About the Execution of Marcie+red for CSRepetitions-COL-04
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
13262.800 | 3600000.00 | 3631039.00 | 10624.20 | ??T?F???TT????T? | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fkordon/mcc2023-input.r074-smll-167814399700018.qcow2', fmt=qcow2 size=4294967296 backing_file=/data/fkordon/mcc2023-input.qcow2 cluster_size=65536 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
=====================================================================
Generated by BenchKit 2-5348
Executing tool marciexred
Input is CSRepetitions-COL-04, examination is CTLFireability
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r074-smll-167814399700018
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 512K
-rw-r--r-- 1 mcc users 7.0K Feb 25 11:54 CTLCardinality.txt
-rw-r--r-- 1 mcc users 62K Feb 25 11:54 CTLCardinality.xml
-rw-r--r-- 1 mcc users 5.5K Feb 25 11:52 CTLFireability.txt
-rw-r--r-- 1 mcc users 42K Feb 25 11:52 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K Jan 29 11:40 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.5K Jan 29 11:40 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 4.0K Feb 25 15:41 LTLCardinality.txt
-rw-r--r-- 1 mcc users 21K Feb 25 15:41 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.8K Feb 25 15:41 LTLFireability.txt
-rw-r--r-- 1 mcc users 19K Feb 25 15:41 LTLFireability.xml
-rw-r--r-- 1 mcc users 20K Feb 25 11:59 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 166K Feb 25 11:59 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 12K Feb 25 11:57 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 81K Feb 25 11:57 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.8K Feb 25 15:41 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.9K Feb 25 15:41 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Mar 5 18:22 equiv_pt
-rw-r--r-- 1 mcc users 3 Mar 5 18:22 instance
-rw-r--r-- 1 mcc users 5 Mar 5 18:22 iscolored
-rw-r--r-- 1 mcc users 14K Mar 5 18:22 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME CSRepetitions-COL-04-CTLFireability-00
FORMULA_NAME CSRepetitions-COL-04-CTLFireability-01
FORMULA_NAME CSRepetitions-COL-04-CTLFireability-02
FORMULA_NAME CSRepetitions-COL-04-CTLFireability-03
FORMULA_NAME CSRepetitions-COL-04-CTLFireability-04
FORMULA_NAME CSRepetitions-COL-04-CTLFireability-05
FORMULA_NAME CSRepetitions-COL-04-CTLFireability-06
FORMULA_NAME CSRepetitions-COL-04-CTLFireability-07
FORMULA_NAME CSRepetitions-COL-04-CTLFireability-08
FORMULA_NAME CSRepetitions-COL-04-CTLFireability-09
FORMULA_NAME CSRepetitions-COL-04-CTLFireability-10
FORMULA_NAME CSRepetitions-COL-04-CTLFireability-11
FORMULA_NAME CSRepetitions-COL-04-CTLFireability-12
FORMULA_NAME CSRepetitions-COL-04-CTLFireability-13
FORMULA_NAME CSRepetitions-COL-04-CTLFireability-14
FORMULA_NAME CSRepetitions-COL-04-CTLFireability-15
=== Now, execution of the tool begins
BK_START 1678222563572
bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marciexred
BK_EXAMINATION=CTLFireability
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=CSRepetitions-COL-04
Applying reductions before tool marcie
Invoking reducer
Running Version 202303021504
[2023-03-07 20:56:06] [INFO ] Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, CTLFireability, -timeout, 360, -rebuildPNML]
[2023-03-07 20:56:06] [INFO ] Parsing pnml file : /home/mcc/execution/model.pnml
[2023-03-07 20:56:06] [INFO ] Detected file is not PT type :http://www.pnml.org/version-2009/grammar/symmetricnet
log4j:WARN No appenders could be found for logger (org.apache.axiom.locator.DefaultOMMetaFactoryLocator).
log4j:WARN Please initialize the log4j system properly.
log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.
[2023-03-07 20:56:07] [WARNING] Using fallBack plugin, rng conformance not checked
[2023-03-07 20:56:07] [INFO ] Load time of PNML (colored model parsed with PNMLFW) : 1044 ms
[2023-03-07 20:56:07] [INFO ] Imported 6 HL places and 5 HL transitions for a total of 117 PT places and 176.0 transition bindings in 26 ms.
Parsed 16 properties from file /home/mcc/execution/CTLFireability.xml in 29 ms.
[2023-03-07 20:56:07] [INFO ] Built PT skeleton of HLPN with 6 places and 5 transitions 15 arcs in 7 ms.
[2023-03-07 20:56:07] [INFO ] Skeletonized 16 HLPN properties in 4 ms.
Computed a total of 0 stabilizing places and 1 stable transitions
Remains 7 properties that can be checked using skeleton over-approximation.
Computed a total of 0 stabilizing places and 1 stable transitions
Finished random walk after 23 steps, including 0 resets, run visited all 10 properties in 14 ms. (steps per millisecond=1 )
[2023-03-07 20:56:08] [INFO ] Flatten gal took : 26 ms
[2023-03-07 20:56:08] [INFO ] Flatten gal took : 4 ms
Transition Send_Answer forces synchronizations/join behavior on parameter c of sort Client
Symmetric sort wr.t. initial and guards and successors and join/free detected :Server
Symmetric sort wr.t. initial detected :Server
Symmetric sort wr.t. initial and guards detected :Server
Applying symmetric unfolding of full symmetric sort :Server domain size was 4
[2023-03-07 20:56:08] [INFO ] Unfolded HLPN to a Petri net with 66 places and 80 transitions 240 arcs in 19 ms.
[2023-03-07 20:56:08] [INFO ] Unfolded 16 HLPN properties in 1 ms.
Support contains 66 out of 66 places. Attempting structural reductions.
Starting structural reductions in LTL mode, iteration 0 : 66/66 places, 80/80 transitions.
Applied a total of 0 rules in 12 ms. Remains 66 /66 variables (removed 0) and now considering 80/80 (removed 0) transitions.
// Phase 1: matrix 80 rows 66 cols
[2023-03-07 20:56:08] [INFO ] Computed 17 place invariants in 14 ms
[2023-03-07 20:56:08] [INFO ] Implicit Places using invariants in 285 ms returned []
[2023-03-07 20:56:08] [INFO ] Invariant cache hit.
[2023-03-07 20:56:08] [INFO ] State equation strengthened by 16 read => feed constraints.
[2023-03-07 20:56:08] [INFO ] Implicit Places using invariants and state equation in 156 ms returned []
Implicit Place search using SMT with State Equation took 497 ms to find 0 implicit places.
[2023-03-07 20:56:08] [INFO ] Invariant cache hit.
[2023-03-07 20:56:08] [INFO ] Dead Transitions using invariants and state equation in 125 ms found 0 transitions.
Finished structural reductions in LTL mode , in 1 iterations and 638 ms. Remains : 66/66 places, 80/80 transitions.
Support contains 66 out of 66 places after structural reductions.
[2023-03-07 20:56:09] [INFO ] Flatten gal took : 36 ms
[2023-03-07 20:56:09] [INFO ] Flatten gal took : 68 ms
[2023-03-07 20:56:09] [INFO ] Input system was already deterministic with 80 transitions.
Finished random walk after 38 steps, including 0 resets, run visited all 18 properties in 20 ms. (steps per millisecond=1 )
[2023-03-07 20:56:09] [INFO ] Flatten gal took : 31 ms
[2023-03-07 20:56:09] [INFO ] Flatten gal took : 27 ms
[2023-03-07 20:56:10] [INFO ] Input system was already deterministic with 80 transitions.
Computed a total of 0 stabilizing places and 16 stable transitions
Starting structural reductions in LTL mode, iteration 0 : 66/66 places, 80/80 transitions.
Applied a total of 0 rules in 1 ms. Remains 66 /66 variables (removed 0) and now considering 80/80 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 1 ms. Remains : 66/66 places, 80/80 transitions.
[2023-03-07 20:56:10] [INFO ] Flatten gal took : 15 ms
[2023-03-07 20:56:10] [INFO ] Flatten gal took : 7 ms
[2023-03-07 20:56:10] [INFO ] Input system was already deterministic with 80 transitions.
Starting structural reductions in LTL mode, iteration 0 : 66/66 places, 80/80 transitions.
Applied a total of 0 rules in 2 ms. Remains 66 /66 variables (removed 0) and now considering 80/80 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 2 ms. Remains : 66/66 places, 80/80 transitions.
[2023-03-07 20:56:10] [INFO ] Flatten gal took : 5 ms
[2023-03-07 20:56:10] [INFO ] Flatten gal took : 7 ms
[2023-03-07 20:56:10] [INFO ] Input system was already deterministic with 80 transitions.
Starting structural reductions in LTL mode, iteration 0 : 66/66 places, 80/80 transitions.
Applied a total of 0 rules in 3 ms. Remains 66 /66 variables (removed 0) and now considering 80/80 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 3 ms. Remains : 66/66 places, 80/80 transitions.
[2023-03-07 20:56:10] [INFO ] Flatten gal took : 5 ms
[2023-03-07 20:56:10] [INFO ] Flatten gal took : 6 ms
[2023-03-07 20:56:10] [INFO ] Input system was already deterministic with 80 transitions.
Starting structural reductions in LTL mode, iteration 0 : 66/66 places, 80/80 transitions.
Applied a total of 0 rules in 1 ms. Remains 66 /66 variables (removed 0) and now considering 80/80 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 1 ms. Remains : 66/66 places, 80/80 transitions.
[2023-03-07 20:56:10] [INFO ] Flatten gal took : 7 ms
[2023-03-07 20:56:10] [INFO ] Flatten gal took : 7 ms
[2023-03-07 20:56:10] [INFO ] Input system was already deterministic with 80 transitions.
Starting structural reductions in SI_CTL mode, iteration 0 : 66/66 places, 80/80 transitions.
Performed 16 Post agglomeration using F-continuation condition.Transition count delta: 16
Deduced a syphon composed of 16 places in 1 ms
Reduce places removed 32 places and 0 transitions.
Iterating global reduction 0 with 48 rules applied. Total rules applied 48 place count 34 transition count 64
Discarding 15 places :
Symmetric choice reduction at 0 with 15 rule applications. Total rules 63 place count 19 transition count 49
Iterating global reduction 0 with 15 rules applied. Total rules applied 78 place count 19 transition count 49
Applied a total of 78 rules in 20 ms. Remains 19 /66 variables (removed 47) and now considering 49/80 (removed 31) transitions.
Finished structural reductions in SI_CTL mode , in 1 iterations and 20 ms. Remains : 19/66 places, 49/80 transitions.
[2023-03-07 20:56:10] [INFO ] Flatten gal took : 3 ms
[2023-03-07 20:56:10] [INFO ] Flatten gal took : 3 ms
[2023-03-07 20:56:10] [INFO ] Input system was already deterministic with 49 transitions.
Starting structural reductions in LTL mode, iteration 0 : 66/66 places, 80/80 transitions.
Applied a total of 0 rules in 0 ms. Remains 66 /66 variables (removed 0) and now considering 80/80 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 1 ms. Remains : 66/66 places, 80/80 transitions.
[2023-03-07 20:56:10] [INFO ] Flatten gal took : 5 ms
[2023-03-07 20:56:10] [INFO ] Flatten gal took : 7 ms
[2023-03-07 20:56:10] [INFO ] Input system was already deterministic with 80 transitions.
Starting structural reductions in SI_CTL mode, iteration 0 : 66/66 places, 80/80 transitions.
Applied a total of 0 rules in 7 ms. Remains 66 /66 variables (removed 0) and now considering 80/80 (removed 0) transitions.
Finished structural reductions in SI_CTL mode , in 1 iterations and 7 ms. Remains : 66/66 places, 80/80 transitions.
[2023-03-07 20:56:10] [INFO ] Flatten gal took : 5 ms
[2023-03-07 20:56:10] [INFO ] Flatten gal took : 6 ms
[2023-03-07 20:56:10] [INFO ] Input system was already deterministic with 80 transitions.
Starting structural reductions in LTL mode, iteration 0 : 66/66 places, 80/80 transitions.
Applied a total of 0 rules in 1 ms. Remains 66 /66 variables (removed 0) and now considering 80/80 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 1 ms. Remains : 66/66 places, 80/80 transitions.
[2023-03-07 20:56:10] [INFO ] Flatten gal took : 6 ms
[2023-03-07 20:56:10] [INFO ] Flatten gal took : 7 ms
[2023-03-07 20:56:10] [INFO ] Input system was already deterministic with 80 transitions.
Starting structural reductions in LTL mode, iteration 0 : 66/66 places, 80/80 transitions.
Applied a total of 0 rules in 1 ms. Remains 66 /66 variables (removed 0) and now considering 80/80 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 2 ms. Remains : 66/66 places, 80/80 transitions.
[2023-03-07 20:56:10] [INFO ] Flatten gal took : 5 ms
[2023-03-07 20:56:10] [INFO ] Flatten gal took : 5 ms
[2023-03-07 20:56:10] [INFO ] Input system was already deterministic with 80 transitions.
Starting structural reductions in LTL mode, iteration 0 : 66/66 places, 80/80 transitions.
Applied a total of 0 rules in 1 ms. Remains 66 /66 variables (removed 0) and now considering 80/80 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 1 ms. Remains : 66/66 places, 80/80 transitions.
[2023-03-07 20:56:10] [INFO ] Flatten gal took : 5 ms
[2023-03-07 20:56:10] [INFO ] Flatten gal took : 6 ms
[2023-03-07 20:56:10] [INFO ] Input system was already deterministic with 80 transitions.
Starting structural reductions in LTL mode, iteration 0 : 66/66 places, 80/80 transitions.
Applied a total of 0 rules in 1 ms. Remains 66 /66 variables (removed 0) and now considering 80/80 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 1 ms. Remains : 66/66 places, 80/80 transitions.
[2023-03-07 20:56:10] [INFO ] Flatten gal took : 6 ms
[2023-03-07 20:56:10] [INFO ] Flatten gal took : 5 ms
[2023-03-07 20:56:10] [INFO ] Input system was already deterministic with 80 transitions.
Starting structural reductions in LTL mode, iteration 0 : 66/66 places, 80/80 transitions.
Applied a total of 0 rules in 1 ms. Remains 66 /66 variables (removed 0) and now considering 80/80 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 1 ms. Remains : 66/66 places, 80/80 transitions.
[2023-03-07 20:56:10] [INFO ] Flatten gal took : 6 ms
[2023-03-07 20:56:10] [INFO ] Flatten gal took : 6 ms
[2023-03-07 20:56:10] [INFO ] Input system was already deterministic with 80 transitions.
Starting structural reductions in LTL mode, iteration 0 : 66/66 places, 80/80 transitions.
Applied a total of 0 rules in 1 ms. Remains 66 /66 variables (removed 0) and now considering 80/80 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 1 ms. Remains : 66/66 places, 80/80 transitions.
[2023-03-07 20:56:10] [INFO ] Flatten gal took : 5 ms
[2023-03-07 20:56:10] [INFO ] Flatten gal took : 5 ms
[2023-03-07 20:56:10] [INFO ] Input system was already deterministic with 80 transitions.
Starting structural reductions in LTL mode, iteration 0 : 66/66 places, 80/80 transitions.
Applied a total of 0 rules in 1 ms. Remains 66 /66 variables (removed 0) and now considering 80/80 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 1 ms. Remains : 66/66 places, 80/80 transitions.
[2023-03-07 20:56:10] [INFO ] Flatten gal took : 5 ms
[2023-03-07 20:56:10] [INFO ] Flatten gal took : 5 ms
[2023-03-07 20:56:10] [INFO ] Input system was already deterministic with 80 transitions.
Starting structural reductions in LTL mode, iteration 0 : 66/66 places, 80/80 transitions.
Applied a total of 0 rules in 2 ms. Remains 66 /66 variables (removed 0) and now considering 80/80 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 2 ms. Remains : 66/66 places, 80/80 transitions.
[2023-03-07 20:56:10] [INFO ] Flatten gal took : 4 ms
[2023-03-07 20:56:10] [INFO ] Flatten gal took : 5 ms
[2023-03-07 20:56:10] [INFO ] Input system was already deterministic with 80 transitions.
Starting structural reductions in LTL mode, iteration 0 : 66/66 places, 80/80 transitions.
Applied a total of 0 rules in 1 ms. Remains 66 /66 variables (removed 0) and now considering 80/80 (removed 0) transitions.
Finished structural reductions in LTL mode , in 1 iterations and 1 ms. Remains : 66/66 places, 80/80 transitions.
[2023-03-07 20:56:10] [INFO ] Flatten gal took : 4 ms
[2023-03-07 20:56:10] [INFO ] Flatten gal took : 5 ms
[2023-03-07 20:56:10] [INFO ] Input system was already deterministic with 80 transitions.
[2023-03-07 20:56:10] [INFO ] Flatten gal took : 15 ms
[2023-03-07 20:56:10] [INFO ] Flatten gal took : 14 ms
[2023-03-07 20:56:10] [INFO ] Export to MCC of 16 properties in file /home/mcc/execution/CTLFireability.sr.xml took 20 ms.
[2023-03-07 20:56:10] [INFO ] Export to PNML in file /home/mcc/execution/model.sr.pnml of net with 66 places, 80 transitions and 240 arcs took 1 ms.
Total runtime 4214 ms.
There are residual formulas that ITS could not solve within timeout
timeout --kill-after=10s --signal=SIGINT 1m for testing only
Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: /home/mcc/BenchKit/bin//../reducer/bin//../../marcie/bin/marcie --net-file=model.pnml --mcc-file=CTLFireability.xml --memory=6 --mcc-mode
parse successfull
net created successfully
Net: Petri
(NrP: 66 NrTr: 80 NrArc: 240)
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.001sec
net check time: 0m 0.000sec
init dd package: 0m 3.701sec
RS generation: 6m41.514sec
-> reachability set: #nodes 132596 (1.3e+05) #states 1,793,233,039,548 (12)
starting MCC model checker
--------------------------
checking: EX [EX [EF [AX [AG [[[[[1<=p32 | 1<=p17] | [1<=p18 | 1<=p19]] | [[1<=p20 | 1<=p21] | [1<=p22 | 1<=p23]]] | [[[1<=p24 | 1<=p25] | [1<=p26 | 1<=p27]] | [[1<=p28 | 1<=p29] | [1<=p30 | 1<=p31]]]]]]]]]
normalized: EX [EX [E [true U ~ [EX [E [true U ~ [[[[[1<=p28 | 1<=p29] | [1<=p30 | 1<=p31]] | [[1<=p26 | 1<=p27] | [1<=p24 | 1<=p25]]] | [[[1<=p22 | 1<=p23] | [1<=p20 | 1<=p21]] | [[1<=p18 | 1<=p19] | [1<=p32 | 1<=p17]]]]]]]]]]]
abstracting: (1<=p17)
states: 341,764,125,564 (11)
abstracting: (1<=p32)
states: 341,764,125,564 (11)
abstracting: (1<=p19)
states: 341,764,125,564 (11)
abstracting: (1<=p18)
states: 341,764,125,564 (11)
abstracting: (1<=p21)
states: 341,764,125,564 (11)
abstracting: (1<=p20)
states: 341,764,125,564 (11)
abstracting: (1<=p23)
states: 341,764,125,564 (11)
abstracting: (1<=p22)
states: 341,764,125,564 (11)
abstracting: (1<=p25)
states: 341,764,125,564 (11)
abstracting: (1<=p24)
states: 341,764,125,564 (11)
abstracting: (1<=p27)
states: 341,764,125,564 (11)
abstracting: (1<=p26)
states: 341,764,125,564 (11)
abstracting: (1<=p31)
states: 341,764,125,564 (11)
abstracting: (1<=p30)
states: 341,764,125,564 (11)
abstracting: (1<=p29)
states: 341,764,125,564 (11)
abstracting: (1<=p28)
states: 341,764,125,564 (11)
before gc: list nodes free: 1520519
after gc: idd nodes used:1283626, unused:62716374; list nodes free:379061027
.MC time: 3m20.033sec
checking: AX [A [~ [[[[[[1<=p18 & 1<=p33] | [1<=p23 & 1<=p33]] | [[1<=p30 & 1<=p33] | [1<=p31 & 1<=p33]]] | [[[1<=p21 & 1<=p33] | [1<=p25 & 1<=p33]] | [[1<=p27 & 1<=p33] | [1<=p29 & 1<=p33]]]] | [[[[1<=p24 & 1<=p33] | [1<=p19 & 1<=p33]] | [[1<=p17 & 1<=p33] | [1<=p32 & 1<=p33]]] | [[[1<=p20 & 1<=p33] | [1<=p22 & 1<=p33]] | [[1<=p28 & 1<=p33] | [1<=p26 & 1<=p33]]]]]] U [[[[1<=p32 | 1<=p17] | [1<=p18 | 1<=p19]] | [[1<=p20 | 1<=p21] | [1<=p22 | 1<=p23]]] | [[[1<=p24 | 1<=p25] | [1<=p26 | 1<=p27]] | [[1<=p28 | 1<=p29] | [1<=p30 | 1<=p31]]]]]]
normalized: ~ [EX [~ [[~ [EG [~ [[[[[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p24 | 1<=p25]]] | [[[1<=p22 | 1<=p23] | [1<=p20 | 1<=p21]] | [[1<=p18 | 1<=p19] | [1<=p32 | 1<=p17]]]]]]] & ~ [E [~ [[[[[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p24 | 1<=p25]]] | [[[1<=p22 | 1<=p23] | [1<=p20 | 1<=p21]] | [[1<=p18 | 1<=p19] | [1<=p32 | 1<=p17]]]]] U [[[[[[1<=p26 & 1<=p33] | [1<=p28 & 1<=p33]] | [[1<=p22 & 1<=p33] | [1<=p20 & 1<=p33]]] | [[[1<=p32 & 1<=p33] | [1<=p17 & 1<=p33]] | [[1<=p19 & 1<=p33] | [1<=p24 & 1<=p33]]]] | [[[[1<=p29 & 1<=p33] | [1<=p27 & 1<=p33]] | [[1<=p25 & 1<=p33] | [1<=p21 & 1<=p33]]] | [[[1<=p31 & 1<=p33] | [1<=p30 & 1<=p33]] | [[1<=p23 & 1<=p33] | [1<=p18 & 1<=p33]]]]] & ~ [[[[[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p24 | 1<=p25]]] | [[[1<=p22 | 1<=p23] | [1<=p20 | 1<=p21]] | [[1<=p18 | 1<=p19] | [1<=p32 | 1<=p17]]]]]]]]]]]]
abstracting: (1<=p17)
states: 341,764,125,564 (11)
abstracting: (1<=p32)
states: 341,764,125,564 (11)
abstracting: (1<=p19)
states: 341,764,125,564 (11)
abstracting: (1<=p18)
states: 341,764,125,564 (11)
abstracting: (1<=p21)
states: 341,764,125,564 (11)
abstracting: (1<=p20)
states: 341,764,125,564 (11)
abstracting: (1<=p23)
states: 341,764,125,564 (11)
abstracting: (1<=p22)
states: 341,764,125,564 (11)
abstracting: (1<=p25)
states: 341,764,125,564 (11)
abstracting: (1<=p24)
states: 341,764,125,564 (11)
abstracting: (1<=p27)
states: 341,764,125,564 (11)
abstracting: (1<=p26)
states: 341,764,125,564 (11)
abstracting: (1<=p29)
states: 341,764,125,564 (11)
abstracting: (1<=p28)
states: 341,764,125,564 (11)
abstracting: (1<=p31)
states: 341,764,125,564 (11)
abstracting: (1<=p30)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p18)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p23)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p30)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p31)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p21)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p25)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p27)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p29)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p24)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p19)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p17)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p32)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p20)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p22)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p28)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p26)
states: 341,764,125,564 (11)
abstracting: (1<=p17)
states: 341,764,125,564 (11)
abstracting: (1<=p32)
states: 341,764,125,564 (11)
abstracting: (1<=p19)
states: 341,764,125,564 (11)
abstracting: (1<=p18)
states: 341,764,125,564 (11)
abstracting: (1<=p21)
states: 341,764,125,564 (11)
abstracting: (1<=p20)
states: 341,764,125,564 (11)
abstracting: (1<=p23)
states: 341,764,125,564 (11)
abstracting: (1<=p22)
states: 341,764,125,564 (11)
abstracting: (1<=p25)
states: 341,764,125,564 (11)
abstracting: (1<=p24)
states: 341,764,125,564 (11)
abstracting: (1<=p27)
states: 341,764,125,564 (11)
abstracting: (1<=p26)
states: 341,764,125,564 (11)
abstracting: (1<=p29)
states: 341,764,125,564 (11)
abstracting: (1<=p28)
states: 341,764,125,564 (11)
abstracting: (1<=p31)
states: 341,764,125,564 (11)
abstracting: (1<=p30)
states: 341,764,125,564 (11)
abstracting: (1<=p17)
states: 341,764,125,564 (11)
abstracting: (1<=p32)
states: 341,764,125,564 (11)
abstracting: (1<=p19)
states: 341,764,125,564 (11)
abstracting: (1<=p18)
states: 341,764,125,564 (11)
abstracting: (1<=p21)
states: 341,764,125,564 (11)
abstracting: (1<=p20)
states: 341,764,125,564 (11)
abstracting: (1<=p23)
states: 341,764,125,564 (11)
abstracting: (1<=p22)
states: 341,764,125,564 (11)
abstracting: (1<=p25)
states: 341,764,125,564 (11)
abstracting: (1<=p24)
states: 341,764,125,564 (11)
abstracting: (1<=p27)
states: 341,764,125,564 (11)
abstracting: (1<=p26)
states: 341,764,125,564 (11)
abstracting: (1<=p29)
states: 341,764,125,564 (11)
abstracting: (1<=p28)
states: 341,764,125,564 (11)
abstracting: (1<=p31)
states: 341,764,125,564 (11)
abstracting: (1<=p30)
states: 341,764,125,564 (11)
..........................
EG iterations: 26
.-> the formula is TRUE
FORMULA CSRepetitions-COL-04-CTLFireability-02 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 9.866sec
checking: AF [EG [~ [E [AG [[[[[[1<=p18 & 1<=p33] | [1<=p23 & 1<=p33]] | [[1<=p30 & 1<=p33] | [1<=p31 & 1<=p33]]] | [[[1<=p21 & 1<=p33] | [1<=p25 & 1<=p33]] | [[1<=p27 & 1<=p33] | [1<=p29 & 1<=p33]]]] | [[[[1<=p24 & 1<=p33] | [1<=p19 & 1<=p33]] | [[1<=p17 & 1<=p33] | [1<=p32 & 1<=p33]]] | [[[1<=p20 & 1<=p33] | [1<=p22 & 1<=p33]] | [[1<=p28 & 1<=p33] | [1<=p26 & 1<=p33]]]]]] U EG [[[[[1<=p32 | 1<=p17] | [1<=p18 | 1<=p19]] | [[1<=p20 | 1<=p21] | [1<=p22 | 1<=p23]]] | [[[1<=p24 | 1<=p25] | [1<=p26 | 1<=p27]] | [[1<=p28 | 1<=p29] | [1<=p30 | 1<=p31]]]]]]]]]
normalized: ~ [EG [~ [EG [~ [E [~ [E [true U ~ [[[[[[1<=p26 & 1<=p33] | [1<=p28 & 1<=p33]] | [[1<=p22 & 1<=p33] | [1<=p20 & 1<=p33]]] | [[[1<=p32 & 1<=p33] | [1<=p17 & 1<=p33]] | [[1<=p19 & 1<=p33] | [1<=p24 & 1<=p33]]]] | [[[[1<=p29 & 1<=p33] | [1<=p27 & 1<=p33]] | [[1<=p25 & 1<=p33] | [1<=p21 & 1<=p33]]] | [[[1<=p31 & 1<=p33] | [1<=p30 & 1<=p33]] | [[1<=p23 & 1<=p33] | [1<=p18 & 1<=p33]]]]]]]] U EG [[[[[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p24 | 1<=p25]]] | [[[1<=p22 | 1<=p23] | [1<=p20 | 1<=p21]] | [[1<=p18 | 1<=p19] | [1<=p32 | 1<=p17]]]]]]]]]]]
abstracting: (1<=p17)
states: 341,764,125,564 (11)
abstracting: (1<=p32)
states: 341,764,125,564 (11)
abstracting: (1<=p19)
states: 341,764,125,564 (11)
abstracting: (1<=p18)
states: 341,764,125,564 (11)
abstracting: (1<=p21)
states: 341,764,125,564 (11)
abstracting: (1<=p20)
states: 341,764,125,564 (11)
abstracting: (1<=p23)
states: 341,764,125,564 (11)
abstracting: (1<=p22)
states: 341,764,125,564 (11)
abstracting: (1<=p25)
states: 341,764,125,564 (11)
abstracting: (1<=p24)
states: 341,764,125,564 (11)
abstracting: (1<=p27)
states: 341,764,125,564 (11)
abstracting: (1<=p26)
states: 341,764,125,564 (11)
abstracting: (1<=p29)
states: 341,764,125,564 (11)
abstracting: (1<=p28)
states: 341,764,125,564 (11)
abstracting: (1<=p31)
states: 341,764,125,564 (11)
abstracting: (1<=p30)
states: 341,764,125,564 (11)
................
before gc: list nodes free: 1574712
after gc: idd nodes used:1548165, unused:62451835; list nodes free:404697789
.........
EG iterations: 25
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p18)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p23)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p30)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p31)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p21)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p25)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p27)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p29)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p24)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p19)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p17)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p32)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p20)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p22)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p28)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p26)
states: 341,764,125,564 (11)
MC time: 3m20.122sec
checking: AF [EX [A [~ [AG [[[[[1<=p34 | 1<=p35] | [1<=p36 | 1<=p37]] | [[1<=p39 | 1<=p38] | [1<=p41 | 1<=p40]]] | [[[1<=p43 | 1<=p42] | [1<=p45 | 1<=p44]] | [[1<=p47 | 1<=p46] | [1<=p49 | 1<=p48]]]]]] U E [[[[[1<=p32 | 1<=p17] | [1<=p18 | 1<=p19]] | [[1<=p20 | 1<=p21] | [1<=p22 | 1<=p23]]] | [[[1<=p24 | 1<=p25] | [1<=p26 | 1<=p27]] | [[1<=p28 | 1<=p29] | [1<=p30 | 1<=p31]]]] U ~ [[[[[1<=p34 | 1<=p35] | [1<=p36 | 1<=p37]] | [[1<=p39 | 1<=p38] | [1<=p41 | 1<=p40]]] | [[[1<=p43 | 1<=p42] | [1<=p45 | 1<=p44]] | [[1<=p47 | 1<=p46] | [1<=p49 | 1<=p48]]]]]]]]]
normalized: ~ [EG [~ [EX [[~ [EG [~ [E [[[[[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p24 | 1<=p25]]] | [[[1<=p22 | 1<=p23] | [1<=p20 | 1<=p21]] | [[1<=p18 | 1<=p19] | [1<=p32 | 1<=p17]]]] U ~ [[[[[1<=p49 | 1<=p48] | [1<=p47 | 1<=p46]] | [[1<=p45 | 1<=p44] | [1<=p43 | 1<=p42]]] | [[[1<=p41 | 1<=p40] | [1<=p39 | 1<=p38]] | [[1<=p36 | 1<=p37] | [1<=p34 | 1<=p35]]]]]]]]] & ~ [E [~ [E [[[[[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p24 | 1<=p25]]] | [[[1<=p22 | 1<=p23] | [1<=p20 | 1<=p21]] | [[1<=p18 | 1<=p19] | [1<=p32 | 1<=p17]]]] U ~ [[[[[1<=p49 | 1<=p48] | [1<=p47 | 1<=p46]] | [[1<=p45 | 1<=p44] | [1<=p43 | 1<=p42]]] | [[[1<=p41 | 1<=p40] | [1<=p39 | 1<=p38]] | [[1<=p36 | 1<=p37] | [1<=p34 | 1<=p35]]]]]]] U [~ [E [true U ~ [[[[[1<=p41 | 1<=p40] | [1<=p39 | 1<=p38]] | [[1<=p36 | 1<=p37] | [1<=p34 | 1<=p35]]] | [[[1<=p49 | 1<=p48] | [1<=p47 | 1<=p46]] | [[1<=p45 | 1<=p44] | [1<=p43 | 1<=p42]]]]]]] & ~ [E [[[[[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p24 | 1<=p25]]] | [[[1<=p22 | 1<=p23] | [1<=p20 | 1<=p21]] | [[1<=p18 | 1<=p19] | [1<=p32 | 1<=p17]]]] U ~ [[[[[1<=p49 | 1<=p48] | [1<=p47 | 1<=p46]] | [[1<=p45 | 1<=p44] | [1<=p43 | 1<=p42]]] | [[[1<=p41 | 1<=p40] | [1<=p39 | 1<=p38]] | [[1<=p36 | 1<=p37] | [1<=p34 | 1<=p35]]]]]]]]]]]]]]]
abstracting: (1<=p35)
states: 886,509,506,748 (11)
abstracting: (1<=p34)
states: 886,509,506,748 (11)
abstracting: (1<=p37)
states: 886,509,506,748 (11)
abstracting: (1<=p36)
states: 886,509,506,748 (11)
abstracting: (1<=p38)
states: 886,509,506,748 (11)
abstracting: (1<=p39)
states: 886,509,506,748 (11)
abstracting: (1<=p40)
states: 886,509,506,748 (11)
abstracting: (1<=p41)
states: 886,509,506,748 (11)
abstracting: (1<=p42)
states: 886,509,506,748 (11)
abstracting: (1<=p43)
states: 886,509,506,748 (11)
abstracting: (1<=p44)
states: 886,509,506,748 (11)
abstracting: (1<=p45)
states: 886,509,506,748 (11)
abstracting: (1<=p46)
states: 886,509,506,748 (11)
abstracting: (1<=p47)
states: 886,509,506,748 (11)
abstracting: (1<=p48)
states: 886,509,506,748 (11)
abstracting: (1<=p49)
states: 886,509,506,748 (11)
abstracting: (1<=p17)
states: 341,764,125,564 (11)
abstracting: (1<=p32)
states: 341,764,125,564 (11)
abstracting: (1<=p19)
states: 341,764,125,564 (11)
abstracting: (1<=p18)
states: 341,764,125,564 (11)
abstracting: (1<=p21)
states: 341,764,125,564 (11)
abstracting: (1<=p20)
states: 341,764,125,564 (11)
abstracting: (1<=p23)
states: 341,764,125,564 (11)
abstracting: (1<=p22)
states: 341,764,125,564 (11)
abstracting: (1<=p25)
states: 341,764,125,564 (11)
abstracting: (1<=p24)
states: 341,764,125,564 (11)
abstracting: (1<=p27)
states: 341,764,125,564 (11)
abstracting: (1<=p26)
states: 341,764,125,564 (11)
abstracting: (1<=p29)
states: 341,764,125,564 (11)
abstracting: (1<=p28)
states: 341,764,125,564 (11)
abstracting: (1<=p31)
states: 341,764,125,564 (11)
abstracting: (1<=p30)
states: 341,764,125,564 (11)
abstracting: (1<=p42)
states: 886,509,506,748 (11)
abstracting: (1<=p43)
states: 886,509,506,748 (11)
abstracting: (1<=p44)
states: 886,509,506,748 (11)
abstracting: (1<=p45)
states: 886,509,506,748 (11)
abstracting: (1<=p46)
states: 886,509,506,748 (11)
abstracting: (1<=p47)
states: 886,509,506,748 (11)
abstracting: (1<=p48)
states: 886,509,506,748 (11)
abstracting: (1<=p49)
states: 886,509,506,748 (11)
abstracting: (1<=p35)
states: 886,509,506,748 (11)
abstracting: (1<=p34)
states: 886,509,506,748 (11)
abstracting: (1<=p37)
states: 886,509,506,748 (11)
abstracting: (1<=p36)
states: 886,509,506,748 (11)
abstracting: (1<=p38)
states: 886,509,506,748 (11)
abstracting: (1<=p39)
states: 886,509,506,748 (11)
abstracting: (1<=p40)
states: 886,509,506,748 (11)
abstracting: (1<=p41)
states: 886,509,506,748 (11)
abstracting: (1<=p35)
states: 886,509,506,748 (11)
abstracting: (1<=p34)
states: 886,509,506,748 (11)
abstracting: (1<=p37)
states: 886,509,506,748 (11)
abstracting: (1<=p36)
states: 886,509,506,748 (11)
abstracting: (1<=p38)
states: 886,509,506,748 (11)
abstracting: (1<=p39)
states: 886,509,506,748 (11)
abstracting: (1<=p40)
states: 886,509,506,748 (11)
abstracting: (1<=p41)
states: 886,509,506,748 (11)
abstracting: (1<=p42)
states: 886,509,506,748 (11)
abstracting: (1<=p43)
states: 886,509,506,748 (11)
abstracting: (1<=p44)
states: 886,509,506,748 (11)
abstracting: (1<=p45)
states: 886,509,506,748 (11)
abstracting: (1<=p46)
states: 886,509,506,748 (11)
abstracting: (1<=p47)
states: 886,509,506,748 (11)
abstracting: (1<=p48)
states: 886,509,506,748 (11)
abstracting: (1<=p49)
states: 886,509,506,748 (11)
abstracting: (1<=p17)
states: 341,764,125,564 (11)
abstracting: (1<=p32)
states: 341,764,125,564 (11)
abstracting: (1<=p19)
states: 341,764,125,564 (11)
abstracting: (1<=p18)
states: 341,764,125,564 (11)
abstracting: (1<=p21)
states: 341,764,125,564 (11)
abstracting: (1<=p20)
states: 341,764,125,564 (11)
abstracting: (1<=p23)
states: 341,764,125,564 (11)
abstracting: (1<=p22)
states: 341,764,125,564 (11)
abstracting: (1<=p25)
states: 341,764,125,564 (11)
abstracting: (1<=p24)
states: 341,764,125,564 (11)
abstracting: (1<=p27)
states: 341,764,125,564 (11)
abstracting: (1<=p26)
states: 341,764,125,564 (11)
abstracting: (1<=p29)
states: 341,764,125,564 (11)
abstracting: (1<=p28)
states: 341,764,125,564 (11)
abstracting: (1<=p31)
states: 341,764,125,564 (11)
abstracting: (1<=p30)
states: 341,764,125,564 (11)
abstracting: (1<=p35)
states: 886,509,506,748 (11)
abstracting: (1<=p34)
states: 886,509,506,748 (11)
abstracting: (1<=p37)
states: 886,509,506,748 (11)
abstracting: (1<=p36)
states: 886,509,506,748 (11)
abstracting: (1<=p38)
states: 886,509,506,748 (11)
abstracting: (1<=p39)
states: 886,509,506,748 (11)
abstracting: (1<=p40)
states: 886,509,506,748 (11)
abstracting: (1<=p41)
states: 886,509,506,748 (11)
abstracting: (1<=p42)
states: 886,509,506,748 (11)
abstracting: (1<=p43)
states: 886,509,506,748 (11)
abstracting: (1<=p44)
states: 886,509,506,748 (11)
abstracting: (1<=p45)
states: 886,509,506,748 (11)
abstracting: (1<=p46)
states: 886,509,506,748 (11)
abstracting: (1<=p47)
states: 886,509,506,748 (11)
abstracting: (1<=p48)
states: 886,509,506,748 (11)
abstracting: (1<=p49)
states: 886,509,506,748 (11)
abstracting: (1<=p17)
states: 341,764,125,564 (11)
abstracting: (1<=p32)
states: 341,764,125,564 (11)
abstracting: (1<=p19)
states: 341,764,125,564 (11)
abstracting: (1<=p18)
states: 341,764,125,564 (11)
abstracting: (1<=p21)
states: 341,764,125,564 (11)
abstracting: (1<=p20)
states: 341,764,125,564 (11)
abstracting: (1<=p23)
states: 341,764,125,564 (11)
abstracting: (1<=p22)
states: 341,764,125,564 (11)
abstracting: (1<=p25)
states: 341,764,125,564 (11)
abstracting: (1<=p24)
states: 341,764,125,564 (11)
abstracting: (1<=p27)
states: 341,764,125,564 (11)
abstracting: (1<=p26)
states: 341,764,125,564 (11)
abstracting: (1<=p29)
states: 341,764,125,564 (11)
abstracting: (1<=p28)
states: 341,764,125,564 (11)
abstracting: (1<=p31)
states: 341,764,125,564 (11)
abstracting: (1<=p30)
states: 341,764,125,564 (11)
.........................
EG iterations: 25
..
EG iterations: 1
-> the formula is TRUE
FORMULA CSRepetitions-COL-04-CTLFireability-09 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m17.942sec
checking: AF [[EG [A [[[[[1<=p34 | 1<=p35] | [1<=p36 | 1<=p37]] | [[1<=p39 | 1<=p38] | [1<=p41 | 1<=p40]]] | [[[1<=p43 | 1<=p42] | [1<=p45 | 1<=p44]] | [[1<=p47 | 1<=p46] | [1<=p49 | 1<=p48]]]] U [[[[[1<=p10 & 1<=p59] | [1<=p13 & 1<=p62]] | [[1<=p15 & 1<=p64] | [1<=p16 & 1<=p65]]] | [[[1<=p2 & 1<=p51] | [1<=p5 & 1<=p54]] | [[1<=p7 & 1<=p56] | [1<=p8 & 1<=p57]]]] | [[[[1<=p11 & 1<=p60] | [1<=p12 & 1<=p61]] | [[1<=p14 & 1<=p63] | [1<=p1 & 1<=p50]]] | [[[1<=p3 & 1<=p52] | [1<=p4 & 1<=p53]] | [[1<=p6 & 1<=p55] | [1<=p9 & 1<=p58]]]]]]] | [[[[p34<=0 & p35<=0] & [p36<=0 & p37<=0]] & [[p39<=0 & p38<=0] & [p41<=0 & p40<=0]]] & [[[p43<=0 & p42<=0] & [p45<=0 & p44<=0]] & [[p47<=0 & p46<=0] & [p49<=0 & p48<=0]]]]]]
normalized: ~ [EG [~ [[[[[[p49<=0 & p48<=0] & [p47<=0 & p46<=0]] & [[p45<=0 & p44<=0] & [p43<=0 & p42<=0]]] & [[[p41<=0 & p40<=0] & [p39<=0 & p38<=0]] & [[p36<=0 & p37<=0] & [p34<=0 & p35<=0]]]] | EG [[~ [EG [~ [[[[[[1<=p9 & 1<=p58] | [1<=p6 & 1<=p55]] | [[1<=p4 & 1<=p53] | [1<=p3 & 1<=p52]]] | [[[1<=p1 & 1<=p50] | [1<=p14 & 1<=p63]] | [[1<=p12 & 1<=p61] | [1<=p11 & 1<=p60]]]] | [[[[1<=p8 & 1<=p57] | [1<=p7 & 1<=p56]] | [[1<=p5 & 1<=p54] | [1<=p2 & 1<=p51]]] | [[[1<=p16 & 1<=p65] | [1<=p15 & 1<=p64]] | [[1<=p13 & 1<=p62] | [1<=p10 & 1<=p59]]]]]]]] & ~ [E [~ [[[[[[1<=p9 & 1<=p58] | [1<=p6 & 1<=p55]] | [[1<=p4 & 1<=p53] | [1<=p3 & 1<=p52]]] | [[[1<=p1 & 1<=p50] | [1<=p14 & 1<=p63]] | [[1<=p12 & 1<=p61] | [1<=p11 & 1<=p60]]]] | [[[[1<=p8 & 1<=p57] | [1<=p7 & 1<=p56]] | [[1<=p5 & 1<=p54] | [1<=p2 & 1<=p51]]] | [[[1<=p16 & 1<=p65] | [1<=p15 & 1<=p64]] | [[1<=p13 & 1<=p62] | [1<=p10 & 1<=p59]]]]]] U [~ [[[[[1<=p49 | 1<=p48] | [1<=p47 | 1<=p46]] | [[1<=p45 | 1<=p44] | [1<=p43 | 1<=p42]]] | [[[1<=p41 | 1<=p40] | [1<=p39 | 1<=p38]] | [[1<=p36 | 1<=p37] | [1<=p34 | 1<=p35]]]]] & ~ [[[[[[1<=p9 & 1<=p58] | [1<=p6 & 1<=p55]] | [[1<=p4 & 1<=p53] | [1<=p3 & 1<=p52]]] | [[[1<=p1 & 1<=p50] | [1<=p14 & 1<=p63]] | [[1<=p12 & 1<=p61] | [1<=p11 & 1<=p60]]]] | [[[[1<=p8 & 1<=p57] | [1<=p7 & 1<=p56]] | [[1<=p5 & 1<=p54] | [1<=p2 & 1<=p51]]] | [[[1<=p16 & 1<=p65] | [1<=p15 & 1<=p64]] | [[1<=p13 & 1<=p62] | [1<=p10 & 1<=p59]]]]]]]]]]]]]]]
abstracting: (1<=p59)
states: 357,518,864,208 (11)
abstracting: (1<=p10)
states: 906,723,532,800 (11)
abstracting: (1<=p62)
states: 357,518,864,208 (11)
abstracting: (1<=p13)
states: 906,723,532,800 (11)
abstracting: (1<=p64)
states: 357,518,864,208 (11)
abstracting: (1<=p15)
states: 906,723,532,800 (11)
abstracting: (1<=p65)
states: 357,518,864,208 (11)
abstracting: (1<=p16)
states: 906,723,532,800 (11)
abstracting: (1<=p51)
states: 357,518,864,208 (11)
abstracting: (1<=p2)
states: 906,723,532,800 (11)
abstracting: (1<=p54)
states: 357,518,864,208 (11)
abstracting: (1<=p5)
states: 906,723,532,800 (11)
abstracting: (1<=p56)
states: 357,518,864,208 (11)
abstracting: (1<=p7)
states: 906,723,532,800 (11)
abstracting: (1<=p57)
states: 357,518,864,208 (11)
abstracting: (1<=p8)
states: 906,723,532,800 (11)
abstracting: (1<=p60)
states: 357,518,864,208 (11)
abstracting: (1<=p11)
states: 906,723,532,800 (11)
abstracting: (1<=p61)
states: 357,518,864,208 (11)
abstracting: (1<=p12)
states: 906,723,532,800 (11)
abstracting: (1<=p63)
states: 357,518,864,208 (11)
abstracting: (1<=p14)
states: 906,723,532,800 (11)
abstracting: (1<=p50)
states: 357,518,864,208 (11)
abstracting: (1<=p1)
states: 906,723,532,800 (11)
abstracting: (1<=p52)
states: 357,518,864,208 (11)
abstracting: (1<=p3)
states: 906,723,532,800 (11)
abstracting: (1<=p53)
states: 357,518,864,208 (11)
abstracting: (1<=p4)
states: 906,723,532,800 (11)
abstracting: (1<=p55)
states: 357,518,864,208 (11)
abstracting: (1<=p6)
states: 906,723,532,800 (11)
abstracting: (1<=p58)
states: 357,518,864,208 (11)
abstracting: (1<=p9)
states: 906,723,532,800 (11)
abstracting: (1<=p35)
states: 886,509,506,748 (11)
abstracting: (1<=p34)
states: 886,509,506,748 (11)
abstracting: (1<=p37)
states: 886,509,506,748 (11)
abstracting: (1<=p36)
states: 886,509,506,748 (11)
abstracting: (1<=p38)
states: 886,509,506,748 (11)
abstracting: (1<=p39)
states: 886,509,506,748 (11)
abstracting: (1<=p40)
states: 886,509,506,748 (11)
abstracting: (1<=p41)
states: 886,509,506,748 (11)
abstracting: (1<=p42)
states: 886,509,506,748 (11)
abstracting: (1<=p43)
states: 886,509,506,748 (11)
abstracting: (1<=p44)
states: 886,509,506,748 (11)
abstracting: (1<=p45)
states: 886,509,506,748 (11)
abstracting: (1<=p46)
states: 886,509,506,748 (11)
abstracting: (1<=p47)
states: 886,509,506,748 (11)
abstracting: (1<=p48)
states: 886,509,506,748 (11)
abstracting: (1<=p49)
states: 886,509,506,748 (11)
abstracting: (1<=p59)
states: 357,518,864,208 (11)
abstracting: (1<=p10)
states: 906,723,532,800 (11)
abstracting: (1<=p62)
states: 357,518,864,208 (11)
abstracting: (1<=p13)
states: 906,723,532,800 (11)
abstracting: (1<=p64)
states: 357,518,864,208 (11)
abstracting: (1<=p15)
states: 906,723,532,800 (11)
abstracting: (1<=p65)
states: 357,518,864,208 (11)
abstracting: (1<=p16)
states: 906,723,532,800 (11)
abstracting: (1<=p51)
states: 357,518,864,208 (11)
abstracting: (1<=p2)
states: 906,723,532,800 (11)
abstracting: (1<=p54)
states: 357,518,864,208 (11)
abstracting: (1<=p5)
states: 906,723,532,800 (11)
abstracting: (1<=p56)
states: 357,518,864,208 (11)
abstracting: (1<=p7)
states: 906,723,532,800 (11)
abstracting: (1<=p57)
states: 357,518,864,208 (11)
abstracting: (1<=p8)
states: 906,723,532,800 (11)
abstracting: (1<=p60)
states: 357,518,864,208 (11)
abstracting: (1<=p11)
states: 906,723,532,800 (11)
abstracting: (1<=p61)
states: 357,518,864,208 (11)
abstracting: (1<=p12)
states: 906,723,532,800 (11)
abstracting: (1<=p63)
states: 357,518,864,208 (11)
abstracting: (1<=p14)
states: 906,723,532,800 (11)
abstracting: (1<=p50)
states: 357,518,864,208 (11)
abstracting: (1<=p1)
states: 906,723,532,800 (11)
abstracting: (1<=p52)
states: 357,518,864,208 (11)
abstracting: (1<=p3)
states: 906,723,532,800 (11)
abstracting: (1<=p53)
states: 357,518,864,208 (11)
abstracting: (1<=p4)
states: 906,723,532,800 (11)
abstracting: (1<=p55)
states: 357,518,864,208 (11)
abstracting: (1<=p6)
states: 906,723,532,800 (11)
abstracting: (1<=p58)
states: 357,518,864,208 (11)
abstracting: (1<=p9)
states: 906,723,532,800 (11)
abstracting: (1<=p59)
states: 357,518,864,208 (11)
abstracting: (1<=p10)
states: 906,723,532,800 (11)
abstracting: (1<=p62)
states: 357,518,864,208 (11)
abstracting: (1<=p13)
states: 906,723,532,800 (11)
abstracting: (1<=p64)
states: 357,518,864,208 (11)
abstracting: (1<=p15)
states: 906,723,532,800 (11)
abstracting: (1<=p65)
states: 357,518,864,208 (11)
abstracting: (1<=p16)
states: 906,723,532,800 (11)
abstracting: (1<=p51)
states: 357,518,864,208 (11)
abstracting: (1<=p2)
states: 906,723,532,800 (11)
abstracting: (1<=p54)
states: 357,518,864,208 (11)
abstracting: (1<=p5)
states: 906,723,532,800 (11)
abstracting: (1<=p56)
states: 357,518,864,208 (11)
abstracting: (1<=p7)
states: 906,723,532,800 (11)
abstracting: (1<=p57)
states: 357,518,864,208 (11)
abstracting: (1<=p8)
states: 906,723,532,800 (11)
abstracting: (1<=p60)
states: 357,518,864,208 (11)
abstracting: (1<=p11)
states: 906,723,532,800 (11)
abstracting: (1<=p61)
states: 357,518,864,208 (11)
abstracting: (1<=p12)
states: 906,723,532,800 (11)
abstracting: (1<=p63)
states: 357,518,864,208 (11)
abstracting: (1<=p14)
states: 906,723,532,800 (11)
abstracting: (1<=p50)
states: 357,518,864,208 (11)
abstracting: (1<=p1)
states: 906,723,532,800 (11)
abstracting: (1<=p52)
states: 357,518,864,208 (11)
abstracting: (1<=p3)
states: 906,723,532,800 (11)
abstracting: (1<=p53)
states: 357,518,864,208 (11)
abstracting: (1<=p4)
states: 906,723,532,800 (11)
abstracting: (1<=p55)
states: 357,518,864,208 (11)
abstracting: (1<=p6)
states: 906,723,532,800 (11)
abstracting: (1<=p58)
states: 357,518,864,208 (11)
abstracting: (1<=p9)
states: 906,723,532,800 (11)
before gc: list nodes free: 29472212
after gc: idd nodes used:9193906, unused:54806094; list nodes free:357862006
before gc: list nodes free: 1052112
after gc: idd nodes used:9280667, unused:54719333; list nodes free:423841014
.MC time: 3m32.357sec
checking: AG [AF [[EX [[[[[[[p0<=0 | p16<=0] & [p0<=0 | p5<=0]] & [[p0<=0 | p4<=0] & [p0<=0 | p7<=0]]] & [[[p0<=0 | p6<=0] & [p0<=0 | p1<=0]] & [[p0<=0 | p3<=0] & [p0<=0 | p2<=0]]]] & [[[[p0<=0 | p13<=0] & [p0<=0 | p12<=0]] & [[p0<=0 | p15<=0] & [p0<=0 | p14<=0]]] & [[[p0<=0 | p9<=0] & [p0<=0 | p8<=0]] & [[p0<=0 | p11<=0] & [p0<=0 | p10<=0]]]]] | [[[[p32<=0 & p17<=0] & [p18<=0 & p19<=0]] & [[p20<=0 & p21<=0] & [p22<=0 & p23<=0]]] & [[[p24<=0 & p25<=0] & [p26<=0 & p27<=0]] & [[p28<=0 & p29<=0] & [p30<=0 & p31<=0]]]]]] | [[[[[p18<=0 | p33<=0] & [p23<=0 | p33<=0]] & [[p30<=0 | p33<=0] & [p31<=0 | p33<=0]]] & [[[p21<=0 | p33<=0] & [p25<=0 | p33<=0]] & [[p27<=0 | p33<=0] & [p29<=0 | p33<=0]]]] & [[[[p24<=0 | p33<=0] & [p19<=0 | p33<=0]] & [[p17<=0 | p33<=0] & [p32<=0 | p33<=0]]] & [[[p20<=0 | p33<=0] & [p22<=0 | p33<=0]] & [[p28<=0 | p33<=0] & [p26<=0 | p33<=0]]]]]]]]
normalized: ~ [E [true U EG [~ [[[[[[[p26<=0 | p33<=0] & [p28<=0 | p33<=0]] & [[p22<=0 | p33<=0] & [p20<=0 | p33<=0]]] & [[[p32<=0 | p33<=0] & [p17<=0 | p33<=0]] & [[p19<=0 | p33<=0] & [p24<=0 | p33<=0]]]] & [[[[p29<=0 | p33<=0] & [p27<=0 | p33<=0]] & [[p25<=0 | p33<=0] & [p21<=0 | p33<=0]]] & [[[p31<=0 | p33<=0] & [p30<=0 | p33<=0]] & [[p23<=0 | p33<=0] & [p18<=0 | p33<=0]]]]] | EX [[[[[[p30<=0 & p31<=0] & [p28<=0 & p29<=0]] & [[p26<=0 & p27<=0] & [p24<=0 & p25<=0]]] & [[[p22<=0 & p23<=0] & [p20<=0 & p21<=0]] & [[p18<=0 & p19<=0] & [p32<=0 & p17<=0]]]] | [[[[[p0<=0 | p10<=0] & [p0<=0 | p11<=0]] & [[p0<=0 | p8<=0] & [p0<=0 | p9<=0]]] & [[[p0<=0 | p14<=0] & [p0<=0 | p15<=0]] & [[p0<=0 | p12<=0] & [p0<=0 | p13<=0]]]] & [[[[p0<=0 | p2<=0] & [p0<=0 | p3<=0]] & [[p0<=0 | p1<=0] & [p0<=0 | p6<=0]]] & [[[p0<=0 | p7<=0] & [p0<=0 | p4<=0]] & [[p0<=0 | p5<=0] & [p0<=0 | p16<=0]]]]]]]]]]]]
abstracting: (p16<=0)
states: 886,509,506,748 (11)
abstracting: (p0<=0)
states: 1,431,258,050,748 (12)
abstracting: (p5<=0)
states: 886,509,506,748 (11)
abstracting: (p0<=0)
states: 1,431,258,050,748 (12)
abstracting: (p4<=0)
states: 886,509,506,748 (11)
abstracting: (p0<=0)
states: 1,431,258,050,748 (12)
abstracting: (p7<=0)
states: 886,509,506,748 (11)
abstracting: (p0<=0)
states: 1,431,258,050,748 (12)
abstracting: (p6<=0)
states: 886,509,506,748 (11)
abstracting: (p0<=0)
states: 1,431,258,050,748 (12)
abstracting: (p1<=0)
states: 886,509,506,748 (11)
abstracting: (p0<=0)
states: 1,431,258,050,748 (12)
abstracting: (p3<=0)
states: 886,509,506,748 (11)
abstracting: (p0<=0)
states: 1,431,258,050,748 (12)
abstracting: (p2<=0)
states: 886,509,506,748 (11)
abstracting: (p0<=0)
states: 1,431,258,050,748 (12)
abstracting: (p13<=0)
states: 886,509,506,748 (11)
abstracting: (p0<=0)
states: 1,431,258,050,748 (12)
abstracting: (p12<=0)
states: 886,509,506,748 (11)
abstracting: (p0<=0)
states: 1,431,258,050,748 (12)
abstracting: (p15<=0)
states: 886,509,506,748 (11)
abstracting: (p0<=0)
states: 1,431,258,050,748 (12)
abstracting: (p14<=0)
states: 886,509,506,748 (11)
abstracting: (p0<=0)
states: 1,431,258,050,748 (12)
abstracting: (p9<=0)
states: 886,509,506,748 (11)
abstracting: (p0<=0)
states: 1,431,258,050,748 (12)
abstracting: (p8<=0)
states: 886,509,506,748 (11)
abstracting: (p0<=0)
states: 1,431,258,050,748 (12)
abstracting: (p11<=0)
states: 886,509,506,748 (11)
abstracting: (p0<=0)
states: 1,431,258,050,748 (12)
abstracting: (p10<=0)
states: 886,509,506,748 (11)
abstracting: (p0<=0)
states: 1,431,258,050,748 (12)
abstracting: (p17<=0)
states: 1,451,468,913,984 (12)
abstracting: (p32<=0)
states: 1,451,468,913,984 (12)
abstracting: (p19<=0)
states: 1,451,468,913,984 (12)
abstracting: (p18<=0)
states: 1,451,468,913,984 (12)
abstracting: (p21<=0)
states: 1,451,468,913,984 (12)
abstracting: (p20<=0)
states: 1,451,468,913,984 (12)
abstracting: (p23<=0)
states: 1,451,468,913,984 (12)
abstracting: (p22<=0)
states: 1,451,468,913,984 (12)
abstracting: (p25<=0)
states: 1,451,468,913,984 (12)
abstracting: (p24<=0)
states: 1,451,468,913,984 (12)
abstracting: (p27<=0)
states: 1,451,468,913,984 (12)
abstracting: (p26<=0)
states: 1,451,468,913,984 (12)
abstracting: (p29<=0)
states: 1,451,468,913,984 (12)
abstracting: (p28<=0)
states: 1,451,468,913,984 (12)
abstracting: (p31<=0)
states: 1,451,468,913,984 (12)
abstracting: (p30<=0)
states: 1,451,468,913,984 (12)
.abstracting: (p33<=0)
states: 1,413,159,301,308 (12)
abstracting: (p18<=0)
states: 1,451,468,913,984 (12)
abstracting: (p33<=0)
states: 1,413,159,301,308 (12)
abstracting: (p23<=0)
states: 1,451,468,913,984 (12)
abstracting: (p33<=0)
states: 1,413,159,301,308 (12)
abstracting: (p30<=0)
states: 1,451,468,913,984 (12)
abstracting: (p33<=0)
states: 1,413,159,301,308 (12)
abstracting: (p31<=0)
states: 1,451,468,913,984 (12)
abstracting: (p33<=0)
states: 1,413,159,301,308 (12)
abstracting: (p21<=0)
states: 1,451,468,913,984 (12)
abstracting: (p33<=0)
states: 1,413,159,301,308 (12)
abstracting: (p25<=0)
states: 1,451,468,913,984 (12)
abstracting: (p33<=0)
states: 1,413,159,301,308 (12)
abstracting: (p27<=0)
states: 1,451,468,913,984 (12)
abstracting: (p33<=0)
states: 1,413,159,301,308 (12)
abstracting: (p29<=0)
states: 1,451,468,913,984 (12)
abstracting: (p33<=0)
states: 1,413,159,301,308 (12)
abstracting: (p24<=0)
states: 1,451,468,913,984 (12)
abstracting: (p33<=0)
states: 1,413,159,301,308 (12)
abstracting: (p19<=0)
states: 1,451,468,913,984 (12)
abstracting: (p33<=0)
states: 1,413,159,301,308 (12)
abstracting: (p17<=0)
states: 1,451,468,913,984 (12)
abstracting: (p33<=0)
states: 1,413,159,301,308 (12)
abstracting: (p32<=0)
states: 1,451,468,913,984 (12)
abstracting: (p33<=0)
states: 1,413,159,301,308 (12)
abstracting: (p20<=0)
states: 1,451,468,913,984 (12)
abstracting: (p33<=0)
states: 1,413,159,301,308 (12)
abstracting: (p22<=0)
states: 1,451,468,913,984 (12)
abstracting: (p33<=0)
states: 1,413,159,301,308 (12)
abstracting: (p28<=0)
states: 1,451,468,913,984 (12)
abstracting: (p33<=0)
states: 1,413,159,301,308 (12)
abstracting: (p26<=0)
states: 1,451,468,913,984 (12)
.......................
EG iterations: 23
-> the formula is TRUE
FORMULA CSRepetitions-COL-04-CTLFireability-08 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 1m41.804sec
checking: EX [AG [[[[[1<=p32 | 1<=p17] | [1<=p18 | 1<=p19]] | [[1<=p20 | 1<=p21] | [1<=p22 | [1<=p23 | 1<=p24]]]] | [[[1<=p25 | 1<=p26] | [1<=p27 | 1<=p28]] | [[1<=p29 | 1<=p30] | [1<=p31 | [EF [[[[[[[1<=p0 & 1<=p16] | [1<=p0 & 1<=p5]] | [[1<=p0 & 1<=p4] | [1<=p0 & 1<=p7]]] | [[[1<=p0 & 1<=p6] | [1<=p0 & 1<=p1]] | [[1<=p0 & 1<=p3] | [1<=p0 & 1<=p2]]]] | [[[[1<=p0 & 1<=p13] | [1<=p0 & 1<=p12]] | [[1<=p0 & 1<=p15] | [1<=p0 & 1<=p14]]] | [[[1<=p0 & 1<=p9] | [1<=p0 & 1<=p8]] | [[1<=p0 & 1<=p11] | [1<=p0 & 1<=p10]]]]] & [[[[1<=p34 | 1<=p35] | [1<=p36 | 1<=p37]] | [[1<=p39 | 1<=p38] | [1<=p41 | 1<=p40]]] | [[[1<=p43 | 1<=p42] | [1<=p45 | 1<=p44]] | [[1<=p47 | 1<=p46] | [1<=p49 | 1<=p48]]]]]] | AX [EF [[[[[[1<=p10 & 1<=p59] | [1<=p13 & 1<=p62]] | [[1<=p15 & 1<=p64] | [1<=p16 & 1<=p65]]] | [[[1<=p2 & 1<=p51] | [1<=p5 & 1<=p54]] | [[1<=p7 & 1<=p56] | [1<=p8 & 1<=p57]]]] | [[[[1<=p11 & 1<=p60] | [1<=p12 & 1<=p61]] | [[1<=p14 & 1<=p63] | [1<=p1 & 1<=p50]]] | [[[1<=p3 & 1<=p52] | [1<=p4 & 1<=p53]] | [[1<=p6 & 1<=p55] | [1<=p9 & 1<=p58]]]]]]]]]]]]]]
normalized: EX [~ [E [true U ~ [[[[[1<=p31 | [~ [EX [~ [E [true U [[[[[1<=p9 & 1<=p58] | [1<=p6 & 1<=p55]] | [[1<=p4 & 1<=p53] | [1<=p3 & 1<=p52]]] | [[[1<=p1 & 1<=p50] | [1<=p14 & 1<=p63]] | [[1<=p12 & 1<=p61] | [1<=p11 & 1<=p60]]]] | [[[[1<=p8 & 1<=p57] | [1<=p7 & 1<=p56]] | [[1<=p5 & 1<=p54] | [1<=p2 & 1<=p51]]] | [[[1<=p16 & 1<=p65] | [1<=p15 & 1<=p64]] | [[1<=p13 & 1<=p62] | [1<=p10 & 1<=p59]]]]]]]]] | E [true U [[[[[1<=p49 | 1<=p48] | [1<=p47 | 1<=p46]] | [[1<=p45 | 1<=p44] | [1<=p43 | 1<=p42]]] | [[[1<=p41 | 1<=p40] | [1<=p39 | 1<=p38]] | [[1<=p36 | 1<=p37] | [1<=p34 | 1<=p35]]]] & [[[[[1<=p0 & 1<=p10] | [1<=p0 & 1<=p11]] | [[1<=p0 & 1<=p8] | [1<=p0 & 1<=p9]]] | [[[1<=p0 & 1<=p14] | [1<=p0 & 1<=p15]] | [[1<=p0 & 1<=p12] | [1<=p0 & 1<=p13]]]] | [[[[1<=p0 & 1<=p2] | [1<=p0 & 1<=p3]] | [[1<=p0 & 1<=p1] | [1<=p0 & 1<=p6]]] | [[[1<=p0 & 1<=p7] | [1<=p0 & 1<=p4]] | [[1<=p0 & 1<=p5] | [1<=p0 & 1<=p16]]]]]]]]] | [1<=p29 | 1<=p30]] | [[1<=p27 | 1<=p28] | [1<=p25 | 1<=p26]]] | [[[1<=p22 | [1<=p23 | 1<=p24]] | [1<=p20 | 1<=p21]] | [[1<=p18 | 1<=p19] | [1<=p32 | 1<=p17]]]]]]]]
abstracting: (1<=p17)
states: 341,764,125,564 (11)
abstracting: (1<=p32)
states: 341,764,125,564 (11)
abstracting: (1<=p19)
states: 341,764,125,564 (11)
abstracting: (1<=p18)
states: 341,764,125,564 (11)
abstracting: (1<=p21)
states: 341,764,125,564 (11)
abstracting: (1<=p20)
states: 341,764,125,564 (11)
abstracting: (1<=p24)
states: 341,764,125,564 (11)
abstracting: (1<=p23)
states: 341,764,125,564 (11)
abstracting: (1<=p22)
states: 341,764,125,564 (11)
abstracting: (1<=p26)
states: 341,764,125,564 (11)
abstracting: (1<=p25)
states: 341,764,125,564 (11)
abstracting: (1<=p28)
states: 341,764,125,564 (11)
abstracting: (1<=p27)
states: 341,764,125,564 (11)
abstracting: (1<=p30)
states: 341,764,125,564 (11)
abstracting: (1<=p29)
states: 341,764,125,564 (11)
abstracting: (1<=p16)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p5)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p4)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p7)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p6)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p1)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p3)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p2)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p13)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p12)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p15)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p14)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p9)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p8)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p11)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p10)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p35)
states: 886,509,506,748 (11)
abstracting: (1<=p34)
states: 886,509,506,748 (11)
abstracting: (1<=p37)
states: 886,509,506,748 (11)
abstracting: (1<=p36)
states: 886,509,506,748 (11)
abstracting: (1<=p38)
states: 886,509,506,748 (11)
abstracting: (1<=p39)
states: 886,509,506,748 (11)
abstracting: (1<=p40)
states: 886,509,506,748 (11)
abstracting: (1<=p41)
states: 886,509,506,748 (11)
abstracting: (1<=p42)
states: 886,509,506,748 (11)
abstracting: (1<=p43)
states: 886,509,506,748 (11)
abstracting: (1<=p44)
states: 886,509,506,748 (11)
abstracting: (1<=p45)
states: 886,509,506,748 (11)
abstracting: (1<=p46)
states: 886,509,506,748 (11)
abstracting: (1<=p47)
states: 886,509,506,748 (11)
abstracting: (1<=p48)
states: 886,509,506,748 (11)
abstracting: (1<=p49)
states: 886,509,506,748 (11)
before gc: list nodes free: 10822819
after gc: idd nodes used:5750329, unused:58249671; list nodes free:457296498
MC time: 3m 9.070sec
checking: AG [EX [E [AX [[[[[[1<=p0 & 1<=p16] | [1<=p0 & 1<=p5]] | [[1<=p0 & 1<=p4] | [1<=p0 & 1<=p7]]] | [[[1<=p0 & 1<=p6] | [1<=p0 & 1<=p1]] | [[1<=p0 & 1<=p3] | [1<=p0 & 1<=p2]]]] | [[[[1<=p0 & 1<=p13] | [1<=p0 & 1<=p12]] | [[1<=p0 & 1<=p15] | [1<=p0 & 1<=p14]]] | [[[1<=p0 & 1<=p9] | [1<=p0 & 1<=p8]] | [[1<=p0 & 1<=p11] | [1<=p0 & 1<=p10]]]]]] U [EX [[[[[1<=p34 | 1<=p35] | [1<=p36 | 1<=p37]] | [[1<=p39 | 1<=p38] | [1<=p41 | 1<=p40]]] | [[[1<=p43 | 1<=p42] | [1<=p45 | 1<=p44]] | [[1<=p47 | 1<=p46] | [1<=p49 | 1<=p48]]]]] | A [[[[[1<=p32 | 1<=p17] | [1<=p18 | 1<=p19]] | [[1<=p20 | 1<=p21] | [1<=p22 | 1<=p23]]] | [[[1<=p24 | 1<=p25] | [1<=p26 | 1<=p27]] | [[1<=p28 | 1<=p29] | [1<=p30 | 1<=p31]]]] U [[[[[1<=p10 & 1<=p59] | [1<=p13 & 1<=p62]] | [[1<=p15 & 1<=p64] | [1<=p16 & 1<=p65]]] | [[[1<=p2 & 1<=p51] | [1<=p5 & 1<=p54]] | [[1<=p7 & 1<=p56] | [1<=p8 & 1<=p57]]]] | [[[[1<=p11 & 1<=p60] | [1<=p12 & 1<=p61]] | [[1<=p14 & 1<=p63] | [1<=p1 & 1<=p50]]] | [[[1<=p3 & 1<=p52] | [1<=p4 & 1<=p53]] | [[1<=p6 & 1<=p55] | [1<=p9 & 1<=p58]]]]]]]]]]
normalized: ~ [E [true U ~ [EX [E [~ [EX [~ [[[[[[1<=p0 & 1<=p10] | [1<=p0 & 1<=p11]] | [[1<=p0 & 1<=p8] | [1<=p0 & 1<=p9]]] | [[[1<=p0 & 1<=p14] | [1<=p0 & 1<=p15]] | [[1<=p0 & 1<=p12] | [1<=p0 & 1<=p13]]]] | [[[[1<=p0 & 1<=p2] | [1<=p0 & 1<=p3]] | [[1<=p0 & 1<=p1] | [1<=p0 & 1<=p6]]] | [[[1<=p0 & 1<=p7] | [1<=p0 & 1<=p4]] | [[1<=p0 & 1<=p5] | [1<=p0 & 1<=p16]]]]]]]] U [[~ [EG [~ [[[[[[1<=p9 & 1<=p58] | [1<=p6 & 1<=p55]] | [[1<=p4 & 1<=p53] | [1<=p3 & 1<=p52]]] | [[[1<=p1 & 1<=p50] | [1<=p14 & 1<=p63]] | [[1<=p12 & 1<=p61] | [1<=p11 & 1<=p60]]]] | [[[[1<=p8 & 1<=p57] | [1<=p7 & 1<=p56]] | [[1<=p5 & 1<=p54] | [1<=p2 & 1<=p51]]] | [[[1<=p16 & 1<=p65] | [1<=p15 & 1<=p64]] | [[1<=p13 & 1<=p62] | [1<=p10 & 1<=p59]]]]]]]] & ~ [E [~ [[[[[[1<=p9 & 1<=p58] | [1<=p6 & 1<=p55]] | [[1<=p4 & 1<=p53] | [1<=p3 & 1<=p52]]] | [[[1<=p1 & 1<=p50] | [1<=p14 & 1<=p63]] | [[1<=p12 & 1<=p61] | [1<=p11 & 1<=p60]]]] | [[[[1<=p8 & 1<=p57] | [1<=p7 & 1<=p56]] | [[1<=p5 & 1<=p54] | [1<=p2 & 1<=p51]]] | [[[1<=p16 & 1<=p65] | [1<=p15 & 1<=p64]] | [[1<=p13 & 1<=p62] | [1<=p10 & 1<=p59]]]]]] U [~ [[[[[[1<=p9 & 1<=p58] | [1<=p6 & 1<=p55]] | [[1<=p4 & 1<=p53] | [1<=p3 & 1<=p52]]] | [[[1<=p1 & 1<=p50] | [1<=p14 & 1<=p63]] | [[1<=p12 & 1<=p61] | [1<=p11 & 1<=p60]]]] | [[[[1<=p8 & 1<=p57] | [1<=p7 & 1<=p56]] | [[1<=p5 & 1<=p54] | [1<=p2 & 1<=p51]]] | [[[1<=p16 & 1<=p65] | [1<=p15 & 1<=p64]] | [[1<=p13 & 1<=p62] | [1<=p10 & 1<=p59]]]]]] & ~ [[[[[1<=p26 | 1<=p27] | [1<=p24 | 1<=p25]] | [[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]]] | [[[1<=p18 | 1<=p19] | [1<=p32 | 1<=p17]] | [[1<=p22 | 1<=p23] | [1<=p20 | 1<=p21]]]]]]]]] | EX [[[[[1<=p49 | 1<=p48] | [1<=p47 | 1<=p46]] | [[1<=p45 | 1<=p44] | [1<=p43 | 1<=p42]]] | [[[1<=p41 | 1<=p40] | [1<=p39 | 1<=p38]] | [[1<=p36 | 1<=p37] | [1<=p34 | 1<=p35]]]]]]]]]]]
abstracting: (1<=p35)
states: 886,509,506,748 (11)
abstracting: (1<=p34)
states: 886,509,506,748 (11)
abstracting: (1<=p37)
states: 886,509,506,748 (11)
abstracting: (1<=p36)
states: 886,509,506,748 (11)
abstracting: (1<=p38)
states: 886,509,506,748 (11)
abstracting: (1<=p39)
states: 886,509,506,748 (11)
abstracting: (1<=p40)
states: 886,509,506,748 (11)
abstracting: (1<=p41)
states: 886,509,506,748 (11)
abstracting: (1<=p42)
states: 886,509,506,748 (11)
abstracting: (1<=p43)
states: 886,509,506,748 (11)
abstracting: (1<=p44)
states: 886,509,506,748 (11)
abstracting: (1<=p45)
states: 886,509,506,748 (11)
abstracting: (1<=p46)
states: 886,509,506,748 (11)
abstracting: (1<=p47)
states: 886,509,506,748 (11)
abstracting: (1<=p48)
states: 886,509,506,748 (11)
abstracting: (1<=p49)
states: 886,509,506,748 (11)
.abstracting: (1<=p21)
states: 341,764,125,564 (11)
abstracting: (1<=p20)
states: 341,764,125,564 (11)
abstracting: (1<=p23)
states: 341,764,125,564 (11)
abstracting: (1<=p22)
states: 341,764,125,564 (11)
abstracting: (1<=p17)
states: 341,764,125,564 (11)
abstracting: (1<=p32)
states: 341,764,125,564 (11)
abstracting: (1<=p19)
states: 341,764,125,564 (11)
abstracting: (1<=p18)
states: 341,764,125,564 (11)
abstracting: (1<=p29)
states: 341,764,125,564 (11)
abstracting: (1<=p28)
states: 341,764,125,564 (11)
abstracting: (1<=p31)
states: 341,764,125,564 (11)
abstracting: (1<=p30)
states: 341,764,125,564 (11)
abstracting: (1<=p25)
states: 341,764,125,564 (11)
abstracting: (1<=p24)
states: 341,764,125,564 (11)
abstracting: (1<=p27)
states: 341,764,125,564 (11)
abstracting: (1<=p26)
states: 341,764,125,564 (11)
abstracting: (1<=p59)
states: 357,518,864,208 (11)
abstracting: (1<=p10)
states: 906,723,532,800 (11)
abstracting: (1<=p62)
states: 357,518,864,208 (11)
abstracting: (1<=p13)
states: 906,723,532,800 (11)
abstracting: (1<=p64)
states: 357,518,864,208 (11)
abstracting: (1<=p15)
states: 906,723,532,800 (11)
abstracting: (1<=p65)
states: 357,518,864,208 (11)
abstracting: (1<=p16)
states: 906,723,532,800 (11)
abstracting: (1<=p51)
states: 357,518,864,208 (11)
abstracting: (1<=p2)
states: 906,723,532,800 (11)
abstracting: (1<=p54)
states: 357,518,864,208 (11)
abstracting: (1<=p5)
states: 906,723,532,800 (11)
abstracting: (1<=p56)
states: 357,518,864,208 (11)
abstracting: (1<=p7)
states: 906,723,532,800 (11)
abstracting: (1<=p57)
states: 357,518,864,208 (11)
abstracting: (1<=p8)
states: 906,723,532,800 (11)
abstracting: (1<=p60)
states: 357,518,864,208 (11)
abstracting: (1<=p11)
states: 906,723,532,800 (11)
abstracting: (1<=p61)
states: 357,518,864,208 (11)
abstracting: (1<=p12)
states: 906,723,532,800 (11)
abstracting: (1<=p63)
states: 357,518,864,208 (11)
abstracting: (1<=p14)
states: 906,723,532,800 (11)
abstracting: (1<=p50)
states: 357,518,864,208 (11)
abstracting: (1<=p1)
states: 906,723,532,800 (11)
abstracting: (1<=p52)
states: 357,518,864,208 (11)
abstracting: (1<=p3)
states: 906,723,532,800 (11)
abstracting: (1<=p53)
states: 357,518,864,208 (11)
abstracting: (1<=p4)
states: 906,723,532,800 (11)
abstracting: (1<=p55)
states: 357,518,864,208 (11)
abstracting: (1<=p6)
states: 906,723,532,800 (11)
abstracting: (1<=p58)
states: 357,518,864,208 (11)
abstracting: (1<=p9)
states: 906,723,532,800 (11)
abstracting: (1<=p59)
states: 357,518,864,208 (11)
abstracting: (1<=p10)
states: 906,723,532,800 (11)
abstracting: (1<=p62)
states: 357,518,864,208 (11)
abstracting: (1<=p13)
states: 906,723,532,800 (11)
abstracting: (1<=p64)
states: 357,518,864,208 (11)
abstracting: (1<=p15)
states: 906,723,532,800 (11)
abstracting: (1<=p65)
states: 357,518,864,208 (11)
abstracting: (1<=p16)
states: 906,723,532,800 (11)
abstracting: (1<=p51)
states: 357,518,864,208 (11)
abstracting: (1<=p2)
states: 906,723,532,800 (11)
abstracting: (1<=p54)
states: 357,518,864,208 (11)
abstracting: (1<=p5)
states: 906,723,532,800 (11)
abstracting: (1<=p56)
states: 357,518,864,208 (11)
abstracting: (1<=p7)
states: 906,723,532,800 (11)
abstracting: (1<=p57)
states: 357,518,864,208 (11)
abstracting: (1<=p8)
states: 906,723,532,800 (11)
abstracting: (1<=p60)
states: 357,518,864,208 (11)
abstracting: (1<=p11)
states: 906,723,532,800 (11)
abstracting: (1<=p61)
states: 357,518,864,208 (11)
abstracting: (1<=p12)
states: 906,723,532,800 (11)
abstracting: (1<=p63)
states: 357,518,864,208 (11)
abstracting: (1<=p14)
states: 906,723,532,800 (11)
abstracting: (1<=p50)
states: 357,518,864,208 (11)
abstracting: (1<=p1)
states: 906,723,532,800 (11)
abstracting: (1<=p52)
states: 357,518,864,208 (11)
abstracting: (1<=p3)
states: 906,723,532,800 (11)
abstracting: (1<=p53)
states: 357,518,864,208 (11)
abstracting: (1<=p4)
states: 906,723,532,800 (11)
abstracting: (1<=p55)
states: 357,518,864,208 (11)
abstracting: (1<=p6)
states: 906,723,532,800 (11)
abstracting: (1<=p58)
states: 357,518,864,208 (11)
abstracting: (1<=p9)
states: 906,723,532,800 (11)
before gc: list nodes free: 115465487
after gc: idd nodes used:8649819, unused:55350181; list nodes free:439148935
MC time: 2m55.724sec
checking: EX [AF [[[[[~ [A [[[[[[1<=p0 & 1<=p16] | [1<=p0 & 1<=p5]] | [[1<=p0 & 1<=p4] | [1<=p0 & 1<=p7]]] | [[[1<=p0 & 1<=p6] | [1<=p0 & 1<=p1]] | [[1<=p0 & 1<=p3] | [1<=p0 & 1<=p2]]]] | [[[[1<=p0 & 1<=p13] | [1<=p0 & 1<=p12]] | [[1<=p0 & 1<=p15] | [1<=p0 & 1<=p14]]] | [[[1<=p0 & 1<=p9] | [1<=p0 & 1<=p8]] | [[1<=p0 & 1<=p11] | [1<=p0 & 1<=p10]]]]] U [[[[[1<=p18 & 1<=p33] | [1<=p23 & 1<=p33]] | [[1<=p30 & 1<=p33] | [1<=p31 & 1<=p33]]] | [[[1<=p21 & 1<=p33] | [1<=p25 & 1<=p33]] | [[1<=p27 & 1<=p33] | [1<=p29 & 1<=p33]]]] | [[[[1<=p24 & 1<=p33] | [1<=p19 & 1<=p33]] | [[1<=p17 & 1<=p33] | [1<=p32 & 1<=p33]]] | [[[1<=p20 & 1<=p33] | [1<=p22 & 1<=p33]] | [[1<=p28 & 1<=p33] | [1<=p26 & 1<=p33]]]]]]] | 1<=p32] | [1<=p17 | 1<=p18]] | [[1<=p19 | 1<=p20] | [1<=p21 | [1<=p22 | 1<=p23]]]] | [[[1<=p24 | 1<=p25] | [1<=p26 | 1<=p27]] | [[1<=p28 | 1<=p29] | [1<=p30 | [1<=p31 | [[[[[p34<=0 & p35<=0] & [p36<=0 & p37<=0]] & [[p39<=0 & p38<=0] & [p41<=0 & p40<=0]]] & [[[p43<=0 & p42<=0] & [p45<=0 & p44<=0]] & [[p47<=0 & p46<=0] & [p49<=0 & p48<=0]]]] & [[[[[p18<=0 | p33<=0] & [p23<=0 | p33<=0]] & [[p30<=0 | p33<=0] & [p31<=0 | p33<=0]]] & [[[p21<=0 | p33<=0] & [p25<=0 | p33<=0]] & [[p27<=0 | p33<=0] & [p29<=0 | p33<=0]]]] & [[[[p24<=0 | p33<=0] & [p19<=0 | p33<=0]] & [[p17<=0 | p33<=0] & [p32<=0 | p33<=0]]] & [[[p20<=0 | p33<=0] & [p22<=0 | p33<=0]] & [[p28<=0 | p33<=0] & [p26<=0 | p33<=0]]]]]]]]]]]]]
normalized: EX [~ [EG [~ [[[[[1<=p30 | [1<=p31 | [[[[[[p26<=0 | p33<=0] & [p28<=0 | p33<=0]] & [[p22<=0 | p33<=0] & [p20<=0 | p33<=0]]] & [[[p32<=0 | p33<=0] & [p17<=0 | p33<=0]] & [[p19<=0 | p33<=0] & [p24<=0 | p33<=0]]]] & [[[[p29<=0 | p33<=0] & [p27<=0 | p33<=0]] & [[p25<=0 | p33<=0] & [p21<=0 | p33<=0]]] & [[[p31<=0 | p33<=0] & [p30<=0 | p33<=0]] & [[p23<=0 | p33<=0] & [p18<=0 | p33<=0]]]]] & [[[[p49<=0 & p48<=0] & [p47<=0 & p46<=0]] & [[p45<=0 & p44<=0] & [p43<=0 & p42<=0]]] & [[[p41<=0 & p40<=0] & [p39<=0 & p38<=0]] & [[p36<=0 & p37<=0] & [p34<=0 & p35<=0]]]]]]] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p24 | 1<=p25]]] | [[[1<=p21 | [1<=p22 | 1<=p23]] | [1<=p19 | 1<=p20]] | [[1<=p17 | 1<=p18] | [1<=p32 | ~ [[~ [EG [~ [[[[[[1<=p26 & 1<=p33] | [1<=p28 & 1<=p33]] | [[1<=p22 & 1<=p33] | [1<=p20 & 1<=p33]]] | [[[1<=p32 & 1<=p33] | [1<=p17 & 1<=p33]] | [[1<=p19 & 1<=p33] | [1<=p24 & 1<=p33]]]] | [[[[1<=p29 & 1<=p33] | [1<=p27 & 1<=p33]] | [[1<=p25 & 1<=p33] | [1<=p21 & 1<=p33]]] | [[[1<=p31 & 1<=p33] | [1<=p30 & 1<=p33]] | [[1<=p23 & 1<=p33] | [1<=p18 & 1<=p33]]]]]]]] & ~ [E [~ [[[[[[1<=p26 & 1<=p33] | [1<=p28 & 1<=p33]] | [[1<=p22 & 1<=p33] | [1<=p20 & 1<=p33]]] | [[[1<=p32 & 1<=p33] | [1<=p17 & 1<=p33]] | [[1<=p19 & 1<=p33] | [1<=p24 & 1<=p33]]]] | [[[[1<=p29 & 1<=p33] | [1<=p27 & 1<=p33]] | [[1<=p25 & 1<=p33] | [1<=p21 & 1<=p33]]] | [[[1<=p31 & 1<=p33] | [1<=p30 & 1<=p33]] | [[1<=p23 & 1<=p33] | [1<=p18 & 1<=p33]]]]]] U [~ [[[[[[1<=p0 & 1<=p10] | [1<=p0 & 1<=p11]] | [[1<=p0 & 1<=p8] | [1<=p0 & 1<=p9]]] | [[[1<=p0 & 1<=p14] | [1<=p0 & 1<=p15]] | [[1<=p0 & 1<=p12] | [1<=p0 & 1<=p13]]]] | [[[[1<=p0 & 1<=p2] | [1<=p0 & 1<=p3]] | [[1<=p0 & 1<=p1] | [1<=p0 & 1<=p6]]] | [[[1<=p0 & 1<=p7] | [1<=p0 & 1<=p4]] | [[1<=p0 & 1<=p5] | [1<=p0 & 1<=p16]]]]]] & ~ [[[[[[1<=p26 & 1<=p33] | [1<=p28 & 1<=p33]] | [[1<=p22 & 1<=p33] | [1<=p20 & 1<=p33]]] | [[[1<=p32 & 1<=p33] | [1<=p17 & 1<=p33]] | [[1<=p19 & 1<=p33] | [1<=p24 & 1<=p33]]]] | [[[[1<=p29 & 1<=p33] | [1<=p27 & 1<=p33]] | [[1<=p25 & 1<=p33] | [1<=p21 & 1<=p33]]] | [[[1<=p31 & 1<=p33] | [1<=p30 & 1<=p33]] | [[1<=p23 & 1<=p33] | [1<=p18 & 1<=p33]]]]]]]]]]]]]]]]]]]
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p18)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p23)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p30)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p31)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p21)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p25)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p27)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p29)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p24)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p19)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p17)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p32)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p20)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p22)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p28)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p26)
states: 341,764,125,564 (11)
abstracting: (1<=p16)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p5)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p4)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p7)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p6)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p1)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p3)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p2)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p13)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p12)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p15)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p14)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p9)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p8)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p11)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p10)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p18)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p23)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p30)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p31)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p21)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p25)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p27)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p29)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p24)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p19)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p17)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p32)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p20)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p22)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p28)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p26)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p18)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p23)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p30)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p31)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p21)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p25)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p27)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p29)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p24)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p19)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p17)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p32)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p20)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p22)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p28)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p26)
states: 341,764,125,564 (11)
..............
before gc: list nodes free: 126379990
after gc: idd nodes used:5733899, unused:58266101; list nodes free:457396853
..........
EG iterations: 24
abstracting: (1<=p32)
states: 341,764,125,564 (11)
abstracting: (1<=p18)
states: 341,764,125,564 (11)
abstracting: (1<=p17)
states: 341,764,125,564 (11)
abstracting: (1<=p20)
states: 341,764,125,564 (11)
abstracting: (1<=p19)
states: 341,764,125,564 (11)
abstracting: (1<=p23)
states: 341,764,125,564 (11)
abstracting: (1<=p22)
states: 341,764,125,564 (11)
abstracting: (1<=p21)
states: 341,764,125,564 (11)
abstracting: (1<=p25)
states: 341,764,125,564 (11)
abstracting: (1<=p24)
states: 341,764,125,564 (11)
abstracting: (1<=p27)
states: 341,764,125,564 (11)
abstracting: (1<=p26)
states: 341,764,125,564 (11)
abstracting: (1<=p29)
states: 341,764,125,564 (11)
abstracting: (1<=p28)
states: 341,764,125,564 (11)
abstracting: (p35<=0)
states: 906,723,532,800 (11)
abstracting: (p34<=0)
states: 906,723,532,800 (11)
abstracting: (p37<=0)
states: 906,723,532,800 (11)
abstracting: (p36<=0)
states: 906,723,532,800 (11)
abstracting: (p38<=0)
states: 906,723,532,800 (11)
abstracting: (p39<=0)
states: 906,723,532,800 (11)
abstracting: (p40<=0)
states: 906,723,532,800 (11)
abstracting: (p41<=0)
states: 906,723,532,800 (11)
abstracting: (p42<=0)
states: 906,723,532,800 (11)
abstracting: (p43<=0)
states: 906,723,532,800 (11)
abstracting: (p44<=0)
states: 906,723,532,800 (11)
abstracting: (p45<=0)
states: 906,723,532,800 (11)
abstracting: (p46<=0)
states: 906,723,532,800 (11)
abstracting: (p47<=0)
states: 906,723,532,800 (11)
abstracting: (p48<=0)
states: 906,723,532,800 (11)
abstracting: (p49<=0)
states: 906,723,532,800 (11)
abstracting: (p33<=0)
states: 1,413,159,301,308 (12)
abstracting: (p18<=0)
states: 1,451,468,913,984 (12)
abstracting: (p33<=0)
states: 1,413,159,301,308 (12)
abstracting: (p23<=0)
states: 1,451,468,913,984 (12)
abstracting: (p33<=0)
states: 1,413,159,301,308 (12)
abstracting: (p30<=0)
states: 1,451,468,913,984 (12)
abstracting: (p33<=0)
states: 1,413,159,301,308 (12)
abstracting: (p31<=0)
states: 1,451,468,913,984 (12)
abstracting: (p33<=0)
states: 1,413,159,301,308 (12)
abstracting: (p21<=0)
states: 1,451,468,913,984 (12)
abstracting: (p33<=0)
states: 1,413,159,301,308 (12)
abstracting: (p25<=0)
states: 1,451,468,913,984 (12)
abstracting: (p33<=0)
states: 1,413,159,301,308 (12)
abstracting: (p27<=0)
states: 1,451,468,913,984 (12)
abstracting: (p33<=0)
states: 1,413,159,301,308 (12)
abstracting: (p29<=0)
states: 1,451,468,913,984 (12)
abstracting: (p33<=0)
states: 1,413,159,301,308 (12)
abstracting: (p24<=0)
states: 1,451,468,913,984 (12)
abstracting: (p33<=0)
states: 1,413,159,301,308 (12)
abstracting: (p19<=0)
states: 1,451,468,913,984 (12)
abstracting: (p33<=0)
states: 1,413,159,301,308 (12)
abstracting: (p17<=0)
states: 1,451,468,913,984 (12)
abstracting: (p33<=0)
states: 1,413,159,301,308 (12)
abstracting: (p32<=0)
states: 1,451,468,913,984 (12)
abstracting: (p33<=0)
states: 1,413,159,301,308 (12)
abstracting: (p20<=0)
states: 1,451,468,913,984 (12)
abstracting: (p33<=0)
states: 1,413,159,301,308 (12)
abstracting: (p22<=0)
states: 1,451,468,913,984 (12)
abstracting: (p33<=0)
states: 1,413,159,301,308 (12)
abstracting: (p28<=0)
states: 1,451,468,913,984 (12)
abstracting: (p33<=0)
states: 1,413,159,301,308 (12)
abstracting: (p26<=0)
states: 1,451,468,913,984 (12)
abstracting: (1<=p31)
states: 341,764,125,564 (11)
abstracting: (1<=p30)
states: 341,764,125,564 (11)
MC time: 2m48.969sec
checking: EF [EG [[[AG [AX [[[[[[1<=p10 & 1<=p59] | [1<=p13 & 1<=p62]] | [[1<=p15 & 1<=p64] | [1<=p16 & 1<=p65]]] | [[[1<=p2 & 1<=p51] | [1<=p5 & 1<=p54]] | [[1<=p7 & 1<=p56] | [1<=p8 & 1<=p57]]]] | [[[[1<=p11 & 1<=p60] | [1<=p12 & 1<=p61]] | [[1<=p14 & 1<=p63] | [1<=p1 & 1<=p50]]] | [[[1<=p3 & 1<=p52] | [1<=p4 & 1<=p53]] | [[1<=p6 & 1<=p55] | [1<=p9 & 1<=p58]]]]]]] & A [[[[[[1<=p18 & 1<=p33] | [1<=p23 & 1<=p33]] | [[1<=p30 & 1<=p33] | [1<=p31 & 1<=p33]]] | [[[1<=p21 & 1<=p33] | [1<=p25 & 1<=p33]] | [[1<=p27 & 1<=p33] | [1<=p29 & 1<=p33]]]] | [[[[1<=p24 & 1<=p33] | [1<=p19 & 1<=p33]] | [[1<=p17 & 1<=p33] | [1<=p32 & 1<=p33]]] | [[[1<=p20 & 1<=p33] | [1<=p22 & 1<=p33]] | [[1<=p28 & 1<=p33] | [1<=p26 & 1<=p33]]]]] U EF [[[[[1<=p32 | 1<=p17] | [1<=p18 | 1<=p19]] | [[1<=p20 | 1<=p21] | [1<=p22 | 1<=p23]]] | [[[1<=p24 | 1<=p25] | [1<=p26 | 1<=p27]] | [[1<=p28 | 1<=p29] | [1<=p30 | 1<=p31]]]]]]] & [AF [[[[[[1<=p10 & 1<=p59] | [1<=p13 & 1<=p62]] | [[1<=p15 & 1<=p64] | [1<=p16 & 1<=p65]]] | [[[1<=p2 & 1<=p51] | [1<=p5 & 1<=p54]] | [[1<=p7 & 1<=p56] | [1<=p8 & 1<=p57]]]] | [[[[1<=p11 & 1<=p60] | [1<=p12 & 1<=p61]] | [[1<=p14 & 1<=p63] | [1<=p1 & 1<=p50]]] | [[[1<=p3 & 1<=p52] | [1<=p4 & 1<=p53]] | [[1<=p6 & 1<=p55] | [1<=p9 & 1<=p58]]]]]] & [[[[1<=p32 | 1<=p17] | [1<=p18 | 1<=p19]] | [[1<=p20 | 1<=p21] | [1<=p22 | 1<=p23]]] | [[[1<=p24 | 1<=p25] | [1<=p26 | 1<=p27]] | [[1<=p28 | 1<=p29] | [1<=p30 | 1<=p31]]]]]]]]
normalized: E [true U EG [[[~ [EG [~ [[[[[[1<=p9 & 1<=p58] | [1<=p6 & 1<=p55]] | [[1<=p4 & 1<=p53] | [1<=p3 & 1<=p52]]] | [[[1<=p1 & 1<=p50] | [1<=p14 & 1<=p63]] | [[1<=p12 & 1<=p61] | [1<=p11 & 1<=p60]]]] | [[[[1<=p8 & 1<=p57] | [1<=p7 & 1<=p56]] | [[1<=p5 & 1<=p54] | [1<=p2 & 1<=p51]]] | [[[1<=p16 & 1<=p65] | [1<=p15 & 1<=p64]] | [[1<=p13 & 1<=p62] | [1<=p10 & 1<=p59]]]]]]]] & [[[[1<=p32 | 1<=p17] | [1<=p18 | 1<=p19]] | [[1<=p20 | 1<=p21] | [1<=p22 | 1<=p23]]] | [[[1<=p24 | 1<=p25] | [1<=p26 | 1<=p27]] | [[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]]]]] & [[~ [EG [~ [E [true U [[[[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p24 | 1<=p25]]] | [[[1<=p22 | 1<=p23] | [1<=p20 | 1<=p21]] | [[1<=p18 | 1<=p19] | [1<=p32 | 1<=p17]]]]]]]] & ~ [E [~ [E [true U [[[[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p24 | 1<=p25]]] | [[[1<=p22 | 1<=p23] | [1<=p20 | 1<=p21]] | [[1<=p18 | 1<=p19] | [1<=p32 | 1<=p17]]]]]] U [~ [[[[[[1<=p26 & 1<=p33] | [1<=p28 & 1<=p33]] | [[1<=p22 & 1<=p33] | [1<=p20 & 1<=p33]]] | [[[1<=p32 & 1<=p33] | [1<=p17 & 1<=p33]] | [[1<=p19 & 1<=p33] | [1<=p24 & 1<=p33]]]] | [[[[1<=p29 & 1<=p33] | [1<=p27 & 1<=p33]] | [[1<=p25 & 1<=p33] | [1<=p21 & 1<=p33]]] | [[[1<=p31 & 1<=p33] | [1<=p30 & 1<=p33]] | [[1<=p23 & 1<=p33] | [1<=p18 & 1<=p33]]]]]] & ~ [E [true U [[[[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p24 | 1<=p25]]] | [[[1<=p22 | 1<=p23] | [1<=p20 | 1<=p21]] | [[1<=p18 | 1<=p19] | [1<=p32 | 1<=p17]]]]]]]]]] & ~ [E [true U EX [~ [[[[[[1<=p9 & 1<=p58] | [1<=p6 & 1<=p55]] | [[1<=p4 & 1<=p53] | [1<=p3 & 1<=p52]]] | [[[1<=p1 & 1<=p50] | [1<=p14 & 1<=p63]] | [[1<=p12 & 1<=p61] | [1<=p11 & 1<=p60]]]] | [[[[1<=p8 & 1<=p57] | [1<=p7 & 1<=p56]] | [[1<=p5 & 1<=p54] | [1<=p2 & 1<=p51]]] | [[[1<=p16 & 1<=p65] | [1<=p15 & 1<=p64]] | [[1<=p13 & 1<=p62] | [1<=p10 & 1<=p59]]]]]]]]]]]]]
abstracting: (1<=p59)
states: 357,518,864,208 (11)
abstracting: (1<=p10)
states: 906,723,532,800 (11)
abstracting: (1<=p62)
states: 357,518,864,208 (11)
abstracting: (1<=p13)
states: 906,723,532,800 (11)
abstracting: (1<=p64)
states: 357,518,864,208 (11)
abstracting: (1<=p15)
states: 906,723,532,800 (11)
abstracting: (1<=p65)
states: 357,518,864,208 (11)
abstracting: (1<=p16)
states: 906,723,532,800 (11)
abstracting: (1<=p51)
states: 357,518,864,208 (11)
abstracting: (1<=p2)
states: 906,723,532,800 (11)
abstracting: (1<=p54)
states: 357,518,864,208 (11)
abstracting: (1<=p5)
states: 906,723,532,800 (11)
abstracting: (1<=p56)
states: 357,518,864,208 (11)
abstracting: (1<=p7)
states: 906,723,532,800 (11)
abstracting: (1<=p57)
states: 357,518,864,208 (11)
abstracting: (1<=p8)
states: 906,723,532,800 (11)
abstracting: (1<=p60)
states: 357,518,864,208 (11)
abstracting: (1<=p11)
states: 906,723,532,800 (11)
abstracting: (1<=p61)
states: 357,518,864,208 (11)
abstracting: (1<=p12)
states: 906,723,532,800 (11)
abstracting: (1<=p63)
states: 357,518,864,208 (11)
abstracting: (1<=p14)
states: 906,723,532,800 (11)
abstracting: (1<=p50)
states: 357,518,864,208 (11)
abstracting: (1<=p1)
states: 906,723,532,800 (11)
abstracting: (1<=p52)
states: 357,518,864,208 (11)
abstracting: (1<=p3)
states: 906,723,532,800 (11)
abstracting: (1<=p53)
states: 357,518,864,208 (11)
abstracting: (1<=p4)
states: 906,723,532,800 (11)
abstracting: (1<=p55)
states: 357,518,864,208 (11)
abstracting: (1<=p6)
states: 906,723,532,800 (11)
abstracting: (1<=p58)
states: 357,518,864,208 (11)
abstracting: (1<=p9)
states: 906,723,532,800 (11)
before gc: list nodes free: 106520230
after gc: idd nodes used:11951843, unused:52048157; list nodes free:417775077
MC time: 2m28.556sec
checking: [EX [AG [AF [AX [[[[[1<=p34 | 1<=p35] | [1<=p36 | 1<=p37]] | [[1<=p39 | 1<=p38] | [1<=p41 | 1<=p40]]] | [[[1<=p43 | 1<=p42] | [1<=p45 | 1<=p44]] | [[1<=p47 | 1<=p46] | [1<=p49 | 1<=p48]]]]]]]] & E [[[[[1<=p32 | 1<=p17] | [1<=p18 | 1<=p19]] | [[1<=p20 | 1<=p21] | [1<=p22 | 1<=p23]]] | [[[1<=p24 | 1<=p25] | [1<=p26 | 1<=p27]] | [[1<=p28 | 1<=p29] | [1<=p30 | 1<=p31]]]] U A [[AX [[[[[1<=p32 | 1<=p17] | [1<=p18 | 1<=p19]] | [[1<=p20 | 1<=p21] | [1<=p22 | 1<=p23]]] | [[[1<=p24 | 1<=p25] | [1<=p26 | 1<=p27]] | [[1<=p28 | 1<=p29] | [1<=p30 | 1<=p31]]]]] | E [~ [[[[[[1<=p10 & 1<=p59] | [1<=p13 & 1<=p62]] | [[1<=p15 & 1<=p64] | [1<=p16 & 1<=p65]]] | [[[1<=p2 & 1<=p51] | [1<=p5 & 1<=p54]] | [[1<=p7 & 1<=p56] | [1<=p8 & 1<=p57]]]] | [[[[1<=p11 & 1<=p60] | [1<=p12 & 1<=p61]] | [[1<=p14 & 1<=p63] | [1<=p1 & 1<=p50]]] | [[[1<=p3 & 1<=p52] | [1<=p4 & 1<=p53]] | [[1<=p6 & 1<=p55] | [1<=p9 & 1<=p58]]]]]] U EX [[[[[1<=p32 | 1<=p17] | [1<=p18 | 1<=p19]] | [[1<=p20 | 1<=p21] | [1<=p22 | 1<=p23]]] | [[[1<=p24 | 1<=p25] | [1<=p26 | 1<=p27]] | [[1<=p28 | 1<=p29] | [1<=p30 | 1<=p31]]]]]]] U EG [[[[[[[1<=p32 | 1<=p17] | [1<=p18 | 1<=p19]] | [[1<=p20 | 1<=p21] | [1<=p22 | 1<=p23]]] | [[[1<=p24 | 1<=p25] | [1<=p26 | 1<=p27]] | [[1<=p28 | 1<=p29] | [1<=p30 | 1<=p31]]]] | [[[[[1<=p10 & 1<=p59] | [1<=p13 & 1<=p62]] | [[1<=p15 & 1<=p64] | [1<=p16 & 1<=p65]]] | [[[1<=p2 & 1<=p51] | [1<=p5 & 1<=p54]] | [[1<=p7 & 1<=p56] | [1<=p8 & 1<=p57]]]] | [[[[1<=p11 & 1<=p60] | [1<=p12 & 1<=p61]] | [[1<=p14 & 1<=p63] | [1<=p1 & 1<=p50]]] | [[[1<=p3 & 1<=p52] | [1<=p4 & 1<=p53]] | [[1<=p6 & 1<=p55] | [1<=p9 & 1<=p58]]]]]] & [[[[[1<=p0 & 1<=p16] | [1<=p0 & 1<=p5]] | [[1<=p0 & 1<=p4] | [1<=p0 & 1<=p7]]] | [[[1<=p0 & 1<=p6] | [1<=p0 & 1<=p1]] | [[1<=p0 & 1<=p3] | [1<=p0 & 1<=p2]]]] | [[[[1<=p0 & 1<=p13] | [1<=p0 & 1<=p12]] | [[1<=p0 & 1<=p15] | [1<=p0 & 1<=p14]]] | [[[1<=p0 & 1<=p9] | [1<=p0 & 1<=p8]] | [[1<=p0 & 1<=p11] | [1<=p0 & 1<=p10]]]]]]]]]]
normalized: [E [[[[[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p24 | 1<=p25]]] | [[[1<=p22 | 1<=p23] | [1<=p20 | 1<=p21]] | [[1<=p18 | 1<=p19] | [1<=p32 | 1<=p17]]]] U [~ [EG [~ [EG [[[[[[[1<=p0 & 1<=p10] | [1<=p0 & 1<=p11]] | [[1<=p0 & 1<=p8] | [1<=p0 & 1<=p9]]] | [[[1<=p0 & 1<=p14] | [1<=p0 & 1<=p15]] | [[1<=p0 & 1<=p12] | [1<=p0 & 1<=p13]]]] | [[[[1<=p0 & 1<=p2] | [1<=p0 & 1<=p3]] | [[1<=p0 & 1<=p1] | [1<=p0 & 1<=p6]]] | [[[1<=p0 & 1<=p7] | [1<=p0 & 1<=p4]] | [[1<=p0 & 1<=p5] | [1<=p0 & 1<=p16]]]]] & [[[[[[1<=p9 & 1<=p58] | [1<=p6 & 1<=p55]] | [[1<=p4 & 1<=p53] | [1<=p3 & 1<=p52]]] | [[[1<=p1 & 1<=p50] | [1<=p14 & 1<=p63]] | [[1<=p12 & 1<=p61] | [1<=p11 & 1<=p60]]]] | [[[[1<=p8 & 1<=p57] | [1<=p7 & 1<=p56]] | [[1<=p5 & 1<=p54] | [1<=p2 & 1<=p51]]] | [[[1<=p16 & 1<=p65] | [1<=p15 & 1<=p64]] | [[1<=p13 & 1<=p62] | [1<=p10 & 1<=p59]]]]] | [[[[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p24 | 1<=p25]]] | [[[1<=p22 | 1<=p23] | [1<=p20 | 1<=p21]] | [[1<=p18 | 1<=p19] | [1<=p32 | 1<=p17]]]]]]]]]] & ~ [E [~ [EG [[[[[[[1<=p0 & 1<=p10] | [1<=p0 & 1<=p11]] | [[1<=p0 & 1<=p8] | [1<=p0 & 1<=p9]]] | [[[1<=p0 & 1<=p14] | [1<=p0 & 1<=p15]] | [[1<=p0 & 1<=p12] | [1<=p0 & 1<=p13]]]] | [[[[1<=p0 & 1<=p2] | [1<=p0 & 1<=p3]] | [[1<=p0 & 1<=p1] | [1<=p0 & 1<=p6]]] | [[[1<=p0 & 1<=p7] | [1<=p0 & 1<=p4]] | [[1<=p0 & 1<=p5] | [1<=p0 & 1<=p16]]]]] & [[[[[[1<=p9 & 1<=p58] | [1<=p6 & 1<=p55]] | [[1<=p4 & 1<=p53] | [1<=p3 & 1<=p52]]] | [[[1<=p1 & 1<=p50] | [1<=p14 & 1<=p63]] | [[1<=p12 & 1<=p61] | [1<=p11 & 1<=p60]]]] | [[[[1<=p8 & 1<=p57] | [1<=p7 & 1<=p56]] | [[1<=p5 & 1<=p54] | [1<=p2 & 1<=p51]]] | [[[1<=p16 & 1<=p65] | [1<=p15 & 1<=p64]] | [[1<=p13 & 1<=p62] | [1<=p10 & 1<=p59]]]]] | [[[[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p24 | 1<=p25]]] | [[[1<=p22 | 1<=p23] | [1<=p20 | 1<=p21]] | [[1<=p18 | 1<=p19] | [1<=p32 | 1<=p17]]]]]]]] U [~ [[E [~ [[[[[[1<=p9 & 1<=p58] | [1<=p6 & 1<=p55]] | [[1<=p4 & 1<=p53] | [1<=p3 & 1<=p52]]] | [[[1<=p1 & 1<=p50] | [1<=p14 & 1<=p63]] | [[1<=p12 & 1<=p61] | [1<=p11 & 1<=p60]]]] | [[[[1<=p8 & 1<=p57] | [1<=p7 & 1<=p56]] | [[1<=p5 & 1<=p54] | [1<=p2 & 1<=p51]]] | [[[1<=p16 & 1<=p65] | [1<=p15 & 1<=p64]] | [[1<=p13 & 1<=p62] | [1<=p10 & 1<=p59]]]]]] U EX [[[[[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p24 | 1<=p25]]] | [[[1<=p22 | 1<=p23] | [1<=p20 | 1<=p21]] | [[1<=p18 | 1<=p19] | [1<=p32 | 1<=p17]]]]]] | ~ [EX [~ [[[[[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p24 | 1<=p25]]] | [[[1<=p22 | 1<=p23] | [1<=p20 | 1<=p21]] | [[1<=p18 | 1<=p19] | [1<=p32 | 1<=p17]]]]]]]]] & ~ [EG [[[[[[[1<=p0 & 1<=p10] | [1<=p0 & 1<=p11]] | [[1<=p0 & 1<=p8] | [1<=p0 & 1<=p9]]] | [[[1<=p0 & 1<=p14] | [1<=p0 & 1<=p15]] | [[1<=p0 & 1<=p12] | [1<=p0 & 1<=p13]]]] | [[[[1<=p0 & 1<=p2] | [1<=p0 & 1<=p3]] | [[1<=p0 & 1<=p1] | [1<=p0 & 1<=p6]]] | [[[1<=p0 & 1<=p7] | [1<=p0 & 1<=p4]] | [[1<=p0 & 1<=p5] | [1<=p0 & 1<=p16]]]]] & [[[[[[1<=p9 & 1<=p58] | [1<=p6 & 1<=p55]] | [[1<=p4 & 1<=p53] | [1<=p3 & 1<=p52]]] | [[[1<=p1 & 1<=p50] | [1<=p14 & 1<=p63]] | [[1<=p12 & 1<=p61] | [1<=p11 & 1<=p60]]]] | [[[[1<=p8 & 1<=p57] | [1<=p7 & 1<=p56]] | [[1<=p5 & 1<=p54] | [1<=p2 & 1<=p51]]] | [[[1<=p16 & 1<=p65] | [1<=p15 & 1<=p64]] | [[1<=p13 & 1<=p62] | [1<=p10 & 1<=p59]]]]] | [[[[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p24 | 1<=p25]]] | [[[1<=p22 | 1<=p23] | [1<=p20 | 1<=p21]] | [[1<=p18 | 1<=p19] | [1<=p32 | 1<=p17]]]]]]]]]]]]] & EX [~ [E [true U EG [EX [~ [[[[[1<=p49 | 1<=p48] | [1<=p47 | 1<=p46]] | [[1<=p45 | 1<=p44] | [1<=p43 | 1<=p42]]] | [[[1<=p41 | 1<=p40] | [1<=p39 | 1<=p38]] | [[1<=p36 | 1<=p37] | [1<=p34 | 1<=p35]]]]]]]]]]]
abstracting: (1<=p35)
states: 886,509,506,748 (11)
abstracting: (1<=p34)
states: 886,509,506,748 (11)
abstracting: (1<=p37)
states: 886,509,506,748 (11)
abstracting: (1<=p36)
states: 886,509,506,748 (11)
abstracting: (1<=p38)
states: 886,509,506,748 (11)
abstracting: (1<=p39)
states: 886,509,506,748 (11)
abstracting: (1<=p40)
states: 886,509,506,748 (11)
abstracting: (1<=p41)
states: 886,509,506,748 (11)
abstracting: (1<=p42)
states: 886,509,506,748 (11)
abstracting: (1<=p43)
states: 886,509,506,748 (11)
abstracting: (1<=p44)
states: 886,509,506,748 (11)
abstracting: (1<=p45)
states: 886,509,506,748 (11)
abstracting: (1<=p46)
states: 886,509,506,748 (11)
abstracting: (1<=p47)
states: 886,509,506,748 (11)
abstracting: (1<=p48)
states: 886,509,506,748 (11)
abstracting: (1<=p49)
states: 886,509,506,748 (11)
...
EG iterations: 2
.abstracting: (1<=p17)
states: 341,764,125,564 (11)
abstracting: (1<=p32)
states: 341,764,125,564 (11)
abstracting: (1<=p19)
states: 341,764,125,564 (11)
abstracting: (1<=p18)
states: 341,764,125,564 (11)
abstracting: (1<=p21)
states: 341,764,125,564 (11)
abstracting: (1<=p20)
states: 341,764,125,564 (11)
abstracting: (1<=p23)
states: 341,764,125,564 (11)
abstracting: (1<=p22)
states: 341,764,125,564 (11)
abstracting: (1<=p25)
states: 341,764,125,564 (11)
abstracting: (1<=p24)
states: 341,764,125,564 (11)
abstracting: (1<=p27)
states: 341,764,125,564 (11)
abstracting: (1<=p26)
states: 341,764,125,564 (11)
abstracting: (1<=p29)
states: 341,764,125,564 (11)
abstracting: (1<=p28)
states: 341,764,125,564 (11)
abstracting: (1<=p31)
states: 341,764,125,564 (11)
abstracting: (1<=p30)
states: 341,764,125,564 (11)
abstracting: (1<=p59)
states: 357,518,864,208 (11)
abstracting: (1<=p10)
states: 906,723,532,800 (11)
abstracting: (1<=p62)
states: 357,518,864,208 (11)
abstracting: (1<=p13)
states: 906,723,532,800 (11)
abstracting: (1<=p64)
states: 357,518,864,208 (11)
abstracting: (1<=p15)
states: 906,723,532,800 (11)
abstracting: (1<=p65)
states: 357,518,864,208 (11)
abstracting: (1<=p16)
states: 906,723,532,800 (11)
abstracting: (1<=p51)
states: 357,518,864,208 (11)
abstracting: (1<=p2)
states: 906,723,532,800 (11)
abstracting: (1<=p54)
states: 357,518,864,208 (11)
abstracting: (1<=p5)
states: 906,723,532,800 (11)
abstracting: (1<=p56)
states: 357,518,864,208 (11)
abstracting: (1<=p7)
states: 906,723,532,800 (11)
abstracting: (1<=p57)
states: 357,518,864,208 (11)
abstracting: (1<=p8)
states: 906,723,532,800 (11)
abstracting: (1<=p60)
states: 357,518,864,208 (11)
abstracting: (1<=p11)
states: 906,723,532,800 (11)
abstracting: (1<=p61)
states: 357,518,864,208 (11)
abstracting: (1<=p12)
states: 906,723,532,800 (11)
abstracting: (1<=p63)
states: 357,518,864,208 (11)
abstracting: (1<=p14)
states: 906,723,532,800 (11)
abstracting: (1<=p50)
states: 357,518,864,208 (11)
abstracting: (1<=p1)
states: 906,723,532,800 (11)
abstracting: (1<=p52)
states: 357,518,864,208 (11)
abstracting: (1<=p3)
states: 906,723,532,800 (11)
abstracting: (1<=p53)
states: 357,518,864,208 (11)
abstracting: (1<=p4)
states: 906,723,532,800 (11)
abstracting: (1<=p55)
states: 357,518,864,208 (11)
abstracting: (1<=p6)
states: 906,723,532,800 (11)
abstracting: (1<=p58)
states: 357,518,864,208 (11)
abstracting: (1<=p9)
states: 906,723,532,800 (11)
abstracting: (1<=p16)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p5)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p4)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p7)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p6)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p1)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p3)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p2)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p13)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p12)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p15)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p14)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p9)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p8)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p11)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p10)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
.......MC time: 2m17.233sec
checking: EG [[AF [[AF [[[[[[p0<=0 | p16<=0] & [p0<=0 | p5<=0]] & [[p0<=0 | p4<=0] & [p0<=0 | p7<=0]]] & [[[p0<=0 | p6<=0] & [p0<=0 | p1<=0]] & [[p0<=0 | p3<=0] & [p0<=0 | p2<=0]]]] & [[[[p0<=0 | p13<=0] & [p0<=0 | p12<=0]] & [[p0<=0 | p15<=0] & [p0<=0 | p14<=0]]] & [[[p0<=0 | p9<=0] & [p0<=0 | p8<=0]] & [[p0<=0 | p11<=0] & [p0<=0 | p10<=0]]]]]] & EG [A [[[[[[1<=p0 & 1<=p16] | [1<=p0 & 1<=p5]] | [[1<=p0 & 1<=p4] | [1<=p0 & 1<=p7]]] | [[[1<=p0 & 1<=p6] | [1<=p0 & 1<=p1]] | [[1<=p0 & 1<=p3] | [1<=p0 & 1<=p2]]]] | [[[[1<=p0 & 1<=p13] | [1<=p0 & 1<=p12]] | [[1<=p0 & 1<=p15] | [1<=p0 & 1<=p14]]] | [[[1<=p0 & 1<=p9] | [1<=p0 & 1<=p8]] | [[1<=p0 & 1<=p11] | [1<=p0 & 1<=p10]]]]] U [[[[1<=p32 | 1<=p17] | [1<=p18 | 1<=p19]] | [[1<=p20 | 1<=p21] | [1<=p22 | 1<=p23]]] | [[[1<=p24 | 1<=p25] | [1<=p26 | 1<=p27]] | [[1<=p28 | 1<=p29] | [1<=p30 | 1<=p31]]]]]]]] | [EX [AG [E [[[[[[1<=p10 & 1<=p59] | [1<=p13 & 1<=p62]] | [[1<=p15 & 1<=p64] | [1<=p16 & 1<=p65]]] | [[[1<=p2 & 1<=p51] | [1<=p5 & 1<=p54]] | [[1<=p7 & 1<=p56] | [1<=p8 & 1<=p57]]]] | [[[[1<=p11 & 1<=p60] | [1<=p12 & 1<=p61]] | [[1<=p14 & 1<=p63] | [1<=p1 & 1<=p50]]] | [[[1<=p3 & 1<=p52] | [1<=p4 & 1<=p53]] | [[1<=p6 & 1<=p55] | [1<=p9 & 1<=p58]]]]] U [[[[[1<=p18 & 1<=p33] | [1<=p23 & 1<=p33]] | [[1<=p30 & 1<=p33] | [1<=p31 & 1<=p33]]] | [[[1<=p21 & 1<=p33] | [1<=p25 & 1<=p33]] | [[1<=p27 & 1<=p33] | [1<=p29 & 1<=p33]]]] | [[[[1<=p24 & 1<=p33] | [1<=p19 & 1<=p33]] | [[1<=p17 & 1<=p33] | [1<=p32 & 1<=p33]]] | [[[1<=p20 & 1<=p33] | [1<=p22 & 1<=p33]] | [[1<=p28 & 1<=p33] | [1<=p26 & 1<=p33]]]]]]]] & EX [[[[[[[p32<=0 & p17<=0] & [p18<=0 & p19<=0]] & [[p20<=0 & p21<=0] & [p22<=0 & p23<=0]]] & [[[p24<=0 & p25<=0] & [p26<=0 & p27<=0]] & [[p28<=0 & p29<=0] & [p30<=0 & p31<=0]]]] & [[[[[p18<=0 | p33<=0] & [p23<=0 | p33<=0]] & [[p30<=0 | p33<=0] & [p31<=0 | p33<=0]]] & [[[p21<=0 | p33<=0] & [p25<=0 | p33<=0]] & [[p27<=0 | p33<=0] & [p29<=0 | p33<=0]]]] & [[[[p24<=0 | p33<=0] & [p19<=0 | p33<=0]] & [[p17<=0 | p33<=0] & [p32<=0 | p33<=0]]] & [[[p20<=0 | p33<=0] & [p22<=0 | p33<=0]] & [[p28<=0 | p33<=0] & [p26<=0 | p33<=0]]]]]] | AF [[[[[p32<=0 & p17<=0] & [p18<=0 & p19<=0]] & [[p20<=0 & p21<=0] & [p22<=0 & p23<=0]]] & [[[p24<=0 & p25<=0] & [p26<=0 & p27<=0]] & [[p28<=0 & p29<=0] & [p30<=0 & p31<=0]]]]]]]]]]
normalized: EG [[[EX [[~ [EG [~ [[[[[p30<=0 & p31<=0] & [p28<=0 & p29<=0]] & [[p26<=0 & p27<=0] & [p24<=0 & p25<=0]]] & [[[p22<=0 & p23<=0] & [p20<=0 & p21<=0]] & [[p18<=0 & p19<=0] & [p32<=0 & p17<=0]]]]]]] | [[[[[[p26<=0 | p33<=0] & [p28<=0 | p33<=0]] & [[p22<=0 | p33<=0] & [p20<=0 | p33<=0]]] & [[[p32<=0 | p33<=0] & [p17<=0 | p33<=0]] & [[p19<=0 | p33<=0] & [p24<=0 | p33<=0]]]] & [[[[p29<=0 | p33<=0] & [p27<=0 | p33<=0]] & [[p25<=0 | p33<=0] & [p21<=0 | p33<=0]]] & [[[p31<=0 | p33<=0] & [p30<=0 | p33<=0]] & [[p23<=0 | p33<=0] & [p18<=0 | p33<=0]]]]] & [[[[p30<=0 & p31<=0] & [p28<=0 & p29<=0]] & [[p26<=0 & p27<=0] & [p24<=0 & p25<=0]]] & [[[p22<=0 & p23<=0] & [p20<=0 & p21<=0]] & [[p18<=0 & p19<=0] & [p32<=0 & p17<=0]]]]]]] & EX [~ [E [true U ~ [E [[[[[[1<=p9 & 1<=p58] | [1<=p6 & 1<=p55]] | [[1<=p4 & 1<=p53] | [1<=p3 & 1<=p52]]] | [[[1<=p1 & 1<=p50] | [1<=p14 & 1<=p63]] | [[1<=p12 & 1<=p61] | [1<=p11 & 1<=p60]]]] | [[[[1<=p8 & 1<=p57] | [1<=p7 & 1<=p56]] | [[1<=p5 & 1<=p54] | [1<=p2 & 1<=p51]]] | [[[1<=p16 & 1<=p65] | [1<=p15 & 1<=p64]] | [[1<=p13 & 1<=p62] | [1<=p10 & 1<=p59]]]]] U [[[[[1<=p26 & 1<=p33] | [1<=p28 & 1<=p33]] | [[1<=p22 & 1<=p33] | [1<=p20 & 1<=p33]]] | [[[1<=p32 & 1<=p33] | [1<=p17 & 1<=p33]] | [[1<=p19 & 1<=p33] | [1<=p24 & 1<=p33]]]] | [[[[1<=p29 & 1<=p33] | [1<=p27 & 1<=p33]] | [[1<=p25 & 1<=p33] | [1<=p21 & 1<=p33]]] | [[[1<=p31 & 1<=p33] | [1<=p30 & 1<=p33]] | [[1<=p23 & 1<=p33] | [1<=p18 & 1<=p33]]]]]]]]]]] | ~ [EG [~ [[EG [[~ [EG [~ [[[[[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p24 | 1<=p25]]] | [[[1<=p22 | 1<=p23] | [1<=p20 | 1<=p21]] | [[1<=p18 | 1<=p19] | [1<=p32 | 1<=p17]]]]]]] & ~ [E [~ [[[[[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p24 | 1<=p25]]] | [[[1<=p22 | 1<=p23] | [1<=p20 | 1<=p21]] | [[1<=p18 | 1<=p19] | [1<=p32 | 1<=p17]]]]] U [~ [[[[[[1<=p0 & 1<=p10] | [1<=p0 & 1<=p11]] | [[1<=p0 & 1<=p8] | [1<=p0 & 1<=p9]]] | [[[1<=p0 & 1<=p14] | [1<=p0 & 1<=p15]] | [[1<=p0 & 1<=p12] | [1<=p0 & 1<=p13]]]] | [[[[1<=p0 & 1<=p2] | [1<=p0 & 1<=p3]] | [[1<=p0 & 1<=p1] | [1<=p0 & 1<=p6]]] | [[[1<=p0 & 1<=p7] | [1<=p0 & 1<=p4]] | [[1<=p0 & 1<=p5] | [1<=p0 & 1<=p16]]]]]] & ~ [[[[[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p24 | 1<=p25]]] | [[[1<=p22 | 1<=p23] | [1<=p20 | 1<=p21]] | [[1<=p18 | 1<=p19] | [1<=p32 | 1<=p17]]]]]]]]]] & ~ [EG [~ [[[[[[p0<=0 | p10<=0] & [p0<=0 | p11<=0]] & [[p0<=0 | p8<=0] & [p0<=0 | p9<=0]]] & [[[p0<=0 | p14<=0] & [p0<=0 | p15<=0]] & [[p0<=0 | p12<=0] & [p0<=0 | p13<=0]]]] & [[[[p0<=0 | p2<=0] & [p0<=0 | p3<=0]] & [[p0<=0 | p1<=0] & [p0<=0 | p6<=0]]] & [[[p0<=0 | p7<=0] & [p0<=0 | p4<=0]] & [[p0<=0 | p5<=0] & [p0<=0 | p16<=0]]]]]]]]]]]]]]
abstracting: (p16<=0)
states: 886,509,506,748 (11)
abstracting: (p0<=0)
states: 1,431,258,050,748 (12)
abstracting: (p5<=0)
states: 886,509,506,748 (11)
abstracting: (p0<=0)
states: 1,431,258,050,748 (12)
abstracting: (p4<=0)
states: 886,509,506,748 (11)
abstracting: (p0<=0)
states: 1,431,258,050,748 (12)
abstracting: (p7<=0)
states: 886,509,506,748 (11)
abstracting: (p0<=0)
states: 1,431,258,050,748 (12)
abstracting: (p6<=0)
states: 886,509,506,748 (11)
abstracting: (p0<=0)
states: 1,431,258,050,748 (12)
abstracting: (p1<=0)
states: 886,509,506,748 (11)
abstracting: (p0<=0)
states: 1,431,258,050,748 (12)
abstracting: (p3<=0)
states: 886,509,506,748 (11)
abstracting: (p0<=0)
states: 1,431,258,050,748 (12)
abstracting: (p2<=0)
states: 886,509,506,748 (11)
abstracting: (p0<=0)
states: 1,431,258,050,748 (12)
abstracting: (p13<=0)
states: 886,509,506,748 (11)
abstracting: (p0<=0)
states: 1,431,258,050,748 (12)
abstracting: (p12<=0)
states: 886,509,506,748 (11)
abstracting: (p0<=0)
states: 1,431,258,050,748 (12)
abstracting: (p15<=0)
states: 886,509,506,748 (11)
abstracting: (p0<=0)
states: 1,431,258,050,748 (12)
abstracting: (p14<=0)
states: 886,509,506,748 (11)
abstracting: (p0<=0)
states: 1,431,258,050,748 (12)
abstracting: (p9<=0)
states: 886,509,506,748 (11)
abstracting: (p0<=0)
states: 1,431,258,050,748 (12)
abstracting: (p8<=0)
states: 886,509,506,748 (11)
abstracting: (p0<=0)
states: 1,431,258,050,748 (12)
abstracting: (p11<=0)
states: 886,509,506,748 (11)
abstracting: (p0<=0)
states: 1,431,258,050,748 (12)
abstracting: (p10<=0)
states: 886,509,506,748 (11)
abstracting: (p0<=0)
states: 1,431,258,050,748 (12)
.........................
EG iterations: 25
abstracting: (1<=p17)
states: 341,764,125,564 (11)
abstracting: (1<=p32)
states: 341,764,125,564 (11)
abstracting: (1<=p19)
states: 341,764,125,564 (11)
abstracting: (1<=p18)
states: 341,764,125,564 (11)
abstracting: (1<=p21)
states: 341,764,125,564 (11)
abstracting: (1<=p20)
states: 341,764,125,564 (11)
abstracting: (1<=p23)
states: 341,764,125,564 (11)
abstracting: (1<=p22)
states: 341,764,125,564 (11)
abstracting: (1<=p25)
states: 341,764,125,564 (11)
abstracting: (1<=p24)
states: 341,764,125,564 (11)
abstracting: (1<=p27)
states: 341,764,125,564 (11)
abstracting: (1<=p26)
states: 341,764,125,564 (11)
abstracting: (1<=p29)
states: 341,764,125,564 (11)
abstracting: (1<=p28)
states: 341,764,125,564 (11)
abstracting: (1<=p31)
states: 341,764,125,564 (11)
abstracting: (1<=p30)
states: 341,764,125,564 (11)
abstracting: (1<=p16)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p5)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p4)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p7)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p6)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p1)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p3)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p2)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p13)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p12)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p15)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p14)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p9)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p8)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p11)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p10)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p17)
states: 341,764,125,564 (11)
abstracting: (1<=p32)
states: 341,764,125,564 (11)
abstracting: (1<=p19)
states: 341,764,125,564 (11)
abstracting: (1<=p18)
states: 341,764,125,564 (11)
abstracting: (1<=p21)
states: 341,764,125,564 (11)
abstracting: (1<=p20)
states: 341,764,125,564 (11)
abstracting: (1<=p23)
states: 341,764,125,564 (11)
abstracting: (1<=p22)
states: 341,764,125,564 (11)
abstracting: (1<=p25)
states: 341,764,125,564 (11)
abstracting: (1<=p24)
states: 341,764,125,564 (11)
abstracting: (1<=p27)
states: 341,764,125,564 (11)
abstracting: (1<=p26)
states: 341,764,125,564 (11)
abstracting: (1<=p29)
states: 341,764,125,564 (11)
abstracting: (1<=p28)
states: 341,764,125,564 (11)
abstracting: (1<=p31)
states: 341,764,125,564 (11)
abstracting: (1<=p30)
states: 341,764,125,564 (11)
abstracting: (1<=p17)
states: 341,764,125,564 (11)
abstracting: (1<=p32)
states: 341,764,125,564 (11)
abstracting: (1<=p19)
states: 341,764,125,564 (11)
abstracting: (1<=p18)
states: 341,764,125,564 (11)
abstracting: (1<=p21)
states: 341,764,125,564 (11)
abstracting: (1<=p20)
states: 341,764,125,564 (11)
abstracting: (1<=p23)
states: 341,764,125,564 (11)
abstracting: (1<=p22)
states: 341,764,125,564 (11)
abstracting: (1<=p25)
states: 341,764,125,564 (11)
abstracting: (1<=p24)
states: 341,764,125,564 (11)
abstracting: (1<=p27)
states: 341,764,125,564 (11)
abstracting: (1<=p26)
states: 341,764,125,564 (11)
abstracting: (1<=p29)
states: 341,764,125,564 (11)
abstracting: (1<=p28)
states: 341,764,125,564 (11)
abstracting: (1<=p31)
states: 341,764,125,564 (11)
abstracting: (1<=p30)
states: 341,764,125,564 (11)
..........................
EG iterations: 26
.
EG iterations: 1
before gc: list nodes free: 36806314
after gc: idd nodes used:5537412, unused:58462588; list nodes free:459145359
..........
EG iterations: 10
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p18)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p23)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p30)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p31)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p21)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p25)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p27)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p29)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p24)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p19)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p17)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p32)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p20)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p22)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p28)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p26)
states: 341,764,125,564 (11)
abstracting: (1<=p59)
states: 357,518,864,208 (11)
abstracting: (1<=p10)
states: 906,723,532,800 (11)
abstracting: (1<=p62)
states: 357,518,864,208 (11)
abstracting: (1<=p13)
states: 906,723,532,800 (11)
abstracting: (1<=p64)
states: 357,518,864,208 (11)
abstracting: (1<=p15)
states: 906,723,532,800 (11)
abstracting: (1<=p65)
states: 357,518,864,208 (11)
abstracting: (1<=p16)
states: 906,723,532,800 (11)
abstracting: (1<=p51)
states: 357,518,864,208 (11)
abstracting: (1<=p2)
states: 906,723,532,800 (11)
abstracting: (1<=p54)
states: 357,518,864,208 (11)
abstracting: (1<=p5)
states: 906,723,532,800 (11)
abstracting: (1<=p56)
states: 357,518,864,208 (11)
abstracting: (1<=p7)
states: 906,723,532,800 (11)
abstracting: (1<=p57)
states: 357,518,864,208 (11)
abstracting: (1<=p8)
states: 906,723,532,800 (11)
abstracting: (1<=p60)
states: 357,518,864,208 (11)
abstracting: (1<=p11)
states: 906,723,532,800 (11)
abstracting: (1<=p61)
states: 357,518,864,208 (11)
abstracting: (1<=p12)
states: 906,723,532,800 (11)
abstracting: (1<=p63)
states: 357,518,864,208 (11)
abstracting: (1<=p14)
states: 906,723,532,800 (11)
abstracting: (1<=p50)
states: 357,518,864,208 (11)
abstracting: (1<=p1)
states: 906,723,532,800 (11)
abstracting: (1<=p52)
states: 357,518,864,208 (11)
abstracting: (1<=p3)
states: 906,723,532,800 (11)
abstracting: (1<=p53)
states: 357,518,864,208 (11)
abstracting: (1<=p4)
states: 906,723,532,800 (11)
abstracting: (1<=p55)
states: 357,518,864,208 (11)
abstracting: (1<=p6)
states: 906,723,532,800 (11)
abstracting: (1<=p58)
states: 357,518,864,208 (11)
abstracting: (1<=p9)
states: 906,723,532,800 (11)
MC time: 2m 7.036sec
checking: [AF [[[[[[1<=p18 & 1<=p33] | [1<=p23 & 1<=p33]] | [[1<=p30 & 1<=p33] | [1<=p31 & 1<=p33]]] | [[[1<=p21 & 1<=p33] | [1<=p25 & 1<=p33]] | [[1<=p27 & 1<=p33] | [1<=p29 & 1<=p33]]]] | [[[[1<=p24 & 1<=p33] | [1<=p19 & 1<=p33]] | [[1<=p17 & 1<=p33] | [1<=p32 & 1<=p33]]] | [[[1<=p20 & 1<=p33] | [1<=p22 & 1<=p33]] | [[1<=p28 & 1<=p33] | [1<=p26 & 1<=p33]]]]]] & ~ [E [EX [[[[[[1<=p32 | 1<=p17] | [1<=p18 | 1<=p19]] | [[1<=p20 | 1<=p21] | [1<=p22 | 1<=p23]]] | [[[1<=p24 | 1<=p25] | [1<=p26 | 1<=p27]] | [[1<=p28 | 1<=p29] | [1<=p30 | 1<=p31]]]] & EF [[[[[[1<=p0 & 1<=p16] | [1<=p0 & 1<=p5]] | [[1<=p0 & 1<=p4] | [1<=p0 & 1<=p7]]] | [[[1<=p0 & 1<=p6] | [1<=p0 & 1<=p1]] | [[1<=p0 & 1<=p3] | [1<=p0 & 1<=p2]]]] | [[[[1<=p0 & 1<=p13] | [1<=p0 & 1<=p12]] | [[1<=p0 & 1<=p15] | [1<=p0 & 1<=p14]]] | [[[1<=p0 & 1<=p9] | [1<=p0 & 1<=p8]] | [[1<=p0 & 1<=p11] | [1<=p0 & 1<=p10]]]]]]]] U [~ [[[[[[[[1<=p18 & 1<=p33] | [1<=p23 & 1<=p33]] | [[1<=p30 & 1<=p33] | [1<=p31 & 1<=p33]]] | [[[1<=p21 & 1<=p33] | [1<=p25 & 1<=p33]] | [[1<=p27 & 1<=p33] | [1<=p29 & 1<=p33]]]] | [[[[1<=p24 & 1<=p33] | [1<=p19 & 1<=p33]] | [[1<=p17 & 1<=p33] | [1<=p32 & 1<=p33]]] | [[[1<=p20 & 1<=p33] | [1<=p22 & 1<=p33]] | [[1<=p28 & 1<=p33] | [1<=p26 & 1<=p33]]]]] | [[[[[1<=p10 & 1<=p59] | [1<=p13 & 1<=p62]] | [[1<=p15 & 1<=p64] | [1<=p16 & 1<=p65]]] | [[[1<=p2 & 1<=p51] | [1<=p5 & 1<=p54]] | [[1<=p7 & 1<=p56] | [1<=p8 & 1<=p57]]]] | [[[[1<=p11 & 1<=p60] | [1<=p12 & 1<=p61]] | [[1<=p14 & 1<=p63] | [1<=p1 & 1<=p50]]] | [[[1<=p3 & 1<=p52] | [1<=p4 & 1<=p53]] | [[1<=p6 & 1<=p55] | [1<=p9 & 1<=p58]]]]]] & ~ [[[[[[1<=p10 & 1<=p59] | [1<=p13 & 1<=p62]] | [[1<=p15 & 1<=p64] | [1<=p16 & 1<=p65]]] | [[[1<=p2 & 1<=p51] | [1<=p5 & 1<=p54]] | [[1<=p7 & 1<=p56] | [1<=p8 & 1<=p57]]]] | [[[[1<=p11 & 1<=p60] | [1<=p12 & 1<=p61]] | [[1<=p14 & 1<=p63] | [1<=p1 & 1<=p50]]] | [[[1<=p3 & 1<=p52] | [1<=p4 & 1<=p53]] | [[1<=p6 & 1<=p55] | [1<=p9 & 1<=p58]]]]]]]] & [~ [EF [[[[[1<=p34 | 1<=p35] | [1<=p36 | 1<=p37]] | [[1<=p39 | 1<=p38] | [1<=p41 | 1<=p40]]] | [[[1<=p43 | 1<=p42] | [1<=p45 | 1<=p44]] | [[1<=p47 | 1<=p46] | [1<=p49 | 1<=p48]]]]]] & [[[[[1<=p18 & 1<=p33] | [1<=p23 & 1<=p33]] | [[1<=p30 & 1<=p33] | [1<=p31 & 1<=p33]]] | [[[1<=p21 & 1<=p33] | [1<=p25 & 1<=p33]] | [[1<=p27 & 1<=p33] | [1<=p29 & 1<=p33]]]] | [[[[1<=p24 & 1<=p33] | [1<=p19 & 1<=p33]] | [[1<=p17 & 1<=p33] | [1<=p32 & 1<=p33]]] | [[[1<=p20 & 1<=p33] | [1<=p22 & 1<=p33]] | [[1<=p28 & 1<=p33] | [1<=p26 & 1<=p33]]]]]]]]]]
normalized: [~ [E [EX [[E [true U [[[[[1<=p0 & 1<=p10] | [1<=p0 & 1<=p11]] | [[1<=p0 & 1<=p8] | [1<=p0 & 1<=p9]]] | [[[1<=p0 & 1<=p14] | [1<=p0 & 1<=p15]] | [[1<=p0 & 1<=p12] | [1<=p0 & 1<=p13]]]] | [[[[1<=p0 & 1<=p2] | [1<=p0 & 1<=p3]] | [[1<=p0 & 1<=p1] | [1<=p0 & 1<=p6]]] | [[[1<=p0 & 1<=p7] | [1<=p0 & 1<=p4]] | [[1<=p0 & 1<=p5] | [1<=p0 & 1<=p16]]]]]] & [[[[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p24 | 1<=p25]]] | [[[1<=p22 | 1<=p23] | [1<=p20 | 1<=p21]] | [[1<=p18 | 1<=p19] | [1<=p32 | 1<=p17]]]]]] U [[[[[[[1<=p26 & 1<=p33] | [1<=p28 & 1<=p33]] | [[1<=p22 & 1<=p33] | [1<=p20 & 1<=p33]]] | [[[1<=p32 & 1<=p33] | [1<=p17 & 1<=p33]] | [[1<=p19 & 1<=p33] | [1<=p24 & 1<=p33]]]] | [[[[1<=p29 & 1<=p33] | [1<=p27 & 1<=p33]] | [[1<=p25 & 1<=p33] | [1<=p21 & 1<=p33]]] | [[[1<=p31 & 1<=p33] | [1<=p30 & 1<=p33]] | [[1<=p23 & 1<=p33] | [1<=p18 & 1<=p33]]]]] & ~ [E [true U [[[[1<=p49 | 1<=p48] | [1<=p47 | 1<=p46]] | [[1<=p45 | 1<=p44] | [1<=p43 | 1<=p42]]] | [[[1<=p41 | 1<=p40] | [1<=p39 | 1<=p38]] | [[1<=p36 | 1<=p37] | [1<=p34 | 1<=p35]]]]]]] & ~ [[~ [[[[[[1<=p1 & 1<=p50] | [1<=p14 & 1<=p63]] | [[1<=p12 & 1<=p61] | [1<=p11 & 1<=p60]]] | [[[1<=p9 & 1<=p58] | [1<=p6 & 1<=p55]] | [[1<=p4 & 1<=p53] | [1<=p3 & 1<=p52]]]] | [[[[1<=p8 & 1<=p57] | [1<=p7 & 1<=p56]] | [[1<=p5 & 1<=p54] | [1<=p2 & 1<=p51]]] | [[[1<=p16 & 1<=p65] | [1<=p15 & 1<=p64]] | [[1<=p13 & 1<=p62] | [1<=p10 & 1<=p59]]]]]] & [[[[[[1<=p9 & 1<=p58] | [1<=p6 & 1<=p55]] | [[1<=p4 & 1<=p53] | [1<=p3 & 1<=p52]]] | [[[1<=p1 & 1<=p50] | [1<=p14 & 1<=p63]] | [[1<=p12 & 1<=p61] | [1<=p11 & 1<=p60]]]] | [[[[1<=p8 & 1<=p57] | [1<=p7 & 1<=p56]] | [[1<=p5 & 1<=p54] | [1<=p2 & 1<=p51]]] | [[[1<=p16 & 1<=p65] | [1<=p15 & 1<=p64]] | [[1<=p13 & 1<=p62] | [1<=p10 & 1<=p59]]]]] | [[[[[1<=p26 & 1<=p33] | [1<=p28 & 1<=p33]] | [[1<=p22 & 1<=p33] | [1<=p20 & 1<=p33]]] | [[[1<=p32 & 1<=p33] | [1<=p17 & 1<=p33]] | [[1<=p19 & 1<=p33] | [1<=p24 & 1<=p33]]]] | [[[[1<=p29 & 1<=p33] | [1<=p27 & 1<=p33]] | [[1<=p25 & 1<=p33] | [1<=p21 & 1<=p33]]] | [[[1<=p31 & 1<=p33] | [1<=p30 & 1<=p33]] | [[1<=p23 & 1<=p33] | [1<=p18 & 1<=p33]]]]]]]]]]] & ~ [EG [~ [[[[[[1<=p26 & 1<=p33] | [1<=p28 & 1<=p33]] | [[1<=p22 & 1<=p33] | [1<=p20 & 1<=p33]]] | [[[1<=p32 & 1<=p33] | [1<=p17 & 1<=p33]] | [[1<=p19 & 1<=p33] | [1<=p24 & 1<=p33]]]] | [[[[1<=p29 & 1<=p33] | [1<=p27 & 1<=p33]] | [[1<=p25 & 1<=p33] | [1<=p21 & 1<=p33]]] | [[[1<=p31 & 1<=p33] | [1<=p30 & 1<=p33]] | [[1<=p23 & 1<=p33] | [1<=p18 & 1<=p33]]]]]]]]]
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p18)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p23)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p30)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p31)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p21)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p25)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p27)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p29)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p24)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p19)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p17)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p32)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p20)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p22)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p28)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p26)
states: 341,764,125,564 (11)
................
before gc: list nodes free: 93619906
after gc: idd nodes used:5737231, unused:58262769; list nodes free:457322798
MC time: 2m 4.528sec
checking: AF [EG [[A [[[[[[[1<=p0 & 1<=p16] | [1<=p0 & 1<=p5]] | [[1<=p0 & 1<=p4] | [1<=p0 & 1<=p7]]] | [[[1<=p0 & 1<=p6] | [1<=p0 & 1<=p1]] | [[1<=p0 & 1<=p3] | [1<=p0 & 1<=p2]]]] | [[[[1<=p0 & 1<=p13] | [1<=p0 & 1<=p12]] | [[1<=p0 & 1<=p15] | [1<=p0 & 1<=p14]]] | [[[1<=p0 & 1<=p9] | [1<=p0 & 1<=p8]] | [[1<=p0 & 1<=p11] | [1<=p0 & 1<=p10]]]]] & AF [[[[[[1<=p18 & 1<=p33] | [1<=p23 & 1<=p33]] | [[1<=p30 & 1<=p33] | [1<=p31 & 1<=p33]]] | [[[1<=p21 & 1<=p33] | [1<=p25 & 1<=p33]] | [[1<=p27 & 1<=p33] | [1<=p29 & 1<=p33]]]] | [[[[1<=p24 & 1<=p33] | [1<=p19 & 1<=p33]] | [[1<=p17 & 1<=p33] | [1<=p32 & 1<=p33]]] | [[[1<=p20 & 1<=p33] | [1<=p22 & 1<=p33]] | [[1<=p28 & 1<=p33] | [1<=p26 & 1<=p33]]]]]]] U [EG [[[[[[1<=p10 & 1<=p59] | [1<=p13 & 1<=p62]] | [[1<=p15 & 1<=p64] | [1<=p16 & 1<=p65]]] | [[[1<=p2 & 1<=p51] | [1<=p5 & 1<=p54]] | [[1<=p7 & 1<=p56] | [1<=p8 & 1<=p57]]]] | [[[[1<=p11 & 1<=p60] | [1<=p12 & 1<=p61]] | [[1<=p14 & 1<=p63] | [1<=p1 & 1<=p50]]] | [[[1<=p3 & 1<=p52] | [1<=p4 & 1<=p53]] | [[1<=p6 & 1<=p55] | [1<=p9 & 1<=p58]]]]]] & [[[[[1<=p18 & 1<=p33] | [1<=p23 & 1<=p33]] | [[1<=p30 & 1<=p33] | [1<=p31 & 1<=p33]]] | [[[1<=p21 & 1<=p33] | [1<=p25 & 1<=p33]] | [[1<=p27 & 1<=p33] | [1<=p29 & 1<=p33]]]] | [[[[1<=p24 & 1<=p33] | [1<=p19 & 1<=p33]] | [[1<=p17 & 1<=p33] | [1<=p32 & 1<=p33]]] | [[[1<=p20 & 1<=p33] | [1<=p22 & 1<=p33]] | [[1<=p28 & 1<=p33] | [1<=p26 & 1<=p33]]]]]]] | EX [[[[[[[[[[[1<=p18 & 1<=p33] | [1<=p23 & 1<=p33]] | [[1<=p30 & 1<=p33] | [1<=p31 & 1<=p33]]] | [[[1<=p21 & 1<=p33] | [1<=p25 & 1<=p33]] | [[1<=p27 & 1<=p33] | [1<=p29 & 1<=p33]]]] | [[[[1<=p24 & 1<=p33] | [1<=p19 & 1<=p33]] | [[1<=p17 & 1<=p33] | [1<=p32 & 1<=p33]]] | [[[1<=p20 & 1<=p33] | [1<=p22 & 1<=p33]] | [[1<=p28 & 1<=p33] | [1<=p26 & 1<=p33]]]]] | [[[[[1<=p0 & 1<=p16] | [1<=p0 & 1<=p5]] | [[1<=p0 & 1<=p4] | [1<=p0 & 1<=p7]]] | [[[1<=p0 & 1<=p6] | [1<=p0 & 1<=p1]] | [[1<=p0 & 1<=p3] | [1<=p0 & 1<=p2]]]] | [[[[1<=p0 & 1<=p13] | [1<=p0 & 1<=p12]] | [[1<=p0 & 1<=p15] | [1<=p0 & 1<=p14]]] | [[[1<=p0 & 1<=p9] | [1<=p0 & 1<=p8]] | [[1<=p0 & 1<=p11] | [1<=p0 & 1<=p10]]]]]] & [p0<=0 | p16<=0]] & [[p0<=0 | p5<=0] & [p0<=0 | p4<=0]]] & [[[p0<=0 | p7<=0] & [p0<=0 | p6<=0]] & [[p0<=0 | p1<=0] & [p0<=0 | p3<=0]]]] & [[[[p0<=0 | p2<=0] & [p0<=0 | p13<=0]] & [[p0<=0 | p12<=0] & [p0<=0 | p15<=0]]] & [[[p0<=0 | p14<=0] & [p0<=0 | p9<=0]] & [[p0<=0 | p8<=0] & [[p0<=0 | p11<=0] & [p0<=0 | p10<=0]]]]]]]]]]
normalized: ~ [EG [~ [EG [[EX [[[[[[[p0<=0 | p10<=0] & [p0<=0 | p11<=0]] & [p0<=0 | p8<=0]] & [[p0<=0 | p9<=0] & [p0<=0 | p14<=0]]] & [[[p0<=0 | p15<=0] & [p0<=0 | p12<=0]] & [[p0<=0 | p13<=0] & [p0<=0 | p2<=0]]]] & [[[[p0<=0 | p3<=0] & [p0<=0 | p1<=0]] & [[p0<=0 | p6<=0] & [p0<=0 | p7<=0]]] & [[[p0<=0 | p4<=0] & [p0<=0 | p5<=0]] & [[p0<=0 | p16<=0] & [[[[[[1<=p0 & 1<=p10] | [1<=p0 & 1<=p11]] | [[1<=p0 & 1<=p8] | [1<=p0 & 1<=p9]]] | [[[1<=p0 & 1<=p14] | [1<=p0 & 1<=p15]] | [[1<=p0 & 1<=p12] | [1<=p0 & 1<=p13]]]] | [[[[1<=p0 & 1<=p2] | [1<=p0 & 1<=p3]] | [[1<=p0 & 1<=p1] | [1<=p0 & 1<=p6]]] | [[[1<=p0 & 1<=p7] | [1<=p0 & 1<=p4]] | [[1<=p0 & 1<=p5] | [1<=p0 & 1<=p16]]]]] | [[[[[1<=p26 & 1<=p33] | [1<=p28 & 1<=p33]] | [[1<=p22 & 1<=p33] | [1<=p20 & 1<=p33]]] | [[[1<=p32 & 1<=p33] | [1<=p17 & 1<=p33]] | [[1<=p19 & 1<=p33] | [1<=p24 & 1<=p33]]]] | [[[[1<=p29 & 1<=p33] | [1<=p27 & 1<=p33]] | [[1<=p25 & 1<=p33] | [1<=p21 & 1<=p33]]] | [[[1<=p31 & 1<=p33] | [1<=p30 & 1<=p33]] | [[1<=p23 & 1<=p33] | [1<=p18 & 1<=p33]]]]]]]]]]] | [~ [EG [~ [[[[[[[1<=p26 & 1<=p33] | [1<=p28 & 1<=p33]] | [[1<=p22 & 1<=p33] | [1<=p20 & 1<=p33]]] | [[[1<=p32 & 1<=p33] | [1<=p17 & 1<=p33]] | [[1<=p19 & 1<=p33] | [1<=p24 & 1<=p33]]]] | [[[[1<=p29 & 1<=p33] | [1<=p27 & 1<=p33]] | [[1<=p25 & 1<=p33] | [1<=p21 & 1<=p33]]] | [[[1<=p31 & 1<=p33] | [1<=p30 & 1<=p33]] | [[1<=p23 & 1<=p33] | [1<=p18 & 1<=p33]]]]] & EG [[[[[[1<=p9 & 1<=p58] | [1<=p6 & 1<=p55]] | [[1<=p4 & 1<=p53] | [1<=p3 & 1<=p52]]] | [[[1<=p1 & 1<=p50] | [1<=p14 & 1<=p63]] | [[1<=p12 & 1<=p61] | [1<=p11 & 1<=p60]]]] | [[[[1<=p8 & 1<=p57] | [1<=p7 & 1<=p56]] | [[1<=p5 & 1<=p54] | [1<=p2 & 1<=p51]]] | [[[1<=p16 & 1<=p65] | [1<=p15 & 1<=p64]] | [[1<=p13 & 1<=p62] | [1<=p10 & 1<=p59]]]]]]]]]] & ~ [E [~ [[[[[[[1<=p26 & 1<=p33] | [1<=p28 & 1<=p33]] | [[1<=p22 & 1<=p33] | [1<=p20 & 1<=p33]]] | [[[1<=p32 & 1<=p33] | [1<=p17 & 1<=p33]] | [[1<=p19 & 1<=p33] | [1<=p24 & 1<=p33]]]] | [[[[1<=p29 & 1<=p33] | [1<=p27 & 1<=p33]] | [[1<=p25 & 1<=p33] | [1<=p21 & 1<=p33]]] | [[[1<=p31 & 1<=p33] | [1<=p30 & 1<=p33]] | [[1<=p23 & 1<=p33] | [1<=p18 & 1<=p33]]]]] & EG [[[[[[1<=p9 & 1<=p58] | [1<=p6 & 1<=p55]] | [[1<=p4 & 1<=p53] | [1<=p3 & 1<=p52]]] | [[[1<=p1 & 1<=p50] | [1<=p14 & 1<=p63]] | [[1<=p12 & 1<=p61] | [1<=p11 & 1<=p60]]]] | [[[[1<=p8 & 1<=p57] | [1<=p7 & 1<=p56]] | [[1<=p5 & 1<=p54] | [1<=p2 & 1<=p51]]] | [[[1<=p16 & 1<=p65] | [1<=p15 & 1<=p64]] | [[1<=p13 & 1<=p62] | [1<=p10 & 1<=p59]]]]]]]] U [~ [[~ [EG [~ [[[[[[1<=p26 & 1<=p33] | [1<=p28 & 1<=p33]] | [[1<=p22 & 1<=p33] | [1<=p20 & 1<=p33]]] | [[[1<=p32 & 1<=p33] | [1<=p17 & 1<=p33]] | [[1<=p19 & 1<=p33] | [1<=p24 & 1<=p33]]]] | [[[[1<=p29 & 1<=p33] | [1<=p27 & 1<=p33]] | [[1<=p25 & 1<=p33] | [1<=p21 & 1<=p33]]] | [[[1<=p31 & 1<=p33] | [1<=p30 & 1<=p33]] | [[1<=p23 & 1<=p33] | [1<=p18 & 1<=p33]]]]]]]] & [[[[[1<=p0 & 1<=p10] | [1<=p0 & 1<=p11]] | [[1<=p0 & 1<=p8] | [1<=p0 & 1<=p9]]] | [[[1<=p0 & 1<=p14] | [1<=p0 & 1<=p15]] | [[1<=p0 & 1<=p12] | [1<=p0 & 1<=p13]]]] | [[[[1<=p0 & 1<=p2] | [1<=p0 & 1<=p3]] | [[1<=p0 & 1<=p1] | [1<=p0 & 1<=p6]]] | [[[1<=p0 & 1<=p7] | [1<=p0 & 1<=p4]] | [[1<=p0 & 1<=p5] | [1<=p0 & 1<=p16]]]]]]] & ~ [[[[[[[1<=p26 & 1<=p33] | [1<=p28 & 1<=p33]] | [[1<=p22 & 1<=p33] | [1<=p20 & 1<=p33]]] | [[[1<=p32 & 1<=p33] | [1<=p17 & 1<=p33]] | [[1<=p19 & 1<=p33] | [1<=p24 & 1<=p33]]]] | [[[[1<=p29 & 1<=p33] | [1<=p27 & 1<=p33]] | [[1<=p25 & 1<=p33] | [1<=p21 & 1<=p33]]] | [[[1<=p31 & 1<=p33] | [1<=p30 & 1<=p33]] | [[1<=p23 & 1<=p33] | [1<=p18 & 1<=p33]]]]] & EG [[[[[[1<=p9 & 1<=p58] | [1<=p6 & 1<=p55]] | [[1<=p4 & 1<=p53] | [1<=p3 & 1<=p52]]] | [[[1<=p1 & 1<=p50] | [1<=p14 & 1<=p63]] | [[1<=p12 & 1<=p61] | [1<=p11 & 1<=p60]]]] | [[[[1<=p8 & 1<=p57] | [1<=p7 & 1<=p56]] | [[1<=p5 & 1<=p54] | [1<=p2 & 1<=p51]]] | [[[1<=p16 & 1<=p65] | [1<=p15 & 1<=p64]] | [[1<=p13 & 1<=p62] | [1<=p10 & 1<=p59]]]]]]]]]]]]]]]]]
abstracting: (1<=p59)
states: 357,518,864,208 (11)
abstracting: (1<=p10)
states: 906,723,532,800 (11)
abstracting: (1<=p62)
states: 357,518,864,208 (11)
abstracting: (1<=p13)
states: 906,723,532,800 (11)
abstracting: (1<=p64)
states: 357,518,864,208 (11)
abstracting: (1<=p15)
states: 906,723,532,800 (11)
abstracting: (1<=p65)
states: 357,518,864,208 (11)
abstracting: (1<=p16)
states: 906,723,532,800 (11)
abstracting: (1<=p51)
states: 357,518,864,208 (11)
abstracting: (1<=p2)
states: 906,723,532,800 (11)
abstracting: (1<=p54)
states: 357,518,864,208 (11)
abstracting: (1<=p5)
states: 906,723,532,800 (11)
abstracting: (1<=p56)
states: 357,518,864,208 (11)
abstracting: (1<=p7)
states: 906,723,532,800 (11)
abstracting: (1<=p57)
states: 357,518,864,208 (11)
abstracting: (1<=p8)
states: 906,723,532,800 (11)
abstracting: (1<=p60)
states: 357,518,864,208 (11)
abstracting: (1<=p11)
states: 906,723,532,800 (11)
abstracting: (1<=p61)
states: 357,518,864,208 (11)
abstracting: (1<=p12)
states: 906,723,532,800 (11)
abstracting: (1<=p63)
states: 357,518,864,208 (11)
abstracting: (1<=p14)
states: 906,723,532,800 (11)
abstracting: (1<=p50)
states: 357,518,864,208 (11)
abstracting: (1<=p1)
states: 906,723,532,800 (11)
abstracting: (1<=p52)
states: 357,518,864,208 (11)
abstracting: (1<=p3)
states: 906,723,532,800 (11)
abstracting: (1<=p53)
states: 357,518,864,208 (11)
abstracting: (1<=p4)
states: 906,723,532,800 (11)
abstracting: (1<=p55)
states: 357,518,864,208 (11)
abstracting: (1<=p6)
states: 906,723,532,800 (11)
abstracting: (1<=p58)
states: 357,518,864,208 (11)
abstracting: (1<=p9)
states: 906,723,532,800 (11)
MC time: 1m52.037sec
checking: [EX [A [A [[[[[1<=p32 | 1<=p17] | [1<=p18 | 1<=p19]] | [[1<=p20 | 1<=p21] | [1<=p22 | 1<=p23]]] | [[[1<=p24 | 1<=p25] | [1<=p26 | 1<=p27]] | [[1<=p28 | 1<=p29] | [1<=p30 | 1<=p31]]]] U [EF [[[[[[1<=p0 & 1<=p16] | [1<=p0 & 1<=p5]] | [[1<=p0 & 1<=p4] | [1<=p0 & 1<=p7]]] | [[[1<=p0 & 1<=p6] | [1<=p0 & 1<=p1]] | [[1<=p0 & 1<=p3] | [1<=p0 & 1<=p2]]]] | [[[[1<=p0 & 1<=p13] | [1<=p0 & 1<=p12]] | [[1<=p0 & 1<=p15] | [1<=p0 & 1<=p14]]] | [[[1<=p0 & 1<=p9] | [1<=p0 & 1<=p8]] | [[1<=p0 & 1<=p11] | [1<=p0 & 1<=p10]]]]]] & [[[[1<=p34 | 1<=p35] | [1<=p36 | 1<=p37]] | [[1<=p39 | 1<=p38] | [1<=p41 | 1<=p40]]] | [[[1<=p43 | 1<=p42] | [1<=p45 | 1<=p44]] | [[1<=p47 | 1<=p46] | [1<=p49 | 1<=p48]]]]]] U [[[[[1<=p10 & 1<=p59] | [1<=p13 & 1<=p62]] | [[1<=p15 & 1<=p64] | [1<=p16 & 1<=p65]]] | [[[1<=p2 & 1<=p51] | [1<=p5 & 1<=p54]] | [[1<=p7 & 1<=p56] | [1<=p8 & 1<=p57]]]] | [[[[1<=p11 & 1<=p60] | [1<=p12 & 1<=p61]] | [[1<=p14 & 1<=p63] | [1<=p1 & 1<=p50]]] | [[[1<=p3 & 1<=p52] | [1<=p4 & 1<=p53]] | [[1<=p6 & 1<=p55] | [[1<=p9 & 1<=p58] | AX [[[[[[[1<=p18 & 1<=p33] | [1<=p23 & 1<=p33]] | [[1<=p30 & 1<=p33] | [1<=p31 & 1<=p33]]] | [[[1<=p21 & 1<=p33] | [1<=p25 & 1<=p33]] | [[1<=p27 & 1<=p33] | [1<=p29 & 1<=p33]]]] | [[[[1<=p24 & 1<=p33] | [1<=p19 & 1<=p33]] | [[1<=p17 & 1<=p33] | [1<=p32 & 1<=p33]]] | [[[1<=p20 & 1<=p33] | [1<=p22 & 1<=p33]] | [[1<=p28 & 1<=p33] | [1<=p26 & 1<=p33]]]]] & [[[[[1<=p0 & 1<=p16] | [1<=p0 & 1<=p5]] | [[1<=p0 & 1<=p4] | [1<=p0 & 1<=p7]]] | [[[1<=p0 & 1<=p6] | [1<=p0 & 1<=p1]] | [[1<=p0 & 1<=p3] | [1<=p0 & 1<=p2]]]] | [[[[1<=p0 & 1<=p13] | [1<=p0 & 1<=p12]] | [[1<=p0 & 1<=p15] | [1<=p0 & 1<=p14]]] | [[[1<=p0 & 1<=p9] | [1<=p0 & 1<=p8]] | [[1<=p0 & 1<=p11] | [1<=p0 & 1<=p10]]]]]]]]]]]]]] & AG [[[AX [[[[[[p18<=0 | p33<=0] & [p23<=0 | p33<=0]] & [[p30<=0 | p33<=0] & [p31<=0 | p33<=0]]] & [[[p21<=0 | p33<=0] & [p25<=0 | p33<=0]] & [[p27<=0 | p33<=0] & [p29<=0 | p33<=0]]]] & [[[[p24<=0 | p33<=0] & [p19<=0 | p33<=0]] & [[p17<=0 | p33<=0] & [p32<=0 | p33<=0]]] & [[[p20<=0 | p33<=0] & [p22<=0 | p33<=0]] & [[p28<=0 | p33<=0] & [p26<=0 | p33<=0]]]]]] & EF [[[[[1<=p32 | 1<=p17] | [1<=p18 | 1<=p19]] | [[1<=p20 | 1<=p21] | [1<=p22 | 1<=p23]]] | [[[1<=p24 | 1<=p25] | [1<=p26 | 1<=p27]] | [[1<=p28 | 1<=p29] | [1<=p30 | 1<=p31]]]]]] | AG [EF [[[[[[p10<=0 | p59<=0] & [p13<=0 | p62<=0]] & [[p15<=0 | p64<=0] & [p16<=0 | p65<=0]]] & [[[p2<=0 | p51<=0] & [p5<=0 | p54<=0]] & [[p7<=0 | p56<=0] & [p8<=0 | p57<=0]]]] & [[[[p11<=0 | p60<=0] & [p12<=0 | p61<=0]] & [[p14<=0 | p63<=0] & [p1<=0 | p50<=0]]] & [[[p3<=0 | p52<=0] & [p4<=0 | p53<=0]] & [[p6<=0 | p55<=0] & [p9<=0 | p58<=0]]]]]]]]]]
normalized: [~ [E [true U ~ [[~ [E [true U ~ [E [true U [[[[[p9<=0 | p58<=0] & [p6<=0 | p55<=0]] & [[p4<=0 | p53<=0] & [p3<=0 | p52<=0]]] & [[[p1<=0 | p50<=0] & [p14<=0 | p63<=0]] & [[p12<=0 | p61<=0] & [p11<=0 | p60<=0]]]] & [[[[p8<=0 | p57<=0] & [p7<=0 | p56<=0]] & [[p5<=0 | p54<=0] & [p2<=0 | p51<=0]]] & [[[p16<=0 | p65<=0] & [p15<=0 | p64<=0]] & [[p13<=0 | p62<=0] & [p10<=0 | p59<=0]]]]]]]]] | [E [true U [[[[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p24 | 1<=p25]]] | [[[1<=p22 | 1<=p23] | [1<=p20 | 1<=p21]] | [[1<=p18 | 1<=p19] | [1<=p32 | 1<=p17]]]]] & ~ [EX [~ [[[[[[p26<=0 | p33<=0] & [p28<=0 | p33<=0]] & [[p22<=0 | p33<=0] & [p20<=0 | p33<=0]]] & [[[p32<=0 | p33<=0] & [p17<=0 | p33<=0]] & [[p19<=0 | p33<=0] & [p24<=0 | p33<=0]]]] & [[[[p29<=0 | p33<=0] & [p27<=0 | p33<=0]] & [[p25<=0 | p33<=0] & [p21<=0 | p33<=0]]] & [[[p31<=0 | p33<=0] & [p30<=0 | p33<=0]] & [[p23<=0 | p33<=0] & [p18<=0 | p33<=0]]]]]]]]]]]]] & EX [[~ [EG [~ [[[[[[~ [EX [~ [[[[[[[1<=p0 & 1<=p10] | [1<=p0 & 1<=p11]] | [[1<=p0 & 1<=p8] | [1<=p0 & 1<=p9]]] | [[[1<=p0 & 1<=p14] | [1<=p0 & 1<=p15]] | [[1<=p0 & 1<=p12] | [1<=p0 & 1<=p13]]]] | [[[[1<=p0 & 1<=p2] | [1<=p0 & 1<=p3]] | [[1<=p0 & 1<=p1] | [1<=p0 & 1<=p6]]] | [[[1<=p0 & 1<=p7] | [1<=p0 & 1<=p4]] | [[1<=p0 & 1<=p5] | [1<=p0 & 1<=p16]]]]] & [[[[[1<=p26 & 1<=p33] | [1<=p28 & 1<=p33]] | [[1<=p22 & 1<=p33] | [1<=p20 & 1<=p33]]] | [[[1<=p32 & 1<=p33] | [1<=p17 & 1<=p33]] | [[1<=p19 & 1<=p33] | [1<=p24 & 1<=p33]]]] | [[[[1<=p29 & 1<=p33] | [1<=p27 & 1<=p33]] | [[1<=p25 & 1<=p33] | [1<=p21 & 1<=p33]]] | [[[1<=p31 & 1<=p33] | [1<=p30 & 1<=p33]] | [[1<=p23 & 1<=p33] | [1<=p18 & 1<=p33]]]]]]]]] | [1<=p9 & 1<=p58]] | [1<=p6 & 1<=p55]] | [[1<=p4 & 1<=p53] | [1<=p3 & 1<=p52]]] | [[[1<=p1 & 1<=p50] | [1<=p14 & 1<=p63]] | [[1<=p12 & 1<=p61] | [1<=p11 & 1<=p60]]]] | [[[[1<=p8 & 1<=p57] | [1<=p7 & 1<=p56]] | [[1<=p5 & 1<=p54] | [1<=p2 & 1<=p51]]] | [[[1<=p16 & 1<=p65] | [1<=p15 & 1<=p64]] | [[1<=p13 & 1<=p62] | [1<=p10 & 1<=p59]]]]]]]] & ~ [E [~ [[[[[[~ [EX [~ [[[[[[[1<=p0 & 1<=p10] | [1<=p0 & 1<=p11]] | [[1<=p0 & 1<=p8] | [1<=p0 & 1<=p9]]] | [[[1<=p0 & 1<=p14] | [1<=p0 & 1<=p15]] | [[1<=p0 & 1<=p12] | [1<=p0 & 1<=p13]]]] | [[[[1<=p0 & 1<=p2] | [1<=p0 & 1<=p3]] | [[1<=p0 & 1<=p1] | [1<=p0 & 1<=p6]]] | [[[1<=p0 & 1<=p7] | [1<=p0 & 1<=p4]] | [[1<=p0 & 1<=p5] | [1<=p0 & 1<=p16]]]]] & [[[[[1<=p26 & 1<=p33] | [1<=p28 & 1<=p33]] | [[1<=p22 & 1<=p33] | [1<=p20 & 1<=p33]]] | [[[1<=p32 & 1<=p33] | [1<=p17 & 1<=p33]] | [[1<=p19 & 1<=p33] | [1<=p24 & 1<=p33]]]] | [[[[1<=p29 & 1<=p33] | [1<=p27 & 1<=p33]] | [[1<=p25 & 1<=p33] | [1<=p21 & 1<=p33]]] | [[[1<=p31 & 1<=p33] | [1<=p30 & 1<=p33]] | [[1<=p23 & 1<=p33] | [1<=p18 & 1<=p33]]]]]]]]] | [1<=p9 & 1<=p58]] | [1<=p6 & 1<=p55]] | [[1<=p4 & 1<=p53] | [1<=p3 & 1<=p52]]] | [[[1<=p1 & 1<=p50] | [1<=p14 & 1<=p63]] | [[1<=p12 & 1<=p61] | [1<=p11 & 1<=p60]]]] | [[[[1<=p8 & 1<=p57] | [1<=p7 & 1<=p56]] | [[1<=p5 & 1<=p54] | [1<=p2 & 1<=p51]]] | [[[1<=p16 & 1<=p65] | [1<=p15 & 1<=p64]] | [[1<=p13 & 1<=p62] | [1<=p10 & 1<=p59]]]]]] U [~ [[~ [EG [~ [[[[[[1<=p49 | 1<=p48] | [1<=p47 | 1<=p46]] | [[1<=p45 | 1<=p44] | [1<=p43 | 1<=p42]]] | [[[1<=p41 | 1<=p40] | [1<=p39 | 1<=p38]] | [[1<=p36 | 1<=p37] | [1<=p34 | 1<=p35]]]] & E [true U [[[[[1<=p0 & 1<=p10] | [1<=p0 & 1<=p11]] | [[1<=p0 & 1<=p8] | [1<=p0 & 1<=p9]]] | [[[1<=p0 & 1<=p14] | [1<=p0 & 1<=p15]] | [[1<=p0 & 1<=p12] | [1<=p0 & 1<=p13]]]] | [[[[1<=p0 & 1<=p2] | [1<=p0 & 1<=p3]] | [[1<=p0 & 1<=p1] | [1<=p0 & 1<=p6]]] | [[[1<=p0 & 1<=p7] | [1<=p0 & 1<=p4]] | [[1<=p0 & 1<=p5] | [1<=p0 & 1<=p16]]]]]]]]]] & ~ [E [~ [[[[[[1<=p49 | 1<=p48] | [1<=p47 | 1<=p46]] | [[1<=p45 | 1<=p44] | [1<=p43 | 1<=p42]]] | [[[1<=p41 | 1<=p40] | [1<=p39 | 1<=p38]] | [[1<=p36 | 1<=p37] | [1<=p34 | 1<=p35]]]] & E [true U [[[[[1<=p0 & 1<=p10] | [1<=p0 & 1<=p11]] | [[1<=p0 & 1<=p8] | [1<=p0 & 1<=p9]]] | [[[1<=p0 & 1<=p14] | [1<=p0 & 1<=p15]] | [[1<=p0 & 1<=p12] | [1<=p0 & 1<=p13]]]] | [[[[1<=p0 & 1<=p2] | [1<=p0 & 1<=p3]] | [[1<=p0 & 1<=p1] | [1<=p0 & 1<=p6]]] | [[[1<=p0 & 1<=p7] | [1<=p0 & 1<=p4]] | [[1<=p0 & 1<=p5] | [1<=p0 & 1<=p16]]]]]]]] U [~ [[[[[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p24 | 1<=p25]]] | [[[1<=p22 | 1<=p23] | [1<=p20 | 1<=p21]] | [[1<=p18 | 1<=p19] | [1<=p32 | 1<=p17]]]]] & ~ [[[[[[1<=p49 | 1<=p48] | [1<=p47 | 1<=p46]] | [[1<=p45 | 1<=p44] | [1<=p43 | 1<=p42]]] | [[[1<=p41 | 1<=p40] | [1<=p39 | 1<=p38]] | [[1<=p36 | 1<=p37] | [1<=p34 | 1<=p35]]]] & E [true U [[[[[1<=p0 & 1<=p10] | [1<=p0 & 1<=p11]] | [[1<=p0 & 1<=p8] | [1<=p0 & 1<=p9]]] | [[[1<=p0 & 1<=p14] | [1<=p0 & 1<=p15]] | [[1<=p0 & 1<=p12] | [1<=p0 & 1<=p13]]]] | [[[[1<=p0 & 1<=p2] | [1<=p0 & 1<=p3]] | [[1<=p0 & 1<=p1] | [1<=p0 & 1<=p6]]] | [[[1<=p0 & 1<=p7] | [1<=p0 & 1<=p4]] | [[1<=p0 & 1<=p5] | [1<=p0 & 1<=p16]]]]]]]]]]]]] & ~ [[[[[[~ [EX [~ [[[[[[[1<=p0 & 1<=p10] | [1<=p0 & 1<=p11]] | [[1<=p0 & 1<=p8] | [1<=p0 & 1<=p9]]] | [[[1<=p0 & 1<=p14] | [1<=p0 & 1<=p15]] | [[1<=p0 & 1<=p12] | [1<=p0 & 1<=p13]]]] | [[[[1<=p0 & 1<=p2] | [1<=p0 & 1<=p3]] | [[1<=p0 & 1<=p1] | [1<=p0 & 1<=p6]]] | [[[1<=p0 & 1<=p7] | [1<=p0 & 1<=p4]] | [[1<=p0 & 1<=p5] | [1<=p0 & 1<=p16]]]]] & [[[[[1<=p26 & 1<=p33] | [1<=p28 & 1<=p33]] | [[1<=p22 & 1<=p33] | [1<=p20 & 1<=p33]]] | [[[1<=p32 & 1<=p33] | [1<=p17 & 1<=p33]] | [[1<=p19 & 1<=p33] | [1<=p24 & 1<=p33]]]] | [[[[1<=p29 & 1<=p33] | [1<=p27 & 1<=p33]] | [[1<=p25 & 1<=p33] | [1<=p21 & 1<=p33]]] | [[[1<=p31 & 1<=p33] | [1<=p30 & 1<=p33]] | [[1<=p23 & 1<=p33] | [1<=p18 & 1<=p33]]]]]]]]] | [1<=p9 & 1<=p58]] | [1<=p6 & 1<=p55]] | [[1<=p4 & 1<=p53] | [1<=p3 & 1<=p52]]] | [[[1<=p1 & 1<=p50] | [1<=p14 & 1<=p63]] | [[1<=p12 & 1<=p61] | [1<=p11 & 1<=p60]]]] | [[[[1<=p8 & 1<=p57] | [1<=p7 & 1<=p56]] | [[1<=p5 & 1<=p54] | [1<=p2 & 1<=p51]]] | [[[1<=p16 & 1<=p65] | [1<=p15 & 1<=p64]] | [[1<=p13 & 1<=p62] | [1<=p10 & 1<=p59]]]]]]]]]]]]
abstracting: (1<=p59)
states: 357,518,864,208 (11)
abstracting: (1<=p10)
states: 906,723,532,800 (11)
abstracting: (1<=p62)
states: 357,518,864,208 (11)
abstracting: (1<=p13)
states: 906,723,532,800 (11)
abstracting: (1<=p64)
states: 357,518,864,208 (11)
abstracting: (1<=p15)
states: 906,723,532,800 (11)
abstracting: (1<=p65)
states: 357,518,864,208 (11)
abstracting: (1<=p16)
states: 906,723,532,800 (11)
abstracting: (1<=p51)
states: 357,518,864,208 (11)
abstracting: (1<=p2)
states: 906,723,532,800 (11)
abstracting: (1<=p54)
states: 357,518,864,208 (11)
abstracting: (1<=p5)
states: 906,723,532,800 (11)
abstracting: (1<=p56)
states: 357,518,864,208 (11)
abstracting: (1<=p7)
states: 906,723,532,800 (11)
abstracting: (1<=p57)
states: 357,518,864,208 (11)
abstracting: (1<=p8)
states: 906,723,532,800 (11)
abstracting: (1<=p60)
states: 357,518,864,208 (11)
abstracting: (1<=p11)
states: 906,723,532,800 (11)
abstracting: (1<=p61)
states: 357,518,864,208 (11)
abstracting: (1<=p12)
states: 906,723,532,800 (11)
abstracting: (1<=p63)
states: 357,518,864,208 (11)
abstracting: (1<=p14)
states: 906,723,532,800 (11)
abstracting: (1<=p50)
states: 357,518,864,208 (11)
abstracting: (1<=p1)
states: 906,723,532,800 (11)
abstracting: (1<=p52)
states: 357,518,864,208 (11)
abstracting: (1<=p3)
states: 906,723,532,800 (11)
abstracting: (1<=p53)
states: 357,518,864,208 (11)
abstracting: (1<=p4)
states: 906,723,532,800 (11)
abstracting: (1<=p55)
states: 357,518,864,208 (11)
abstracting: (1<=p6)
states: 906,723,532,800 (11)
abstracting: (1<=p58)
states: 357,518,864,208 (11)
abstracting: (1<=p9)
states: 906,723,532,800 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p18)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p23)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p30)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p31)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p21)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p25)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p27)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p29)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p24)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p19)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p17)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p32)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p20)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p22)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p28)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p26)
states: 341,764,125,564 (11)
abstracting: (1<=p16)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p5)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p4)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p7)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p6)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p1)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p3)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p2)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p13)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p12)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p15)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p14)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p9)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p8)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p11)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p10)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
.abstracting: (1<=p16)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p5)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p4)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p7)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p6)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p1)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p3)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p2)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p13)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p12)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p15)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p14)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p9)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p8)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p11)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
abstracting: (1<=p10)
states: 906,723,532,800 (11)
abstracting: (1<=p0)
states: 361,974,988,800 (11)
before gc: list nodes free: 89495942
after gc: idd nodes used:8150974, unused:55849026; list nodes free:441004546
MC time: 1m38.391sec
checking: AX [[~ [A [[~ [[[[[[1<=p18 & 1<=p33] | [1<=p23 & 1<=p33]] | [[1<=p30 & 1<=p33] | [1<=p31 & 1<=p33]]] | [[[1<=p21 & 1<=p33] | [1<=p25 & 1<=p33]] | [[1<=p27 & 1<=p33] | [1<=p29 & 1<=p33]]]] | [[[[1<=p24 & 1<=p33] | [1<=p19 & 1<=p33]] | [[1<=p17 & 1<=p33] | [1<=p32 & 1<=p33]]] | [[[1<=p20 & 1<=p33] | [1<=p22 & 1<=p33]] | [[1<=p28 & 1<=p33] | [1<=p26 & 1<=p33]]]]]] & ~ [EG [[[[[1<=p34 | 1<=p35] | [1<=p36 | 1<=p37]] | [[1<=p39 | 1<=p38] | [1<=p41 | 1<=p40]]] | [[[1<=p43 | 1<=p42] | [1<=p45 | 1<=p44]] | [[1<=p47 | 1<=p46] | [1<=p49 | 1<=p48]]]]]]] U [[[[[[1<=p18 & 1<=p33] | [1<=p23 & 1<=p33]] | [[1<=p30 & 1<=p33] | [1<=p31 & 1<=p33]]] | [[[1<=p21 & 1<=p33] | [1<=p25 & 1<=p33]] | [[1<=p27 & 1<=p33] | [1<=p29 & 1<=p33]]]] | [[[[1<=p24 & 1<=p33] | [1<=p19 & 1<=p33]] | [[1<=p17 & 1<=p33] | [1<=p32 & 1<=p33]]] | [[[1<=p20 & 1<=p33] | [1<=p22 & 1<=p33]] | [[1<=p28 & 1<=p33] | [1<=p26 & 1<=p33]]]]] & [EF [[[[[1<=p32 | 1<=p17] | [1<=p18 | 1<=p19]] | [[1<=p20 | 1<=p21] | [1<=p22 | 1<=p23]]] | [[[1<=p24 | 1<=p25] | [1<=p26 | 1<=p27]] | [[1<=p28 | 1<=p29] | [1<=p30 | 1<=p31]]]]] | [[[[[1<=p32 | 1<=p17] | [1<=p18 | 1<=p19]] | [[1<=p20 | 1<=p21] | [1<=p22 | 1<=p23]]] | [[[1<=p24 | 1<=p25] | [1<=p26 | 1<=p27]] | [[1<=p28 | 1<=p29] | [1<=p30 | 1<=p31]]]] & [[[[[1<=p18 & 1<=p33] | [1<=p23 & 1<=p33]] | [[1<=p30 & 1<=p33] | [1<=p31 & 1<=p33]]] | [[[1<=p21 & 1<=p33] | [1<=p25 & 1<=p33]] | [[1<=p27 & 1<=p33] | [1<=p29 & 1<=p33]]]] | [[[[1<=p24 & 1<=p33] | [1<=p19 & 1<=p33]] | [[1<=p17 & 1<=p33] | [1<=p32 & 1<=p33]]] | [[[1<=p20 & 1<=p33] | [1<=p22 & 1<=p33]] | [[1<=p28 & 1<=p33] | [1<=p26 & 1<=p33]]]]]]]]]] | [EG [[[[[[[1<=p10 & 1<=p59] | [1<=p13 & 1<=p62]] | [[1<=p15 & 1<=p64] | [1<=p16 & 1<=p65]]] | [[[1<=p2 & 1<=p51] | [1<=p5 & 1<=p54]] | [[1<=p7 & 1<=p56] | [1<=p8 & 1<=p57]]]] | [[[[1<=p11 & 1<=p60] | [1<=p12 & 1<=p61]] | [[1<=p14 & 1<=p63] | [1<=p1 & 1<=p50]]] | [[[1<=p3 & 1<=p52] | [1<=p4 & 1<=p53]] | [[1<=p6 & 1<=p55] | [1<=p9 & 1<=p58]]]]] | [[[[[1<=p18 & 1<=p33] | [1<=p23 & 1<=p33]] | [[1<=p30 & 1<=p33] | [1<=p31 & 1<=p33]]] | [[[1<=p21 & 1<=p33] | [1<=p25 & 1<=p33]] | [[1<=p27 & 1<=p33] | [1<=p29 & 1<=p33]]]] | [[[[1<=p24 & 1<=p33] | [1<=p19 & 1<=p33]] | [[1<=p17 & 1<=p33] | [1<=p32 & 1<=p33]]] | [[[1<=p20 & 1<=p33] | [1<=p22 & 1<=p33]] | [[1<=p28 & 1<=p33] | [1<=p26 & 1<=p33]]]]]]] & [EX [~ [A [[[[[[1<=p0 & 1<=p16] | [1<=p0 & 1<=p5]] | [[1<=p0 & 1<=p4] | [1<=p0 & 1<=p7]]] | [[[1<=p0 & 1<=p6] | [1<=p0 & 1<=p1]] | [[1<=p0 & 1<=p3] | [1<=p0 & 1<=p2]]]] | [[[[1<=p0 & 1<=p13] | [1<=p0 & 1<=p12]] | [[1<=p0 & 1<=p15] | [1<=p0 & 1<=p14]]] | [[[1<=p0 & 1<=p9] | [1<=p0 & 1<=p8]] | [[1<=p0 & 1<=p11] | [1<=p0 & 1<=p10]]]]] U [[[[[1<=p18 & 1<=p33] | [1<=p23 & 1<=p33]] | [[1<=p30 & 1<=p33] | [1<=p31 & 1<=p33]]] | [[[1<=p21 & 1<=p33] | [1<=p25 & 1<=p33]] | [[1<=p27 & 1<=p33] | [1<=p29 & 1<=p33]]]] | [[[[1<=p24 & 1<=p33] | [1<=p19 & 1<=p33]] | [[1<=p17 & 1<=p33] | [1<=p32 & 1<=p33]]] | [[[1<=p20 & 1<=p33] | [1<=p22 & 1<=p33]] | [[1<=p28 & 1<=p33] | [1<=p26 & 1<=p33]]]]]]]] | [EX [[[[[[p0<=0 | p16<=0] & [p0<=0 | p5<=0]] & [[p0<=0 | p4<=0] & [p0<=0 | p7<=0]]] & [[[p0<=0 | p6<=0] & [p0<=0 | p1<=0]] & [[p0<=0 | p3<=0] & [p0<=0 | p2<=0]]]] & [[[[p13<=0 | p0<=0] & [p0<=0 | p12<=0]] & [[p0<=0 | p15<=0] & [p0<=0 | p14<=0]]] & [[[p0<=0 | p9<=0] & [p0<=0 | p8<=0]] & [[p0<=0 | p11<=0] & [p0<=0 | p10<=0]]]]]] & [[[[[[[[[p0<=0 | p16<=0] & [p0<=0 | p5<=0]] & [[p0<=0 | p4<=0] & [p0<=0 | p7<=0]]] & [[[p0<=0 | p6<=0] & [p0<=0 | p1<=0]] & [[p0<=0 | p3<=0] & [p0<=0 | p2<=0]]]] & [[[[p0<=0 | p13<=0] & [p0<=0 | p12<=0]] & [[p0<=0 | p15<=0] & [p0<=0 | p14<=0]]] & [[[p0<=0 | p9<=0] & [p0<=0 | p8<=0]] & [[p0<=0 | p11<=0] & [p0<=0 | p10<=0]]]]] | [1<=p10 & 1<=p59]] | [[1<=p13 & 1<=p62] | [1<=p15 & 1<=p64]]] | [[[1<=p16 & 1<=p65] | [1<=p2 & 1<=p51]] | [[1<=p5 & 1<=p54] | [1<=p7 & 1<=p56]]]] | [[[[1<=p8 & 1<=p57] | [1<=p11 & 1<=p60]] | [[1<=p12 & 1<=p61] | [1<=p14 & 1<=p63]]] | [[[1<=p1 & 1<=p50] | [1<=p3 & 1<=p52]] | [[1<=p4 & 1<=p53] | [[1<=p6 & 1<=p55] | [1<=p9 & 1<=p58]]]]]]]]]]]
normalized: ~ [EX [~ [[[[[[[[[[[1<=p9 & 1<=p58] | [1<=p6 & 1<=p55]] | [1<=p4 & 1<=p53]] | [[1<=p3 & 1<=p52] | [1<=p1 & 1<=p50]]] | [[[1<=p14 & 1<=p63] | [1<=p12 & 1<=p61]] | [[1<=p11 & 1<=p60] | [1<=p8 & 1<=p57]]]] | [[[[1<=p7 & 1<=p56] | [1<=p5 & 1<=p54]] | [[1<=p2 & 1<=p51] | [1<=p16 & 1<=p65]]] | [[[1<=p15 & 1<=p64] | [1<=p13 & 1<=p62]] | [[1<=p10 & 1<=p59] | [[[[[p0<=0 | p10<=0] & [p0<=0 | p11<=0]] & [[p0<=0 | p8<=0] & [p0<=0 | p9<=0]]] & [[[p0<=0 | p14<=0] & [p0<=0 | p15<=0]] & [[p0<=0 | p12<=0] & [p0<=0 | p13<=0]]]] & [[[[p0<=0 | p2<=0] & [p0<=0 | p3<=0]] & [[p0<=0 | p1<=0] & [p0<=0 | p6<=0]]] & [[[p0<=0 | p7<=0] & [p0<=0 | p4<=0]] & [[p0<=0 | p5<=0] & [p0<=0 | p16<=0]]]]]]]]] & EX [[[[[[p0<=0 | p10<=0] & [p0<=0 | p11<=0]] & [[p0<=0 | p8<=0] & [p0<=0 | p9<=0]]] & [[[p0<=0 | p14<=0] & [p0<=0 | p15<=0]] & [[p0<=0 | p12<=0] & [p13<=0 | p0<=0]]]] & [[[[p0<=0 | p2<=0] & [p0<=0 | p3<=0]] & [[p0<=0 | p1<=0] & [p0<=0 | p6<=0]]] & [[[p0<=0 | p7<=0] & [p0<=0 | p4<=0]] & [[p0<=0 | p5<=0] & [p0<=0 | p16<=0]]]]]]] | EX [~ [[~ [EG [~ [[[[[[1<=p26 & 1<=p33] | [1<=p28 & 1<=p33]] | [[1<=p22 & 1<=p33] | [1<=p20 & 1<=p33]]] | [[[1<=p32 & 1<=p33] | [1<=p17 & 1<=p33]] | [[1<=p19 & 1<=p33] | [1<=p24 & 1<=p33]]]] | [[[[1<=p29 & 1<=p33] | [1<=p27 & 1<=p33]] | [[1<=p25 & 1<=p33] | [1<=p21 & 1<=p33]]] | [[[1<=p31 & 1<=p33] | [1<=p30 & 1<=p33]] | [[1<=p23 & 1<=p33] | [1<=p18 & 1<=p33]]]]]]]] & ~ [E [~ [[[[[[1<=p26 & 1<=p33] | [1<=p28 & 1<=p33]] | [[1<=p22 & 1<=p33] | [1<=p20 & 1<=p33]]] | [[[1<=p32 & 1<=p33] | [1<=p17 & 1<=p33]] | [[1<=p19 & 1<=p33] | [1<=p24 & 1<=p33]]]] | [[[[1<=p29 & 1<=p33] | [1<=p27 & 1<=p33]] | [[1<=p25 & 1<=p33] | [1<=p21 & 1<=p33]]] | [[[1<=p31 & 1<=p33] | [1<=p30 & 1<=p33]] | [[1<=p23 & 1<=p33] | [1<=p18 & 1<=p33]]]]]] U [~ [[[[[[1<=p0 & 1<=p10] | [1<=p0 & 1<=p11]] | [[1<=p0 & 1<=p8] | [1<=p0 & 1<=p9]]] | [[[1<=p0 & 1<=p14] | [1<=p0 & 1<=p15]] | [[1<=p0 & 1<=p12] | [1<=p0 & 1<=p13]]]] | [[[[1<=p0 & 1<=p2] | [1<=p0 & 1<=p3]] | [[1<=p0 & 1<=p1] | [1<=p0 & 1<=p6]]] | [[[1<=p0 & 1<=p7] | [1<=p0 & 1<=p4]] | [[1<=p0 & 1<=p5] | [1<=p0 & 1<=p16]]]]]] & ~ [[[[[[1<=p26 & 1<=p33] | [1<=p28 & 1<=p33]] | [[1<=p22 & 1<=p33] | [1<=p20 & 1<=p33]]] | [[[1<=p32 & 1<=p33] | [1<=p17 & 1<=p33]] | [[1<=p19 & 1<=p33] | [1<=p24 & 1<=p33]]]] | [[[[1<=p29 & 1<=p33] | [1<=p27 & 1<=p33]] | [[1<=p25 & 1<=p33] | [1<=p21 & 1<=p33]]] | [[[1<=p31 & 1<=p33] | [1<=p30 & 1<=p33]] | [[1<=p23 & 1<=p33] | [1<=p18 & 1<=p33]]]]]]]]]]]]] & EG [[[[[[[1<=p26 & 1<=p33] | [1<=p28 & 1<=p33]] | [[1<=p22 & 1<=p33] | [1<=p20 & 1<=p33]]] | [[[1<=p32 & 1<=p33] | [1<=p17 & 1<=p33]] | [[1<=p19 & 1<=p33] | [1<=p24 & 1<=p33]]]] | [[[[1<=p29 & 1<=p33] | [1<=p27 & 1<=p33]] | [[1<=p25 & 1<=p33] | [1<=p21 & 1<=p33]]] | [[[1<=p31 & 1<=p33] | [1<=p30 & 1<=p33]] | [[1<=p23 & 1<=p33] | [1<=p18 & 1<=p33]]]]] | [[[[[1<=p9 & 1<=p58] | [1<=p6 & 1<=p55]] | [[1<=p4 & 1<=p53] | [1<=p3 & 1<=p52]]] | [[[1<=p1 & 1<=p50] | [1<=p14 & 1<=p63]] | [[1<=p12 & 1<=p61] | [1<=p11 & 1<=p60]]]] | [[[[1<=p8 & 1<=p57] | [1<=p7 & 1<=p56]] | [[1<=p5 & 1<=p54] | [1<=p2 & 1<=p51]]] | [[[1<=p16 & 1<=p65] | [1<=p15 & 1<=p64]] | [[1<=p13 & 1<=p62] | [1<=p10 & 1<=p59]]]]]]]] | ~ [[~ [EG [~ [[[[[[[[[1<=p26 & 1<=p33] | [1<=p28 & 1<=p33]] | [[1<=p22 & 1<=p33] | [1<=p20 & 1<=p33]]] | [[[1<=p32 & 1<=p33] | [1<=p17 & 1<=p33]] | [[1<=p19 & 1<=p33] | [1<=p24 & 1<=p33]]]] | [[[[1<=p29 & 1<=p33] | [1<=p27 & 1<=p33]] | [[1<=p25 & 1<=p33] | [1<=p21 & 1<=p33]]] | [[[1<=p31 & 1<=p33] | [1<=p30 & 1<=p33]] | [[1<=p23 & 1<=p33] | [1<=p18 & 1<=p33]]]]] & [[[[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p24 | 1<=p25]]] | [[[1<=p22 | 1<=p23] | [1<=p20 | 1<=p21]] | [[1<=p18 | 1<=p19] | [1<=p32 | 1<=p17]]]]] | E [true U [[[[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p24 | 1<=p25]]] | [[[1<=p22 | 1<=p23] | [1<=p20 | 1<=p21]] | [[1<=p18 | 1<=p19] | [1<=p32 | 1<=p17]]]]]] & [[[[[1<=p26 & 1<=p33] | [1<=p28 & 1<=p33]] | [[1<=p22 & 1<=p33] | [1<=p20 & 1<=p33]]] | [[[1<=p32 & 1<=p33] | [1<=p17 & 1<=p33]] | [[1<=p19 & 1<=p33] | [1<=p24 & 1<=p33]]]] | [[[[1<=p29 & 1<=p33] | [1<=p27 & 1<=p33]] | [[1<=p25 & 1<=p33] | [1<=p21 & 1<=p33]]] | [[[1<=p31 & 1<=p33] | [1<=p30 & 1<=p33]] | [[1<=p23 & 1<=p33] | [1<=p18 & 1<=p33]]]]]]]]] & ~ [E [~ [[[[[[[[[1<=p26 & 1<=p33] | [1<=p28 & 1<=p33]] | [[1<=p22 & 1<=p33] | [1<=p20 & 1<=p33]]] | [[[1<=p32 & 1<=p33] | [1<=p17 & 1<=p33]] | [[1<=p19 & 1<=p33] | [1<=p24 & 1<=p33]]]] | [[[[1<=p29 & 1<=p33] | [1<=p27 & 1<=p33]] | [[1<=p25 & 1<=p33] | [1<=p21 & 1<=p33]]] | [[[1<=p31 & 1<=p33] | [1<=p30 & 1<=p33]] | [[1<=p23 & 1<=p33] | [1<=p18 & 1<=p33]]]]] & [[[[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p24 | 1<=p25]]] | [[[1<=p22 | 1<=p23] | [1<=p20 | 1<=p21]] | [[1<=p18 | 1<=p19] | [1<=p32 | 1<=p17]]]]] | E [true U [[[[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p24 | 1<=p25]]] | [[[1<=p22 | 1<=p23] | [1<=p20 | 1<=p21]] | [[1<=p18 | 1<=p19] | [1<=p32 | 1<=p17]]]]]] & [[[[[1<=p26 & 1<=p33] | [1<=p28 & 1<=p33]] | [[1<=p22 & 1<=p33] | [1<=p20 & 1<=p33]]] | [[[1<=p32 & 1<=p33] | [1<=p17 & 1<=p33]] | [[1<=p19 & 1<=p33] | [1<=p24 & 1<=p33]]]] | [[[[1<=p29 & 1<=p33] | [1<=p27 & 1<=p33]] | [[1<=p25 & 1<=p33] | [1<=p21 & 1<=p33]]] | [[[1<=p31 & 1<=p33] | [1<=p30 & 1<=p33]] | [[1<=p23 & 1<=p33] | [1<=p18 & 1<=p33]]]]]]] U [~ [[~ [EG [[[[[1<=p49 | 1<=p48] | [1<=p47 | 1<=p46]] | [[1<=p45 | 1<=p44] | [1<=p43 | 1<=p42]]] | [[[1<=p41 | 1<=p40] | [1<=p39 | 1<=p38]] | [[1<=p36 | 1<=p37] | [1<=p34 | 1<=p35]]]]]] & ~ [[[[[[1<=p26 & 1<=p33] | [1<=p28 & 1<=p33]] | [[1<=p22 & 1<=p33] | [1<=p20 & 1<=p33]]] | [[[1<=p32 & 1<=p33] | [1<=p17 & 1<=p33]] | [[1<=p19 & 1<=p33] | [1<=p24 & 1<=p33]]]] | [[[[1<=p29 & 1<=p33] | [1<=p27 & 1<=p33]] | [[1<=p25 & 1<=p33] | [1<=p21 & 1<=p33]]] | [[[1<=p31 & 1<=p33] | [1<=p30 & 1<=p33]] | [[1<=p23 & 1<=p33] | [1<=p18 & 1<=p33]]]]]]]] & ~ [[[[[[[[[1<=p26 & 1<=p33] | [1<=p28 & 1<=p33]] | [[1<=p22 & 1<=p33] | [1<=p20 & 1<=p33]]] | [[[1<=p32 & 1<=p33] | [1<=p17 & 1<=p33]] | [[1<=p19 & 1<=p33] | [1<=p24 & 1<=p33]]]] | [[[[1<=p29 & 1<=p33] | [1<=p27 & 1<=p33]] | [[1<=p25 & 1<=p33] | [1<=p21 & 1<=p33]]] | [[[1<=p31 & 1<=p33] | [1<=p30 & 1<=p33]] | [[1<=p23 & 1<=p33] | [1<=p18 & 1<=p33]]]]] & [[[[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p24 | 1<=p25]]] | [[[1<=p22 | 1<=p23] | [1<=p20 | 1<=p21]] | [[1<=p18 | 1<=p19] | [1<=p32 | 1<=p17]]]]] | E [true U [[[[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p24 | 1<=p25]]] | [[[1<=p22 | 1<=p23] | [1<=p20 | 1<=p21]] | [[1<=p18 | 1<=p19] | [1<=p32 | 1<=p17]]]]]] & [[[[[1<=p26 & 1<=p33] | [1<=p28 & 1<=p33]] | [[1<=p22 & 1<=p33] | [1<=p20 & 1<=p33]]] | [[[1<=p32 & 1<=p33] | [1<=p17 & 1<=p33]] | [[1<=p19 & 1<=p33] | [1<=p24 & 1<=p33]]]] | [[[[1<=p29 & 1<=p33] | [1<=p27 & 1<=p33]] | [[1<=p25 & 1<=p33] | [1<=p21 & 1<=p33]]] | [[[1<=p31 & 1<=p33] | [1<=p30 & 1<=p33]] | [[1<=p23 & 1<=p33] | [1<=p18 & 1<=p33]]]]]]]]]]]]]]]]
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p18)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p23)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p30)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p31)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p21)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p25)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p27)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p29)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p24)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p19)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p17)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p32)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p20)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p22)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p28)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p26)
states: 341,764,125,564 (11)
abstracting: (1<=p17)
states: 341,764,125,564 (11)
abstracting: (1<=p32)
states: 341,764,125,564 (11)
abstracting: (1<=p19)
states: 341,764,125,564 (11)
abstracting: (1<=p18)
states: 341,764,125,564 (11)
abstracting: (1<=p21)
states: 341,764,125,564 (11)
abstracting: (1<=p20)
states: 341,764,125,564 (11)
abstracting: (1<=p23)
states: 341,764,125,564 (11)
abstracting: (1<=p22)
states: 341,764,125,564 (11)
abstracting: (1<=p25)
states: 341,764,125,564 (11)
abstracting: (1<=p24)
states: 341,764,125,564 (11)
abstracting: (1<=p27)
states: 341,764,125,564 (11)
abstracting: (1<=p26)
states: 341,764,125,564 (11)
abstracting: (1<=p29)
states: 341,764,125,564 (11)
abstracting: (1<=p28)
states: 341,764,125,564 (11)
abstracting: (1<=p31)
states: 341,764,125,564 (11)
abstracting: (1<=p30)
states: 341,764,125,564 (11)
abstracting: (1<=p17)
states: 341,764,125,564 (11)
abstracting: (1<=p32)
states: 341,764,125,564 (11)
abstracting: (1<=p19)
states: 341,764,125,564 (11)
abstracting: (1<=p18)
states: 341,764,125,564 (11)
abstracting: (1<=p21)
states: 341,764,125,564 (11)
abstracting: (1<=p20)
states: 341,764,125,564 (11)
abstracting: (1<=p23)
states: 341,764,125,564 (11)
abstracting: (1<=p22)
states: 341,764,125,564 (11)
abstracting: (1<=p25)
states: 341,764,125,564 (11)
abstracting: (1<=p24)
states: 341,764,125,564 (11)
abstracting: (1<=p27)
states: 341,764,125,564 (11)
abstracting: (1<=p26)
states: 341,764,125,564 (11)
abstracting: (1<=p29)
states: 341,764,125,564 (11)
abstracting: (1<=p28)
states: 341,764,125,564 (11)
abstracting: (1<=p31)
states: 341,764,125,564 (11)
abstracting: (1<=p30)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p18)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p23)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p30)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p31)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p21)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p25)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p27)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p29)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p24)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p19)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p17)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p32)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p20)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p22)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p28)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p26)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p18)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p23)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p30)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p31)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p21)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p25)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p27)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p29)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p24)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p19)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p17)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p32)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p20)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p22)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p28)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p26)
states: 341,764,125,564 (11)
abstracting: (1<=p35)
states: 886,509,506,748 (11)
abstracting: (1<=p34)
states: 886,509,506,748 (11)
abstracting: (1<=p37)
states: 886,509,506,748 (11)
abstracting: (1<=p36)
states: 886,509,506,748 (11)
abstracting: (1<=p38)
states: 886,509,506,748 (11)
abstracting: (1<=p39)
states: 886,509,506,748 (11)
abstracting: (1<=p40)
states: 886,509,506,748 (11)
abstracting: (1<=p41)
states: 886,509,506,748 (11)
abstracting: (1<=p42)
states: 886,509,506,748 (11)
abstracting: (1<=p43)
states: 886,509,506,748 (11)
abstracting: (1<=p44)
states: 886,509,506,748 (11)
abstracting: (1<=p45)
states: 886,509,506,748 (11)
abstracting: (1<=p46)
states: 886,509,506,748 (11)
abstracting: (1<=p47)
states: 886,509,506,748 (11)
abstracting: (1<=p48)
states: 886,509,506,748 (11)
abstracting: (1<=p49)
states: 886,509,506,748 (11)
..........MC time: 1m31.000sec
checking: EX [EX [EF [AX [AG [[[[[1<=p32 | 1<=p17] | [1<=p18 | 1<=p19]] | [[1<=p20 | 1<=p21] | [1<=p22 | 1<=p23]]] | [[[1<=p24 | 1<=p25] | [1<=p26 | 1<=p27]] | [[1<=p28 | 1<=p29] | [1<=p30 | 1<=p31]]]]]]]]]
normalized: EX [EX [E [true U ~ [EX [E [true U ~ [[[[[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p24 | 1<=p25]]] | [[[1<=p22 | 1<=p23] | [1<=p20 | 1<=p21]] | [[1<=p18 | 1<=p19] | [1<=p32 | 1<=p17]]]]]]]]]]]
abstracting: (1<=p17)
states: 341,764,125,564 (11)
abstracting: (1<=p32)
states: 341,764,125,564 (11)
abstracting: (1<=p19)
states: 341,764,125,564 (11)
abstracting: (1<=p18)
states: 341,764,125,564 (11)
abstracting: (1<=p21)
states: 341,764,125,564 (11)
abstracting: (1<=p20)
states: 341,764,125,564 (11)
abstracting: (1<=p23)
states: 341,764,125,564 (11)
abstracting: (1<=p22)
states: 341,764,125,564 (11)
abstracting: (1<=p25)
states: 341,764,125,564 (11)
abstracting: (1<=p24)
states: 341,764,125,564 (11)
abstracting: (1<=p27)
states: 341,764,125,564 (11)
abstracting: (1<=p26)
states: 341,764,125,564 (11)
abstracting: (1<=p29)
states: 341,764,125,564 (11)
abstracting: (1<=p28)
states: 341,764,125,564 (11)
abstracting: (1<=p31)
states: 341,764,125,564 (11)
abstracting: (1<=p30)
states: 341,764,125,564 (11)
before gc: list nodes free: 107651754
after gc: idd nodes used:5487903, unused:58512097; list nodes free:459508942
...-> the formula is TRUE
FORMULA CSRepetitions-COL-04-CTLFireability-14 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 6m50.993sec
checking: AF [EG [~ [E [AG [[[[[[1<=p18 & 1<=p33] | [1<=p23 & 1<=p33]] | [[1<=p30 & 1<=p33] | [1<=p31 & 1<=p33]]] | [[[1<=p21 & 1<=p33] | [1<=p25 & 1<=p33]] | [[1<=p27 & 1<=p33] | [1<=p29 & 1<=p33]]]] | [[[[1<=p24 & 1<=p33] | [1<=p19 & 1<=p33]] | [[1<=p17 & 1<=p33] | [1<=p32 & 1<=p33]]] | [[[1<=p20 & 1<=p33] | [1<=p22 & 1<=p33]] | [[1<=p28 & 1<=p33] | [1<=p26 & 1<=p33]]]]]] U EG [[[[[1<=p32 | 1<=p17] | [1<=p18 | 1<=p19]] | [[1<=p20 | 1<=p21] | [1<=p22 | 1<=p23]]] | [[[1<=p24 | 1<=p25] | [1<=p26 | 1<=p27]] | [[1<=p28 | 1<=p29] | [1<=p30 | 1<=p31]]]]]]]]]
normalized: ~ [EG [~ [EG [~ [E [~ [E [true U ~ [[[[[[1<=p26 & 1<=p33] | [1<=p28 & 1<=p33]] | [[1<=p22 & 1<=p33] | [1<=p20 & 1<=p33]]] | [[[1<=p32 & 1<=p33] | [1<=p17 & 1<=p33]] | [[1<=p19 & 1<=p33] | [1<=p24 & 1<=p33]]]] | [[[[1<=p29 & 1<=p33] | [1<=p27 & 1<=p33]] | [[1<=p25 & 1<=p33] | [1<=p21 & 1<=p33]]] | [[[1<=p31 & 1<=p33] | [1<=p30 & 1<=p33]] | [[1<=p23 & 1<=p33] | [1<=p18 & 1<=p33]]]]]]]] U EG [[[[[1<=p30 | 1<=p31] | [1<=p28 | 1<=p29]] | [[1<=p26 | 1<=p27] | [1<=p24 | 1<=p25]]] | [[[1<=p22 | 1<=p23] | [1<=p20 | 1<=p21]] | [[1<=p18 | 1<=p19] | [1<=p32 | 1<=p17]]]]]]]]]]]
abstracting: (1<=p17)
states: 341,764,125,564 (11)
abstracting: (1<=p32)
states: 341,764,125,564 (11)
abstracting: (1<=p19)
states: 341,764,125,564 (11)
abstracting: (1<=p18)
states: 341,764,125,564 (11)
abstracting: (1<=p21)
states: 341,764,125,564 (11)
abstracting: (1<=p20)
states: 341,764,125,564 (11)
abstracting: (1<=p23)
states: 341,764,125,564 (11)
abstracting: (1<=p22)
states: 341,764,125,564 (11)
abstracting: (1<=p25)
states: 341,764,125,564 (11)
abstracting: (1<=p24)
states: 341,764,125,564 (11)
abstracting: (1<=p27)
states: 341,764,125,564 (11)
abstracting: (1<=p26)
states: 341,764,125,564 (11)
abstracting: (1<=p29)
states: 341,764,125,564 (11)
abstracting: (1<=p28)
states: 341,764,125,564 (11)
abstracting: (1<=p31)
states: 341,764,125,564 (11)
abstracting: (1<=p30)
states: 341,764,125,564 (11)
...........
before gc: list nodes free: 88593665
after gc: idd nodes used:5755202, unused:58244798; list nodes free:457489781
..............
EG iterations: 25
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p18)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p23)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p30)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p31)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p21)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p25)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p27)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p29)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p24)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p19)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p17)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p32)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p20)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p22)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p28)
states: 341,764,125,564 (11)
abstracting: (1<=p33)
states: 380,073,738,240 (11)
abstracting: (1<=p26)
states: 341,764,125,564 (11)
before gc: list nodes free: 96852248
after gc: idd nodes used:5528049, unused:58471951; list nodes free:459049140
..........................
EG iterations: 26
.
EG iterations: 1
-> the formula is FALSE
FORMULA CSRepetitions-COL-04-CTLFireability-04 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 6m39.778sec
checking: AF [[EG [A [[[[[1<=p34 | 1<=p35] | [1<=p36 | 1<=p37]] | [[1<=p39 | 1<=p38] | [1<=p41 | 1<=p40]]] | [[[1<=p43 | 1<=p42] | [1<=p45 | 1<=p44]] | [[1<=p47 | 1<=p46] | [1<=p49 | 1<=p48]]]] U [[[[[1<=p10 & 1<=p59] | [1<=p13 & 1<=p62]] | [[1<=p15 & 1<=p64] | [1<=p16 & 1<=p65]]] | [[[1<=p2 & 1<=p51] | [1<=p5 & 1<=p54]] | [[1<=p7 & 1<=p56] | [1<=p8 & 1<=p57]]]] | [[[[1<=p11 & 1<=p60] | [1<=p12 & 1<=p61]] | [[1<=p14 & 1<=p63] | [1<=p1 & 1<=p50]]] | [[[1<=p3 & 1<=p52] | [1<=p4 & 1<=p53]] | [[1<=p6 & 1<=p55] | [1<=p9 & 1<=p58]]]]]]] | [[[[p34<=0 & p35<=0] & [p36<=0 & p37<=0]] & [[p39<=0 & p38<=0] & [p41<=0 & p40<=0]]] & [[[p43<=0 & p42<=0] & [p45<=0 & p44<=0]] & [[p47<=0 & p46<=0] & [p49<=0 & p48<=0]]]]]]
normalized: ~ [EG [~ [[[[[[p49<=0 & p48<=0] & [p47<=0 & p46<=0]] & [[p45<=0 & p44<=0] & [p43<=0 & p42<=0]]] & [[[p41<=0 & p40<=0] & [p39<=0 & p38<=0]] & [[p36<=0 & p37<=0] & [p34<=0 & p35<=0]]]] | EG [[~ [EG [~ [[[[[[1<=p9 & 1<=p58] | [1<=p6 & 1<=p55]] | [[1<=p4 & 1<=p53] | [1<=p3 & 1<=p52]]] | [[[1<=p1 & 1<=p50] | [1<=p14 & 1<=p63]] | [[1<=p12 & 1<=p61] | [1<=p11 & 1<=p60]]]] | [[[[1<=p8 & 1<=p57] | [1<=p7 & 1<=p56]] | [[1<=p5 & 1<=p54] | [1<=p2 & 1<=p51]]] | [[[1<=p16 & 1<=p65] | [1<=p15 & 1<=p64]] | [[1<=p13 & 1<=p62] | [1<=p10 & 1<=p59]]]]]]]] & ~ [E [~ [[[[[[1<=p9 & 1<=p58] | [1<=p6 & 1<=p55]] | [[1<=p4 & 1<=p53] | [1<=p3 & 1<=p52]]] | [[[1<=p1 & 1<=p50] | [1<=p14 & 1<=p63]] | [[1<=p12 & 1<=p61] | [1<=p11 & 1<=p60]]]] | [[[[1<=p8 & 1<=p57] | [1<=p7 & 1<=p56]] | [[1<=p5 & 1<=p54] | [1<=p2 & 1<=p51]]] | [[[1<=p16 & 1<=p65] | [1<=p15 & 1<=p64]] | [[1<=p13 & 1<=p62] | [1<=p10 & 1<=p59]]]]]] U [~ [[[[[1<=p49 | 1<=p48] | [1<=p47 | 1<=p46]] | [[1<=p45 | 1<=p44] | [1<=p43 | 1<=p42]]] | [[[1<=p41 | 1<=p40] | [1<=p39 | 1<=p38]] | [[1<=p36 | 1<=p37] | [1<=p34 | 1<=p35]]]]] & ~ [[[[[[1<=p9 & 1<=p58] | [1<=p6 & 1<=p55]] | [[1<=p4 & 1<=p53] | [1<=p3 & 1<=p52]]] | [[[1<=p1 & 1<=p50] | [1<=p14 & 1<=p63]] | [[1<=p12 & 1<=p61] | [1<=p11 & 1<=p60]]]] | [[[[1<=p8 & 1<=p57] | [1<=p7 & 1<=p56]] | [[1<=p5 & 1<=p54] | [1<=p2 & 1<=p51]]] | [[[1<=p16 & 1<=p65] | [1<=p15 & 1<=p64]] | [[1<=p13 & 1<=p62] | [1<=p10 & 1<=p59]]]]]]]]]]]]]]]
abstracting: (1<=p59)
states: 357,518,864,208 (11)
abstracting: (1<=p10)
states: 906,723,532,800 (11)
abstracting: (1<=p62)
states: 357,518,864,208 (11)
abstracting: (1<=p13)
states: 906,723,532,800 (11)
abstracting: (1<=p64)
states: 357,518,864,208 (11)
abstracting: (1<=p15)
states: 906,723,532,800 (11)
abstracting: (1<=p65)
states: 357,518,864,208 (11)
abstracting: (1<=p16)
states: 906,723,532,800 (11)
abstracting: (1<=p51)
states: 357,518,864,208 (11)
abstracting: (1<=p2)
states: 906,723,532,800 (11)
abstracting: (1<=p54)
states: 357,518,864,208 (11)
abstracting: (1<=p5)
states: 906,723,532,800 (11)
abstracting: (1<=p56)
states: 357,518,864,208 (11)
abstracting: (1<=p7)
states: 906,723,532,800 (11)
abstracting: (1<=p57)
states: 357,518,864,208 (11)
abstracting: (1<=p8)
states: 906,723,532,800 (11)
abstracting: (1<=p60)
states: 357,518,864,208 (11)
abstracting: (1<=p11)
states: 906,723,532,800 (11)
abstracting: (1<=p61)
states: 357,518,864,208 (11)
abstracting: (1<=p12)
states: 906,723,532,800 (11)
abstracting: (1<=p63)
states: 357,518,864,208 (11)
abstracting: (1<=p14)
states: 906,723,532,800 (11)
abstracting: (1<=p50)
states: 357,518,864,208 (11)
abstracting: (1<=p1)
states: 906,723,532,800 (11)
abstracting: (1<=p52)
states: 357,518,864,208 (11)
abstracting: (1<=p3)
states: 906,723,532,800 (11)
abstracting: (1<=p53)
states: 357,518,864,208 (11)
abstracting: (1<=p4)
states: 906,723,532,800 (11)
abstracting: (1<=p55)
states: 357,518,864,208 (11)
abstracting: (1<=p6)
states: 906,723,532,800 (11)
abstracting: (1<=p58)
states: 357,518,864,208 (11)
abstracting: (1<=p9)
states: 906,723,532,800 (11)
abstracting: (1<=p35)
states: 886,509,506,748 (11)
abstracting: (1<=p34)
states: 886,509,506,748 (11)
abstracting: (1<=p37)
states: 886,509,506,748 (11)
abstracting: (1<=p36)
states: 886,509,506,748 (11)
abstracting: (1<=p38)
states: 886,509,506,748 (11)
abstracting: (1<=p39)
states: 886,509,506,748 (11)
abstracting: (1<=p40)
states: 886,509,506,748 (11)
abstracting: (1<=p41)
states: 886,509,506,748 (11)
abstracting: (1<=p42)
states: 886,509,506,748 (11)
abstracting: (1<=p43)
states: 886,509,506,748 (11)
abstracting: (1<=p44)
states: 886,509,506,748 (11)
abstracting: (1<=p45)
states: 886,509,506,748 (11)
abstracting: (1<=p46)
states: 886,509,506,748 (11)
abstracting: (1<=p47)
states: 886,509,506,748 (11)
abstracting: (1<=p48)
states: 886,509,506,748 (11)
abstracting: (1<=p49)
states: 886,509,506,748 (11)
abstracting: (1<=p59)
states: 357,518,864,208 (11)
abstracting: (1<=p10)
states: 906,723,532,800 (11)
abstracting: (1<=p62)
states: 357,518,864,208 (11)
abstracting: (1<=p13)
states: 906,723,532,800 (11)
abstracting: (1<=p64)
states: 357,518,864,208 (11)
abstracting: (1<=p15)
states: 906,723,532,800 (11)
abstracting: (1<=p65)
states: 357,518,864,208 (11)
abstracting: (1<=p16)
states: 906,723,532,800 (11)
abstracting: (1<=p51)
states: 357,518,864,208 (11)
abstracting: (1<=p2)
states: 906,723,532,800 (11)
abstracting: (1<=p54)
states: 357,518,864,208 (11)
abstracting: (1<=p5)
states: 906,723,532,800 (11)
abstracting: (1<=p56)
states: 357,518,864,208 (11)
abstracting: (1<=p7)
states: 906,723,532,800 (11)
abstracting: (1<=p57)
states: 357,518,864,208 (11)
abstracting: (1<=p8)
states: 906,723,532,800 (11)
abstracting: (1<=p60)
states: 357,518,864,208 (11)
abstracting: (1<=p11)
states: 906,723,532,800 (11)
abstracting: (1<=p61)
states: 357,518,864,208 (11)
abstracting: (1<=p12)
states: 906,723,532,800 (11)
abstracting: (1<=p63)
states: 357,518,864,208 (11)
abstracting: (1<=p14)
states: 906,723,532,800 (11)
abstracting: (1<=p50)
states: 357,518,864,208 (11)
abstracting: (1<=p1)
states: 906,723,532,800 (11)
abstracting: (1<=p52)
states: 357,518,864,208 (11)
abstracting: (1<=p3)
states: 906,723,532,800 (11)
abstracting: (1<=p53)
states: 357,518,864,208 (11)
abstracting: (1<=p4)
states: 906,723,532,800 (11)
abstracting: (1<=p55)
states: 357,518,864,208 (11)
abstracting: (1<=p6)
states: 906,723,532,800 (11)
abstracting: (1<=p58)
states: 357,518,864,208 (11)
abstracting: (1<=p9)
states: 906,723,532,800 (11)
TIME LIMIT: Killed by timeout after 3600 seconds
MemTotal: 16393232 kB
MemFree: 2883896 kB
After kill :
MemTotal: 16393232 kB
MemFree: 16095676 kB
BK_TIME_CONFINEMENT_REACHED
--------------------
content from stderr:
+ ulimit -s 65536
+ [[ -z '' ]]
+ export LTSMIN_MEM_SIZE=8589934592
+ LTSMIN_MEM_SIZE=8589934592
+ export PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ PYTHONPATH=/home/mcc/BenchKit/itstools/pylibs
+ export LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
+ LD_LIBRARY_PATH=/home/mcc/BenchKit/itstools/pylibs:
++ sed s/.jar//
++ perl -pe 's/.*\.//g'
++ ls /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/plugins/fr.lip6.move.gal.application.pnmcc_1.0.0.202303021504.jar
+ VERSION=202303021504
+ echo 'Running Version 202303021504'
+ /home/mcc/BenchKit/bin//../reducer/bin//../../itstools//itstools/its-tools -pnfolder /home/mcc/execution -examination CTLFireability -timeout 360 -rebuildPNML
check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.000sec
iterations count:52737 (659), effective:2717 (33)
initing FirstDep: 0m 0.000sec
iterations count:2216 (27), effective:344 (4)
sat_reach.icc:155: Timeout: after 199 sec
sat_reach.icc:155: Timeout: after 199 sec
iterations count:124 (1), effective:16 (0)
iterations count:124 (1), effective:16 (0)
iterations count:124 (1), effective:16 (0)
iterations count:124 (1), effective:16 (0)
iterations count:124 (1), effective:16 (0)
ctl_mc.icc:221: Timeout: after 197 sec
sat_reach.icc:155: Timeout: after 188 sec
sat_reach.icc:155: Timeout: after 174 sec
iterations count:867 (10), effective:24 (0)
net_ddint.h:600: Timeout: after 160 sec
net_ddint.h:600: Timeout: after 147 sec
iterations count:121 (1), effective:15 (0)
net_ddint.h:600: Timeout: after 136 sec
iterations count:843 (10), effective:16 (0)
sat_reach.icc:155: Timeout: after 125 sec
net_ddint.h:600: Timeout: after 115 sec
net_ddint.h:600: Timeout: after 106 sec
sat_reach.icc:155: Timeout: after 97 sec
iterations count:86 (1), effective:2 (0)
net_ddint.h:600: Timeout: after 90 sec
iterations count:2216 (27), effective:344 (4)
iterations count:3496 (43), effective:216 (2)
iterations count:427 (5), effective:35 (0)
iterations count:80 (1), effective:0 (0)
iterations count:124 (1), effective:16 (0)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="CSRepetitions-COL-04"
export BK_EXAMINATION="CTLFireability"
export BK_TOOL="marciexred"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marciexred"
echo " Input is CSRepetitions-COL-04, examination is CTLFireability"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r074-smll-167814399700018"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/CSRepetitions-COL-04.tgz
mv CSRepetitions-COL-04 execution
cd execution
if [ "CTLFireability" = "ReachabilityDeadlock" ] || [ "CTLFireability" = "UpperBounds" ] || [ "CTLFireability" = "QuasiLiveness" ] || [ "CTLFireability" = "StableMarking" ] || [ "CTLFireability" = "Liveness" ] || [ "CTLFireability" = "OneSafe" ] || [ "CTLFireability" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLFireability" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLFireability" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLFireability.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLFireability.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLFireability.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "CTLFireability" = "ReachabilityDeadlock" ] || [ "CTLFireability" = "QuasiLiveness" ] || [ "CTLFireability" = "StableMarking" ] || [ "CTLFireability" = "Liveness" ] || [ "CTLFireability" = "OneSafe" ] ; then
echo "FORMULA_NAME CTLFireability"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;