About the Execution of Marcie for Angiogenesis-PT-05
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
5980.607 | 32602.00 | 32040.00 | 0.00 | TTFTTTTFTFTTFFTF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Formatting '/data/fkordon/mcc2023-input.r001-oct2-167813588500321.qcow2', fmt=qcow2 cluster_size=65536 extended_l2=off compression_type=zlib size=4294967296 backing_file=/data/fkordon/mcc2023-input.qcow2 backing_fmt=qcow2 lazy_refcounts=off refcount_bits=16
Waiting for the VM to be ready (probing ssh)
.....................
=====================================================================
Generated by BenchKit 2-5348
Executing tool marcie
Input is Angiogenesis-PT-05, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r001-oct2-167813588500321
=====================================================================
--------------------
preparation of the directory to be used:
/home/mcc/execution
total 488K
-rw-r--r-- 1 mcc users 7.8K Feb 26 14:55 CTLCardinality.txt
-rw-r--r-- 1 mcc users 77K Feb 26 14:55 CTLCardinality.xml
-rw-r--r-- 1 mcc users 5.2K Feb 26 14:54 CTLFireability.txt
-rw-r--r-- 1 mcc users 47K Feb 26 14:54 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K Jan 29 11:40 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.5K Jan 29 11:40 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 4.2K Feb 25 15:31 LTLCardinality.txt
-rw-r--r-- 1 mcc users 27K Feb 25 15:31 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.2K Feb 25 15:31 LTLFireability.txt
-rw-r--r-- 1 mcc users 18K Feb 25 15:31 LTLFireability.xml
-rw-r--r-- 1 mcc users 14K Feb 26 14:56 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 132K Feb 26 14:56 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 6.7K Feb 26 14:55 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 56K Feb 26 14:55 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.8K Feb 25 15:31 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.8K Feb 25 15:31 UpperBounds.xml
-rw-r--r-- 1 mcc users 6 Mar 5 18:22 equiv_col
-rw-r--r-- 1 mcc users 3 Mar 5 18:22 instance
-rw-r--r-- 1 mcc users 6 Mar 5 18:22 iscolored
-rw-r--r-- 1 mcc users 33K Mar 5 18:22 model.pnml
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME Angiogenesis-PT-05-CTLCardinality-00
FORMULA_NAME Angiogenesis-PT-05-CTLCardinality-01
FORMULA_NAME Angiogenesis-PT-05-CTLCardinality-02
FORMULA_NAME Angiogenesis-PT-05-CTLCardinality-03
FORMULA_NAME Angiogenesis-PT-05-CTLCardinality-04
FORMULA_NAME Angiogenesis-PT-05-CTLCardinality-05
FORMULA_NAME Angiogenesis-PT-05-CTLCardinality-06
FORMULA_NAME Angiogenesis-PT-05-CTLCardinality-07
FORMULA_NAME Angiogenesis-PT-05-CTLCardinality-08
FORMULA_NAME Angiogenesis-PT-05-CTLCardinality-09
FORMULA_NAME Angiogenesis-PT-05-CTLCardinality-10
FORMULA_NAME Angiogenesis-PT-05-CTLCardinality-11
FORMULA_NAME Angiogenesis-PT-05-CTLCardinality-12
FORMULA_NAME Angiogenesis-PT-05-CTLCardinality-13
FORMULA_NAME Angiogenesis-PT-05-CTLCardinality-14
FORMULA_NAME Angiogenesis-PT-05-CTLCardinality-15
=== Now, execution of the tool begins
BK_START 1678391579316
bash -c /home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n "BK_STOP " ; date -u +%s%3N
Invoking MCC driver with
BK_TOOL=marcie
BK_EXAMINATION=CTLCardinality
BK_BIN_PATH=/home/mcc/BenchKit/bin/
BK_TIME_CONFINEMENT=3600
BK_INPUT=Angiogenesis-PT-05
Not applying reductions.
Model is PT
CTLCardinality PT
timeout --kill-after=10s --signal=SIGINT 1m for testing only
Marcie built on Linux at 2019-11-18.
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: /home/mcc/BenchKit/bin//../marcie/bin/marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --memory=6 --mcc-mode
parse successfull
net created successfully
Net: Angiogenesis_PT_05
(NrP: 39 NrTr: 64 NrArc: 185)
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec
net check time: 0m 0.000sec
init dd package: 0m 3.036sec
RS generation: 0m 0.330sec
-> reachability set: #nodes 10921 (1.1e+04) #states 42,734,935 (7)
starting MCC model checker
--------------------------
checking: EF [EF [1<=KdStarGStarPgP3]]
normalized: E [true U E [true U 1<=KdStarGStarPgP3]]
abstracting: (1<=KdStarGStarPgP3)
states: 4,166,196 (6)
-> the formula is TRUE
FORMULA Angiogenesis-PT-05-CTLCardinality-00 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.744sec
checking: ~ [AG [AF [KdStarGStarPgP3<=DAG]]]
normalized: E [true U EG [~ [KdStarGStarPgP3<=DAG]]]
abstracting: (KdStarGStarPgP3<=DAG)
states: 39,669,931 (7)
..
EG iterations: 2
-> the formula is TRUE
FORMULA Angiogenesis-PT-05-CTLCardinality-06 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.860sec
checking: EF [EG [AG [AF [EF [KdStarGStarP3k<=KdStarGStarP3kStar]]]]]
normalized: E [true U EG [~ [E [true U EG [~ [E [true U KdStarGStarP3k<=KdStarGStarP3kStar]]]]]]]
abstracting: (KdStarGStarP3k<=KdStarGStarP3kStar)
states: 32,554,361 (7)
.
EG iterations: 1
EG iterations: 0
-> the formula is TRUE
FORMULA Angiogenesis-PT-05-CTLCardinality-11 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.081sec
checking: A [3<=KdStarPg U A [AG [3<=KdStarGStar] U [~ [EX [EF [Pg<=5]]] | AG [AX [DAG<=4]]]]]
normalized: [~ [EG [~ [[~ [EG [~ [[~ [E [true U EX [~ [DAG<=4]]]] | ~ [EX [E [true U Pg<=5]]]]]]] & ~ [E [~ [[~ [E [true U EX [~ [DAG<=4]]]] | ~ [EX [E [true U Pg<=5]]]]] U [E [true U ~ [3<=KdStarGStar]] & ~ [[~ [E [true U EX [~ [DAG<=4]]]] | ~ [EX [E [true U Pg<=5]]]]]]]]]]]] & ~ [E [~ [[~ [EG [~ [[~ [E [true U EX [~ [DAG<=4]]]] | ~ [EX [E [true U Pg<=5]]]]]]] & ~ [E [~ [[~ [E [true U EX [~ [DAG<=4]]]] | ~ [EX [E [true U Pg<=5]]]]] U [E [true U ~ [3<=KdStarGStar]] & ~ [[~ [E [true U EX [~ [DAG<=4]]]] | ~ [EX [E [true U Pg<=5]]]]]]]]]] U [~ [3<=KdStarPg] & ~ [[~ [EG [~ [[~ [E [true U EX [~ [DAG<=4]]]] | ~ [EX [E [true U Pg<=5]]]]]]] & ~ [E [~ [[~ [E [true U EX [~ [DAG<=4]]]] | ~ [EX [E [true U Pg<=5]]]]] U [E [true U ~ [3<=KdStarGStar]] & ~ [[~ [E [true U EX [~ [DAG<=4]]]] | ~ [EX [E [true U Pg<=5]]]]]]]]]]]]]]
abstracting: (Pg<=5)
states: 42,734,935 (7)
.abstracting: (DAG<=4)
states: 42,727,493 (7)
.abstracting: (3<=KdStarGStar)
states: 512,541 (5)
abstracting: (Pg<=5)
states: 42,734,935 (7)
.abstracting: (DAG<=4)
states: 42,727,493 (7)
.abstracting: (Pg<=5)
states: 42,734,935 (7)
.abstracting: (DAG<=4)
states: 42,727,493 (7)
..
EG iterations: 1
abstracting: (3<=KdStarPg)
states: 1,170,290 (6)
abstracting: (Pg<=5)
states: 42,734,935 (7)
.abstracting: (DAG<=4)
states: 42,727,493 (7)
.abstracting: (3<=KdStarGStar)
states: 512,541 (5)
abstracting: (Pg<=5)
states: 42,734,935 (7)
.abstracting: (DAG<=4)
states: 42,727,493 (7)
.abstracting: (Pg<=5)
states: 42,734,935 (7)
.abstracting: (DAG<=4)
states: 42,727,493 (7)
..
EG iterations: 1
abstracting: (Pg<=5)
states: 42,734,935 (7)
.abstracting: (DAG<=4)
states: 42,727,493 (7)
.abstracting: (3<=KdStarGStar)
states: 512,541 (5)
abstracting: (Pg<=5)
states: 42,734,935 (7)
.abstracting: (DAG<=4)
states: 42,727,493 (7)
.abstracting: (Pg<=5)
states: 42,734,935 (7)
.abstracting: (DAG<=4)
states: 42,727,493 (7)
..
EG iterations: 1
.
EG iterations: 1
-> the formula is FALSE
FORMULA Angiogenesis-PT-05-CTLCardinality-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.694sec
checking: E [~ [[EF [1<=KdStarGStarP3kStar] & EX [AF [~ [KdStarGStarP3kP3<=GP3]]]]] U AX [~ [KdStarGStarP3k<=Akt]]]
normalized: E [~ [[EX [~ [EG [KdStarGStarP3kP3<=GP3]]] & E [true U 1<=KdStarGStarP3kStar]]] U ~ [EX [KdStarGStarP3k<=Akt]]]
abstracting: (KdStarGStarP3k<=Akt)
states: 39,812,035 (7)
.abstracting: (1<=KdStarGStarP3kStar)
states: 12,688,021 (7)
abstracting: (KdStarGStarP3kP3<=GP3)
states: 39,149,953 (7)
.
EG iterations: 1
.-> the formula is TRUE
FORMULA Angiogenesis-PT-05-CTLCardinality-08 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 5.241sec
checking: [AX [AG [AF [AF [KdStarGStarPgStarP3P2<=GStarP3kP3]]]] & EX [EG [EF [~ [[2<=GStarP3 & Pten<=GStarPgP3]]]]]]
normalized: [EX [EG [E [true U ~ [[2<=GStarP3 & Pten<=GStarPgP3]]]]] & ~ [EX [E [true U EG [EG [~ [KdStarGStarPgStarP3P2<=GStarP3kP3]]]]]]]
abstracting: (KdStarGStarPgStarP3P2<=GStarP3kP3)
states: 41,732,400 (7)
..
EG iterations: 2
.
EG iterations: 1
.abstracting: (Pten<=GStarPgP3)
states: 88,322 (4)
abstracting: (2<=GStarP3)
states: 1,221,896 (6)
EG iterations: 0
.-> the formula is FALSE
FORMULA Angiogenesis-PT-05-CTLCardinality-09 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.389sec
checking: EF [E [KdStarGStarP3kP3<=1 U EF [[[EG [KdStarGStarPgStarP3<=3] | [Pten<=P3k & 4<=PtP3]] & AG [PtP3P2<=4]]]]]
normalized: E [true U E [KdStarGStarP3kP3<=1 U E [true U [~ [E [true U ~ [PtP3P2<=4]]] & [[Pten<=P3k & 4<=PtP3] | EG [KdStarGStarPgStarP3<=3]]]]]]
abstracting: (KdStarGStarPgStarP3<=3)
states: 42,734,452 (7)
.
EG iterations: 1
abstracting: (4<=PtP3)
states: 100,991 (5)
abstracting: (Pten<=P3k)
states: 22,316,315 (7)
abstracting: (PtP3P2<=4)
states: 42,734,935 (7)
abstracting: (KdStarGStarP3kP3<=1)
states: 42,420,175 (7)
-> the formula is TRUE
FORMULA Angiogenesis-PT-05-CTLCardinality-03 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.061sec
checking: AG [A [~ [[EG [KdStarGStarPgStar<=KdStarGStarPgStarP3P2] & Pip3<=KdStar]] U [~ [AX [2<=KdStarGStarP3k]] & [AX [[2<=GP3 & GStarPgP3<=1]] | ~ [5<=KdStarGStarPgStarP3P2]]]]]
normalized: ~ [E [true U ~ [[~ [EG [~ [[[~ [5<=KdStarGStarPgStarP3P2] | ~ [EX [~ [[2<=GP3 & GStarPgP3<=1]]]]] & EX [~ [2<=KdStarGStarP3k]]]]]] & ~ [E [~ [[[~ [5<=KdStarGStarPgStarP3P2] | ~ [EX [~ [[2<=GP3 & GStarPgP3<=1]]]]] & EX [~ [2<=KdStarGStarP3k]]]] U [[Pip3<=KdStar & EG [KdStarGStarPgStar<=KdStarGStarPgStarP3P2]] & ~ [[[~ [5<=KdStarGStarPgStarP3P2] | ~ [EX [~ [[2<=GP3 & GStarPgP3<=1]]]]] & EX [~ [2<=KdStarGStarP3k]]]]]]]]]]]
abstracting: (2<=KdStarGStarP3k)
states: 2,965,900 (6)
.abstracting: (GStarPgP3<=1)
states: 41,871,707 (7)
abstracting: (2<=GP3)
states: 1,170,129 (6)
.abstracting: (5<=KdStarGStarPgStarP3P2)
states: 0
abstracting: (KdStarGStarPgStar<=KdStarGStarPgStarP3P2)
states: 30,559,949 (7)
..
EG iterations: 2
abstracting: (Pip3<=KdStar)
states: 33,737,900 (7)
abstracting: (2<=KdStarGStarP3k)
states: 2,965,900 (6)
.abstracting: (GStarPgP3<=1)
states: 41,871,707 (7)
abstracting: (2<=GP3)
states: 1,170,129 (6)
.abstracting: (5<=KdStarGStarPgStarP3P2)
states: 0
abstracting: (2<=KdStarGStarP3k)
states: 2,965,900 (6)
.abstracting: (GStarPgP3<=1)
states: 41,871,707 (7)
abstracting: (2<=GP3)
states: 1,170,129 (6)
.abstracting: (5<=KdStarGStarPgStarP3P2)
states: 0
.
EG iterations: 1
-> the formula is FALSE
FORMULA Angiogenesis-PT-05-CTLCardinality-07 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 1.090sec
checking: [E [[AX [KdStarGStarPg<=4] | KdStarPgStarP2<=2] U AG [~ [[~ [2<=Pip2] | PtP2<=5]]]] | EG [~ [A [[[AX [2<=KdStarGStarP3k] | EX [4<=GStarPgP3]] | P3k<=4] U 2<=KdStarPgStarP2]]]]
normalized: [EG [~ [[~ [EG [~ [2<=KdStarPgStarP2]]] & ~ [E [~ [2<=KdStarPgStarP2] U [~ [[P3k<=4 | [EX [4<=GStarPgP3] | ~ [EX [~ [2<=KdStarGStarP3k]]]]]] & ~ [2<=KdStarPgStarP2]]]]]]] | E [[KdStarPgStarP2<=2 | ~ [EX [~ [KdStarGStarPg<=4]]]] U ~ [E [true U [PtP2<=5 | ~ [2<=Pip2]]]]]]
abstracting: (2<=Pip2)
states: 3,537,642 (6)
abstracting: (PtP2<=5)
states: 42,734,935 (7)
abstracting: (KdStarGStarPg<=4)
states: 42,731,984 (7)
.abstracting: (KdStarPgStarP2<=2)
states: 42,715,015 (7)
abstracting: (2<=KdStarPgStarP2)
states: 433,155 (5)
abstracting: (2<=KdStarGStarP3k)
states: 2,965,900 (6)
.abstracting: (4<=GStarPgP3)
states: 895
.abstracting: (P3k<=4)
states: 32,493,470 (7)
abstracting: (2<=KdStarPgStarP2)
states: 433,155 (5)
abstracting: (2<=KdStarPgStarP2)
states: 433,155 (5)
.
EG iterations: 1
.
EG iterations: 1
-> the formula is TRUE
FORMULA Angiogenesis-PT-05-CTLCardinality-14 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.368sec
checking: ~ [EF [[EF [EF [[KdStarGStarP3kStar<=1 & KdStarGStarPgStarP3P2<=0]]] | AX [[[[KdStarPgStar<=KdStarPg & 4<=Pten] & [1<=GStarP3 | PtP2<=0]] | KdStarPgStarP2<=5]]]]]
normalized: ~ [E [true U [~ [EX [~ [[KdStarPgStarP2<=5 | [[1<=GStarP3 | PtP2<=0] & [KdStarPgStar<=KdStarPg & 4<=Pten]]]]]] | E [true U E [true U [KdStarGStarP3kStar<=1 & KdStarGStarPgStarP3P2<=0]]]]]]
abstracting: (KdStarGStarPgStarP3P2<=0)
states: 41,573,095 (7)
abstracting: (KdStarGStarP3kStar<=1)
states: 39,769,035 (7)
abstracting: (4<=Pten)
states: 32,428,102 (7)
abstracting: (KdStarPgStar<=KdStarPg)
states: 29,678,602 (7)
abstracting: (PtP2<=0)
states: 29,224,050 (7)
abstracting: (1<=GStarP3)
states: 8,599,077 (6)
abstracting: (KdStarPgStarP2<=5)
states: 42,734,935 (7)
.-> the formula is FALSE
FORMULA Angiogenesis-PT-05-CTLCardinality-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.251sec
checking: ~ [E [[[EF [KdStarGStarPg<=AktStar] | [KdStarGStarPgStarP3<=Enz | [EX [1<=KdStarGStarP3kStarP2] | KdStarG<=1]]] & EF [~ [AF [4<=GStarP3]]]] U AG [KdStarG<=GStarPgP3]]]
normalized: ~ [E [[E [true U EG [~ [4<=GStarP3]]] & [[KdStarGStarPgStarP3<=Enz | [KdStarG<=1 | EX [1<=KdStarGStarP3kStarP2]]] | E [true U KdStarGStarPg<=AktStar]]] U ~ [E [true U ~ [KdStarG<=GStarPgP3]]]]]
abstracting: (KdStarG<=GStarPgP3)
states: 32,167,633 (7)
abstracting: (KdStarGStarPg<=AktStar)
states: 39,882,275 (7)
abstracting: (1<=KdStarGStarP3kStarP2)
states: 4,240,836 (6)
.abstracting: (KdStarG<=1)
states: 39,908,678 (7)
abstracting: (KdStarGStarPgStarP3<=Enz)
states: 42,734,935 (7)
abstracting: (4<=GStarP3)
states: 6,189 (3)
.
EG iterations: 1
-> the formula is FALSE
FORMULA Angiogenesis-PT-05-CTLCardinality-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 1.283sec
checking: AG [A [[[[AktP3<=Akt & A [KdStarGP3<=4 U 2<=GStarP3kP3]] | ~ [[2<=AktStar | [DAG<=0 | 1<=KdStarGStarPgStarP3]]]] & KdStarGStarPgStarP3P2<=2] U ~ [E [AG [Enz<=KdStarGStarPgStar] U ~ [[Gab1<=5 | KdStarGStarP3kStar<=4]]]]]]
normalized: ~ [E [true U ~ [[~ [EG [E [~ [E [true U ~ [Enz<=KdStarGStarPgStar]]] U ~ [[Gab1<=5 | KdStarGStarP3kStar<=4]]]]] & ~ [E [E [~ [E [true U ~ [Enz<=KdStarGStarPgStar]]] U ~ [[Gab1<=5 | KdStarGStarP3kStar<=4]]] U [~ [[KdStarGStarPgStarP3P2<=2 & [~ [[2<=AktStar | [DAG<=0 | 1<=KdStarGStarPgStarP3]]] | [AktP3<=Akt & [~ [EG [~ [2<=GStarP3kP3]]] & ~ [E [~ [2<=GStarP3kP3] U [~ [2<=GStarP3kP3] & ~ [KdStarGP3<=4]]]]]]]]] & E [~ [E [true U ~ [Enz<=KdStarGStarPgStar]]] U ~ [[Gab1<=5 | KdStarGStarP3kStar<=4]]]]]]]]]]
abstracting: (KdStarGStarP3kStar<=4)
states: 42,731,984 (7)
abstracting: (Gab1<=5)
states: 42,734,935 (7)
abstracting: (Enz<=KdStarGStarPgStar)
states: 164,019 (5)
abstracting: (KdStarGP3<=4)
states: 42,734,935 (7)
abstracting: (2<=GStarP3kP3)
states: 1,221,896 (6)
abstracting: (2<=GStarP3kP3)
states: 1,221,896 (6)
abstracting: (2<=GStarP3kP3)
states: 1,221,896 (6)
.
EG iterations: 1
abstracting: (AktP3<=Akt)
states: 39,640,522 (7)
abstracting: (1<=KdStarGStarPgStarP3)
states: 4,166,196 (6)
abstracting: (DAG<=0)
states: 29,224,050 (7)
abstracting: (2<=AktStar)
states: 27,444,286 (7)
abstracting: (KdStarGStarPgStarP3P2<=2)
states: 42,734,935 (7)
abstracting: (KdStarGStarP3kStar<=4)
states: 42,731,984 (7)
abstracting: (Gab1<=5)
states: 42,734,935 (7)
abstracting: (Enz<=KdStarGStarPgStar)
states: 164,019 (5)
abstracting: (KdStarGStarP3kStar<=4)
states: 42,731,984 (7)
abstracting: (Gab1<=5)
states: 42,734,935 (7)
abstracting: (Enz<=KdStarGStarPgStar)
states: 164,019 (5)
.
EG iterations: 1
-> the formula is TRUE
FORMULA Angiogenesis-PT-05-CTLCardinality-05 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.319sec
checking: [E [~ [1<=KdStarPgStarP2] U AG [[AG [~ [GP3<=GStarPgP3]] & ~ [[A [3<=AktP3 U GP3<=GStarPgP3] | ~ [5<=KdStarGStarPgP3]]]]]] & EG [[AG [[~ [[5<=Akt | PtP3P2<=1]] | [EX [KdStarGStarP3kStarP2<=2] & ~ [3<=AktP3]]]] | [EG [~ [5<=KdStarGStarP3kStarP2]] | EX [AG [2<=Pip2]]]]]]
normalized: [EG [[[EX [~ [E [true U ~ [2<=Pip2]]]] | EG [~ [5<=KdStarGStarP3kStarP2]]] | ~ [E [true U ~ [[[~ [3<=AktP3] & EX [KdStarGStarP3kStarP2<=2]] | ~ [[5<=Akt | PtP3P2<=1]]]]]]]] & E [~ [1<=KdStarPgStarP2] U ~ [E [true U ~ [[~ [[~ [5<=KdStarGStarPgP3] | [~ [EG [~ [GP3<=GStarPgP3]]] & ~ [E [~ [GP3<=GStarPgP3] U [~ [3<=AktP3] & ~ [GP3<=GStarPgP3]]]]]]] & ~ [E [true U GP3<=GStarPgP3]]]]]]]]
abstracting: (GP3<=GStarPgP3)
states: 35,327,815 (7)
abstracting: (GP3<=GStarPgP3)
states: 35,327,815 (7)
abstracting: (3<=AktP3)
states: 350,216 (5)
abstracting: (GP3<=GStarPgP3)
states: 35,327,815 (7)
abstracting: (GP3<=GStarPgP3)
states: 35,327,815 (7)
..
EG iterations: 2
abstracting: (5<=KdStarGStarPgP3)
states: 6
abstracting: (1<=KdStarPgStarP2)
states: 5,462,898 (6)
abstracting: (PtP3P2<=1)
states: 42,633,944 (7)
abstracting: (5<=Akt)
states: 5,271,389 (6)
abstracting: (KdStarGStarP3kStarP2<=2)
states: 42,718,678 (7)
.abstracting: (3<=AktP3)
states: 350,216 (5)
abstracting: (5<=KdStarGStarP3kStarP2)
states: 6
.
EG iterations: 1
abstracting: (2<=Pip2)
states: 3,537,642 (6)
..
EG iterations: 1
-> the formula is FALSE
FORMULA Angiogenesis-PT-05-CTLCardinality-02 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 2.164sec
checking: EF [[AG [~ [KdStarGStarPgStarP3<=KdStarGStarPgStar]] & [EG [[AG [Pip2<=3] | [E [KdStarGStarPgStarP2<=5 U Gab1<=DAGE] & [KdStarGStarP3k<=KdStarGStarP3k | KdStarGStarP3k<=2]]]] | AF [[AX [Enz<=Pip3] | [EF [DAGE<=5] & A [GP3<=Pip2 U 3<=Pten]]]]]]]
normalized: E [true U [[~ [EG [~ [[[[~ [EG [~ [3<=Pten]]] & ~ [E [~ [3<=Pten] U [~ [GP3<=Pip2] & ~ [3<=Pten]]]]] & E [true U DAGE<=5]] | ~ [EX [~ [Enz<=Pip3]]]]]]] | EG [[[[KdStarGStarP3k<=KdStarGStarP3k | KdStarGStarP3k<=2] & E [KdStarGStarPgStarP2<=5 U Gab1<=DAGE]] | ~ [E [true U ~ [Pip2<=3]]]]]] & ~ [E [true U KdStarGStarPgStarP3<=KdStarGStarPgStar]]]]
abstracting: (KdStarGStarPgStarP3<=KdStarGStarPgStar)
states: 39,540,083 (7)
abstracting: (Pip2<=3)
states: 42,633,685 (7)
abstracting: (Gab1<=DAGE)
states: 22,802,519 (7)
abstracting: (KdStarGStarPgStarP2<=5)
states: 42,734,935 (7)
abstracting: (KdStarGStarP3k<=2)
states: 42,222,394 (7)
abstracting: (KdStarGStarP3k<=KdStarGStarP3k)
states: 42,734,935 (7)
EG iterations: 0
abstracting: (Enz<=Pip3)
states: 44,372 (4)
.abstracting: (DAGE<=5)
states: 42,734,935 (7)
abstracting: (3<=Pten)
states: 39,888,959 (7)
abstracting: (GP3<=Pip2)
states: 36,417,743 (7)
abstracting: (3<=Pten)
states: 39,888,959 (7)
abstracting: (3<=Pten)
states: 39,888,959 (7)
..
EG iterations: 2
.
EG iterations: 1
-> the formula is TRUE
FORMULA Angiogenesis-PT-05-CTLCardinality-04 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 2.140sec
checking: ~ [A [AG [AX [[[2<=KdStarGStarP3kStar & KdStar<=Pip3] | [2<=KdStarPgStar & KdStarGStarP3kStarP3P2<=1]]]] U [A [[EX [KdStarPgStar<=3] & A [KdStarGStarPg<=KdStarPgStarP2 U 2<=KdStarGStarPgStarP2]] U [[Pg<=3 | KdStarGStarP3kStarP2<=0] & EF [KdStarGStarPgStarP3P2<=DAG]]] & E [[KdStarGStar<=5 & AX [KdStarGStarP3k<=AktP3]] U [[[PtP3P2<=KdStarGStarP3kStarP2 & PtP3<=KdStarGStarPg] & [3<=KdStarGStarPgStar & GP3<=KdStarPgStar]] | ~ [EF [Gab1<=Pip3]]]]]]]
normalized: ~ [[~ [EG [~ [[E [[KdStarGStar<=5 & ~ [EX [~ [KdStarGStarP3k<=AktP3]]]] U [~ [E [true U Gab1<=Pip3]] | [[3<=KdStarGStarPgStar & GP3<=KdStarPgStar] & [PtP3P2<=KdStarGStarP3kStarP2 & PtP3<=KdStarGStarPg]]]] & [~ [EG [~ [[E [true U KdStarGStarPgStarP3P2<=DAG] & [Pg<=3 | KdStarGStarP3kStarP2<=0]]]]] & ~ [E [~ [[E [true U KdStarGStarPgStarP3P2<=DAG] & [Pg<=3 | KdStarGStarP3kStarP2<=0]]] U [~ [[[~ [EG [~ [2<=KdStarGStarPgStarP2]]] & ~ [E [~ [2<=KdStarGStarPgStarP2] U [~ [KdStarGStarPg<=KdStarPgStarP2] & ~ [2<=KdStarGStarPgStarP2]]]]] & EX [KdStarPgStar<=3]]] & ~ [[E [true U KdStarGStarPgStarP3P2<=DAG] & [Pg<=3 | KdStarGStarP3kStarP2<=0]]]]]]]]]]] & ~ [E [~ [[E [[KdStarGStar<=5 & ~ [EX [~ [KdStarGStarP3k<=AktP3]]]] U [~ [E [true U Gab1<=Pip3]] | [[3<=KdStarGStarPgStar & GP3<=KdStarPgStar] & [PtP3P2<=KdStarGStarP3kStarP2 & PtP3<=KdStarGStarPg]]]] & [~ [EG [~ [[E [true U KdStarGStarPgStarP3P2<=DAG] & [Pg<=3 | KdStarGStarP3kStarP2<=0]]]]] & ~ [E [~ [[E [true U KdStarGStarPgStarP3P2<=DAG] & [Pg<=3 | KdStarGStarP3kStarP2<=0]]] U [~ [[[~ [EG [~ [2<=KdStarGStarPgStarP2]]] & ~ [E [~ [2<=KdStarGStarPgStarP2] U [~ [KdStarGStarPg<=KdStarPgStarP2] & ~ [2<=KdStarGStarPgStarP2]]]]] & EX [KdStarPgStar<=3]]] & ~ [[E [true U KdStarGStarPgStarP3P2<=DAG] & [Pg<=3 | KdStarGStarP3kStarP2<=0]]]]]]]]] U [E [true U EX [~ [[[2<=KdStarPgStar & KdStarGStarP3kStarP3P2<=1] | [2<=KdStarGStarP3kStar & KdStar<=Pip3]]]]] & ~ [[E [[KdStarGStar<=5 & ~ [EX [~ [KdStarGStarP3k<=AktP3]]]] U [~ [E [true U Gab1<=Pip3]] | [[3<=KdStarGStarPgStar & GP3<=KdStarPgStar] & [PtP3P2<=KdStarGStarP3kStarP2 & PtP3<=KdStarGStarPg]]]] & [~ [EG [~ [[E [true U KdStarGStarPgStarP3P2<=DAG] & [Pg<=3 | KdStarGStarP3kStarP2<=0]]]]] & ~ [E [~ [[E [true U KdStarGStarPgStarP3P2<=DAG] & [Pg<=3 | KdStarGStarP3kStarP2<=0]]] U [~ [[[~ [EG [~ [2<=KdStarGStarPgStarP2]]] & ~ [E [~ [2<=KdStarGStarPgStarP2] U [~ [KdStarGStarPg<=KdStarPgStarP2] & ~ [2<=KdStarGStarPgStarP2]]]]] & EX [KdStarPgStar<=3]]] & ~ [[E [true U KdStarGStarPgStarP3P2<=DAG] & [Pg<=3 | KdStarGStarP3kStarP2<=0]]]]]]]]]]]]]]
abstracting: (KdStarGStarP3kStarP2<=0)
states: 38,494,099 (7)
abstracting: (Pg<=3)
states: 33,394,679 (7)
abstracting: (KdStarGStarPgStarP3P2<=DAG)
states: 41,824,252 (7)
abstracting: (KdStarPgStar<=3)
states: 42,578,720 (7)
.abstracting: (2<=KdStarGStarPgStarP2)
states: 307,322 (5)
abstracting: (KdStarGStarPg<=KdStarPgStarP2)
states: 31,516,801 (7)
abstracting: (2<=KdStarGStarPgStarP2)
states: 307,322 (5)
abstracting: (2<=KdStarGStarPgStarP2)
states: 307,322 (5)
.
EG iterations: 1
abstracting: (KdStarGStarP3kStarP2<=0)
states: 38,494,099 (7)
abstracting: (Pg<=3)
states: 33,394,679 (7)
abstracting: (KdStarGStarPgStarP3P2<=DAG)
states: 41,824,252 (7)
abstracting: (KdStarGStarP3kStarP2<=0)
states: 38,494,099 (7)
abstracting: (Pg<=3)
states: 33,394,679 (7)
abstracting: (KdStarGStarPgStarP3P2<=DAG)
states: 41,824,252 (7)
..
EG iterations: 2
abstracting: (PtP3<=KdStarGStarPg)
states: 32,479,935 (7)
abstracting: (PtP3P2<=KdStarGStarP3kStarP2)
states: 39,450,400 (7)
abstracting: (GP3<=KdStarPgStar)
states: 37,985,239 (7)
abstracting: (3<=KdStarGStarPgStar)
states: 488,488 (5)
abstracting: (Gab1<=Pip3)
states: 22,802,022 (7)
abstracting: (KdStarGStarP3k<=AktP3)
states: 32,840,605 (7)
.abstracting: (KdStarGStar<=5)
states: 42,734,935 (7)
abstracting: (KdStar<=Pip3)
states: 29,105,591 (7)
abstracting: (2<=KdStarGStarP3kStar)
states: 2,965,900 (6)
abstracting: (KdStarGStarP3kStarP3P2<=1)
states: 42,723,124 (7)
abstracting: (2<=KdStarPgStar)
states: 5,349,501 (6)
.abstracting: (KdStarGStarP3kStarP2<=0)
states: 38,494,099 (7)
abstracting: (Pg<=3)
states: 33,394,679 (7)
abstracting: (KdStarGStarPgStarP3P2<=DAG)
states: 41,824,252 (7)
abstracting: (KdStarPgStar<=3)
states: 42,578,720 (7)
.abstracting: (2<=KdStarGStarPgStarP2)
states: 307,322 (5)
abstracting: (KdStarGStarPg<=KdStarPgStarP2)
states: 31,516,801 (7)
abstracting: (2<=KdStarGStarPgStarP2)
states: 307,322 (5)
abstracting: (2<=KdStarGStarPgStarP2)
states: 307,322 (5)
.
EG iterations: 1
abstracting: (KdStarGStarP3kStarP2<=0)
states: 38,494,099 (7)
abstracting: (Pg<=3)
states: 33,394,679 (7)
abstracting: (KdStarGStarPgStarP3P2<=DAG)
states: 41,824,252 (7)
abstracting: (KdStarGStarP3kStarP2<=0)
states: 38,494,099 (7)
abstracting: (Pg<=3)
states: 33,394,679 (7)
abstracting: (KdStarGStarPgStarP3P2<=DAG)
states: 41,824,252 (7)
..
EG iterations: 2
abstracting: (PtP3<=KdStarGStarPg)
states: 32,479,935 (7)
abstracting: (PtP3P2<=KdStarGStarP3kStarP2)
states: 39,450,400 (7)
abstracting: (GP3<=KdStarPgStar)
states: 37,985,239 (7)
abstracting: (3<=KdStarGStarPgStar)
states: 488,488 (5)
abstracting: (Gab1<=Pip3)
states: 22,802,022 (7)
abstracting: (KdStarGStarP3k<=AktP3)
states: 32,840,605 (7)
.abstracting: (KdStarGStar<=5)
states: 42,734,935 (7)
abstracting: (KdStarGStarP3kStarP2<=0)
states: 38,494,099 (7)
abstracting: (Pg<=3)
states: 33,394,679 (7)
abstracting: (KdStarGStarPgStarP3P2<=DAG)
states: 41,824,252 (7)
abstracting: (KdStarPgStar<=3)
states: 42,578,720 (7)
.abstracting: (2<=KdStarGStarPgStarP2)
states: 307,322 (5)
abstracting: (KdStarGStarPg<=KdStarPgStarP2)
states: 31,516,801 (7)
abstracting: (2<=KdStarGStarPgStarP2)
states: 307,322 (5)
abstracting: (2<=KdStarGStarPgStarP2)
states: 307,322 (5)
.
EG iterations: 1
abstracting: (KdStarGStarP3kStarP2<=0)
states: 38,494,099 (7)
abstracting: (Pg<=3)
states: 33,394,679 (7)
abstracting: (KdStarGStarPgStarP3P2<=DAG)
states: 41,824,252 (7)
abstracting: (KdStarGStarP3kStarP2<=0)
states: 38,494,099 (7)
abstracting: (Pg<=3)
states: 33,394,679 (7)
abstracting: (KdStarGStarPgStarP3P2<=DAG)
states: 41,824,252 (7)
..
EG iterations: 2
abstracting: (PtP3<=KdStarGStarPg)
states: 32,479,935 (7)
abstracting: (PtP3P2<=KdStarGStarP3kStarP2)
states: 39,450,400 (7)
abstracting: (GP3<=KdStarPgStar)
states: 37,985,239 (7)
abstracting: (3<=KdStarGStarPgStar)
states: 488,488 (5)
abstracting: (Gab1<=Pip3)
states: 22,802,022 (7)
abstracting: (KdStarGStarP3k<=AktP3)
states: 32,840,605 (7)
.abstracting: (KdStarGStar<=5)
states: 42,734,935 (7)
.
EG iterations: 1
-> the formula is TRUE
FORMULA Angiogenesis-PT-05-CTLCardinality-01 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 4.565sec
checking: E [[[[[[AF [1<=KdStarGStarPgStarP3P2] | EX [2<=KdStarGStarP3kStarP2]] & EF [AG [3<=KdStarGP3]]] | EX [E [KdStarGStarP3kP3<=1 U Pg<=3]]] | A [KdStarGStarPg<=Akt U AX [[3<=Pip3 & KdStarGStarPg<=KdStarGStarP3kStarP3]]]] | EX [[E [AX [KdStarGStarPgStarP3P2<=5] U EX [3<=KdStarGP3]] | A [EG [4<=P3k] U E [KdStarGStarPgStar<=PtP3P2 U Gab1<=GP3]]]]] U [KdStarGStarP3k<=0 & [~ [[~ [3<=AktP3] & [~ [E [3<=Akt U 2<=KdStarGStarPgStarP2]] & EF [PtP2<=2]]]] & AX [[[A [KdStarGStarP3kStarP2<=AktStar U KdStarGStarP3kStarP3<=2] & EX [KdStarG<=3]] | E [AktStar<=5 U 5<=GStarPgP3]]]]]]
normalized: E [[EX [[[~ [EG [~ [E [KdStarGStarPgStar<=PtP3P2 U Gab1<=GP3]]]] & ~ [E [~ [E [KdStarGStarPgStar<=PtP3P2 U Gab1<=GP3]] U [~ [EG [4<=P3k]] & ~ [E [KdStarGStarPgStar<=PtP3P2 U Gab1<=GP3]]]]]] | E [~ [EX [~ [KdStarGStarPgStarP3P2<=5]]] U EX [3<=KdStarGP3]]]] | [[~ [EG [EX [~ [[3<=Pip3 & KdStarGStarPg<=KdStarGStarP3kStarP3]]]]] & ~ [E [EX [~ [[3<=Pip3 & KdStarGStarPg<=KdStarGStarP3kStarP3]]] U [~ [KdStarGStarPg<=Akt] & EX [~ [[3<=Pip3 & KdStarGStarPg<=KdStarGStarP3kStarP3]]]]]]] | [EX [E [KdStarGStarP3kP3<=1 U Pg<=3]] | [E [true U ~ [E [true U ~ [3<=KdStarGP3]]]] & [EX [2<=KdStarGStarP3kStarP2] | ~ [EG [~ [1<=KdStarGStarPgStarP3P2]]]]]]]] U [KdStarGStarP3k<=0 & [~ [EX [~ [[[[~ [E [~ [KdStarGStarP3kStarP3<=2] U [~ [KdStarGStarP3kStarP2<=AktStar] & ~ [KdStarGStarP3kStarP3<=2]]]] & ~ [EG [~ [KdStarGStarP3kStarP3<=2]]]] & EX [KdStarG<=3]] | E [AktStar<=5 U 5<=GStarPgP3]]]]] & ~ [[[E [true U PtP2<=2] & ~ [E [3<=Akt U 2<=KdStarGStarPgStarP2]]] & ~ [3<=AktP3]]]]]]
abstracting: (3<=AktP3)
states: 350,216 (5)
abstracting: (2<=KdStarGStarPgStarP2)
states: 307,322 (5)
abstracting: (3<=Akt)
states: 19,822,700 (7)
abstracting: (PtP2<=2)
states: 42,015,515 (7)
abstracting: (5<=GStarPgP3)
states: 6
abstracting: (AktStar<=5)
states: 42,734,935 (7)
abstracting: (KdStarG<=3)
states: 42,696,480 (7)
.abstracting: (KdStarGStarP3kStarP3<=2)
states: 42,718,678 (7)
.
EG iterations: 1
abstracting: (KdStarGStarP3kStarP3<=2)
states: 42,718,678 (7)
abstracting: (KdStarGStarP3kStarP2<=AktStar)
states: 41,927,790 (7)
abstracting: (KdStarGStarP3kStarP3<=2)
states: 42,718,678 (7)
.abstracting: (KdStarGStarP3k<=0)
states: 30,046,914 (7)
abstracting: (1<=KdStarGStarPgStarP3P2)
states: 1,161,840 (6)
.
EG iterations: 1
abstracting: (2<=KdStarGStarP3kStarP2)
states: 314,760 (5)
.abstracting: (3<=KdStarGP3)
states: 13,804 (4)
abstracting: (Pg<=3)
states: 33,394,679 (7)
abstracting: (KdStarGStarP3kP3<=1)
states: 42,420,175 (7)
.abstracting: (KdStarGStarPg<=KdStarGStarP3kStarP3)
states: 31,178,963 (7)
abstracting: (3<=Pip3)
states: 718,700 (5)
.abstracting: (KdStarGStarPg<=Akt)
states: 39,882,275 (7)
abstracting: (KdStarGStarPg<=KdStarGStarP3kStarP3)
states: 31,178,963 (7)
abstracting: (3<=Pip3)
states: 718,700 (5)
.abstracting: (KdStarGStarPg<=KdStarGStarP3kStarP3)
states: 31,178,963 (7)
abstracting: (3<=Pip3)
states: 718,700 (5)
..
EG iterations: 1
abstracting: (3<=KdStarGP3)
states: 13,804 (4)
.abstracting: (KdStarGStarPgStarP3P2<=5)
states: 42,734,935 (7)
.abstracting: (Gab1<=GP3)
states: 20,220,554 (7)
abstracting: (KdStarGStarPgStar<=PtP3P2)
states: 31,176,707 (7)
abstracting: (4<=P3k)
states: 25,664,142 (7)
.
EG iterations: 1
abstracting: (Gab1<=GP3)
states: 20,220,554 (7)
abstracting: (KdStarGStarPgStar<=PtP3P2)
states: 31,176,707 (7)
abstracting: (Gab1<=GP3)
states: 20,220,554 (7)
abstracting: (KdStarGStarPgStar<=PtP3P2)
states: 31,176,707 (7)
.
EG iterations: 1
.-> the formula is TRUE
FORMULA Angiogenesis-PT-05-CTLCardinality-10 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 6.327sec
totally nodes used: 5729104 (5.7e+06)
number of garbage collections: 0
fire ops cache: hits/miss/sum: 55228420 40017175 95245595
used/not used/entry size/cache size: 32564938 34543926 16 1024MB
basic ops cache: hits/miss/sum: 7540198 5741405 13281603
used/not used/entry size/cache size: 7025507 9751709 12 192MB
unary ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 8 128MB
abstract ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 12 192MB
state nr cache: hits/miss/sum: 287291 228055 515346
used/not used/entry size/cache size: 225058 8163550 32 256MB
max state cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 8388608 32 256MB
uniqueHash elements/entry size/size: 67108864 4 256MB
0 62451319
1 4243904
2 315339
3 41569
4 17036
5 8176
6 5878
7 4851
8 3211
9 2141
>= 10 15440
Total processing time: 0m32.544sec
BK_STOP 1678391611918
--------------------
content from stderr:
check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.000sec
iterations count:5829 (91), effective:437 (6)
initing FirstDep: 0m 0.005sec
iterations count:1061 (16), effective:71 (1)
iterations count:64 (1), effective:0 (0)
iterations count:2295 (35), effective:187 (2)
iterations count:109 (1), effective:5 (0)
iterations count:64 (1), effective:0 (0)
iterations count:64 (1), effective:0 (0)
iterations count:8500 (132), effective:646 (10)
iterations count:88 (1), effective:3 (0)
iterations count:64 (1), effective:0 (0)
iterations count:8500 (132), effective:646 (10)
iterations count:64 (1), effective:0 (0)
iterations count:64 (1), effective:0 (0)
iterations count:8500 (132), effective:646 (10)
iterations count:64 (1), effective:0 (0)
iterations count:8500 (132), effective:646 (10)
iterations count:88 (1), effective:3 (0)
iterations count:64 (1), effective:0 (0)
iterations count:8500 (132), effective:646 (10)
iterations count:64 (1), effective:0 (0)
iterations count:64 (1), effective:0 (0)
iterations count:8500 (132), effective:646 (10)
iterations count:82 (1), effective:3 (0)
iterations count:64 (1), effective:0 (0)
iterations count:8500 (132), effective:646 (10)
iterations count:88 (1), effective:3 (0)
iterations count:64 (1), effective:0 (0)
iterations count:8500 (132), effective:646 (10)
iterations count:64 (1), effective:0 (0)
iterations count:64 (1), effective:0 (0)
iterations count:8500 (132), effective:646 (10)
iterations count:921 (14), effective:58 (0)
iterations count:6646 (103), effective:598 (9)
iterations count:1943 (30), effective:142 (2)
iterations count:64 (1), effective:0 (0)
iterations count:296 (4), effective:19 (0)
iterations count:64 (1), effective:0 (0)
iterations count:64 (1), effective:0 (0)
iterations count:779 (12), effective:62 (0)
iterations count:5514 (86), effective:426 (6)
iterations count:64 (1), effective:0 (0)
iterations count:1295 (20), effective:109 (1)
iterations count:753 (11), effective:63 (0)
iterations count:64 (1), effective:0 (0)
iterations count:64 (1), effective:0 (0)
iterations count:707 (11), effective:50 (0)
iterations count:174 (2), effective:5 (0)
iterations count:131 (2), effective:9 (0)
iterations count:2266 (35), effective:191 (2)
iterations count:827 (12), effective:64 (1)
iterations count:827 (12), effective:64 (1)
iterations count:827 (12), effective:64 (1)
iterations count:391 (6), effective:33 (0)
iterations count:76 (1), effective:2 (0)
iterations count:64 (1), effective:0 (0)
iterations count:7077 (110), effective:571 (8)
iterations count:973 (15), effective:77 (1)
iterations count:2354 (36), effective:179 (2)
iterations count:3274 (51), effective:250 (3)
iterations count:1640 (25), effective:129 (2)
iterations count:64 (1), effective:0 (0)
iterations count:951 (14), effective:66 (1)
iterations count:5585 (87), effective:454 (7)
iterations count:96 (1), effective:2 (0)
iterations count:1758 (27), effective:134 (2)
iterations count:96 (1), effective:2 (0)
iterations count:64 (1), effective:0 (0)
iterations count:96 (1), effective:2 (0)
iterations count:1624 (25), effective:129 (2)
iterations count:8096 (126), effective:656 (10)
iterations count:3503 (54), effective:279 (4)
iterations count:96 (1), effective:2 (0)
iterations count:1758 (27), effective:134 (2)
iterations count:96 (1), effective:2 (0)
iterations count:64 (1), effective:0 (0)
iterations count:96 (1), effective:2 (0)
iterations count:1624 (25), effective:129 (2)
iterations count:8096 (126), effective:656 (10)
iterations count:64 (1), effective:0 (0)
iterations count:96 (1), effective:2 (0)
iterations count:1758 (27), effective:134 (2)
iterations count:96 (1), effective:2 (0)
iterations count:64 (1), effective:0 (0)
iterations count:96 (1), effective:2 (0)
iterations count:1624 (25), effective:129 (2)
iterations count:8096 (126), effective:656 (10)
iterations count:3053 (47), effective:225 (3)
iterations count:91 (1), effective:3 (0)
iterations count:6124 (95), effective:478 (7)
iterations count:2637 (41), effective:187 (2)
iterations count:72 (1), effective:2 (0)
iterations count:594 (9), effective:46 (0)
iterations count:3588 (56), effective:303 (4)
iterations count:3575 (55), effective:273 (4)
iterations count:1936 (30), effective:147 (2)
iterations count:1936 (30), effective:147 (2)
iterations count:1923 (30), effective:137 (2)
iterations count:1936 (30), effective:147 (2)
iterations count:3361 (52), effective:255 (3)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="Angiogenesis-PT-05"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
export BK_BIN_PATH="/home/mcc/BenchKit/bin/"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-5348"
echo " Executing tool marcie"
echo " Input is Angiogenesis-PT-05, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r001-oct2-167813588500321"
echo "====================================================================="
echo
echo "--------------------"
echo "preparation of the directory to be used:"
tar xzf /home/mcc/BenchKit/INPUTS/Angiogenesis-PT-05.tgz
mv Angiogenesis-PT-05 execution
cd execution
if [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "UpperBounds" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] || [ "CTLCardinality" = "StateSpace" ]; then
rm -f GenericPropertiesVerdict.xml
fi
pwd
ls -lh
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
elif [ "CTLCardinality" = "ReachabilityDeadlock" ] || [ "CTLCardinality" = "QuasiLiveness" ] || [ "CTLCardinality" = "StableMarking" ] || [ "CTLCardinality" = "Liveness" ] || [ "CTLCardinality" = "OneSafe" ] ; then
echo "FORMULA_NAME CTLCardinality"
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;