About the Execution of Marcie for FMS-PT-00002
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
5449.163 | 4669.00 | 4030.00 | 60.00 | TFFFFTFFTTTTFTTF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fkordon/mcc2023-input.r161-tall-167838844800185.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2023-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
........................................................................
=====================================================================
Generated by BenchKit 2-5348
Executing tool marcie
Input is FMS-PT-00002, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r161-tall-167838844800185
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 560K
-rw-r--r-- 1 mcc users 8.5K Feb 25 20:15 CTLCardinality.txt
-rw-r--r-- 1 mcc users 103K Feb 25 20:15 CTLCardinality.xml
-rw-r--r-- 1 mcc users 4.6K Feb 25 20:14 CTLFireability.txt
-rw-r--r-- 1 mcc users 39K Feb 25 20:14 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K Jan 29 11:40 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.3K Jan 29 11:40 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 3.6K Feb 25 16:04 LTLCardinality.txt
-rw-r--r-- 1 mcc users 26K Feb 25 16:04 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.2K Feb 25 16:04 LTLFireability.txt
-rw-r--r-- 1 mcc users 18K Feb 25 16:04 LTLFireability.xml
-rw-r--r-- 1 mcc users 12K Feb 25 20:16 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 132K Feb 25 20:16 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 14K Feb 25 20:16 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 127K Feb 25 20:16 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.5K Feb 25 16:04 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.6K Feb 25 16:04 UpperBounds.xml
-rw-r--r-- 1 mcc users 6 Mar 5 18:22 equiv_col
-rw-r--r-- 1 mcc users 6 Mar 5 18:22 instance
-rw-r--r-- 1 mcc users 6 Mar 5 18:22 iscolored
-rw-r--r-- 1 mcc users 16K Mar 5 18:22 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME FMS-PT-00002-CTLCardinality-00
FORMULA_NAME FMS-PT-00002-CTLCardinality-01
FORMULA_NAME FMS-PT-00002-CTLCardinality-02
FORMULA_NAME FMS-PT-00002-CTLCardinality-03
FORMULA_NAME FMS-PT-00002-CTLCardinality-04
FORMULA_NAME FMS-PT-00002-CTLCardinality-05
FORMULA_NAME FMS-PT-00002-CTLCardinality-06
FORMULA_NAME FMS-PT-00002-CTLCardinality-07
FORMULA_NAME FMS-PT-00002-CTLCardinality-08
FORMULA_NAME FMS-PT-00002-CTLCardinality-09
FORMULA_NAME FMS-PT-00002-CTLCardinality-10
FORMULA_NAME FMS-PT-00002-CTLCardinality-11
FORMULA_NAME FMS-PT-00002-CTLCardinality-12
FORMULA_NAME FMS-PT-00002-CTLCardinality-13
FORMULA_NAME FMS-PT-00002-CTLCardinality-14
FORMULA_NAME FMS-PT-00002-CTLCardinality-15
=== Now, execution of the tool begins
BK_START 1679420298797
bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marcie
BK_EXAMINATION=CTLCardinality
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=FMS-PT-00002
Not applying reductions.
Model is PT
CTLCardinality PT
timeout --kill-after=10s --signal=SIGINT 1m for testing only
Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: /home/mcc/BenchKit/bin//../marcie/bin/marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --memory=6 --mcc-mode
parse successfull
net created successfully
Net: FMS_PT_00002
(NrP: 22 NrTr: 20 NrArc: 50)
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec
net check time: 0m 0.000sec
init dd package: 0m 2.828sec
RS generation: 0m 0.001sec
-> reachability set: #nodes 201 (2.0e+02) #states 3,444 (3)
starting MCC model checker
--------------------------
checking: ~ [AG [~ [AX [2<=M2]]]]
normalized: E [true U ~ [EX [~ [2<=M2]]]]
abstracting: (2<=M2)
states: 0
.-> the formula is FALSE
FORMULA FMS-PT-00002-CTLCardinality-07 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.004sec
checking: AG [~ [AX [EX [[AX [3<=P2wM2] & EF [P12s<=P12]]]]]]
normalized: ~ [E [true U ~ [EX [~ [EX [[~ [EX [~ [3<=P2wM2]]] & E [true U P12s<=P12]]]]]]]]
abstracting: (P12s<=P12)
states: 3,210 (3)
abstracting: (3<=P2wM2)
states: 0
...-> the formula is TRUE
FORMULA FMS-PT-00002-CTLCardinality-00 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.001sec
checking: ~ [EF [AF [[AX [P1d<=1] & AG [P1<=P2M2]]]]]
normalized: ~ [E [true U ~ [EG [~ [[~ [E [true U ~ [P1<=P2M2]]] & ~ [EX [~ [P1d<=1]]]]]]]]]
abstracting: (P1d<=1)
states: 3,324 (3)
.abstracting: (P1<=P2M2)
states: 2,754 (3)
EG iterations: 0
-> the formula is TRUE
FORMULA FMS-PT-00002-CTLCardinality-09 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.002sec
checking: ~ [[~ [EX [E [3<=P12s U ~ [[P1wP2<=3 & 3<=M3]]]]] | ~ [AG [AG [EX [P2wP1<=P2wP1]]]]]]
normalized: ~ [[~ [EX [E [3<=P12s U ~ [[P1wP2<=3 & 3<=M3]]]]] | E [true U E [true U ~ [EX [P2wP1<=P2wP1]]]]]]
abstracting: (P2wP1<=P2wP1)
states: 3,444 (3)
.abstracting: (3<=M3)
states: 0
abstracting: (P1wP2<=3)
states: 3,444 (3)
abstracting: (3<=P12s)
states: 0
.-> the formula is TRUE
FORMULA FMS-PT-00002-CTLCardinality-05 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.000sec
checking: EG [EF [[[EF [EG [P12M3<=P12wM3]] | 3<=P1M1] & EG [M1<=P1s]]]]
normalized: EG [E [true U [EG [M1<=P1s] & [E [true U EG [P12M3<=P12wM3]] | 3<=P1M1]]]]
abstracting: (3<=P1M1)
states: 0
abstracting: (P12M3<=P12wM3)
states: 3,210 (3)
.
EG iterations: 1
abstracting: (M1<=P1s)
states: 0
.
EG iterations: 1
.
EG iterations: 1
-> the formula is FALSE
FORMULA FMS-PT-00002-CTLCardinality-06 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.001sec
checking: EG [~ [[P1M1<=0 & ~ [E [[M2<=P2 & P12M3<=P1] U [P12<=3 | 2<=P1]]]]]]
normalized: EG [~ [[~ [E [[M2<=P2 & P12M3<=P1] U [P12<=3 | 2<=P1]]] & P1M1<=0]]]
abstracting: (P1M1<=0)
states: 2,580 (3)
abstracting: (2<=P1)
states: 120
abstracting: (P12<=3)
states: 3,444 (3)
abstracting: (P12M3<=P1)
states: 3,240 (3)
abstracting: (M2<=P2)
states: 1,548 (3)
EG iterations: 0
-> the formula is TRUE
FORMULA FMS-PT-00002-CTLCardinality-10 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.001sec
checking: ~ [E [[EG [[P2s<=3 | [~ [2<=P2wM2] & [P1wP2<=P2M2 | 3<=P12wM3]]]] | [P1s<=0 & AF [[~ [2<=P12] | ~ [P1<=P12s]]]]] U EG [~ [EG [[2<=P3M2 & P12M3<=1]]]]]]
normalized: ~ [E [[[~ [EG [~ [[~ [P1<=P12s] | ~ [2<=P12]]]]] & P1s<=0] | EG [[[[P1wP2<=P2M2 | 3<=P12wM3] & ~ [2<=P2wM2]] | P2s<=3]]] U EG [~ [EG [[2<=P3M2 & P12M3<=1]]]]]]
abstracting: (P12M3<=1)
states: 3,438 (3)
abstracting: (2<=P3M2)
states: 574
.
EG iterations: 1
.
EG iterations: 1
abstracting: (P2s<=3)
states: 3,444 (3)
abstracting: (2<=P2wM2)
states: 126
abstracting: (3<=P12wM3)
states: 0
abstracting: (P1wP2<=P2M2)
states: 2,754 (3)
EG iterations: 0
abstracting: (P1s<=0)
states: 2,580 (3)
abstracting: (2<=P12)
states: 6
abstracting: (P1<=P12s)
states: 2,616 (3)
.
EG iterations: 1
-> the formula is FALSE
FORMULA FMS-PT-00002-CTLCardinality-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.003sec
checking: E [AG [M3<=P12] U AG [[EF [E [P1<=1 U P12s<=1]] | [EF [[1<=M1 & P2wP1<=P2wP1]] & E [[3<=M2 & P1wP2<=3] U ~ [M3<=P12]]]]]]
normalized: E [~ [E [true U ~ [M3<=P12]]] U ~ [E [true U ~ [[[E [[3<=M2 & P1wP2<=3] U ~ [M3<=P12]] & E [true U [1<=M1 & P2wP1<=P2wP1]]] | E [true U E [P1<=1 U P12s<=1]]]]]]]
abstracting: (P12s<=1)
states: 3,438 (3)
abstracting: (P1<=1)
states: 3,324 (3)
abstracting: (P2wP1<=P2wP1)
states: 3,444 (3)
abstracting: (1<=M1)
states: 3,444 (3)
abstracting: (M3<=P12)
states: 18
abstracting: (P1wP2<=3)
states: 3,444 (3)
abstracting: (3<=M2)
states: 0
abstracting: (M3<=P12)
states: 18
-> the formula is TRUE
FORMULA FMS-PT-00002-CTLCardinality-14 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.002sec
checking: E [~ [E [AF [EF [P1wM1<=0]] U A [~ [3<=M1] U 3<=P3M2]]] U [[EG [P3M2<=P1s] & EG [AX [[P2d<=P3 | M2<=2]]]] & [~ [P2<=3] & EF [~ [[[P3<=1 & P2wP1<=M1] & ~ [2<=M2]]]]]]]
normalized: E [~ [E [~ [EG [~ [E [true U P1wM1<=0]]]] U [~ [EG [~ [3<=P3M2]]] & ~ [E [~ [3<=P3M2] U [~ [3<=P3M2] & 3<=M1]]]]]] U [[E [true U ~ [[~ [2<=M2] & [P3<=1 & P2wP1<=M1]]]] & ~ [P2<=3]] & [EG [~ [EX [~ [[P2d<=P3 | M2<=2]]]]] & EG [P3M2<=P1s]]]]
abstracting: (P3M2<=P1s)
states: 2,030 (3)
.
EG iterations: 1
abstracting: (M2<=2)
states: 3,444 (3)
abstracting: (P2d<=P3)
states: 2,952 (3)
.
EG iterations: 0
abstracting: (P2<=3)
states: 3,444 (3)
abstracting: (P2wP1<=M1)
states: 3,438 (3)
abstracting: (P3<=1)
states: 2,870 (3)
abstracting: (2<=M2)
states: 0
abstracting: (3<=M1)
states: 2,580 (3)
abstracting: (3<=P3M2)
states: 0
abstracting: (3<=P3M2)
states: 0
abstracting: (3<=P3M2)
states: 0
EG iterations: 0
abstracting: (P1wM1<=0)
states: 2,580 (3)
.
EG iterations: 1
-> the formula is FALSE
FORMULA FMS-PT-00002-CTLCardinality-04 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.005sec
checking: E [AX [[~ [[[EX [P2M2<=1] & AG [P3<=0]] & 2<=P1d]] | E [[[P1wP2<=P2wP1 & 2<=P2s] | [P12wM3<=3 | P2wP1<=2]] U [1<=M2 & [P1<=3 | 3<=M2]]]]] U EG [A [P1wP2<=2 U AG [A [P2wP1<=1 U 1<=P1wM1]]]]]
normalized: E [~ [EX [~ [[E [[[P12wM3<=3 | P2wP1<=2] | [P1wP2<=P2wP1 & 2<=P2s]] U [[P1<=3 | 3<=M2] & 1<=M2]] | ~ [[[~ [E [true U ~ [P3<=0]]] & EX [P2M2<=1]] & 2<=P1d]]]]]] U EG [[~ [EG [E [true U ~ [[~ [EG [~ [1<=P1wM1]]] & ~ [E [~ [1<=P1wM1] U [~ [P2wP1<=1] & ~ [1<=P1wM1]]]]]]]]] & ~ [E [E [true U ~ [[~ [EG [~ [1<=P1wM1]]] & ~ [E [~ [1<=P1wM1] U [~ [P2wP1<=1] & ~ [1<=P1wM1]]]]]]] U [~ [P1wP2<=2] & E [true U ~ [[~ [EG [~ [1<=P1wM1]]] & ~ [E [~ [1<=P1wM1] U [~ [P2wP1<=1] & ~ [1<=P1wM1]]]]]]]]]]]]]
abstracting: (1<=P1wM1)
states: 864
abstracting: (P2wP1<=1)
states: 3,318 (3)
abstracting: (1<=P1wM1)
states: 864
abstracting: (1<=P1wM1)
states: 864
.
EG iterations: 1
abstracting: (P1wP2<=2)
states: 3,444 (3)
abstracting: (1<=P1wM1)
states: 864
abstracting: (P2wP1<=1)
states: 3,318 (3)
abstracting: (1<=P1wM1)
states: 864
abstracting: (1<=P1wM1)
states: 864
.
EG iterations: 1
abstracting: (1<=P1wM1)
states: 864
abstracting: (P2wP1<=1)
states: 3,318 (3)
abstracting: (1<=P1wM1)
states: 864
abstracting: (1<=P1wM1)
states: 864
.
EG iterations: 1
EG iterations: 0
.
EG iterations: 1
abstracting: (2<=P1d)
states: 120
abstracting: (P2M2<=1)
states: 3,444 (3)
.abstracting: (P3<=0)
states: 1,722 (3)
abstracting: (1<=M2)
states: 2,670 (3)
abstracting: (3<=M2)
states: 0
abstracting: (P1<=3)
states: 3,444 (3)
abstracting: (2<=P2s)
states: 126
abstracting: (P1wP2<=P2wP1)
states: 2,790 (3)
abstracting: (P2wP1<=2)
states: 3,444 (3)
abstracting: (P12wM3<=3)
states: 3,444 (3)
.-> the formula is FALSE
FORMULA FMS-PT-00002-CTLCardinality-03 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.007sec
checking: E [[EF [AG [E [P12s<=3 U 1<=M1]]] & ~ [[[[1<=P2d | E [P2<=P1 U 2<=P12M3]] & [~ [P3s<=0] | [[P2M2<=P3 & 1<=P3s] | ~ [2<=P1d]]]] | EG [P2<=1]]]] U ~ [[P1s<=P2M2 & E [P2M2<=1 U AG [[3<=P2M2 | P2wM2<=0]]]]]]
normalized: E [[~ [[EG [P2<=1] | [[[~ [2<=P1d] | [P2M2<=P3 & 1<=P3s]] | ~ [P3s<=0]] & [E [P2<=P1 U 2<=P12M3] | 1<=P2d]]]] & E [true U ~ [E [true U ~ [E [P12s<=3 U 1<=M1]]]]]] U ~ [[E [P2M2<=1 U ~ [E [true U ~ [[3<=P2M2 | P2wM2<=0]]]]] & P1s<=P2M2]]]
abstracting: (P1s<=P2M2)
states: 2,754 (3)
abstracting: (P2wM2<=0)
states: 2,544 (3)
abstracting: (3<=P2M2)
states: 0
abstracting: (P2M2<=1)
states: 3,444 (3)
abstracting: (1<=M1)
states: 3,444 (3)
abstracting: (P12s<=3)
states: 3,444 (3)
abstracting: (1<=P2d)
states: 900
abstracting: (2<=P12M3)
states: 6
abstracting: (P2<=P1)
states: 2,754 (3)
abstracting: (P3s<=0)
states: 1,722 (3)
abstracting: (1<=P3s)
states: 1,722 (3)
abstracting: (P2M2<=P3)
states: 3,057 (3)
abstracting: (2<=P1d)
states: 120
abstracting: (P2<=1)
states: 3,318 (3)
.
EG iterations: 1
-> the formula is TRUE
FORMULA FMS-PT-00002-CTLCardinality-08 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.007sec
checking: E [[[P1<=2 | ~ [[[AX [M2<=P12M3] | ~ [3<=M1]] | 2<=P2s]]] | AX [[~ [[[P2s<=1 & 2<=P1d] & [1<=P1d & M1<=P1wM1]]] | [P2s<=2 | AG [P3<=P3]]]]] U [[1<=P1 & P3M2<=M1] | [2<=P1wM1 | ~ [1<=P2d]]]]
normalized: E [[~ [EX [~ [[[~ [E [true U ~ [P3<=P3]]] | P2s<=2] | ~ [[[1<=P1d & M1<=P1wM1] & [P2s<=1 & 2<=P1d]]]]]]] | [~ [[[~ [3<=M1] | ~ [EX [~ [M2<=P12M3]]]] | 2<=P2s]] | P1<=2]] U [[~ [1<=P2d] | 2<=P1wM1] | [1<=P1 & P3M2<=M1]]]
abstracting: (P3M2<=M1)
states: 3,424 (3)
abstracting: (1<=P1)
states: 864
abstracting: (2<=P1wM1)
states: 120
abstracting: (1<=P2d)
states: 900
abstracting: (P1<=2)
states: 3,444 (3)
abstracting: (2<=P2s)
states: 126
abstracting: (M2<=P12M3)
states: 978
.abstracting: (3<=M1)
states: 2,580 (3)
abstracting: (2<=P1d)
states: 120
abstracting: (P2s<=1)
states: 3,318 (3)
abstracting: (M1<=P1wM1)
states: 0
abstracting: (1<=P1d)
states: 864
abstracting: (P2s<=2)
states: 3,444 (3)
abstracting: (P3<=P3)
states: 3,444 (3)
.-> the formula is TRUE
FORMULA FMS-PT-00002-CTLCardinality-11 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.003sec
checking: EF [E [P12<=2 U [~ [[[~ [1<=P12s] & ~ [P3M2<=P1d]] | [A [P1wM1<=1 U P1wM1<=P1] | ~ [1<=M2]]]] & [[A [P1M1<=P2M2 U P1d<=1] | [~ [P2wM2<=M3] | A [1<=P12M3 U P2wM2<=P2wP1]]] & [[[3<=P1s & P12wM3<=P3] & AF [2<=P1wM1]] & ~ [P1d<=1]]]]]]
normalized: E [true U E [P12<=2 U [[[~ [P1d<=1] & [~ [EG [~ [2<=P1wM1]]] & [3<=P1s & P12wM3<=P3]]] & [[[~ [EG [~ [P2wM2<=P2wP1]]] & ~ [E [~ [P2wM2<=P2wP1] U [~ [1<=P12M3] & ~ [P2wM2<=P2wP1]]]]] | ~ [P2wM2<=M3]] | [~ [EG [~ [P1d<=1]]] & ~ [E [~ [P1d<=1] U [~ [P1M1<=P2M2] & ~ [P1d<=1]]]]]]] & ~ [[[~ [1<=M2] | [~ [EG [~ [P1wM1<=P1]]] & ~ [E [~ [P1wM1<=P1] U [~ [P1wM1<=1] & ~ [P1wM1<=P1]]]]]] | [~ [P3M2<=P1d] & ~ [1<=P12s]]]]]]]
abstracting: (1<=P12s)
states: 240
abstracting: (P3M2<=P1d)
states: 2,030 (3)
abstracting: (P1wM1<=P1)
states: 2,700 (3)
abstracting: (P1wM1<=1)
states: 3,324 (3)
abstracting: (P1wM1<=P1)
states: 2,700 (3)
abstracting: (P1wM1<=P1)
states: 2,700 (3)
.
EG iterations: 1
abstracting: (1<=M2)
states: 2,670 (3)
abstracting: (P1d<=1)
states: 3,324 (3)
abstracting: (P1M1<=P2M2)
states: 2,754 (3)
abstracting: (P1d<=1)
states: 3,324 (3)
abstracting: (P1d<=1)
states: 3,324 (3)
.
EG iterations: 1
abstracting: (P2wM2<=M3)
states: 3,444 (3)
abstracting: (P2wM2<=P2wP1)
states: 2,670 (3)
abstracting: (1<=P12M3)
states: 240
abstracting: (P2wM2<=P2wP1)
states: 2,670 (3)
abstracting: (P2wM2<=P2wP1)
states: 2,670 (3)
.
EG iterations: 1
abstracting: (P12wM3<=P3)
states: 3,322 (3)
abstracting: (3<=P1s)
states: 0
abstracting: (2<=P1wM1)
states: 120
.
EG iterations: 1
abstracting: (P1d<=1)
states: 3,324 (3)
abstracting: (P12<=2)
states: 3,444 (3)
-> the formula is FALSE
FORMULA FMS-PT-00002-CTLCardinality-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.005sec
checking: A [A [[[E [A [2<=P1M1 U 1<=P12s] U P1wP2<=0] & [[~ [P2<=M3] | EF [P1d<=3]] & P3s<=0]] | E [A [P1<=3 U P1<=P2wM2] U P12wM3<=P12M3]] U [~ [[[[P12<=3 & P3s<=3] | 2<=P1d] & AF [P12<=P2wM2]]] & ~ [P1M1<=1]]] U ~ [[EF [AG [P2<=0]] & [A [[3<=P1wP2 & P12M3<=P3s] U ~ [2<=P3s]] & E [AX [P2wM2<=P2wP1] U ~ [P2wP1<=0]]]]]]
normalized: [~ [EG [[[E [~ [EX [~ [P2wM2<=P2wP1]]] U ~ [P2wP1<=0]] & [~ [EG [2<=P3s]] & ~ [E [2<=P3s U [~ [[3<=P1wP2 & P12M3<=P3s]] & 2<=P3s]]]]] & E [true U ~ [E [true U ~ [P2<=0]]]]]]] & ~ [E [[[E [~ [EX [~ [P2wM2<=P2wP1]]] U ~ [P2wP1<=0]] & [~ [EG [2<=P3s]] & ~ [E [2<=P3s U [~ [[3<=P1wP2 & P12M3<=P3s]] & 2<=P3s]]]]] & E [true U ~ [E [true U ~ [P2<=0]]]]] U [~ [[~ [EG [~ [[~ [P1M1<=1] & ~ [[~ [EG [~ [P12<=P2wM2]]] & [[P12<=3 & P3s<=3] | 2<=P1d]]]]]]] & ~ [E [~ [[~ [P1M1<=1] & ~ [[~ [EG [~ [P12<=P2wM2]]] & [[P12<=3 & P3s<=3] | 2<=P1d]]]]] U [~ [[E [[~ [EG [~ [P1<=P2wM2]]] & ~ [E [~ [P1<=P2wM2] U [~ [P1<=3] & ~ [P1<=P2wM2]]]]] U P12wM3<=P12M3] | [[[E [true U P1d<=3] | ~ [P2<=M3]] & P3s<=0] & E [[~ [EG [~ [1<=P12s]]] & ~ [E [~ [1<=P12s] U [~ [2<=P1M1] & ~ [1<=P12s]]]]] U P1wP2<=0]]]] & ~ [[~ [P1M1<=1] & ~ [[~ [EG [~ [P12<=P2wM2]]] & [[P12<=3 & P3s<=3] | 2<=P1d]]]]]]]]]] & [[E [~ [EX [~ [P2wM2<=P2wP1]]] U ~ [P2wP1<=0]] & [~ [EG [2<=P3s]] & ~ [E [2<=P3s U [~ [[3<=P1wP2 & P12M3<=P3s]] & 2<=P3s]]]]] & E [true U ~ [E [true U ~ [P2<=0]]]]]]]]]
abstracting: (P2<=0)
states: 2,544 (3)
abstracting: (2<=P3s)
states: 574
abstracting: (P12M3<=P3s)
states: 3,322 (3)
abstracting: (3<=P1wP2)
states: 0
abstracting: (2<=P3s)
states: 574
abstracting: (2<=P3s)
states: 574
.
EG iterations: 1
abstracting: (P2wP1<=0)
states: 2,544 (3)
abstracting: (P2wM2<=P2wP1)
states: 2,670 (3)
.abstracting: (2<=P1d)
states: 120
abstracting: (P3s<=3)
states: 3,444 (3)
abstracting: (P12<=3)
states: 3,444 (3)
abstracting: (P12<=P2wM2)
states: 3,240 (3)
.
EG iterations: 1
abstracting: (P1M1<=1)
states: 3,324 (3)
abstracting: (P1wP2<=0)
states: 2,580 (3)
abstracting: (1<=P12s)
states: 240
abstracting: (2<=P1M1)
states: 120
abstracting: (1<=P12s)
states: 240
abstracting: (1<=P12s)
states: 240
.
EG iterations: 1
abstracting: (P3s<=0)
states: 1,722 (3)
abstracting: (P2<=M3)
states: 3,444 (3)
abstracting: (P1d<=3)
states: 3,444 (3)
abstracting: (P12wM3<=P12M3)
states: 3,210 (3)
abstracting: (P1<=P2wM2)
states: 2,790 (3)
abstracting: (P1<=3)
states: 3,444 (3)
abstracting: (P1<=P2wM2)
states: 2,790 (3)
abstracting: (P1<=P2wM2)
states: 2,790 (3)
.
EG iterations: 1
abstracting: (2<=P1d)
states: 120
abstracting: (P3s<=3)
states: 3,444 (3)
abstracting: (P12<=3)
states: 3,444 (3)
abstracting: (P12<=P2wM2)
states: 3,240 (3)
.
EG iterations: 1
abstracting: (P1M1<=1)
states: 3,324 (3)
abstracting: (2<=P1d)
states: 120
abstracting: (P3s<=3)
states: 3,444 (3)
abstracting: (P12<=3)
states: 3,444 (3)
abstracting: (P12<=P2wM2)
states: 3,240 (3)
.
EG iterations: 1
abstracting: (P1M1<=1)
states: 3,324 (3)
EG iterations: 0
abstracting: (P2<=0)
states: 2,544 (3)
abstracting: (2<=P3s)
states: 574
abstracting: (P12M3<=P3s)
states: 3,322 (3)
abstracting: (3<=P1wP2)
states: 0
abstracting: (2<=P3s)
states: 574
abstracting: (2<=P3s)
states: 574
.
EG iterations: 1
abstracting: (P2wP1<=0)
states: 2,544 (3)
abstracting: (P2wM2<=P2wP1)
states: 2,670 (3)
.abstracting: (P2<=0)
states: 2,544 (3)
abstracting: (2<=P3s)
states: 574
abstracting: (P12M3<=P3s)
states: 3,322 (3)
abstracting: (3<=P1wP2)
states: 0
abstracting: (2<=P3s)
states: 574
abstracting: (2<=P3s)
states: 574
.
EG iterations: 1
abstracting: (P2wP1<=0)
states: 2,544 (3)
abstracting: (P2wM2<=P2wP1)
states: 2,670 (3)
..
EG iterations: 1
-> the formula is TRUE
FORMULA FMS-PT-00002-CTLCardinality-13 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.013sec
checking: E [[[[EX [[[P1<=P12 & P3<=P12wM3] & AF [3<=P1wP2]]] & [P1<=0 & AX [~ [P2s<=P1wP2]]]] & [A [[P1M1<=2 & AX [P2d<=P12M3]] U [~ [P3<=P3s] & AF [P12M3<=P3s]]] & [~ [3<=P12s] | A [P2M2<=P2d U AF [P2s<=P1M1]]]]] | 1<=M1] U [[[M2<=0 | ~ [1<=P2]] & EF [A [M2<=2 U A [2<=P2s U M2<=0]]]] & AX [EF [AG [3<=P3]]]]]
normalized: E [[1<=M1 | [[[[~ [EG [EG [~ [P2s<=P1M1]]]] & ~ [E [EG [~ [P2s<=P1M1]] U [~ [P2M2<=P2d] & EG [~ [P2s<=P1M1]]]]]] | ~ [3<=P12s]] & [~ [EG [~ [[~ [EG [~ [P12M3<=P3s]]] & ~ [P3<=P3s]]]]] & ~ [E [~ [[~ [EG [~ [P12M3<=P3s]]] & ~ [P3<=P3s]]] U [~ [[P1M1<=2 & ~ [EX [~ [P2d<=P12M3]]]]] & ~ [[~ [EG [~ [P12M3<=P3s]]] & ~ [P3<=P3s]]]]]]]] & [[P1<=0 & ~ [EX [P2s<=P1wP2]]] & EX [[~ [EG [~ [3<=P1wP2]]] & [P1<=P12 & P3<=P12wM3]]]]]] U [~ [EX [~ [E [true U ~ [E [true U ~ [3<=P3]]]]]]] & [E [true U [~ [EG [~ [[~ [EG [~ [M2<=0]]] & ~ [E [~ [M2<=0] U [~ [2<=P2s] & ~ [M2<=0]]]]]]]] & ~ [E [~ [[~ [EG [~ [M2<=0]]] & ~ [E [~ [M2<=0] U [~ [2<=P2s] & ~ [M2<=0]]]]]] U [~ [M2<=2] & ~ [[~ [EG [~ [M2<=0]]] & ~ [E [~ [M2<=0] U [~ [2<=P2s] & ~ [M2<=0]]]]]]]]]]] & [M2<=0 | ~ [1<=P2]]]]]
abstracting: (1<=P2)
states: 900
abstracting: (M2<=0)
states: 774
abstracting: (M2<=0)
states: 774
abstracting: (2<=P2s)
states: 126
abstracting: (M2<=0)
states: 774
abstracting: (M2<=0)
states: 774
.
EG iterations: 1
abstracting: (M2<=2)
states: 3,444 (3)
abstracting: (M2<=0)
states: 774
abstracting: (2<=P2s)
states: 126
abstracting: (M2<=0)
states: 774
abstracting: (M2<=0)
states: 774
.
EG iterations: 1
abstracting: (M2<=0)
states: 774
abstracting: (2<=P2s)
states: 126
abstracting: (M2<=0)
states: 774
abstracting: (M2<=0)
states: 774
.
EG iterations: 1
.
EG iterations: 1
abstracting: (3<=P3)
states: 0
.abstracting: (P3<=P12wM3)
states: 1,803 (3)
abstracting: (P1<=P12)
states: 2,616 (3)
abstracting: (3<=P1wP2)
states: 0
EG iterations: 0
.abstracting: (P2s<=P1wP2)
states: 2,754 (3)
.abstracting: (P1<=0)
states: 2,580 (3)
abstracting: (P3<=P3s)
states: 2,296 (3)
abstracting: (P12M3<=P3s)
states: 3,322 (3)
.
EG iterations: 1
abstracting: (P2d<=P12M3)
states: 2,580 (3)
.abstracting: (P1M1<=2)
states: 3,444 (3)
abstracting: (P3<=P3s)
states: 2,296 (3)
abstracting: (P12M3<=P3s)
states: 3,322 (3)
.
EG iterations: 1
abstracting: (P3<=P3s)
states: 2,296 (3)
abstracting: (P12M3<=P3s)
states: 3,322 (3)
.
EG iterations: 1
.
EG iterations: 1
abstracting: (3<=P12s)
states: 0
abstracting: (P2s<=P1M1)
states: 2,754 (3)
.
EG iterations: 1
abstracting: (P2M2<=P2d)
states: 2,796 (3)
abstracting: (P2s<=P1M1)
states: 2,754 (3)
.
EG iterations: 1
abstracting: (P2s<=P1M1)
states: 2,754 (3)
.
EG iterations: 1
.
EG iterations: 1
abstracting: (1<=M1)
states: 3,444 (3)
-> the formula is FALSE
FORMULA FMS-PT-00002-CTLCardinality-02 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.011sec
checking: E [[EF [E [E [M2<=P1d U P2<=P1d] U [[2<=P2wM2 | P2wP1<=3] & P3M2<=P3]]] | ~ [E [~ [A [1<=P1wM1 U P1wM1<=1]] U [[[3<=P2M2 | P2wM2<=P1] | [3<=P12 | 1<=P1M1]] | AF [P12M3<=1]]]]] U ~ [[EG [[[~ [M2<=2] | [P12<=P3 & P2wM2<=P3s]] | ~ [A [P2wM2<=1 U 3<=P2d]]]] | EG [[[[P2s<=P12M3 & P1s<=P1s] & E [2<=P2wM2 U P1d<=M3]] & [AG [P2d<=1] & [P12M3<=2 & 2<=P3M2]]]]]]]
normalized: E [[~ [E [~ [[~ [EG [~ [P1wM1<=1]]] & ~ [E [~ [P1wM1<=1] U [~ [1<=P1wM1] & ~ [P1wM1<=1]]]]]] U [~ [EG [~ [P12M3<=1]]] | [[3<=P12 | 1<=P1M1] | [3<=P2M2 | P2wM2<=P1]]]]] | E [true U E [E [M2<=P1d U P2<=P1d] U [P3M2<=P3 & [2<=P2wM2 | P2wP1<=3]]]]] U ~ [[EG [[[[P12M3<=2 & 2<=P3M2] & ~ [E [true U ~ [P2d<=1]]]] & [E [2<=P2wM2 U P1d<=M3] & [P2s<=P12M3 & P1s<=P1s]]]] | EG [[~ [[~ [EG [~ [3<=P2d]]] & ~ [E [~ [3<=P2d] U [~ [P2wM2<=1] & ~ [3<=P2d]]]]]] | [[P12<=P3 & P2wM2<=P3s] | ~ [M2<=2]]]]]]]
abstracting: (M2<=2)
states: 3,444 (3)
abstracting: (P2wM2<=P3s)
states: 2,952 (3)
abstracting: (P12<=P3)
states: 3,322 (3)
abstracting: (3<=P2d)
states: 0
abstracting: (P2wM2<=1)
states: 3,318 (3)
abstracting: (3<=P2d)
states: 0
abstracting: (3<=P2d)
states: 0
EG iterations: 0
EG iterations: 0
abstracting: (P1s<=P1s)
states: 3,444 (3)
abstracting: (P2s<=P12M3)
states: 2,580 (3)
abstracting: (P1d<=M3)
states: 3,444 (3)
abstracting: (2<=P2wM2)
states: 126
abstracting: (P2d<=1)
states: 3,318 (3)
abstracting: (2<=P3M2)
states: 574
abstracting: (P12M3<=2)
states: 3,444 (3)
.
EG iterations: 1
abstracting: (P2wP1<=3)
states: 3,444 (3)
abstracting: (2<=P2wM2)
states: 126
abstracting: (P3M2<=P3)
states: 2,296 (3)
abstracting: (P2<=P1d)
states: 2,754 (3)
abstracting: (M2<=P1d)
states: 1,434 (3)
abstracting: (P2wM2<=P1)
states: 2,754 (3)
abstracting: (3<=P2M2)
states: 0
abstracting: (1<=P1M1)
states: 864
abstracting: (3<=P12)
states: 0
abstracting: (P12M3<=1)
states: 3,438 (3)
.
EG iterations: 1
abstracting: (P1wM1<=1)
states: 3,324 (3)
abstracting: (1<=P1wM1)
states: 864
abstracting: (P1wM1<=1)
states: 3,324 (3)
abstracting: (P1wM1<=1)
states: 3,324 (3)
.
EG iterations: 1
-> the formula is FALSE
FORMULA FMS-PT-00002-CTLCardinality-01 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.007sec
totally nodes used: 22255 (2.2e+04)
number of garbage collections: 0
fire ops cache: hits/miss/sum: 43864 73559 117423
used/not used/entry size/cache size: 90032 67018832 16 1024MB
basic ops cache: hits/miss/sum: 20320 36118 56438
used/not used/entry size/cache size: 59696 16717520 12 192MB
unary ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 8 128MB
abstract ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 12 192MB
state nr cache: hits/miss/sum: 3476 4710 8186
used/not used/entry size/cache size: 4710 8383898 32 256MB
max state cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 8388608 32 256MB
uniqueHash elements/entry size/size: 67108864 4 256MB
0 67087603
1 20834
2 277
3 53
4 36
5 24
6 11
7 6
8 5
9 4
>= 10 11
Total processing time: 0m 4.607sec
BK_STOP 1679420303466
--------------------
content from stderr:
check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.002sec
iterations count:174 (8), effective:34 (1)
initing FirstDep: 0m 0.000sec
iterations count:26 (1), effective:2 (0)
iterations count:86 (4), effective:19 (0)
iterations count:20 (1), effective:0 (0)
iterations count:40 (2), effective:2 (0)
iterations count:20 (1), effective:0 (0)
iterations count:26 (1), effective:2 (0)
iterations count:23 (1), effective:1 (0)
iterations count:20 (1), effective:0 (0)
iterations count:20 (1), effective:0 (0)
iterations count:20 (1), effective:0 (0)
iterations count:32 (1), effective:2 (0)
iterations count:20 (1), effective:0 (0)
iterations count:56 (2), effective:14 (0)
iterations count:24 (1), effective:2 (0)
iterations count:24 (1), effective:2 (0)
iterations count:102 (5), effective:18 (0)
iterations count:24 (1), effective:2 (0)
iterations count:102 (5), effective:18 (0)
iterations count:24 (1), effective:2 (0)
iterations count:102 (5), effective:18 (0)
iterations count:24 (1), effective:2 (0)
iterations count:28 (1), effective:3 (0)
iterations count:23 (1), effective:1 (0)
iterations count:81 (4), effective:14 (0)
iterations count:20 (1), effective:0 (0)
iterations count:20 (1), effective:0 (0)
iterations count:193 (9), effective:39 (1)
iterations count:20 (1), effective:0 (0)
iterations count:36 (1), effective:7 (0)
iterations count:20 (1), effective:0 (0)
iterations count:30 (1), effective:1 (0)
iterations count:80 (4), effective:14 (0)
iterations count:20 (1), effective:0 (0)
iterations count:35 (1), effective:2 (0)
iterations count:22 (1), effective:1 (0)
iterations count:48 (2), effective:6 (0)
iterations count:20 (1), effective:0 (0)
iterations count:22 (1), effective:1 (0)
iterations count:158 (7), effective:32 (1)
iterations count:80 (4), effective:14 (0)
iterations count:20 (1), effective:0 (0)
iterations count:35 (1), effective:2 (0)
iterations count:80 (4), effective:14 (0)
iterations count:20 (1), effective:0 (0)
iterations count:35 (1), effective:2 (0)
iterations count:22 (1), effective:1 (0)
iterations count:22 (1), effective:1 (0)
iterations count:22 (1), effective:1 (0)
iterations count:81 (4), effective:14 (0)
iterations count:20 (1), effective:0 (0)
iterations count:88 (4), effective:16 (0)
iterations count:72 (3), effective:11 (0)
iterations count:139 (6), effective:27 (1)
iterations count:20 (1), effective:0 (0)
iterations count:144 (7), effective:28 (1)
iterations count:35 (1), effective:5 (0)
iterations count:40 (2), effective:6 (0)
iterations count:42 (2), effective:7 (0)
iterations count:20 (1), effective:0 (0)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="FMS-PT-00002"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marcie"
echo " Input is FMS-PT-00002, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r161-tall-167838844800185"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/FMS-PT-00002.tgz
mv FMS-PT-00002 execution
cd execution
if [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "UpperBounds" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] || [ "CTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME CTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;