This form is a summary description of the model entitled “CircadianClock” proposed for the Model Checking Contest @ Petri Nets. Models can be given in several instances parameterized by scaling parameters. Colored nets can be accompanied by one or many equivalent, unfolded P/T nets. Models are given together with property files (possibly, one per model instance) giving a set of properties to be checked on the model.

Description

The abstract circadian clock model of Barkei and Leiber [BL00] shows circadian rhythms which are widely used in organisms to keep a sense of daily time. The stochastic Petri net of the circadian clock is based on the ODE model of [Vilar2002]. The bounded version of the net was used in [SH2009] and the unbounded version in [Rohr2010].

In March 2020, Pierre Bouvier and Hubert Garavel provided a decomposition of the only one-safe instance of this model into a network of communicating automata. This network is expressed as a Nested-Unit Petri Net (NUPN) that can be found in the “toolspecific” section of the corresponding PNML file.

References

Scaling parameter

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Parameter description</th>
<th>Chosen parameter values</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>initial number of tokens on places</td>
<td>1, 10, 100, 1000, 10000, 100000</td>
</tr>
</tbody>
</table>

Size of the model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Number of places</th>
<th>Number of transitions</th>
<th>Number of arcs</th>
<th>Number of units</th>
<th>HWB code</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N = 1$</td>
<td>14</td>
<td>16</td>
<td>58</td>
<td>8</td>
<td>1–7–7</td>
</tr>
<tr>
<td>$N = 10$</td>
<td>14</td>
<td>16</td>
<td>58</td>
<td>–</td>
<td>––14</td>
</tr>
<tr>
<td>$N = 100$</td>
<td>14</td>
<td>16</td>
<td>58</td>
<td>–</td>
<td>––14</td>
</tr>
<tr>
<td>$N = 1000$</td>
<td>14</td>
<td>16</td>
<td>58</td>
<td>–</td>
<td>––14</td>
</tr>
<tr>
<td>$N = 10000$</td>
<td>14</td>
<td>16</td>
<td>58</td>
<td>–</td>
<td>––14</td>
</tr>
</tbody>
</table>

Structural properties

ordinary — all arcs have multiplicity one

simple free choice — all transitions sharing a common input place have no other input place

extended free choice — all transitions sharing a common input place have the same input places

state machine — every transition has exactly one input place and exactly one output place

marked graph — every place has exactly one input transition and exactly one output transition

connected — there is an undirected path between every two nodes (places or transitions)

strongly connected — there is a directed path between every two nodes (places or transitions)

source place(s) — one or more places have no input transitions

sink place(s) — one or more places have no output transitions

source transition(s) — one or more transitions have no input places

sink transition(s) — one or more transitions have no output places

loop-free — no transition has an input place that is also an output place

conservative — for each transition, the number of input arcs equals the number of output arcs

subconservative — for each transition, the number of input arcs equals or exceeds the number of output arcs

nested units — places are structured into hierarchically nested sequential units

Behavioural properties

safe — in every reachable marking, there is no more than one token on a place

dead place(s) — one or more places have no token in any reachable marking

(a) 23 arcs are not simple free choice, e.g., the arc from place “a” (which has 4 outgoing transitions) to transition “bind_a” (which has 2 input places).

(b) transitions “bind_a” and “bind_d” share a common input place “a”, but only the former transition has input place “da”.

(c) 12 transitions are not of a state machine, e.g., transition “bind_a”.

(d) 12 places are not of a marked graph, e.g., place “a”.

(e) stated by CÆSAR.BDD version 2.0 on all 6 instances (1, 10, 100, 1000, 10000, and 100000).

(f) stated by CÆSAR.BDD version 2.0 on all 6 instances (1, 10, 100, 1000, 10000, and 100000).

(g) stated by CÆSAR.BDD version 2.0 on all 6 instances (1, 10, 100, 1000, 10000, and 100000).

(h) stated by CÆSAR.BDD version 2.0 on all 6 instances (1, 10, 100, 1000, 10000, and 100000).

(i) stated by CÆSAR.BDD version 2.0 on all 6 instances (1, 10, 100, 1000, 10000, and 100000).

(j) stated by CÆSAR.BDD version 2.0 on all 6 instances (1, 10, 100, 1000, 10000, and 100000).

(k) 6 transitions are not loop free, e.g., transition “transc_da”.

(l) stated by CÆSAR.BDD version 2.0 on all 6 instances (1, 10, 100, 1000, 10000, and 100000).

(m) stated by CÆSAR.BDD version 2.0 on all 6 instances (1, 10, 100, 1000, 10000, and 100000).

(n) the definition of Nested-Unit Petri Nets (NUPN) is available from http://mcc.lip6.fr/nupn.php

(o) stated by CÆSAR.BDD version 3.3 to be true for $N = 1$, and false on the remaining 5 instance(s).

(p) stated by CÆSAR.BDD version 3.3 to be true on 1 instance(s) out of 6, and false on the remaining 5 instance(s).

(q) stated by CÆSAR.BDD version 3.3 on all 6 instances (1, 10, 100, 1000, 10000, and 100000).
dead transition(s) — one or more transitions cannot fire from any reachable marking

deadlock — there exists a reachable marking from which no transition can be fired

reversible — from every reachable marking, there is a transition path going back to the initial marking

live — for every transition t, from every reachable marking, one can reach a marking in which t can fire

Size of the marking graphs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Number of reachable markings</th>
<th>Number of transition firings</th>
<th>Max. number of tokens per place</th>
<th>Max. number of tokens per marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>N = 1</td>
<td>128 (v)</td>
<td>624 (w)</td>
<td>N (x)</td>
<td>7 (y)</td>
</tr>
<tr>
<td>N = 10</td>
<td>644 204 (z)</td>
<td>6.7663E+6 (aa)</td>
<td>N (ab)</td>
<td>52 (ac)</td>
</tr>
<tr>
<td>N = 100</td>
<td>4.2040E+10 (ad)</td>
<td>4.9743E+11 (ac)</td>
<td>N (af)</td>
<td>502 (ag)</td>
</tr>
<tr>
<td>N = 1000</td>
<td>4.0200E+15 (ah)</td>
<td>4.8172E+16 (ai)</td>
<td>N (aj)</td>
<td>50002 (am)</td>
</tr>
<tr>
<td>N = 10 000</td>
<td>4.0200 040 004 000 200 004 (al)</td>
<td></td>
<td>N</td>
<td>50002 (am)</td>
</tr>
<tr>
<td>N = 100 000</td>
<td>? (ai)</td>
<td>?</td>
<td>N</td>
<td>50002 (am)</td>
</tr>
</tbody>
</table>

(v) stated by CÆSAR.BDD version 2.0 on all 6 instances (1, 10, 100, 1000, 10000, and 100000).
(w) computed at MCC’2014 by Marcie.
(z) confirmed at MCC’2014 by Marcie, PNMC, PNXDD, Stratagem, and Tapaal.
(y) confirmed at MCC’2014 by Marcie, PNMC, and Tapaal.
(x) confirmed at MCC’2014 by Marcie, PNMC, and Tapaal.
(y) computed by Marcie on 2013-12-13; exact value: 42040 402004; confirmed at MCC’2014 by Marcie, PNMC, and PNXDD.
(a) computed by Marcie on 2013-12-13; exact value: 4020040 402004; confirmed at MCC’2014 by Marcie and PNMC.
(b) computed by Marcie on 2013-12-13; exact value: 4020040 402004; confirmed at MCC’2014 by Marcie and PNMC.
(c) number of initial tokens, because the net is conservative.
(d) number of initial tokens, because the net is conservative.
(e) number of initial tokens, because the net is conservative.
(f) number of initial tokens, because the net is conservative.
(g) number of initial tokens, because the net is conservative.
(h) number of initial tokens, because the net is conservative.
(i) number of initial tokens, because the net is conservative.
(j) number of initial tokens, because the net is conservative.
(k) number of initial tokens, because the net is conservative.
(l) number of initial tokens, because the net is conservative.
(m) number of initial tokens, because the net is conservative.
(n) number of initial tokens, because the net is conservative.