About the Execution of Marcie for GPPP-PT-C0001N0000000100
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
6074.168 | 15069.00 | 15080.00 | 0.00 | FTFTTFFFTTFTTTTT | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fkordon/mcc2023-input.r161-tall-167838845700785.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2023-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
.........................................................................................................................................................................................................................................................................................................................
=====================================================================
Generated by BenchKit 2-5348
Executing tool marcie
Input is GPPP-PT-C0001N0000000100, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r161-tall-167838845700785
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 500K
-rw-r--r-- 1 mcc users 8.2K Feb 26 10:39 CTLCardinality.txt
-rw-r--r-- 1 mcc users 88K Feb 26 10:39 CTLCardinality.xml
-rw-r--r-- 1 mcc users 6.1K Feb 26 10:38 CTLFireability.txt
-rw-r--r-- 1 mcc users 44K Feb 26 10:38 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K Jan 29 11:40 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.0K Jan 29 11:40 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 3.6K Feb 25 16:09 LTLCardinality.txt
-rw-r--r-- 1 mcc users 23K Feb 25 16:09 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.8K Feb 25 16:09 LTLFireability.txt
-rw-r--r-- 1 mcc users 17K Feb 25 16:09 LTLFireability.xml
-rw-r--r-- 1 mcc users 11K Feb 26 10:40 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 103K Feb 26 10:40 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 15K Feb 26 10:40 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 99K Feb 26 10:40 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.7K Feb 25 16:09 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.8K Feb 25 16:09 UpperBounds.xml
-rw-r--r-- 1 mcc users 6 Mar 5 18:22 equiv_col
-rw-r--r-- 1 mcc users 17 Mar 5 18:22 instance
-rw-r--r-- 1 mcc users 6 Mar 5 18:22 iscolored
-rw-r--r-- 1 mcc users 1 Mar 5 18:22 large_marking
-rw-r--r-- 1 mcc users 21K Mar 5 18:22 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME GPPP-PT-C0001N0000000100-CTLCardinality-00
FORMULA_NAME GPPP-PT-C0001N0000000100-CTLCardinality-01
FORMULA_NAME GPPP-PT-C0001N0000000100-CTLCardinality-02
FORMULA_NAME GPPP-PT-C0001N0000000100-CTLCardinality-03
FORMULA_NAME GPPP-PT-C0001N0000000100-CTLCardinality-04
FORMULA_NAME GPPP-PT-C0001N0000000100-CTLCardinality-05
FORMULA_NAME GPPP-PT-C0001N0000000100-CTLCardinality-06
FORMULA_NAME GPPP-PT-C0001N0000000100-CTLCardinality-07
FORMULA_NAME GPPP-PT-C0001N0000000100-CTLCardinality-08
FORMULA_NAME GPPP-PT-C0001N0000000100-CTLCardinality-09
FORMULA_NAME GPPP-PT-C0001N0000000100-CTLCardinality-10
FORMULA_NAME GPPP-PT-C0001N0000000100-CTLCardinality-11
FORMULA_NAME GPPP-PT-C0001N0000000100-CTLCardinality-12
FORMULA_NAME GPPP-PT-C0001N0000000100-CTLCardinality-13
FORMULA_NAME GPPP-PT-C0001N0000000100-CTLCardinality-14
FORMULA_NAME GPPP-PT-C0001N0000000100-CTLCardinality-15
=== Now, execution of the tool begins
BK_START 1679883093086
bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marcie
BK_EXAMINATION=CTLCardinality
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=GPPP-PT-C0001N0000000100
Not applying reductions.
Model is PT
CTLCardinality PT
timeout --kill-after=10s --signal=SIGINT 1m for testing only
Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: /home/mcc/BenchKit/bin//../marcie/bin/marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --memory=6 --mcc-mode
parse successfull
net created successfully
Net: GPPP_PT_C0001N0000000100
(NrP: 33 NrTr: 22 NrArc: 83)
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec
net check time: 0m 0.000sec
init dd package: 0m 2.872sec
RS generation: 0m 0.087sec
-> reachability set: #nodes 1358 (1.4e+03) #states 145,476,966 (8)
starting MCC model checker
--------------------------
checking: ~ [EF [[A [EF [[359<=GSSG & b1<=Pi]] U 185<=E4P] | EG [301<=_1_3_BPG]]]]
normalized: ~ [E [true U [EG [301<=_1_3_BPG] | [~ [EG [~ [185<=E4P]]] & ~ [E [~ [185<=E4P] U [~ [185<=E4P] & ~ [E [true U [359<=GSSG & b1<=Pi]]]]]]]]]]
abstracting: (b1<=Pi)
states: 85,040,889 (7)
abstracting: (359<=GSSG)
states: 0
abstracting: (185<=E4P)
states: 0
abstracting: (185<=E4P)
states: 0
abstracting: (185<=E4P)
states: 0
EG iterations: 0
abstracting: (301<=_1_3_BPG)
states: 0
.
EG iterations: 1
-> the formula is TRUE
FORMULA GPPP-PT-C0001N0000000100-CTLCardinality-04 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.012sec
checking: E [[AX [EG [AG [36<=PEP]]] & ~ [c2<=ATP]] U ~ [EF [AG [PEP<=c2]]]]
normalized: E [[~ [c2<=ATP] & ~ [EX [~ [EG [~ [E [true U ~ [36<=PEP]]]]]]]] U ~ [E [true U ~ [E [true U ~ [PEP<=c2]]]]]]
abstracting: (PEP<=c2)
states: 128,606,835 (8)
abstracting: (36<=PEP)
states: 0
.
EG iterations: 1
.abstracting: (c2<=ATP)
states: 145,476,966 (8)
-> the formula is TRUE
FORMULA GPPP-PT-C0001N0000000100-CTLCardinality-14 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.200sec
checking: E [E [EX [178<=_1_3_BPG] U F6P<=NADplus] U EG [AG [~ [A [a1<=b2 U 7<=R5P]]]]]
normalized: E [E [EX [178<=_1_3_BPG] U F6P<=NADplus] U EG [~ [E [true U [~ [EG [~ [7<=R5P]]] & ~ [E [~ [7<=R5P] U [~ [a1<=b2] & ~ [7<=R5P]]]]]]]]]
abstracting: (7<=R5P)
states: 0
abstracting: (a1<=b2)
states: 18,291,201 (7)
abstracting: (7<=R5P)
states: 0
abstracting: (7<=R5P)
states: 0
EG iterations: 0
EG iterations: 0
abstracting: (F6P<=NADplus)
states: 145,476,966 (8)
abstracting: (178<=_1_3_BPG)
states: 0
.-> the formula is TRUE
FORMULA GPPP-PT-C0001N0000000100-CTLCardinality-11 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.044sec
checking: [AX [AG [AG [[EG [NADplus<=371] | b1<=269]]]] & ~ [AX [[AX [[EF [NADPplus<=125] | AX [ATP<=Gluc]]] & ~ [ADP<=G6P]]]]]
normalized: [EX [~ [[~ [ADP<=G6P] & ~ [EX [~ [[~ [EX [~ [ATP<=Gluc]]] | E [true U NADPplus<=125]]]]]]]] & ~ [EX [E [true U E [true U ~ [[b1<=269 | EG [NADplus<=371]]]]]]]]
abstracting: (NADplus<=371)
states: 145,476,966 (8)
EG iterations: 0
abstracting: (b1<=269)
states: 145,476,966 (8)
.abstracting: (NADPplus<=125)
states: 91,194,516 (7)
abstracting: (ATP<=Gluc)
states: 0
..abstracting: (ADP<=G6P)
states: 182,709 (5)
.-> the formula is FALSE
FORMULA GPPP-PT-C0001N0000000100-CTLCardinality-00 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.684sec
checking: [[[AX [~ [EF [[b2<=38 & 259<=Pyr]]]] & ~ [AF [DHAP<=GSSG]]] | E [EG [Xu5P<=90] U AG [AF [[ADP<=128 | Pi<=208]]]]] & AX [EX [a2<=127]]]
normalized: [~ [EX [~ [EX [a2<=127]]]] & [E [EG [Xu5P<=90] U ~ [E [true U EG [~ [[ADP<=128 | Pi<=208]]]]]] | [EG [~ [DHAP<=GSSG]] & ~ [EX [E [true U [b2<=38 & 259<=Pyr]]]]]]]
abstracting: (259<=Pyr)
states: 0
abstracting: (b2<=38)
states: 145,476,966 (8)
.abstracting: (DHAP<=GSSG)
states: 144,480,810 (8)
................................
EG iterations: 32
abstracting: (Pi<=208)
states: 145,476,966 (8)
abstracting: (ADP<=128)
states: 145,476,966 (8)
.
EG iterations: 1
abstracting: (Xu5P<=90)
states: 145,476,966 (8)
EG iterations: 0
abstracting: (a2<=127)
states: 145,476,966 (8)
..-> the formula is TRUE
FORMULA GPPP-PT-C0001N0000000100-CTLCardinality-09 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.207sec
checking: ~ [AX [AG [E [[AG [S7P<=Xu5P] | [ADP<=DHAP & 354<=Xu5P]] U [~ [91<=NADplus] | ~ [ADP<=a1]]]]]]
normalized: EX [E [true U ~ [E [[[ADP<=DHAP & 354<=Xu5P] | ~ [E [true U ~ [S7P<=Xu5P]]]] U [~ [ADP<=a1] | ~ [91<=NADplus]]]]]]
abstracting: (91<=NADplus)
states: 145,476,966 (8)
abstracting: (ADP<=a1)
states: 1,766,187 (6)
abstracting: (S7P<=Xu5P)
states: 144,989,742 (8)
abstracting: (354<=Xu5P)
states: 0
abstracting: (ADP<=DHAP)
states: 182,709 (5)
.-> the formula is TRUE
FORMULA GPPP-PT-C0001N0000000100-CTLCardinality-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.087sec
checking: EF [[[E [365<=FBP U [AG [146<=Ru5P] & ~ [[164<=DHAP & GSSG<=294]]]] & AG [AX [[194<=DHAP | E4P<=a1]]]] & EG [AG [[~ [b2<=176] & AF [GSH<=PEP]]]]]]
normalized: E [true U [EG [~ [E [true U ~ [[~ [EG [~ [GSH<=PEP]]] & ~ [b2<=176]]]]]] & [~ [E [true U EX [~ [[194<=DHAP | E4P<=a1]]]]] & E [365<=FBP U [~ [[164<=DHAP & GSSG<=294]] & ~ [E [true U ~ [146<=Ru5P]]]]]]]]
abstracting: (146<=Ru5P)
states: 0
abstracting: (GSSG<=294)
states: 145,476,966 (8)
abstracting: (164<=DHAP)
states: 0
abstracting: (365<=FBP)
states: 0
abstracting: (E4P<=a1)
states: 145,476,966 (8)
abstracting: (194<=DHAP)
states: 0
.abstracting: (b2<=176)
states: 145,476,966 (8)
abstracting: (GSH<=PEP)
states: 1,712,922 (6)
.
EG iterations: 1
.
EG iterations: 1
-> the formula is FALSE
FORMULA GPPP-PT-C0001N0000000100-CTLCardinality-02 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.090sec
checking: [EF [[c2<=135 & F6P<=256]] & AG [[Gluc<=365 & ~ [[E [EX [349<=NADplus] U [308<=GAP | NADplus<=NADplus]] & AF [[174<=Pyr & _1_3_BPG<=F6P]]]]]]]
normalized: [~ [E [true U ~ [[Gluc<=365 & ~ [[~ [EG [~ [[174<=Pyr & _1_3_BPG<=F6P]]]] & E [EX [349<=NADplus] U [308<=GAP | NADplus<=NADplus]]]]]]]] & E [true U [c2<=135 & F6P<=256]]]
abstracting: (F6P<=256)
states: 145,476,966 (8)
abstracting: (c2<=135)
states: 145,476,966 (8)
abstracting: (NADplus<=NADplus)
states: 145,476,966 (8)
abstracting: (308<=GAP)
states: 0
abstracting: (349<=NADplus)
states: 0
.abstracting: (_1_3_BPG<=F6P)
states: 90,095,838 (7)
abstracting: (174<=Pyr)
states: 0
EG iterations: 0
abstracting: (Gluc<=365)
states: 145,476,966 (8)
-> the formula is TRUE
FORMULA GPPP-PT-C0001N0000000100-CTLCardinality-03 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.004sec
checking: AF [EF [[[246<=E4P & [[FBP<=a2 | GSSG<=PEP] & [~ [a1<=NADPplus] | [a1<=88 & a1<=51]]]] & ~ [AX [a1<=GSSG]]]]]
normalized: ~ [EG [~ [E [true U [EX [~ [a1<=GSSG]] & [246<=E4P & [[[a1<=88 & a1<=51] | ~ [a1<=NADPplus]] & [FBP<=a2 | GSSG<=PEP]]]]]]]]
abstracting: (GSSG<=PEP)
states: 2,418,030 (6)
abstracting: (FBP<=a2)
states: 122,942,856 (8)
abstracting: (a1<=NADPplus)
states: 144,162,148 (8)
abstracting: (a1<=51)
states: 145,476,966 (8)
abstracting: (a1<=88)
states: 145,476,966 (8)
abstracting: (246<=E4P)
states: 0
abstracting: (a1<=GSSG)
states: 142,860,348 (8)
.
EG iterations: 0
-> the formula is FALSE
FORMULA GPPP-PT-C0001N0000000100-CTLCardinality-05 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.067sec
checking: E [[EF [A [[A [Ru5P<=S7P U 118<=GAP] | E [DHAP<=259 U ADP<=a2]] U EG [395<=FBP]]] & EG [[[~ [138<=S7P] & [EG [Ru5P<=G6P] & EG [114<=DHAP]]] | EG [GSH<=R5P]]]] U 203<=GAP]
normalized: E [[EG [[EG [GSH<=R5P] | [[EG [114<=DHAP] & EG [Ru5P<=G6P]] & ~ [138<=S7P]]]] & E [true U [~ [EG [~ [EG [395<=FBP]]]] & ~ [E [~ [EG [395<=FBP]] U [~ [[E [DHAP<=259 U ADP<=a2] | [~ [EG [~ [118<=GAP]]] & ~ [E [~ [118<=GAP] U [~ [Ru5P<=S7P] & ~ [118<=GAP]]]]]]] & ~ [EG [395<=FBP]]]]]]]] U 203<=GAP]
abstracting: (203<=GAP)
states: 0
abstracting: (395<=FBP)
states: 0
.
EG iterations: 1
abstracting: (118<=GAP)
states: 0
abstracting: (Ru5P<=S7P)
states: 136,240,011 (8)
abstracting: (118<=GAP)
states: 0
abstracting: (118<=GAP)
states: 0
EG iterations: 0
abstracting: (ADP<=a2)
states: 182,709 (5)
abstracting: (DHAP<=259)
states: 145,476,966 (8)
abstracting: (395<=FBP)
states: 0
.
EG iterations: 1
abstracting: (395<=FBP)
states: 0
.
EG iterations: 1
EG iterations: 0
abstracting: (138<=S7P)
states: 0
abstracting: (Ru5P<=G6P)
states: 136,382,118 (8)
...........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
EG iterations: 523
abstracting: (114<=DHAP)
states: 0
.
EG iterations: 1
abstracting: (GSH<=R5P)
states: 1,440,366 (6)
.......................
EG iterations: 23
.
EG iterations: 1
-> the formula is FALSE
FORMULA GPPP-PT-C0001N0000000100-CTLCardinality-07 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 2.198sec
checking: AG [~ [[[AF [AF [NADH<=DHAP]] & ~ [GSSG<=367]] | [[EF [~ [_2PG<=303]] & ~ [AX [c1<=Gluc]]] | [AG [[330<=R5P & 355<=R5P]] & ~ [[[PEP<=a1 | ADP<=start] | [Ru5P<=Xu5P & _2PG<=35]]]]]]]]
normalized: ~ [E [true U [[[~ [[[Ru5P<=Xu5P & _2PG<=35] | [PEP<=a1 | ADP<=start]]] & ~ [E [true U ~ [[330<=R5P & 355<=R5P]]]]] | [EX [~ [c1<=Gluc]] & E [true U ~ [_2PG<=303]]]] | [~ [GSSG<=367] & ~ [EG [EG [~ [NADH<=DHAP]]]]]]]]
abstracting: (NADH<=DHAP)
states: 24,219,093 (7)
........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
EG iterations: 536
.
EG iterations: 1
abstracting: (GSSG<=367)
states: 145,476,966 (8)
abstracting: (_2PG<=303)
states: 145,476,966 (8)
abstracting: (c1<=Gluc)
states: 2,923,344 (6)
.abstracting: (355<=R5P)
states: 0
abstracting: (330<=R5P)
states: 0
abstracting: (ADP<=start)
states: 182,709 (5)
abstracting: (PEP<=a1)
states: 134,778,339 (8)
abstracting: (_2PG<=35)
states: 145,476,966 (8)
abstracting: (Ru5P<=Xu5P)
states: 136,179,108 (8)
-> the formula is TRUE
FORMULA GPPP-PT-C0001N0000000100-CTLCardinality-13 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 2.057sec
checking: [~ [A [start<=121 U [[EX [ATP<=Pyr] | AF [264<=NADPH]] | [R5P<=113 & [GSSG<=Gluc | 25<=c2]]]]] & AX [[[AG [AF [Pyr<=199]] & [~ [EF [start<=E4P]] & ~ [E [59<=Lac U 194<=_1_3_BPG]]]] | [EG [EF [370<=_2PG]] | AG [GSH<=369]]]]]
normalized: [~ [EX [~ [[[~ [E [true U ~ [GSH<=369]]] | EG [E [true U 370<=_2PG]]] | [[~ [E [59<=Lac U 194<=_1_3_BPG]] & ~ [E [true U start<=E4P]]] & ~ [E [true U EG [~ [Pyr<=199]]]]]]]]] & ~ [[~ [EG [~ [[[R5P<=113 & [GSSG<=Gluc | 25<=c2]] | [~ [EG [~ [264<=NADPH]]] | EX [ATP<=Pyr]]]]]] & ~ [E [~ [[[R5P<=113 & [GSSG<=Gluc | 25<=c2]] | [~ [EG [~ [264<=NADPH]]] | EX [ATP<=Pyr]]]] U [~ [start<=121] & ~ [[[R5P<=113 & [GSSG<=Gluc | 25<=c2]] | [~ [EG [~ [264<=NADPH]]] | EX [ATP<=Pyr]]]]]]]]]]
abstracting: (ATP<=Pyr)
states: 0
.abstracting: (264<=NADPH)
states: 0
EG iterations: 0
abstracting: (25<=c2)
states: 0
abstracting: (GSSG<=Gluc)
states: 1,540,464 (6)
abstracting: (R5P<=113)
states: 145,476,966 (8)
abstracting: (start<=121)
states: 145,476,966 (8)
abstracting: (ATP<=Pyr)
states: 0
.abstracting: (264<=NADPH)
states: 0
EG iterations: 0
abstracting: (25<=c2)
states: 0
abstracting: (GSSG<=Gluc)
states: 1,540,464 (6)
abstracting: (R5P<=113)
states: 145,476,966 (8)
abstracting: (ATP<=Pyr)
states: 0
.abstracting: (264<=NADPH)
states: 0
EG iterations: 0
abstracting: (25<=c2)
states: 0
abstracting: (GSSG<=Gluc)
states: 1,540,464 (6)
abstracting: (R5P<=113)
states: 145,476,966 (8)
.
EG iterations: 1
abstracting: (Pyr<=199)
states: 145,476,966 (8)
.
EG iterations: 1
abstracting: (start<=E4P)
states: 145,456,665 (8)
abstracting: (194<=_1_3_BPG)
states: 0
abstracting: (59<=Lac)
states: 0
abstracting: (370<=_2PG)
states: 0
.
EG iterations: 1
abstracting: (GSH<=369)
states: 145,476,966 (8)
.-> the formula is TRUE
FORMULA GPPP-PT-C0001N0000000100-CTLCardinality-15 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.273sec
checking: ~ [[AF [[EG [~ [AG [F6P<=312]]] & [[[GSSG<=NADH | NADH<=_2PG] & A [23<=ATP U GSH<=184]] | ~ [[~ [Lac<=b2] & AF [Xu5P<=a2]]]]]] & [E [GSH<=174 U EX [EX [ADP<=320]]] & A [EG [a1<=397] U AF [AX [Lac<=Xu5P]]]]]]
normalized: ~ [[[[~ [EG [EG [EX [~ [Lac<=Xu5P]]]]] & ~ [E [EG [EX [~ [Lac<=Xu5P]]] U [~ [EG [a1<=397]] & EG [EX [~ [Lac<=Xu5P]]]]]]] & E [GSH<=174 U EX [EX [ADP<=320]]]] & ~ [EG [~ [[[~ [[~ [EG [~ [Xu5P<=a2]]] & ~ [Lac<=b2]]] | [[~ [EG [~ [GSH<=184]]] & ~ [E [~ [GSH<=184] U [~ [23<=ATP] & ~ [GSH<=184]]]]] & [GSSG<=NADH | NADH<=_2PG]]] & EG [E [true U ~ [F6P<=312]]]]]]]]]
abstracting: (F6P<=312)
states: 145,476,966 (8)
.
EG iterations: 1
abstracting: (NADH<=_2PG)
states: 13,764,078 (7)
abstracting: (GSSG<=NADH)
states: 6,328,686 (6)
abstracting: (GSH<=184)
states: 133,954,038 (8)
abstracting: (23<=ATP)
states: 145,476,966 (8)
abstracting: (GSH<=184)
states: 133,954,038 (8)
abstracting: (GSH<=184)
states: 133,954,038 (8)
.
EG iterations: 1
abstracting: (Lac<=b2)
states: 87,903,330 (7)
abstracting: (Xu5P<=a2)
states: 136,991,148 (8)
..........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
EG iterations: 522
EG iterations: 0
abstracting: (ADP<=320)
states: 145,476,966 (8)
..abstracting: (GSH<=174)
states: 126,752,208 (8)
abstracting: (Lac<=Xu5P)
states: 85,913,832 (7)
.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
EG iterations: 532
abstracting: (a1<=397)
states: 145,476,966 (8)
EG iterations: 0
abstracting: (Lac<=Xu5P)
states: 85,913,832 (7)
.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
EG iterations: 532
abstracting: (Lac<=Xu5P)
states: 85,913,832 (7)
.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
EG iterations: 532
.
EG iterations: 1
-> the formula is TRUE
FORMULA GPPP-PT-C0001N0000000100-CTLCardinality-08 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 3.790sec
checking: ~ [AX [[[[[[[DHAP<=Lac | Xu5P<=31] | [ATP<=GSH | Pi<=193]] & EF [306<=a2]] | [[[NADPplus<=86 & a1<=159] | EG [G6P<=NADplus]] & 241<=NADplus]] | AX [AG [ATP<=start]]] | [EG [~ [FBP<=161]] & ~ [E [~ [8<=GAP] U [F6P<=110 | NADPH<=387]]]]]]]
normalized: EX [~ [[[~ [E [~ [8<=GAP] U [F6P<=110 | NADPH<=387]]] & EG [~ [FBP<=161]]] | [~ [EX [E [true U ~ [ATP<=start]]]] | [[241<=NADplus & [EG [G6P<=NADplus] | [NADPplus<=86 & a1<=159]]] | [E [true U 306<=a2] & [[ATP<=GSH | Pi<=193] | [DHAP<=Lac | Xu5P<=31]]]]]]]]
abstracting: (Xu5P<=31)
states: 145,476,966 (8)
abstracting: (DHAP<=Lac)
states: 100,571,154 (8)
abstracting: (Pi<=193)
states: 145,476,966 (8)
abstracting: (ATP<=GSH)
states: 0
abstracting: (306<=a2)
states: 0
abstracting: (a1<=159)
states: 145,476,966 (8)
abstracting: (NADPplus<=86)
states: 62,967,642 (7)
abstracting: (G6P<=NADplus)
states: 145,476,966 (8)
EG iterations: 0
abstracting: (241<=NADplus)
states: 0
abstracting: (ATP<=start)
states: 0
.abstracting: (FBP<=161)
states: 145,476,966 (8)
.
EG iterations: 1
abstracting: (NADPH<=387)
states: 145,476,966 (8)
abstracting: (F6P<=110)
states: 145,476,966 (8)
abstracting: (8<=GAP)
states: 0
.-> the formula is TRUE
FORMULA GPPP-PT-C0001N0000000100-CTLCardinality-01 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.068sec
checking: AF [[[E [128<=c2 U [[[Ru5P<=298 & c2<=c2] & EG [S7P<=ATP]] & E [R5P<=295 U 317<=_1_3_BPG]]] | [EX [AG [Lac<=G6P]] | [AF [A [E4P<=268 U Lac<=NADplus]] & [~ [_1_3_BPG<=309] | A [283<=a1 U 364<=NADH]]]]] | [NADPplus<=G6P & [A [5<=PEP U AF [b2<=326]] & GSSG<=73]]]]
normalized: ~ [EG [~ [[[NADPplus<=G6P & [GSSG<=73 & [~ [EG [EG [~ [b2<=326]]]] & ~ [E [EG [~ [b2<=326]] U [~ [5<=PEP] & EG [~ [b2<=326]]]]]]]] | [[[[[~ [EG [~ [364<=NADH]]] & ~ [E [~ [364<=NADH] U [~ [283<=a1] & ~ [364<=NADH]]]]] | ~ [_1_3_BPG<=309]] & ~ [EG [~ [[~ [EG [~ [Lac<=NADplus]]] & ~ [E [~ [Lac<=NADplus] U [~ [E4P<=268] & ~ [Lac<=NADplus]]]]]]]]] | EX [~ [E [true U ~ [Lac<=G6P]]]]] | E [128<=c2 U [E [R5P<=295 U 317<=_1_3_BPG] & [EG [S7P<=ATP] & [Ru5P<=298 & c2<=c2]]]]]]]]]
abstracting: (c2<=c2)
states: 145,476,966 (8)
abstracting: (Ru5P<=298)
states: 145,476,966 (8)
abstracting: (S7P<=ATP)
states: 145,476,966 (8)
EG iterations: 0
abstracting: (317<=_1_3_BPG)
states: 0
abstracting: (R5P<=295)
states: 145,476,966 (8)
abstracting: (128<=c2)
states: 0
abstracting: (Lac<=G6P)
states: 85,913,832 (7)
.abstracting: (Lac<=NADplus)
states: 145,476,966 (8)
abstracting: (E4P<=268)
states: 145,476,966 (8)
abstracting: (Lac<=NADplus)
states: 145,476,966 (8)
abstracting: (Lac<=NADplus)
states: 145,476,966 (8)
.
EG iterations: 1
.
EG iterations: 1
abstracting: (_1_3_BPG<=309)
states: 145,476,966 (8)
abstracting: (364<=NADH)
states: 0
abstracting: (283<=a1)
states: 0
abstracting: (364<=NADH)
states: 0
abstracting: (364<=NADH)
states: 0
EG iterations: 0
abstracting: (b2<=326)
states: 145,476,966 (8)
.
EG iterations: 1
abstracting: (5<=PEP)
states: 771,438 (5)
abstracting: (b2<=326)
states: 145,476,966 (8)
.
EG iterations: 1
abstracting: (b2<=326)
states: 145,476,966 (8)
.
EG iterations: 1
.
EG iterations: 1
abstracting: (GSSG<=73)
states: 106,587,084 (8)
abstracting: (NADPplus<=G6P)
states: 774,064 (5)
.
EG iterations: 1
-> the formula is FALSE
FORMULA GPPP-PT-C0001N0000000100-CTLCardinality-06 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.211sec
checking: E [A [b2<=394 U [[[Xu5P<=_3PG | AX [S7P<=F6P]] | AX [AG [_1_3_BPG<=NADplus]]] & [[NADPplus<=c1 & [[Pyr<=E4P & E4P<=27] & [b2<=56 & a2<=221]]] | [[AG [a1<=ATP] | [51<=PEP & ATP<=Xu5P]] & E [b2<=c1 U 275<=b2]]]]] U [~ [AF [139<=start]] & AX [EF [51<=c2]]]]
normalized: E [[~ [EG [~ [[[[E [b2<=c1 U 275<=b2] & [[51<=PEP & ATP<=Xu5P] | ~ [E [true U ~ [a1<=ATP]]]]] | [NADPplus<=c1 & [[b2<=56 & a2<=221] & [Pyr<=E4P & E4P<=27]]]] & [~ [EX [E [true U ~ [_1_3_BPG<=NADplus]]]] | [Xu5P<=_3PG | ~ [EX [~ [S7P<=F6P]]]]]]]]] & ~ [E [~ [[[[E [b2<=c1 U 275<=b2] & [[51<=PEP & ATP<=Xu5P] | ~ [E [true U ~ [a1<=ATP]]]]] | [NADPplus<=c1 & [[b2<=56 & a2<=221] & [Pyr<=E4P & E4P<=27]]]] & [~ [EX [E [true U ~ [_1_3_BPG<=NADplus]]]] | [Xu5P<=_3PG | ~ [EX [~ [S7P<=F6P]]]]]]] U [~ [b2<=394] & ~ [[[[E [b2<=c1 U 275<=b2] & [[51<=PEP & ATP<=Xu5P] | ~ [E [true U ~ [a1<=ATP]]]]] | [NADPplus<=c1 & [[b2<=56 & a2<=221] & [Pyr<=E4P & E4P<=27]]]] & [~ [EX [E [true U ~ [_1_3_BPG<=NADplus]]]] | [Xu5P<=_3PG | ~ [EX [~ [S7P<=F6P]]]]]]]]]]] U [~ [EX [~ [E [true U 51<=c2]]]] & EG [~ [139<=start]]]]
abstracting: (139<=start)
states: 0
EG iterations: 0
abstracting: (51<=c2)
states: 0
.abstracting: (S7P<=F6P)
states: 144,989,742 (8)
.abstracting: (Xu5P<=_3PG)
states: 139,447,569 (8)
abstracting: (_1_3_BPG<=NADplus)
states: 145,476,966 (8)
.abstracting: (E4P<=27)
states: 145,476,966 (8)
abstracting: (Pyr<=E4P)
states: 91,882,326 (7)
abstracting: (a2<=221)
states: 145,476,966 (8)
abstracting: (b2<=56)
states: 145,476,966 (8)
abstracting: (NADPplus<=c1)
states: 3,768,916 (6)
abstracting: (a1<=ATP)
states: 145,476,966 (8)
abstracting: (ATP<=Xu5P)
states: 0
abstracting: (51<=PEP)
states: 0
abstracting: (275<=b2)
states: 0
abstracting: (b2<=c1)
states: 144,908,538 (8)
abstracting: (b2<=394)
states: 145,476,966 (8)
abstracting: (S7P<=F6P)
states: 144,989,742 (8)
.abstracting: (Xu5P<=_3PG)
states: 139,447,569 (8)
abstracting: (_1_3_BPG<=NADplus)
states: 145,476,966 (8)
.abstracting: (E4P<=27)
states: 145,476,966 (8)
abstracting: (Pyr<=E4P)
states: 91,882,326 (7)
abstracting: (a2<=221)
states: 145,476,966 (8)
abstracting: (b2<=56)
states: 145,476,966 (8)
abstracting: (NADPplus<=c1)
states: 3,768,916 (6)
abstracting: (a1<=ATP)
states: 145,476,966 (8)
abstracting: (ATP<=Xu5P)
states: 0
abstracting: (51<=PEP)
states: 0
abstracting: (275<=b2)
states: 0
abstracting: (b2<=c1)
states: 144,908,538 (8)
abstracting: (S7P<=F6P)
states: 144,989,742 (8)
.abstracting: (Xu5P<=_3PG)
states: 139,447,569 (8)
abstracting: (_1_3_BPG<=NADplus)
states: 145,476,966 (8)
.abstracting: (E4P<=27)
states: 145,476,966 (8)
abstracting: (Pyr<=E4P)
states: 91,882,326 (7)
abstracting: (a2<=221)
states: 145,476,966 (8)
abstracting: (b2<=56)
states: 145,476,966 (8)
abstracting: (NADPplus<=c1)
states: 3,768,916 (6)
abstracting: (a1<=ATP)
states: 145,476,966 (8)
abstracting: (ATP<=Xu5P)
states: 0
abstracting: (51<=PEP)
states: 0
abstracting: (275<=b2)
states: 0
abstracting: (b2<=c1)
states: 144,908,538 (8)
.
EG iterations: 1
-> the formula is FALSE
FORMULA GPPP-PT-C0001N0000000100-CTLCardinality-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.125sec
totally nodes used: 4491906 (4.5e+06)
number of garbage collections: 0
fire ops cache: hits/miss/sum: 16921013 6503065 23424078
used/not used/entry size/cache size: 9349778 57759086 16 1024MB
basic ops cache: hits/miss/sum: 3282338 2082855 5365193
used/not used/entry size/cache size: 3351660 13425556 12 192MB
unary ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 8 128MB
abstract ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 12 192MB
state nr cache: hits/miss/sum: 19791 22852 42643
used/not used/entry size/cache size: 22826 8365782 32 256MB
max state cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 8388608 32 256MB
uniqueHash elements/entry size/size: 67108864 4 256MB
0 63060348
1 3936631
2 107693
3 2519
4 203
5 54
6 84
7 28
8 11
9 12
>= 10 1281
Total processing time: 0m15.017sec
BK_STOP 1679883108155
--------------------
content from stderr:
check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.002sec
iterations count:15790 (717), effective:3705 (168)
initing FirstDep: 0m 0.000sec
iterations count:22 (1), effective:0 (0)
iterations count:255 (11), effective:58 (2)
iterations count:22 (1), effective:0 (0)
iterations count:22 (1), effective:0 (0)
iterations count:77 (3), effective:13 (0)
iterations count:22 (1), effective:0 (0)
iterations count:22 (1), effective:0 (0)
iterations count:10700 (486), effective:2660 (120)
iterations count:22 (1), effective:0 (0)
iterations count:370 (16), effective:87 (3)
iterations count:22 (1), effective:0 (0)
iterations count:333 (15), effective:73 (3)
iterations count:22 (1), effective:0 (0)
iterations count:22 (1), effective:0 (0)
iterations count:22 (1), effective:0 (0)
iterations count:22 (1), effective:0 (0)
iterations count:319 (14), effective:75 (3)
iterations count:348 (15), effective:77 (3)
iterations count:22 (1), effective:0 (0)
iterations count:26 (1), effective:1 (0)
iterations count:22 (1), effective:0 (0)
iterations count:22 (1), effective:0 (0)
iterations count:22 (1), effective:0 (0)
iterations count:182 (8), effective:38 (1)
iterations count:22 (1), effective:0 (0)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="GPPP-PT-C0001N0000000100"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marcie"
echo " Input is GPPP-PT-C0001N0000000100, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r161-tall-167838845700785"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/GPPP-PT-C0001N0000000100.tgz
mv GPPP-PT-C0001N0000000100 execution
cd execution
if [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "UpperBounds" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] || [ "CTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME CTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;