1)
states: 2,670 (3)
abstracting: (P2wM2<=P2s)
states: 2,670 (3)
abstracting: (M2<=P1s)
states: 1,434 (3)
abstracting: (P1d<=P2)
states: 2,790 (3)
abstracting: (M3<=M3)
states: 3,444 (3)
abstracting: (P12M3<=0)
states: 3,204 (3)
abstracting: (2<=P2M2)
states: 0
abstracting: (3<=P2s)
states: 0
abstracting: (P2<=0)
states: 2,544 (3)
abstracting: (3<=P1wP2)
states: 0
abstracting: (P12M3<=P2wP1)
states: 3,240 (3)
abstracting: (P12s<=M2)
states: 3,402 (3)
abstracting: (P12<=2)
states: 3,444 (3)
abstracting: (P2M2<=P3s)
states: 3,057 (3)
abstracting: (P2wM2<=P1M1)
states: 2,754 (3)
abstracting: (1<=P2)
states: 900
abstracting: (P3s<=3)
states: 3,444 (3)
abstracting: (M3<=P1wP2)
states: 162
abstracting: (P12M3<=1)
states: 3,438 (3)
abstracting: (P12<=P3)
states: 3,322 (3)
abstracting: (2<=P1wM1)
states: 120
abstracting: (P12wM3<=P1M1)
states: 3,240 (3)
-> the formula is TRUE

FORMULA FMS-PT-00002-ReachabilityCardinality-13 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.001sec

checking: EF [[[[~ [[[~ [P3M2<=1] & P3M2<=P1] | [~ [[1<=P1 | P1wM1<=P1wM1]] | [[~ [M3<=3] & [P12M3<=1 | M1<=P1d]] | ~ [[3<=P1 | 3<=P2M2]]]]]] & M1<=P2wP1] | P2wP1<=M3] & ~ [[~ [[[~ [[[2<=P12wM3 | 1<=P1wM1] & [P3s<=2 & P2d<=P12M3]]] & [[[P2d<=0 & P1d<=2] & ~ [M2<=0]] | P2wP1<=P12wM3]] & [~ [[[P12s<=P2s & P2s<=2] & [2<=P12wM3 | M1<=P1wM1]]] & [[P2d<=P12s & [P1wP2<=P2d & P12<=0]] & P3M2<=M2]]]] | ~ [[[~ [[P1wM1<=P1M1 | 1<=P2s]] & ~ [[P2wM2<=3 & M3<=P1M1]]] & [1<=M3 & [[[P2M2<=3 | P12M3<=3] | [M3<=P2s & P1wP2<=1]] & ~ [1<=P2s]]]]]]]]]
normalized: E [true U [~ [[~ [[[[~ [1<=P2s] & [[M3<=P2s & P1wP2<=1] | [P2M2<=3 | P12M3<=3]]] & 1<=M3] & [~ [[P2wM2<=3 & M3<=P1M1]] & ~ [[P1wM1<=P1M1 | 1<=P2s]]]]] | ~ [[[[[[P1wP2<=P2d & P12<=0] & P2d<=P12s] & P3M2<=M2] & ~ [[[2<=P12wM3 | M1<=P1wM1] & [P12s<=P2s & P2s<=2]]]] & [[[~ [M2<=0] & [P2d<=0 & P1d<=2]] | P2wP1<=P12wM3] & ~ [[[P3s<=2 & P2d<=P12M3] & [2<=P12wM3 | 1<=P1wM1]]]]]]]] & [[~ [[[[~ [[3<=P1 | 3<=P2M2]] | [[P12M3<=1 | M1<=P1d] & ~ [M3<=3]]] | ~ [[1<=P1 | P1wM1<=P1wM1]]] | [~ [P3M2<=1] & P3M2<=P1]]] & M1<=P2wP1] | P2wP1<=M3]]]

abstracting: (P2wP1<=M3)
states: 3,444 (3)
abstracting: (M1<=P2wP1)
states: 66
abstracting: (P3M2<=P1)
states: 2,030 (3)
abstracting: (P3M2<=1)
states: 2,870 (3)
abstracting: (P1wM1<=P1wM1)
states: 3,444 (3)
abstracting: (1<=P1)
states: 864
abstracting: (M3<=3)
states: 3,444 (3)
abstracting: (M1<=P1d)
states: 0
abstracting: (P12M3<=1)
states: 3,438 (3)
abstracting: (3<=P2M2)
states: 0
abstracting: (3<=P1)
states: 0
abstracting: (1<=P1wM1)
states: 864
abstracting: (2<=P12wM3)
states: 6
abstracting: (P2d<=P12M3)
states: 2,580 (3)
abstracting: (P3s<=2)
states: 3,444 (3)
abstracting: (P2wP1<=P12wM3)
states: 2,580 (3)
abstracting: (P1d<=2)
states: 3,444 (3)
abstracting: (P2d<=0)
states: 2,544 (3)
abstracting: (M2<=0)
states: 774
abstracting: (P2s<=2)
states: 3,444 (3)
abstracting: (P12s<=P2s)
states: 3,240 (3)
abstracting: (M1<=P1wM1)
states: 0
abstracting: (2<=P12wM3)
states: 6
abstracting: (P3M2<=M2)
states: 2,612 (3)
abstracting: (P2d<=P12s)
states: 2,580 (3)
abstracting: (P12<=0)
states: 3,204 (3)
abstracting: (P1wP2<=P2d)
states: 2,790 (3)
abstracting: (1<=P2s)
states: 900
abstracting: (P1wM1<=P1M1)
states: 2,700 (3)
abstracting: (M3<=P1M1)
states: 162
abstracting: (P2wM2<=3)
states: 3,444 (3)
abstracting: (1<=M3)
states: 3,438 (3)
abstracting: (P12M3<=3)
states: 3,444 (3)
abstracting: (P2M2<=3)
states: 3,444 (3)
abstracting: (P1wP2<=1)
states: 3,324 (3)
abstracting: (M3<=P2s)
states: 168
abstracting: (1<=P2s)
states: 900
-> the formula is TRUE

FORMULA FMS-PT-00002-ReachabilityCardinality-07 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.003sec

checking: AG [[[[[3<=P3s & P3M2<=1] | P12s<=2] & ~ [[~ [3<=P2M2] & [[~ [[[P2wM2<=P3M2 | 2<=P12] & 2<=P2]] & ~ [2<=P1s]] | [~ [[~ [3<=P2s] & [P2d<=P3s | P12<=0]]] | [[[P1d<=0 & P1M1<=M2] | [P1d<=1 & P2M2<=3]] | [~ [M1<=0] & 2<=P2s]]]]]]] & [[~ [P3M2<=2] | [~ [3<=P12s] & [[3<=P3M2 | [~ [P12wM3<=3] | [[1<=P12M3 | 1<=P1wP2] & [3<=M2 | P12s<=P1wM1]]]] & ~ [[[[P2wM2<=3 & M1<=1] & [P2s<=P1wM1 & P2d<=P1d]] & 3<=P1s]]]]] | [~ [2<=P1s] & [[[[[~ [P12wM3<=3] & [P12M3<=P12 | P3s<=1]] | [[1<=P12wM3 & 2<=P12s] | P2wP1<=P2M2]] & 2<=P3] & [~ [[[P3s<=0 & P3s<=3] | ~ [P2<=P2d]]] & P1<=1]] | P2M2<=3]]]]]
normalized: ~ [E [true U ~ [[[[[[[~ [[~ [P2<=P2d] | [P3s<=0 & P3s<=3]]] & P1<=1] & [[[[1<=P12wM3 & 2<=P12s] | P2wP1<=P2M2] | [[P12M3<=P12 | P3s<=1] & ~ [P12wM3<=3]]] & 2<=P3]] | P2M2<=3] & ~ [2<=P1s]] | [[[~ [[[[P2s<=P1wM1 & P2d<=P1d] & [P2wM2<=3 & M1<=1]] & 3<=P1s]] & [[[[3<=M2 | P12s<=P1wM1] & [1<=P12M3 | 1<=P1wP2]] | ~ [P12wM3<=3]] | 3<=P3M2]] & ~ [3<=P12s]] | ~ [P3M2<=2]]] & [~ [[[[[[~ [M1<=0] & 2<=P2s] | [[P1d<=1 & P2M2<=3] | [P1d<=0 & P1M1<=M2]]] | ~ [[[P2d<=P3s | P12<=0] & ~ [3<=P2s]]]] | [~ [2<=P1s] & ~ [[[P2wM2<=P3M2 | 2<=P12] & 2<=P2]]]] & ~ [3<=P2M2]]] & [[3<=P3s & P3M2<=1] | P12s<=2]]]]]]

abstracting: (P12s<=2)
states: 3,444 (3)
abstracting: (P3M2<=1)
states: 2,870 (3)
abstracting: (3<=P3s)
states: 0
abstracting: (3<=P2M2)
states: 0
abstracting: (2<=P2)
states: 126
abstracting: (2<=P12)
states: 6
abstracting: (P2wM2<=P3M2)
states: 2,952 (3)
abstracting: (2<=P1s)
states: 120
abstracting: (3<=P2s)
states: 0
abstracting: (P12<=0)
states: 3,204 (3)
abstracting: (P2d<=P3s)
states: 2,952 (3)
abstracting: (P1M1<=M2)
states: 3,150 (3)
abstracting: (P1d<=0)
states: 2,580 (3)
abstracting: (P2M2<=3)
states: 3,444 (3)
abstracting: (P1d<=1)
states: 3,324 (3)
abstracting: (2<=P2s)
states: 126
abstracting: (M1<=0)
states: 0
abstracting: (P3M2<=2)
states: 3,444 (3)
abstracting: (3<=P12s)
states: 0
abstracting: (3<=P3M2)
states: 0
abstracting: (P12wM3<=3)
states: 3,444 (3)
abstracting: (1<=P1wP2)
states: 864
abstracting: (1<=P12M3)
states: 240
abstracting: (P12s<=P1wM1)
states: 3,240 (3)
abstracting: (3<=M2)
states: 0
abstracting: (3<=P1s)
states: 0
abstracting: (M1<=1)
states: 120
abstracting: (P2wM2<=3)
states: 3,444 (3)
abstracting: (P2d<=P1d)
states: 2,754 (3)
abstracting: (P2s<=P1wM1)
states: 2,754 (3)
abstracting: (2<=P1s)
states: 120
abstracting: (P2M2<=3)
states: 3,444 (3)
abstracting: (2<=P3)
states: 574
abstracting: (P12wM3<=3)
states: 3,444 (3)
abstracting: (P3s<=1)
states: 2,870 (3)
abstracting: (P12M3<=P12)
states: 3,210 (3)
abstracting: (P2wP1<=P2M2)
states: 2,670 (3)
abstracting: (2<=P12s)
states: 6
abstracting: (1<=P12wM3)
states: 240
abstracting: (P1<=1)
states: 3,324 (3)
abstracting: (P3s<=3)
states: 3,444 (3)
abstracting: (P3s<=0)
states: 1,722 (3)
abstracting: (P2<=P2d)
states: 2,670 (3)
-> the formula is FALSE

FORMULA FMS-PT-00002-ReachabilityCardinality-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.002sec

checking: AG [[[[[~ [[~ [P2d<=P1wM1] & [[[3<=M2 & 3<=P1s] | P1wP2<=0] & [[P1wP2<=2 & M2<=2] | P1M1<=P1wP2]]]] | [[[~ [[P12s<=P1wM1 | P1d<=P2d]] & [1<=P2wP1 & ~ [P12M3<=P12]]] | [2<=P1wM1 & [~ [3<=P12M3] | [M1<=P12 & P1s<=P2]]]] | 2<=P12wM3]] & [~ [[~ [[2<=M1 | 3<=P1wM1]] | [~ [[P2<=P12wM3 & 3<=P2]] & ~ [[3<=P2M2 & 3<=P3s]]]]] & ~ [[~ [[3<=P1wP2 | [M2<=3 | P1wP2<=0]]] | ~ [P12M3<=P12]]]]] | [~ [[[~ [[[1<=P2wP1 & P1s<=3] & P1<=1]] | 1<=P1wM1] | [~ [[[3<=P3s & P12M3<=P3s] & P1<=1]] & [P2wP1<=P3M2 | [[P2wP1<=2 | P1s<=1] | [P3M2<=1 & P12M3<=P12M3]]]]]] | P12M3<=P12M3]] | 2<=P1s]]
normalized: ~ [E [true U ~ [[2<=P1s | [[P12M3<=P12M3 | ~ [[[[P2wP1<=P3M2 | [[P3M2<=1 & P12M3<=P12M3] | [P2wP1<=2 | P1s<=1]]] & ~ [[P1<=1 & [3<=P3s & P12M3<=P3s]]]] | [1<=P1wM1 | ~ [[P1<=1 & [1<=P2wP1 & P1s<=3]]]]]]] | [[~ [[~ [P12M3<=P12] | ~ [[3<=P1wP2 | [M2<=3 | P1wP2<=0]]]]] & ~ [[[~ [[3<=P2M2 & 3<=P3s]] & ~ [[P2<=P12wM3 & 3<=P2]]] | ~ [[2<=M1 | 3<=P1wM1]]]]] & [[2<=P12wM3 | [[2<=P1wM1 & [[M1<=P12 & P1s<=P2] | ~ [3<=P12M3]]] | [[1<=P2wP1 & ~ [P12M3<=P12]] & ~ [[P12s<=P1wM1 | P1d<=P2d]]]]] | ~ [[[[P1M1<=P1wP2 | [P1wP2<=2 & M2<=2]] & [P1wP2<=0 | [3<=M2 & 3<=P1s]]] & ~ [P2d<=P1wM1]]]]]]]]]]

abstracting: (P2d<=P1wM1)
states: 2,754 (3)
abstracting: (3<=P1s)
states: 0
abstracting: (3<=M2)
states: 0
abstracting: (P1wP2<=0)
states: 2,580 (3)
abstracting: (M2<=2)
states: 3,444 (3)
abstracting: (P1wP2<=2)
states: 3,444 (3)
abstracting: (P1M1<=P1wP2)
states: 2,700 (3)
abstracting: (P1d<=P2d)
states: 2,790 (3)
abstracting: (P12s<=P1wM1)
states: 3,240 (3)
abstracting: (P12M3<=P12)
states: 3,210 (3)
abstracting: (1<=P2wP1)
states: 900
abstracting: (3<=P12M3)
states: 0
abstracting: (P1s<=P2)
states: 2,790 (3)
abstracting: (M1<=P12)
states: 0
abstracting: (2<=P1wM1)
states: 120
abstracting: (2<=P12wM3)
states: 6
abstracting: (3<=P1wM1)
states: 0
abstracting: (2<=M1)
states: 3,324 (3)
abstracting: (3<=P2)
states: 0
abstracting: (P2<=P12wM3)
states: 2,580 (3)
abstracting: (3<=P3s)
states: 0
abstracting: (3<=P2M2)
states: 0
abstracting: (P1wP2<=0)
states: 2,580 (3)
abstracting: (M2<=3)
states: 3,444 (3)
abstracting: (3<=P1wP2)
states: 0
abstracting: (P12M3<=P12)
states: 3,210 (3)
abstracting: (P1s<=3)
states: 3,444 (3)
abstracting: (1<=P2wP1)
states: 900
abstracting: (P1<=1)
states: 3,324 (3)
abstracting: (1<=P1wM1)
states: 864
abstracting: (P12M3<=P3s)
states: 3,322 (3)
abstracting: (3<=P3s)
states: 0
abstracting: (P1<=1)
states: 3,324 (3)
abstracting: (P1s<=1)
states: 3,324 (3)
abstracting: (P2wP1<=2)
states: 3,444 (3)
abstracting: (P12M3<=P12M3)
states: 3,444 (3)
abstracting: (P3M2<=1)
states: 2,870 (3)
abstracting: (P2wP1<=P3M2)
states: 2,952 (3)
abstracting: (P12M3<=P12M3)
states: 3,444 (3)
abstracting: (2<=P1s)
states: 120
-> the formula is TRUE

FORMULA FMS-PT-00002-ReachabilityCardinality-04 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.001sec

totally nodes used: 10965 (1.1e+04)
number of garbage collections: 0
fire ops cache: hits/miss/sum: 7918 14551 22469
used/not used/entry size/cache size: 16389 67092475 16 1024MB
basic ops cache: hits/miss/sum: 17785 33919 51704
used/not used/entry size/cache size: 55737 16721479 12 192MB
unary ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 8 128MB
abstract ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 12 192MB
state nr cache: hits/miss/sum: 4538 5862 10400
used/not used/entry size/cache size: 5862 8382746 32 256MB
max state cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 8388608 32 256MB
uniqueHash elements/entry size/size: 67108864 4 256MB
0 67098369
1 10324
2 79
3 38
4 28
5 7
6 11
7 2
8 1
9 0
>= 10 5

Total processing time: 0m 4.361sec


BK_STOP 1678493865716

--------------------
content from stderr:

+ ulimit -s 65536
+ [[ -z '' ]]
+ export LTSMIN_MEM_SIZE=8589934592
+ LTSMIN_MEM_SIZE=8589934592
+ export PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ export LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
+ LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
++ sed s/.jar//
++ perl -pe 's/.*\.//g'
++ ls /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/plugins/fr.lip6.move.gal.application.pnmcc_1.0.0.202303021504.jar
+ VERSION=202303021504
+ echo 'Running Version 202303021504'
+ /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/its-tools -pnfolder /home/mcc/execution -examination ReachabilityCardinality -timeout 360 -rebuildPNML
check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok


initing FirstDep: 0m 0.000sec


iterations count:174 (8), effective:34 (1)

initing FirstDep: 0m 0.000sec


iterations count:20 (1), effective:0 (0)

iterations count:27 (1), effective:3 (0)

iterations count:83 (4), effective:15 (0)

iterations count:170 (8), effective:30 (1)

iterations count:164 (8), effective:28 (1)

iterations count:196 (9), effective:40 (2)

iterations count:21 (1), effective:1 (0)

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="FMS-PT-00002"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="marciexred"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marciexred"
echo " Input is FMS-PT-00002, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r170-tall-167838856900190"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"

tar xzf /home/mcc/BenchKit/INPUTS/FMS-PT-00002.tgz
mv FMS-PT-00002 execution
cd execution
if [ "ReachabilityCardinality" = "ReachabilityDeadlock" ] || [ "ReachabilityCardinality" = "UpperBounds" ] || [ "ReachabilityCardinality" = "QuasiLiveness" ] || [ "ReachabilityCardinality" = "StableMarking" ] || [ "ReachabilityCardinality" = "Liveness" ] || [ "ReachabilityCardinality" = "OneSafe" ] || [ "ReachabilityCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh

echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' ReachabilityCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ "ReachabilityCardinality" = "ReachabilityDeadlock" ] || [ "ReachabilityCardinality" = "QuasiLiveness" ] || [ "ReachabilityCardinality" = "StableMarking" ] || [ "ReachabilityCardinality" = "Liveness" ] || [ "ReachabilityCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME ReachabilityCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;