About the Execution of Marcie for BridgeAndVehicles-PT-V04P05N02
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
5480.443 | 7451.00 | 7060.00 | 0.00 | FFFFFTFFTFTTFTFF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/mnt/tpsp/fkordon/mcc2023-input.r033-tajo-167813685600161.qcow2', fmt=qcow2 size=4294967296 backing_file='/mnt/tpsp/fkordon/mcc2023-input.qcow2' encryption=off cluster_size=65536 lazy_refcounts=off
Waiting for the VM to be ready (probing ssh)
................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
=====================================================================
Generated by BenchKit 2-5348
Executing tool marcie
Input is BridgeAndVehicles-PT-V04P05N02, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r033-tajo-167813685600161
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 656K
-rw-r--r-- 1 mcc users 9.5K Feb 25 12:04 CTLCardinality.txt
-rw-r--r-- 1 mcc users 89K Feb 25 12:04 CTLCardinality.xml
-rw-r--r-- 1 mcc users 13K Feb 25 12:03 CTLFireability.txt
-rw-r--r-- 1 mcc users 81K Feb 25 12:03 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K Jan 29 11:40 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.4K Jan 29 11:40 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 4.3K Feb 25 15:35 LTLCardinality.txt
-rw-r--r-- 1 mcc users 24K Feb 25 15:35 LTLCardinality.xml
-rw-r--r-- 1 mcc users 7.2K Feb 25 15:35 LTLFireability.txt
-rw-r--r-- 1 mcc users 30K Feb 25 15:35 LTLFireability.xml
-rw-r--r-- 1 mcc users 19K Feb 25 12:06 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 163K Feb 25 12:06 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 19K Feb 25 12:05 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 97K Feb 25 12:05 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.9K Feb 25 15:35 UpperBounds.txt
-rw-r--r-- 1 mcc users 4.0K Feb 25 15:35 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 Mar 5 18:22 equiv_col
-rw-r--r-- 1 mcc users 10 Mar 5 18:22 instance
-rw-r--r-- 1 mcc users 6 Mar 5 18:22 iscolored
-rw-r--r-- 1 mcc users 37K Mar 5 18:22 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME BridgeAndVehicles-PT-V04P05N02-CTLCardinality-00
FORMULA_NAME BridgeAndVehicles-PT-V04P05N02-CTLCardinality-01
FORMULA_NAME BridgeAndVehicles-PT-V04P05N02-CTLCardinality-02
FORMULA_NAME BridgeAndVehicles-PT-V04P05N02-CTLCardinality-03
FORMULA_NAME BridgeAndVehicles-PT-V04P05N02-CTLCardinality-04
FORMULA_NAME BridgeAndVehicles-PT-V04P05N02-CTLCardinality-05
FORMULA_NAME BridgeAndVehicles-PT-V04P05N02-CTLCardinality-06
FORMULA_NAME BridgeAndVehicles-PT-V04P05N02-CTLCardinality-07
FORMULA_NAME BridgeAndVehicles-PT-V04P05N02-CTLCardinality-08
FORMULA_NAME BridgeAndVehicles-PT-V04P05N02-CTLCardinality-09
FORMULA_NAME BridgeAndVehicles-PT-V04P05N02-CTLCardinality-10
FORMULA_NAME BridgeAndVehicles-PT-V04P05N02-CTLCardinality-11
FORMULA_NAME BridgeAndVehicles-PT-V04P05N02-CTLCardinality-12
FORMULA_NAME BridgeAndVehicles-PT-V04P05N02-CTLCardinality-13
FORMULA_NAME BridgeAndVehicles-PT-V04P05N02-CTLCardinality-14
FORMULA_NAME BridgeAndVehicles-PT-V04P05N02-CTLCardinality-15
=== Now, execution of the tool begins
BK_START 1678295803323
bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marcie
BK_EXAMINATION=CTLCardinality
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=BridgeAndVehicles-PT-V04P05N02
Not applying reductions.
Model is PT
CTLCardinality PT
timeout --kill-after=10s --signal=SIGINT 1m for testing only
Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: /home/mcc/BenchKit/bin//../marcie/bin/marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --memory=6 --mcc-mode
parse successfull
net created successfully
Net: BridgeAndVehicles_PT_V04P05N02
(NrP: 28 NrTr: 52 NrArc: 326)
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec
net check time: 0m 0.000sec
init dd package: 0m 3.300sec
RS generation: 0m 0.024sec
-> reachability set: #nodes 1717 (1.7e+03) #states 2,874 (3)
starting MCC model checker
--------------------------
checking: EG [AG [AX [AF [1<=NB_ATTENTE_A_3]]]]
normalized: EG [~ [E [true U EX [EG [~ [1<=NB_ATTENTE_A_3]]]]]]
abstracting: (1<=NB_ATTENTE_A_3)
states: 312
...............
EG iterations: 15
..
EG iterations: 1
-> the formula is FALSE
FORMULA BridgeAndVehicles-PT-V04P05N02-CTLCardinality-09 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.072sec
checking: AF [AG [AF [ATTENTE_B<=4]]]
normalized: ~ [EG [E [true U EG [~ [ATTENTE_B<=4]]]]]
abstracting: (ATTENTE_B<=4)
states: 2,874 (3)
.
EG iterations: 1
.
EG iterations: 1
-> the formula is TRUE
FORMULA BridgeAndVehicles-PT-V04P05N02-CTLCardinality-11 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.000sec
checking: EG [NB_ATTENTE_B_3<=SUR_PONT_B]
normalized: EG [NB_ATTENTE_B_3<=SUR_PONT_B]
abstracting: (NB_ATTENTE_B_3<=SUR_PONT_B)
states: 2,599 (3)
.....
EG iterations: 5
-> the formula is TRUE
FORMULA BridgeAndVehicles-PT-V04P05N02-CTLCardinality-08 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.002sec
checking: AG [[[~ [EG [3<=ATTENTE_B]] & EF [EG [AG [13<=SORTI_A]]]] | E [AX [AX [SORTI_A<=0]] U 84<=CAPACITE]]]
normalized: ~ [E [true U ~ [[E [~ [EX [EX [~ [SORTI_A<=0]]]] U 84<=CAPACITE] | [E [true U EG [~ [E [true U ~ [13<=SORTI_A]]]]] & ~ [EG [3<=ATTENTE_B]]]]]]]
abstracting: (3<=ATTENTE_B)
states: 426
...................
EG iterations: 19
abstracting: (13<=SORTI_A)
states: 0
.
EG iterations: 1
abstracting: (84<=CAPACITE)
states: 0
abstracting: (SORTI_A<=0)
states: 766
..-> the formula is FALSE
FORMULA BridgeAndVehicles-PT-V04P05N02-CTLCardinality-07 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.035sec
checking: EG [[[~ [AF [EG [ATTENTE_A<=NB_ATTENTE_A_3]]] | ~ [AG [AX [4<=NB_ATTENTE_A_1]]]] & ~ [AF [~ [ATTENTE_A<=CHOIX_1]]]]]
normalized: EG [[EG [ATTENTE_A<=CHOIX_1] & [E [true U EX [~ [4<=NB_ATTENTE_A_1]]] | EG [~ [EG [ATTENTE_A<=NB_ATTENTE_A_3]]]]]]
abstracting: (ATTENTE_A<=NB_ATTENTE_A_3)
states: 1,012 (3)
..............................
EG iterations: 30
........................................................
EG iterations: 56
abstracting: (4<=NB_ATTENTE_A_1)
states: 0
.abstracting: (ATTENTE_A<=CHOIX_1)
states: 1,217 (3)
..............................
EG iterations: 30
.............................
EG iterations: 29
-> the formula is FALSE
FORMULA BridgeAndVehicles-PT-V04P05N02-CTLCardinality-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.263sec
checking: EG [EX [EX [[~ [ROUTE_B<=75] | EG [SORTI_B<=sum(NB_ATTENTE_B_4, NB_ATTENTE_B_3, NB_ATTENTE_B_2, NB_ATTENTE_B_1, NB_ATTENTE_B_0)]]]]]
normalized: EG [EX [EX [[EG [SORTI_B<=sum(NB_ATTENTE_B_4, NB_ATTENTE_B_3, NB_ATTENTE_B_2, NB_ATTENTE_B_1, NB_ATTENTE_B_0)] | ~ [ROUTE_B<=75]]]]]
abstracting: (ROUTE_B<=75)
states: 2,874 (3)
abstracting: (SORTI_B<=sum(NB_ATTENTE_B_4, NB_ATTENTE_B_3, NB_ATTENTE_B_2, NB_ATTENTE_B_1, NB_ATTENTE_B_0))
states: 1,596 (3)
............................................
EG iterations: 44
...
EG iterations: 1
-> the formula is FALSE
FORMULA BridgeAndVehicles-PT-V04P05N02-CTLCardinality-00 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.073sec
checking: EX [AF [EF [~ [[E [sum(VIDANGE_2, VIDANGE_1)<=sum(NB_ATTENTE_B_4, NB_ATTENTE_B_3, NB_ATTENTE_B_2, NB_ATTENTE_B_1, NB_ATTENTE_B_0) U ROUTE_A<=SUR_PONT_A] & ~ [29<=SUR_PONT_A]]]]]]
normalized: EX [~ [EG [~ [E [true U ~ [[~ [29<=SUR_PONT_A] & E [sum(VIDANGE_2, VIDANGE_1)<=sum(NB_ATTENTE_B_4, NB_ATTENTE_B_3, NB_ATTENTE_B_2, NB_ATTENTE_B_1, NB_ATTENTE_B_0) U ROUTE_A<=SUR_PONT_A]]]]]]]]
abstracting: (ROUTE_A<=SUR_PONT_A)
states: 1,323 (3)
abstracting: (sum(VIDANGE_2, VIDANGE_1)<=sum(NB_ATTENTE_B_4, NB_ATTENTE_B_3, NB_ATTENTE_B_2, NB_ATTENTE_B_1, NB_ATTENTE_B_0))
states: 2,874 (3)
abstracting: (29<=SUR_PONT_A)
states: 0
EG iterations: 0
.-> the formula is FALSE
FORMULA BridgeAndVehicles-PT-V04P05N02-CTLCardinality-02 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.047sec
checking: AF [AF [A [[[E [ROUTE_A<=CAPACITE U ATTENTE_A<=15] & [87<=CAPACITE & sum(VIDANGE_2, VIDANGE_1)<=ROUTE_B]] & ATTENTE_B<=ROUTE_B] U AG [19<=ATTENTE_B]]]]
normalized: ~ [EG [EG [~ [[~ [EG [E [true U ~ [19<=ATTENTE_B]]]] & ~ [E [E [true U ~ [19<=ATTENTE_B]] U [E [true U ~ [19<=ATTENTE_B]] & ~ [[ATTENTE_B<=ROUTE_B & [[87<=CAPACITE & sum(VIDANGE_2, VIDANGE_1)<=ROUTE_B] & E [ROUTE_A<=CAPACITE U ATTENTE_A<=15]]]]]]]]]]]]
abstracting: (ATTENTE_A<=15)
states: 2,874 (3)
abstracting: (ROUTE_A<=CAPACITE)
states: 2,866 (3)
abstracting: (sum(VIDANGE_2, VIDANGE_1)<=ROUTE_B)
states: 2,594 (3)
abstracting: (87<=CAPACITE)
states: 0
abstracting: (ATTENTE_B<=ROUTE_B)
states: 1,705 (3)
abstracting: (19<=ATTENTE_B)
states: 0
abstracting: (19<=ATTENTE_B)
states: 0
abstracting: (19<=ATTENTE_B)
states: 0
EG iterations: 0
EG iterations: 0
EG iterations: 0
-> the formula is FALSE
FORMULA BridgeAndVehicles-PT-V04P05N02-CTLCardinality-03 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.040sec
checking: ~ [EG [[EG [EX [~ [COMPTEUR_1<=5]]] | [~ [EF [E [1<=NB_ATTENTE_B_1 U 5<=SORTI_A]]] | [E [ATTENTE_B<=VIDANGE_1 U EX [NB_ATTENTE_B_1<=NB_ATTENTE_A_3]] | A [EX [NB_ATTENTE_A_1<=CAPACITE] U CHOIX_2<=4]]]]]]
normalized: ~ [EG [[[[[~ [EG [~ [CHOIX_2<=4]]] & ~ [E [~ [CHOIX_2<=4] U [~ [EX [NB_ATTENTE_A_1<=CAPACITE]] & ~ [CHOIX_2<=4]]]]] | E [ATTENTE_B<=VIDANGE_1 U EX [NB_ATTENTE_B_1<=NB_ATTENTE_A_3]]] | ~ [E [true U E [1<=NB_ATTENTE_B_1 U 5<=SORTI_A]]]] | EG [EX [~ [COMPTEUR_1<=5]]]]]]
abstracting: (COMPTEUR_1<=5)
states: 2,874 (3)
..
EG iterations: 1
abstracting: (5<=SORTI_A)
states: 0
abstracting: (1<=NB_ATTENTE_B_1)
states: 854
abstracting: (NB_ATTENTE_B_1<=NB_ATTENTE_A_3)
states: 2,116 (3)
.abstracting: (ATTENTE_B<=VIDANGE_1)
states: 1,105 (3)
abstracting: (CHOIX_2<=4)
states: 2,874 (3)
abstracting: (NB_ATTENTE_A_1<=CAPACITE)
states: 2,874 (3)
.abstracting: (CHOIX_2<=4)
states: 2,874 (3)
abstracting: (CHOIX_2<=4)
states: 2,874 (3)
.
EG iterations: 1
EG iterations: 0
-> the formula is FALSE
FORMULA BridgeAndVehicles-PT-V04P05N02-CTLCardinality-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.012sec
checking: AG [E [E [ROUTE_B<=sum(NB_ATTENTE_A_4, NB_ATTENTE_A_3, NB_ATTENTE_A_2, NB_ATTENTE_A_1, NB_ATTENTE_A_0) U EF [[1<=sum(CONTROLEUR_2, CONTROLEUR_1) | 53<=SUR_PONT_B]]] U EG [[AG [32<=CAPACITE] & EX [ROUTE_B<=ROUTE_B]]]]]
normalized: ~ [E [true U ~ [E [E [ROUTE_B<=sum(NB_ATTENTE_A_4, NB_ATTENTE_A_3, NB_ATTENTE_A_2, NB_ATTENTE_A_1, NB_ATTENTE_A_0) U E [true U [1<=sum(CONTROLEUR_2, CONTROLEUR_1) | 53<=SUR_PONT_B]]] U EG [[~ [E [true U ~ [32<=CAPACITE]]] & EX [ROUTE_B<=ROUTE_B]]]]]]]
abstracting: (ROUTE_B<=ROUTE_B)
states: 2,874 (3)
.abstracting: (32<=CAPACITE)
states: 0
.
EG iterations: 1
abstracting: (53<=SUR_PONT_B)
states: 0
abstracting: (1<=sum(CONTROLEUR_2, CONTROLEUR_1))
states: 841
abstracting: (ROUTE_B<=sum(NB_ATTENTE_A_4, NB_ATTENTE_A_3, NB_ATTENTE_A_2, NB_ATTENTE_A_1, NB_ATTENTE_A_0))
states: 1,940 (3)
-> the formula is FALSE
FORMULA BridgeAndVehicles-PT-V04P05N02-CTLCardinality-06 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.089sec
checking: A [EX [[[CAPACITE<=54 | [[~ [7<=SUR_PONT_A] & [sum(CONTROLEUR_2, CONTROLEUR_1)<=sum(VIDANGE_2, VIDANGE_1) | 75<=ROUTE_A]] & AF [59<=sum(CHOIX_2, CHOIX_1)]]] & ~ [AG [EF [8<=sum(CONTROLEUR_2, CONTROLEUR_1)]]]]] U 18<=sum(CHOIX_2, CHOIX_1)]
normalized: [~ [EG [~ [18<=sum(CHOIX_2, CHOIX_1)]]] & ~ [E [~ [18<=sum(CHOIX_2, CHOIX_1)] U [~ [EX [[E [true U ~ [E [true U 8<=sum(CONTROLEUR_2, CONTROLEUR_1)]]] & [CAPACITE<=54 | [~ [EG [~ [59<=sum(CHOIX_2, CHOIX_1)]]] & [[sum(CONTROLEUR_2, CONTROLEUR_1)<=sum(VIDANGE_2, VIDANGE_1) | 75<=ROUTE_A] & ~ [7<=SUR_PONT_A]]]]]]] & ~ [18<=sum(CHOIX_2, CHOIX_1)]]]]]
abstracting: (18<=sum(CHOIX_2, CHOIX_1))
states: 0
abstracting: (7<=SUR_PONT_A)
states: 0
abstracting: (75<=ROUTE_A)
states: 0
abstracting: (sum(CONTROLEUR_2, CONTROLEUR_1)<=sum(VIDANGE_2, VIDANGE_1))
states: 2,033 (3)
abstracting: (59<=sum(CHOIX_2, CHOIX_1))
states: 0
EG iterations: 0
abstracting: (CAPACITE<=54)
states: 2,874 (3)
abstracting: (8<=sum(CONTROLEUR_2, CONTROLEUR_1))
states: 0
.abstracting: (18<=sum(CHOIX_2, CHOIX_1))
states: 0
abstracting: (18<=sum(CHOIX_2, CHOIX_1))
states: 0
EG iterations: 0
-> the formula is FALSE
FORMULA BridgeAndVehicles-PT-V04P05N02-CTLCardinality-01 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.189sec
checking: AG [~ [AF [[~ [[sum(NB_ATTENTE_B_4, NB_ATTENTE_B_3, NB_ATTENTE_B_2, NB_ATTENTE_B_1, NB_ATTENTE_B_0)<=2 & sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0)<=62]] & [[EG [CAPACITE<=69] & [38<=sum(CHOIX_2, CHOIX_1) & sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0)<=96]] | AX [23<=sum(CHOIX_2, CHOIX_1)]]]]]]
normalized: ~ [E [true U ~ [EG [~ [[[~ [EX [~ [23<=sum(CHOIX_2, CHOIX_1)]]] | [[38<=sum(CHOIX_2, CHOIX_1) & sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0)<=96] & EG [CAPACITE<=69]]] & ~ [[sum(NB_ATTENTE_B_4, NB_ATTENTE_B_3, NB_ATTENTE_B_2, NB_ATTENTE_B_1, NB_ATTENTE_B_0)<=2 & sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0)<=62]]]]]]]]
abstracting: (sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0)<=62)
states: 2,874 (3)
abstracting: (sum(NB_ATTENTE_B_4, NB_ATTENTE_B_3, NB_ATTENTE_B_2, NB_ATTENTE_B_1, NB_ATTENTE_B_0)<=2)
states: 2,874 (3)
abstracting: (CAPACITE<=69)
states: 2,874 (3)
EG iterations: 0
abstracting: (sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0)<=96)
states: 2,874 (3)
abstracting: (38<=sum(CHOIX_2, CHOIX_1))
states: 0
abstracting: (23<=sum(CHOIX_2, CHOIX_1))
states: 0
.
EG iterations: 0
-> the formula is TRUE
FORMULA BridgeAndVehicles-PT-V04P05N02-CTLCardinality-05 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.179sec
checking: ~ [A [[A [[AG [CONTROLEUR_2<=2] | ~ [AX [SUR_PONT_B<=1]]] U [NB_ATTENTE_B_4<=5 & A [NB_ATTENTE_A_0<=1 U 5<=VIDANGE_1]]] | [[[E [CHOIX_2<=NB_ATTENTE_B_0 U NB_ATTENTE_B_4<=NB_ATTENTE_B_1] & ~ [EX [CONTROLEUR_2<=5]]] | EG [~ [SUR_PONT_B<=3]]] & [[[EX [CONTROLEUR_2<=2] | ~ [NB_ATTENTE_B_1<=SUR_PONT_A]] & [EF [4<=NB_ATTENTE_A_4] | E [NB_ATTENTE_B_2<=5 U SUR_PONT_B<=3]]] | ATTENTE_B<=0]]] U [4<=CONTROLEUR_2 & AG [~ [EF [2<=COMPTEUR_0]]]]]]
normalized: ~ [[~ [EG [~ [[4<=CONTROLEUR_2 & ~ [E [true U E [true U 2<=COMPTEUR_0]]]]]]] & ~ [E [~ [[4<=CONTROLEUR_2 & ~ [E [true U E [true U 2<=COMPTEUR_0]]]]] U [~ [[[[ATTENTE_B<=0 | [[E [NB_ATTENTE_B_2<=5 U SUR_PONT_B<=3] | E [true U 4<=NB_ATTENTE_A_4]] & [~ [NB_ATTENTE_B_1<=SUR_PONT_A] | EX [CONTROLEUR_2<=2]]]] & [EG [~ [SUR_PONT_B<=3]] | [~ [EX [CONTROLEUR_2<=5]] & E [CHOIX_2<=NB_ATTENTE_B_0 U NB_ATTENTE_B_4<=NB_ATTENTE_B_1]]]] | [~ [EG [~ [[NB_ATTENTE_B_4<=5 & [~ [EG [~ [5<=VIDANGE_1]]] & ~ [E [~ [5<=VIDANGE_1] U [~ [NB_ATTENTE_A_0<=1] & ~ [5<=VIDANGE_1]]]]]]]]] & ~ [E [~ [[NB_ATTENTE_B_4<=5 & [~ [EG [~ [5<=VIDANGE_1]]] & ~ [E [~ [5<=VIDANGE_1] U [~ [NB_ATTENTE_A_0<=1] & ~ [5<=VIDANGE_1]]]]]]] U [~ [[EX [~ [SUR_PONT_B<=1]] | ~ [E [true U ~ [CONTROLEUR_2<=2]]]]] & ~ [[NB_ATTENTE_B_4<=5 & [~ [EG [~ [5<=VIDANGE_1]]] & ~ [E [~ [5<=VIDANGE_1] U [~ [NB_ATTENTE_A_0<=1] & ~ [5<=VIDANGE_1]]]]]]]]]]]]] & ~ [[4<=CONTROLEUR_2 & ~ [E [true U E [true U 2<=COMPTEUR_0]]]]]]]]]]
abstracting: (2<=COMPTEUR_0)
states: 0
abstracting: (4<=CONTROLEUR_2)
states: 0
abstracting: (5<=VIDANGE_1)
states: 0
abstracting: (NB_ATTENTE_A_0<=1)
states: 2,874 (3)
abstracting: (5<=VIDANGE_1)
states: 0
abstracting: (5<=VIDANGE_1)
states: 0
EG iterations: 0
abstracting: (NB_ATTENTE_B_4<=5)
states: 2,874 (3)
abstracting: (CONTROLEUR_2<=2)
states: 2,874 (3)
abstracting: (SUR_PONT_B<=1)
states: 2,714 (3)
.abstracting: (5<=VIDANGE_1)
states: 0
abstracting: (NB_ATTENTE_A_0<=1)
states: 2,874 (3)
abstracting: (5<=VIDANGE_1)
states: 0
abstracting: (5<=VIDANGE_1)
states: 0
EG iterations: 0
abstracting: (NB_ATTENTE_B_4<=5)
states: 2,874 (3)
abstracting: (5<=VIDANGE_1)
states: 0
abstracting: (NB_ATTENTE_A_0<=1)
states: 2,874 (3)
abstracting: (5<=VIDANGE_1)
states: 0
abstracting: (5<=VIDANGE_1)
states: 0
EG iterations: 0
abstracting: (NB_ATTENTE_B_4<=5)
states: 2,874 (3)
EG iterations: 0
abstracting: (NB_ATTENTE_B_4<=NB_ATTENTE_B_1)
states: 2,763 (3)
abstracting: (CHOIX_2<=NB_ATTENTE_B_0)
states: 2,464 (3)
abstracting: (CONTROLEUR_2<=5)
states: 2,874 (3)
.abstracting: (SUR_PONT_B<=3)
states: 2,874 (3)
.
EG iterations: 1
abstracting: (CONTROLEUR_2<=2)
states: 2,874 (3)
.abstracting: (NB_ATTENTE_B_1<=SUR_PONT_A)
states: 2,198 (3)
abstracting: (4<=NB_ATTENTE_A_4)
states: 0
abstracting: (SUR_PONT_B<=3)
states: 2,874 (3)
abstracting: (NB_ATTENTE_B_2<=5)
states: 2,874 (3)
abstracting: (ATTENTE_B<=0)
states: 1,000 (3)
abstracting: (2<=COMPTEUR_0)
states: 0
abstracting: (4<=CONTROLEUR_2)
states: 0
abstracting: (2<=COMPTEUR_0)
states: 0
abstracting: (4<=CONTROLEUR_2)
states: 0
EG iterations: 0
-> the formula is TRUE
FORMULA BridgeAndVehicles-PT-V04P05N02-CTLCardinality-13 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.013sec
checking: [~ [E [AX [AF [E [VIDANGE_1<=CONTROLEUR_2 U NB_ATTENTE_A_0<=VIDANGE_1]]] U AG [[[A [COMPTEUR_0<=0 U SUR_PONT_A<=NB_ATTENTE_A_1] & [2<=NB_ATTENTE_B_1 | SUR_PONT_A<=ROUTE_A]] & AG [ATTENTE_A<=2]]]]] & [EX [NB_ATTENTE_A_3<=4] | E [EF [EF [ROUTE_B<=COMPTEUR_0]] U A [[EF [2<=NB_ATTENTE_A_0] | 5<=COMPTEUR_0] U E [E [CAPACITE<=COMPTEUR_1 U 1<=NB_ATTENTE_B_3] U [SUR_PONT_A<=NB_ATTENTE_B_2 & SORTI_B<=CONTROLEUR_1]]]]]]
normalized: [[E [E [true U E [true U ROUTE_B<=COMPTEUR_0]] U [~ [EG [~ [E [E [CAPACITE<=COMPTEUR_1 U 1<=NB_ATTENTE_B_3] U [SUR_PONT_A<=NB_ATTENTE_B_2 & SORTI_B<=CONTROLEUR_1]]]]] & ~ [E [~ [E [E [CAPACITE<=COMPTEUR_1 U 1<=NB_ATTENTE_B_3] U [SUR_PONT_A<=NB_ATTENTE_B_2 & SORTI_B<=CONTROLEUR_1]]] U [~ [[5<=COMPTEUR_0 | E [true U 2<=NB_ATTENTE_A_0]]] & ~ [E [E [CAPACITE<=COMPTEUR_1 U 1<=NB_ATTENTE_B_3] U [SUR_PONT_A<=NB_ATTENTE_B_2 & SORTI_B<=CONTROLEUR_1]]]]]]]] | EX [NB_ATTENTE_A_3<=4]] & ~ [E [~ [EX [EG [~ [E [VIDANGE_1<=CONTROLEUR_2 U NB_ATTENTE_A_0<=VIDANGE_1]]]]] U ~ [E [true U ~ [[~ [E [true U ~ [ATTENTE_A<=2]]] & [[2<=NB_ATTENTE_B_1 | SUR_PONT_A<=ROUTE_A] & [~ [EG [~ [SUR_PONT_A<=NB_ATTENTE_A_1]]] & ~ [E [~ [SUR_PONT_A<=NB_ATTENTE_A_1] U [~ [COMPTEUR_0<=0] & ~ [SUR_PONT_A<=NB_ATTENTE_A_1]]]]]]]]]]]]]
abstracting: (SUR_PONT_A<=NB_ATTENTE_A_1)
states: 2,390 (3)
abstracting: (COMPTEUR_0<=0)
states: 1,841 (3)
abstracting: (SUR_PONT_A<=NB_ATTENTE_A_1)
states: 2,390 (3)
abstracting: (SUR_PONT_A<=NB_ATTENTE_A_1)
states: 2,390 (3)
...........
EG iterations: 11
abstracting: (SUR_PONT_A<=ROUTE_A)
states: 2,550 (3)
abstracting: (2<=NB_ATTENTE_B_1)
states: 0
abstracting: (ATTENTE_A<=2)
states: 2,454 (3)
abstracting: (NB_ATTENTE_A_0<=VIDANGE_1)
states: 1,946 (3)
abstracting: (VIDANGE_1<=CONTROLEUR_2)
states: 2,528 (3)
.
EG iterations: 1
.abstracting: (NB_ATTENTE_A_3<=4)
states: 2,874 (3)
.abstracting: (SORTI_B<=CONTROLEUR_1)
states: 886
abstracting: (SUR_PONT_A<=NB_ATTENTE_B_2)
states: 2,344 (3)
abstracting: (1<=NB_ATTENTE_B_3)
states: 315
abstracting: (CAPACITE<=COMPTEUR_1)
states: 0
abstracting: (2<=NB_ATTENTE_A_0)
states: 0
abstracting: (5<=COMPTEUR_0)
states: 0
abstracting: (SORTI_B<=CONTROLEUR_1)
states: 886
abstracting: (SUR_PONT_A<=NB_ATTENTE_B_2)
states: 2,344 (3)
abstracting: (1<=NB_ATTENTE_B_3)
states: 315
abstracting: (CAPACITE<=COMPTEUR_1)
states: 0
abstracting: (SORTI_B<=CONTROLEUR_1)
states: 886
abstracting: (SUR_PONT_A<=NB_ATTENTE_B_2)
states: 2,344 (3)
abstracting: (1<=NB_ATTENTE_B_3)
states: 315
abstracting: (CAPACITE<=COMPTEUR_1)
states: 0
..........
EG iterations: 10
abstracting: (ROUTE_B<=COMPTEUR_0)
states: 1,403 (3)
-> the formula is FALSE
FORMULA BridgeAndVehicles-PT-V04P05N02-CTLCardinality-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.204sec
checking: ~ [A [[EF [[A [ROUTE_A<=COMPTEUR_1 U 4<=NB_ATTENTE_B_3] | [[COMPTEUR_0<=NB_ATTENTE_B_0 | 1<=NB_ATTENTE_B_2] & ~ [2<=NB_ATTENTE_A_0]]]] | [[AG [3<=NB_ATTENTE_A_0] | NB_ATTENTE_A_1<=COMPTEUR_0] | AX [4<=NB_ATTENTE_B_3]]] U [CHOIX_2<=0 & [[[[AX [CONTROLEUR_1<=SUR_PONT_A] | AX [COMPTEUR_0<=NB_ATTENTE_A_0]] | [~ [NB_ATTENTE_B_4<=1] & SUR_PONT_B<=NB_ATTENTE_B_1]] | EX [VIDANGE_1<=ROUTE_A]] & [[[~ [NB_ATTENTE_B_0<=5] | ~ [NB_ATTENTE_B_4<=NB_ATTENTE_A_1]] | EX [NB_ATTENTE_A_1<=5]] & AF [AG [NB_ATTENTE_B_0<=NB_ATTENTE_B_2]]]]]]]
normalized: ~ [[~ [EG [~ [[CHOIX_2<=0 & [[~ [EG [E [true U ~ [NB_ATTENTE_B_0<=NB_ATTENTE_B_2]]]] & [EX [NB_ATTENTE_A_1<=5] | [~ [NB_ATTENTE_B_4<=NB_ATTENTE_A_1] | ~ [NB_ATTENTE_B_0<=5]]]] & [EX [VIDANGE_1<=ROUTE_A] | [[SUR_PONT_B<=NB_ATTENTE_B_1 & ~ [NB_ATTENTE_B_4<=1]] | [~ [EX [~ [COMPTEUR_0<=NB_ATTENTE_A_0]]] | ~ [EX [~ [CONTROLEUR_1<=SUR_PONT_A]]]]]]]]]]] & ~ [E [~ [[CHOIX_2<=0 & [[~ [EG [E [true U ~ [NB_ATTENTE_B_0<=NB_ATTENTE_B_2]]]] & [EX [NB_ATTENTE_A_1<=5] | [~ [NB_ATTENTE_B_4<=NB_ATTENTE_A_1] | ~ [NB_ATTENTE_B_0<=5]]]] & [EX [VIDANGE_1<=ROUTE_A] | [[SUR_PONT_B<=NB_ATTENTE_B_1 & ~ [NB_ATTENTE_B_4<=1]] | [~ [EX [~ [COMPTEUR_0<=NB_ATTENTE_A_0]]] | ~ [EX [~ [CONTROLEUR_1<=SUR_PONT_A]]]]]]]]] U [~ [[[~ [EX [~ [4<=NB_ATTENTE_B_3]]] | [NB_ATTENTE_A_1<=COMPTEUR_0 | ~ [E [true U ~ [3<=NB_ATTENTE_A_0]]]]] | E [true U [[~ [2<=NB_ATTENTE_A_0] & [COMPTEUR_0<=NB_ATTENTE_B_0 | 1<=NB_ATTENTE_B_2]] | [~ [EG [~ [4<=NB_ATTENTE_B_3]]] & ~ [E [~ [4<=NB_ATTENTE_B_3] U [~ [ROUTE_A<=COMPTEUR_1] & ~ [4<=NB_ATTENTE_B_3]]]]]]]]] & ~ [[CHOIX_2<=0 & [[~ [EG [E [true U ~ [NB_ATTENTE_B_0<=NB_ATTENTE_B_2]]]] & [EX [NB_ATTENTE_A_1<=5] | [~ [NB_ATTENTE_B_4<=NB_ATTENTE_A_1] | ~ [NB_ATTENTE_B_0<=5]]]] & [EX [VIDANGE_1<=ROUTE_A] | [[SUR_PONT_B<=NB_ATTENTE_B_1 & ~ [NB_ATTENTE_B_4<=1]] | [~ [EX [~ [COMPTEUR_0<=NB_ATTENTE_A_0]]] | ~ [EX [~ [CONTROLEUR_1<=SUR_PONT_A]]]]]]]]]]]]]]
abstracting: (CONTROLEUR_1<=SUR_PONT_A)
states: 2,581 (3)
.abstracting: (COMPTEUR_0<=NB_ATTENTE_A_0)
states: 2,172 (3)
.abstracting: (NB_ATTENTE_B_4<=1)
states: 2,874 (3)
abstracting: (SUR_PONT_B<=NB_ATTENTE_B_1)
states: 2,390 (3)
abstracting: (VIDANGE_1<=ROUTE_A)
states: 2,749 (3)
.abstracting: (NB_ATTENTE_B_0<=5)
states: 2,874 (3)
abstracting: (NB_ATTENTE_B_4<=NB_ATTENTE_A_1)
states: 2,795 (3)
abstracting: (NB_ATTENTE_A_1<=5)
states: 2,874 (3)
.abstracting: (NB_ATTENTE_B_0<=NB_ATTENTE_B_2)
states: 1,874 (3)
EG iterations: 0
abstracting: (CHOIX_2<=0)
states: 2,216 (3)
abstracting: (4<=NB_ATTENTE_B_3)
states: 0
abstracting: (ROUTE_A<=COMPTEUR_1)
states: 1,342 (3)
abstracting: (4<=NB_ATTENTE_B_3)
states: 0
abstracting: (4<=NB_ATTENTE_B_3)
states: 0
EG iterations: 0
abstracting: (1<=NB_ATTENTE_B_2)
states: 594
abstracting: (COMPTEUR_0<=NB_ATTENTE_B_0)
states: 2,164 (3)
abstracting: (2<=NB_ATTENTE_A_0)
states: 0
abstracting: (3<=NB_ATTENTE_A_0)
states: 0
abstracting: (NB_ATTENTE_A_1<=COMPTEUR_0)
states: 2,334 (3)
abstracting: (4<=NB_ATTENTE_B_3)
states: 0
.abstracting: (CONTROLEUR_1<=SUR_PONT_A)
states: 2,581 (3)
.abstracting: (COMPTEUR_0<=NB_ATTENTE_A_0)
states: 2,172 (3)
.abstracting: (NB_ATTENTE_B_4<=1)
states: 2,874 (3)
abstracting: (SUR_PONT_B<=NB_ATTENTE_B_1)
states: 2,390 (3)
abstracting: (VIDANGE_1<=ROUTE_A)
states: 2,749 (3)
.abstracting: (NB_ATTENTE_B_0<=5)
states: 2,874 (3)
abstracting: (NB_ATTENTE_B_4<=NB_ATTENTE_A_1)
states: 2,795 (3)
abstracting: (NB_ATTENTE_A_1<=5)
states: 2,874 (3)
.abstracting: (NB_ATTENTE_B_0<=NB_ATTENTE_B_2)
states: 1,874 (3)
EG iterations: 0
abstracting: (CHOIX_2<=0)
states: 2,216 (3)
abstracting: (CONTROLEUR_1<=SUR_PONT_A)
states: 2,581 (3)
.abstracting: (COMPTEUR_0<=NB_ATTENTE_A_0)
states: 2,172 (3)
.abstracting: (NB_ATTENTE_B_4<=1)
states: 2,874 (3)
abstracting: (SUR_PONT_B<=NB_ATTENTE_B_1)
states: 2,390 (3)
abstracting: (VIDANGE_1<=ROUTE_A)
states: 2,749 (3)
.abstracting: (NB_ATTENTE_B_0<=5)
states: 2,874 (3)
abstracting: (NB_ATTENTE_B_4<=NB_ATTENTE_A_1)
states: 2,795 (3)
abstracting: (NB_ATTENTE_A_1<=5)
states: 2,874 (3)
.abstracting: (NB_ATTENTE_B_0<=NB_ATTENTE_B_2)
states: 1,874 (3)
EG iterations: 0
abstracting: (CHOIX_2<=0)
states: 2,216 (3)
EG iterations: 0
-> the formula is TRUE
FORMULA BridgeAndVehicles-PT-V04P05N02-CTLCardinality-10 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.062sec
checking: E [A [[[~ [95<=ATTENTE_A] | AF [EX [91<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0)]]] & AG [[~ [97<=sum(CHOIX_2, CHOIX_1)] | EG [24<=sum(CONTROLEUR_2, CONTROLEUR_1)]]]] U A [[[EF [11<=ATTENTE_B] & EG [45<=ATTENTE_A]] & AG [sum(CHOIX_2, CHOIX_1)<=SORTI_A]] U E [~ [ROUTE_A<=SORTI_A] U A [65<=sum(CHOIX_2, CHOIX_1) U sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0)]]]] U [[[[[SUR_PONT_A<=97 & sum(NB_ATTENTE_B_4, NB_ATTENTE_B_3, NB_ATTENTE_B_2, NB_ATTENTE_B_1, NB_ATTENTE_B_0)<=78] | sum(NB_ATTENTE_B_4, NB_ATTENTE_B_3, NB_ATTENTE_B_2, NB_ATTENTE_B_1, NB_ATTENTE_B_0)<=SORTI_A] & [ROUTE_B<=ATTENTE_A & A [[sum(NB_ATTENTE_B_4, NB_ATTENTE_B_3, NB_ATTENTE_B_2, NB_ATTENTE_B_1, NB_ATTENTE_B_0)<=98 & SORTI_B<=62] U 50<=CAPACITE]]] | [EF [EF [ATTENTE_A<=SORTI_A]] | ~ [ROUTE_B<=sum(VIDANGE_2, VIDANGE_1)]]] & [~ [[[EF [ATTENTE_B<=41] | [[CAPACITE<=12 | sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0)<=SUR_PONT_A] | EF [SUR_PONT_A<=ROUTE_B]]] | 71<=SUR_PONT_B]] & ~ [AX [[~ [SORTI_A<=76] | [CAPACITE<=15 | sum(NB_ATTENTE_B_4, NB_ATTENTE_B_3, NB_ATTENTE_B_2, NB_ATTENTE_B_1, NB_ATTENTE_B_0)<=ATTENTE_B]]]]]]]
normalized: E [[~ [EG [~ [[~ [EG [~ [E [~ [ROUTE_A<=SORTI_A] U [~ [EG [~ [sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0)]]] & ~ [E [~ [sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0)] U [~ [65<=sum(CHOIX_2, CHOIX_1)] & ~ [sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0)]]]]]]]]] & ~ [E [~ [E [~ [ROUTE_A<=SORTI_A] U [~ [EG [~ [sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0)]]] & ~ [E [~ [sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0)] U [~ [65<=sum(CHOIX_2, CHOIX_1)] & ~ [sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0)]]]]]]] U [~ [[~ [E [true U ~ [sum(CHOIX_2, CHOIX_1)<=SORTI_A]]] & [EG [45<=ATTENTE_A] & E [true U 11<=ATTENTE_B]]]] & ~ [E [~ [ROUTE_A<=SORTI_A] U [~ [EG [~ [sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0)]]] & ~ [E [~ [sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0)] U [~ [65<=sum(CHOIX_2, CHOIX_1)] & ~ [sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0)]]]]]]]]]]]]]] & ~ [E [~ [[~ [EG [~ [E [~ [ROUTE_A<=SORTI_A] U [~ [EG [~ [sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0)]]] & ~ [E [~ [sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0)] U [~ [65<=sum(CHOIX_2, CHOIX_1)] & ~ [sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0)]]]]]]]]] & ~ [E [~ [E [~ [ROUTE_A<=SORTI_A] U [~ [EG [~ [sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0)]]] & ~ [E [~ [sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0)] U [~ [65<=sum(CHOIX_2, CHOIX_1)] & ~ [sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0)]]]]]]] U [~ [[~ [E [true U ~ [sum(CHOIX_2, CHOIX_1)<=SORTI_A]]] & [EG [45<=ATTENTE_A] & E [true U 11<=ATTENTE_B]]]] & ~ [E [~ [ROUTE_A<=SORTI_A] U [~ [EG [~ [sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0)]]] & ~ [E [~ [sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0)] U [~ [65<=sum(CHOIX_2, CHOIX_1)] & ~ [sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0)]]]]]]]]]]]] U [~ [[~ [E [true U ~ [[EG [24<=sum(CONTROLEUR_2, CONTROLEUR_1)] | ~ [97<=sum(CHOIX_2, CHOIX_1)]]]]] & [~ [EG [~ [EX [91<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0)]]]] | ~ [95<=ATTENTE_A]]]] & ~ [[~ [EG [~ [E [~ [ROUTE_A<=SORTI_A] U [~ [EG [~ [sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0)]]] & ~ [E [~ [sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0)] U [~ [65<=sum(CHOIX_2, CHOIX_1)] & ~ [sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0)]]]]]]]]] & ~ [E [~ [E [~ [ROUTE_A<=SORTI_A] U [~ [EG [~ [sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0)]]] & ~ [E [~ [sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0)] U [~ [65<=sum(CHOIX_2, CHOIX_1)] & ~ [sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0)]]]]]]] U [~ [[~ [E [true U ~ [sum(CHOIX_2, CHOIX_1)<=SORTI_A]]] & [EG [45<=ATTENTE_A] & E [true U 11<=ATTENTE_B]]]] & ~ [E [~ [ROUTE_A<=SORTI_A] U [~ [EG [~ [sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0)]]] & ~ [E [~ [sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0)] U [~ [65<=sum(CHOIX_2, CHOIX_1)] & ~ [sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0)]]]]]]]]]]]]]]]] U [[~ [[71<=SUR_PONT_B | [[[CAPACITE<=12 | sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0)<=SUR_PONT_A] | E [true U SUR_PONT_A<=ROUTE_B]] | E [true U ATTENTE_B<=41]]]] & EX [~ [[[CAPACITE<=15 | sum(NB_ATTENTE_B_4, NB_ATTENTE_B_3, NB_ATTENTE_B_2, NB_ATTENTE_B_1, NB_ATTENTE_B_0)<=ATTENTE_B] | ~ [SORTI_A<=76]]]]] & [[~ [ROUTE_B<=sum(VIDANGE_2, VIDANGE_1)] | E [true U E [true U ATTENTE_A<=SORTI_A]]] | [[ROUTE_B<=ATTENTE_A & [~ [EG [~ [50<=CAPACITE]]] & ~ [E [~ [50<=CAPACITE] U [~ [[sum(NB_ATTENTE_B_4, NB_ATTENTE_B_3, NB_ATTENTE_B_2, NB_ATTENTE_B_1, NB_ATTENTE_B_0)<=98 & SORTI_B<=62]] & ~ [50<=CAPACITE]]]]]] & [sum(NB_ATTENTE_B_4, NB_ATTENTE_B_3, NB_ATTENTE_B_2, NB_ATTENTE_B_1, NB_ATTENTE_B_0)<=SORTI_A | [SUR_PONT_A<=97 & sum(NB_ATTENTE_B_4, NB_ATTENTE_B_3, NB_ATTENTE_B_2, NB_ATTENTE_B_1, NB_ATTENTE_B_0)<=78]]]]]]
abstracting: (sum(NB_ATTENTE_B_4, NB_ATTENTE_B_3, NB_ATTENTE_B_2, NB_ATTENTE_B_1, NB_ATTENTE_B_0)<=78)
states: 2,874 (3)
abstracting: (SUR_PONT_A<=97)
states: 2,874 (3)
abstracting: (sum(NB_ATTENTE_B_4, NB_ATTENTE_B_3, NB_ATTENTE_B_2, NB_ATTENTE_B_1, NB_ATTENTE_B_0)<=SORTI_A)
states: 2,108 (3)
abstracting: (50<=CAPACITE)
states: 0
abstracting: (SORTI_B<=62)
states: 2,874 (3)
abstracting: (sum(NB_ATTENTE_B_4, NB_ATTENTE_B_3, NB_ATTENTE_B_2, NB_ATTENTE_B_1, NB_ATTENTE_B_0)<=98)
states: 2,874 (3)
abstracting: (50<=CAPACITE)
states: 0
abstracting: (50<=CAPACITE)
states: 0
EG iterations: 0
abstracting: (ROUTE_B<=ATTENTE_A)
states: 1,890 (3)
abstracting: (ATTENTE_A<=SORTI_A)
states: 1,884 (3)
abstracting: (ROUTE_B<=sum(VIDANGE_2, VIDANGE_1))
states: 1,311 (3)
abstracting: (SORTI_A<=76)
states: 2,874 (3)
abstracting: (sum(NB_ATTENTE_B_4, NB_ATTENTE_B_3, NB_ATTENTE_B_2, NB_ATTENTE_B_1, NB_ATTENTE_B_0)<=ATTENTE_B)
states: 1,874 (3)
abstracting: (CAPACITE<=15)
states: 2,874 (3)
.abstracting: (ATTENTE_B<=41)
states: 2,874 (3)
abstracting: (SUR_PONT_A<=ROUTE_B)
states: 2,608 (3)
abstracting: (sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0)<=SUR_PONT_A)
states: 628
abstracting: (CAPACITE<=12)
states: 2,874 (3)
abstracting: (71<=SUR_PONT_B)
states: 0
abstracting: (sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0))
states: 2,874 (3)
abstracting: (65<=sum(CHOIX_2, CHOIX_1))
states: 0
abstracting: (sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0))
states: 2,874 (3)
abstracting: (sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0))
states: 2,874 (3)
.
EG iterations: 1
abstracting: (ROUTE_A<=SORTI_A)
states: 1,924 (3)
abstracting: (11<=ATTENTE_B)
states: 0
abstracting: (45<=ATTENTE_A)
states: 0
.
EG iterations: 1
abstracting: (sum(CHOIX_2, CHOIX_1)<=SORTI_A)
states: 2,550 (3)
abstracting: (sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0))
states: 2,874 (3)
abstracting: (65<=sum(CHOIX_2, CHOIX_1))
states: 0
abstracting: (sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0))
states: 2,874 (3)
abstracting: (sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0))
states: 2,874 (3)
.
EG iterations: 1
abstracting: (ROUTE_A<=SORTI_A)
states: 1,924 (3)
abstracting: (sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0))
states: 2,874 (3)
abstracting: (65<=sum(CHOIX_2, CHOIX_1))
states: 0
abstracting: (sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0))
states: 2,874 (3)
abstracting: (sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0))
states: 2,874 (3)
.
EG iterations: 1
abstracting: (ROUTE_A<=SORTI_A)
states: 1,924 (3)
.
EG iterations: 1
abstracting: (95<=ATTENTE_A)
states: 0
abstracting: (91<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0))
states: 0
.
EG iterations: 0
abstracting: (97<=sum(CHOIX_2, CHOIX_1))
states: 0
abstracting: (24<=sum(CONTROLEUR_2, CONTROLEUR_1))
states: 0
.
EG iterations: 1
abstracting: (sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0))
states: 2,874 (3)
abstracting: (65<=sum(CHOIX_2, CHOIX_1))
states: 0
abstracting: (sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0))
states: 2,874 (3)
abstracting: (sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0))
states: 2,874 (3)
.
EG iterations: 1
abstracting: (ROUTE_A<=SORTI_A)
states: 1,924 (3)
abstracting: (11<=ATTENTE_B)
states: 0
abstracting: (45<=ATTENTE_A)
states: 0
.
EG iterations: 1
abstracting: (sum(CHOIX_2, CHOIX_1)<=SORTI_A)
states: 2,550 (3)
abstracting: (sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0))
states: 2,874 (3)
abstracting: (65<=sum(CHOIX_2, CHOIX_1))
states: 0
abstracting: (sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0))
states: 2,874 (3)
abstracting: (sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0))
states: 2,874 (3)
.
EG iterations: 1
abstracting: (ROUTE_A<=SORTI_A)
states: 1,924 (3)
abstracting: (sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0))
states: 2,874 (3)
abstracting: (65<=sum(CHOIX_2, CHOIX_1))
states: 0
abstracting: (sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0))
states: 2,874 (3)
abstracting: (sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0))
states: 2,874 (3)
.
EG iterations: 1
abstracting: (ROUTE_A<=SORTI_A)
states: 1,924 (3)
.
EG iterations: 1
abstracting: (sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0))
states: 2,874 (3)
abstracting: (65<=sum(CHOIX_2, CHOIX_1))
states: 0
abstracting: (sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0))
states: 2,874 (3)
abstracting: (sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0))
states: 2,874 (3)
.
EG iterations: 1
abstracting: (ROUTE_A<=SORTI_A)
states: 1,924 (3)
abstracting: (11<=ATTENTE_B)
states: 0
abstracting: (45<=ATTENTE_A)
states: 0
.
EG iterations: 1
abstracting: (sum(CHOIX_2, CHOIX_1)<=SORTI_A)
states: 2,550 (3)
abstracting: (sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0))
states: 2,874 (3)
abstracting: (65<=sum(CHOIX_2, CHOIX_1))
states: 0
abstracting: (sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0))
states: 2,874 (3)
abstracting: (sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0))
states: 2,874 (3)
.
EG iterations: 1
abstracting: (ROUTE_A<=SORTI_A)
states: 1,924 (3)
abstracting: (sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0))
states: 2,874 (3)
abstracting: (65<=sum(CHOIX_2, CHOIX_1))
states: 0
abstracting: (sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0))
states: 2,874 (3)
abstracting: (sum(CHOIX_2, CHOIX_1)<=sum(COMPTEUR_2, COMPTEUR_1, COMPTEUR_0))
states: 2,874 (3)
.
EG iterations: 1
abstracting: (ROUTE_A<=SORTI_A)
states: 1,924 (3)
.
EG iterations: 1
.
EG iterations: 1
-> the formula is FALSE
FORMULA BridgeAndVehicles-PT-V04P05N02-CTLCardinality-04 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.522sec
totally nodes used: 431661 (4.3e+05)
number of garbage collections: 0
fire ops cache: hits/miss/sum: 550799 1604349 2155148
used/not used/entry size/cache size: 1902695 65206169 16 1024MB
basic ops cache: hits/miss/sum: 176057 370216 546273
used/not used/entry size/cache size: 630509 16146707 12 192MB
unary ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 8 128MB
abstract ops cache: hits/miss/sum: 0 806 806
used/not used/entry size/cache size: 1 16777215 12 192MB
state nr cache: hits/miss/sum: 4544 15660 20204
used/not used/entry size/cache size: 15643 8372965 32 256MB
max state cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 8388608 32 256MB
uniqueHash elements/entry size/size: 67108864 4 256MB
0 66723222
1 356896
2 24147
3 2900
4 687
5 140
6 89
7 150
8 45
9 45
>= 10 543
Total processing time: 0m 7.395sec
BK_STOP 1678295810774
--------------------
content from stderr:
check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.005sec
iterations count:2852 (54), effective:176 (3)
initing FirstDep: 0m 0.000sec
iterations count:670 (12), effective:35 (0)
iterations count:52 (1), effective:0 (0)
iterations count:52 (1), effective:0 (0)
iterations count:52 (1), effective:0 (0)
iterations count:87 (1), effective:4 (0)
iterations count:52 (1), effective:0 (0)
iterations count:52 (1), effective:0 (0)
iterations count:52 (1), effective:0 (0)
iterations count:52 (1), effective:0 (0)
iterations count:52 (1), effective:0 (0)
iterations count:127 (2), effective:3 (0)
iterations count:52 (1), effective:0 (0)
iterations count:226 (4), effective:12 (0)
iterations count:52 (1), effective:0 (0)
iterations count:52 (1), effective:0 (0)
iterations count:52 (1), effective:0 (0)
iterations count:7024 (135), effective:390 (7)
iterations count:96 (1), effective:1 (0)
iterations count:52 (1), effective:0 (0)
iterations count:52 (1), effective:0 (0)
iterations count:407 (7), effective:13 (0)
iterations count:86 (1), effective:3 (0)
iterations count:1034 (19), effective:51 (0)
iterations count:956 (18), effective:42 (0)
iterations count:1994 (38), effective:121 (2)
iterations count:52 (1), effective:0 (0)
iterations count:99 (1), effective:5 (0)
iterations count:52 (1), effective:0 (0)
iterations count:99 (1), effective:5 (0)
iterations count:52 (1), effective:0 (0)
iterations count:52 (1), effective:0 (0)
iterations count:99 (1), effective:5 (0)
iterations count:2410 (46), effective:124 (2)
iterations count:52 (1), effective:0 (0)
iterations count:297 (5), effective:25 (0)
iterations count:2700 (51), effective:146 (2)
iterations count:452 (8), effective:13 (0)
iterations count:152 (2), effective:8 (0)
iterations count:52 (1), effective:0 (0)
iterations count:2700 (51), effective:146 (2)
iterations count:2700 (51), effective:146 (2)
iterations count:760 (14), effective:45 (0)
iterations count:52 (1), effective:0 (0)
iterations count:52 (1), effective:0 (0)
iterations count:54 (1), effective:2 (0)
iterations count:52 (1), effective:0 (0)
iterations count:402 (7), effective:17 (0)
iterations count:52 (1), effective:0 (0)
iterations count:52 (1), effective:0 (0)
iterations count:52 (1), effective:0 (0)
iterations count:402 (7), effective:17 (0)
iterations count:52 (1), effective:0 (0)
iterations count:52 (1), effective:0 (0)
iterations count:52 (1), effective:0 (0)
iterations count:402 (7), effective:17 (0)
iterations count:52 (1), effective:0 (0)
iterations count:52 (1), effective:0 (0)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="BridgeAndVehicles-PT-V04P05N02"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marcie"
echo " Input is BridgeAndVehicles-PT-V04P05N02, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r033-tajo-167813685600161"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/BridgeAndVehicles-PT-V04P05N02.tgz
mv BridgeAndVehicles-PT-V04P05N02 execution
cd execution
if [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "UpperBounds" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] || [ "CTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME CTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;