This form is a summary description of the model entitled "Eisenberg-McGuire" proposed for the Model Checking Contest @ Petri Nets. Models can be given in several instances parameterized by scaling parameters. Colored nets can be accompanied by one or many equivalent, unfolded P/T nets. Models are given together with property files (possibly, one per model instance) giving a set of properties to be checked on the model.

Description

This PT net models Eisenberg-McGuire's algorithm for N processes mutual exclusion problem.

The pseudo code of the algorithm is the following:

```
// variables
constant int N := 4;
shared enum states {IDLE, WAITING, ACTIVE} flag[N - 1] := { IDLE, ..., IDLE}; shared int turn := 0;
int i; // not shared
// code for a process p (p in [0..N-1])
01 loop {
02
     repeat {
03
        // announce that we need the resource
        flag[p] := WAITING;
04
        // scan processes from the one with the turn up to ourselves.
// repeat if necessary until the scan finds all processes idle
05
06
        i := turn;
07
08
        while(i != p) {
          if(flag[i] != IDLE)
09
10
             i := turn;
11
           else
12
             i := i + 1 mod N;
13
        ^{\prime\prime} now tentatively claim the resource
14
        flag[p] := ACTIVE;
15
16
        // find the first active process besides ourselves, if any
17
        while (i < n and (i == p or flag[i] != ACTIVE)) {
18
19
          i := i + 1;
20
        // if there were no other active processes, AND if we have the
// turn or else whoever has it is idle, then proceed.
21
22
23
            Otherwise, repeat the whole sequence.
25
      until (i >= n and (turn == p or flag[turn] == IDLE));
26
      \ensuremath{//} claim the turn and proceed
27
      turn := p;
28
     // critical section
30
     // find a process which is not IDLE // (if there are no others, we will find ourselves)
31
      i := turn + 1 mod n;
32
      while (flag[i] = IDLE) {
33
34
       i := i + 1 \mod n;
36
      //
          give the turn to someone that needs it, or keep it
37
      turn := i;
38
      // we're finished now
      flag[p] := IDLE;
39
40 }
```

Places are named pXX where XX is a line number in the code. Same for transitions. Exceptions are places modeling shared variables and the critical section.

References

Scaling parameter

Parameter name	Parameter description	Chosen parameter values
N	Number of processes competing	3, 4, 5, 6, 7, 8, 9, 10

Model: Eisenberg-McGuire Type: P/T Net Origin: Academic

Size of the model

Parameter	Number of	Number of	Number of	Number of	HWB code
	places	transitions	arcs	${f units}$	
N=3	117	216	900	10	2-8-29
N=4	196	448	1952	12	2-10-37
N=5	295	800	3600	13	1-12-50
N=6	414	1296	5976	15	1-14-58
N = 7	553	1960	9212	17	1-16-67
N=8	712	2816	13440	19	1-18-75
N=9	891	3888	18792	23	2-21-90
N = 10	1090	5200	25400	25	2-23-105

Structural properties

simple free choice — all transitions sharing a common input place have no other input place
1
extended free choice — all transitions sharing a common input place have the same input places
state machine — every transition has exactly one input place and exactly one output placeno (c)
marked graph — every place has exactly one input transition and exactly one output transition
connected — there is an undirected path between every two nodes (places or transitions)
strongly connected — there is a directed path between every two nodes (places or transitions) yes (f)
source place(s) — one or more places have no input transitions
sink place(s) — one or more places have no output transitions
source transition(s) — one or more transitions have no input places
sink transitions(s) — one or more transitions have no output places
loop-free — no transition has an input place that is also an output place
conservative — for each transition, the number of input arcs equals the number of output arcs
subconservative — for each transition, the number of input arcs equals or exceeds the number of output arcs yes (m)
nested units — places are structured into hierarchically nested sequential units (n)

Behavioural properties

safe — in every reachable marking, there is no more than one token on a place
dead place(s) — one or more places have no token in any reachable marking no (p)
dead transition(s) — one or more transitions cannot fire from any reachable marking
deadlock — there exists a reachable marking from which no transition can be fired
reversible — from every reachable marking, there is a transition path going back to the initial marking?
live — for every transition t, from every reachable marking, one can reach a marking in which t can fire?

⁽a) stated by CÆSAR.BDD version 3.7 on all 8 instances (3, 4, 5, 6, 7, 8, 9, 10, and 11).

⁽b) stated by CÆSAR.BDD version 3.7 on all 8 instances (3, 4, 5, 6, 7, 8, 9, 10, and 11).

 $^{^{(}c)}$ stated by CÆSAR.BDD version 3.7 on all 8 instances (3, 4, 5, 6, 7, 8, 9, 10, and 11).

⁽d) stated by CÆSAR.BDD version 3.7 on all 8 instances (3, 4, 5, 6, 7, 8, 9, 10, and 11).

 $[\]stackrel{\text{(e)}}{}$ stated by CÆSAR.BDD version 3.7 on all 8 instances (3, 4, 5, 6, 7, 8, 9, 10, and 11).

⁽f) stated by CÆSAR.BDD version 3.7 on all 8 instances (3, 4, 5, 6, 7, 8, 9, 10, and 11). (g) stated by CÆSAR.BDD version 3.7 on all 8 instances (3, 4, 5, 6, 7, 8, 9, 10, and 11).

⁽h) stated by CÆSAR.BDD version 3.7 on all 8 instances (3, 4, 5, 6, 7, 8, 9, 10, and 11).

⁽i) stated by CÆSAR.BDD version 3.7 on all 8 instances (3, 4, 5, 6, 7, 8, 9, 10, and 11).

⁽j) stated by CÆSAR.BDD version 3.7 on all 8 instances (3, 4, 5, 6, 7, 8, 9, 10, and 11).

⁽k) stated by CÆSAR.BDD version 3.7 on all 8 instances (3, 4, 5, 6, 7, 8, 9, 10, and 11).

⁽¹⁾ stated by CÆSAR.BDD version 3.7 on all 8 instances $(3,\,4,\,5,\,6,\,7,\,8,\,9,\,10,\,\mathrm{and}\,11)$.

⁽m) stated by CÆSAR.BDD version 3.7 on all 8 instances (3, 4, 5, 6, 7, 8, 9, 10, and 11).

(n) the definition of Nested-Unit Petri Nets (NUPN) is available from http://mcc.lip6.fr/nupn.php

⁽o) safe by construction – stated by PNML2NUPN 3.2.0.

⁽p) stated by CÆSAR.BDD version 3.7 to be false on 2 instance(s) out of 8, and unknown on the remaining 6 instance(s).

⁽q) stated by CÆSAR.BDD version 3.7 to be false on 2 instance(s) out of 8, and unknown on the remaining 6 instance(s).

⁽r) stated by CESAR.BDD version 3.7 to be false on 2 instance(s) out of 8, and unknown on the remaining 6 instance(s).

Size of the marking graphs

Parameter	Number of reach-	Number of tran-	Max. number of	Max. number of
	able markings	sition firings	tokens per place	tokens per marking
N=3	31,265 ^(s)	93,795	1	7 ^(t)
N=4	1,762,378 ^(u)	7,049,512	1	9 (v)
N=5	114,106,399	570,531,995	1 ^(w)	11 ^(x)
N=6	$\geq 7.46519e + 08^{\text{(y)}}$?	1 ^(z)	13 ^(aa)
N=7	$\geq 1.4107e + 09^{\text{(ab)}}$?	1 (ac)	15 ^(ad)
N=8	$\geq 1.64208e + 10^{\text{(ae)}}$?	1 (af)	17 ^(ag)
N=9	$\geq 6.6762e + 10^{\text{(ah)}}$?	1 ^(ai)	19 ^(aj)
N = 10	$\geq 4.96501e + 10^{\text{(ak)}}$?	1 ^(al)	21 ^(am)

Other properties

- State property: at each reachable marking, there is at most process in critical section. $\sum_{i \in \{0...N-1\}} critical_section_i <= 1$
- LTL property: there infinitely often is a process in critical section. $[](<>(\sum_{i\in\{0..N-1\}} critical_section_i == 1))$

 $^{^{\}rm (s)}$ stated by CÆSAR.BDD version 3.7.

⁽t) number of initial tokens, because the net is conservative.

⁽u) stated by CÆSAR.BDD version 3.7.

⁽v) number of initial tokens, because the net is conservative.

⁽w) stated by PNML2NUPN 3.2.0.

⁽x) number of initial tokens, because the net is conservative.

⁽y) stated by CÆSAR.BDD version 3.7.

⁽z) stated by PNML2NUPN 3.2.0.

 $^{^{\}mathrm{(aa)}}$ number of initial tokens, because the net is conservative.

⁽ab) stated by CÆSAR.BDD version 3.7.

⁽ac) stated by PNML2NUPN 3.2.0.

⁽ad) number of initial tokens, because the net is conservative.

⁽ae) stated by CÆSAR.BDD version 3.7.

 $^{^{\}rm (af)}$ stated by PNML2NUPN 3.2.0.

 $^{^{(}ag)}$ number of initial tokens, because the net is conservative.

⁽ah) stated by CÆSAR.BDD version 3.7.

 $^{^{\}rm (ai)}$ stated by PNML2NUPN 3.2.0.

⁽aj) number of initial tokens, because the net is conservative.

 $^{^{(}ak)}$ stated by CÆSAR.BDD version 3.7.

⁽al) stated by PNML2NUPN 3.2.0.

⁽am) number of initial tokens, because the net is conservative.